Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
Nonlinear dynamics of resistive electrostatic drift waves
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.
1999-01-01
The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... is perturbed by a small amplitude incoherent wave-field. The initial evolution is exponential, following the growth of perturbations predicted by linear stability theory. The fluctuations saturate at relatively high amplitudes, by forming a pair of magnetic field aligned vortex-like structures of opposite...
Nonlinear electrostatic wave equations for magnetized plasmas - II
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....
Nonlinear electrostatic waves in inhomogeneous dense dusty magnetoplasmas
Energy Technology Data Exchange (ETDEWEB)
Mahmood, S., E-mail: shahzad_mahmoodpk@yahoo.co [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)
2010-01-25
The nonlinear electrostatic drift waves are studied using quantum hydrodynamic model in dusty quantum magnetoplasmas. The dissipative effects due to collisions between ions and dust particles have also been taken into account. The Korteweg-de Vries Burgers (KdVB) like equation is derived and analytical solution is obtained using tanh method. The limiting cases of KdV type solitary waves, Burger type monotonic shock waves and oscillatory shock solutions are also presented. It is found that both hump and dip type solitary structures are possible in quantum dusty plasmas. However, amplitude and width of the nonlinear structure depend on the dust charge polarity and its concentration in electron-ion quantum plasmas. The monotonic shock like structure is independent of the quantum parameter. It is found that shock strength is increased in the presence of positively charged particles in comparison with negatively charged dust particles. The oscillatory shock structures are also obtained and it is found that change in dust charge polarity only shifts the phase of the oscillatory shock in plasmas. The numerical results are also presented for illustration.
Nonlinear saturation of electrostatic waves mobile ions modify trapping scaling
Crawford, J D; Crawford, John David; Jayaraman, Anandhan
1996-01-01
The amplitude equation for an unstable electrostatic wave in a multi-species Vlasov plasma has been derived. The dynamics of the mode amplitude $\\rho(t)$ is studied using an expansion in $\\rho$; in particular, in the limit analyzed to predict the asymptotic dependence of the electric field on the linear growth rate $\\gamma$. Generically $|E_k|\\sim \\gamma^{5/2}$, as instabilities in reflection-symmetric systems due to real eigenvalues the more familiar trapping scaling $|E_k|\\sim \\gamma^{2}$ is predicted.
Chatterjee, Debjani; Misra, A P
2015-12-01
The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' q-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Saberian and Esfandyari-Kalejahi, Phys. Rev. E 87, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schrödinger (NLS) equation with a nonlocal nonlinear term ∝P∫|ϕ(ξ',τ)|(2)dξ'ϕ/(ξ-ξ') [where P denotes the Cauchy principal value, ϕ is the small-amplitude electrostatic (complex) potential, and ξ and τ are the stretched coordinates in MST], which appears due to the wave-particle resonance. It is found that a subregion 1/3Landau damping) due to the nonlocal nonlinearity in the NLS equation. Furthermore, the effect of the nonlinear Landau damping is to slow down the amplitude of the wave envelope, and the corresponding decay rate can be faster the larger is the number of superthermal particles in pair plasmas.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Samiran, E-mail: sran_g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Chatterjee, D
2015-01-01
The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' $q$-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Phys. Rev. E {\\bf87}, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schr{\\"o}dinger (NLS) equation with a nonlocal nonlinear term $\\propto {\\cal{P}}\\int|\\phi(\\xi',\\tau)|^2d\\xi'\\phi/(\\xi-\\xi') $ [where ${\\cal P}$ denotes the Cauchy principal value, $\\phi$ is the small-amplitude electrostatic (complex) potential, and $\\xi$ and $\\tau$ are the stretched coordinates in MST] which appears due to the wave-particle resonance. It is found that a subregion $1/3wave frequency can turn over with the gro...
Nonlinear electrostatic drift Kelvin-Helmholtz instability
Sharma, Avadhesh C.; Srivastava, Krishna M.
1993-01-01
Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.
Camporeale, E.; Pezzi, O.; Valentini, F.
2015-12-01
The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric
Goyal, R.; Sharma, R. P.; Kumar, S.
2017-01-01
A model is proposed to study the dynamics of high-amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with low-frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The wave dynamics clearly indicates the whistlers having quasi-electrostatic character when propagating close to resonance cone angle. A high-amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES (STEREO/WAVES) instrument onboard STEREO (Solar Terrestrial Relations Observatory). A numerical simulation technique has been employed to study the localization of quasi-electrostatic whistler waves in radiation belts. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite low-frequency waves (KAWs). The turbulent spectrum obtained using the analysis suggests the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.
Undamped electrostatic plasma waves
Valentini, F; Califano, F; Pegoraro, F; Veltri, P; Morrison, P J; O'Neil, T M
2015-01-01
Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named {\\it corner modes}. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the $(k,\\omega_{_R})$ plane ($\\omega_{_R}$ being the real part of the wave frequency and $k$ the wavenumber), away from the well-known `thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existenc...
Liu, Chang
2015-01-01
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the ?first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
Misra, A P
2010-01-01
We consider the nonlinear propagation of electrostatic wave packets in an ultra-relativistic (UR) degenerate dense electron-ion plasma, whose dynamics is governed by the nonlocal two-dimensional nonlinear Schroedinger-like equations. The coupled set of equations are then used to study the modulational instability (MI) of a uniform wave train to an infinitesimal perturbation of multi-dimensional form. The condition for the MI is obtained, and it is shown that the nondimensional parameter, $\\beta\\propto\\lambda_C n_0^{1/3}$ (where $\\lambda_C$ is the reduced Compton wavelength and $n_0$ is the particle number density), associated with the UR pressure of degenerate electrons, shifts the stable (unstable) regions at $n_{0}\\sim10^{30}$ cm$^{-3}$ to unstable (stable) ones at higher densities, i.e. $n_{0}\\gtrsim7\\times10^{33}$. It is also found that higher the values of $n_{0}$, the lower is the growth rate of MI with cut-offs at lower wave numbers of modulation. Furthermore, the dynamical evolution of the wave packet...
Collapse of Electrostatic Waves in Magnetoplasmas
DEFF Research Database (Denmark)
Shukla, P. K.; Yu, M. Y.; Juul Rasmussen, Jens
1984-01-01
The two-fluid model is employed to investigate the collapse of electrostatic waves in magnetized plasmas. It is found that nonlinear interaction of ion cyclotron, upper-, and lower-hybrid waves with adiabatic particle motion along the external magnetic field can cause wave-field collapse....
Afeyan, Bedros; Crouseilles, Nicolas; Dodhy, Adila; Faou, Erwan; Mehrenberger, Michel; Sonnendrücker, Eric
2014-01-01
KEEN waves are nonlinear, non-stationary, self-organized asymptotic states in Vlasov plasmas outside the scope or purview of linear theory constructs such as electron plasma waves or ion acoustic waves. Nonlinear stationary mode theories such as those leading to BGK modes also do not apply. The range in velocity that is strongly perturbed by KEEN waves depends on the amplitude and duration of the ponderomotive force used to drive them. Smaller amplitude drives create highly localized structures attempting to coalesce into KEEN waves. These cases have much more chaotic and intricate time histories than strongly driven ones. The narrow range in which one must maintain adequate velocity resolution in the weakly driven cases challenges xed grid numerical schemes. What is missing there is the capability of resolving locally in velocity while maintaining a coarse grid outside the highly perturbed region of phase space. We here report on a new Semi-Lagrangian Vlasov-Poisson solver based on conservative non-uniform c...
Amplitude Equations for Electrostatic Waves multiple species
Crawford, J D; Crawford, John David; Jayaraman, Anandhan
1997-01-01
The amplitude equation for an unstable electrostatic wave is analyzed using an expansion in the mode amplitude $A(t)$. In the limit of weak instability, i.e. $\\gamma\\to 0^+$ where $\\gamma$ is the linear growth rate, the nonlinear coefficients are singular and their singularities predict the dependence of $A(t)$ on $\\gamma$. Generically the scaling $|A(t)|=\\gamma^{5/2}r(\\gamma t)$ as orders. This result predicts the electric field scaling $|E_k|\\sim\\gamma^{5/2}$ will hold universally for these instabilities (including beam-plasma and two-stream configurations) throughout the dynamical evolution and in the time-asymptotic state. In exceptional cases, such as infinitely massive ions, the coefficients are less singular and the more familiar trapping scaling $|E_k|\\sim\\gamma^2$ is recovered.
Nonlinear Dynamics of Electrostatically Actuated MEMS Arches
Al Hennawi, Qais M.
2015-05-01
In this thesis, we present theoretical and experimental investigation into the nonlinear statics and dynamics of clamped-clamped in-plane MEMS arches when excited by an electrostatic force. Theoretically, we first solve the equation of motion using a multi- mode Galarkin Reduced Order Model (ROM). We investigate the static response of the arch experimentally where we show several jumps due to the snap-through instability. Experimentally, a case study of in-plane silicon micromachined arch is studied and its mechanical behavior is measured using optical techniques. We develop an algorithm to extract various parameters that are needed to model the arch, such as the induced axial force, the modulus of elasticity, and the initially induced initial rise. After that, we excite the arch by a DC electrostatic force superimposed to an AC harmonic load. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Then, we excite the arch by an electric load of two AC frequency components, where we report a combination resonance of the summed type. Agreement is reported among the theoretical and experimental work.
Nonlinear wave interactions in quantum magnetoplasmas
Shukla, P K; Marklund, M; Stenflo, L
2006-01-01
Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.
Modulated envelope localized wavepackets associated with electrostatic plasma waves
Kourakis, I; Kourakis, Ioannis; Shukla, Padma Kant
2004-01-01
The nonlinear amplitude modulation of known electrostatic plasma modes is examined in a generic manner, by applying a collisionless fluid model. Both cold (zero-temperature) and warm fluid descriptions are discussed and the results are compared. The moderately nonlinear oscillation regime is investigated by applying a multiple scale technique. The calculation leads to a Nonlinear Schrodinger-type Equation (NLSE), which describes the evolution of the slowly varying wave amplitude in time and space. The NLSE admits localized envelope (solitary wave) solutions of bright- (pulses) or dark- (holes, voids) type, whose characteristics (maximum amplitude, width) depend on intrinsic plasma parameters. Effects like amplitude perturbation obliqueness, finite temperature and defect (dust) concetration are explicitly considered. The relevance with similar highly localized modulated wave structures observed during recent satellite missions is discussed.
Eulerian simulations of collisional effects on electrostatic plasma waves
Pezzi, Oreste; Perrone, Denise; Veltri, Pierluigi
2013-01-01
The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attach, both from the theoretical and the numerical point of view, and which requires in general to approximate the original collisional Landau integral by simplified differential operators in reduced dimensionality. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear form. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator...
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices
Directory of Open Access Journals (Sweden)
Di Chen
2007-05-01
Full Text Available Electrostatic micro-electro-mechanical system (MEMS is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.
NONLINEAR DYNAMICS OF CARBON NANOTUBES UNDER LARGE ELECTROSTATIC FORCE
Xu, Tiantian
2015-06-01
Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.
Origin of Broadband Electrostatic Waves in Earth's Magnetotail
Grabbe, Crockett
1999-11-01
Since the discovery on Geotail of spiky pulses on broadband electrostatic "noise" (BEN) in the plasma sheet boundary layer (PSBL), the principle theoretical model pursued involves solitary waves associated with Bernstein-Greene-Kruskal (BGK) modes. That model was set forth because of evidence for nonlinear signatures in the waves, and implicitly assumes BEN for all frequencies and locations occurs well past the linear stage of growth. However, simulations using various versions of this model have been idealized, ignoring physical parameters such as the background magnetic field until recently. A new theory has been proposed by the author in which the strong trapping nonlinearities (so that BGK modes can evolve) are limited to the highest frequencies (near the plasma frequency), whereas the broadband bulk of the lower frequency spectrum (up to 0.1-0.2 ω_pe arises from wide-angle beam instabilities where the magnetic field plays a crucial role and where trapping is too weak for BGK-type modes. Broadband electrostatic Wave data from ISEE-1, ISEE-3 and Polar are presented that support the new model.
Surface Acoustic Wave Atomizer and Electrostatic Deposition
Yamagata, Yutaka
A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
Laser second harmonic generation in a magnetoplasma assisted by an electrostatic wave
Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav
2017-04-01
A laser produced plasma, and an electrostatic wave, helps to generate a strong harmonic radiation. The electrostatic wave assists k matching and contributes to non-linear coupling. In the case of the Bernstein wave assisted second harmonic, the frequency of the second harmonic is shifted from the laser second harmonic by electron cyclotron frequency. The lower hybrid wave (LHW) assisted second harmonic has frequency slightly shifted from the laser second harmonic. The upper hybrid wave (UHW) assisted second harmonic has frequency shifted by an amount ω that lies between max( ω c , ω p ) and ω U H . At a 0 = 0.1 and n ω , k → / n0 0 = 0.1, the normalized amplitude value the of electrostatic wave assisted second harmonic is quite high near the upper hybrid resonance. The effect of increasing ω c / ω p increases the max value of normalized amplitude.
Ion-Beam-Excited Electrostatic Ion Cyclotron Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1976-01-01
Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....
Linear electrostatic waves in a three-component electron-positron-ion plasma
Energy Technology Data Exchange (ETDEWEB)
Mugemana, A., E-mail: mugemanaa@gmail.com; Moolla, S. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lazarus, I. J. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Durban 4000 (South Africa)
2014-12-15
Analytical linear electrostatic waves in a magnetized three-component electron-positron-ion plasma are studied in the low-frequency limit. By using the continuity and momentum equations with Poisson's equation, the dispersion relation for the electron-positron-ion plasma consisting of cool ions, and hot Boltzmann electrons and positrons is derived. In the linear regime, the propagation of two possible modes and their evolution are studied. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. The present investigation contributes to nonlinear propagation of electrostatic waves in space and the laboratory.
Nonlinear Electrostatic Properties of Lunar Dust
Irwin, Stacy A.
2012-01-01
A laboratory experiment was designed to study the induction charging and charge decay characteristics of small dielectric particles, or glass beads. Initially, the goal of the experiment was further understanding of induction charging of lunar dust particles. However, the mechanism of charging became a point of greater interest as the project continued. Within an environmentally-controlled acrylic glove box was placed a large parallel plate capacitor at high-voltage (HV) power supply with reversible polarity. Spherical 1-mm and 0.5-mm glass beads, singly, were placed between the plates, and their behaviors recorded on video and quantified. Nearly a hundred trials at various humidities were performed. The analysis of the results indicated a non-linear relationship between humidity and particle charge exchange time (CET), for both sizes of beads. Further, a difference in CET for top-resting beads and bottom-resting beads hinted at a different charging mechanism than that of simple induction. Results from the I-mm bead trials were presented at several space science and physics conferences in 2008 and 2009, and were published as a Master's thesis in August 2009. Tangential work stemming from this project resulted in presentations at other international conferences in 2010, and selection to attend workshop on granular matter flow 2011.
Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.
Sahin, Buyukdagli; Ralf, Blossey
2014-07-16
We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...
Nonlinear hyperbolic waves in multidimensions
Prasad, Phoolan
2001-01-01
The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...
Dieckmann, M E; Parviainen, M; Shukla, P K; Sircombe, N J
2006-01-01
Particle acceleration by means of non-linear plasma wave interactions is of great topical interest. Accordingly, in this paper we focus on the electron surfing process. Self-consistent kinetic simulations, using both relativistic Vlasov and PIC (Particle In Cell) approaches, show here that electrons can be accelerated to highly relativistic energies (up to 100 m_e c^2) if the phase speed of the electrostatic wave is mildly relativistic (0.6c to 0.9c for the magnetic field strengths considered). The acceleration is strong because of relativistic stabilisation of the nonlinearly saturated electrostatic wave, seen in both relativistic Vlasov and PIC simulations. An inverse power law momentum distribution can arise for the most strongly accelerated electrons. These results are of relevance to observed rapid changes in the radio synchrotron emission intensities from microquasars, gamma ray bursts and other astrophysical objects that require rapid acceleration mechanisms for electrons.
Energy Technology Data Exchange (ETDEWEB)
Dieckmann, M E [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Sircombe, N J [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Parviainen, M [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Shukla, P K [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Dendy, R O [UKAEA Culham Division, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom)
2006-04-15
Particle acceleration by means of nonlinear plasma wave interactions is of great topical interest. Accordingly, in this paper we focus on the electron surfing process. Self-consistent kinetic simulations, using both relativistic Vlasov and particle-in-cell (PIC) approaches, show here that electrons can be accelerated to highly relativistic energies (up to 100m{sub e}c{sup 2}) if the phase speed of the electrostatic wave is mildly relativistic (0.6c to 0.9c for the magnetic field strengths considered). The acceleration is strong because of relativistic stabilization of the nonlinearly saturated electrostatic wave, seen in both relativistic Vlasov and PIC simulations. An inverse power law momentum distribution can arise for the most strongly accelerated electrons. These results are of relevance to observed rapid changes in the radio synchrotron emission intensities from microquasars, gamma ray bursts and other astrophysical objects that require rapid acceleration mechanisms for electrons.
Properties of Nonlinear Dynamo Waves
Tobias, S. M.
1997-01-01
Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.
Unstable Electrostatic Ion Cyclotron Waves Exited by an Ion Beam
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1976-01-01
Electrostatic ion cyclotron waves were observed in a quiescent cesium plasma into which a low‐energy beam of sodium ions was injected. The instability appeared when the beam velocity was above 12 times the ion thermal velocity. The waves propagated along the magnetic field with a velocity somewhat...
Nonlinear wave-wave interactions and wedge waves
Institute of Scientific and Technical Information of China (English)
Ray Q.Lin; Will Perrie
2005-01-01
A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.
Realising traceable electrostatic forces despite non-linear balance motion
Stirling, Julian; Shaw, Gordon A.
2017-05-01
Direct realisation of force, traceable to fundamental constants via electromagnetic balances, is a key goal of the proposed redefinition of the international system of units (SI). This will allow small force metrology to be performed using an electrostatic force balance (EFB) rather than subdivision of larger forces. Such a balance uses the electrostatic force across a capacitor to balance an external force. In this paper we model the capacitance of a concentric cylinder EFB design as a function of the displacement of its free electrode, accounting for the arcuate motion produced by parallelogram linkages commonly used in EFB mechanisms. From this model we suggest new fitting procedures to reduce uncertainties arising from non-linear motion as well as methods to identify misalignment of the mechanism. Experimental studies on both a test capacitor and the NIST EFB validate the model.
Nonlinear behavior for nanoscale electrostatic actuators with Casimir force
Energy Technology Data Exchange (ETDEWEB)
Lin Wenhui [College of Science, China Agricultural University, Beijing 100083 (China); Zhao Yapu [State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: yzhao@lnm.imech.ac.cn
2005-03-01
The influence of Casimir force on the nonlinear behavior of nanoscale electrostatic actuators is studied in this paper. A one degree of freedom mass-spring model is adopted and the bifurcation properties of the actuators are obtained. With the change of the geometrical dimensions, the number of equilibrium point varies from zero to two. Stability analysis shows that one equilibrium point is Hopf point and the other is unstable saddle point when there are two equilibrium points. We also obtain the phase portraits, in which the periodic orbits exist around the Hopf point, and a homoclinic orbit passes through the unstable saddle point.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
New approaches to nonlinear waves
2016-01-01
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the app...
Kalaee, Mohammad Javad; Katoh, Yuto
2016-07-01
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
Experimental characterization of nonlinear processes of whistler branch waves
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.
2016-05-01
Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.
Nonlinear ion acoustic waves scattered by vortexes
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...... in Fourier space and equipartition, the role of inhomogeneities and complex geometry and the importance of coupled systems....
Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.
2016-06-01
The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.
WIND observations of coherent electrostatic waves in the solar wind
Directory of Open Access Journals (Sweden)
A. Mangeney
Full Text Available The time domain sampler (TDS experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency f_{pi} and smaller than or of the order of the electron plasma frequency f_{pe}, TDS observed three kinds of electrostatic (e.s. waves: coherent wave packets of Langmuir waves with frequencies f ~ f_{pe}, coherent wave packets with frequencies in the ion acoustic range f_{pi}_{ }< f < f_{pe}, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λ_{D}. The electric field in the isolated electrostatic structures (IES and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ~ 25λ_{D}, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations. The type (wave packet or IES of the observed LF waves is mainly determined
Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation
Saghir, Shahid
2016-12-01
The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of
Nonlinear ion acoustic waves scattered by vortexes
Ohno, Yuji
2015-01-01
The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...
Hopf Bifurcation in a Nonlinear Wave System
Institute of Scientific and Technical Information of China (English)
HE Kai-Fen
2004-01-01
@@ Bifurcation behaviour of a nonlinear wave system is studied by utilizing the data in solving the nonlinear wave equation. By shifting to the steady wave frame and taking into account the Doppler effect, the nonlinear wave can be transformed into a set of coupled oscillators with its (stable or unstable) steady wave as the fixed point.It is found that in the chosen parameter regime, both mode amplitudes and phases of the wave can bifurcate to limit cycles attributed to the Hopf instability. It is emphasized that the investigation is carried out in a pure nonlinear wave framework, and the method can be used for the further exploring routes to turbulence.
Wave equation with concentrated nonlinearities
Noja, Diego; Posilicano, Andrea
2004-01-01
In this paper we address the problem of wave dynamics in presence of concentrated nonlinearities. Given a vector field $V$ on an open subset of $\\CO^n$ and a discrete set $Y\\subset\\RE^3$ with $n$ elements, we define a nonlinear operator $\\Delta_{V,Y}$ on $L^2(\\RE^3)$ which coincides with the free Laplacian when restricted to regular functions vanishing at $Y$, and which reduces to the usual Laplacian with point interactions placed at $Y$ when $V$ is linear and is represented by an Hermitean m...
First Principles Justification of a "Single Wave Model" for Electrostatic Instabilities
Crawford, J D; Crawford, John David; Jayaraman, Anandhan
1998-01-01
The nonlinear evolution of a unstable electrostatic wave is considered for a multi-species Vlasov plasma. From the singularity structure of the associated amplitude expansions, the asymptotic features of the electric field and distribution functions are determined in the limit of weak instability, i.e. electric field is monochromatic at the wavelength of the linear mode with a nonlinear time dependence. The structure of the distibutions outside the resonant region is given by the linear eigenfunction but in the resonant region the distribution is nonlinear. The details depend on whether the ions are fixed or mobile; in either case the physical picture corresponds to the single wave model originally proposed by O"Neil, Winfrey, and Malmberg for the interaction of a cold weak beam with a plasma of fixed ions.
Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Argall, M.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Dorelli, J. J. C.; Avanov, L.; Hesse, M.; Chen, L. J.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Eastwood, J. P.; Oieroset, M.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Zhou, M.; Ashour-Abdalla, M.; André, M.
2016-06-01
We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E||) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (plasma in the magnetosphere with warm (~100 eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
Exact solitary wave solutions of nonlinear wave equations
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.
Electrostatic Korteweg-deVries solitary waves in a plasma with Kappa-distributed electrons
Energy Technology Data Exchange (ETDEWEB)
Choi, C.-R.; Min, K.-W. [Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701 (Korea, Republic of); Rhee, T.-N. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)
2011-09-15
The Korteweg-deVries (KdV) equation that describes the evolution of nonlinear ion-acoustic solitary waves in plasmas with Kappa-distributed electrons is derived by using a reductive perturbation method in the small amplitude limit. We identified a dip-type (negative) electrostatic KdV solitary wave, in addition to the hump-type solution reported previously. The two types of solitary waves occupy different domains on the {kappa} (Kappa index)-V (propagation velocity) plane, separated by a curve corresponding to singular solutions with infinite amplitudes. For a given Kappa value, the dip-type solitary wave propagates faster than the hump-type. It was also found that the hump-type solitary waves cannot propagate faster than V = 1.32.
Amplitude equations for coupled electrostatic waves in the limit of weak instability
Crawford, J D; Crawford, John David; Knobloch, Edgar
1997-01-01
We consider the simplest instabilities involving multiple unstable electrostatic plasma waves corresponding to four-dimensional systems of mode amplitude equations. In each case the coupled amplitude equations are derived up to third order terms. The nonlinear coefficients are singular in the limit in which the linear growth rates vanish together. These singularities are analyzed using techniques developed in previous studies of a single unstable wave. In addition to the singularities familiar from the one mode problem, there are new singularities in coefficients coupling the modes. The new singularities are most severe when the two waves have the same linear phase velocity and satisfy the spatial resonance condition $k_2=2k_1$. As a result the short wave mode saturates at a dramatically smaller amplitude than that predicted for the weak growth rate regime on the basis of single mode theory. In contrast the long wave mode retains the single mode scaling. If these resonance conditions are not satisfied both mo...
Standing waves for discrete nonlinear Schrodinger equations
Ming Jia
2016-01-01
The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.......Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...
Nonlinear Fourier analysis with cnoidal waves
Energy Technology Data Exchange (ETDEWEB)
Osborne, A.R. [Dipt. di Fisica Generale dell`Universita, Torino (Italy)
1996-12-31
Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.
Indian Academy of Sciences (India)
M AMINA; S A EMA; A A MAMUN
2017-06-01
A rigorous theoretical investigation has been carried out on the propagation of nonplanar (cylindrical and spherical) dust-acoustic shock waves (DASHWs) in a collisionless four-component unmagnetized dusty plasmasystem containing massive, micron-sized, positively and negatively charged inertial dust grains along with $q$ (nonextensive) distributed electrons and ions. The well-known reductive perturbation technique has been used to derive the modified Burgers equation (which describes the shock wave properties) and its numerical solution. It has been observed that the effects of charged dust grains of opposite polarity, nonextensivity of electrons and ions, and different dusty plasma parameters have significantly modified the fundamental properties (viz., polarity, amplitude, width, etc.) of the shock waves. The properties of DASHWs in nonplanar geometry are found tobe significantly different from those in one-dimensional planar geometry. The findings of our results from this theoretical investigation may be useful in understanding the nonlinear features of localized electrostatic disturbancesin both space and laboratory dusty plasmas.
Nonlinear evolution of whistler wave modulational instability
DEFF Research Database (Denmark)
Karpman, V.I.; Lynov, Jens-Peter; Michelsen, Poul;
1995-01-01
The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary different......The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary...
Electrostatic solitary waves in dusty pair-ion plasmas
Misra, A P
2013-01-01
The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the "fast" and "slow" waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass $(m)$ and temperature $(T)$ ratios of negative to positive ions, as well as the effects of immobile charged dusts $(\\delta)$. For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique (RPT) is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves ...
Electrostatic solitary waves in dusty pair-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Misra, A. P. [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan-731 235, West Bengal (India); Adhikary, N. C. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati-781035, Assam (India)
2013-10-15
The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the “fast” and “slow” waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass (m) and temperature (T) ratios of negative to positive ions, as well as the effects of immobile charged dusts (δ). For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons, are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves (SWs) with only the negative potential. The results may be useful for the excitation of SWs in laboratory dusty pair-ion plasmas, electron-free industrial plasmas as well as for observation in space plasmas where electron density is negligibly small compared to that of negative ions.
Energy Technology Data Exchange (ETDEWEB)
Eriksson, A.I.; Bostroem, R.
1995-04-01
Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs.
Observations of Electrostatic and Electromagnetic Waves in the Earth's Magnetosphere.
Filbert, Paul Charles
Using data from the University of Minnesota Plasma Wave Experiment aboard the IMP-6 (Explorer 43) satellite, three topics are addressed. The first concerns the wave lengths of certain electrostatic waves in the earth's magnetosphere. Using the fact that the X and Y dipole antennas on IMP-6 are of unequal length, the antenna response to electrostatic waves is calculated as a function of wavelength. This result is used to experimentally determine the wavelengths of Bernstein mode waves observed just beyond the plasmapause. These wavelengths are then used in conjunction with present theoretical models to determine the energy of the electrons driving these waves and a range of energies between (TURN) several tens to (TURN) several hundreds of electron volts is found. This procedure is also applied to Langmuir waves observed upstream of the earth's bow shock and the results are in good agreement with theoretical predictions. Second it is demonstrated that enhanced levels of the so-called continuum radiation are correlated with AE enhancements. In addition, a source region of continuum radiation is directly observed and movement of the source region is seen which is consistent with a cloud of electrons having been injected into the night side magnetosphere and undergoing gradient drifts in an eastward direction towards local dawn. This drift movement is then used to estimate the energy of the electrons which produce the observed continuum enhancement and a range between 10 kev to 50 kev is found. Spectral properties of the directly observed source are also presented, and indicate a high frequency spectral index of (TURN)f('-5.5). A new type of continuum radiation which correlates with TKR on a time scale of (TURN)1 minute is also observed and is found to have a source region distinct from that mentioned above. Third, a correlation between TKR and VLF auroral hiss has been observed for several high latitude passes of IMP-6 through the midnight auroral zone. This
Standing waves for discrete nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Ming Jia
2016-07-01
Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.
Diffuse Aurora on Ganymede Driven by Electrostatic Waves
Singhal, R. P.; Tripathi, A. K.; Halder, S.; Singh, O. N., II
2016-12-01
The role of electrostatic electron cyclotron harmonic (ECH) waves in producing diffuse auroral emission O i 1356 Å on Ganymede is investigated. Electron precipitation flux entering the atmosphere of Ganymede due to pitch-angle diffusion by ECH waves into the atmospheric loss-cone is calculated. The analytical yield spectrum approach for electron energy degradation in gases is used for calculating diffuse auroral intensities. It is found that calculated O i 1356 Å intensity resulting from the precipitation of magnetospheric electrons observed near Ganymede is insufficient to account for the observed diffuse auroral intensity. This is in agreement with estimates made in earlier works. Heating and acceleration of ambient electrons by ECH wave turbulence near the magnetic equator on the field line connecting Ganymede and Jupiter are considered. Two electron distribution functions are used to simulate the heating effect by ECH waves. Use of a Maxwellian distribution with temperature 100 eV can produce about 50-70 Rayleigh O i 1356 Å intensities, and the kappa distribution with characteristic energy 50 eV also gives rise to intensities with similar magnitude. Numerical experiments are performed to study the effect of ECH wave spectral intensity profile, ECH wave amplitude, and temperature/characteristic energy of electron distribution functions on the calculated diffuse auroral intensities. The proposed missions, joint NASA/ESA Jupiter Icy Moon Explorer and the present JUNO mission to Jupiter, would provide new data to constrain the ECH wave and other physical parameters near Ganymede. These should help confirm the findings of the present study.
Electrostatic Suspension System Nonlinear Character Analysis and Its Internal Model Control
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Nonlinearity is an important characteristic in electrostatic suspension system (ESS). This paper concludes the nonlinear parts in ESS, which generally result from the relationships between rotor displacement and capacitance, rotor displacement and electrostatic force, and control voltage and electrostatic force. In terms of the nonlinearities, a new control method with modified internal model control (IMC) was proposed to analyze the ESS, deduce the transfer function of the modified IMC controller in ESS, and simulate this new application in ESS. Comparing with proportional integral derivative (PID)control, IMC has only a parameter, and has better performance. As a result, IMC solves nonlinearity error well in ESS with only one uncertain parameter, and performs well when the rotor has large displacement.
Solving Nonlinear Wave Equations by Elliptic Equation
Institute of Scientific and Technical Information of China (English)
FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo
2003-01-01
The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.
Nonlinear Dispersion Relation in Wave Transformation
Institute of Scientific and Technical Information of China (English)
李瑞杰; 严以新; 曹宏生
2003-01-01
A nonlinear dispersion relation is presented to model the nonlinear dispersion of waves over the whole range of possible water depths. It reduces the phase speed over-prediction of both Hedges′ modified relation and Kirby and Dalrymple′s modified relation in the region of 1＜kh＜1.5 for small wave steepness and maintains the monotonicity in phase speed variation for large wave steepness. And it has a simple form. By use of the new nonlinear dispersion relation along with the mild slope equation taking into account weak nonlinearity, a mathematical model of wave transformation is developed and applied to laboratory data. The results show that the model with the new dispersion relation can predict wave transformation over complicated bathymetry satisfactorily.
Statistical distribution of nonlinear random wave height
Institute of Scientific and Technical Information of China (English)
HOU; Yijun; GUO; Peifang; SONG; Guiting; SONG; Jinbao; YIN; Baoshu; ZHAO; Xixi
2006-01-01
A statistical model of random wave is developed using Stokes wave theory of water wave dynamics. A new nonlinear probability distribution function of wave height is presented. The results indicate that wave steepness not only could be a parameter of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution. The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated. The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution. Wave height data taken from East China Normal University are used to verify the new distribution. The results indicate that the new distribution fits the measurements much better than the Rayleigh distribution.
Control methods for localization of nonlinear waves
Porubov, Alexey; Andrievsky, Boris
2017-03-01
A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.
Strongly nonlinear steepening of long interfacial waves
Directory of Open Access Journals (Sweden)
N. Zahibo
2007-06-01
Full Text Available The transformation of nonlinear long internal waves in a two-layer fluid is studied in the Boussinesq and rigid-lid approximation. Explicit analytic formulation of the evolution equation in terms of the Riemann invariants allows us to obtain analytical results characterizing strongly nonlinear wave steepening, including the spectral evolution. Effects manifesting the action of high nonlinear corrections of the model are highlighted. It is shown, in particular, that the breaking points on the wave profile may shift from the zero-crossing level. The wave steepening happens in a different way if the density jump is placed near the middle of the water bulk: then the wave deformation is almost symmetrical and two phases appear where the wave breaks.
Nonlinear waves in strongly interacting relativistic fluids
Fogaça, D A; Filho, L G Ferreira
2013-01-01
During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...
Generation of Broadband Electrostatic Waves in Earth's Magnetotail
Grabbe, Crockett
2000-04-01
The theory that broad-band electrostatic waves (BEN) in Earth's magnetotail are trapped-electron (``BGK'') modes is reexamined. Electron/ion beams analyzed for a realistic magnetized-plasma source model with κ distributions are found to drive an unstable spectrum of broad angular range over several orders of magnitude in f, up to \\(0.1-0.2\\)fpe. Analysis indicates that trapping essential for the BGK paradigm is good only at the highest f, whereas most of the spectrum has minimal trapping and can be driven by electron/ion beam instabilities. A new model is proposed in which trapped-electron modes exist only at the highest f band, whereas electron/ion beam instabilities drive the bulk of the broad-band spectrum below that. BEN wave data from ISEE-1 and ISEE-3 show large angles of propagation with respect to the magnetic field for ffce is observed only in a narrow angular range around the magnetic field and may be BGK modes. This predicts that the BEN solitary waves in the source region are not in BEN well into the lobe.
On the polarization of nonlinear gravitational waves
Poplawski, Nikodem J.
2011-01-01
We derive a relation between the two polarization modes of a plane, linear gravitational wave in the second-order approximation. Since these two polarizations are not independent, an initially monochromatic gravitational wave loses its periodic character due to the nonlinearity of the Einstein field equations. Accordingly, real gravitational waves may differ from solutions of the linearized field equations, which are being assumed in gravitational-wave detectors.
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Probabilistic approach to nonlinear wave-particle resonant interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2017-02-01
In this paper we provide a theoretical model describing the evolution of the charged-particle distribution function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution. In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed.
Dispersive shock waves with nonlocal nonlinearity
Barsi, Christopher; Sun, Can; Fleischer, Jason W
2007-01-01
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Dispersive shock waves with nonlocal nonlinearity.
Barsi, Christopher; Wan, Wenjie; Sun, Can; Fleischer, Jason W
2007-10-15
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence
Wang, Lu; Wen, Tiliang; Diamond, P. H.
2016-10-01
Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux— is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux in strong electrostatic turbulence is calculated using the Hasegawa-Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds force. Nonlinear poloidal momentum transport in strong electrostatic turbulence is thus not negligible for poloidal rotation drive, and so may be significant to transport barrier formation.
Nonlinear surface waves over topography
Janssen, T.T.
2006-01-01
As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to
A NUMERICAL METHOD FOR NONLINEAR WATER WAVES
Institute of Scientific and Technical Information of China (English)
ZHAO Xi-zeng; SUN Zhao-chen; LIANG Shu-xiu; HU Chang-hong
2009-01-01
This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet problem and the Fast Fourier Transform (FFT) algorithm. The validation and efficiency of the numerical scheme is illustrated by a number of case studies on wave and wave train configuration including the evolution of fifth-order Stokes waves, wave dispersive focusing and the instability of Stokes wave with finite slope. The results agree well with those obtained by other studies.
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
Nonlinear surface waves in photonic hypercrystals
Ali, Munazza Zulfiqar
2017-08-01
Photonic crystals and hyperbolic metamaterials are merged to give the concept of photonic hypercrystals. It combines the properties of its two constituents to give rise to novel phenomena. Here the propagation of Transverse Magnetic waves at the interface between a nonlinear dielectric material and a photonic hypercrystal is studied and the corresponding dispersion relation is derived using the uniaxial parallel approximation. Both dielectric and metallic photonic hypercrystals are studied and it is found that nonlinearity limits the infinite divergence of wave vectors of the surface waves. These states exist in the frequency region where the linear surface waves do not exist. It is also shown that the nonlinearity can be used to engineer the group velocity of the resulting surface wave.
Nonlinear water waves with soluble surfactant
Lapham, Gary; Dowling, David; Schultz, William
1998-11-01
The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated
Explicit Traveling Wave Solutions to Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
Linghai ZHANG
2011-01-01
First of all,some technical tools are developed. Then the author studies explicit traveling wave solutions to nonlinear dispersive wave equations,nonlinear dissipative dispersive wave equations,nonlinear convection equations,nonlinear reaction diffusion equations and nonlinear hyperbolic equations,respectively.
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
EXACT SOLUTIONS TO NONLINEAR WAVE EQUATION
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper,we use an invariant set to construct exact solutions to a nonlinear wave equation with a variable wave speed. Moreover,we obtain conditions under which the equation admits a nonclassical symmetry. Several different nonclassical symmetries for equations with different diffusion terms are presented.
Solitary waves on nonlinear elastic rods. I
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1984-01-01
Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...
Nonlinear ship waves and computational fluid dynamics
National Research Council Canada - National Science Library
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
.... Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design...
The Nonlinear Talbot Effect of Rogue Waves
Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng
2014-01-01
Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schr\\"odinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a \\pi-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.
Generation of Electrostatic Waves via Parametric Instability and Heating of Solar Corona
Krasnoselskikh, George Machabeli Giorgi Dalakishvili Vladimir
2013-01-01
In the upper layers of the solar atmosphere the temperature increases sharply. We studied possibility of the transfer of neutrals motion energy into the electrostatic waves.Electrostatic waves could damp in the upper layers of the solar atmosphere and their energy could be transformed into the thermal energy of the solar atmosphere plasma. When studying the plasma dynamics in the low altitudes of the solar atmosphere, we investigated hydrodynamics of the plasma which consists of thee components-electrons, ions and neutrals. In order to study evolution of disturbances of high amplitudes the parametric resonance technique is used. The dispersion relation for the electrostatic waves excited due tot he motion of neutrals is derived. The frequencies of electromagnetic waves which could be excited due to existence of the acoustic wave are found. The increment of excited electrostatic waves are determined. The motion of the neutrals in the lower solar atmosphere, where ionization rate is low, could excite electrosta...
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Nonlinear Landau damping and Alfven wave dissipation
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
ELECTROSTATIC POTENTIAL OF STRONGLY NONLINEAR COMPOSITES: HOMOTOPY CONTINUATION APPROACH
Institute of Scientific and Technical Information of China (English)
Wei En-bo; Gu Guo-qing
2000-01-01
The homotopy continuation method is used to solve the electrostaticboundary-value problems of strongly nonlinear composite media, whichobey a current-field relation of J= E+ |E|2E. With the modeexpansion, the approximate analytical solutions of electric potential inhost and inclusion regions are obtained by solving a set of nonlinearordinary different equations, which are derived from the originalequations with homotopy method. As an example in dimension two, we applythe method to deal with a nonlinear cylindrical inclusion embedded in ahost. Comparing the approximate analytical solution of the potentialobtained by homotopy method with that of numerical method, we canobverse that the homotopy method is valid for solving boundary-valueproblems of weakly and strongly nonlinear media.
Energy Technology Data Exchange (ETDEWEB)
Wallace, John P., E-mail: jpw@castinganalysis.com [Casting Analysis Corp. PO Box 52, Weyers Cave, VA 24486 (United States); Wallace, Michael J. [Vertex Corp., Phoenix, AZ 85050 (United States)
2015-12-04
Quantum mechanics should be able to generate the basic properties of a particle. One of the most basic properties are charge and the associated electrostatic electric field. Electrostatic force is a fundamental characteristics of a charged fermion and should have its nature described by the fermion’s structure. To produce the particle properties require two spaces that define both their dynamics and their base structure. Relativity and the conservation of energy dictate how these two separate spaces are connected and the differential equations that describe behavior within these two spaces. The main static characteristic of an elementary fermion are mass and charge. Mass represents a scale measure of the fermion and it appears that charge results from the detailed structure of the fermion, which must merge into the electric field description of Maxwell. Coulomb’s law is a good approximation for large distances, but it is a poor approximation at dimension on the order of a particle’s Compton wavelength. The relativistic description of the fermion in its own frame of reference contains the information required for producing the electrostatic field over all space without a singularity as a source. With this description it is possible to understand the first order correction to the ionization energy of hydrogen. The role of nuclear effects on ionization energies can now be better defined for nuclei heavier than hydrogen.
Dynamics of Nonlinear Waves on Bounded Domains
Maliborski, Maciej
2016-01-01
This thesis is concerned with dynamics of conservative nonlinear waves on bounded domains. In general, there are two scenarios of evolution. Either the solution behaves in an oscillatory, quasiperiodic manner or the nonlinear effects cause the energy to concentrate on smaller scales leading to a turbulent behaviour. Which of these two possibilities occurs depends on a model and the initial conditions. In the quasiperiodic scenario there exist very special time-periodic solutions. They result for a delicate balance between dispersion and nonlinear interaction. The main body of this dissertation is concerned with construction (by means of perturbative and numerical methods) of time-periodic solutions for various nonlinear wave equations on bounded domains. While turbulence is mainly associated with hydrodynamics, recent research in General Relativity has also revealed turbulent phenomena. Numerical studies of a self-gravitating massless scalar field in spherical symmetry gave evidence that anti-de Sitter space ...
Electrostatic Waves in Dense Dusty Plasmas with High Fugacity
Rao, N. N.
Propagation of electrostatic dust modes has been reviewed in the light of the concept of dust fugacity defined by f≡4πnd0λD2R, where nd0 and R are the dust number density and the grain size (radius) while the plasma Debye length (λD) is given through λD-2=λDe-2+λDi-2. Dusty plasmas are defined to be tenuous, dilute or dense when f≪1, ˜1, or ≫1, respectively. Attention is focused on “Dust-Acoustic Waves” (DAWs) and “Dust-Coulomb Waves” (DCWs) which exist in the tenuous (f≪1) and the dense (f≫1) regimes, respectively. A simple physical picture of the DCWs has been proposed in terms of an effective pressure called “Coulomb Pressure defined by PC≡nd0qd02/R, where qd0 is the grain charge. In the lowest order, the DCW phase speed is given by ω/k=PC/ρdδ, where ρd≡nd0md is the dust mass density and δ≡ω2/ω1 is the ratio of charging frequencies. Thus, DCWs which are driven by the Coulomb pressure can be considered as the electrostatic analogue of hydromagnetic (Alfvén or magnetoacoustic) modes which are driven by magnetic field pressure. In the dilute regime, the two waves loose their identities and merge into a single mode, which may be called “Dust Charge-Density Wave” (DCDW). When the grains are closest, DCW dispersion relation is identical with that of “Dust-Lattice Waves” (DLWs). Dense dusty plasmas are governed by a new scale-length defined by λR≡1/4πnd0Rδ, which characterizes the effective shielding length due to grain collective interactions. The scale-length λR plays a fundamental role in dense dusty plasmas, which is very similar to that of the Debye length λD in the tenuous regime. The two scale-lengths are related to the fugacity through fδ≡λD2/λR2. The frequency spectrum as well as the damping rates for various dust modes have been analytically obtained, and compared with the numerical solutions of the kinetic (Vlasov) dispersion relation.
Energy Technology Data Exchange (ETDEWEB)
Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)
2014-10-15
In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.
Quasi self-adjoint nonlinear wave equations
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, N H [Department of Mathematics and Science, Blekinge Institute of Technology, SE-371 79 Karlskrona (Sweden); Torrisi, M; Tracina, R, E-mail: nib@bth.s, E-mail: torrisi@dmi.unict.i, E-mail: tracina@dmi.unict.i [Dipartimento di Matematica e Informatica, University of Catania (Italy)
2010-11-05
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation. (fast track communication)
Nonlinear Interaction of Waves in Geomaterials
Ostrovsky, L. A.
2009-05-01
Progress of 1990s - 2000s in studying vibroacoustic nonlinearities in geomaterials is largely related to experiments in resonance samples of rock and soils. It is now a common knowledge that many such materials are very strongly nonlinear, and they are characterized by hysteresis in the dependence between the stress and strain tensors, as well as by nonlinear relaxation ("slow time"). Elastic wave propagation in such media has many peculiarities; for example, third harmonic amplitude is a quadratic (not cubic as in classical solids) function of the main harmonic amplitude, and average wave velocity is linearly (not quadratically as usual) dependent on amplitude. The mechanisms of these peculiarities are related to complex structure of a material typically consisting of two phases: a hard matrix and relatively soft inclusions such as microcracks and grain contacts. Although most informative experimental results have been obtained in rock in the form of resonant bars, few theoretical models are yet available to describe and calculate waves interacting in such samples. In this presentation, a brief overview of structural vibroacoustic nonlinearities in rock is given first. Then, a simple but rather general approach to the description of wave interaction in solid resonators is developed based on accounting for resonance nonlinear perturbations which are cumulating from period to period. In particular, the similarity and the differences between traveling waves and counter-propagating waves are analyzed for materials with different stress-strain dependences. These data can be used for solving an inverse problem, i.e. characterizing nonlinear properties of a geomaterial by its measured vibroacoustic parameters. References: 1. L. Ostrovsky and P. Johnson, Riv. Nuovo Chimento, v. 24, 1-46, 2007 (a review); 2. L. Ostrovsky, J. Acoust. Soc. Amer., v. 116, 3348-3353, 2004.
Explicit solutions of nonlinear wave equation systems
Institute of Scientific and Technical Information of China (English)
Ahmet Bekir; Burcu Ayhan; M.Naci (O)zer
2013-01-01
We apply the (G'/G)-expansion method to solve two systems of nonlinear differential equations and construct traveling wave solutions expressed in terms of hyperbolic functions,trigonometric functions,and rational functions with arbitrary parameters.We highlight the power of the (G'/G)-expansion method in providing generalized solitary wave solutions of different physical structures.It is shown that the (G'/G)-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear differential equation systems in mathematical physics.
Nonlinear dynamics of hydrostatic internal gravity waves
Energy Technology Data Exchange (ETDEWEB)
Stechmann, Samuel N.; Majda, Andrew J. [New York University, Courant Institute of Mathematical Sciences, NY (United States); Khouider, Boualem [University of Victoria, Department of Mathematics and Statistics, Victoria, BC (Canada)
2008-11-15
Stratified hydrostatic fluids have linear internal gravity waves with different phase speeds and vertical profiles. Here a simplified set of partial differential equations (PDE) is derived to represent the nonlinear dynamics of waves with different vertical profiles. The equations are derived by projecting the full nonlinear equations onto the vertical modes of two gravity waves, and the resulting equations are thus referred to here as the two-mode shallow water equations (2MSWE). A key aspect of the nonlinearities of the 2MSWE is that they allow for interactions between a background wind shear and propagating waves. This is important in the tropical atmosphere where horizontally propagating gravity waves interact together with wind shear and have source terms due to convection. It is shown here that the 2MSWE have nonlinear internal bore solutions, and the behavior of the nonlinear waves is investigated for different background wind shears. When a background shear is included, there is an asymmetry between the east- and westward propagating waves. This could be an important effect for the large-scale organization of tropical convection, since the convection is often not isotropic but organized on large scales by waves. An idealized illustration of this asymmetry is given for a background shear from the westerly wind burst phase of the Madden-Julian oscillation; the potential for organized convection is increased to the west of the existing convection by the propagating nonlinear gravity waves, which agrees qualitatively with actual observations. The ideas here should be useful for other physical applications as well. Moreover, the 2MSWE have several interesting mathematical properties: they are a system of nonconservative PDE with a conserved energy, they are conditionally hyperbolic, and they are neither genuinely nonlinear nor linearly degenerate over all of state space. Theory and numerics are developed to illustrate these features, and these features are
Optics in a nonlinear gravitational wave
Harte, Abraham I
2015-01-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. The commonly-used predictions of linear perturbation theory are shown to be generically overshadowed---even for very weak gravitational waves---by nonlinear effects when considering observations of sufficiently distant sources; higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Optics in a nonlinear gravitational plane wave
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Lie algebraic analysis for the nonlinear transport of intense pulsed beams in electrostatics lenses
Institute of Scientific and Technical Information of China (English)
Lu Jian-Qin; Li Jin-Hai
2004-01-01
The Lie algebraic method is applied to the analysis of the nonlinear transport of an intense pulsed beam in cylindrically symmetrical electrostatic lenses, and particle orbits in a six-dimensional phase space (x, px, y, py, τ, pτ)are obtained in the second order approximation. They can also be acquired in the third or higher order approximation if needed. In the analysis, we divide the electrostatic lenses into several segments. Each segment is considered as a uniform accelerating field, and each dividing point is treated as a thin lens. The particle distribution in a three-dimensional ellipsoid is of Gaussian type.
Palodhi, L; Pegoraro, F; 10.1088/0741-3335/51/12/125006
2010-01-01
The nonlinear evolution of the Weibel instability driven by the anisotropy of the electron distribution function in a collisionless plasma is investigated in a spatially one-dimensional configuration with a Vlasov code in a two-dimensional velocity space. It is found that the electromagnetic fields generated by this instability cause a strong deformation of the electron distribution function in phase space, corresponding to highly filamented magnetic vortices. Eventually, these deformations lead to the generation of short wavelength Langmuir modes that form highly localized electrostatic structures corresponding to jumps of the electrostatic potential.
On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators
Alsaleem, Fadi M.; Younis, Mohammad I.; Ouakad, Hassen M.
2009-04-01
We present modeling, analysis and experimental investigation for nonlinear resonances and the dynamic pull-in instability in electrostatically actuated resonators. These phenomena are induced by exciting a microstructure with nonlinear forcing composed of a dc parallel-plate electrostatic load superimposed on an ac harmonic load. Nonlinear phenomena are investigated experimentally and theoretically including primary resonance, superharmonic and subharmonic resonances, dynamic pull-in and the escape-from-potential-well phenomenon. As a case study, a capacitive sensor made up of two cantilever beams with a proof mass attached to their tips is studied. A nonlinear spring-mass-damper model is utilized accounting for squeeze-film damping and the parallel-plate electrostatic force. Long-time integration and a global dynamic analysis are conducted using a finite-difference method combined with the Floquet theory to capture periodic orbits and analyze their stability. The domains of attraction (basins of attraction) for data points on the frequency-response curve are calculated numerically. Dover cliff integrity curves are calculated and the erosion of the safe basin of attraction is investigated as the frequency of excitation is swept passing primary resonance and dynamic pull-in. Conclusions are presented regarding the safety and integrity of MEMS resonators based on the simulated basin of attraction and the observed experimental data.
Lee, Myoung-Jae; Jung, Young-Dae
2017-02-01
High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.
Dust-ion acoustic cnoidal waves and associated nonlinear ion flux in a nonthermal dusty plasma
Ur-Rehman, Hafeez; Mahmood, S.
2016-09-01
The dust-ion acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in a dusty plasma containing dynamic cold ions, superthermal kappa distributed electrons and static charged dust particles. The massive dust particles can have positive or negative charge depending on the plasma environment. Using reductive perturbation method (RPM) with appropriate periodic boundary conditions, the evolution equations for the first and second order nonlinear potentials are derived. The first order potential is determined through Korteweg-de Vries (KdV) equation which gives dust-ion acoustic cnoidal waves and solitons structures. The solution of second order nonlinear potential is obtained through an inhomogeneous differential equation derived from collecting higher order terms of dynamic equations, which is linear for second order electrostatic potential. The nonlinear ion flux associated with the cnoidal waves is also found out numerically. The numerical plots of the dust-ion acoustic cnoidal wave and soliton structures for both positively and negatively charged dust particles cases and nonthermal electrons are also presented for illustration. It is found that only compressive nonlinear electrostatic structures are formed in case of positively dust charged particles while both compressive and rarefactive nonlinear structures are obtained in case of negatively charged particles depending on the negatively charged dust density in a nonthermal dusty plasma. The numerical results are obtained using data of the ionospheric region containing dusty plasma exist in the literature.
Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency
Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre
2016-10-01
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
Choueiri, Edgar
2007-10-01
After a brief overview of electrodeless plasma propulsion concepts, we will focus on a recently discovered ion acceleration mechanism, which appears to occur naturally in Earth's ionosphere, holds promise as an effective means to energize ions for applications in thermonuclear fusion and electrodeless space plasma propulsion. Unlike previously known mechanisms for energizing plasmas with electrostatic (ES) waves, and which accelerate only ions whose initial velocities are above a certain threshold (close to the wave's phase velocity), the new acceleration mechanism, involving pairs of beating ES waves, is non-resonant and can accelerate ions with arbitrarily small initial velocities, thus offering a more effective way to couple energy to plasmas. We will discuss the fundamentals of the nonlinear dynamics of a single magnetized ion interacting with a pair of beating ES waves and show that there exist necessary and sufficient conditions for the phenomenon to occur. We will see how these fundamental conditions are derived by analyzing the motion's Hamiltonian using a second-order perturbation technique in conjunction with Lie transformations. The analysis shows that when the Hamiltonian lies outside the energy barrier defined by the location of the elliptic and hyperbolic critical points of the motion, the electric field of the beating waves can accelerate ions regularly from low initial velocities, then stochastically, to high energies. We will then illustrate real plasma effects using Monte Carlo numerical simulation and discuss the recent results from a dedicated experiment in my lab in which laser-induced fluorescence (LIF) measurements of ion energies have provided the first laboratory observation of this acceleration mechanism. The talk will conclude with a few ideas on how the fundamental insight can be applied to develop novel plasma propulsion concepts.
Solitary waves on nonlinear elastic rods. II
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1987-01-01
In continuation of an earlier study of propagation of solitary waves on nonlinear elastic rods, numerical investigations of blowup, reflection, and fission at continuous and discontinuous variation of the cross section for the rod and reflection at the end of the rod are presented. The results...
Nonlinear Landau damping of Alfven waves.
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
Wave envelopes method for description of nonlinear acoustic wave propagation.
Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L
2006-07-01
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach
Nonlinear interactions between gravity waves and tides
Institute of Scientific and Technical Information of China (English)
LIU Xiao; XU JiYao; MA RuiPing
2007-01-01
In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75-85 km, z =90-110 km and z= 115-130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the horizontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90-110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.
Nonlinear interactions between gravity waves and tides
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75―85 km, z = 90―110 km and z = 115―130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the hori-zontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90—110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
Energy Technology Data Exchange (ETDEWEB)
Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)
2015-11-10
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
Institute of Scientific and Technical Information of China (English)
ZHANG Zhuo; L(U) Jian-Qin
2008-01-01
In this paper, the nonlinear transport of intense bunched beams in electrostatic quadrupoles is analyzed using the Lie algebraic method, and the results are briefly presented of the linear matrix approximation and the second order correction of particle trajectory in the state space. Beam having K-V distribution and Gaussian distribution approximation are respectively considered. A brief discussion is also given of the total effects of the quadrupole and the space charge forces on the evolution of the beam envelope.
Directory of Open Access Journals (Sweden)
Ghader Rezazadeh
2007-07-01
Full Text Available In this paper, the effect of residual stress on divergence instability of a rectangular microplate subjected to a nonlinear electrostatic pressure for different geometrical properties has been presented. After deriving the governing equation and using of Step-by-Step Linearization Method (SSLM, the governing nonlinear equation has been linearized. By applying the finite difference method (FDM to a rectangular mesh, the linearized equation has been discretized. The results show, residual stresses have considerable effects on Pull-in phenomena. Tensile residual stresses increase pull-in voltage and compressive decrease it. The effect of different geometrical properties on divergence instability has also been studied.
Poloidal rotation driven by nonlinear momentum transport in strong electrostatic turbulence
Wang, Lu; Diamond, P H
2016-01-01
Virtually, all existing theoretical works on turbulent poloidal momentum transport are based on quasilinear theory. Nonlinear poloidal momentum flux - $\\langle \\tilde{v}_r \\tilde{n} \\tilde{v}_{\\theta} \\rangle$ is universally neglected. However, in the strong turbulence regime where relative fluctuation amplitude is no longer small, quasilinear theory is invalid. This is true at the all-important plasma edge. In this work, nonlinear poloidal momentum flux $ \\langle \\tilde{v}_r \\tilde{n} \\tilde{v}_{\\theta} \\rangle $ in strong electrostatic turbulence is calculated using Hasegawa-Mima equation, and is compared with quasilinear poloidal Reynolds stress. A novel property is that symmetry breaking in fluctuation spectrum is not necessary for a nonlinear poloidal momentum flux. This is fundamentally different from the quasilinear Reynold stress. Furthermore, the comparison implies that the poloidal rotation drive from the radial gradient of nonlinear momentum flux is comparable to that from the quasilinear Reynolds ...
Nonlinear plasma wave in magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)
2013-08-15
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.
Study of Linear and Nonlinear Wave Excitation
Chu, Feng; Berumen, Jorge; Hood, Ryan; Mattingly, Sean; Skiff, Frederick
2013-10-01
We report an experimental study of externally excited low-frequency waves in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional. Wave excitation in the drift wave frequency range is accomplished by low-percentage amplitude modulation of the RF plasma source. Laser-induced fluorescence is adopted to study ion-density fluctuations in phase space. The laser is chopped to separate LIF from collisional fluorescence. A single negatively-biased Langmuir probe is used to detect ion-density fluctuations in the plasma. A ring array of Langmuir probes is also used to analyze the spatial and spectral structure of the excited waves. We apply coherent detection with respect to the wave frequency to obtain the ion distribution function associated with externally generated waves. Higher-order spectra are computed to evaluate the nonlinear coupling between fluctuations at various frequencies produced by the externally generated waves. Parametric decay of the waves is observed. This work is supported by U.S. DOE Grant No. DE-FG02-99ER54543.
Zacharegkas, Georgios; Vlahos, Loukas
2016-01-01
The limitation of the Quasilinear Theory (QLT) to describe the diffusion of electrons and ions in velocity space when interacting with a spectrum of large amplitude electrostatic Langmuir, Upper and Lower hybrid waves, is analyzed. We analytically and numerically estimate the threshold for the amplitude of the waves above which the QLT breaks down, using a test particle code. The evolution of the velocity distribution, the velocity-space diffusion coefficients, the driven current, and the heating of the particles are investigated, for the interaction with small and large amplitude electrostatic waves, i.e. in both regimes, there where QLT is valid and there where it clearly breaks down.
Wave-kinetic description of nonlinear photons
Marklund, M; Brodin, G; Stenflo, L
2004-01-01
The nonlinear interaction, due to quantum electrodynamical (QED) effects, between photons is investigated using a wave-kinetic description. Starting from a coherent wave description, we use the Wigner transform technique to obtain a set of wave-kinetic equations, the so called Wigner-Moyal equations. These equations are coupled to a background radiation fluid, whose dynamics is determined by an acoustic wave equation. In the slowly varying acoustic limit, we analyse the resulting system of kinetic equations, and show that they describe instabilities, as well as Landau-like damping. The instabilities may lead to break-up and focusing of ultra-high intensity multi-beam systems, which in conjunction with the damping may result in stationary strong field structures. The results could be of relevance for the next generation of laser-plasma systems.
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)
2017-02-12
High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.
Linear and nonlinear dynamics of current-driven waves in dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Ali [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Ali Shan, S.; Haque, Q. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan)
2012-09-15
The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.
A nonlinear Schroedinger wave equation with linear quantum behavior
Energy Technology Data Exchange (ETDEWEB)
Richardson, Chris D.; Schlagheck, Peter; Martin, John; Vandewalle, Nicolas; Bastin, Thierry [Departement de Physique, University of Liege, 4000 Liege (Belgium)
2014-07-01
We show that a nonlinear Schroedinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schroedinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantum-like features appear and is equivalent to scaling Planck's constant.
Symmetry, phase modulation and nonlinear waves
Bridges, Thomas J
2017-01-01
Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.
Nonlinear waves in waveguides with stratification
Leble, Sergei B
1991-01-01
S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.
Nonlinear Dispersion Effect on Wave Transformation
Institute of Scientific and Technical Information of China (English)
LI Ruijie; Dong-Young LEE
2000-01-01
A new nonlinear dispersion relation is given in this paper, which can overcome the limitation of the intermediate minimum value in the dispersion relation proposed by Kirby and Dalrymple (1986), and which has a better approximation to Hedges＇ empirical relation than the modilied relations by Hedges (1987). Kirby and Dahymple (1987) for shallow waters. The new dispersion relation is simple in form. thus it can be used easily in practice. Meanwhile. a general explicil approximalion to the new dispersion rela tion and olher nonlinear dispersion relations is given. By use of the explicit approximation to the new dispersion relation along with the mild slope equation taking inlo account weakly nonlinear effect, a mathematical model is obtained, and it is applied to laboratory data. The results show that the model developed vith the new dispersion relation predicts wave translornation over complicated topography quite well.
Variational modelling of nonlinear water waves
Kalogirou, Anna; Bokhove, Onno
2015-11-01
Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.
Saghir, S.
2016-11-16
We present an investigation of the static and dynamic behavior of the nonlinear von-Karman plates when actuated by the nonlinear electrostatic forces. The investigation is based on a reduced order model developed using the Galerkin method, which rely on modeshapes and in-plane shape functions extracted using a finite element method. In this study, a fully clamped microplate is considered. We investigate the static behavior and the results are validated by comparison with the results calculated by a finite element model. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary resonance. The microplate shows a strong hardening behavior due to the cubic nonlinearity of mid-plane stretching. However, the behavior switches to softening as the DC load is increased.
A method for generating highly nonlinear periodic waves in physical wave basins
DEFF Research Database (Denmark)
Zhang, Haiwen; Schäffer, Hemming A.; Bingham, Harry B.
2006-01-01
This abstract describes a new method for generating nonlinear waves of constant form in physical wave basins. The idea is to combine fully dispersive linear wavemaker theory with nonlinear shallow water wave generation theory; and use an exact nonlinear theory as the target. We refer to the metho...... as an ad-hoc unified wave generation theory, since there is no rigorous analysis behind the idea which is simply justified by the improved results obtained for the practical generation of steady nonlinear waves....
Non-Linear Excitation of Ion Acoustic Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Hirsfield, J. L.
1974-01-01
The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....
Long wave-short wave resonance in nonlinear negative refractive index media.
Chowdhury, Aref; Tataronis, John A
2008-04-18
We show that long wave-short wave resonance can be achieved in a second-order nonlinear negative refractive index medium when the short wave lies on the negative index branch. With the medium exhibiting a second-order nonlinear susceptibility, a number of nonlinear phenomena such as solitary waves, paired solitons, and periodic wave trains are possible or enhanced through the cascaded second-order effect. Potential applications include the generation of terahertz waves from optical pulses.
Boundary control of long waves in nonlinear dispersive systems
DEFF Research Database (Denmark)
Hasan, Agus; Foss, Bjarne; Aamo, Ole Morten
2011-01-01
Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher...... orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws...... that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases....
Influence of Generalized (r, q) Distribution Function on Electrostatic Waves
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Non-Maxwellian particle distribution functions possessing high energy tail and shoulder in the profile of distribution function considerably change the damping characteristics of the waves. In the present paper Landau damping ofelectron plasma (Langmuir) waves and ion-acoustic waves in a hot, isotropic, unmagnetized plasma is studied with the generalized (r, q) distribution function. The results show that for the Langmuir oscillations Landau damping becomes severe as the spectral index r or q reduces. However, for the ion-acoustic waves Landau damping is more sensitive to the ion temperature than the spectral indices.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-06-15
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.
NONLINEAR WAVES AND PERIODIC SOLUTION IN FINITE DEFORMATION ELASTIC ROD
Institute of Scientific and Technical Information of China (English)
Liu Zhifang; Zhang Shanyuan
2006-01-01
A nonlinear wave equation of elastic rod taking account of finite deformation, transverse inertia and shearing strain is derived by means of the Hamilton principle in this paper. Nonlinear wave equation and truncated nonlinear wave equation are solved by the Jacobi elliptic sine function expansion and the third kind of Jacobi elliptic function expansion method. The exact periodic solutions of these nonlinear equations are obtained, including the shock wave solution and the solitary wave solution. The necessary condition of exact periodic solutions, shock solution and solitary solution existence is discussed.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Characterizing Electron Trapping Nonlinearity in Langmuir Waves
Strozzi, D J; Rose, H A; Hinkel, D E; Langdon, A B; Banks, J W
2012-01-01
We assess when electron trapping nonlinearities are expected to be important in Langmuir waves. The basic criterion is that the effective lifetime, t_d, of resonant electrons in the trapping region of velocity space must exceed the period of trapped motion for deeply-trapped electrons, tau_B = (n_e/delta n)^{1/2} 2pi/omega_pe. A unitless figure of merit, the "bounce number" N_B = t_d/tau_B, encapsulates this condition and allows an effective threshold amplitude for which N_B=1 to be defined. The lifetime is found for convective loss (transverse and longitudinal) out of a spatially finite Langmuir wave. Simulations of driven waves with a finite transverse profile, using the 2D-2V Vlasov code Loki, show trapping nonlinearity increases continuously with N_B for side loss, and is significant for N_B ~ 1. The lifetime due to Coulomb collisions (both electron-electron and electron-ion) is also found, with pitch-angle scattering and parallel drag and diffusion treated in a unified way. A simple way to combine convec...
Nonlinear MHD waves in a Prominence Foot
Ofman, Leon; Kucera, Therese; Schmieder, Brigitte
2015-01-01
We study nonlinear waves in a prominence foot using 2.5D MHD model motivated by recent high-resolution observations with Hinode/SOT in Ca~II emission of a prominence on October 10, 2012 showing highly dynamic small-scale motions in the prominence material. Observations of H$\\alpha$ intensities and of Doppler shifts show similar propagating fluctuations. However the optically thick nature of the emission lines inhibits unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity ($\\delta I/I\\sim \\delta n/n$). The waves are evident as significant density fluctuations that vary with height, and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with typical period in the range of 5-11 minutes, and wavelengths $\\sim <$2000 km. Recent Doppler shift observations show the transverse displacement of the propagating wav...
Nonlinear shallow ocean-wave soliton interactions on flat beaches.
Ablowitz, Mark J; Baldwin, Douglas E
2012-09-01
Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.
Nonlinear Plasma Wave in Magnetized Plasmas
Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke
2013-01-01
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].
Nonlinear mechanisms for drift wave saturation and induced particle transport
Energy Technology Data Exchange (ETDEWEB)
Dimits, A.M. (Maryland Univ., College Park, MD (USA). Lab. for Plasma Research); Lee, W.W. (Princeton Univ., NJ (USA). Plasma Physics Lab.)
1989-12-01
A detailed theoretical study of the nonlinear dynamics of gyrokinetic particle simulations of electrostatic collisionless and weakly collisional drift waves is presented. In previous studies it was shown that, in the nonlinearly saturated phase of the evolution, the saturation levels and especially the particle fluxes have an unexpected dependence on collisionality. In this paper, the explanations for these collisionality dependences are found to be as follows: The saturation level is determined by a balance between the electron and ion fluxes. The ion flux is small for levels of the potential below an E {times} B-trapping threshold and increases sharply once this threshold is crossed. Due to the presence of resonant electrons, the electron flux has a much smoother dependence on the potential. In the 2-1/2-dimensional ( pseudo-3D'') geometry, the electrons are accelerated away from the resonance as they diffuse spatially, resulting in an inhibition of their diffusion. Collisions and three-dimensional effects can repopulate the resonance thereby increasing the value of the particle flux. 30 refs., 32 figs., 2 tabs.
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation[
Institute of Scientific and Technical Information of China (English)
HUANGDing-Jiang; ZHANGHong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation
Institute of Scientific and Technical Information of China (English)
HUANG Ding-Jiang; ZHANG Hong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Nonlocal description of X waves in quadratic nonlinear materials
DEFF Research Database (Denmark)
Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole
2006-01-01
We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...
Saturation process of nonlinear standing waves
Institute of Scientific and Technical Information of China (English)
马大猷; 刘克
1996-01-01
The sound pressure of the nonlinear standing waves is distorted as expected, but also tends to saturate as being found in standing-wave tube experiments with increasing sinusoidal excitation. Saturation conditions were not actually reached, owing to limited excitation power, but the evidence of tendency to saturation is without question. It is the purpose of this investigation to find the law of saturation from the existing experimental data. The results of curve fitting indicate that negative feedback limits the growth of sound pressure with increasing excitation, the growth of the fundamental and the second harmonic by the negative feedback of their sound pressures, and the growth of the third and higher harmonics, however, by their energies (sound pressures squared). The growth functions of all the harmonics are derived, which are confirmed by the experiments. The saturation pressures and their properties are found.
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
Nonlinear wave propagation in constrained solids subjected to thermal loads
Nucera, Claudio; Lanza di Scalea, Francesco
2014-01-01
The classical mathematical treatment governing nonlinear wave propagation in solids relies on finite strain theory. In this scenario, a system of nonlinear partial differential equations can be derived to mathematically describe nonlinear phenomena such as acoustoelasticity (wave speed dependency on quasi-static stress), wave interaction, wave distortion, and higher-harmonic generation. The present work expands the topic of nonlinear wave propagation to the case of a constrained solid subjected to thermal loads. The origin of nonlinear effects in this case is explained on the basis of the anharmonicity of interatomic potentials, and the absorption of the potential energy corresponding to the (prevented) thermal expansion. Such "residual" energy is, at least, cubic as a function of strain, hence leading to a nonlinear wave equation and higher-harmonic generation. Closed-form solutions are given for the longitudinal wave speed and the second-harmonic nonlinear parameter as a function of interatomic potential parameters and temperature increase. The model predicts a decrease in longitudinal wave speed and a corresponding increase in nonlinear parameter with increasing temperature, as a result of the thermal stresses caused by the prevented thermal expansion of the solid. Experimental measurements of the ultrasonic nonlinear parameter on a steel block under constrained thermal expansion confirm this trend. These results suggest the potential of a nonlinear ultrasonic measurement to quantify thermal stresses from prevented thermal expansion. This knowledge can be extremely useful to prevent thermal buckling of various structures, such as continuous-welded rails in hot weather.
Nonlinear propagation of weakly relativistic ion-acoustic waves in electron–positron–ion plasma
Indian Academy of Sciences (India)
M G HAFEZ; M R TALUKDER; M HOSSAIN ALI
2016-11-01
This work presents theoretical and numerical discussion on the dynamics of ion-acoustic solitary wave for weakly relativistic regime in unmagnetized plasma comprising non-extensive electrons, Boltzmann positrons and relativistic ions. In order to analyse the nonlinear propagation phenomena, the Korteweg–de Vries(KdV) equation is derived using the well-known reductive perturbation method. The integration of the derived equation is carried out using the ansatz method and the generalized Riccati equation mapping method. The influenceof plasma parameters on the amplitude and width of the soliton and the electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves are described. The obtained results of the nonlinear low-frequencywaves in such plasmas may be helpful to understand various phenomena in astrophysical compact object and space physics.
Bifurcation methods of dynamical systems for handling nonlinear wave equations
Indian Academy of Sciences (India)
Dahe Feng; Jibin Li
2007-05-01
By using the bifurcation theory and methods of dynamical systems to construct the exact travelling wave solutions for nonlinear wave equations, some new soliton solutions, kink (anti-kink) solutions and periodic solutions with double period are obtained.
Extended models of nonlinear waves in liquid with gas bubbles
Kudryashov, Nikolay A
2016-01-01
In this work we generalize the models for nonlinear waves in a gas--liquid mixture taking into account an interphase heat transfer, a surface tension and a weak liquid compressibility simultaneously at the derivation of the equations for nonlinear waves. We also take into consideration high order terms with respect to the small parameter. Two new nonlinear differential equations are derived for long weakly nonlinear waves in a liquid with gas bubbles by the reductive perturbation method considering both high order terms with respect to the small parameter and the above mentioned physical properties. One of these equations is the perturbation of the Burgers equation and corresponds to main influence of dissipation on nonlinear waves propagation. The other equation is the perturbation of the Burgers--Korteweg--de Vries equation and corresponds to main influence of dispersion on nonlinear waves propagation.
The nonlinear standing wave inside the space of liquid
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Based on the basic equations of hydrodynamics, the nonlinear acoustic wave equation is obtained. By taking into account the boundary condition and properties of nonlinear standing wave, the equation is solved through perturbation method, and the stable expressions of fundamental wave and second harmonic are presented. The sound pressures in an ultrasonic cleaner are measured by hydrophones, and the relationship between the received voltages of hydrophones and the output voltages of the ultrasonic generator is researched. The study shows the existence of the nonlinear effect of liquid and analyzes the frequency spectrum of the received signals by hydrophones, by which the fundamental wave, second and high order harmonics are found coexisting in the bounded space filled with liquids. The theory and experimental results testify the existence of the nonlinear standing wave in liquid. Owing to the restricted applicability of perturbation method, the theoretical results of the fundamental wave and second harmonic are good only for the weak nonlinear phenomenon.
Effect of squeeze on electrostatic Trivelpiece-Gould wave damping
Energy Technology Data Exchange (ETDEWEB)
Ashourvan, Arash; Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)
2014-05-15
We present a theory for increased damping of Trivelpiece-Gouid plasma modes on a nonneutral plasma column, due to application of a Debye shielded cylindrically symmetric squeeze potential φ{sub 1}. We present two models of the effect this has on the plasma modes: a 1D model with only axial dependence, and a 2D model that also keeps radial dependence in the squeezed equilibrium and the mode. We study the models using both analytical and numerical methods. For our analytical studies, we assume that φ{sub 1}/T≪1, and we treat the Debye shielded squeeze potential as a perturbation in the equilibrium Hamiltonian. Our numerical simulations solve the 1D Vlasov-Poisson system and obtain the frequency and damping rate for a self-consistent plasma mode, making no assumptions as to the size of the squeeze. In both the 1D and 2D models, damping of the mode is caused by Landau resonances at energies E{sub n} for which the particle bounce frequency ω{sub b}(E{sub n}) and the wave frequency ω satisfy ω=nω{sub b}(E{sub n}). Particles experience a non-sinusoidal wave potential along their bounce orbits due to the squeeze potential. As a result, the squeeze induces bounce harmonics with n > 1 in the perturbed distribution. The harmonics allow resonances at energies E{sub n}≤T that cause substantial damping, even when wave phase velocities are much larger than the thermal velocity. In the regime ω/k≫√(T/m) (k is the wave number) and T≫φ{sub 1}, the resonance damping rate has a |φ{sub 1}|{sup 2} dependence. This dependence agrees with the simulations and experimental results.
Nonlinear electron acoustic cyclotron waves in presence of uniform magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata 700 108 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)
2013-04-15
Nonlinear electron acoustic cyclotron waves (EACW) are studied in a quasineutral plasma in presence of uniform magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary charge neutral inhomogeneous background. In long wavelength limit, it is shown that the linear electron acoustic wave is modified by the uniform magnetic field similar to that of electrostatic ion cyclotron wave. Nonlinear equations for these waves are solved by using Lagrangian variables. Results show that the spatial solitary wave-like structures are formed due to nonlinearities and dispersions. These structures transiently grow to larger amplitude unless dispersive effect is actively operative and able to arrest this growth. We have found that the wave dispersion originated from the equilibrium inhomogeneity through collective effect and is responsible for spatiotemporal structures. Weak dispersion is not able to stop the wave collapse and singular structures of EACW are formed. Relevance of the results in the context of laboratory and space plasmas is discussed.
Rapid decay of nonlinear whistler waves in two dimensions: Full particle simulation
Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro
2017-05-01
The decay of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave is investigated by utilizing a two-dimensional (2D) fully relativistic electromagnetic particle-in-cell code. The simulation is performed under a low-beta condition in which the plasma pressure is much lower than the magnetic pressure. It has been shown that the nonlinear (large-amplitude) parent whistler wave decays through the parametric instability in a one-dimensional (1D) system. The present study shows that there is another channel for the decay of the parent whistler wave in 2D, which is much faster than in the timescale of the parametric decay in 1D. The parent whistler wave decays into two sideband daughter whistlers propagating obliquely with respect to the ambient magnetic field with a frequency close to the parent wave and two quasi-perpendicular electromagnetic modes with a frequency close to zero via a 2D decay instability. The two sideband daughter oblique whistlers also enhance a nonlinear longitudinal electrostatic wave via a three-wave interaction as a secondary process.
Exact periodic wave solutions for some nonlinear partial differential equations
Energy Technology Data Exchange (ETDEWEB)
El-Wakil, S.A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Elgarayhi, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: elgarayhi@yahoo.com; Elhanbaly, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)
2006-08-15
The periodic wave solutions for some nonlinear partial differential equations, including generalized Klein-Gordon equation, Kadomtsev-Petviashvili (KP) equation and Boussinesq equations, are obtained by using the solutions of Jacobi elliptic equation. Under limit conditions, exact solitary wave solutions, shock wave solutions and triangular periodic wave solutions have been recovered.
Tripathi, A. K.; Singhal, R. P.
2009-11-01
Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves using quasilinear diffusion theory. Unlike previous calculations, the parallel group velocity has been included in this study. Further, ECH wave intensity is expressed as a function of wave frequency and wave normal angle with respect to ambient magnetic field. It is found that observed wave electric field amplitudes in Earth's magnetosphere are sufficient to set electrons on strong diffusion in the energy ranges of a few hundred eV. However, the required amplitudes are larger than the observed values for keV electrons and higher by about a factor of 3 compared to past calculations. Required electric field amplitudes are smaller at larger radial distances. It is concluded that ECH waves are responsible for diffuse auroral precipitation of electrons with energies less than about 500 eV.
Nonlinear wave-particle interactions in the outer radiation belts: Van Allen Probes results
Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton; Drake, James; Vasko, Ivan
2016-10-01
Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. Observations of electron velocity distributions and chorus waves by the Van Allen Probe B provided long-lasting signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. The feedback from trapped particles provides steepening of parallel electric field and development of TDS seeded from initial whistler structure (well explained in terms of Particle-In-Cell model). The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system and are observed by the Van Allen Probes in the radiation belts.
Compactification of nonlinear patterns and waves.
Rosenau, Philip; Kashdan, Eugene
2008-12-31
We present a nonlinear mechanism(s) which may be an alternative to a missing wave speed: it induces patterns with a compact support and sharp fronts which propagate with a finite speed. Though such mechanism may emerge in a variety of physical contexts, its mathematical characterization is universal, very simple, and given via a sublinear substrate (site) force. Its utility is shown studying a Klein-Gordon -u(tt) + [phi/(u(x)]x = P'(u) equation, where phi'(sigma) = sigma + beta sigma3 and endowed with a subquadratic site potential P(u) approximately /1-u2/(alpha+1), 0 < or = alpha < 1, and the Schrödinger iZt + inverted delta2 Z = G(/Z/)Z equation in a plane with G(A) = gammaA(-delta) - sigmaA2, 0 < delta < or = 1.
Travelling waves in nonlinear diffusion-convection-reaction
Gilding, B.H.; Kersner, R.
2001-01-01
The study of travelling waves or fronts has become an essential part of the mathematical analysis of nonlinear diffusion-convection-reaction processes. Whether or not a nonlinear second-order scalar reaction-convection-diffusion equation admits a travelling-wave solution can be determined by the stu
Nonlinear propagation of short wavelength drift-Alfven waves
DEFF Research Database (Denmark)
Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens
1986-01-01
Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...
Nonlinear wave structures in collisional plasma of auroral E-region ionosphere
Directory of Open Access Journals (Sweden)
A. V. Volosevich
Full Text Available Studies of the auroral plasma with small-scale inhomogenieties producing the VHF-radar reflections (radar aurora when observed in conditions of the saturated Farley-Buneman instability within the auroral E region, show strong nonlinear interactions and density fluctuations of 5–15%. Such nonlinearity and high fluctation amplitudes are inconsistent with the limitations of the weak turbulence theory, and thus a theory for arbitrary amplitudes is needed. To this end, a nonlinear theory is described for electrostatic MHD moving plasma structures of arbitrary amplitude for conditions throughout the altitude range of the collisional auroral E region. The equations are derived, from electron and ion motion self-consistent with the electric field, for the general case of the one-dimensional problem. They take into account nonlinearity, electron and ion inertia, diffusion, deviation from quasi-neutrality, and dynamical ion viscosity. The importance of the ion viscosity for dispersion is stressed, while deviation from the quasi-neutrality can be important only at rather low plasma densities, not typical for the auroral E region. In a small amplitude limit these equations have classical nonlinear solutions of the type of "electrostatic shock wave" or of knoidal waves. In a particular case these knoidal waves degrade to a dissipative soliton. A two-dimensional case of a quasi-neutral plasma is considered in the plane perpendicular to the magnetic field by way of the Poisson brackets, but neglecting the nonlinearity and ion inertia. It is shown that in these conditions an effective saturation can be achieved at the stationary turbulence level of order of 10%.
A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices
Lu, Y.; Cottone, F.; Boisseau, S.; Marty, F.; Galayko, D.; Basset, P.
2015-12-01
This article proposes a silicon-based electrostatic kinetic energy harvester with an ultra-wide operating frequency bandwidth from 1 Hz to 160 Hz. This large bandwidth is obtained, thanks to a miniature tungsten ball impacting with a movable proof mass of silicon. The motion of the silicon proof mass is confined by nonlinear elastic stoppers on the fixed part standing against two protrusions of the proof mass. The electrostatic transducer is made of interdigited-combs with a gap-closing variable capacitance that includes vertical electrets obtained by corona discharge. Below 10 Hz, the e-KEH offers 30.6 nJ per mechanical oscillation at 2 grms, which makes it suitable for powering biomedical devices from human motion. Above 10 Hz and up to 162 Hz, the harvested power is more than 0.5 μW with a maximum of 4.5 μW at 160 Hz. The highest power of 6.6 μW is obtained without the ball at 432 Hz, in accordance with a power density of 142 μW/cm3. We also demonstrate the charging of a 47-μF capacitor to 3.5 V used to power a battery-less wireless temperature sensor node.
A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices
Energy Technology Data Exchange (ETDEWEB)
Lu, Y.; Cottone, F.; Marty, F.; Basset, P., E-mail: p.basset@esiee.fr [Université Paris-Est/ESYCOM/ESIEE Paris, Noisy-le-Grand 93162 (France); Boisseau, S. [CEA, Leti, Minatec Campus, Grenoble 38054 (France); Galayko, D. [UPMC-Sorbonne Université/LIP 6, CNRS, Paris 75005 (France)
2015-12-21
This article proposes a silicon-based electrostatic kinetic energy harvester with an ultra-wide operating frequency bandwidth from 1 Hz to 160 Hz. This large bandwidth is obtained, thanks to a miniature tungsten ball impacting with a movable proof mass of silicon. The motion of the silicon proof mass is confined by nonlinear elastic stoppers on the fixed part standing against two protrusions of the proof mass. The electrostatic transducer is made of interdigited-combs with a gap-closing variable capacitance that includes vertical electrets obtained by corona discharge. Below 10 Hz, the e-KEH offers 30.6 nJ per mechanical oscillation at 2 g{sub rms}, which makes it suitable for powering biomedical devices from human motion. Above 10 Hz and up to 162 Hz, the harvested power is more than 0.5 μW with a maximum of 4.5 μW at 160 Hz. The highest power of 6.6 μW is obtained without the ball at 432 Hz, in accordance with a power density of 142 μW/cm{sup 3}. We also demonstrate the charging of a 47-μF capacitor to 3.5 V used to power a battery-less wireless temperature sensor node.
Indian Academy of Sciences (India)
S Lakshmi; Swapan K Pati
2003-10-01
We consider an interacting one-dimensional molecular wire attached to two metal electrodes on either side of it. The electrostatic potential profile across the wire-electrode interface has been deduced solving the Schrodinger and Poisson equations self-consistently. Since the Poisson distribution crucially depends on charge densities, we have considered different Hamiltonian parameters to model the nanoscale wire. We find that for very weak electron correlations, the potential gradient is almost zero in the middle of the wire but are large near the chain ends. However, for strong correlations, the potential is essentially a ramp function. The nonlinear current, obtained from the scattering formalism, is found to be less with the ramp potential than for weak correlations. Some of the interesting features in current-voltage characteristics have been explained using one-electron formalism and instabilities in the system.
Development of a Nonlinear Internal Wave Tactical Decision Aid
2016-06-07
of a Nonlinear Internal Wave Tactical Decision Aid 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...Development of a Nonlinear Internal Wave Tactical Decision Aid Christopher R. Jackson Global Ocean Associates 6220 Jean Louise Way Alexandria...www.internalwaveatlas.com LONG-TERM GOALS The long term goal of the project is to develop a prediction methodology for the occurrence of nonlinear
Indian Academy of Sciences (India)
ALY R SEADAWY
2017-09-01
Nonlinear two-dimensional Kadomtsev–Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the twodimensional nonlinear KP equation by implementing sech–tanh, sinh–cosh, extended direct algebraic and fraction direct algebraicmethods. We found the electrostatic field potential and electric field in the form travellingwave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of $\\it{Mathematica}$ program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.
Distribution of the nonlinear random ocean wave period
Institute of Scientific and Technical Information of China (English)
HOU Yijun; LI Mingjie; SONG Guiting; SI Guangcheng; QI Peng; HU Po
2009-01-01
Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37°27.6′ N, 122°15.1′ E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (υ=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional
Institute of Scientific and Technical Information of China (English)
Jianqin Lü; Xiaosong Zhao
2008-01-01
Nonlinear transport of intense continuous beam in the axial-symmetric electrostatic fields is analyzed with the Lie algebraic method.The K-V particle distribution is adopted in the analysis. The results obtained can be used in the calculations of the intense continuous beam dynamics in the beam optical systems consisting of drift spaces, electrostatic lenses, and DC electrostatic accelerating tubes. A com-puter code has been designed for practical simulations. To meet the needs of accurate calculation, all the elements are divided into many small segments, the electric fields in each segment are regarded as uniform fields, and the dividing points are treated as thin lenses. Iter-ation procedures are adopted in the code to obtain self-consistent solutions. The code can be used to design low energy dc beam transport systems, electrostatic accelerators, and ion implantation machines.
Nonlinear evolution of the modulational instability of whistler waves
DEFF Research Database (Denmark)
Karpman, V.I.; Hansen, F.R.; Huld, T.
1990-01-01
The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves is investigated in two spatial dimensions by numerical simulations. The long time evolution of the modulational instability shows a quasirecurrent behavior with a slow spreading...... of the energy, originally confined to the lowest wave numbers, to larger and larger wave numbers resulting in an apparently chaotic or random wave field. © 1990 The American Physical Society...
Nonlinear physics of shear Alfvén waves
Energy Technology Data Exchange (ETDEWEB)
Zonca, Fulvio [Associazione EURATOM-ENEA sulla Fusione, C.P. 65-00044 Frascati, Italy and Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007 (China); Chen, Liu [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007, P.R.C. and Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)
2014-02-12
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
SPHERICAL NONLINEAR PULSES FOR THE SOLUTIONS OF NONLINEAR WAVE EQUATIONS Ⅱ, NONLINEAR CAUSTIC
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L∞ norms, it analyzes the relative errors in approximate solutions.
Nonlinear Whistler Wave Physics in the Radiation Belts
Crabtree, Chris
2016-10-01
Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data
Nonlinear ultrasound wave propagation in thermoviscous fluids
DEFF Research Database (Denmark)
Sørensen, Mads Peter
coupled nonlinear partial differential equations, which resembles those of optical chi-2 materials. We think this result makes a remarkable link between nonlinear acoustics and nonlinear optics. Finally our analysis reveal an exact kink solution to the nonlinear acoustic problem. This kink solution...
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
Nonlinear numerical simulation on extreme-wave kinematics
Institute of Scientific and Technical Information of China (English)
NING Dezhi; TENG Bin; LIU Shuxue
2009-01-01
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is "adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.
Nonlinear Alfvén Waves in a Vlasov Plasma
DEFF Research Database (Denmark)
Bell, T.F.
1965-01-01
Stationary solutions to the nonlinear Vlasov—Boltzmann equations are considered which represent one-dimensional electromagnetic waves in a hot magnetoplasma. These solutions appear in arbitrary reference frames as circularly polarized, sinusoidal waves of unlimited amplitude, i.e., as nonlinear...... Alfvén waves. Solutions are found implicitly by deriving a set of integral dispersion relations which link the wave characteristics with the particle distribution functions. A physical discussion is given of the way in which the Alfvén waves can trap particles, and it is shown that the presence...
Nonlinear propagation and control of acoustic waves in phononic superlattices
Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J
2015-01-01
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.
The KP and ZK equations for electrostatic waves with grain charge fluctuation
Institute of Scientific and Technical Information of China (English)
Xue Ju-Kui; Lang He
2004-01-01
@@ The propagation of three-dimensional nonlinear dust-acoustic and dust-Coulomb waves in unmagnetized/magnetized dusty plasmas consisting of electrons, ions, and charged dust particles is investigated. The grain charge fluctuation effect is also incorporated through the current balance equation. By using the perturbation method,a Kadomtsev-Petviashvili equation and a Zakharov-Kuznetsov equation governing the nonlinear waves in the unmagnetized and magnetized systems are obtained respectively. It has been shown that with the combined effects of grain charge fluctuation, the transverse perturbation, and the external magnetic field would modify the wave structures.Waves in those systems are unstable to the high-order long-wave perturbations.
Density bump formation in a collisionless electrostatic shock wave in a laser-ablated plasma
Garasev, M A; Kocharovsky, V V; Malkov, Yu A; Murzanev, A A; Nechaev, A A; Stepanov, A N
2016-01-01
The emergence of a density bump at the front of a collisionless electrostatic shock wave have been observed experimentally during the ablation of an aluminium foil by a femtosecond laser pulse. We have performed numerical simulations of the dynamics of this phenomena developing alongside the generation of a package of ion-acoustic waves, exposed to a continual flow of energetic electrons, in a collisionless plasma. We present the physical interpretation of the observed effects and show that the bump consists of transit particles, namely, the accelerated ions from the dense plasma layer, and the ions from the diluted background plasma, formed by a nanosecond laser prepulse during the ablation.
The Peridic Wave Solutions for Two Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-Liang; WANG Ming-Liang; CHENG Dong-Ming; FANG Zong-De
2003-01-01
By using the F-expansion method proposed recently, the periodic wave solutions expressed by Jacobielliptic functions for two nonlinear evolution equations are derived. In the limit cases, the solitary wave solutions andthe other type of traveling wave solutions for the system are obtained.
Stability of electrostatic ion cyclotron waves in a multi-ion plasma
Indian Academy of Sciences (India)
M J Kurian; S Jyothi; S K Leju; Molly Isaac; Chandu Venugopal; G Renuka
2009-12-01
We have studied the stability of the electrostatic ion cyclotron wave in a plasma consisting of isotropic hydrogen ions (+) and temperature-anisotropic positively (+) and negatively (−) charged oxygen ions, with the electrons drifting parallel to the magnetic field. Analytical expressions have been derived for the frequency and growth/damping rate of ion cyclotron waves around the first harmonic of both hydrogen and oxygen ion gyrofrequencies. We find that the frequencies and growth/damping rates are dependent on the densities and temperatures of all species of ions. A detailed numerical study, for parameters relevant to comet Halley, shows that the growth rate is dependent on the magnitude of the frequency. The ion cyclotron waves are driven by the electron drift parallel to the magnetic field; the temperature anisotropy of the oxygen ions only slightly enhance the growth rates for small values of temperature anisotropies. A simple explanation, in terms of wave exponentiation times, is offered for the absence of electrostatic ion cyclotron waves in the multi-ion plasma of comet Halley.
Nonlinear time reversal of classical waves: experiment and model.
Frazier, Matthew; Taddese, Biniyam; Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven M
2013-12-01
We consider time reversal of electromagnetic waves in a closed, wave-chaotic system containing a discrete, passive, harmonic-generating nonlinearity. An experimental system is constructed as a time-reversal mirror, in which excitations generated by the nonlinearity are gathered, time-reversed, transmitted, and directed exclusively to the location of the nonlinearity. Here we show that such nonlinear objects can be purely passive (as opposed to the active nonlinearities used in previous work), and we develop a higher data rate exclusive communication system based on nonlinear time reversal. A model of the experimental system is developed, using a star-graph network of transmission lines, with one of the lines terminated by a model diode. The model simulates time reversal of linear and nonlinear signals, demonstrates features seen in the experimental system, and supports our interpretation of the experimental results.
Nonlinear evolution of oblique waves on compressible shear layers
Goldstein, M. E.; Leib, S. J.
1989-01-01
The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.
Nonlinear acoustic waves in micro-inhomogeneous solids
Nazarov, Veniamin
2014-01-01
Nonlinear Acoustic Waves in Micro-inhomogeneous Solids covers the broad and dynamic branch of nonlinear acoustics, presenting a wide variety of different phenomena from both experimental and theoretical perspectives. The introductory chapters, written in the style of graduate-level textbook, present a review of the main achievements of classic nonlinear acoustics of homogeneous media. This enables readers to gain insight into nonlinear wave processes in homogeneous and micro-inhomogeneous solids and compare it within the framework of the book. The subsequent eight chapters covering: Physical m
Rapid energization of radiation belt electrons by nonlinear wave trapping
Directory of Open Access Journals (Sweden)
Y. Katoh
2008-11-01
Full Text Available We show that nonlinear wave trapping plays a significant role in both the generation of whistler-mode chorus emissions and the acceleration of radiation belt electrons to relativistic energies. We have performed particle simulations that successfully reproduce the generation of chorus emissions with rising tones. During this generation process we find that a fraction of resonant electrons are energized very efficiently by special forms of nonlinear wave trapping called relativistic turning acceleration (RTA and ultra-relativistic acceleration (URA. Particle energization by nonlinear wave trapping is a universal acceleration mechanism that can be effective in space and cosmic plasmas that contain a magnetic mirror geometry.
Nonlinear time reversal in a wave chaotic system.
Frazier, Matthew; Taddese, Biniyam; Antonsen, Thomas; Anlage, Steven M
2013-02-01
Exploiting the time-reversal invariance and reciprocal properties of the lossless wave equation enables elegantly simple solutions to complex wave-scattering problems and is embodied in the time-reversal mirror. Here we demonstrate the implementation of an electromagnetic time-reversal mirror in a wave chaotic system containing a discrete nonlinearity. We demonstrate that the time-reversed nonlinear excitations reconstruct exclusively upon the source of the nonlinearity. As an example of its utility, we demonstrate a new form of secure communication and point out other applications.
Analysis of Wave Nonlinear Dispersion Relation
Institute of Scientific and Technical Information of China (English)
LI Rui-jie; TAO Jian-fu
2005-01-01
The nonlinear dispersion relations and modified relations proposed by Kirby and Hedges have the limitation of intermediate minimum value. To overcome the shortcoming, a new nonlinear dispersion relation is proposed. Based on the summarization and comparison of existing nonlinear dispersion relations, it can be found that the new nonlinear dispersion relation not only keeps the advantages of other nonlinear dispersion relations, but also significantly reduces the relative errors of the nonlinear dispersion relations for a range of the relative water depth of 1＜kh＜1.5 and has sufficient accuracy for practical purposes.
Nonlinear propagation of ion-acoustic waves in a degenerate dense plasma
Indian Academy of Sciences (India)
M M Masud; A A Mamun
2013-07-01
Nonlinear propagation of ion-acoustic (IA) waves in a degenerate dense plasma (with all the constituents being degenerate, for both the non-relativistic or ultrarelativistic cases) have been investigated by the reductive perturbation method. The linear dispersion relation and Korteweg de Vries (KdV) equation have been derived, and the numerical solutions of KdV equation have been analysed to identify the basic features of electrostatic solitary structures that may form in such a degenerate dense plasma. The implications of our results in compact astrophysical objects, particularly, in white dwarfs and neutron stars, have been briefly discussed.
Solitary Wave and Non-traveling Wave Solutions to Two Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
Rogue and shock waves in nonlinear dispersive media
Resitori, Stefania; Baronio, Fabio
2016-01-01
This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...
Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma
Energy Technology Data Exchange (ETDEWEB)
Umeda, Takayuki; Saito, Shinji [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya City, Aichi 464-8601 (Japan); Nariyuki, Yasuhiro, E-mail: umeda@stelab.nagoya-u.ac.jp, E-mail: saito@stelab.nagoya-u.ac.jp, E-mail: nariyuki@edu.u-toyama.ac.jp [Faculty of Human Development, University of Toyama, Toyama City, Toyama 930-8555 (Japan)
2014-10-10
Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.
Directory of Open Access Journals (Sweden)
J. S. Pickett
2009-06-01
Full Text Available Electrostatic Solitary Waves (ESWs have been observed by several spacecraft in the current layers of Earth's magnetosphere since 1982. ESWs are manifested as isolated pulses (one wave period in the high time resolution waveform data obtained on these spacecraft. They are thus nonlinear structures generated out of nonlinear instabilities and processes. We report the first observations of ESWs associated with the onset of a super-substorm that occurred on 24 August 2005 while the Cluster spacecraft were located in the magnetotail at around 18–19 R_{E} and moving northward from the plasma sheet to the lobes. These ESWs were detected in the waveform data of the WBD plasma wave receiver on three of the Cluster spacecraft. The majority of the ESWs were detected about 5 min after the super-substorm onset during which time 1 the PEACE electron instrument detected significant field-aligned electron fluxes from a few 100 eV to 3.5 keV, 2 the EDI instrument detected bursts of field-aligned electron currents, 3 the FGM instrument detected substantial magnetic fluctuations and the presence of Alfvén waves, 4 the STAFF experiment detected broadband electric and magnetic waves, ion cyclotron waves and whistler mode waves, and 5 CIS detected nearly comparable densities of H+ and O+ ions and a large tailward H+ velocity. We compare the characteristics of the ESWs observed during this event to those created in the laboratory at the University of California-Los Angeles Plasma Device (LAPD with an electron beam. We find that the time durations of both space and LAPD ESWs are only slightly larger than the respective local electron plasma periods, indicating that electron, and not ion, dynamics are responsible for generation of the ESWs. We have discussed possible mechanisms for generating the ESWs in space, including the beam and kinetic Buneman type instabilities and the acoustic instabilities. Future studies will examine these mechanisms in
A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY
Institute of Scientific and Technical Information of China (English)
李瑞杰; 李东永
2002-01-01
This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.
Controlling near shore nonlinear surging waves through bottom boundary conditions
Mukherjee, Abhik; Kundu, Anjan
2016-01-01
Instead of taking the usual passive view for warning of near shore surging waves including extreme waves like tsunamis, we aim to study the possibility of intervening and controlling nonlinear surface waves through the feedback boundary effect at the bottom. It has been shown through analytic result that the controlled leakage at the bottom may regulate the surface solitary wave amplitude opposing the hazardous variable depth effect. The theoretical results are applied to a real coastal bathymetry in India.
Electrostatic Nonlinear Structures in Dissipative Electron-Positron-Ion Quantum Plasmas
Institute of Scientific and Technical Information of China (English)
S. A. Khan; Q. Haque
2008-01-01
@@ Low frequency (in comparison to ion plasma frequency) ion-acoustic shocks and solitons in superdense electron-positron-ion quantum plasmas are studied.The quantum hydrodynamic model is used incorporating quantum Bohm forces and Fermi-Dirac statistical corrections to derive the deformed Korteweg de Vries-Burgers (dKdVB) equation in weakly nonlinear limit.The travelling wave solution of dKdVB equation is presented and results are discussed in different limits.It is found that shock height increases with increase of quantum pressure, positron concentration and dissipation.Further, it is seen that the width of soliton decreases with increase of quantum pressure.
Nonlinear Waves in an Inhomogeneous Fluid Filled Elastic Tube
Institute of Scientific and Technical Information of China (English)
DUAN Wen-Shan
2004-01-01
In a thin-walled, homogeneous, straight, long, circular, and incompressible fluid filled elastic tube, small but finite long wavelength nonlinear waves can be describe by a KdV (Korteweg de Vries) equation, while the carrier wave modulations are described by a nonlinear Schrodinger equation (NLSE). However if the elastic tube is slowly inhomogeneous, then it is found, in this paper, that the carrier wave modulations are described by an NLSE-like equation. There are soliton-like solutions for them, but the stability and instability regions for this soliton-like waves will change,depending on what kind of inhomogeneity the tube has.
Nonlinear spin wave coupling in adjacent magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2016-07-25
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
Variational principle for nonlinear wave propagation in dissipative systems.
Dierckx, Hans; Verschelde, Henri
2016-02-01
The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.
Indian Academy of Sciences (India)
Aiyong Chen; Jibin Li; Chunhai Li; Yuanduo Zhang
2010-01-01
The bifurcation theory of dynamical systems is applied to an integrable non-linear wave equation. As a result, it is pointed out that the solitary waves of this equation evolve from bell-shaped solitary waves to W/M-shaped solitary waves when wave speed passes certain critical wave speed. Under different parameter conditions, all exact explicit parametric representations of solitary wave solutions are obtained.
GLOBAL ATTRACTOR FOR THE NONLINEAR STRAIN WAVES IN ELASTIC WAVEGUIDES
Institute of Scientific and Technical Information of China (English)
戴正德; 杜先云
2001-01-01
In this paper the authors consider the initial boundary value problems of the generalized nonlinear strain waves in elastic waveguides and prove the existence of global attractors and thefiniteness of the Hausdorff and the fractal dimensions of the attractors.
Nonlinear waves in the terrestrial quasi-parallel foreshock
Hnat, B; O'Connell, D; Nakariakov, V M; Rowlands, G
2016-01-01
We study the applicability of the derivative nonlinear Schr\\"{o}dinger (DNLS) equation, for the evolution of high frequency nonlinear waves, observed at the foreshock region of the terrestrial quasi-parallel bow shock. The use of a pseudo-potential is elucidated and, in particular, the importance of canonical representation in the correct interpretation of solutions in this formulation is discussed. Numerical solutions of the DNLS equation are then compared directly with the wave forms observed by Cluster spacecraft. Non harmonic slow variations are filtered out by applying the empirical mode decomposition. We find large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency, followed in time by nearly harmonic low amplitude fluctuations. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfv\\'{e}n speed.
The periodic wave solutions for two systems of nonlinear wave equations
Institute of Scientific and Technical Information of China (English)
王明亮; 王跃明; 张金良
2003-01-01
The periodic wave solutions for the Zakharov system of nonlinear wave equations and a long-short-wave interaction system are obtained by using the F-expansion method, which can be regarded as an overall generalization of Jacobi elliptic function expansion proposed recently. In the limit cases, the solitary wave solutions for the systems are also obtained.
Numerical method of studying nonlinear interactions between long waves and multiple short waves
Institute of Scientific and Technical Information of China (English)
Xie Tao; Kuang Hai-Lan; William Perrie; Zou Guang-Hui; Nan Cheng-Feng; He Chao; Shen Tao; Chen Wei
2009-01-01
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically,the solution is less tractable in more general cases involving multiple short waves.In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water.Specifically,this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves.Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train.From simulation results,we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train(expressed as wave train 2)leads to the energy focusing of the other short wave train(expressed as wave train 31.This mechanism Occurs on wave components with a narrow frequency bandwidth,whose frequencies are near that of wave train 3.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.
NONLINEAR BOUNDARY STABILIZATION OF WAVE EQUATIONS WITH VARIABLE C OEFFICIENTS
Institute of Scientific and Technical Information of China (English)
冯绍继; 冯德兴
2003-01-01
The wave equation with variable coefficients with a nonlinear dissipative boundary feedbackis studied. By the Riemannian geometry method and the multiplier technique, it is shown thatthe closed loop system decays exponentially or asymptotically, and hence the relation betweenthe decay rate of the system energy and the nonlinearity behavior of the feedback function isestablished.
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
J Banerji
2001-02-01
We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.
Defocusing regimes of nonlinear waves in media with negative dispersion
DEFF Research Database (Denmark)
Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.
1996-01-01
Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this equation defined at the so-called critical dimension cannot collapse in finite time...
New travelling wave solutions for nonlinear stochastic evolution equations
Indian Academy of Sciences (India)
Hyunsoo Kim; Rathinasamy Sakthivel
2013-06-01
The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.
Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates
Energy Technology Data Exchange (ETDEWEB)
Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2010-10-15
Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters
Nonlinear spin-wave excitations at low magnetic bias fields
Woltersdorf, Georg
We investigate experimentally and theoretically the nonlinear magnetization dynamics in magnetic films at low magnetic bias fields. Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. In the experiments we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common Suhl instability model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behavior in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. For these modes, we also find pronounced frequency locking effects that may be used for synchronization purposes in magnonic devices. By using this effect, effective spin-wave sources based on parametric spin-wave excitation may be realized. Our results also show that it is not required to invoke a wave vector-dependent damping parameter in the interpretation of nonlinear magnetic resonance experiments performed at low bias fields.
Nonlinear electron acoustic waves in presence of shear magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)
2013-12-15
Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.
Parametric interaction and intensification of nonlinear Kelvin waves
Novotryasov, Vadim
2008-01-01
Observational evidence is presented for nonlinear interaction between mesoscale internal Kelvin waves at the tidal -- $\\omega_t$ or the inertial -- $\\omega_i$ frequency and oscillations of synoptic -- $\\Omega $ frequency of the background coastal current of Japan/East Sea. Enhanced coastal currents at the sum -- $\\omega_+ $ and dif -- $\\omega_-$ frequencies: $\\omega_\\pm =\\omega_{t,i}\\pm \\Omega$ have properties of propagating Kelvin waves suggesting permanent energy exchange from the synoptic band to the mesoscale $\\omega_\\pm $ band. The interaction may be responsible for the greater than predicted intensification, steepen and break of boundary trapped and equatorially trapped Kelvin waves, which can affect El Ni\\~{n}o. The problem on the parametric interaction of the nonlinear Kelvin wave at the frequency $\\omega $ and the low-frequency narrow-band nose with representative frequency $\\Omega\\ll\\omega $ is investigated with the theory of nonlinear week dispersion waves.
Statistical distribution of nonlinear random wave height in shallow water
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Here we present a statistical model of random wave,using Stokes wave theory of water wave dynamics,as well as a new nonlinear probability distribution function of wave height in shallow water.It is more physically logical to use the wave steepness of shallow water and the factor of shallow water as the parameters in the wave height distribution.The results indicate that the two parameters not only could be parameters of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution.The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated.The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution.The effect of wave steepness in shallow water is similar to that in deep water;but the factor of shallow water lowers the wave height distribution of the general wave with the reduced factor of wave steepness.It also makes the wave height distribution of shallow water more centralized.The results indicate that the new distribution fits the in situ measurements much better than other distributions.
Development of A Fully Nonlinear Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
陈永平; 李志伟; 张长宽
2004-01-01
A fully nonlinear numerical wave tank (NWT) based on the solution of the σ-transformed Navier-Stokes equation is developed in this study. The numerical wave is generated from the inflow boundary, where the surface elevation and/or velocity are specified by use of the analytical solution or the laboratory data. The Sommerfeld/Orlanski radiation condition in conjunction with an artificial damping zone is applied to reduce wave reflection from the outflow boundary. The whole numerical solution procedures are split into three steps, i.e., advection, diffusion and propagation, and a new method,the Lagrange-Euler Method, instead of the MAC or VOF method, is introduced to solve the free surface elevation at the new time step. Several typical wave cases, including solitary waves, regular waves and irregular waves, are simulated in the wave tank. The robustness and accuracy of the NWT are verified by the good agreement between the numerical results and the linear or nonlinear analytical solutions. This research will be further developed by study of wave-wave, wave-current, wave-structure or wave-jet interaction in the future.
A nonlinear RDF model for waves propagating in shallow water
Institute of Scientific and Technical Information of China (English)
王厚杰; 杨作升; 李瑞杰; 张军
2001-01-01
In this paper, a composite explicit nonlinear dispersion relation is presented with reference to Stokes 2nd order dispersion relation and the empirical relation of Hedges. The explicit dispersion relation has such advantages that it can smoothly match the Stokes relation in deep and intermediate water and Hedgs’s relation in shallow water. As an explicit formula, it separates the nonlinear term from the linear dispersion relation. Therefore it is convenient to obtain the numerical solution of nonlinear dispersion relation. The present formula is combined with the modified mild-slope equation including nonlinear effect to make a Refraction-Diffraction (RDF) model for wave propagating in shallow water. This nonlinear model is verified over a complicated topography with two submerged elliptical shoals resting on a slope beach. The computation results compared with those obtained from linear model show that at present the nonlinear RDF model can predict the nonlinear characteristics and the combined refracti
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
Nonlinear volume holography for wave-front engineering.
Hong, Xu-Hao; Yang, Bo; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan
2014-10-17
The concept of volume holography is applied to the design of an optical superlattice for the nonlinear harmonic generation. The generated harmonic wave can be considered as a holographic image caused by the incident fundamental wave. Compared with the conventional quasi-phase-matching method, this new method has significant advantages when applied to complicated nonlinear processes such as the nonlinear generation of special beams. As an example, we experimentally realized a second-harmonic Airy beam, and the results are found to agree well with numerical simulations.
Hamiltonian theory of nonlinear waves in planetary rings
Stewart, G. R.
1987-01-01
The derivation of a Hamiltonian field theory for nonlinear density waves in Saturn's rings is discussed. Starting with a Hamiltonian for a discrete system of gravitating streamlines, an averaged Hamiltonian is obtained by successive applications of Lie transforms. The transformation may be carried out to any desired order in q, where q is the nonlinearity parameter defined in the work of Shu, et al (1985) and Borderies et al (1985). Subsequent application of the Wentzel-Kramer-Brillouin Method approximation yields an asymptotic field Hamiltonian. Both the nonlinear dispersion relation and the wave action transport equation are easily derived from the corresponding Lagrangian by the standard variational principle.
Exact travelling wave solutions for some important nonlinear physical models
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2013-05-01
The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical studies. In this paper, the Kudryashov method is used to seek exact travelling wave solutions of such physical models. Further, three-dimensional plots of some of the solutions are also given to visualize the dynamics of the equations. The results reveal that the method is a very effective and powerful tool for solving nonlinear partial differential equations arising in mathematical physics.
Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris
2013-01-01
A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.
Stability of current-driven electrostatic waves in a magnetized and collisional negative ion plasma
Energy Technology Data Exchange (ETDEWEB)
Venugopal, Chandu; Varghese, Anu; S, Jyothi [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 560, Kerala (India); Issac, Molly [Department of Physics, All Saints' College, Thiruvananthapuram 695 007, Kerala (India); Renuka, G [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala (India)], E-mail: cvgmgphys@yahoo.co.in
2008-10-15
The stability of electrostatic waves, propagating nearly parallel to a uniform external magnetic field, is studied in a fully ionized, collisional plasma of positive and negative ions and a field-aligned current of drifting electrons. Expressions have been derived for the dispersion relation and growth rate using fluid theory and retaining the collisional and conductivity terms for the electrons. The plasma can, in general, support two modes, which have frequencies that are a composite of the ion acoustic and ion gyro frequencies. The growth rate of the modes increases with increasing drift velocities of the electrons and decreases with increasing negative ion densities.
Exact Nonlinear Internal Equatorial Waves in the f-plane
Hsu, Hung-Chu
2016-07-01
We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.
Experimental observations of nonlinear effects of the Lamb waves
Institute of Scientific and Technical Information of China (English)
DENG Mingxi; D.C. Price; D.A.Scott
2004-01-01
The experimental observations of nonlinear effects of the primary Lamb waves have been reported. Firstly, the brief descriptions have been made for the nonlinear acoustic measurement system developed by Ritec. The detailed considerations for the acoustic experiment system established for observing of the nonlinear effects of the primary Lamb waves have been carried out. Especially, the analysis focuses on the time-domain responses of second harmonics of the primary Lame waves by employing a straightforward model. Based on the existence conditions of strong nonlinearity of the primary Lamb waves, the wedge transducers are designed to generate and detect the primary and secondary waves on the surface of an aluminum sheet. For the different distances between the transmitting and receiving wedge transducers,the amplitudes of the primary waves and the second harmonics on the sheet surface have been measured within a specified frequency range. In the immediate vicinity of the driving frequency,where the primary and the double frequency Lamb waves have the same phase velocities, the quantitative relations of second-harmonic amplitudes with the propagation distance have been analyzed. It is experimentally verified that the second harmonics of the primary Lamb waves do have a cumulative growth effect along with the propagation distance.
Elliptic Equation and New Solutions to Nonlinear Wave Equations
Institute of Scientific and Technical Information of China (English)
FU Zun-Tao; LIU Shi-Kuo; LIU Shi-Da
2004-01-01
The new solutions to elliptic equation are shown, and then the elliptic equation is taken as a transformationand is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodicsolutions of rational form, solitary wave solutions of rational form, and so on.
Quantification and prediction of rare events in nonlinear waves
Sapsis, Themistoklis; Cousins, Will; Mohamad, Mustafa
2014-11-01
The scope of this work is the quantification and prediction of rare events characterized by extreme intensity, in nonlinear dispersive models that simulate water waves. In particular we are interested for the understanding and the short-term prediction of rogue waves in the ocean and to this end, we consider 1-dimensional nonlinear models of the NLS type. To understand the energy transfers that occur during the development of an extreme event we perform a spatially localized analysis of the energy distribution along different wavenumbers by means of the Gabor transform. A stochastic analysis of the Gabor coefficients reveals i) the low-dimensionality of the intermittent structures, ii) the interplay between non-Gaussian statistical properties and nonlinear energy transfers between modes, as well as iii) the critical scales (or Gabor coefficients) where a critical energy can trigger the formation of an extreme event. The unstable character of these critical localized modes is analysed directly through the system equation and it is shown that it is defined as the result of the system nonlinearity and the wave dissipation (that mimics wave breaking). These unstable modes are randomly triggered through the dispersive ``heat bath'' of random waves that propagate in the nonlinear medium. Using these properties we formulate low-dimensional functionals of these Gabor coefficients that allow for the prediction of extreme event well before the strongly nonlinear interactions begin to occur. The prediction window is further enhanced by the combination of the developed scheme with traditional filtering schemes.
Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.
1980-01-01
Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.
Linear and nonlinear propagation of water wave groups
Pierson, W. J., Jr.; Donelan, M. A.; Hui, W. H.
1992-01-01
Results are presented from a study of the evolution of waveforms with known analytical group shapes, in the form of both transient wave groups and the cloidal (cn) and dnoidal (dn) wave trains as derived from the nonlinear Schroedinger equation. The waveforms were generated in a long wind-wave tank of the Canada Centre for Inland Waters. It was found that the low-amplitude transients behaved as predicted by the linear theory and that the cn and dn wave trains of moderate steepness behaved almost as predicted by the nonlinear Schroedinger equation. Some of the results did not fit into any of the available theories for waves on water, but they provide important insight on how actual groups of waves propagate and on higher-order effects for a transient waveform.
GEOMETRICAL NONLINEAR WAVES IN FINITE DEFORMATION ELASTIC RODS
Institute of Scientific and Technical Information of China (English)
GUO Jian-gang; ZHOU Li-jun; ZHANG Shan-yuan
2005-01-01
By using Hamilton-type variation principle in non-conservation system, the nonlinear equation of wave motion of a elastic thin rod was derived according to Lagrange description of finite deformation theory. The dissipation caused due to viscous effect and the dispersion introduced by transverse inertia were taken into consideration so that steady traveling wave solution can be obtained. Using multi-scale method the nonlinear equation is reduced to a KdV-Burgers equation which corresponds with saddle-spiral heteroclinic orbit on phase plane. Its solution is called the oscillating-solitary wave or saddle-spiral shock wave.If viscous effect or transverse inertia is neglected, the equation is degraded to classical KdV or Burgers equation. The former implies a propagating solitary wave with homoclinic on phase plane, the latter means shock wave and heteroclinic orbit.
Ni, B.; Liang, J.; Thorne, R. M.; Angelopoulos, V.; Horne, R. B.; Kubyshkina, M.; Spanswick, E. L.; Donovan, E.; Lummerzheim, D.
2011-12-01
We report a causal connection between the intensification of electrostatic ECH waves and the postmidnight diffuse auroral activity in the absence of whistler-mode chorus waves at L = 11.5 on the basis of simultaneous observations from THEMIS spacecraft and NORSTAR optical instruments during 8 - 9 UT on February 5, 2009. We use the THEMIS particle and wave measurements together with the magnetically conjugate auroral observations for this event to illustrate an example where electrostatic electron cyclotron harmonic (ECH) waves are the main contributor to the diffuse auroral precipitation. We use the wave and particle data to perform a comprehensive theoretical and numerical analysis of ECH wave driven resonant scattering rates. We find that the observed ECH wave activity can cause intense pitch angle scattering of plasma sheet electrons between 100 eV and 5 keV at a rate of > 10-4 s-1 for equatorial pitch angles < 30°. The scattering approaches the strong diffusion limit in the realistic ambient magnetic field to produce efficient precipitation loss of < ~ 5 keV electrons on a timescale of a few hours or less. Using the electron differential energy flux inside the loss cone estimated based upon the energy-dependent efficiency of ECH wave scattering for an 8-second interval with high resolution wave data available, the auroral electron transport model developed by Lummerzheim [1987] produced an intensity of ~ 2.3 kR for the green-line diffuse aurora. Separately, Maxwellian fitting to the electron differential flux spectrum produced a green-line auroral intensity of ~ 2.6 kR. This is in good agreement with the ~2.4 kR green-line auroral intensity observed simultaneously at the magnetic footpoint (as inferred using the event-adaptive model of Kubyshkina et al. [2009, 2011]) of the location where the in situ observations were obtained. Our results support the scenario that enhanced ECH emissions in the central plasma sheet (CPS) can be an important or even dominant
Wave Propagation In Strongly Nonlinear Two-Mass Chains
Wang, Si Yin; Herbold, Eric B.; Nesterenko, Vitali F.
2010-05-01
We developed experimental set up that allowed the investigation of propagation of oscillating waves generated at the entrance of nonlinear and strongly nonlinear two-mass granular chains composed of steel cylinders and steel spheres. The paper represents the first experimental data related to the propagation of these waves in nonlinear and strongly nonlinear chains. The dynamic compressive forces were detected using gauges imbedded inside particles at depths equal to 4 cells and 8 cells from the entrance gauge detecting the input signal. At these relatively short distances we were able to detect practically perfect transparency at low frequencies and cut off effects at higher frequencies for nonlinear and strongly nonlinear signals. We also observed transformation of oscillatory shocks into monotonous shocks. Numerical calculations of signal transformation by non-dissipative granular chains demonstrated transparency of the system at low frequencies and cut off phenomenon at high frequencies in reasonable agreement with experiments. Systems which are able to transform nonlinear and strongly nonlinear waves at small sizes of the system are important for practical applications such as attenuation of high amplitude pulses.
Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
Institute of Scientific and Technical Information of China (English)
Zhang Jie-Fang; Jin Mei-Zhen; He Ji-Da; Lou Ji-Hui; Dai Chao-Qing
2013-01-01
We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr(o)dinger equation with varying coefficients.And then the dynamics of the first-and the second-order optical rogues are investigated.Finally,the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed.By properly choosing the distributed coefficients,we demonstrate analytically that rogue waves can be restrained or even be annihilated,or emerge periodically and sustain forever.We also figure out the center-of-mass motion of the rogue waves.
Thermal conductivity of nonlinear waves in disordered chains
Indian Academy of Sciences (India)
Sergej Flach; Mikhail Ivanchenko; Nianbei Li
2011-11-01
We present computational data on the thermal conductivity of nonlinear waves in disordered chains. Disorder induces Anderson localization for linear waves and results in a vanishing conductivity. Cubic nonlinearity restores normal conductivity, but with a strongly temperature-dependent conductivity (). We ﬁnd indications for an asymptotic low-temperature ∼ 4 and intermediate temperature ∼ 2 laws. These ﬁndings are in accord with theoretical studies of wave packet spreading, where a regime of strong chaos is found to be intermediate, followed by an asymptotic regime of weak chaos (Laptyeva et al, Europhys. Lett. 91, 30001 (2010)).
Nonlinear mixing of laser generated narrowband Rayleigh surface waves
Bakre, Chaitanya; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2017-02-01
This research presents the nonlinear mixing technique of two co-directionally travelling Rayleigh surface waves generated and detected using laser ultrasonics. The optical generation of Rayleigh waves on the specimen is obtained by shadow mask method. In conventional nonlinear measurements, the inherently small higher harmonics are greatly influenced by the nonlinearities caused by coupling variabilities and surface roughness between the transducer and specimen interface. The proposed technique is completely contactless and it should be possible to eliminate this problem. Moreover, the nonlinear mixing phenomenon yields not only the second harmonics, but also the sum and difference frequency components, which can be used to measure the acoustic nonlinearity of the specimen. In this paper, we will be addressing the experimental configurations for this technique. The proposed technique is validated experimentally on Aluminum 7075 alloy specimen.
Time-reversed wave mixing in nonlinear optics.
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-11-19
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.
Nonlinear wave propagation in a rapidly-spun fiber.
McKinstrie, C J; Kogelnik, H
2006-09-04
Multiple-scale analysis is used to study linear wave propagation in a rapidly-spun fiber and its predictions are shown to be consistent with results obtained by other methods. Subsequently, multiple-scale analysis is used to derive a generalized Schroedinger equation for nonlinear wave propagation in a rapidly-spun fiber. The consequences of this equation for pulse propagation and four-wave mixing are discussed briefly.
Nonlinear propagation of planet-generated tidal waves
Rafikov, Roman
2001-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process sp...
BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS TO A COUPLED NONLINEAR WAVE SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Employ theory of bifurcations of dynamical systems to a system of coupled nonlin-ear equations, the existence of solitary wave solutions, kink wave solutions, anti-kink wave solutions and periodic wave solutions is obtained. Under different parametric conditions, various suffcient conditions to guarantee the existence of the above so-lutions are given. Some exact explicit parametric representations of travelling wave solutions are derived.
A Spectral Element Method for Nonlinear and Dispersive Water Waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Bigoni, Daniele; Eskilsson, Claes
The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...... methods is of key interest. We present a high-order general-purpose three-dimensional numerical model solving fully nonlinear and dispersive potential flow equations with a free surface.......The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...
Nonlinear evolution of oblique whistler waves in radiation belts
Sharma, R. P.; Nandal, P.; Yadav, N.; Sharma, Swati
2017-02-01
Magnetic power spectrum and formation of coherent structures have been investigated in the present work applicable to Van Allen radiation belt. The nonlinear interaction of high frequency oblique whistler wave and low frequency magnetosonic wave has been investigated. Simulation was performed of the coupled equation of these two waves. The nonlinear interaction of these waves leads to the formation of the localized structures. These resulting localized structures are of complex nature. The associated magnetic power spectrum has also been studied. Dispersive nonlinear processes account for the high frequency part of the spectrum. The resulting magnetic power spectrum shows a scaling of k^{ - 4.5}. The energy transfer process from injection scales to smaller scales is explained by the results.
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...
Energy Technology Data Exchange (ETDEWEB)
Xie, Xi-Yang; Tian, Bo, E-mail: tian_bupt@163.com; Wang, Yu-Feng; Sun, Ya; Jiang, Yan
2015-11-15
In this paper, we investigate a generalized nonautonomous nonlinear equation which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. By virtue of the generalized Darboux transformation, the first- and second-order rogue-wave solutions for the generalized nonautonomous nonlinear equation are obtained, under some variable–coefficient constraints. Properties of the first- and second-order rogue waves are graphically presented and analyzed: When the coefficients are all chosen as the constants, we can observe the some functions, the shapes of wave crests and troughs for the first- and second-order rogue waves change. Oscillating behaviors of the first- and second-order rogue waves are observed when the coefficients are the trigonometric functions.
Nonlinear Pressure Wave Analysis by Concentrated Mass Model
Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro
A pressure wave propagating in a tube often changes to a shock wave because of the nonlinear effect of fluid. Analyzing this phenomenon by the finite difference method requires high computational cost. To lessen the computational cost, a concentrated mass model is proposed. This model consists of masses, connecting nonlinear springs, connecting dampers, and base support dampers. The characteristic of a connecting nonlinear spring is derived from the adiabatic change of fluid, and the equivalent mass and equivalent damping coefficient of the base support damper are derived from the equation of motion of fluid in a cylindrical tube. Pressure waves generated in a hydraulic oil tube, a sound tube and a plane-wave tube are analyzed numerically by the proposed model to confirm the validity of the model. All numerical computational results agree very well with the experimental results carried out by Okamura, Saenger and Kamakura. Especially, the numerical analysis reproduces the phenomena that a pressure wave with large amplitude propagating in a sound tube or in a plane tube changes to a shock wave. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear pressure wave problem.
Nonlinear internal wave penetration via parametric subharmonic instability
Ghaemsaidi, S J; Dauxois, T; Odier, P; Peacock, T
2016-01-01
We present the results of a laboratory experimental study of an internal wave field generated by harmonic, spatially-periodic boundary forcing from above of a density stratification comprising a strongly-stratified, thin upper layer sitting atop a weakly-stratified, deep lower layer. In linear regimes, the energy flux associated with relatively high frequency internal waves excited in the upper layer is prevented from entering the lower layer by virtue of evanescent decay of the wave field. In the experiments, however, we find that the development of parametric subharmonic instability (PSI) in the upper layer transfers energy from the forced primary wave into a pair of subharmonic daughter waves, each capable of penetrating the weakly-stratified lower layer. We find that around $10\\%$ of the primary wave energy flux penetrates into the lower layer via this nonlinear wave-wave interaction for the regime we study.
Efficient computation method for two-dimensional nonlinear waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.
Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas
Arshad, Kashif; Lazar, M.; Mahmood, Shahzad; Aman-ur-Rehman, Poedts, S.
2017-03-01
The kinetic theory of electrostatic twisted waves' instability in a dusty plasma is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons, ions, and dust particles. The kappa distributed electrons are considered to have a drift velocity. The perturbed distribution function and helical electric field are decomposed by Laguerre-Gaussian mode functions defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to investigate the growth rates of the electrostatic twisted waves in a non-thermal dusty plasma. The growth rates of the dust ion acoustic twisted mode (DIATM) and dust acoustic twisted mode (DATM) are obtained analytically and also pictorial presented numerically. The instability condition for the DIATM and DATM is also discussed with different plasma parameters. The growth rates of DIATM and DATM are larger when the drifted electrons are non-Maxwellian distributed and smaller for the Maxwellian distributed drifted electrons in the presence of the helical electric field.
Kim, I. K.; Lee, S. I.
2013-09-01
The nonlinear dynamics of a resonating carbon nanotube (CNT) cantilever having an attached mass at the tip ("tip mass") were investigated by incorporating electrostatic forces and intermolecular interactions between the CNT and a conducting plane surface. This work enables applications of CNT resonating sensors for tiny mass detection and provides a better understanding of the dynamics of CNT cantilevers. The effect of tip mass on a resonating CNT cantilever is normally characterized by the fundamental frequency shift in the linear resonance regime. However, there are more complex dynamics in the nonlinear resonance regime, such as secondary resonances with parametric excitation. The latter have been limited to nano-cantilevers without tip mass or to axially excited micro-beams. To analyze the nonlinear dynamics, we developed a differential equation model that includes both geometric and inertial nonlinear terms for the large vibration amplitudes at increasing drive forces. In our approach, we used Galerkin discretization techniques and numerical integration methods. The CNT cantilever exhibited complex nonlinear responses due to the applied AC and DC voltages and various tip masses. The nonlinear model had a softer response for increasing tip mass than those of the linear model with the same driving conditions. At low applied voltages, the cantilever had linear amplitude and phase responses at primary and secondary superharmonic resonance frequencies. The response branches were softened at the primary resonance through saddle-node (SN) bifurcation from harmonic electrostatic excitation at higher applied voltages. After SN bifurcation, the lower branch of the solution near resonance became unstable. In addition, theoretical analyses were performed on more complex nonlinear responses and stability changes with tip mass variations, such as period-doubling (PD) bifurcation at subharmonic resonance frequencies.
Application of Nonlinear Bratu's Equation in Two and Three Dimensions to Electrostatics
Hichar, S.; Guerfi, A.; Douis, S.; Meftah, M. T.
2015-12-01
In this work, we focus our attention on some solutions to an electrostatic and plasma problem that consists in solving Poisson's equation. The latter is related to an old problem known as Bratu's problem or Bratu's equation. We present some solutions to this equation and apply them to problems encountered in electrostatics and plasma physics.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Energy Technology Data Exchange (ETDEWEB)
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
Energy Technology Data Exchange (ETDEWEB)
Kuwahata, A., E-mail: kuwahata@ts.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Igami, H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Kawamori, E. [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Kogi, Y. [Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Inomoto, M.; Ono, Y. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561 (Japan)
2014-10-15
We report the observation of electromagnetic radiation at high harmonics of the electron cyclotron frequency that was considered to be converted from electrostatic waves called electron Bernstein waves (EBWs) during magnetic reconnection in laboratory overdense plasmas. The excitation of EBWs was attributed to the thermalization of electrons accelerated by the reconnection electric field around the X-point. The radiative process discussed here is an acceptable explanation for observed radio waves pulsation associated with major flares.
Horne, Richard B.; Thorne, Richard M.
2000-03-01
It has been suggested that highly anisotropic electron pancake distributions are the result of pitch angle diffusion by electrostatic electron cyclotron harmonic (ECH) and whistler mode waves in the equatorial region. Here we present pitch angle diffusion rates for ECH wave spectra centered at different frequencies with respect to the electron gyrofrequency Ωe corresponding to spacecraft observations. The wave spectra are carefully mapped to the correct resonant electron velocities. We show that previous diffusion calculations of ECH waves at 1.5Ωe, driven by the loss cone instability, result in large diffusion rates confined to a small range of pitch angles near the loss cone and therefore cannot account for pancake distributions. However, when the wave spectrum is centered at higher frequencies in the band (>1.6Ωe), the diffusion rates become very small inside the loss cone, peak just outside, and remain large over a wide range of pitch angles up to 60° or more. When the upper hybrid resonance frequency ωUHR is several times Ωe, ECH waves excited in higher bands also contribute significantly to pitch angle diffusion outside the loss cone up to very large pitch angles. We suggest that ECH waves driven by a loss cone could form pancake distributions as they grow if the wave spectrum extends from the middle to the upper part of the first (and higher) gyroharmonic bands. Alternatively, we suggest that pancake distributions can be formed by outward propagation in a nonhomogeneous medium, so that resonant absorption occurs at higher frequencies between(n+12) and (n+1)Ωe in regions where waves are also growing locally at <=1.5Ωe. The calculated diffusion rates suggest that ECH waves with amplitudes of the order of 1 mV m-1 can form pancake distributions from an initially isotropic distribution on a timescale of a few hours. This is consistent with recent CRRES observations of ECH wave amplitudes following substorm injections near geostationary orbit and the
Emergent geometries and nonlinear-wave dynamics in photon fluids.
Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D
2016-03-22
Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.
Simulation of Fully Nonlinear 3-D Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
张晓兔; 滕斌; 宁德志
2004-01-01
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.
Time-Reversal of Nonlinear Waves - Applicability and Limitations
Ducrozet, G; Chabchoub, A
2016-01-01
Time-reversal (TR) refocusing of waves is one of fundamental principles in wave physics. Using the TR approach, "Time-reversal mirrors" can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backwards. Lately, laboratory experiments proved that this approach can be applied not only in acoustics and electromagnetism but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic TR using a uni-directional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configu...
Nonlinear diffraction of water waves by offshore stuctures
Directory of Open Access Journals (Sweden)
Matiur Rahman
1986-01-01
Full Text Available This paper is concerned with a variational formulation of a nonaxisymmetric water wave problem. The full set of equations of motion for the problem in cylindrical polar coordinates is derived. This is followed by a review of the current knowledge on analytical theories and numerical treatments of nonlinear diffraction of water waves by offshore cylindrical structures. A brief discussion is made on water waves incident on a circular harbor with a narrow gap. Special emphasis is given to the resonance phenomenon associated with this problem. A new theoretical analysis is also presented to estimate the wave forces on large conical structures. Second-order (nonlinear effects are included in the calculation of the wave forces on the conical structures. A list of important references is also given.
Energy Technology Data Exchange (ETDEWEB)
Romeo, Francesco [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: francesco.romeo@uniromal.it; Rega, Giuseppe [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: giuseppe.rega@uniromal.it
2006-02-01
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.
Nonlinear Alfvén wave dynamics in plasmas
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Anwesa; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Schamel, Hans [Theoretical Physics, University of Bayreuth, D-95440 Bayreuth (Germany)
2015-07-15
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Nonlinear Alfvén wave dynamics in plasmas
Sarkar, Anwesa; Chakrabarti, Nikhil; Schamel, Hans
2015-07-01
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Directory of Open Access Journals (Sweden)
Shi Jing
2014-01-01
Full Text Available The solving processes of the homogeneous balance method, Jacobi elliptic function expansion method, fixed point method, and modified mapping method are introduced in this paper. By using four different methods, the exact solutions of nonlinear wave equation of a finite deformation elastic circular rod, Boussinesq equations and dispersive long wave equations are studied. In the discussion, the more physical specifications of these nonlinear equations, have been identified and the results indicated that these methods (especially the fixed point method can be used to solve other similar nonlinear wave equations.
Diffractive optics based four-wave, six-wave, ..., nu-wave nonlinear spectroscopy.
Miller, R J Dwayne; Paarmann, Alexander; Prokhorenko, Valentyn I
2009-09-15
A detailed understanding of chemical processes requires information about both structure and dynamics. By definition, a reaction involves nonstationary states and is a dynamic process. Structure describes the atomic positions at global minima in the nuclear potential energy surface. Dynamics are related to the anharmonicities in this potential that couple different minima and lead to changes in atomic positions (reactions) and correlations. Studies of molecular dynamics can be configured to directly access information on the anharmonic interactions that lead to chemical reactions and are as central to chemistry as structural information. In this regard, nonlinear spectroscopies have distinct advantages over more conventional linear spectroscopies. Because of this potential, nonlinear spectroscopies could eventually attain a comparable level of importance for studying dynamics on the relevant time scales to barrier crossings and reactive processes as NMR has for determining structure. Despite this potential, nonlinear spectroscopy has not attained the same degree of utility as linear spectroscopy largely because nonlinear studies are more technically challenging. For example, unlike the linear spectrometers that exist in almost all chemistry departments, there are no "black box" four-wave mixing spectrometers. This Account describes recent advances in the application of diffractive optics (DOs) to nonlinear spectroscopy, which reduces the complexity level of this technology to be closer to that of linear spectroscopy. The combination of recent advances in femtosecond laser technology and this single optic approach could bring this form of spectroscopy out of the exclusive realm of specialists and into the general user community. However, the real driving force for this research is the pursuit of higher sensitivity limits, which would enable new forms of nonlinear spectroscopy. This Account chronicles the research that has now extended nonlinear spectroscopy to six-wave
Energy Technology Data Exchange (ETDEWEB)
Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)
2015-03-31
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.
Analytical and numerical investigation of nonlinear internal gravity waves
Directory of Open Access Journals (Sweden)
S. P. Kshevetskii
2001-01-01
Full Text Available The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration, we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory
Enhanced four-wave mixing with nonlinear plasmonic metasurfaces
Jin, Boyuan
2016-01-01
Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be...
Numerical modelling of nonlinear full-wave acoustic propagation
Energy Technology Data Exchange (ETDEWEB)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Nonlinear scattering of radio waves by metal objects
Shteynshleyger, V. B.
1984-07-01
Nonlinear scattering of radio waves by metal structures with resulting harmonic and intermodulation interference is analyzed from both theoretical and empirical standpoints, disregarding nonlinear effects associated with the nonlinear dependence of the electric or magnetic polarization vector on respectively the electric or magnetic field intensity in the wave propagating medium. Nonlinear characteristics of metal-oxide-metal contacts where the thin oxide film separation two metal surfaces has properties approximately those of a dielectric or a high-resistivity semiconductor are discussed. Tunneling was found to be the principal mechanism of charge carrier transfer through such a contact with a sufficiently thin film, the contact having usually a cubic or sometimes an integral sign current-voltage characteristic at 300 K and usually S-form or sometimes a cubic current-voltage characteristic at 77 K.
Nonlinear surface waves in soft, weakly compressible elastic media.
Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F
2007-04-01
Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.
Kinetic equation for nonlinear resonant wave-particle interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
The Gouy phase shift in nonlinear interactions of waves
Lastzka, Nico; Schnabel, Roman
2007-06-01
We theoretically analyze the influence of the Gouy phase shift on the nonlinear interaction between waves of different frequencies. We focus on χ(2)interaction of optical fields, e.g. through birefringent crystals, and show that focussing, stronger than suggested by the Boyd-Kleinman factor, can further improve nonlinear processes. An increased value of 3.32 for the optimal focussing parameter for a single pass process is found. The new value builds on the compensation of the Gouy phase shift by a spatially varying, instead constant, wave vector phase mismatch. We analyze the single-ended, singly resonant standing wave nonlinear cavity and show that in this case the Gouy phase shift leads to an additional phase during backreflection. Our numerical simulations may explain ill-understood experimental observations in such devices.
Nonlinear dynamics of DNA - Riccati generalized solitary wave solutions
Energy Technology Data Exchange (ETDEWEB)
Alka, W.; Goyal, Amit [Department of Physics, Panjab University, Chandigarh-160014 (India); Nagaraja Kumar, C., E-mail: cnkumar@pu.ac.i [Department of Physics, Panjab University, Chandigarh-160014 (India)
2011-01-17
We study the nonlinear dynamics of DNA, for longitudinal and transverse motions, in the framework of the microscopic model of Peyrard and Bishop. The coupled nonlinear partial differential equations for dynamics of DNA model, which consists of two long elastic homogeneous strands connected with each other by an elastic membrane, have been solved for solitary wave solution which is further generalized using Riccati parameterized factorization method.
Nonlinear dynamics of DNA - Riccati generalized solitary wave solutions
Alka, W.; Goyal, Amit; Nagaraja Kumar, C.
2011-01-01
We study the nonlinear dynamics of DNA, for longitudinal and transverse motions, in the framework of the microscopic model of Peyrard and Bishop. The coupled nonlinear partial differential equations for dynamics of DNA model, which consists of two long elastic homogeneous strands connected with each other by an elastic membrane, have been solved for solitary wave solution which is further generalized using Riccati parameterized factorization method.
Nonlinear Alfv\\'en waves in extended magnetohydrodynamics
Abdelhamid, Hamdi M
2015-01-01
Large-amplitude Alfv\\'en waves are observed in various systems in space and laboratories, demonstrating an interesting property that the wave shapes are stable even in the nonlinear regime. The ideal magnetohydrodynamics (MHD) model predicts that an Alfv\\'en wave keeps an arbitrary shape constant when it propagates on a homogeneous ambient magnetic field. However, such arbitrariness is an artifact of the idealized model that omits the dispersive effects. Only special wave forms, consisting of two component sinusoidal functions, can maintain the shape; we derive fully nonlinear Alfv\\'en waves by an extended MHD model that includes both the Hall and electron inertia effects. Interestingly, these \\small-scale effects" change the picture completely; the large-scale component of the wave cannot be independent of the small scale component, and the coexistence of them forbids the large scale component to have a free wave form. This is a manifestation of the nonlinearity-dispersion interplay, which is somewhat differ...
NONLINEAR APPROXIMATION WITH GENERAL WAVE PACKETS
Institute of Scientific and Technical Information of China (English)
L. Borup; M. Nielsen
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete characterization of the approximation spaces is derived.
Nonlinear approximation with general wave packets
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, Morten
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...... characterization of the approximation spaces is derived....
Enhanced four-wave mixing with nonlinear plasmonic metasurfaces.
Jin, Boyuan; Argyropoulos, Christos
2016-06-27
Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be further enhanced by increasing the excitation power. The dielectric nonlinear material placed in the nanogap is mainly responsible for the ultrastrong FWM response. Compact and efficient wave mixers and optical sources spanning different frequency ranges are envisioned to be designed based on the proposed nonlinear metasurface designs.
New traveling wave solutions for nonlinear evolution equations
Energy Technology Data Exchange (ETDEWEB)
El-Wakil, S.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com
2007-06-11
The generalized Jacobi elliptic function expansion method is used with a computerized symbolic computation for constructing the new exact traveling wave solutions. The validity and reliability of the method is tested by its applications on a class of nonlinear evolution equations of special interest in mathematical physics. As a result, many exact traveling wave solutions are obtained which include the kink-shaped solutions, bell-shaped solutions, singular solutions and periodic solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.
Propagation of Quasi-plane Nonlinear Waves in Tubes
Directory of Open Access Journals (Sweden)
P. Koníček
2002-01-01
Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.
Nonlinear fast sausage waves in homogeneous magnetic flux tubes
Mikhalyaev, Badma B.; Ruderman, Michael S.
2015-12-01
> We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.
A general theory of two-wave mixing in nonlinear media
DEFF Research Database (Denmark)
Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael
2009-01-01
A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...
Nonlinear waves in a fluid-filled thin viscoelastic tube
Zhang, Shan-Yuan; Zhang, Tao
2010-11-01
In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incompressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin—Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the propagation of nonlinear pressure wave in the solid—liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the exponent α of the perturbation parameter in Gardner—Morikawa transformation according to the order of viscous coefficient η, three kinds of evolution equations with soliton solution, i.e. Korteweg—de Vries (KdV)—Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.
Time-reversal of nonlinear waves: Applicability and limitations
Ducrozet, G.; Fink, M.; Chabchoub, A.
2016-09-01
Time-reversal (TR) refocusing of waves is one of the fundamental principles in wave physics. Using the TR approach, time-reversal mirrors can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backward. Laboratory experiments have proved that this approach can be applied not only in acoustics and electromagnetism, but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic time-reversal using a unidirectional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configurations, pointing out the importance of high-order dispersive and particularly nonlinear effects in the refocusing of hydrodynamic stationary envelope solitons and breathers. We expect that the results may motivate similar experiments in other nonlinear dispersive media and encourage several applications with particular emphasis on the field of ocean engineering.
Nonlinear waves in a fluid-filled thin viscoelastic tube
Institute of Scientific and Technical Information of China (English)
Zhang Shan-Yuan; Zhang Tao
2010-01-01
In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incom-pressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin-Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the prop-agation of nonlinear pressure wave in the solid-liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the expo-η, three kinds of evolution equations with soliton solution, i.e. Korteweg-de Vries (KdV)-Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.
Properties of GH4169 Superalloy Characterized by Nonlinear Ultrasonic Waves
Directory of Open Access Journals (Sweden)
Hongjuan Yan
2015-01-01
Full Text Available The nonlinear wave motion equation is solved by the perturbation method. The nonlinear ultrasonic coefficients β and δ are related to the fundamental and harmonic amplitudes. The nonlinear ultrasonic testing system is used to detect received signals during tensile testing and bending fatigue testing of GH4169 superalloy. The results show that the curves of nonlinear ultrasonic parameters as a function of tensile stress or fatigue life are approximately saddle. There are two stages in relationship curves of relative nonlinear coefficients β′ and δ′ versus stress and fatigue life. The relative nonlinear coefficients β′ and δ′ increase with tensile stress when tensile stress is lower than 65.8% of the yield strength, and they decrease with tensile stress when tensile stress is higher than 65.8% of the yield strength. The nonlinear coefficients have the extreme values at 53.3% of fatigue life. For the second order relative nonlinear coefficient β′, there is good agreement between the experimental data and the comprehensive model. For the third order relative nonlinear coefficient δ′, however, the experiment data does not accord with the theoretical model.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Shallow water modal evolution due to nonlinear internal waves
Badiey, Mohsen; Wan, Lin; Luo, Jing
2017-09-01
Acoustic modal behavior is reported for an L-shape hydrophone array during the passage of a strong nonlinear internal wave packet. Acoustic track is nearly parallel to the front of nonlinear internal waves. Through modal decomposition at the vertical array, acoustic modes are identified. Modal evolution along the horizontal array then is examined during a passing internal wave. Strong intensity fluctuations of individual modes are observed before and during the internal waves packet passes the fixed acoustic track showing a detailed evolution of the waveguide modal behavior. Acoustic refraction created either uneven distribution of modal energy over the horizontal array or additional returns observable at the entire L-shape array. Acoustic ray-mode simulations are used to phenomenologically explain the observed modal behavior.
Doppler effect of nonlinear waves and superspirals in oscillatory media.
Brusch, Lutz; Torcini, Alessandro; Bär, Markus
2003-09-01
Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example in which waves originate from a source exhibiting a back-and-forth movement in a radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves ("superspiral"). Using direct simulations as well as numerical nonlinear analysis within the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonic growth or decay as well as saturation of these modulations depending on the perturbation frequency. Our findings elucidate recent experimental observations concerning superspirals and their decay to spatiotemporal chaos.
Nonlinear reflection of internal gravity wave onto a slope
Raja, Keshav; Sommeria, Joel; Staquet, Chantal; Leclair, Matthieu; Grisouard, Nicolas; Gostiaux, Louis
2016-04-01
The interaction of internal waves on sloping topography is one of the processes that cause mixing and transport in oceans. The mixing caused by internal waves is considered to be an important source of energy that is needed to bring back deep, dense water from the abyss to the surface of the ocean, across constant density surfaces. Apart from the vertical transport of heat (downwards) and mass (upwards), internal waves are also observed to irreversibly induce a mean horizontal flow. Mixing and wave induced mean flow may be considered as the processes that transfer wave induced energy to smaller and larger scales respectively. The process of mixing has been a subject of intense research lately. However, the process of wave induced mean flow and their dynamic impact await thorough study. The present study involves this wave induced mean flow, its generation and energetics. The nonlinear subcritical reflection of internal waves from a sloping boundary is studied using laboratory experiments carried out on the Coriolis Platform at Grenoble and, 2D and 3D numerical simulations done using a non-hydrostatic code. In the experiment, a plane wave is produced using a wave generator and is made to reflect normally on a sloping bottom in a uniformly stratified fluid. We consider both rotating and non-rotating cases. The numerical simulation mimicks the laboratory setup with an initial condition of an analytical plane wave solution in a vertical plane limited by a smooth envelope to simulate the finite wave generator. The interaction of the incident and reflected waves produce, apart from higher harmonics, an irreversible wave induced mean flow which grows in time and is localised in the interacting region. The finite extent of the wave generator allows the mean flow to recirculate in the horizontal plane, resulting in a dipolar potential vorticity field. Moreover, the generation of mean flow and higher harmonics, along with dissipative effects, diminishes the amplitude of
Verheest, Frank; Hellberg, Manfred A.
2017-02-01
Oblique propagation of large amplitude electrostatic waves and solitary structures is investigated in magnetized plasmas, comprising cold fluid ions and Cairns nonthermally distributed electrons, by using a Sagdeev pseudopotential formalism. To perform the analysis, quasineutrality is assumed, so that in normalized variables the electrostatic potential and the occurrence of solitary structures are governed by three parameters: the Mach number M, the typical Cairns parameter β, and the angle ϑ between the directions of propagation and the static magnetic field. Below a critical β, only positive compressive solitons are possible, and their amplitudes increase with increasing β, M, and ϑ. Above the critical β, there is coexistence between negative rarefactive and positive compressive solitons, and the range of negative solitons, at increasing M, ends upon encountering a double layer or a singularity. The double layer amplitudes (in absolute value) increase with β but are independent of ϑ. Roots of the Sagdeev pseudopotential beyond the double layer are not accessible from the undisturbed conditions, because of an intervening singularity where the pseudopotential becomes infinite. Recent claims of finding supersolitons beyond a double layer appear to be based on a misinterpretation of the nature of the singularity.
2011-01-01
International audience; We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a...
Bifurcation and solitary waves of the nonlinear wave equation with quartic polynomial potential
Institute of Scientific and Technical Information of China (English)
化存才; 刘延柱
2002-01-01
For the nonlinear wave equation with quartic polynomial potential, bifurcation and solitary waves are investigated. Based on the bifurcation and the energy integral of the two-dimensional dynamical system satisfied by the travelling waves, it is very interesting to find different sufficient and necessary conditions in terms of the bifurcation parameter for the existence and coexistence of bright, dark solitary waves and shock waves. The method of direct integration is developed to give all types of solitary wave solutions. Our method is simpler than other newly developed ones. Some results are similar to those obtained recently for the combined KdV-mKdV equation.
Non-linear high-frequency waves in the magnetosphere
Indian Academy of Sciences (India)
S Moolla; R Bharuthram; S V Singh; G S Lakhina
2003-12-01
Using ﬂuid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic ﬁeld in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric ﬁeld.
Nonlinear Dynamic Characteristics of Combustion Wave in SHS Process
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The characteristic of combustion wave and its change were analyzed by numerical value calculation and computer simulation,based on the combustion dynamical model of SHS process. It is shown that with the change of condition parameters in SHS process various time-space order combustion waves appear.It is concluded from non-liner dynamical mechanism analysis that the strong coupling of two non-linear dynamical processes is the dynamical mechanism causing the time-space order dissipation structures.
Travelling wave solutions for ( + 1)-dimensional nonlinear evolution equations
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2010-10-01
In this paper, we implement the exp-function method to obtain the exact travelling wave solutions of ( + 1)-dimensional nonlinear evolution equations. Four models, the ( + 1)-dimensional generalized Boussinesq equation, ( + 1)-dimensional sine-cosine-Gordon equation, ( + 1)-double sinh-Gordon equation and ( + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. New travelling wave solutions are derived.
Ramini, Abdallah
2016-05-02
We present theoretical and experimental investigation of the nonlinear behavior of a clamped-clamped in-plane MEMS arch when excited by a DC electrostatic load superimposed to an AC harmonic load. Experimentally, a case study of in-plane silicon micromachined arch is examined and its mechanical behavior is measured using optical techniques. An algorithm is developed to extract the various parameters, such as the induced axial force and the initial rise, needed to model the behavior of the arch. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Dynamic snap-through behavior is also reported for larger range of electric loads. Theoretically, a multi-mode Galerkin reduced order model is utilized to simulate the arch behavior. General agreement is reported among the theoretical and experimental data.
On the so called rogue waves in nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Y. Charles Li
2016-04-01
Full Text Available The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schrodinger equation (NLS provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we examine the observability of these homoclinic orbits (and their approximations. Our conclusion is that these approximate homoclinic orbits are the most observable solutions, and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.
Analysis of nonlinear internal waves in the New York Bight
Liu, Antony K.
1988-01-01
An analysis of the nonlinear-internal-wave evolution in the New York Bight was performed on the basis of current meter mooring data obtained in the New York Bight during the SAR Internal Wave Signature Experiment (SARSEX). The solitary wave theory was extended to include dissipation and shoaling effects, and a series of numerical experiments were performed by solving the wave evolution equation, with waveforms observed in the SARSEX area as initial conditions. The results of calculations demonstrate that the relative balance of dissipation and shoaling effects is crucial to the detailed evolution of internal wave packets. From an observed initial wave packet at the upstream mooring, the numerical evolution simulation agreed reasonably well with the measurements at the distant mooring for the leading two large solitons.
Nonlinear dynamics of Airy-Vortex 3D wave packets: Emission of vortex light waves
Driben, Rodislav
2014-01-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Due to the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and non-zero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse, especially those having small width.
Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.
Driben, Rodislav; Meier, Torsten
2014-10-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse.
Linear and Nonlinear Surface Waves in Electrohydrodynamics
Hunt, Matthew; Vanden-broeck, Jean-Marc; Papageorgiou, Demetrios
2015-01-01
The problem of interest in this article are waves on a layer of finite depth governed by the Euler equations in the presence of gravity, surface tension, and vertical electric fields. Perturbation theory is used to identify canonical scalings and to derive a Kadomtsev-Petviashvili equation withan additional non-local term arising in interfacial electrohydrodynamics.When the Bond number is equal to 1/3, dispersion disappears and shock waves could potentially form. In the additional limit of vanishing electric fields, a new evolution equation is obtained which contains third and fifth-order dispersion as well as a non-local electric field term.
Statistical study of electrostatic solitary waves associated with reconnection: Geotail observations
Li, S. Y.; Deng, X. H.; Zhou, M.; Tang, R. X.; Liu, K.; Kojima, H.; Matsumoto, H.
2009-02-01
The role of waves in the dynamics of the magnetotail has long been a topic of interest in magnetospheric physics. The characteristics of Electrostatic Solitary Waves (ESWs) associated with reconnection have been studied statistically in the magnetotail by surveying the large amounts data obtained from Waveform Capture (WFC) which is an important component of Plasma Wave Instrument (PWI) on the Geotail spacecraft. About 150 reconnection events with WFC data available are selected, and approximately 10 thousands of ESW waveforms are picked up by hands for statistical study. The ESWs are observed near diffusion region and near the plasma sheet boundary layer (PSBL). Two kinds of waveforms of ESWs are observed: bi-polar and tri-polar pulses. It is found that the pulse width of the ESWs is in the order of 1 5 ms and the peak-to-peak amplitude is in the order of 0.1 5 mV/m. The amplitudes of ESWs are larger in the near-earth tail region than that in deep tail region. ESWs have been observed with or without guide magnetic field . The characteristics of ESWs in different reconnection region and under different strength of guild magnetic field, their possible generation mechanism will be discussed.
A particle-in-cell approach to obliquely propagating electrostatic waves
Energy Technology Data Exchange (ETDEWEB)
Koen, Etienne J. [Space Commercial Services Holdings (SCSH) Group, Somerset West (South Africa); School of Electrical Engineering, Royal Institute of Technology (KTH), Stockholm (Sweden); South African National Space Agency (SANSA), Space Science, Hermanus (South Africa); Collier, Andrew B. [University of KwaZulu-Natal, Durban (South Africa); Exegetic Analytics, Durban (South Africa); Maharaj, Shimul K. [South African National Space Agency (SANSA), Space Science, Hermanus (South Africa)
2014-09-15
The electron-acoustic and beam-driven modes associated with electron beams have previously been identified and studied numerically. These modes are associated with Broadband Electrostatic Noise found in the Earth's auroral and polar cusp regions. Using a 1-D spatial Particle-in-Cell simulation, the electron-acoustic instability is studied for a magnetized plasma, which includes cool ions, cool electrons and a hot, drifting electron beam. Both the weakly and strongly magnetized regimes with varying wave propagation angle, θ, with respect to the magnetic field are studied. The amplitude and frequency of the electron-acoustic mode are found to decrease with increasing θ. The amplitude of the electron-acoustic mode is found to significantly grow at intermediate wavenumber ranges. It reaches a saturation level at the point, where a plateau forms in the hot electron velocity distribution after which the amplitude of the electron-acoustic mode decays.
Stochastic ion heating by an electrostatic wave in a sheared magnetic field
Energy Technology Data Exchange (ETDEWEB)
Gell, Y.; Nakach, R.
1980-08-01
Effects of the shear of the magnetic field on the stochastic acceleration of ions due to an electrostatic wave with a frequency in the lower-hybrid range are considered. An appropriate Hamiltonian formalism is used to analyze the equations of motion numerically and theoretically. The surface of section method is used to visualize the solutions and to compare these with the theoretical predictions. From this analysis it appears that there exists an upper adiabatic barrier for the stochastic region which seems to be responsible for the formation of a hot tail in the ion velocity distribution. In addition to lowering the threshold for the onset of stochasticity, the effect of shear is to shift the tail structure to lower values of the velocities. Consequently, these results might help to improve the efficiency of heating by external radiation in the lower-hybrid frequency range.
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)
2014-02-15
We study numerically the dynamics of an initially localized wave packet in one-dimensional nonlinear Schroedinger lattices with both local and nonlocal nonlinearities. Using the discrete nonlinear Schroedinger equation generalized by including a nonlocal nonlinear term, we calculate four different physical quantities as a function of time, which are the return probability to the initial excitation site, the participation number, the root-mean-square displacement from the excitation site and the spatial probability distribution. We investigate the influence of the nonlocal nonlinearity on the delocalization to self-trapping transition induced by the local nonlinearity. In the non-self-trapping region, we find that the nonlocal nonlinearity compresses the soliton width and slows down the spreading of the wave packet. In the vicinity of the delocalization to self-trapping transition point and inside the self-trapping region, we find that a new kind of self-trapping phenomenon, which we call partial self-trapping, takes place when the nonlocal nonlinearity is sufficiently strong.
A Numerical Wave Tank for Nonlinear Waves with Passive Absorption
Institute of Scientific and Technical Information of China (English)
周宗仁; 尹彰; 石瑞祥
2001-01-01
A numerical wave tank with passive absorption for irregular waves is considered in this paper. Waves with spectralshapes corresponding to that of the Mitsuyasu-Bretschneider type are used as the initial condition at one end of theflume. An absorbing boundary is imposed at the other end of the wave flume to minimize reflection. By use of aLagrangian description for the surface elevation, and finite difference for approximation of the time derivative, the problem is then solved by the boundary element method. The effects of the absorbing boundary are investigated by varyingthe values of the absorption coefficient μ, and studying the time histories of the surface elevations "recorded" on pre-se-lected locations.
Analyses of electrostatic solitary waves (ESWs) observed by Kaguya near the Moon
Hashimoto, K.; Hashitani, M.; Omura, Y.; Kasahara, Y.; Kojima, H.; Ono, T.; Tsunakawa, H.
2011-12-01
In KAGUYA (SELENE) LRS [1], WFC-L [2] observes waveforms of plasma waves in 100Hz-100kHz and a lot of electrostatic solitary waves (ESWs) have been observed. Some results were reported [3]. Although the orthogonal dipole antennas are generally used in the observations, sometimes a pair of monopole antennas were used. We analyze observations mainly by the latter antennas in the present study. Observed waveforms are fitted to ideal ESW waveforms. The waveforms observed by the monopole mode are susceptive to noises and generally they are not similar each other. Since the waveforms observed by the dipole mode are less affected by noises, we re-analyzed the data by fitting these waveforms to the ideal ESW waveforms. The observed ESWs have often components perpendicular to the background magnetic field. This means that the ESW potential structure has two dimensions and they are observed near the generation regions. The propagation velocity, the potential width, the potential depth, etc. of each ESW are also evaluated by comparing the waveforms observed by the monopole antennas. The data fitted to the dipole waveforms are used as references. Acknowledgments: The SELENE project has been organized by the Japan Aerospace Exploration Agency (JAXA). The authors express their thanks to all members of the SELENE project team. References [1] Takayuki Ono, Atsushi Kumamoto, Yasushi Yamaguchi, Atsushi Yamaji, Takao Kobayashi, Yoshiya Kasahara, and Hiroshi Oya, Instrumentation and observation target of the Lunar Radar Sounder (LRS) experiment on-board the SELENE spacecraft, Earth Planets Space, 60, 321-332, 2008. [2] Y. Kasahara, Y. Goto, K. Hashimoto, T. Imachi, A. Kumamoto, T. Ono, and H. Matsumoto, Plasma Wave Observation Using Waveform Capture in the Lunar Radar Sounder on board the SELENE Spacecraft, Earth, Planets and Space, 60, 341-351, 2008. [3] K. Hashimoto, M. Hashitani, Y. Kasahara, Y. Omura, M.N. Nishino, Y. Saito, S. Yokota, T. Ono, H. Tsunakawa, H. Shibuya, M
Simulations of nonlinear continuous wave pressure fields in FOCUS
Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.
2017-03-01
The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.
NEW EXACT TRAVELLING WAVE SOLUTIONS TO THREE NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
Sirendaoreji
2004-01-01
Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.
EXACT SOLITARY WAVE SOLUTIONS OF THETWO NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
ZhuYanjuan; ZhangChunhua
2005-01-01
The solitary wave solutions of the combined KdV-mKdV-Burgers equation and the Kolmogorov-Petrovskii-Piskunov equation are obtained by means of the direct algebra method, which can be generalized to deal with high dimensional nonlinear evolution equations.
Nonlinear wave mechanics from classical dynamics and scale covariance
Energy Technology Data Exchange (ETDEWEB)
Hammad, F. [Departement TC-SETI, Universite A.Mira de Bejaia, Route Targa Ouzemmour, 06000 Bejaia (Algeria)], E-mail: fayhammad@yahoo.fr
2007-10-29
Nonlinear Schroedinger equations proposed by Kostin and by Doebner and Goldin are rederived from Nottale's prescription for obtaining quantum mechanics from classical mechanics in nondifferentiable spaces; i.e., from hydrodynamical concepts and scale covariance. Some soliton and plane wave solutions are discussed.
Non-Linear Langmuir Wave Modulation in Collisionless Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans
1977-01-01
A non-linear Schrodinger equation for Langmuir waves is presented. The equation is derived by using a fluid model for the electrons, while both a fluid and a Vlasov formulation are considered for the ion dynamics. The two formulations lead to significant differences in the final results, especially...
Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction
Czech Academy of Sciences Publication Activity Database
Převorovský, Zdeněk
..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Exact controllability for a nonlinear stochastic wave equation
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are L 2 ( G × H −1 ( G with G being a bounded open subset of R 3 and the nonlinear terms having at most a linear growth.
Stability of planar diffusion wave for nonlinear evolution equation
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f'(u) 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.;
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...... is studied. Both the Lebesgue and Hausdorff measures of this set are obtained....
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation...
NUMERICAL SIMULATIONS OF NONLINEAR WAVE TRANSFORMATION AROUND WAVE-PERMEABLE STRUCTURE
Institute of Scientific and Technical Information of China (English)
Li Xi; YAN Yi-xin
2005-01-01
The problem of wave partial/full reflection and transmission by wave-permeable structure is approached by solving the shape-related function with focus on the understanding of wave attenuation.2D depth-averaged Boussinesq type wave equations are given with new damping item in simulating the nonlinear wave transmission through wave-permeable structure.1D wave equation is examined to give the analytical expression of the absorbing coefficient, and is compared with laboratory data in flume to calibrate the coefficients, and the expression is applied directly in modified Boussinesq type equations.Compared with wave basin data for various incident wave conditions,the accurate predictions of combined diffraction-refraction effects in simulating nonlinear wave going through wave-permeable breakwater in the engineering application can be obtained.It shows that wave-permeable breakwaters with proper absorbing effects can be used as an effective alternative to massive gravity breakwaters in reduction of wave transmission in shallow water.
Decoupling Nonclassical Nonlinear Behavior of Elastic Wave Types
Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cédric; Ulrich, T. J.
2016-03-01
In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. This result could lead to further understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.
Nonlinear single Compton scattering of an electron wave-packet
Angioi, A; Di Piazza, A
2016-01-01
In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...
Nonlinear Acoustic Wave Interactions in Layered Media.
1980-03-06
Generated Components in Dispersive Media. . . . . . . . . . . . . 62 4.4 Dispersion in Medium II . . . . . . . . .. 68 V. CONCLUSIONS...give rise to leaky wave modes which are more thoroughly discussed 17 18 by Kapany and Burke, and by Marcuse . Leaky modes are C.C. Ghizoni, J.M...1977), 843-848. 1 7N.S. Kapany and J.J. Burke, Optical Waveeeuides, (New York: Academic Press, 1972), pp. 24-34. D. Marcuse , Theory of Dielectric Optical
Nearly linear dynamics of nonlinear dispersive waves
Erdogan, M B; Zharnitsky, V
2010-01-01
Dispersive averaging e?ffects are used to show that KdV equation with periodic boundary conditions possesses high frequency solutions which behave nearly linearly. Numerical simulations are presented which indicate high accuracy of this approximation. Furthermore, this result is applied to shallow water wave dynamics in the limit of KdV approximation, which is obtained by asymptotic analysis in combination with numerical simulations of KdV.
Controlling nonlinear waves in excitable media
Energy Technology Data Exchange (ETDEWEB)
Puebla, Hector [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, Azcapotzalco 02200, DF, Mexico (Mexico)], E-mail: hpuebla@correo.azc.uam.mx; Martin, Roland [Laboratoire de Modelisation et d' Imagerie en Geosciences, CNRS UMR and INRIA Futurs Magique-3D, Universite de Pau (France); Alvarez-Ramirez, Jose [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa (Mexico); Aguilar-Lopez, Ricardo [Departamento de Biotecnologia y Bioingenieria, CINVESTAV-IPN (Mexico)
2009-01-30
A new feedback control method is proposed to control the spatio-temporal dynamics in excitable media. Applying suitable external forcing to the system's slow variable, successful suppression and control of propagating pulses as well as spiral waves can be obtained. The proposed controller is composed by an observer to infer uncertain terms such as diffusive transport and kinetic rates, and an inverse-dynamics feedback function. Numerical simulations shown the effectiveness of the proposed feedback control approach.
The nonlinear evolution of rogue waves generated by means of wave focusing technique
Hu, HanHong; Ma, Ning
2011-01-01
Generating the rogue waves in offshore engineering is investigated, first of all, to forecast its occurrence to protect the offshore structure from being attacked, to study the mechanism and hydrodynamic properties of rouge wave experimentally as well as the rouge/structure interaction for the structure design. To achieve these purposes demands an accurate wave generation and calculation. In this paper, we establish a spatial domain model of fourth order nonlinear Schrödinger (NLS) equation for describing deep-water wave trains in the moving coordinate system. In order to generate rogue waves in the experimental tank efficiently, we take care that the transient water wave (TWW) determines precisely the concentration of time/place. First we simulate the three-dimensional wave using TWW in the numerical tank and modeling the deepwater basin with a double-side multi-segmented wave-maker in Shanghai Jiao Tong University (SJTU) under the linear superposing theory. To discuss its nonlinearity for guiding the experiment, we set the TWW as the initial condition of the NLS equation. The differences between the linear and nonlinear simulations are presented. Meanwhile, the characteristics of the transient water wave, including water particle velocity and wave slope, are investigated, which are important factors in safeguarding the offshore structures.
Energy Technology Data Exchange (ETDEWEB)
Zhou Yubin; Wang Mingliang; Miao Tiande
2004-03-15
The periodic wave solutions for a class of nonlinear partial differential equations, including the Davey-Stewartson equations and the generalized Zakharov equations, are obtained by using the F-expansion method, which can be regarded as an overall generalization of the Jacobi elliptic function expansion method recently proposed. In the limit cases the solitary wave solutions of the equations are also obtained.
Evolution of Nonlinear Internal Waves in China Seas
Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.
1997-01-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.
Weak bond detection in composites using highly nonlinear solitary waves
Singhal, Taru; Kim, Eunho; Kim, Tae-Yeon; Yang, Jinkyu
2017-05-01
We experimentally investigate a diagnostic technique for identifying a weak bond in composites using highly nonlinear solitary waves (HNSWs). We set up a one-dimensional chain of granular crystals, consisting of spherical particles with nonlinear interactions, to generate HNSWs. These solitary wave packets are transmitted into an inspection area of composites by making a direct contact with the chain. We demonstrate that a strong type of solitary waves injected to the weak bond area can break the weak bond of laminates, thereby causing delamination. Then, to identify the creation of the delamination, we transmit a weak type of solitary waves by employing the same apparatus, and measure the solitary waves reflected from the specimens. By analyzing these reflected solitary waves, we differentiate the weak bond samples with the pristine bond ones in an efficient and fast manner. The diagnostic results based on the proposed method are compared with the strength and energy release rate at bond interfaces, which are measured via standard testing methods such as three point bending and end notched flexure tests. This study shows the potential of solitary wave-based detection of weak bonds for hot spot monitoring of composite-based structures.
Nonlinear interaction of waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1979-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed by using the method of multiple scales. For the case of two waves, a strong nonlinear interaction exists if one of the frequencies w2 is twice the other frequency w1. Numerical results for flow past a flat plate show that this interaction mechanism is strongly destabilizing even in regions where either the fundamental or its harmonic is damped in the absence of the interaction. For the case of three waves, a strong nonlinear interaction exists when w3 = w2- w1. This combination resonance causes the amplitude of the wave with the difference frequency w3 to multiply many times in magnitude in a short distance even if it is damped in the absence of the interaction. The initial amplitudes play a dominant role in determining the changes in the amplitudes of the waves in both of these mechanisms.
Nonlinear dynamic behaviors of a floating structure in focused waves
Cao, Fei-feng; Zhao, Xi-zeng
2015-12-01
Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional (2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile (CIP)-based Cartesian grid model, in which a more accurate VOF (Volume of Fluid) method, the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.
Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes
Hollweg, J. V.; Jackson, S.; Galloway, D.
1982-01-01
Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua
2015-08-01
Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.
Nonlinear interaction of two waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1980-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed using the method of multiple scales. Numerical results for flow past a flat plate show that the spatial detuning wipes out resonant interactions unless the initial amplitudes are very large. Thus, a wave having a moderate amplitude has little influence on its subharmonic although it has a strong influence on its second harmonic. Moreover, two waves having moderate amplitudes have a strong influence on their difference frequency. The results show that the difference frequency can be very unstable when generated by the nonlinear interaction, even though it may be stable when introduced by itself in the boundary layer.
A Stochastic Nonlinear Water Wave Model for Efficient Uncertainty Quantification
Bigoni, Daniele; Eskilsson, Claes
2014-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a stochastic formulation of a fully nonlinear and dispersive potential flow water wave model for the probabilistic description of the evolution waves. This model is discretized using the Stochastic Collocation Method (SCM), which provides an approximate surrogate of the model. This can be used to accurately and efficiently estimate the probability distribution of the unknown time dependent stochastic solution after the forward propagation of uncertainties. We revisit experimental benchmarks often used for validation of deterministic water wave models. We do this using a fully nonlinear and dispersive model and show how uncertainty in the model input can influence the model output. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in compa...
Weak Nonlinear Matter Waves in a Trapped Spin-1 Condensates
Institute of Scientific and Technical Information of China (English)
CAI Hong-Qiang; YANG Shu-Rong; XUE Ju-Kui
2011-01-01
The dynamics of the weak nonlinear matter solitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BEGs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation freauencv are also obtained.
Rossby Wave Instability of Thin Accretion Disks - III. Nonlinear Simulations
Li, H; Wendroff, B; Liska, R
2000-01-01
(abridged) We study the nonlinear evolution of the Rossby wave instability in thin disks using global 2D hydrodynamic simulations. The key questions we are addressing in this paper are: (1) What happens when the instability becomes nonlinear? Specifically, does it lead to vortex formation? (2) What is the detailed behavior of a vortex? (3) Can the instability sustain itself and can the vortex last a long time? Among various initial equilibria that we have examined, we generally find that there are three stages of the disk evolution: (1) The exponential growth of the initial small amplitude perturbations. This is in excellent agreement with the linear theory; (2) The production of large scale vortices and their interactions with the background flow, including shocks. Significant accretion is observed due to these vortices. (3) The coupling of Rossby waves/vortices with global spiral waves, which facilitates further accretion throughout the whole disk. Even after more than 20 revolutions at the radius of vortic...
Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive Wave Platform
Lowman, Nicholas K.
This thesis is devoted to the comprehensive characterization of slowly modulated, nonlinear waves in dispersive media for physically-relevant systems using a threefold approach: analytical, long-time asymptotics, careful numerical simulations, and quantitative laboratory experiments. In particular, we use this interdisciplinary approach to establish a two-fluid, interfacial fluid flow setting known as viscous fluid conduits as an ideal platform for the experimental study of truly one dimensional, unidirectional solitary waves and dispersively regularized shock waves (DSWs). Starting from the full set of fluid equations for mass and linear momentum conservation, we use a multiple-scales, perturbation approach to derive a scalar, nonlinear, dispersive wave equation for the leading order interfacial dynamics of the system. Using a generalized form of the approximate model equation, we use numerical simulations and an analytical, nonlinear wave averaging technique, Whitham-El modulation theory, to derive the key physical features of interacting large amplitude solitary waves and DSWs. We then present the results of quantitative, experimental investigations into large amplitude solitary wave interactions and DSWs. Overtaking interactions of large amplitude solitary waves are shown to exhibit nearly elastic collisions and universal interaction geometries according to the Lax categories for KdV solitons, and to be in excellent agreement with the dynamics described by the approximate asymptotic model. The dispersive shock wave experiments presented here represent the most extensive comparison to date between theory and data of the key wavetrain parameters predicted by modulation theory. We observe strong agreement. Based on the work in this thesis, viscous fluid conduits provide a well-understood, controlled, table-top environment in which to study universal properties of dispersive hydrodynamics. Motivated by the study of wave propagation in the conduit system, we
Nonlinear waves in electromigration dispersion in a capillary
Christov, Ivan C
2016-01-01
We construct exact solutions to an unusual nonlinear advection--diffusion equation arising in the study of Taylor--Aris (also known as shear) dispersion due to electroosmotic flow during electromigration in a capillary. An exact reduction to a Darboux equation is found under a traveling-wave anzats. The equilibria of this ordinary differential equation are analyzed, showing that their stability is determined solely by the (dimensionless) wave speed without regard to any (dimensionless) physical parameters. Integral curves, connecting the appropriate equilibria of the Darboux equation that governs traveling waves, are constructed, which in turn are shown to be asymmetric kink solutions ({\\it i.e.}, non-Taylor shocks). Furthermore, it is shown that the governing Darboux equation exhibits bistability, which leads to two coexisting non-negative kink solutions for (dimensionless) wave speeds greater than unity. Finally, we give some remarks on other types of traveling-wave solutions and a discussion of some approx...
On a nonlinear gravitational wave. Geodesics
Culetu, Hristu
2016-01-01
An exact, plane wave solution of the gravitational field equations is investigated. The source stress tensor is represented by an anisotropic null fluid with energy flux to which the energy density $\\rho$ and the pressure $p_{z}$ are negative but finite throughout the spacetime. They depend on a constant length (taken of the order of the Planck length) and acquire Planck values close to the null surface $t - z = 0$, $Oz$ axis being the direction of propagation. The timelike geodesics of a test particle are contained in a plane whose normal has constant direction and the null trajectories are comoving with a plane of fixed direction.
Exact Solitary Wave and Periodic Wave Solutions of a Class of Higher-Order Nonlinear Wave Equations
Directory of Open Access Journals (Sweden)
Lijun Zhang
2015-01-01
Full Text Available We study the exact traveling wave solutions of a general fifth-order nonlinear wave equation and a generalized sixth-order KdV equation. We find the solvable lower-order subequations of a general related fourth-order ordinary differential equation involving only even order derivatives and polynomial functions of the dependent variable. It is shown that the exact solitary wave and periodic wave solutions of some high-order nonlinear wave equations can be obtained easily by using this algorithm. As examples, we derive some solitary wave and periodic wave solutions of the Lax equation, the Ito equation, and a general sixth-order KdV equation.
Nonlinear waves in electron–positron–ion plasmas including charge separation
Indian Academy of Sciences (India)
A MUGEMANA; S MOOLLA; I J LAZARUS
2017-02-01
Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth andspiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E0 was reduced. The results are compared with satellite observations.
Xiao, Jianyuan; Qin, Hong; Yu, Zhi; Xiang, Nong
2015-01-01
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and cur...
Energy Technology Data Exchange (ETDEWEB)
Huang Dingjiang [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)]. E-mail: hdj8116@163.com; Zhang Hongqing [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)
2006-08-15
Many travelling wave solutions of nonlinear evolution equations can be written as a polynomial in several elementary or special functions which satisfy a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. From that property, we deduce an algebraic method for constructing those solutions by determining only a finite number of coefficients. Being concise and straightforward, the method is applied to three nonlinear evolution equations. As a result, many exact travelling wave solutions are obtained which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions.
Generation and propagation of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.
2007-01-01
During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.
Amplitude-dependent contraction/elongation of nonlinear Lamb waves
Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2016-04-01
Nonlinear elastic guided waves find application in various disciplines of science and engineering, such as non- destructive testing and structural health monitoring. Recent recognition and quantification of their amplitude- dependent changes in spectral properties has contributed to the development of new monitoring concepts for mechanical structures. The focus of this work is to investigate and predict amplitude-dependent shifts in Lamb wave dispersion curves. The theory for frequency/wavenumber shifts for plate waves, based on a Lindstedt-Poincaré perturbation approach, was presented by the authors in previous years. Equivalently, spectral properties changes can be seen as wavelength contraction/elongation. Within the proposed framework, the wavelength of a Lamb wave depends on several factors; e.g., wave amplitude and second-, third- and fourth-order elastic constants, and others. Various types of nonlinear effects are considered in presented studies. Sensitivity studies for model parameters, i.e. higher-order elastic constants, are performed to quantify their influence on Lamb wave frequency/wavenumber shifting, and to identify the key parameters governing wavelength tuning.
Focusing of Spherical Nonlinear Pulses for Nonlinear Wave Equations Ⅲ. Subcritical Case
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
This paper studied spherical pulses of solutions of the system of semilinear wave equations with the pulses focusing at a point in three space variables. It is shown that there is no nonlinear effect at leading terms of pulses, when the initial data is subcritical.
2010-09-30
Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING
Geodesic deviation in a nonlinear gravitational wave spacetime
Culetu, Hristu
2016-01-01
The tidal effects generated by a nonlinear gravitational wave are investigated in double-null v - u coordinates, as an exact solution of Einstein's field equations. The components $\\xi^{v}$ and $\\xi^{u}$ of the separation vector behave as in flat space but the transversal components $\\xi^{x}$ and $\\xi^{y}$ depend nonlinearly on $v$ through the Bessel and Neumann functions, far from the null surface $v = 0$. We show that the same results are obtained by means of the tetrad formalism.
Traveling wave solutions for some factorized nonlinear PDEs
Cornejo-Pérez, Octavio
2009-01-01
In this work, some new special traveling wave solutions of the convective Fisher equation, the time-delayed Burgers-Fisher equation, the Burgers-Fisher equation and a nonlinear dispersive-dissipative equation (Kakutani and Kawahara 1970 J. Phys. Soc. Japan 29 1068) are obtained through the factorization technique. All of them share the same type of factorization scheme, which reduces the original equation to a Riccati equation of the same kind, whose general solution is given in terms of Bessel and Neumann functions. In addition, some novel particular solutions of the nonlinear dispersive-dissipative equation are provided.
Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae
Maksymov, Ivan S
2015-01-01
Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...
Directory of Open Access Journals (Sweden)
A. K. Tripathi
2011-02-01
Full Text Available Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH waves in the magnetospheres of Earth, Jupiter, Saturn, Uranus and Neptune. Calculations have been performed at two radial distances of each planet. It is found that observed wave electric field amplitudes in the magnetospheres of Earth and Jupiter are sufficient to put electrons on strong diffusion in the energy range of less than 100 eV. However, for Saturn, Uranus and Neptune, the observed ECH wave amplitude are insufficient to put electrons on strong diffusion at any radial distance.
Tripathi, A. K.; Singhal, R. P.; Singh, K. P.
2011-02-01
Pitch-angle diffusion coefficients have been calculated for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves in the magnetospheres of Earth, Jupiter, Saturn, Uranus and Neptune. Calculations have been performed at two radial distances of each planet. It is found that observed wave electric field amplitudes in the magnetospheres of Earth and Jupiter are sufficient to put electrons on strong diffusion in the energy range of less than 100 eV. However, for Saturn, Uranus and Neptune, the observed ECH wave amplitude are insufficient to put electrons on strong diffusion at any radial distance.
Indian Academy of Sciences (India)
G. Thejappa; R. J. MacDowall
2000-09-01
The Ulysses Unified Radio and Plasma Wave Experiment (URAP) has observed Langmuir, ion-acoustic and associated solar type III radio emissions in the interplanetary medium. Bursts of 50-300 Hz (in the spacecraft frame) electric field signals, corresponding to long-wavelength ion-acoustic waves are often observed coincident in time with the most intense Langmuir wave spikes, providing evidence for the electrostatic decay instability. Langmuir waves often occur as envelope solitons, suggesting that strong turbulence processes, such as modulational instability and soliton formation, often coexist with weak turbulence processes, such as electrostatic decay, in a few type III burst source regions.
NONLINEAR FARADAY WAVES IN A PARAMETRICALLY EXCITED CIRCULAR CYLINDRICAL CONTAINER
Institute of Scientific and Technical Information of China (English)
菅永军; 鄂学全; 柏威
2003-01-01
In the cylindrical coordinate system, a singular perturbation theory of multiple-scale asymptotic expansions was developed to study single standing water wave mode bysolving potential equations of water waves in a rigid circular cylinder, which is subject to avertical oscillation. It is assumed that the fluid in the circular cylindrical vessel is inviscid ,incompressible and the motion is irrotational, a nonlinear amplitude equation with cubicand vertically excited terms of the vessel was derived by expansion of two-time scales withoutconsidering the effect of surface tension. It is shown by numerical computation that differentfree surface standing wave patterns will be formed in different excited frequencies andamplitudes. The contours of free surface waves are agreed well with the experimental resultswhich were carried out several years ago.
Collapse of Nonlinear Gravitational Waves in Moving-Puncture Coordinates
Hilditch, David; Weyhausen, Andreas; Dietrich, Tim; Bruegmann, Bernd; Montero, Pedro J; Mueller, Ewald
2013-01-01
We study numerical evolutions of nonlinear gravitational waves in moving-puncture coordinates. We adopt two different types of initial data -- Brill and Teukolsky waves -- and evolve them with two independent codes producing consistent results. We find that Brill data fail to produce long-term evolutions for common choices of coordinates and parameters, unless the initial amplitude is small, while Teukolsky wave initial data lead to stable evolutions, at least for amplitudes sufficiently far from criticality. The critical amplitude separates initial data whose evolutions leave behind flat space from those that lead to a black hole. For the latter we follow the interaction of the wave, the formation of a horizon, and the settling down into a time-independent trumpet geometry. We explore the differences between Brill and Teukolsky data and show that for less common choices of the parameters -- in particular negative amplitudes -- Brill data can be evolved with moving-puncture coordinates, and behave similarly t...
2-D Composite Model for Numerical Simulations of Nonlinear Waves
Institute of Scientific and Technical Information of China (English)
2000-01-01
－ A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.
The Nonlinear Landau Damping Rate of a Driven Plasma Wave
Energy Technology Data Exchange (ETDEWEB)
Benisti, D; Strozzi, D J; Gremillet, L; Morice, O
2009-08-04
In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
Optimal Control Of Nonlinear Wave Energy Point Converters
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten
2013-01-01
In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity and acceleration of the floater. However, a non-causal integral control component dependent...... idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states......, absorbs almost the same power as the optimal controller....
Multisymplectic five-point scheme for the nonlinear wave equation
Institute of Scientific and Technical Information of China (English)
WANG Yushun; WANG Bin; YANG Hongwei; WANG Yunfeng
2003-01-01
In this paper, we introduce the multisymplectic structure of the nonlinear wave equation, and prove that the classical five-point scheme for the equation is multisymplectic. Numerical simulations of this multisymplectic scheme on highly oscillatory waves of the nonlinear Klein-Gordon equation and the collisions between kink and anti-kink solitons of the sine-Gordon equation are also provided. The multisymplectic schemes do not need to discrete PDEs in the space first as the symplectic schemes do and preserve not only the geometric structure of the PDEs accurately, but also their first integrals approximately such as the energy, the momentum and so on. Thus the multisymplectic schemes have better numerical stability and long-time numerical behavior than the energy-conserving scheme and the symplectic scheme.
Collapse of nonlinear electron plasma waves in a plasma layer
Grimalsky, V.; Koshevaya, S.; Rapoport, Yu; Kotsarenko, A.
2016-10-01
The excitation of nonlinear electron plasma waves in the plasma layer is investigated theoretically. This excitation is realized by means of initial oscillatory perturbations of the volume electron concentration or by initial oscillatory distributions of the longitudinal electron velocity. The amplitudes of the initial perturbations are small and the manifestation of the volume nonlinearity is absent. When the amplitudes of the initial perturbations exceed some thresholds, the values of the electron concentration near the plasma boundary increase catastrophically. The maxima of the electron concentration reach extremely high magnitudes, and sharp peaks in the electron concentration occur, which are localized both in the longitudinal and transverse directions. This effect is interpreted as wave collapse near the plasma boundary.
Modulational development of nonlinear gravity-wave groups
Chereskin, T. K.; Mollo-Christensen, E.
1985-01-01
Observations of the development of nonlinear surface gravity-wave groups are presented, and the amplitude and phase modulations are calculated using Hilbert-transform techniques. With increasing propagation distance and wave steepness, the phase modulation develops local phase reversals whose locations correspond to amplitude minima or nodes. The concomitant frequency modulation develops jumps or discontinuities. The observations are compared with recent similar results for wavetrains. The observations are modelled numerically using the cubic nonlinear Schroedinger equation. The motivation is twofold: to examine quantitatively the evolution of phase as well as amplitude modulation, and to test the inviscid predictions for the asymptotic behavior of groups versus long-time observations. Although dissipation rules out the recurrence, there is a long-time coherence of the groups. The phase modulation is found to distinguish between dispersive and soliton behavior.
Adaptive modeling of shallow fully nonlinear gravity waves
Dutykh, Denys; Mitsotakis, Dimitrios
2014-01-01
This paper presents an extended version of the celebrated Serre-Green-Naghdi (SGN) system. This extension is based on the well-known Bona-Smith-Nwogu trick which aims to improve the linear dispersion properties. We show that in the fully nonlinear setting it results in modifying the vertical acceleration. Even if this technique is well-known, the effect of this modification on the nonlinear properties of the model is not clear. The first goal of this study is to shed some light on the properties of solitary waves, as the most important class of nonlinear permanent solutions. Then, we propose a simple adaptive strategy to choose the optimal value of the free parameter at every instance of time. This strategy is validated by comparing the model prediction with the reference solutions of the full Euler equations and its classical counterpart. Numerical simulations show that the new adaptive model provides a much better accuracy for the same computational complexity.
Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren
2005-01-01
Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.
Solitary wave solutions to nonlinear evolution equations in mathematical physics
Indian Academy of Sciences (India)
Anwar Ja’afar Mohamad Jawad; M Mirzazadeh; Anjan Biswas
2014-10-01
This paper obtains solitons as well as other solutions to a few nonlinear evolution equations that appear in various areas of mathematical physics. The two analytical integrators that are applied to extract solutions are tan–cot method and functional variable approaches. The soliton solutions can be used in the further study of shallow water waves in (1+1) as well as (2+1) dimensions.
SINGULAR AND RAREFACTIVE SOLUTIONS TO A NONLINEAR VARIATIONAL WAVE EQUATION
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Following a recent paper of the authors in Communications in Partial Differential Equations, this paper establishes the global existence of weak solutions to a nonlinear variational wave equation under relaxed conditions on the initial data so that the solutions can contain singularities (blow-up). Propagation of local oscillations along one family of characteristics remains under control despite singularity formation in the other family of characteristics.
Energy Technology Data Exchange (ETDEWEB)
Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhou, Yu [Advanced Remanufacturing and Technology Center (ARTC), 3 Clean Tech Loop, CleanTech Two, Singapore 637143 (Singapore)
2016-07-15
Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonant frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.
Quantum corrections to nonlinear ion acoustic wave with Landau damping
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)
2014-07-15
Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.
Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar
2016-07-01
Symmetric sidebands are observed in the ionosphere by the DEMETER (Detection of Electromagnetic Radiation Transmitted through Earthquake Region) satellite, when it passes above the Indian VLF transmitter, named VTX (18.2 kHz), located near Kanyakumari, India. The spectral boarding phenomena may be divided into two types: (1) spectrally broadened components occurring without any association with ELF/VLF emissions under disturbed ionospheric condition, (2) Spectrally broadened components with predominant side band structure in association with ELF emission. Generally spectral analysis at second order (Power spectrum) is used to analyze the frequency component of signal, but it losses the phase information among the different Fourier components. To retain this information the bispectrum (third order) and/or the bicoherence (normalized bispectrum) are used. Results suggest a non-linear mode coupling between the transmitter signal and ELF emission which produces sidebands that are quasi-electrostatic in nature. However, faint spectral broadened components in both types 1 and 2 may be connected with Doppler shift of quasi-electrostatic, whistler mode waves with a broad spectrum near resonance cone, due to scattering of the transmitter signals from ionospheric irregularities in the F-region. Keywords: spectral boarding, wave-wave Interaction, whistler mode waves and Doppler shift
Nonlinear propagation of positron-acoustic waves in a four component space plasma
Shah, M. G.; Hossen, M. R.; Mamun, A. A.
2015-10-01
> The nonlinear propagation of positron-acoustic waves (PAWs) in an unmagnetized, collisionless, four component, dense plasma system (containing non-relativistic inertial cold positrons, relativistic degenerate electron and hot positron fluids as well as positively charged immobile ions) has been investigated theoretically. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV) and further mK-dV (fmK-dV) equations have been derived by using reductive perturbation technique. Their solitary wave solutions have been numerically analysed in order to understand the localized electrostatic disturbances. It is observed that the relativistic effect plays a pivotal role on the propagation of positron-acoustic solitary waves (PASW). It is also observed that the effects of degenerate pressure and the number density of inertial cold positrons, hot positrons, electrons and positively charged static ions significantly modify the fundamental features of PASW. The basic features and the underlying physics of PASW, which are relevant to some astrophysical compact objects (such as white dwarfs, neutron stars etc.), are concisely discussed.
Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.
Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi
2008-03-01
In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.
Identification and determination of solitary wave structures in nonlinear wave propagation
Energy Technology Data Exchange (ETDEWEB)
Newman, W.I.; Campbell, D.K.; Hyman, J.M.
1991-01-01
Nonlinear wave phenomena are characterized by the appearance of solitary wave coherent structures'' traveling at speeds determined by their amplitudes and morphologies. Assuming that these structures are briefly noninteracting, we propose a method for the identification of the number of independent features and their respective speeds. Using data generated from an exact two-soliton solution to the Korteweg-de-Vries equation, we test the method and discuss its strengths and limitations. 41 refs., 2 figs.
Spectrograms of ship wakes: identifying linear and nonlinear wave signals
Pethiyagoda, Ravindra; Moroney, Timothy J
2016-01-01
A spectrogram is a useful way of using short-time discrete Fourier transforms to visualise surface height measurements taken of ship wakes in real world conditions. For a steadily moving ship that leaves behind small-amplitude waves, the spectrogram is known to have two clear linear components, a sliding-frequency mode caused by the divergent waves and a constant-frequency mode for the transverse waves. However, recent observations of high speed ferry data have identified three additional components of the spectrograms that are not yet explained. We use computer simulations of linear and nonlinear ship wave patterns and apply time-frequency analysis to generate spectrograms for an idealised ship. We clarify the role of the linear dispersion relation and ship speed on the two linear components. Further, we show that additional features in the experimental data are caused by nonlinearity. Finally, we explain a discrepancy between the high speed ferry spectrograms and linear theory by accounting for ship acceler...
Lu, Y.; Cottone, F.; Boisseau, S.; Galayko, D.; Marty, F.; Basset, P.
2015-12-01
This paper reports for the first time a MEMS electrostatic vibration energy harvester (e-VEH) with corona-charged vertical electrets on its electrodes. The bandwidth of the 1-cm2 device is extended in low and high frequencies by nonlinear elastic stoppers. With a bias voltage of 46 V (electret@21 V + DC external source@25 V) between the electrodes, the RMS power of the device reaches 0.89 μW at 33 Hz and 6.6 μW at 428 Hz. The -3dB frequency band including the hysteresis is 223∼432 Hz, the one excluding the hysteresis 88∼166 Hz. We also demonstrate the charging of a 47 μF capacitor used for powering a wireless and autonomous temperature sensor node with a data transmission beyond 10 m at 868 MHz.
Nonreciprocal wave scattering on nonlinear string-coupled oscillators
Energy Technology Data Exchange (ETDEWEB)
Lepri, Stefano, E-mail: stefano.lepri@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Pikovsky, Arkady [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, Potsdam (Germany); Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)
2014-12-01
We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one direction and chaotic in the opposite one, is reported.
Nonlinear Propagation of Planet-Generated Tidal Waves
Rafikov, R. R.
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to shock formation and wake dissipation, is followed in the weakly nonlinear regime. The 2001 local approach of Goodman and Rafikov is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of approx. 10(exp 6)-10(exp 7) yr, even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed that could be incorporated into the study of gap formation in a gaseous disk around the planet.
Nonlinear propagation of planet-generated tidal waves
Rafikov, R R
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of the order 1-10 Myr even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed which could be incorporated into the study of gap formation in a gaseous disk around the planet.
New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves
Rezzolla, L
2002-01-01
In Newtonian and relativistic hydrodynamics the Riemann problem consists of calculating the evolution of a fluid which is initially characterized by two states having different values of uniform rest-mass density, pressure and velocity. When the fluid is allowed to relax, one of three possible wave-patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a special relativistic Riemann problem when velocities tangential to the initial discontinuity surface are present. We show that a smooth transition from one wave-pattern to another can be produced by varying the initial tangential velocities while otherwise maintaining the initial states unmodified. These special relativistic effects are produced by the coupling through the relativistic Lorentz factors and do not have a Newtonian counterpart.
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Analytical description of nonlinear acoustic waves in the solar chromosphere
Litvinenko, Yuri E.; Chae, Jongchul
2017-02-01
Aims: Vertical propagation of acoustic waves of finite amplitude in an isothermal, gravitationally stratified atmosphere is considered. Methods: Methods of nonlinear acoustics are used to derive a dispersive solution, which is valid in a long-wavelength limit, and a non-dispersive solution, which is valid in a short-wavelength limit. The influence of the gravitational field on wave-front breaking and shock formation is described. The generation of a second harmonic at twice the driving wave frequency, previously detected in numerical simulations, is demonstrated analytically. Results: Application of the results to three-minute chromospheric oscillations, driven by velocity perturbations at the base of the solar atmosphere, is discussed. Numerical estimates suggest that the second harmonic signal should be detectable in an upper chromosphere by an instrument such as the Fast Imaging Solar Spectrograph installed at the 1.6-m New Solar Telescope of the Big Bear Observatory.
Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma
El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.
2015-08-01
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.
Irregular Wave Forces on Monopile Foundations. Effect af Full Nonlinearity and Bed Slope
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.
2011-01-01
Forces on a monopile from a nonlinear irregular unidirectional wave model are investigated. Two seabed profiles of different slopes are considered. Morison’s equation is used to investigate the forcing from fully nonlinear irregular waves and to compare the results with those obtained from linear...... wave theory and with stream function wave theory. The latter of these theories is only valid on a flat bed. The three predictions of wave forces are compared and the influence of the bed slope is investigated. Force-profiles of two selected waves from the irregular wave train are further compared...... with the corresponding forceprofiles from stream function theory. The results suggest that the nonlinear irregular waves give rise to larger extreme wave forces than those predicted by linear theory and that a steeper bed slope increases the wave forces both for linear and nonlinear waves. It is further found...
Feng, Q S; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T
2016-01-01
The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas have been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to the theoretical result of multi-ion species plasmas. When the wave number $k\\lambda_{De}$ is small, such as $k\\lambda_{De}=0.1$, the fluid NFS dominates in the total NFS and will reach as large as nearly $15\\%$ when the wave amplitude $|e\\phi/T_e|\\sim0.1$, which indicates that in the condition of small $k\\lambda_{De}$, the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large.
Nonlinear Wave-Currents interactions in shallow water
Lannes, David
2015-01-01
We study here the propagation of long waves in the presence of vorticity. In the irrotational framework, the Green-Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are the standard model for the propagation of such waves. These equations couple the surface elevation to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity equation but it was however shown in [?] that the motion of the waves could be described using an extended Green-Naghdi system. In this paper we propose an analysis of these equations, and show that they can be used to get some new insight into wave-current interactions. We show in particular that solitary waves may have a drastically different behavior in the presence of vorticity and show the existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the vorticity. We als...
Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media
Luna, Manuel
2011-05-01
Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schr(o)dinger Equation
Institute of Scientific and Technical Information of China (English)
YANG Qin; DAI Chao-Qing; ZHANG Jie-Fang
2005-01-01
Some new exact travelling wave and period solutions of discrete nonlinear Schrodinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differentialdifferent models.
Excitation of nonlinear ion acoustic waves in CH plasmas
Feng, Q S; Liu, Z J; Xiao, C Z; Wang, Q; He, X T
2016-01-01
Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number $ k\\lambda_{De} $ increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of $ T_i/T_e < 0.2 $ in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with $k\\lambda_{De}$ increasing. When $k\\lambda_{De}$ is not large, such as $k\\lambda_{De}=0.1, 0.3, 0.5$, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when $k\\lambda_{De}$ is large, such as $k\\lambda_{De}=0.7$, the linear ...
Rotation-induced nonlinear wavepackets in internal waves
Energy Technology Data Exchange (ETDEWEB)
Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk [Department of Mathematics, University College London, London WC1E 6BT (United Kingdom)
2014-05-15
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.
Rotation-induced nonlinear wavepackets in internal waves
Whitfield, A. J.; Johnson, E. R.
2014-05-01
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.
Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides.
Apiratikul, Paveen; Wathen, Jeremiah J; Porkolab, Gyorgy A; Wang, Bohan; He, Lei; Murphy, Thomas E; Richardson, Christopher J K
2014-11-03
Enhancements of the continuous-wave four-wave mixing conversion efficiency and bandwidth are accomplished through the application of plasma-assisted photoresist reflow to reduce the sidewall roughness of sub-square-micron-modal area waveguides. Nonlinear AlGaAs optical waveguides with a propagation loss of 0.56 dB/cm demonstrate continuous-wave four-wave mixing conversion efficiency of -7.8 dB. Narrow waveguides that are fabricated with engineered processing produce waveguides with uncoated sidewalls and anti-reflection coatings that show group velocity dispersion of +0.22 ps²/m. Waveguides that are 5-mm long demonstrate broadband four-wave mixing conversion efficiencies with a half-width 3-dB bandwidth of 63.8-nm.
Stability Analysis of Continuous Waves in Nonlocal Random Nonlinear Media
Directory of Open Access Journals (Sweden)
Maxim A. Molchan
2007-08-01
Full Text Available On the basis of the competing cubic-quintic nonlinearity model, stability (instability of continuous waves in nonlocal random non-Kerr nonlinear media is studied analytically and numerically. Fluctuating media parameters are modeled by the Gaussian white noise. It is shown that for different response functions of a medium nonlocality suppresses, as a rule, both the growth rate peak and bandwidth of instability caused by random parameters. At the same time, for a special form of the response functions there can be an ''anomalous'' subjection of nonlocality to the instability development which leads to further increase of the growth rate. Along with the second-order moments of the modulational amplitude, higher-order moments are taken into account.
Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study
de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.
2016-01-01
The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to deter
Nonlinear acoustic waves in a collisional self-gravitating dusty plasma
Institute of Scientific and Technical Information of China (English)
Guo Zhi-Rong; Yang Zeng-Qiang; Yin Bao-Xiang; Sun Mao-Zhu
2010-01-01
Using the reductive perturbation method,we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma.The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation,and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.
Effect of scalar nonlinearity on zonal flow generation by Rossby waves
Mikhailovskii, A. B.; Lominadze, J. G.; Erokhin, N. N.; Erokhin, N. S.; Smolyakov, A. I.; Tsypin, V. S.
2007-01-01
Effects of scalar nonlinearity on the generation of zonal flow by Rossby waves in shallow rotating fluid are considered. Zonal flows are generated via the action of Reynolds stress due to vector nonlinearity together with the effects of scalar nonlinearity. It is shown that the scalar nonlinearity r
Agapitov, Oleksiy; Drake, James; Mozer, Forrest
2016-04-01
Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.
Optical Multi-hysteresises and "Rogue Waves" in Nonlinear Plasma
Kaplan, A E
2010-01-01
An overdense plasma layer irradiated by an intense light can exhibit dramatic nonlinear-optical effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and transition, and emergence of gigantic "rogue waves". Those are trapped quasi-soliton field spikes inside the layer, sustained by an incident radiation with a tiny fraction of their peak intensity once they have been excited by orders of magnitude larger pumping. The phenomenon persists even in the layers with "soft" boundaries, as well as in a semi-infinite plasma with low absorption.
Exact travelling wave solutions of nonlinear partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish) Suez Canal University, AL-Arish 45111 (Egypt)]. E-mail: asoliman_99@yahoo.com; Abdou, M.A. [Theoretical Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: m_abdou_eg@yahoo.com
2007-04-15
An extended Fan-sub equation method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. The key idea of this method is to take full advantage of the general elliptic equation, involving five parameters, which has more new solutions and whose degeneracies can lead to special sub equation involving three parameters. As an illustration of the extended Fan method, more new solutions are obtained for three models namely, generalized KdV, Drinfeld-Sokolov system and RLW equation.
Fourth order wave equations with nonlinear strain and source terms
Liu, Yacheng; Xu, Runzhang
2007-07-01
In this paper we study the initial boundary value problem for fourth order wave equations with nonlinear strain and source terms. First we introduce a family of potential wells and prove the invariance of some sets and vacuum isolating of solutions. Then we obtain a threshold result of global existence and nonexistence. Finally we discuss the global existence of solutions for the problem with critical initial condition I(u0)[greater-or-equal, slanted]0, E(0)=d. So the Esquivel-Avila's results are generalized and improved.
Critical exponent for damped wave equations with nonlinear memory
Fino, Ahmad
2010-01-01
We consider the Cauchy problem in $\\mathbb{R}^n,$ $n\\geq 1,$ for a semilinear damped wave equation with nonlinear memory. Global existence and asymptotic behavior as $t\\to\\infty$ of small data solutions have been established in the case when $1\\leq n\\leq3.$ Moreover, we derive a blow-up result under some positive data for in any dimensional space. It turns out that the critical exponent indeed coincides with the one to the corresponding semilinear heat equation.
High-order finite difference solution for 3D nonlinear wave-structure interaction
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;
2010-01-01
This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...
Theoretical Study of Wave Breaking for Nonlinear Water Waves Propagating on a Sloping Bottom
Chen, Y. Y.; Hsu, H. C.; Li, M. S.
2012-04-01
In this paper, a third-order asymptotic solution in a Lagrangian framework describing nonlinear water wave propagation on the surface of a uniform sloping bottom is presented. A two-parameter perturbation method is used to develop a new mathematical derivation. The particle trajectories, wave pressure and Lagrangian velocity potential are obtained as a function of the nonlinear wave steepness and the bottom slope perturbed to third order. This theoretical solution in Lagrangian form satisfies state of the normal pressure at the free surface. The condition of the conservation of mass flux is examined in detail for the first time. The two important properties in Lagrangian coordinates, Lagrangian wave frequency and Lagrangian mean level, are included in the third-order solution. The solution can also be used to estimate the mean return current for waves progressing over the sloping bottom. The Lagrangian solution untangle the description of the features of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the process of successive deformation of a wave profile and water particle trajectories leading to wave breaking. A series of experiment was conducted to validate the obtained theoretical solution. The proposed solution will be used to determine the wave shoaling and breaking process and the comparisons between the experimental and theoretical results are excellent. For example, the variations of phase velocity on sloping bottom are obtained by 7 set of two close wave gauges and the theoretical result could accurately predict the measured phase velocity. The theoretical wave breaking index can be derived by use of the kinematic stability parameter (K.P.S). The comparisons between the theory, experiment (present study, Iwagali et al.(1974), Deo et al.(2003) and Tsai et al.(2005)) and empirical formula of Goda (2004) for the breaking index(u/C) versus the relative water depth(d/L) under two different bottom slopes shows that the
Periodic Wave Solutions of Generalized Derivative Nonlinear Schr(o)dinger Equation
Institute of Scientific and Technical Information of China (English)
ZHA Qi-Lao; LI Zhi-Bin
2008-01-01
A Darboux transformation of the generalized derivative nonlinear Schr(o)dinger equation is derived. As an application, some new periodic wave solutions of the generalized derivative nonlinear Schr(o)dinger equation are explicitly given.
On global attraction to stationary states for wave equations with concentrated nonlinearities
Kopylova, E.
2016-01-01
The global attraction to stationary states is established for solutions to 3D wave equations with concentrated nonlinearities: each finite energy solution converges as $t\\to\\pm\\infty$ to stationary states. The attraction is caused by nonlinear energy radiation.
Kourakis, I.; McKerr, M.; Elkamash, I. S.; Haas, F.
2017-10-01
The dispersion properties of electrostatic waves propagating in ultrahigh density plasma are investigated, from first principles, in a one-dimensional geometry. A self-consistent multispecies plasma fluid model is taken as starting point, incorporating electron degeneracy and relativistic effects. The inertia of all plasma components is retained, for rigor. Exact expressions are obtained for the oscillation frequency, and the phase and group velocity of electrostatic waves is computed. Two branches are obtained, viz. an acoustic low-frequency dispersion branch and an upper (optic-like) branch: these may be interpreted as ion-acoustic and electron plasma (Langmuir) waves, respectively, as in classical plasmas, yet bearing an explicit correction in account of relativistic and electron degeneracy effects. The electron plasma frequency is shown to reduce significantly at high values of the density, due to the relativistic effect. The result is compared with approximate models, wherein either electrons are considered inertialess (low-frequency ionic scale) or ions are considered to be stationary (Langmuir-wave limit).
Institute of Scientific and Technical Information of China (English)
Kh. H. EL-SHORBAGY
2008-01-01
The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid plasma model. An analytical study of the reflection of electro-static wave propagation along a magnetized non-uniform relativistic plasma slab subjected to an intense HF electric field is presented and compared with the case of a non relativistic plasma. It is found that, when the frequency of the incident wave is close to the relativistic electron plasma frequency, the plasma is less reflective due to the presence of both an HF field and the effect of rel-ativistic electrons. On the other hand, for a low-frequency incident wave the reflection coefficient is directly proportional to the amplitude of the HF field. Also, it is shown that the relativistic electron plasma leads to a decrease in the value of reflection coefficient in comparison with the case of the non relativistic plasma.
Nonlinear dynamics of soliton gas with application to "freak waves"
Shurgalina, Ekaterina
2017-04-01
So-called "integrable soliton turbulence" attracts much attention of scientific community nowadays. We study features of soliton interactions in the following integrable systems: Korteweg - de Vries equation (KdV), modified Korteweg - de Vries equation (mKdV) and Gardner equations. The polarity of interacted solitons dramatically influences on the process of soliton interaction. Thus if solitons have the same polarity the maximum of the wave field decreases during the process of nonlinear interactions as well statistical moments (skewness and kurtosis). In this case there is no abnormally large wave formation and this scenario is possible for all considered equation. Completely different results can be obtained for a soliton gas consisted of solitons with different polarities: such interactions lead to an increase of resulting impulse and kurtosis. Tails of distribution functions can grow significantly. Abnormally large waves (freak waves) appear in such solitonic fields. Such situations are possible just in case of mKdV and Gardner equations which admit the existence of bipolar solitons. New effect of changing a defect's moving direction in soliton lattices and soliton gas is found in the present study. Manifestation of this effect is possible as the result of negative phase shift of small soliton in the moment of nonlinear interaction with large solitons. It is shown that the effect of negative velocity is the same for KdV and mKdV equations and it can be found from the kinematic assumption without applying the kinetic theory. Averaged dynamics of the "smallest" soliton (defect) in a soliton gas, consisting of solitons with random amplitudes is investigated. The averaged criterion of velocity sign change confirmed by numerical simulation is obtained.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2011-01-01
A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves...
Energy Technology Data Exchange (ETDEWEB)
Tsuchiya, T. [Dia Consultants Company, Tokyo (Japan)
1996-10-01
Nonlinear full-wave tomography (FWT) is under investigation to improve the estimation accuracy of Vp/Vs distributions. Full-wave tomography is one of the underground structure exploration methods mainly using Tarantola`s nonlinear local optimization method (LOM). Numerical experiment for FWT was carried out assuming relatively weak nonlinear underground structure. In the case of inversion by local optimization method, adequate preconditioning is important. Utilization of geological information is also effective in estimating low-frequency components of a model. As far as data are obtained under proper observation arrangement, even in actual field, precise estimation of Vp/Vs distributions is possible by FWT using explosion in a hole as wave source. In full-wave tomography, selection of observation arrangement is essential for both Vp and Vs. However, the proper arrangement is different between Vp and Vs. Approach to different analyses for Vp and Vs is also necessary by using only proper data for Vp and Vs among obtained data sets. 4 figs.
First principles justification of a ``single wave model'' for a general electrostatic instability
Crawford, J. D.; Jayaraman, A.
1997-11-01
The coefficients in the amplitude equation for an unstable mode in a multi-species Vlasov plasma are singular as the growth rate γ approaches zero. Rescaling the mode amplitude |A(t)|=γ^5/2r(γ t) cancels these singularities to all orders. (J.D. Crawford and A. Jayaraman, submitted to J. Math. Phys.; available from http://xxx.lanl.gov/abs/patt-sol/9706001) In addition, singularities arise in the asymptotic form of f(x,v,t); there are poles in the complex-velocity plane that approach the real velocity axis at the phase velocity vp as γarrow0^+. However the numerators contain factors of A(t), and we analyze the resulting product by introducing a singular velocity variable u=(v-v_p)/γ. In an \\cal O(γ) neighborhood of v_p, the weighted coefficients have finite, non-zero limits; outside this neighborhood, the coefficients vanish at γ=0. The complete asymptotic description of the instability contains non-resonant particles driven linearly by a monochromatic electric field E while the resonant particles at vp remain strongly nonlinear and yield a density spectrum with many wavenumbers. This picture recalls the single wave model of O'Neil et al. introduced for a cold beam-plasma instability with fixed ions.
2D wave-front shaping in optical superlattices using nonlinear volume holography.
Yang, Bo; Hong, Xu-Hao; Lu, Rong-Er; Yue, Yang-Yang; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan
2016-07-01
Nonlinear volume holography is employed to realize arbitrary wave-front shaping during nonlinear processes with properly designed 2D optical superlattices. The concept of a nonlinear polarization wave in nonlinear volume holography is investigated. The holographic imaging of irregular patterns was performed using 2D LiTaO3 crystals with fundamental wave propagating along the spontaneous polarization direction, and the results agree well with the theoretical predictions. This Letter not only extends the application area of optical superlattices, but also offers an efficient method for wave-front shaping technology.
On the Amplitude Equations for Weakly Nonlinear Surface Waves
Benzoni-Gavage, Sylvie; Coulombel, Jean-François
2012-09-01
Nonlocal generalizations of Burgers' equation were derived in earlier work by Hunter (Contemp Math, vol 100, pp 185-202. AMS, 1989), and more recently by Benzoni-Gavage and Rosini (Comput Math Appl 57(3-4):1463-1484, 2009), as weakly nonlinear amplitude equations for hyperbolic boundary value problems admitting linear surface waves. The local-in-time well-posedness of such equations in Sobolev spaces was proved by Benzoni-Gavage (Differ Integr Equ 22(3-4):303-320, 2009) under an appropriate stability condition originally pointed out by Hunter. The same stability condition has also been shown to be necessary for well-posedness in Sobolev spaces in a previous work of the authors in collaboration with Tzvetkov (Benzoni-Gavage et al. in Adv Math 227(6):2220-2240, 2011). In this article, we show how the verification of Hunter's stability condition follows from natural stability assumptions on the original hyperbolic boundary value problem, thus avoiding lengthy computations in each particular situation. We also show that the resulting amplitude equation has a Hamiltonian structure when the original boundary value problem has a variational origin. Our analysis encompasses previous equations derived for nonlinear Rayleigh waves in elasticity.
Recent progress in nonlinear kinetic Alfvén waves
Directory of Open Access Journals (Sweden)
D. J. Wu
2004-01-01
Full Text Available This paper presents a review of recent progress in nonlinear kinetic Alfvén wave (KAW hereafter. We start with the two-fluid theory of KAWs and show how the difference between the motions of electrons and ions in small-scale fields of KAWs modifies the Alfvén wave properties. Then, we focus on nonlinear solitary structures of KAWs. A general criterion of the existence for solitary KAW (SKAW hereafter and its exact analytical solution in a low-β plasma (βe/mi are presented, where the electron drift velocity along the background magnetic field is larger than the thermal speed within a SKAW, and hence can excite, for instance, ion acoustic turbulence as showed by in situ observations of satellites in space plasmas. In consequence, the turbulence results in kinetic dissipation of the SKAW and dynamical evolution in its structure. We further discuss the structure of the dissipated SKAW (DSKAW hereafter that evolves from the SKAW due to the dissipation. The result shows that the DSKAW has a local shock-like structure in its density profile and a net electric potential drop over the shock-like structure. In particular, the electric potential drop of the DSKAW can be expected to accelerate electrons efficiently to the order of the local Alfvén speed. The application of the DSKAW acceleration mechanism to the auroral electron acceleration is also discussed. Finally, a few perspectives of KAW studies in future are presented.
Nguyen, Vu A.; Palo, Scott E.; Lieberman, Ruth S.; Forbes, Jeffrey M.; Ortland, David A.; Siskind, David E.
2016-07-01
Theory and past observations have provided evidence that atmospheric tides and other global-scale waves interact nonlinearly to produce additional secondary waves throughout the space-atmosphere interaction region. However, few studies have investigated the generation region of nonlinearly generated secondary waves, and as a result, the manifestation and impacts of these waves are still poorly understood. This study focuses on the nonlinear interaction between the quasi 2 day wave (2dayW3) and the migrating diurnal tide (DW1), two of the largest global-scale waves in the atmosphere. The fundamental goals of this effort are to characterize the forcing region of the secondary waves and to understand how it relates to their manifestation on a global scale. First, the Fast Fourier Synoptic Mapping method is applied to Thermosphere Ionosphere Mesosphere Energetics and Dynamics-Sounding of the Atmosphere using Broadband Emission Radiometry satellite observations to provide new evidence of secondary waves. These results show that secondary waves are only significant above 80 km. The nonlinear forcing for each secondary wave is then computed by extracting short-term primary wave information from a reanalysis model. The estimated nonlinear forcing quantities are used to force a linearized tidal model in order to calculate numerical secondary wave responses. Model results show that the secondary waves are significant from the upper mesosphere to the middle thermosphere, highlighting the implications for the atmosphere-space weather coupling. The study also concludes that the secondary wave response is most sensitive to the nonlinear forcing occurring in the lower and middle mesosphere and not coincident with the regions of strongest nonlinear forcing.
Nonlinear processes in the strong wave-plasma interaction
Pegoraro, Francesco; Califano, Francesco; Attico, Nicola; Bulanov, Sergei
2000-10-01
Nonlinear interactions in hot laboratory and/or astrophysical plasmas are a very efficient mechanism able to transfer the energy from the large to the small spatial scales of the system. As a result, kinetic processes are excited and play a key role in the plasma dynamics since the typical fluid dissipative length scales (where the nonlinear cascade is stopped) are (much) smaller then the kinetic length scales. Then, the key point is the role of the kinetic effects in the global plasma dynamics, i.e. whether the kinetic effects remains confined to the small scales of the system or whether there is a significant feedback on the large scales. Here we will address this problem by discussing the nonlinear kinetic evolution of the electromagnetic beam plasma instability where phase space vortices, as well as large scale vortex like magnetic structures in the physical space, are generated by wave - particle interactions. The role and influence of kinetic effects on the large scale plasma dynamics will be also discussed by addressing the problem of collisionless magnetic reconection.
Energy Technology Data Exchange (ETDEWEB)
Ouyang Qiuyun, E-mail: qyouyang7823@yahoo.cn [College of Science, Harbin Engineering University, Harbin 150001 (China); Chen Yujin; Li Chunyan [College of Science, Harbin Engineering University, Harbin 150001 (China)
2012-05-15
Highlights: Black-Right-Pointing-Pointer The ultra-thin film containing the chiral PPV and oligo-thiophene derivatives was fabricated. Black-Right-Pointing-Pointer The third-order NLO properties were studied of the ultra-thin film. Black-Right-Pointing-Pointer The reverse saturable absorption and self-defocusing were observed. Black-Right-Pointing-Pointer The nonlinear optical mechanism was discussed. - Abstract: An ultra-thin film containing a water-soluble chiral PPV derivative and oligo-thiophene derivative was fabricated through the electrostatic self-assembly technique. The PPV and thiophene derivatives are poly{l_brace}(2,5-bis(3-bromotrimethylammoniopropoxy)-phenylene-1,4-divinylene) -alt-1,4-(2,5-bis((3-hydroxy-2-(S)-methyl)propoxy)phenylenevinylene) (BHP-PPV) and 4 Prime ,3 Double-Prime -dipentyl-5,2 Prime :5 Prime ,2 Double-Prime :5 Double-Prime ,2 Double-Prime Prime -quaterthiophene-2,5 Double-Prime Prime -dicarboxylic acid (QTDA), respectively. The circular dichroism (CD) spectrum of BHP-PPV cast film on quartz substrate proved the chirality of BHP-PPV. The UV-vis spectra showed a continuous deposition process of BHP-PPV and QTDA. The film structure was characterized by small angle X-ray diffraction (XRD) measurement and atomic force microscopy (AFM) images. The nonlinear optical (NLO) properties of BHP-PPV/QTDA ultra-thin film with different number of bilayers were investigated by the Z-scan technique with 8 ns laser pulse at 532 nm. The Z-scan experimental data were analyzed with the double-sided film Z-scan theory. The BHP-PPV/QTDA film exhibits enhanced reverse saturable absorption (RSA) and self-defocusing effects, which may be attributed to the conjugated strength, chirality and well-ordered film structure. The chirality may lead to the RSA of BHP-PPV/QTDA film contrary to the SA of the other electrostatic self-assembled films without chiral units. The self-defocusing effect should be due to the thermal effect.
Lp-decay rates to nonlinear diffusion waves for p-system with nonlinear damping
Institute of Scientific and Technical Information of China (English)
ZHU Changjiang; JIANG Mina
2006-01-01
In this paper, we study the Lp (2 ≤ p ≤ +∞) convergence rates of the solutions to the Cauchy problem of the so-called p-system with nonlinear damping. Precisely, we show that the corresponding Cauchy problem admits a unique global solution (v(x,t),u(x,t)) and such a solution tends time-asymptotically to the corresponding nonlinear diffusion wave (-v(x, t), -u(x, t)) governed by the classical Darcy's law provided that the corresponding prescribed initial error function (w0(x), z0(x))lies in (H3 × H2) (R) and |v+ - v-| + ‖w0‖3 + ‖z0‖2 is sufficiently small.Furthermore, the Lp (2 ≤ p ≤ +∞) convergence rates of the solutions are also obtained.
A nonlinear wave equation with a nonlinear integral equation involving the boundary value
Directory of Open Access Journals (Sweden)
Thanh Long Nguyen
2004-09-01
Full Text Available We consider the initial-boundary value problem for the nonlinear wave equation $$displaylines{ u_{tt}-u_{xx}+f(u,u_{t}=0,quad xin Omega =(0,1,; 0
Weak Turbulence in the Magnetosphere: Formation of Whistler Wave Cavity by Nonlinear Scattering
Crabtree, C; Ganguli, G; Mithaiwala, M; Galinsky, V; Shevchenko, V
2011-01-01
We consider the weak turbulence of whistler waves in the in low-\\beta\\ inner magnetosphere of the Earth. Whistler waves with frequencies, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scattered wave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple nonlinear scatterings and ionospheric reflections a long-lived wave cavity containing turbulent whistler waves can be formed with the appropriate properties to efficiently pitch-angle scatter trapped e...
Abbasnia,Arash; Ghiasi,Mahmoud
2014-01-01
Fully nonlinear wave interaction with a fixed breakwater is investigated in a numerical wave tank (NWT). The potential theory and high-order boundary element method are used to solve the boundary value problem. Time domain simulation by a mixed Eulerian-Lagrangian (MEL) formulation and high-order boundary integral method based on non uniform rational B-spline (NURBS) formulation is employed to solve the equations. At each time step, Laplace equation is solved in Eulerian frame and fully non-l...
Rayleigh scattering and nonlinear inversion of elastic waves
Energy Technology Data Exchange (ETDEWEB)
Gritto, R.
1995-12-01
Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of {minus}100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k{sub p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.
Spatial versus temporal deterministic wave breakup of nonlinearly coupled light waves.
Salerno, D; Minardi, S; Trull, J; Varanavicius, A; Tamosauskas, G; Valiulis, G; Dubietis, A; Caironi, D; Trillo, S; Piskarskas, A; Di Trapani, P
2003-10-01
We investigate experimentally the competition between spatial and temporal breakup due to modulational instability in chi((2)) nonlinear mixing. The modulation of the wave packets caused by the energy exchange between fundamental and second-harmonic components is found to be the prevailing trigger mechanism which, according to the relative weight of diffraction and dispersion, leads to the appearance of a multisoliton pattern in the low-dimensional spatial or temporal domain.
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase transition point
Nixon, Sean; Yang, Jianke
2012-01-01
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase-transition point are analytically studied. A nonlinear Klein-Gordon equation is derived for the envelope of these wave packets. A variety of novel phenomena known to exist in this envelope equation are shown to also exist in the full equation including wave blowup, periodic bound states and solitary wave solutions.
Institute of Scientific and Technical Information of China (English)
WU; Shaoping(吴少平); YI; Fan(易帆)
2002-01-01
By using FICE scheme, a numerical simulation of nonlinear propagation of gravity wave packet in three-dimension compressible atmosphere is presented. The whole nonlinear propagation process of the gravity wave packet is shown; the basic characteristics of nonlinear propagation and the influence of the ambient winds on the propagation are analyzed. The results show that FICE scheme can be extended in three-dimension by which the calculation is steady and kept for a long time; the increase of wave amplitude is faster than the exponential increase according to the linear gravity theory; nonlinear propagation makes the horizontal perturbation velocity increase greatly which can lead to enhancement of the local ambient winds; the propagation path and the propagation velocity of energy are different from the results expected by the linear gravity waves theory, the nonlinearity causes the change in propagation characteristics of gravity wave; the ambient winds alter the propagation path and group velocity of gravity wave.
Study of nonlinear waves in astrophysical quantum plasmas
Energy Technology Data Exchange (ETDEWEB)
Hossen, M.R.; Mamun, A.A., E-mail: rasel.plasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2015-10-01
The nonlinear propagation of the electron acoustic solitary waves (EASWs) in an unmagnetized, collisionless degenerate quantum plasma system has been investigated theoretically. Our considered model consisting of two distinct groups of electrons (one of inertial non-relativistic cold electrons and other of inertialess ultrarelativistic hot electrons) and positively charged static ions. The Korteweg-de Vries (K-dV) equation has been derived by employing the reductive perturbation method and numerically examined to identify the basic features (speed, amplitude, width, etc.) of EASWs. It is shown that only rarefactive solitary waves can propagate in such a quantum plasma system. It is found that the effect of degenerate pressure and number density of hot and cold electron fluids, and positively charged static ions, significantly modify the basic features of EASWs. It is also noted that the inertial cold electron fluid is the source of dispersion for EA waves and is responsible for the formation of solitary structures. The applications of this investigation in astrophysical compact objects (viz. non-rotating white dwarfs, neutron stars, etc.) are briefly discussed. (author)
A flexible genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up
Filippini, A. G.; Kazolea, M.; Ricchiuto, M.
2016-04-01
In this paper we evaluate hybrid strategies for the solution of the Green-Naghdi system of equations for the simulation of fully nonlinear and weakly dispersive free surface waves. We consider a two step solution procedure composed of: a first step where the non-hydrostatic source term is recovered by inverting the elliptic coercive operator associated to the dispersive effects; a second step which involves the solution of the hyperbolic shallow water system with the source term, computed in the previous phase, which accounts for the non-hydrostatic effects. Appropriate numerical methods, that can be also generalized on arbitrary unstructured meshes, are used to discretize the two stages: the standard C0 Galerkin finite element method for the elliptic phase; either third order Finite Volume or third order stabilized Finite Element method for the hyperbolic phase. The discrete dispersion properties of the fully coupled schemes obtained are studied, showing accuracy close to or better than that of a fourth order finite difference method. The hybrid approach of locally reverting to the nonlinear shallow water equations is used to recover energy dissipation in breaking regions. To this scope we evaluate two strategies: simply neglecting the non-hydrostatic contribution in the hyperbolic phase; imposing a tighter coupling of the two phases, with a wave breaking indicator embedded in the elliptic phase to smoothly turn off the dispersive effects. The discrete models obtained are thoroughly tested on benchmarks involving wave dispersion, breaking and run-up, showing a very promising potential for the simulation of complex near shore wave physics in terms of accuracy and robustness.
Computation of nonlinear water waves with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2005-01-01
-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...
Kink wave determined by parabola solution of a nonlinear ordinary differential equation
Institute of Scientific and Technical Information of China (English)
LI Ji-bin; LI Ming; NA Jing
2007-01-01
By finding a parabola solution connecting two equilibrium points of a planar dynamical system, the existence of the kink wave solution for 6 classes of nonlinear wave equations is shown. Some exact explicit parametric representations of kink wave solutions are given. Explicit parameter conditions to guarantee the existence of kink wave solutions are determined.
Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves
Gagarina, E.; Ambati, V.R.; Vegt, van der J.J.W.; Bokhove, O.
2014-01-01
A new variational finite element method is developed for nonlinear free surface gravity water waves using the potential flow approximation. This method also handles waves generated by a wave maker. Its formulation stems from Miles’ variational principle for water waves together with a finite element
Variational space-time (dis)continuous Galerkin method for nonlinear free surface waves
Gagarina, E.; Vegt, van der J.J.W.; Ambati, V.R.; Bokhove, O.
2013-01-01
A new variational finite element method is developed for nonlinear free surface gravity water waves. This method also handles waves generated by a wave maker. Its formulation stems from Miles' variational principle for water waves together with a space-time finite element discretization that is cont
The Nonlinear Interaction Process in the Wave Assimilation Model and Its Experiments
Institute of Scientific and Technical Information of China (English)
杨永增; 纪永刚; 袁业立
2003-01-01
This paper presents a composite interaction formula based on the discrete-interactionoperator of wave-wave nonlinear interaction for deriving its adjoint source function in the wave assimilation model. Assimilation experiments were performed using the significant wave heights observed by the TOPES/POSEIDON satellite, and the gradient distribution in the physical space wasalso analyzed preliminarily.
Ni, Binbin; Thorne, Richard M.; Horne, Richard B.; Meredith, Nigel P.; Shprits, Yuri Y.; Chen, Lunjin; Li, Wen
2011-04-01
Using statistical wave power spectral profiles obtained from CRRES and the latitudinal distributions of wave propagation modeled by the HOTRAY code, a quantitative analysis has been performed on the scattering of plasma sheet electrons into the diffuse auroral zone by multiband electrostatic electron cyclotron harmonic (ECH) emissions near L = 6 within the 0000-0600 MLT sector. The results show that ECH wave scattering of plasma sheet electrons varies from near the strong diffusion rate (timescale of an hour or less) during active times with peak wave amplitudes of an order of 1 mV/m to very weak scattering (on the timescale of >1 day) during quiet conditions with typical wave amplitudes of tenths of mV/m. However, for the low-energy (˜100 eV to below 2 keV) electron population mainly associated with the diffuse auroral emission, ECH waves are only responsible for rapid pitch angle diffusion (occasionally near the limit of strong diffusion) for a small portion of the electron population with pitch angles αeq 70°. Computations of the bounce-averaged coefficients of momentum diffusion and (pitch angle, momentum) mixed diffusion indicate that both mixed diffusion and energy diffusion of plasma sheet electrons due to ECH waves are very small compared to pitch angle diffusion and that ECH waves have little effect on local electron acceleration. Consequently, the multiple harmonic ECH emissions cannot play a dominant role in the occurrence of diffuse auroral precipitation near L = 6, and other wave-particle interaction mechanisms, such as whistler mode chorus-driven resonant scattering, are required to explain the global distribution of diffuse auroral precipitation and the formation of the pancake distribution in the inner magnetosphere.
Ni, Binbin; Liang, Jun; Thorne, Richard M.; Angelopoulos, Vassilis; Horne, Richard B.; Kubyshkina, Marina; Spanswick, Emma; Donovan, Eric F.; Lummerzheim, Dirk
2012-01-01
This paper is a companion to a paper by Liang et al. (2011) which reports a causal connection between the intensification of electrostatic ECH waves and the postmidnight diffuse auroral activity in the absence of whistler mode chorus waves at L = 11.5 on the basis of simultaneous observations from THEMIS spacecraft and NORSTAR optical instruments during 8-9 UT on February 5, 2009. In this paper, we use the THEMIS particle and wave measurements together with the magnetically conjugate auroral observations for this event to illustrate an example where electrostatic electron cyclotron harmonic (ECH) waves are the main contributor to the diffuse auroral precipitation. We use the wave and particle data to perform a comprehensive theoretical and numerical analysis of ECH wave driven resonant scattering rates. We find that the observed ECH wave activity can cause intense pitch angle scattering of plasma sheet electrons between 100 eV and 5 keV at a rate of >10-4 s-1 for equatorial pitch angles αeq < 30°. The scattering approaches the strong diffusion limit in the realistic ambient magnetic field to produce efficient precipitation loss of <˜5 keV electrons on a timescale of a few hours or less. Using the electron differential energy flux inside the loss cone estimated based upon the energy-dependent efficiency of ECH wave scattering for an 8-s interval with high resolution wave data available, the auroral electron transport model developed by Lummerzheim (1987) produced an intensity of ˜2.3 kR for the green-line diffuse aurora. Separately, Maxwellian fitting to the electron differential flux spectrum produced a green-line auroral intensity of ˜2.6 kR. This is in good agreement with the ˜2.4 kR green-line auroral intensity observed simultaneously at the magnetic foot point (as inferred using the event-adaptive model of Kubyshkina et al. (2009, 2011)) of the location where the in situ observations were obtained. Our results support the scenario that enhanced ECH
Reduced order prediction of rare events in unidirectional nonlinear water waves
Cousins, Will
2015-01-01
We consider the problem of short-term prediction of rare, extreme water waves in unidirectional fields, a critical topic for ocean structures and naval operations. One possible mechanism for the occurrence of such rare, unusually-intense waves is nonlinear wave focusing. Recent results have demonstrated that random localizations of energy, induced by the dispersive mixing of different harmonics, can grow significantly due to localized nonlinear focusing. Here we show how the interplay between i) statistical properties captured through linear information such as the waves power spectrum and ii) nonlinear dynamical properties of focusing localized wave groups defines a critical length scale associated with the formation of extreme events. The energy that is locally concentrated over this length scale acts as the "trigger" of nonlinear focusing for wave groups and the formation of subsequent rare events. We use this property to develop inexpensive, short-term predictors of large water waves. Specifically, we sho...
An improved wave-vector frequency-domain method for nonlinear wave modeling.
Jing, Yun; Tao, Molei; Cannata, Jonathan
2014-03-01
In this paper, a recently developed wave-vector frequency-domain method for nonlinear wave modeling is improved and verified by numerical simulations and underwater experiments. Higher order numeric schemes are proposed that significantly increase the modeling accuracy, thereby allowing for a larger step size and shorter computation time. The improved algorithms replace the left-point Riemann sum in the original algorithm by the trapezoidal or Simpson's integration. Plane waves and a phased array were first studied to numerically validate the model. It is shown that the left-point Riemann sum, trapezoidal, and Simpson's integration have first-, second-, and third-order global accuracy, respectively. A highly focused therapeutic transducer was then used for experimental verifications. Short high-intensity pulses were generated. 2-D scans were conducted at a prefocal plane, which were later used as the input to the numerical model to predict the acoustic field at other planes. Good agreement is observed between simulations and experiments.
Modeling of Propagation and Transformation of Transient Nonlinear Waves on A Current
Institute of Scientific and Technical Information of China (English)
Wojciech Sulisz; Maciej Paprota
2013-01-01
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.
Hitting probabilities for non-linear systems of stochastic waves
Dalang, Robert C
2012-01-01
We consider a $d$-dimensional random field $u = \\{u(t,x)\\}$ that solves a non-linear system of stochastic wave equations in spatial dimensions $k \\in \\{1,2,3\\}$, driven by a spatially homogeneous Gaussian noise that is white in time. We mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent $\\beta$. Using Malliavin calculus, we establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of $\\IR^d$, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that appears in the Hausdorff measure is close to optimal, and shows that when $d(2-\\beta) > 2(k+1)$, points are polar for $u$. Conversely, in low dimensions $d$, points are not polar. There is however an interval in which the question of polarity of points remains open.
Non-linear Oscillations of Compact Stars and Gravitational Waves
Passamonti, A
2006-01-01
This thesis investigates in the time domain a particular class of second order perturbations of a perfect fluid non-rotating compact star: those arising from the coupling between first order radial and non-radial perturbations. This problem has been treated by developing a gauge invariant formalism based on the 2-parameter perturbation theory (Sopuerta, Bruni and Gualtieri, 2004) where the radial and non-radial perturbations have been separately parameterized. The non-linear perturbations obey inhomogeneous partial differential equations, where the structure of the differential operator is given by the previous perturbative orders and the source terms are quadratic in the first order perturbations. In the exterior spacetime the sources vanish, thus the gravitational wave properties are completely described by the second order Zerilli and Regge-Wheeler functions. As main initial configuration we have considered a first order differentially rotating and radially pulsating star. Although at first perturbative or...
Nonlinear Evolution of a Baroclinic Wave and Imbalanced Dissipation
Nadiga, Balasubramanya T
2015-01-01
We consider the nonlinear evolution of an unstable baroclinic wave in a regime of rotating stratified flow that is of relevance to interior circulation in the oceans and in the atmosphere---a regime characterized by small large-scale Rossby and Froude numbers, a small vertical to horizontal aspect ratio, and no bounding horizontal surfaces. Using high-resolution simulations of the non-hydrostatic Boussinesq equations and companion integrations of the balanced quasi-geostrophic equations, we present evidence for a local route to dissipation of balanced energy directly through interior turbulent cascades. Analysis of simulations presented in this study suggest that a developing baroclinic instability can lead to secondary instabilities that can cascade a small fraction of the energy forward to unbalanced scales. Mesoscale shear and strain resulting from the hydrostatic geostrophic baroclinic instability drive frontogenesis. The fronts in turn support ageostrophic secondary circulation and instabilities. These t...
Inverse problem for multi-body interaction of nonlinear waves
Marruzzo, Alessia; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca
2016-01-01
The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable {\\em temperature}-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems.
Nonlinearity Role in Long-Term Interaction of the Ocean Gravity Waves
2012-09-30
the Nonlinear Schrodinger equation and its exact solutions. Numerical simulations of the fully nonlinear Euler equation have also been performed in... Schrodinger breathers, Proceedings of ECMWF Workshop on "Ocean Waves" - 25 to 27 June 2012 [published] • Onorato, M. and Proment, D.; Approximate rogue wave
The influence of storms on finite amplitude sand wave dynamics: an idealized nonlinear model
Campmans, G.H.P.; Roos, P.C.; de Vriend, H.J.; Hulscher, S.J.M.H.
2017-01-01
We investigate the effects of storms on finite amplitude sand wave growth using a new idealized nonlinear morphodynamic model. We find that the growth speed initially linearly increases with sand wave amplitude, after which nonlinear effects cause the growth to decrease. This finally leads to an
Similarity Reduction and Integrability for the Nonlinear Wave Equations from EPM Model
Institute of Scientific and Technical Information of China (English)
YAN ZhenYa
2001-01-01
Four types of similarity reductions are obtained for the nonlinear wave equation arising in the elasto-plasticmicrostructure model by using both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou. As a result, the nonlinear wave equation is not integrable.``
Energy Technology Data Exchange (ETDEWEB)
Budden, K.G.; Jones, D.
1987-02-01
The linear conversion of electrostatic upper hybrid emissions via the Z mode to electromagnetic ordinary (O) mode waves has for some time been invoked for the source of Terrestrial and Saturnian myriametric and Jovian kilometric radiations. The conversion occurs by virtue of the emissions' propagation in concentration gradients, and for it to be efficient it is necessary for the gradient to be normal to the ambient magnetic field. Suitable concentration gradients are believed to occur at the plasmapause and at the magnetopause. Ray theory predicts only O mode production whereas full wave theory in a cold plasma shows that both O and X (extraordinary) mode are produced, their relative intensities depending on the plasma parameters. Full wave theory in a warm plasma, besides yielding more accurate information on the O and X modes also provides an insight into the effect of conversion on the source plasma wave. Results obtained from these three levels of theory are compared using plasma parameters derived from wave experiments on spacecraft.
Zhou, Qinghua; Xiao, Fuliang; Yang, Chang; Liu, Si; He, Yihua; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.
2017-06-01
Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7-5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both events is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas. ECH waves are excited by the loss cone instability of 50 eV-1 keV electrons in the lower half of harmonic bands in the low-density plasmasphere in event A, and 1-10 keV electrons in the upper half of harmonic bands in a relatively high-density region in event B. The current results successfully explain observations and provide a first direct evidence on how ECH waves are generated in the lower and upper half of harmonic frequency bands.
Low-Frequency Electrostatic Ion Surface Waves in Magnetized Electron-Positron Plasmas
Cho, Sang-Hoon; Lee, Hee J.
The dispersion relations of a surface ion wave propagating on the interface between a warm electron-positron plasma and vacuum when a static magnetic field is directed either normal to the interface (x-wave) or parallel to the wave vector (z-wave) are solved analytically, and the influence of the magnetic field on the ion surface wave is investigated in detail using some numerical work. It is shown that ion surface waves do not exist if the magnetic field is large enough to make the ion gyrofrequency greater than the ion plasma frequency. The attenuation constant of x-waves is more attenuated than that of z-waves and the x-wave is more attenuated as the parameter normalized ion gyrofrequency ζ increases toward 1, but this tendency is reversed for the z-wave. The z-wave does not exist for k2λD2< (ζ/(1-ζ))(p + 1) while the x-wave exists over the whole range of k, where the fractional number p is the ratio between the unperturbed positron and the electron number density. Additionally, we compare the ion surface wave properties of electron-positron plasma with conventional electron-ion plasma.
Kazantseva, E. V.; Maimistov, A. I.
2016-08-01
In a model which describes asymmetric oppositely directed nonlinear waveguide coupler it was observed in the numerical simulation a phenomenon of solitary wave formation from the input constant continuous wave set at the entrance of a waveguide with negative index of refraction. Threshold value of the amplitude of the constant continuous wave, which defines the condition of appearance of the first solitary wave, decreases with increasing of the parameter of nonlinearity. The period of solitary wave formation decreases with increasing of the continuum wave amplitude.
Dynamical understanding of loop soliton solution for several nonlinear wave equations
Institute of Scientific and Technical Information of China (English)
Ji-bin LI
2007-01-01
It has been found that some nonlinear wave equations have one-loop soliton solutions. What is the dynamical behavior of the so-called one-loop soliton solution? To answer this question, the travelling wave solutions for four nonlinear wave equations are discussed. Exact explicit parametric representations of some special travelling wave solutions are given. The results of this paper show that a loop solution consists of three different breaking travelling wave solutions. It is not one real loop soliton travelling wave solution.
Nonlinear Shock and Kink Waves with Complete Coriolis Force in Earth's Atmosphere
Institute of Scientific and Technical Information of China (English)
YU Xin; ZHAO Qiang
2009-01-01
Nonlinear waves in a Boussinesq fluid model which includes both the vertical and horizontal components of Coriolis force are studied by using the semi-geostrophic approximation and the method of travelling-wave solution.Taylor series expansion has been employed to isolate the characteristics of the linear Rossby waves and to identify the nonlinear shock and kink waves.The KdV-Burgers and the compound KdV-Burgers equations are derived,their shock wave and kink wave solution are also obtained.
Saleem, H.; Ali Shan, S.; Haque, Q.
2016-11-01
It is shown that the inhomogeneous field-aligned flow of heavier ions into the stationary plasma of the upper ionosphere produces very low frequency (of the order of a few Hz) electrostatic unstable ion acoustic waves (IAWs). This instability is an oscillatory instability unlike D'Angelo's purely growing mode. The growth rate of the ion acoustic wave (IAW) corresponding to heavier ions is due to shear flow and is larger than the ion Landau damping. However, the ion acoustic waves corresponding to non-flowing lighter ions are Landau damped. It is found that even if D'Angelo's instability condition is satisfied, the unstable mode develops its real frequency in this coupled system. Hence, the shear flow of one type of ions in a bi-ion plasma system produces ion acoustic wave activity. If the density non-uniformity is taken into account, then the drift wave becomes unstable. The coupled nonlinear equations for stationary ions "a," flowing ions "b," and inertialess electrons are also solved using the small amplitude limit. The solutions predict the existence of the order of a few kilometers electric field structures in the form of solitons and vortices, which is in agreement with the satellite observations.
Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei
2016-07-01
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.
Numerical and experimental investigation of nonlinear ultrasonic Lamb waves at low frequency
Zuo, Peng; Zhou, Yu; Fan, Zheng
2016-07-01
Nonlinear ultrasonic Lamb waves are popular to characterize the nonlinearity of materials. However, the widely used nonlinear Lamb mode suffers from two associated complications: inherent dispersive and multimode natures. To overcome these, the symmetric Lamb mode (S0) at low frequency region is explored. At the low frequency region, the S0 mode is little dispersive and easy to generate. However, the secondary mode still exists, and increases linearly for significant distance. Numerical simulations and experiments are used to validate the nonlinear features and therefore demonstrate an easy alternative for nonlinear Lamb wave applications.
Institute of Scientific and Technical Information of China (English)
Chang Jing; Gao Yi-xian; Cai Hua
2014-01-01
In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher’s equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.
Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A
2016-09-01
Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings.
A NUMERICAL CALCULATION METHOD FOR EIGENVALUE PROBLEMS OF NONLINEAR INTERNAL WAVES
Institute of Scientific and Technical Information of China (English)
SHI Xin-gang; FAN Zhi-song; LIU Hai-long
2009-01-01
Generally speaking, the background shear current U(z)must be taken into account in eigenvalue problems of nonlinear internal waves in ocean, as is different from those of linear internal waves. A numerical calculation method for eigenvalue problems of nonlinear internal waves is presented in this paper on the basis of the Thompson-Haskell's calculation method. As an application of this method, at a station (21°N, 117°15′E) in the South China Sea, a modal structure and parameters of nonlinear internal waves are calculated, and the results closely agree with the calculated results based on observation by Yang et al..
Rogue Waves of Nonlinear Schrödinger Equation with Time-Dependent Linear Potential Function
Directory of Open Access Journals (Sweden)
Ni Song
2016-01-01
Full Text Available The rogue waves of the nonlinear Schrödinger equation with time-dependent linear potential function are investigated by using the similarity transformation in this paper. The first-order and second-order rogue waves solutions are obtained and the nonlinear dynamic behaviors of these solutions are discussed in detail. In addition, the amplitudes of the rogue waves under the effect of the gravity field and external magnetic field changing with the time are analyzed by using numerical simulation. The results can be used to study the matter rogue waves in the Bose-Einstein condensates and other fields of nonlinear science.
Observations of Shoaling Nonlinear Internal Waves: Formation of Trapped Cores
Lien, R.; D'Asaro, E. A.; Chang, M.; Tang, T.; Yang, Y.
2006-12-01
Large-amplitude nonlinear internal waves (NLIWs) shoaling on the continental slope in the northern South China Sea are observed. Observed NLIWs often reach the breaking limit, the maximum horizontal current velocity exceeding the wave speed, and trapped cores are formed with recirculating fluid. The conjugate flow does not form. The vertical position of the maximum horizontal velocity is displaced from surface to subsurface, via the formation of the trapped core. Trapped-core NLIWs are strongly dissipative and evolve rapidly into trains of NLIWs. The vertical overturning is as large as 75 m, and the turbulence kinetic energy dissipation rate is estimated as O(10^{-5}) W kg-1. We propose that the formation and the evolution of trapped cores catalyze the generation of the trains of NLIWs on the Dongsha plateau often captured by satellite images and by recent field observations. The generation, evolution, fission, dissipation, and energetics of observed trapped-core NLIWs will be discussed and compared with results of numerical models and laboratory experiments.
Landau damping and steepening of interplanetary nonlinear hydromagnetic waves
Barnes, A.; Chao, J. K.
1977-01-01
According to collisionless shock theories, the thickness of a shock front should be of the order of the characteristic lengths of the plasmas (the Debye length, the proton and Larmor radii, etc.). Chao and Lepping (1974), found, however, that 30% of the observed interplanetary shocks at 1 AU have thicknesses much larger than these characteristic lengths. It is the objective of the present paper to investigate whether the competition between nonlinear steepening and Landau damping can result in a wave of finite width that does not steepen into a shock. A heuristic model of such a wave is developed and tested by the examples of two structures that are qualitatively shocklike, but thicker than expected from theory. It is found that both events are in the process of steepening and their limiting thicknesses due to Landau damping are greater than the corresponding proton Larmor radius for both structures as observed at Mariner 5 (nearer the sun than 1 AU) but are comparable to the proton Larmor radius for Explorer (near 1 AU) observations.
On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere
Directory of Open Access Journals (Sweden)
I. P. Chunchuzov
2009-11-01
Full Text Available The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.
Yin, L; Daughton, W; Albright, B J; Bezzerides, B; DuBois, D F; Kindel, J M; Vu, H X
2006-02-01
The parametric coupling involving backward stimulated scattering of a laser and electron beam acoustic modes (BAM) is described as observed in particle-in-cell (PIC) simulations. The BAM modes evolve from Langmuir waves (LW) as the electron velocity distribution is nonlinearly modified to be non-Maxwellian by backward stimulated Raman scattering (BSRS). With a marginal damping rate, BAM can be easily excited and allow an extended chirping in frequency to occur as later SRS pulses encounter modified distributions. Coincident with the emergence of this non-Maxwellian distribution is a rapid increase in BSRS reflectivities with laser intensities. Both the reflectivity scaling with laser intensity and the observed spectral features from PIC simulations are consistent with recent Trident experiments.
Nonlinear Alfvén wave dynamics at a 2D magnetic null point: ponderomotive force
Thurgood, J. O.; McLaughlin, J. A.
2013-07-01
Context. In the linear, β = 0 MHD regime, the transient properties of magnetohydrodynamic (MHD) waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfvén waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfvén speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime. Aims: We investigate the behaviour of low-amplitude Alfvén waves about a 2D magnetic null point in nonlinear, β = 0 MHD. Methods: We numerically simulate the introduction of low-amplitude Alfvén waves into the vicinity of a magnetic null point using the nonlinear LARE2D code. Results: Unlike in the linear regime, we find that the Alfvén wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. the ponderomotive force). These disturbances are dependent on the Alfvén wave and do not interact with the medium to excite magnetoacoustic waves, although the transverse daughter becomes focused at the null point. Additionally, an independently propagating fast magnetoacoustic wave is generated during the early stages, which transports some of the initial Alfvén wave energy towards the null point. Subsequently, despite undergoing dispersion and phase-mixing due to gradients in the Alfvén-speed profile (∇cA ≠ 0) there is no further nonlinear generation of fast waves. Conclusions: We find that Alfvén waves at 2D cold null points behave largely as in the linear regime, however they sustain transverse and longitudinal disturbances - effects absent in the linear regime - due to nonlinear magnetic pressure gradients.
An Approximate Method for Analysis of Solitary Waves in Nonlinear Elastic Materials
Rushchitsky, J. J.; Yurchuk, V. N.
2016-05-01
Two types of solitary elastic waves are considered: a longitudinal plane displacement wave (longitudinal displacements along the abscissa axis of a Cartesian coordinate system) and a radial cylindrical displacement wave (displacements in the radial direction of a cylindrical coordinate system). The basic innovation is the use of nonlinear wave equations similar in form to describe these waves and the use of the same approximate method to analyze these equations. The distortion of the wave profile described by Whittaker (plane wave) or Macdonald (cylindrical wave) functions is described theoretically
The effect of crack orientation on the nonlinear interaction of a P wave with an S wave
TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.
2016-06-01
Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presence and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.
Institute of Scientific and Technical Information of China (English)
Jeong Ja Bae
2012-01-01
In this article,we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials,one component is a Kirchhoff type wave equation with nonlinear time dependent localized dissipation which is effective only on a neighborhood of certain part of the boundary,while the other is a Kirchhoff type wave equation with nonlinear memory.
New Exact Explicit Nonlinear Wave Solutions for the Broer-Kaup Equation
Directory of Open Access Journals (Sweden)
Zhenshu Wen
2014-01-01
Full Text Available We study the nonlinear wave solutions for the Broer-Kaup equation. Many exact explicit expressions of the nonlinear wave solutions for the equation are obtained by exploiting the bifurcation method and qualitative theory of dynamical systems. These solutions contain solitary wave solutions, singular solutions, periodic singular solutions, and kink-shaped solutions, most of which are new. Some previous results are extended.
Existence and breaking property of real loop-solutions of two nonlinear wave equations
Institute of Scientific and Technical Information of China (English)
Ji-bin LI
2009-01-01
Dynamical analysis has revealed that,for some nonlinear wave equations,loop- and inverted loop-soliton solutions are actually visual artifacts. The so-called loop-soliton solution consists of three solutions,and is not a real solution. This paper answers the question as to whether or not nonlinear wave equations exist for which a "real" loop-solution exists,and if so,what are the precise parametric representations of these loop traveling wave solutions.
Nonlinear unified equations for water waves propagating over uneven bottoms in the nearshore region
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Considering the continuous characteristics for water waves propagating over complex topography in the nearshore region, the unified nonlinear equations, based on the hypothesis for a typical uneven bottom, are presented by employing the Hamiltonian variational principle for water waves. It is verified that the equations include the following special cases: the extension of Airy's nonlinear shallow-water equations, the generalized mild-slope equation, the dispersion relation for the second-order Stokes waves and the higher order Boussinesq-type equations.
Koons, H. C.; Roeder, J. L.; Bauer, O. H.; Haerendel, G.; Treumann, R.
1987-01-01
Nonlinear wave decay processes have been detected in the solar wind by the plasma wave experiment aboard the Active Magnetospheric Particle Tracer Explorers (AMPTE) IRM spacecraft. The main process is the generation of ultralow-frequency ion acoustic waves from the decay of Langmuir waves near the electron plasma frequency. Frequently, this is accompanied by an enhancement of emissions near twice the plasma frequency. This enhancement is most likely due to the generation of electromagnetic waves from the coalescence of two Langmuir waves. These processes occur within the electron foreshock in front of the earth's bow shock.
Long-term evolution of strongly nonlinear internal solitary waves in a rotating channel
Directory of Open Access Journals (Sweden)
J. C. Sánchez-Garrido
2009-09-01
Full Text Available The evolution of internal solitary waves (ISWs propagating in a rotating channel is studied numerically in the framework of a fully-nonlinear, nonhydrostatic numerical model. The aim of modelling efforts was the investigation of strongly-nonlinear effects, which are beyond the applicability of weakly nonlinear theories. Results reveal that small-amplitude waves and sufficiently strong ISWs evolve differently under the action of rotation. At the first stage of evolution an initially two-dimensional ISW transforms according to the scenario described by the rotation modified Kadomtsev-Petviashvili equation, namely, it starts to evolve into a Kelvin wave (with exponential decay of the wave amplitude across the channel with front curved backwards. This transition is accompanied by a permanent radiation of secondary Poincaré waves attached to the leading wave. However, in a strongly-nonlinear limit not all the energy is transmitted to secondary radiated waves. Part of it returns to the leading wave as a result of nonlinear interactions with secondary Kelvin waves generated in the course of time. This leads to the formation of a slowly attenuating quasi-stationary system of leading Kelvin waves, capable of propagating for several hundreds hours as a localized wave packet.
Directory of Open Access Journals (Sweden)
Mahinder Singh
2016-10-01
Full Text Available The generation mechanism of the electromagnetic radiation in case of inhomogeneous plasma on the basis of plasma-maser interaction in presence of drift wave turbulence is studied. The drift wave turbulence is taken as the low-frequency mode field and is found to be strongly in phase relation with thermal particles and may transfer its wave energy nonlinearly through a modulated field of high-frequency extraordinary mode (X-mode wave. It has been found that amplification of X-mode wave is possible at the expense of drift wave turbulent energy. This type of high-frequency instability can leads to auroral kilometric radiation (AKR. The growth rate of the X-mode wave, in the form of AKR, has been calculated with the involvement of spatial density gradient parameter. This result may be particularly important for stability of various drift modes in magnetically confined plasma as well as for transport of momentum and energy in such inhomogeneous plasma
Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock
Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.
2010-01-01
We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.
Institute of Scientific and Technical Information of China (English)
WANG Zhong; LU Xiao-ping
2011-01-01
Up to now, there are no satisfactory numerical methods for simulating wave resistance of trimarans, mainly due to the difficulty related with the strong nonlinear features of the piece hull wave making and their interference. This article proposes a numerical method for quick and effective calculation of wave resistance of trimarans to be used in engineering applications. Based on Wyatt's work、 the nonlinear free surface boundary condition, the time domain concept, and the full nonlinear wave making theory,using the Rankine source Green function, the 3-D surface panel method is expanded to solve the trimaran wave making problems,with high order nonlinear factors being taken into account, such as the influence of the sinking and trim, transom, and ship wave immersed hull surface. And the software is successfully developed to implement the method, which is validated. Several trimaran models, including a practical trimaran with a sonar dome and the transom, are used as numerical calculation samples, their wave making resistance is calculated both by the present method and some other methods such as linear (Dawson) methods. Moreover,sample model resistance tests were carried out to provide data for comparison, validation and analysis. Through the validation by model experiments, it is concluded that present method can well predict the wave making resistance, sinking and trim, and the accuracy of wave making resistance calculation is significantly improved by taking the trim and sinking into account, especially at high speeds.
Pulse wave attenuation measurement by linear and nonlinear methods in nonlinearly elastic tubes.
Bertram, C D; Pythoud, F; Stergiopulos, N; Meister, J J
1999-04-01
Reasons for the continuing difficulty in making definitive measurements of pulse wave attenuation in elastic tubes and arteries in the presence of reflections are sought. The measurement techniques available were re-examined in elastic tubes mimicking the arterial compliance nonlinearity, under conditions of strong reflection. The pulse was of physiological shape, and two different pulse amplitudes in the physiological range were used. Measurements of pressure, flow-rate and diameter pulsation allowed the deployment of four of the classical linear methods of analysis. In addition, a method of separating the forward- and backward-travelling waves that does not require linearising assumptions was used, and the attenuation in the forward and reverse directions was calculated from the resulting waveforms. Overall, the results obtained here suggest that a fully satisfactory way of measuring arterial attenuation has yet to be devised. The classical linear methods all provided comparable attenuation estimates in terms of average value and degree of scatter across frequency. Increased scatter was generally found at the higher pulse amplitude. When the forward waveforms from the separation were similarly compared in terms of frequency components, the average value at energetic harmonics was similar to both the value indicated by the linear methods and the values predicted from linear theory on the basis of estimated viscous and viscoelastic parameter data. The backward waveforms indicated a physically unreasonable result, attributed as the expression for this technique of the same difficulties that normally manifest in scatter. Data in the literature suggesting that one of the classical methods, the three-point, systematically over-estimates attenuation were not supported, but it was confirmed that this method becomes prone to negative attenuation estimates at low harmonics as pulse amplitude increases. Although the goal of definitive attenuation measurement remains elusive
Three kinds of nonlinear dispersive waves in elastic rods with finite deformation
Institute of Scientific and Technical Information of China (English)
ZHANG Shan-yuan; LIU Zhi-fang
2008-01-01
On the basis of classical linear theory on longitudinal, torsional and flexural waves in thin elastic rods, and taking finite deformation and dispersive effects into consideration, three kinds of nonlinear evolution equations are derived. Qualitative analysis of three kinds of nonlinear equations are presented. It is shown that these equations have homoclinic or heteroclinic orbits on the phase plane, corresponding to solitary wave or shock wave solutions, respectively. Based on the principle of homogeneous balance, these equations are solved with the Jacobi elliptic function expansion method. Results show that existence of solitary wave solution and shock wave solution is possible under certain conditions. These conclusions are consistent with qualitative analysis.
Travelling Wave Solutions to a Special Type of Nonlinear Evolution Equation
Institute of Scientific and Technical Information of China (English)
XU Gui-Qiong; LI Zhi-Bin
2003-01-01
A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of "rank". The key idea of this method is to make use of the arbitrariness of the manifold in Painleve analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here.
Rogue waves: from nonlinear Schrödinger breather solutions to sea-keeping test.
Onorato, Miguel; Proment, Davide; Clauss, Günther; Klein, Marco
2013-01-01
Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship.
Theory of director precession and nonlinear waves in nematic liquid crystals under elliptical shear.
Krekhov, A P; Kramer, L
2005-09-01
We study theoretically the slow director precession and nonlinear waves observed in homeotropically oriented nematic liquid crystals subjected to circular or elliptical Couette and Poiseuille flow and an electric field. From a linear analysis of the nematodynamic equations it is found that in the presence of the flow the electric bend Fréedericksz transition is transformed into a Hopf-type bifurcation. In the framework of an approximate weakly nonlinear analysis we have calculated the coefficients of the modified complex Ginzburg-Landau equation, which slightly above onset describes nonlinear waves with strong nonlinear dispersion. We also derive the equation describing the precession and waves well above the Fréedericksz transition and for small flow amplitudes. Then the nonlinear waves are of diffusive nature. The results are compared with full numerical simulations and with experimental data.
A double optical solitary wave in a nonlinear Schr(o)dinger-type equation
Institute of Scientific and Technical Information of China (English)
Yin Jiu-Li; Ding Shan-Yu
2013-01-01
A qualitative analysis method to efficiently solve the shallow wave equations is improved,so that a more complicated nonlinear Schr(o)dinger equation can be considered.By using the detailed study,some quite strange optical solitary waves are obtained in which the bright and dark optical solitary waves are allowed to coexist.
Compound waves in a higher order nonlinear model of thermoviscous fluids
DEFF Research Database (Denmark)
Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.
2016-01-01
A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...
Cross-polarized wave generation by effective cubic nonlinear optical interaction.
Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M
2001-03-15
A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing.
Embedding beyond electrostatics
DEFF Research Database (Denmark)
Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna;
2016-01-01
We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....
Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma
El-Shamy, E. F.
2015-03-01
The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.
Quantum electrostatic surface waves in a hybrid plasma waveguide: Effect of nano-sized slab
Shahmansouri, M.; Mahmodi Moghadam, M.
2017-10-01
The propagation properties of surface plasmon (SP) waves are studied in a hybrid plasma waveguide (consisting of plasma-gap-dielectric layers) with quantum effects including the Fermi-pressure, the Bohm potential and the exchange-correlation interaction. By using a quantum hydrodynamic model and Maxwell's equations, the dispersion relation of SP waves is derived, which describes the quantum corrected features of the dispersion properties of such surface waves. Previous results in this context are recovered. It is found that the exchange-correlation interactions and the presence of the second dielectric layer drastically modify the behaviors of the surface plasmon waves. The implications of our finding are discussed in some particular cases of interest. Our finding is applicable for understanding the surface wave behaviors in nano-scale systems.
Nonlinear instability and chaos in plasma wave-wave interactions. II. Numerical methods and results
Energy Technology Data Exchange (ETDEWEB)
Kueny, C.S.; Morrison, P.J.
1995-05-01
In Part I of this work and Physics of Plasmas, June 1995, the behavior of linearly stable, integrable systems of waves in a simple plasma model was described using a Hamiltonian formulation. It was shown that explosive instability arises from nonlinear coupling between modes of positive and negative energy, with well-defined threshold amplitudes depending on the physical parameters. In this concluding paper, the nonintegrable case is treated numerically. Several sets of waves are considered, comprising systems of two and three degrees of freedom. The time evolution is modelled with an explicit symplectic integration algorithm derived using Lie algebraic methods. When initial wave amplitudes are large enough to support two-wave decay interactions, strongly chaotic motion destroys the separatrix bounding the stable region for explosive triplets. Phase space orbits then experience diffusive growth to amplitudes that are sufficient for explosive instability, thus effectively reducing the threshold amplitude. For initial amplitudes too small to drive decay instability, small perturbations might still grow to arbitrary size via Arnold diffusion. Numerical experiments do not show diffusion in this case, although the actual diffusion rate is probably underestimated due to the simplicity of the model.
Extreme physical information and the nonlinear wave equation
Frieden, B. R.
1995-09-01
The nonlinear wave equation an be derived from a principle of extreme physical information (EPI) K. This is for a scenario where a probe electron moves through a medium in a weak magnetic field. The field is caused by a probabilistic line current source. Assume that the probability current density S of the electron is approximately constant, and directed parallel to the current source. Both the source probability amplitudes (rho) and the electron probability amplitudes (phi) are unknowns (called 'modes') of the problem. The net physical information K here consists of two components: functional K1[(phi) ] due to modes (phi) and K2[(rho) ] due to modes (rho) , respectively. To form K1[(phi) ], the Fisher information functional I1[(phi) ] for the electron modes is first constructed. This is of a fixed mathematical form. Then, a unitary transformation on (phi) to a physical space is sought that leaves I1 invariant, as form J1. This is, of course, the Fourier transformation, where the transform coordinates are momenta and I1 is essentially the mean-square electron momentum. Information K1[(phi) ] is then defined as (I1 - J1). Information K2 is formed similarly. The total information K is formed as the sum of the two components K1[(phi) ] and K2[(rho) ], by the additivity of Fisher information, and is then extremized in both (phi) and (rho) . Extremizing first in (rho) gives a Taylor series in powers of (phi) n*(phi) n, which is cut off at the quadratic term. Back-substituting this into the total Lagrangian gives one that is quadratic in (phi) n*(phi) n. Now varying (phi) * gives the required cubic wave equation in (phi) .
Nonlinear wave structures as exact solutions of Vlasov-Maxwell equations.
Dasgupta, B.; Tsurutani, B. T.; Janaki, M. S.; Sharma, A. S.
2001-12-01
Many recent observations by POLAR and Geotail spacecraft of the low-latitudes magnetopause boundary layer (LLBL) and the polar cap boundary layer (PCBL) have detected nonlinear wave structures [Tsurutani et al, Geophys. Res. Lett., 25, 4117, 1998]. These nonlinear waves have electromagnetic signatures that are identified with Alfven and Whistler modes. Also solitary waves with mono- and bi-polar features were observed. In general such electromagnetic structures are described by the full Vlasov-Maxwell equations for waves propagating at an angle to the ambient magnetic field, but it has been a diffficult task obtaining the solutions because of the inherent nonlinearity. We have obtained an exact nonlinear solution of the full Vlasov-Maxwell equations in the presence of an electromagnetic wave propagating at an arbitrary direction with an ambient magnetic field. This is accomplished by finding the constants of motion of the charged particles in the electromagnetic field of the wave and then constructing a realistic distribution function as a function of these constants of motion. The corresponding trapping conditions for such waves are obtained, yielding the self-consistent description for the particles in the presence of the nonlinear waves. The interpretation of the observed nonlinear structures in terms of these general solutions will be presented.
Detailed Characterization of Continuous-Wave and Pulsed-Pump Four-Wave Mixing in Nonlinear Fibers
DEFF Research Database (Denmark)
Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, Lars;
2016-01-01
We explore the parametric gain differences for continuous-wave and pulse-pumped four-wave mixing, using various highly nonlinear fibers. Detailed simulations support our findings that the dispersion slope determines the experimentally observed differences, limiting the pulsed-pump performance....
Institute of Scientific and Technical Information of China (English)
张卫国
2003-01-01
In this paper, we have obtained the bell-type and kink-type solitary wave solutions of the generalized symmetric regularized long-wave equations with high-order nonlinear terms by means of proper transformation and undetermined assumption method.
Institute of Scientific and Technical Information of China (English)
唐登斌; 夏浩
2002-01-01
The nonlinear evolution problem in nonparallel boundary layer stability was studied. The relative parabolized stability equations of nonlinear nonparallel boundary layer were derived. The developed numerical method, which is very effective, was used to study the nonlinear evolution of T-S disturbance wave at finite amplitudes. Solving nonlinear equations of different modes by using predictor-corrector and iterative approach, which is uncoupled between modes, improving computational accuracy by using high order compact differential scheme, satisfying normalization condition, determining tables of nonlinear terms at different modes, and implementing stably the spatial marching, were included in this method. With different initial amplitudes, the nonlinear evolution of T-S wave was studied. The nonlinear nonparallel results of examples compare with data of direct numerical simulations (DNS) using full Navier- Stokes equations.
Nonlinear wave mixing and susceptibility properties of negative refractive index materials.
Chowdhury, Aref; Tataronis, John A
2007-01-01
We present an analysis of second-order and third-order nonlinear susceptibilities and wave-mixing properties of negative refractive index materials. We show that the nonlinear susceptibilities for noncentrosymmetric and centrosymmetric media may be positive or negative and away from resonance depending on the frequency of interest relative to the resonant frequencies of the material. Manipulation of the signs of the nonlinear susceptibilities is important in the field of optics, particularly for solitons and compensation of nonlinear effects. We also show that three- and four-wave mixing can be naturally phase matched in the material.
Local absorbing boundary conditions for nonlinear wave equation on unbounded domain.
Li, Hongwei; Wu, Xiaonan; Zhang, Jiwei
2011-09-01
The numerical solution of the nonlinear wave equation on unbounded spatial domain is considered. The artificial boundary method is introduced to reduce the nonlinear problem on unbounded spatial domain to an initial boundary value problem on a bounded domain. Using the unified approach, which is based on the operator splitting method, we construct the efficient nonlinear local absorbing boundary conditions for the nonlinear wave equation, and give the stability analysis of the resulting boundary conditions. Finally, several numerical examples are given to demonstrate the effectiveness of our method.