WorldWideScience

Sample records for nonlinear electrophoretic response

  1. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    of bound states of out of phase bright solitons and dark solitons. Also, the newly introduced analogy between the nonlocal cubic nonlinear and the quadratic nonlinear media, presented in paper B and Chapter 3 is discussed. In particular it supplies intuitive physical meaning of the formation of solitons...... in quadratic nonlinear media. In the second part of the report (Chapter 4), the possibility to obtain light with ultrabroad spectrum due to the interplay of many nonlinear effects based on cubic nonlinearity is investigated thoroughly. The contribution of stimulated Raman scattering, a delayed nonlinear...... a modified nonlinear Schroedinger model equation. Chapter 4 and papers D and E are dedicated to this part of the research....

  2. Enhancing Electrophoretic Display Lifetime: Thiol-Polybutadiene Evaporation Barrier Property Response to Network Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Caitlyn Christian [California State Polytechnic State Univ., San Luis Obispo, CA (United States)

    2017-02-27

    An evaporation barrier is required to enhance the lifetime of electrophoretic deposition (EPD) displays. As EPD functions on the basis of reversible deposition and resuspension of colloids suspended in a solvent, evaporation of the solvent ultimately leads to device failure. Incorporation of a thiol-polybutadiene elastomer into EPD displays enabled display lifetime surpassing six months in counting and catalyzed rigid display transition into a flexible package. Final flexible display transition to mass production compels an electronic-ink approach to encapsulate display suspension within an elastomer shell. Final thiol-polybutadiene photosensitive resin network microstructure was idealized to be dense, homogeneous, and expose an elastic response to deformation. Research at hand details an approach to understanding microstructural change within display elastomers. Polybutadiene-based resin properties are modified via polymer chain structure, with and without added aromatic urethane methacrylate difunctionality, and in measuring network response to variation in thiol and initiator concentration. Dynamic mechanical analysis results signify that cross-linked segments within a difunctionalized polybutadiene network were on average eight times more elastically active than that of linked segments within a non-functionalized polybutadiene network. Difunctionalized polybutadiene samples also showed a 2.5 times greater maximum elastic modulus than non-functionalized samples. Hybrid polymer composed of both polybutadiene chains encompassed TE-2000 stiffness and B-1000 elasticity for use in encapsulating display suspension. Later experiments measured kinetic and rheological response due to alteration in dithiol cross-linker chain length via real time Fourier transform infrared spectroscopy and real-time dynamic rheology. Distinct differences were discovered between dithiol resin systems, as maximum thiol conversion achieved in short and long chain length dithiols was 86% and

  3. Frequency response functions for nonlinear convergent systems

    NARCIS (Netherlands)

    Pavlov, A.V.; Wouw, van de N.; Nijmeijer, H.

    2007-01-01

    Convergent systems constitute a practically important class of nonlinear systems that extends the class of asymptotically stable linear time-invariant systems. In this note, we extend frequency response functions defined for linear systems to nonlinear convergent systems. Such nonlinear frequency

  4. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance......Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...

  5. Computational mechanics of nonlinear response of shells

    Energy Technology Data Exchange (ETDEWEB)

    Kraetzig, W.B. (Bochum Univ. (Germany, F.R.). Inst. fuer Statik und Dynamik); Onate, E. (Universidad Politecnica de Cataluna, Barcelona (Spain). Escuela Tecnica Superior de Ingenieros de Caminos) (eds.)

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs.

  6. Computational mechanics of nonlinear response of shells

    International Nuclear Information System (INIS)

    Kraetzig, W.B.; Onate, E.

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs

  7. Citrate-capped gold nanoparticle electrophoretic heat production in response to a time-varying radiofrequency electric-field.

    Science.gov (United States)

    Corr, Stuart J; Raoof, Mustafa; Mackeyev, Yuri; Phounsavath, Sophia; Cheney, Matthew A; Cisneros, Brandon T; Shur, Michael; Gozin, Michael; McNally, Patrick J; Wilson, Lon J; Curley, Steven A

    2012-11-15

    The evaluation of heat production from gold nanoparticles (AuNPs) irradiated with radiofrequency (RF) energy has been problematic due to Joule heating of their background ionic buffer suspensions. Insights into the physical heating mechanism of nanomaterials under RF excitations must be obtained if they are to have applications in fields such as nanoparticle-targeted hyperthermia for cancer therapy. By developing a purification protocol which allows for highly-stable and concentrated solutions of citrate-capped AuNPs to be suspended in high-resistivity water, we show herein, for the first time, that heat production is only evident for AuNPs of diameters ≤ 10 nm, indicating a unique size-dependent heating behavior not previously observed. Heat production has also shown to be linearly dependent on both AuNP concentration and total surface area, and severely attenuated upon AuNP aggregation. These relationships have been further validated using permittivity analysis across a frequency range of 10 MHz to 3 GHz, as well as static conductivity measurements. Theoretical evaluations suggest that the heating mechanism can be modeled by the electrophoretic oscillation of charged AuNPs across finite length scales in response to a time-varying electric field. It is anticipated these results will assist future development of nanoparticle-assisted heat production by RF fields for applications such as targeted cancer hyperthermia.

  8. Nonlinear Dynamic Response of Compliant Journal Bearings

    Directory of Open Access Journals (Sweden)

    Glavatskih S.

    2012-07-01

    Full Text Available This paper investigates the dynamic response of the compliant tilting pad journal bearings subjected to synchronous excitation. Bearing compliance is affected by the properties of pad liner and pad support geometry. Different unbalance eccentricities are considered. It is shown that bearing dynamic response is non-linear. Journal orbit complexity increases with pad compliance though the orbit amplitudes are marginally affected at low loads. At high loads, the journal is forced to operate outside the bearing clearance. The polymer liner reduces the maximum oil film pressure by a factor of 2 when compared to the white metal liner. The nonlinear dynamic response of compliant tilting pad journal bearings is thoroughly discussed.

  9. Nonlinear response matrix methods for radiative transfer

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.; Lewis, E.E.

    1987-01-01

    A nonlinear response matrix formalism is presented for the solution of time-dependent radiative transfer problems. The essential feature of the method is that within each computational cell the temperature is calculated in response to the incoming photons from all frequency groups. Thus the updating of the temperature distribution is placed within the iterative solution of the spaceangle transport problem, instead of being placed outside of it. The method is formulated for both grey and multifrequency problems and applied in slab geometry. The method is compared to the more conventional source iteration technique. 7 refs., 1 fig., 4 tabs

  10. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

  11. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two...

  12. Time history nonlinear earthquake response analysis considering materials and geometrical nonlinearity

    International Nuclear Information System (INIS)

    Kobayashi, T.; Yoshikawa, K.; Takaoka, E.; Nakazawa, M.; Shikama, Y.

    2002-01-01

    A time history nonlinear earthquake response analysis method was proposed and applied to earthquake response prediction analysis for a Large Scale Seismic Test (LSST) Program in Hualien, Taiwan, in which a 1/4 scale model of a nuclear reactor containment structure was constructed on sandy gravel layer. In the analysis both of strain-dependent material nonlinearity, and geometrical nonlinearity by base mat uplift, were considered. The 'Lattice Model' for the soil-structure interaction model was employed. An earthquake record on soil surface at the site was used as control motion, and deconvoluted to the input motion of the analysis model at GL-52 m with 300 Gal of maximum acceleration. The following two analyses were considered: (A) time history nonlinear, (B) equivalent linear, and the advantage of time history nonlinear earthquake response analysis method is discussed

  13. A Photonic Basis for Deriving Nonlinear Optical Response

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2009-01-01

    Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…

  14. Inducing in situ, nonlinear soil response applying an active source

    Science.gov (United States)

    Johnson, P.A.; Bodin, P.; Gomberg, J.; Pearce, F.; Lawrence, Z.; Menq, F.-Y.

    2009-01-01

    [1] It is well known that soil sites have a profound effect on ground motion during large earthquakes. The complex structure of soil deposits and the highly nonlinear constitutive behavior of soils largely control nonlinear site response at soil sites. Measurements of nonlinear soil response under natural conditions are critical to advancing our understanding of soil behavior during earthquakes. Many factors limit the use of earthquake observations to estimate nonlinear site response such that quantitative characterization of nonlinear behavior relies almost exclusively on laboratory experiments and modeling of wave propagation. Here we introduce a new method for in situ characterization of the nonlinear behavior of a natural soil formation using measurements obtained immediately adjacent to a large vibrator source. To our knowledge, we are the first group to propose and test such an approach. Employing a large, surface vibrator as a source, we measure the nonlinear behavior of the soil by incrementally increasing the source amplitude over a range of frequencies and monitoring changes in the output spectra. We apply a homodyne algorithm for measuring spectral amplitudes, which provides robust signal-to-noise ratios at the frequencies of interest. Spectral ratios are computed between the receivers and the source as well as receiver pairs located in an array adjacent to the source, providing the means to separate source and near-source nonlinearity from pervasive nonlinearity in the soil column. We find clear evidence of nonlinearity in significant decreases in the frequency of peak spectral ratios, corresponding to material softening with amplitude, observed across the array as the source amplitude is increased. The observed peak shifts are consistent with laboratory measurements of soil nonlinearity. Our results provide constraints for future numerical modeling studies of strong ground motion during earthquakes.

  15. Geometrically Nonlinear Transient Response of Laminated Plates with Nonlinear Elastic Restraints

    Directory of Open Access Journals (Sweden)

    Shaochong Yang

    2017-01-01

    Full Text Available To investigate the dynamic behavior of laminated plates with nonlinear elastic restraints, a varied constraint force model and a systematic numerical procedure are presented in this work. Several kinds of typical relationships of force-displacement for spring are established to simulate the nonlinear elastic restraints. In addition, considering the restraining moments of flexible pads, the pads are modeled by translational and rotational springs. The displacement- dependent constraint forces are added to the right-hand side of equations of motion and treated as additional applied loads. These loads can be explicitly defined, via an independent set of nonlinear load functions. The time histories of transverse displacements at typical points of the laminated plate are obtained through the transient analysis. Numerical examples show that the present method can effectively treat the geometrically nonlinear transient response of plates with nonlinear elastic restraints.

  16. Nonlinear response and bistability of driven ion acoustic waves

    Science.gov (United States)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  17. Measuring localized nonlinear components in a circular accelerator with a nonlinear tune response matrix

    Directory of Open Access Journals (Sweden)

    G. Franchetti

    2008-09-01

    Full Text Available In this paper we present a method for measuring the nonlinear errors in a circular accelerator by taking advantage of the feed-down effect of high order multipoles when the closed orbit is globally deformed. We devise a nonlinear tune response matrix in which the response to a closed orbit deformation is obtained in terms of change of machine tune and correlated with the strength of the local multipoles. A numerical example and a proof of principle experiment to validate the theoretical methods are presented and discussed.

  18. Numerical Investigation on the Directionality of Nonlinear Indicial Responses

    International Nuclear Information System (INIS)

    Yee, Kwan Jung; Hong, Sang Won; Lee, Dong Ho

    2007-01-01

    An unsteady Euler solver is modified to investigate the directionality of nonlinear indicial response to a step change in the angle of attack. An impulsive change in the angle of attack is incorporated by using the field velocity approach, which is known to decouple the step change in the angle of attack from a pitch rate. Numerical results are thoroughly compared against analytical results for two-dimensional indicial responses. The same method is applied to investigate the directionality of nonlinear indicial responses. It is found that directionality is mainly due to the asymmetry of initial shock locations. Since the directionality of the pitching moment responses is significant in the critical Mach number region, it is also shown that consideration of the directionality is crucial for accurate modeling of the nonlinear indicial functions

  19. Nonlinear piping damping and response predictions

    International Nuclear Information System (INIS)

    Severud, L.K.; Weiner, E.O.; Lindquist, M.R.; Anderson, M.J.; Wagner, S.E.

    1986-10-01

    The high level dynamic testing of four prototypic piping systems, used to provide benchmarks for analytical prediction comparisons, is overviewed. The size of pipe tested ranged from one-inch to six-inches in diameter and consisted of carbon steel or stainless steel material. Failure of the tested systems included progressive gross deformation or some combination of ratchetting-fatigue. Pretest failure predictions and post test comparisons using simplified elastic and elasto-plastic methods are presented. Detailed non-linear inelastic analyses are also shown, along with a typical ratchet-fatigue failure calculation. A simplified method for calculating modal equivalent viscous damping for snubbers and plastic hinges is also described. Conclusions are made regarding the applicability of the various analytical failure predictive methods and recommendations are made for future analytic and test efforts

  20. Modeling TAE Response To Nonlinear Drives

    Science.gov (United States)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-10-01

    Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.

  1. Nonlinear response and avalanche behavior in metallic glasses

    Science.gov (United States)

    Riechers, B.; Samwer, K.

    2017-08-01

    The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke's Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.

  2. On the dimension of complex responses in nonlinear structural vibrations

    Science.gov (United States)

    Wiebe, R.; Spottswood, S. M.

    2016-07-01

    The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to

  3. Nonlinear Response of Cantilever Beams to Combination and Subcombination Resonances

    Directory of Open Access Journals (Sweden)

    Ali H. Nayfeh

    1998-01-01

    Full Text Available The nonlinear planar response of cantilever metallic beams to combination parametric and external subcombination resonances is investigated, taking into account the effects of cubic geometric and inertia nonlinearities. The beams considered here are assumed to have large length-to-width aspect ratios and thin rectangular cross sections. Hence, the effects of shear deformations and rotatory inertia are neglected. For the case of combination parametric resonance, a two-mode Galerkin discretization along with Hamilton’s extended principle is used to obtain two second-order nonlinear ordinary-differential equations of motion and associated boundary conditions. Then, the method of multiple scales is applied to obtain a set of four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two excited modes. For the case of subcombination resonance, the method of multiple scales is applied directly to the Lagrangian and virtual-work term. Then using Hamilton’s extended principle, we obtain a set of four first-order nonlinear ordinary-differential equations governing the amplitudes and phases of the two excited modes. In both cases, the modulation equations are used to generate frequency- and force-response curves. We found that the trivial solution exhibits a jump as it undergoes a subcritical pitchfork bifurcation. Similarly, the nontrivial solutions also exhibit jumps as they undergo saddle-node bifurcations.

  4. Modeling and non-linear responses of MEMS capacitive accelerometer

    Directory of Open Access Journals (Sweden)

    Sri Harsha C.

    2014-01-01

    Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.

  5. Electrophoretic transfer protein zymography.

    Science.gov (United States)

    Pan, Daniel; Hill, Adam P; Kashou, Anthony; Wilson, Karl A; Tan-Wilson, Anna

    2011-04-15

    Zymography detects and characterizes proteolytic enzymes by electrophoresis of protease-containing samples into a nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel containing a copolymerized protein substrate. The usefulness of zymography for molecular weight determination and proteomic analysis is hampered by the fact that some proteases exhibit slower migration through a gel that contains substrate protein. This article introduces electrophoretic transfer protein zymography as one solution to this problem. In this technique, samples containing proteolytic enzymes are first resolved in nonreducing SDS-PAGE on a gel without protein substrate. The proteins in the resolving gel are then electrophoretically transferred to a receiving gel previously prepared with a copolymerized protein substrate. The receiving gel is then developed as a zymogram to visualize clear or lightly stained bands in a dark background. Band intensities are linearly related to the amount of protease, extending the usefulness of the technique so long as conditions for transfer and development of the zymogram are kept constant. Conditions of transfer, such as the pore sizes of resolving and receiving gels and the transfer time relative to the molecular weight of the protease, are explored. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Nonlinear dielectric response in ferroelectric thin films

    Directory of Open Access Journals (Sweden)

    Lente, M. H.

    2004-08-01

    Full Text Available Electrical permittivity dependence on electric external bias field was investigated in PZT thin films. The results revealed the existence of two mechanisms contributing to the electrical permittivity. The first one was related to the domain reorientation, which was responsible for a strong no linear dielectric behavior, acting only during the poling process. The second mechanism was associated with the domain wall vibrations, which presented a reasonable linear electrical behavior with the applied bias field, contributing always to the permittivity independently of the poling state of the sample. The results also indicated that the gradual reduction of the permittivity with the increase of the bias field strength may be related to the gradual bending of the domain walls. It is believed that the domain wall bending induces a hardening and/or a thinning of the walls, thus reducing the electrical permittivity. A reinterpretation of the model proposed in the literature to explain the dielectric characteristics of ferroelectric materials at high electric field regime is proposed.

    Se ha estudiado la dependencia de la permitividad eléctrica con un campo bias externo en láminas delgadas de PZT. Los resultados revelaron la existencia de dos mecanismos que contribuyen a la permitividad eléctrica. El primero está relacionado con la reorientación de dominios, actúa sólo durante el proceso de polarización y es responsable de un comportamiento dieléctrico fuertemente no lineal. El segundo mecanismo se asocia a las vibraciones de las paredes de dominio, presentando un comportamiento eléctrico razonablemente lineal con el campo bias aplicado, contribuyendo siempre a la permitividad independientemente del estado de polarización de la muestra. Los resultados indicaron también que la reducción gradual de la permitividad con el aumento de la fuerza del campo bias podría estar relacionada con el “bending” gradual de las paredes de dominio

  7. µE: Electrophoretic mobility

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. µE: Electrophoretic mobility. µE: Electrophoretic mobility. E: Intensity of electric field. H: Total height. h: Distance from the top surface of bottom chamber (slug height). N: Cell concentration × Volume of the chamber.

  8. Nonlinear ultrafast optical response in organic molecular crystals

    Science.gov (United States)

    Rahman, Talat S.; Turkowski, Volodymyr; Leuenberger, Michael N.

    2012-02-01

    We analyze possible nonlinear excitonic effects in the organic molecule crystals by using a combined time-dependent DFT and many-body approach. In particular, we analyze possible effects of the time-dependent (retarded)interaction between different types of excitations, Frenkel excitons, charge transfer excitons and excimers, on the electric and the optical response of the system. We pay special attention to the case of constant electric field and ultrafast pulses, including that of four-wave mixing experiments. As a specific application we examine the optical excitations of pentacene nanocrystals and compare the results with available experimental data.[1] Our results demostrate that the nonlinear effects can play an important role in the optical response of these systems. [1] A. Kabakchiev, ``Scanning Tunneling Luminescence of Pentacene Nanocrystals'', PhD Thesis (EPFL, Lausanne, 2010).

  9. Nonlinear Plasma Response to Resonant Magnetic Perturbation in Rutherford Regime

    Science.gov (United States)

    Zhu, Ping; Yan, Xingting; Huang, Wenlong

    2017-10-01

    Recently a common analytic relation for both the locked mode and the nonlinear plasma response in the Rutherford regime has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance equations. The analytic relation predicts the threshold and the island size for the full penetration of resonant magnetic perturbation (RMP). It also rigorously proves a screening effect of the equilibrium toroidal flow. In this work, we test the theory by solving for the nonlinear plasma response to a single-helicity RMP of a circular-shaped limiter tokamak equilibrium with a constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. Time evolution of the parallel flow or ``slip frequency'' profile and its asymptotic approach to steady state obtained from the NIMROD simulations qualitatively agree with the theory predictions. Further comparisons are carried out for the saturated island size, the threshold for full mode penetration, as well as the screening effects of equilibrium toroidal flow in order to understand the physics of nonlinear plasma response in the Rutherford regime. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  10. Nonlinear Dielectric Response of Water Treed XLPE Cable Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hvidsten, Sverre

    1999-07-01

    Condition assessment of XLPE power cables is becoming increasingly important for the utilities, due to a large number of old cables in service with high probability of failure caused by water tree degradation. The commercial available techniques are generally based upon measurements of the dielectric response, either by time (polarisation/depolarisation current or return voltage) or frequency domain measurements. Recently it has been found that a high number of water trees in XLPE insulated cables causes the dielectric response to increase more than linearly with increasing test voltage. This nonlinear feature of water tree degraded XLPE insulation has been suggested to be of a great importance, both for diagnostic purposes, and for fundamental understanding of the water tree phenomenon itself. The main purpose of this thesis have been to study the nonlinear feature of the dielectric response measured on watertreed XLPE insulation. This has been performed by dielectric response measurements in both time and frequency domain, numerical calculations of losses of simplified water tree models, and fmally water content and water permeation measurements on single water trees. The dielectric response measurements were performed on service aged cable samples and laboratory aged Rogowski type objects. The main reason for performing laboratory ageing was to facilitate diagnostic testing as a function of ageing time of samples containing mainly vented water trees. A new method, based upon inserting NaC1 particles at the interface between the upper semiconductive screen and the insulation, was found to successfully enhance initiation and growth of vented water trees. AC breakdown strength testing show that it is the vented water trees that reduce the breakdown level of both the laboratory aged test objects and service aged cable samples. Vented water treeing was found to cause the dielectric response to become nonlinear at a relatively low voltage level. However, the measured

  11. Jump phenomena. [large amplitude responses of nonlinear systems

    Science.gov (United States)

    Reiss, E. L.

    1980-01-01

    The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.

  12. Influence of earthquake strong motion duration on nonlinear structural response

    International Nuclear Information System (INIS)

    Meskouris, K.

    1983-01-01

    The effects of motion duration on nonlinear structural response of high-rise, moment resisting frames are studied by subjecting shear beam models of a 10- and a 5-story frame to a series of synthetic accelerograms, all matching the same NEWMARK/HALL design spectrum. Two different hysteretic laws are used for the story springs, and calculations are carried out for target ductility values of 2 and 4. Maximum ductilities reached and energy-based damage indicators (maximum seismically input energy, hysteretically dissipated energy) are evaluated and correlated with the motion characteristics. A reasonable extrapolative determination of structural response characteristics based on these indicators seems possible. (orig.)

  13. Confidence bounds for nonlinear dose-response relationships

    DEFF Research Database (Denmark)

    Baayen, C; Hougaard, P

    2015-01-01

    An important aim of drug trials is to characterize the dose-response relationship of a new compound. Such a relationship can often be described by a parametric (nonlinear) function that is monotone in dose. If such a model is fitted, it is useful to know the uncertainty of the fitted curve...... intervals for the dose-response curve. These confidence bounds have better coverage than Wald intervals and are more precise and generally faster than bootstrap methods. Moreover, if monotonicity is assumed, the profile likelihood approach takes this automatically into account. The approach is illustrated...

  14. Nonlinear responses of chiral fluids from kinetic theory

    Science.gov (United States)

    Hidaka, Yoshimasa; Pu, Shi; Yang, Di-Lun

    2018-01-01

    The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.

  15. Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites

    Science.gov (United States)

    Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.

    2010-01-01

    A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.

  16. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  17. Nonlinear Stochastic Analysis of Subharmonic Response of a Shallow Cable

    DEFF Research Database (Denmark)

    Zhou, Q.; Stærdahl, Jesper Winther; Nielsen, Søren R.K.

    2007-01-01

    and stochastic subharmonic response is demonstrated upon comparison with a more involved model based on a spatial finite difference discretization of the full nonlinear partial differential equations of the cable. Since the stochastic response quantities are obtained by Monte Carlo simulation, which is extremely...... time-consuming for the finite difference model, most of the results are next based on the reduced model. Under harmonical varying support point motions the stable subharmonic motion consists of a harmonically varying component in the equilibrium plane and a large subharmonic out-of-plane component...... subharmonic response component is also present in the static equilibrium plane. Further, the time variation of the envelope process of the narrow-banded chordwise elongation process tends to enhance chaotic behaviour of the subharmonic response, which is detectable via extreme sensitivity on the initial...

  18. Elastic Nonlinear Response in Granular Media Under Resonance Conditions

    Science.gov (United States)

    Jia, X.; Johnson, P. A.

    2004-12-01

    We are studying the elastic linear and nonlinear behavior of granular media using dynamic wave methods. In the work presented here, our goal is to quantify the elastic nonlinear response by applying wave resonance. Resonance studies are desirable because they provide the means to easily study amplitude dependencies of elastic nonlinear behavior and thus to characterize the physical nature of the elastic nonlinearity. This work has implications for a variety of topics, in particular, the in situ nonlinear response of surface sediments. For this work we constructed an experimental cell in which high sensitivity dynamic resonance studies were conducted using granular media under controlled effective pressure. We limit our studies here to bulk modes but have the capability to employ shear waves as well. The granular media are composed of glass beads held under pressure by a piston, while applying resonance waves from transducers as both the excitation and the material probe. The container is closed with two fitted pistons and a normal load is applied to the granular sample across the top piston. Force and displacement are measured directly. Resonant frequency sweeps with frequencies corresponding to the fundamental bulk mode are applied to the longitudinal source transducer. The pore pressure in the system is 1 atm. The glass beads used in our experiments are of diameter 0.5 mm, randomly deposited in a duralumin cylinder of diameter 30 mm and height of 15 mm. This corresponds to a granular skeleton acoustic wave velocity of v ª 750m/s under 50 N of force [0.07 Mpa]. The loaded system gives fundamental mode resonances in the audio frequency band at half a wavelength where resonance frequency is effective-pressure dependent. The volume fraction of glass beads thus obtained is found to be 0.63 ± 0.01. Plane-wave generating and detecting transducers of diameter 30 mm are placed on axis at the top and bottom of the cylindrical container in direct contact with the glass

  19. Models of the delayed nonlinear Raman response in diatomic gases

    International Nuclear Information System (INIS)

    Palastro, J. P.; Antonsen, T. M. Jr.; Pearson, A.

    2011-01-01

    We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for broadband pulses, heavy molecules such as O 2 and N 2 , and typical atmospheric temperatures, the initial delayed response requires only classical physics. The linear kinetic Green's function is derived from the Boltzmann equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic theory a reduced fluid model of the diatomic gas' orientation is derived. Transport coefficients are introduced to model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.

  20. Induced dynamic nonlinear ground response at Gamer Valley, California

    Science.gov (United States)

    Lawrence, Z.; Bodin, P.; Langston, C.A.; Pearce, F.; Gomberg, J.; Johnson, P.A.; Menq, F.-Y.; Brackman, T.

    2008-01-01

    We present results from a prototype experiment in which we actively induce, observe, and quantify in situ nonlinear sediment response in the near surface. This experiment was part of a suite of experiments conducted during August 2004 in Garner Valley, California, using a large mobile shaker truck from the Network for Earthquake Engineering Simulation (NEES) facility. We deployed a dense accelerometer array within meters of the mobile shaker truck to replicate a controlled, laboratory-style soil dynamics experiment in order to observe wave-amplitude-dependent sediment properties. Ground motion exceeding 1g acceleration was produced near the shaker truck. The wave field was dominated by Rayleigh surface waves and ground motions were strong enough to produce observable nonlinear changes in wave velocity. We found that as the force load of the shaker increased, the Rayleigh-wave phase velocity decreased by as much as ???30% at the highest frequencies used (up to 30 Hz). Phase velocity dispersion curves were inverted for S-wave velocity as a function of depth using a simple isotropic elastic model to estimate the depth dependence of changes to the velocity structure. The greatest change in velocity occurred nearest the surface, within the upper 4 m. These estimated S-wave velocity values were used with estimates of surface strain to compare with laboratory-based shear modulus reduction measurements from the same site. Our results suggest that it may be possible to characterize nonlinear soil properties in situ using a noninvasive field technique.

  1. Non-linear dynamic response of reactor containment

    International Nuclear Information System (INIS)

    Takemori, T.; Sotomura, K.; Yamada, M.

    1975-01-01

    A computer program was developed to investigate the elasto-plastic behavior of structures. This program is outlined and the problems of non-linear response of structures are discussed. Since the mode superposition method is only valid in an elastic analysis, the direct integration method was adopted here. As the sample model, an actual reactor containment (reactor building) of PWR plant was adopted. This building consists of three components, that is, a concrete internal structure, a steel containment vessel and a concrete outer shield wall. These components are resting on a rigid foundation mat. Therefore they were modeled with a lumped mass model respectively and coupled on the foundation. The following assumptions were employed to establish the properties of dynamic model: rocking and swaying springs of soil can be obtained from an elastic half-space solution, and the hysteretic characteristic of springs is bi-linear; springs connecting each mass are dealt with shear beams so that both bending and shear deflections can be included (Hysteretic characteristics of springs are linear, bi-linear and tri-linear for the internal structure, the containment vessel and the outer shield wall, respectively); generally, each damping coefficient is given for each mode in modal superposition (However, a damping matrix must be made directly in a non-linear response). Therefore the damping matrix of the model was made by combining the damping matrices [C] of each component obtained by Caughy's method and a damping value of the rocking and swaying by the half-space solution. On the basis of above conditions, the non-linear response of the structure was obtained and the difference between elastic and elasto-plastic analysis is presented

  2. Response of MDOF strongly nonlinear systems to fractional Gaussian noises.

    Science.gov (United States)

    Deng, Mao-Lin; Zhu, Wei-Qiu

    2016-08-01

    In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.

  3. Response of MDOF strongly nonlinear systems to fractional Gaussian noises

    International Nuclear Information System (INIS)

    Deng, Mao-Lin; Zhu, Wei-Qiu

    2016-01-01

    In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.

  4. Response of MDOF strongly nonlinear systems to fractional Gaussian noises

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn [Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027 (China)

    2016-08-15

    In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.

  5. Nonlinear dynamic response of an electrically actuated imperfect microbeam resonator

    KAUST Repository

    Ruzziconi, Laura

    2013-08-04

    We present a study of the dynamic behavior of a MEMS device constituted of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. The nonlinear behavior is highlighted, which includes ranges of multistability, where the non-resonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is capable also to capture the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. Copyright © 2013 by ASME.

  6. Nonlinear Optical Response of Polar Semiconductors in the Terahertz Range

    Science.gov (United States)

    Roman, Eric; Yates, Jonathan; Veithen, Marek; Vanderbilt, David; Souza, Ivo

    2006-03-01

    Using the Berry-phase finite-field method, we compute from first-principles the recently measured infrared (IR) dispersion of the nonlinear susceptibility (2)circ in III-V zincblende semiconductors. At far-IR (terahertz) frequencies, in addition to the purely electronic response (2)circ∞, the total (2)circ depends on three other parameters, C1, C2, and C3, describing the contributions from ionic motion. They relate to the TO Raman polarizability and the second-order displacement-induced dielectric polarization and forces, respectively. Contrary to a widely-accepted model, but in agreement with the recent experiments on GaAs, ^1 we find that the contribution from mechanical anharmonicity dominates over electrical anharmonicity. By using Richardson extrapolation to evaluate the Berry's phase in k-space by finite differences, we are able to improve the convergence of the nonlinear susceptibility from the usual O[(δk)^2] to O[(δk)^4], dramatically reducing the computational cost. T. Dekorsy, V. A. Yakovlev, W. Seidel, M. Helm, and F. Keilmann, Phys. Rev. Lett. 90, 055508 (2003). C. Flytzanis, Phys. Rev. B 6, 1264 (1972). R. Umari and A. Pasquarello, Phys. Rev. B 68, 085114 (2003).

  7. Solving eigenvalue response matrix equations with nonlinear techniques

    International Nuclear Information System (INIS)

    Roberts, Jeremy A.; Forget, Benoit

    2014-01-01

    Highlights: • High performance solvers were applied within ERMM for the first time. • Accelerated fixed-point methods were developed that reduce computational times by 2–3. • A nonlinear, Newton-based ERMM led to similar improvement and more robustness. • A 3-D, SN-based ERMM shows how ERMM can apply fine-mesh methods to full-core analysis. - Abstract: This paper presents new algorithms for use in the eigenvalue response matrix method (ERMM) for reactor eigenvalue problems. ERMM spatially decomposes a domain into independent nodes linked via boundary conditions approximated as truncated orthogonal expansions, the coefficients of which are response functions. In its simplest form, ERMM consists of a two-level eigenproblem: an outer Picard iteration updates the k-eigenvalue via balance, while the inner λ-eigenproblem imposes neutron balance between nodes. Efficient methods are developed for solving the inner λ-eigenvalue problem within the outer Picard iteration. Based on results from several diffusion and transport benchmark models, it was found that the Krylov–Schur method applied to the λ-eigenvalue problem reduces Picard solver times (excluding response generation) by a factor of 2–5. Furthermore, alternative methods, including Picard acceleration schemes, Steffensen’s method, and Newton’s method, are developed in this paper. These approaches often yield faster k-convergence and a need for fewer k-dependent response function evaluations, which is important because response generation is often the primary cost for problems using responses computed online (i.e., not from a precomputed database). Accelerated Picard iteration was found to reduce total computational times by 2–3 compared to the unaccelerated case for problems dominated by response generation. In addition, Newton’s method was found to provide nearly the same performance with improved robustness

  8. Effect of initial strain and material nonlinearity on the nonlinear static and dynamic response of graphene sheets

    Science.gov (United States)

    Singh, Sandeep; Patel, B. P.

    2018-06-01

    Computationally efficient multiscale modelling based on Cauchy-Born rule in conjunction with finite element method is employed to study static and dynamic characteristics of graphene sheets, with/without considering initial strain, involving Green-Lagrange geometric and material nonlinearities. The strain energy density function at continuum level is established by coupling the deformation at continuum level to that at atomic level through Cauchy-Born rule. The atomic interactions between carbon atoms are modelled through Tersoff-Brenner potential. The governing equation of motion obtained using Hamilton's principle is solved through standard Newton-Raphson method for nonlinear static response and Newmark's time integration technique to obtain nonlinear transient response characteristics. Effect of initial strain on the linear free vibration frequencies, nonlinear static and dynamic response characteristics is investigated in detail. The present multiscale modelling based results are found to be in good agreement with those obtained through molecular mechanics simulation. Two different types of boundary constraints generally used in MM simulation are explored in detail and few interesting findings are brought out. The effect of initial strain is found to be greater in linear response when compared to that in nonlinear response.

  9. Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives

    OpenAIRE

    Liaros Nikolaos; Orfanos Ioannis; Papadakis Ioannis; Couris Stelios

    2016-01-01

    The nonlinear optical properties of two graphene derivatives, graphene oxide and graphene fluoride, are investigated by means of the Z-scan technique employing 35 ps and 4 ns, visible (532 nm) laser excitation. Both derivatives were found to exhibit significant third-order nonlinear optical response at both excitation regimes, with the nonlinear absorption being relatively stronger and concealing the presence of nonlinear refraction under ns excitation, while ps excita...

  10. Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2008-11-01

    We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.

  11. Nonlinear response time-dependent density functional theory combined with the effective fragment potential method

    Energy Technology Data Exchange (ETDEWEB)

    Zahariev, Federico; Gordon, Mark S., E-mail: mark@si.msg.chem.iastate.edu [Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    2014-05-14

    This work presents an extension of the linear response TDDFT/EFP method to the nonlinear-response regime together with the implementation of nonlinear-response TDDFT/EFP in the quantum-chemistry computer package GAMESS. Included in the new method is the ability to calculate the two-photon absorption cross section and to incorporate solvent effects via the EFP method. The nonlinear-response TDDFT/EFP method is able to make correct qualitative predictions for both gas phase values and aqueous solvent shifts of several important nonlinear properties.

  12. Transient response of nonlinear polymer networks: A kinetic theory

    Science.gov (United States)

    Vernerey, Franck J.

    2018-06-01

    Dynamic networks are found in a majority of natural materials, but also in engineering materials, such as entangled polymers and physically cross-linked gels. Owing to their transient bond dynamics, these networks display a rich class of behaviors, from elasticity, rheology, self-healing, or growth. Although classical theories in rheology and mechanics have enabled us to characterize these materials, there is still a gap in our understanding on how individuals (i.e., the mechanics of each building blocks and its connection with others) affect the emerging response of the network. In this work, we introduce an alternative way to think about these networks from a statistical point of view. More specifically, a network is seen as a collection of individual polymer chains connected by weak bonds that can associate and dissociate over time. From the knowledge of these individual chains (elasticity, transient attachment, and detachment events), we construct a statistical description of the population and derive an evolution equation of their distribution based on applied deformation and their local interactions. We specifically concentrate on nonlinear elastic response that follows from the strain stiffening response of individual chains of finite size. Upon appropriate averaging operations and using a mean field approximation, we show that the distribution can be replaced by a so-called chain distribution tensor that is used to determine important macroscopic measures such as stress, energy storage and dissipation in the network. Prediction of the kinetic theory are then explored against known experimental measurement of polymer responses under uniaxial loading. It is found that even under the simplest assumptions of force-independent chain kinetics, the model is able to reproduce complex time-dependent behaviors of rubber and self-healing supramolecular polymers.

  13. A simple non-linear model of immune response

    International Nuclear Information System (INIS)

    Gutnikov, Sergei; Melnikov, Yuri

    2003-01-01

    It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background

  14. Simulations of the Ocean Response to a Hurricane: Nonlinear Processes

    KAUST Repository

    Zedler, Sarah E.

    2009-10-01

    Superinertial internal waves generated by a tropical cyclone can propagate vertically and laterally away from their local generation site and break, contributing to turbulent vertical mixing in the deep ocean and maintenance of the stratification of the main thermocline. In this paper, the results of a modeling study are reported to investigate the mechanism by which superinertial fluctuations are generated in the deep ocean. The general properties of the superinertial wave wake were also characterized as a function of storm speed and central latitude. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model (OGCM) was used to simulate the open ocean response to realistic westward-tracking hurricane-type surface wind stress and heat and net freshwater buoyancy forcing for regions representative of midlatitudes in the Atlantic, the Caribbean, and low latitudes in the eastern Pacific. The model had high horizontal [Δ(x, y) = 1/6°] and vertical (Δz = 5 m in top 100 m) resolution and employed a parameterization for vertical mixing induced by shear instability. In the horizontal momentum equation, the relative size of the nonlinear advection terms, which had a dominant frequency near twice the inertial, was large only in the upper 200 m of water. Below 200 m, the linear momentum equations obeyed a linear balance to 2%. Fluctuations at nearly twice the inertial frequency (2f) were prevalent throughout the depth of the water column, indicating that these nonlinear advection terms in the upper 200 m forced a linear mode below at nearly twice the inertial frequency via vorticity conservation. Maximum variance at 2f in horizontal velocity occurred on the south side of the track. This was in response to vertical advection of northward momentum, which in the north momentum equation is an oscillatory positive definite term that constituted a net force to the south at a frequency near 2f. The ratio of this term to the Coriolis force was larger on the

  15. Extension of a nonlinear systems theory to general-frequency unsteady transonic aerodynamic responses

    Science.gov (United States)

    Silva, Walter A.

    1993-01-01

    A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.

  16. Imitative and best response behaviors in a nonlinear Cournotian setting

    Science.gov (United States)

    Cerboni Baiardi, Lorenzo; Naimzada, Ahmad K.

    2018-05-01

    We consider the competition among quantity setting players in a deterministic nonlinear oligopoly framework characterized by an isoelastic demand curve. Players are characterized by having heterogeneous decisional mechanisms to set their outputs: some players are imitators, while the remaining others adopt a rational-like rule according to which their past decisions are adjusted towards their static expectation best response. The Cournot-Nash production level is a stationary state of our model together with a further production level that can be interpreted as the competitive outcome in case only imitators are present. We found that both the number of players and the relative fraction of imitators influence stability of the Cournot-Nash equilibrium with an ambiguous role, and double instability thresholds may be observed. Global analysis shows that a wide variety of complex dynamic scenarios emerge. Chaotic trajectories as well as multi-stabilities, where different attractors coexist, are robust phenomena that can be observed for a wide spectrum of parameter sets.

  17. Evaluation of time integration methods for transient response analysis of nonlinear structures

    International Nuclear Information System (INIS)

    Park, K.C.

    1975-01-01

    Recent developments in the evaluation of direct time integration methods for the transient response analysis of nonlinear structures are presented. These developments, which are based on local stability considerations of an integrator, show that the interaction between temporal step size and nonlinearities of structural systems has a pronounced effect on both accuracy and stability of a given time integration method. The resulting evaluation technique is applied to a model nonlinear problem, in order to: 1) demonstrate that it eliminates the present costly process of evaluating time integrator for nonlinear structural systems via extensive numerical experiments; 2) identify the desirable characteristics of time integration methods for nonlinear structural problems; 3) develop improved stiffly-stable methods for application to nonlinear structures. Extension of the methodology for examination of the interaction between a time integrator and the approximate treatment of nonlinearities (such as due to pseudo-force or incremental solution procedures) is also discussed. (Auth.)

  18. Nonlinear Response of the Stratosphere and the North Atlantic-European Climate to Global Warming

    Science.gov (United States)

    Manzini, E.; Karpechko, A. Yu.; Kornblueh, L.

    2018-05-01

    The response of the northern winter atmospheric circulation for two consecutive global warming periods of 2 K is examined in a grand ensemble (68 members) of idealized CO2 increase experiments performed with the same climate model. The comparison of the atmospheric responses for the two periods shows remarkable differences, indicating the nonlinearity of the response. The nonlinear signature of the atmospheric and surface responses is reminiscent of the positive phase of the annular mode of variability. The stratospheric vortex response shifts from an easterly wind change for the first 2 K to a westerly wind change for the second 2 K. The North Atlantic storm track shifts poleward only in the second period. A weaker November Arctic amplification during the second period suggests that differences in Arctic sea ice changes can act to trigger the atmospheric nonlinear response. Stratosphere-troposphere coupling thereafter can provide for the persistence of this nonlinearity throughout the winter.

  19. Nonlinear dynamic response of electro-thermo-mechanically loaded piezoelectric cylindrical shell reinforced with BNNTs

    International Nuclear Information System (INIS)

    Yang, J H; Yang, J; Kitipornchai, S

    2012-01-01

    This paper presents an investigation on the nonlinear dynamic response of piezoelectric cylindrical shells reinforced with boron nitride nanotubes (BNNTs) under a combined axisymmetric electro-thermo-mechanical loading. By employing the classical Donnell shell theory, the von Kármán–Donnell kinematic relationship, and a piezo-elastic constitutive law including thermal effects, the nonlinear governing equations of motion of the shell are derived through the Reissner variational principle. The finite difference method and a time-integration scheme are used to obtain the nonlinear dynamic response of the BNNT-reinforced piezoelectric shell. A parametric study is conducted, showing the effects of geometrically nonlinear deformation, applied voltage, temperature change, mechanical load, BNNT volume fraction and boundary conditions on the nonlinear dynamic response. (paper)

  20. On the effects of nonlinearities in room impulse response measurements with exponential sweeps

    DEFF Research Database (Denmark)

    Ciric, Dejan; Markovic, Milos; Mijic, Miomir

    2013-01-01

    In room impulse response measurements, there are some common disturbances that affect the measured results. These disturbances include nonlinearity, noise and time variance. In this paper, the effects of nonlinearities in the measurements with exponential sweep-sine signals are analyzed from diff...

  1. Modeling of nonlinear responses for reciprocal transducers involving polarization switching

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Linxiang

    2007-01-01

    Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...... intrinsically. The time-dependent Ginzburg-Landau theory is used in the parameter identification involving hysteresis effects. We use the Chebyshev collocation method in the numerical simulations. The elastic field is assumed to be coupled linearly with other fields, and the nonlinearity is in the E-D coupling...

  2. Mode coupling in the nonlinear response of black holes

    International Nuclear Information System (INIS)

    Zlochower, Yosef; Gomez, Roberto; Husa, Sascha; Lehner, Luis; Winicour, Jeffrey

    2003-01-01

    We study the properties of the outgoing gravitational wave produced when a nonspinning black hole is excited by an ingoing gravitational wave. Simulations using a numerical code for solving Einstein's equations allow the study to be extended from the linearized approximation, where the system is treated as a perturbed Schwarzschild black hole, to the fully nonlinear regime. Several nonlinear features are found which bear importance to the data analysis of gravitational waves. When compared to the results obtained in the linearized approximation, we observe large phase shifts, a stronger than linear generation of gravitational wave output and considerable generation of radiation in polarization states which are not found in the linearized approximation. In terms of a spherical harmonic decomposition, the nonlinear properties of the harmonic amplitudes have simple scaling properties which offer an economical way to catalog the details of the waves produced in such black hole processes

  3. Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads

    Directory of Open Access Journals (Sweden)

    M. Kotzev

    2017-09-01

    Full Text Available In this paper the equivalent circuit modeling of a nonlinearly loaded loop antenna and its transient responses to HPEM field excitations are investigated. For the circuit modeling the general strategy to characterize the nonlinearly loaded antenna by a linear and a nonlinear circuit part is pursued. The linear circuit part can be determined by standard methods of antenna theory and numerical field computation. The modeling of the nonlinear circuit part requires realistic circuit models of the nonlinear loads that are given by Schottky diodes. Combining both parts, appropriate circuit models are obtained and analyzed by means of a standard SPICE circuit simulator. It is the main result that in this way full-wave simulation results can be reproduced. Furthermore it is clearly seen that the equivalent circuit modeling offers considerable advantages with respect to computation speed and also leads to improved physical insights regarding the coupling between HPEM field excitation and nonlinearly loaded loop antenna.

  4. Ultrafast nonlinear response of silicon carbide to intense THz fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Kaltenecker, Korbinian J.

    2017-01-01

    We demonstrate ultrafast nonlinear absorption induced by strong, single-cycle THz fields in bulk, lightly doped 4H silicon carbide. A combination of Zener tunneling and intraband transitions makes the effect as at least as fast as the excitation pulse. The sub-picosecond recovery time makes...

  5. Ultra-fast dynamics in the nonlinear optical response of silver nanoprism ordered arrays.

    Science.gov (United States)

    Sánchez-Esquivel, Héctor; Raygoza-Sanchez, Karen Y; Rangel-Rojo, Raúl; Kalinic, Boris; Michieli, Niccolò; Cesca, Tiziana; Mattei, Giovanni

    2018-03-15

    In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.

  6. Nonlinear response of the quantum Hall system to a strong electromagnetic radiation

    International Nuclear Information System (INIS)

    Avetissian, H.K.; Mkrtchian, G.F.

    2016-01-01

    We study nonlinear response of a quantum Hall system in semiconductor-hetero-structures via third harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects remain robust against the significant broadening of Landau levels. We predict realization of an experiment through the observation of the third harmonic signal and Faraday rotation angle, which are within the experimental feasibility. - Highlights: • Nonlinear optical response of a quantum Hall system has specific plateaus feature. • This effect remains robust against the significant broadening of Landau levels. • It can be observed via the third harmonic signal and the nonlinear Faraday effect.

  7. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran; El Sayed, Tamer S.

    2012-01-01

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer

  8. Effective response of nonlinear cylindrical coated composites under external AC and DC electric field

    International Nuclear Information System (INIS)

    Yu-Yan, Shen; Xiao-Gang, Chen; Wei, Cui; Yan-Hua, Hao; Qian-Qian, Li

    2009-01-01

    This paper uses the perturbation method to study effective response of nonlinear cylindrical coated composites. Under the external AC and DC electric field E a (1 + sin ωt), the local potentials of composites at all harmonic frequencies are induced. An effective nonlinear response to composite is given for the cylindrical coated inclusions in the dilute limit. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Experiments in nonlinear dynamics using control-based continuation: Tracking stable and unstable response curves

    DEFF Research Database (Denmark)

    Bureau, Emil; Schilder, Frank; Santos, Ilmar

    2014-01-01

    We show how to implement control-based continuation in a nonlinear experiment using existing and freely available software. We demonstrate that it is possible to track the complete frequency response, including the unstable branches, for a harmonically forced impact oscillator.......We show how to implement control-based continuation in a nonlinear experiment using existing and freely available software. We demonstrate that it is possible to track the complete frequency response, including the unstable branches, for a harmonically forced impact oscillator....

  10. Tracing the transition of a macro electron shuttle into nonlinear response

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chulki [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136791 (Korea, Republic of); Prada, Marta [I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstr. 9, Hamburg 20355 (Germany); Qin, Hua [Key Laboratory of Nanodevices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Industrial Park, Suzhou City, Jiangsu 215123 (China); Kim, Hyun-Seok [Division of Electronics and Electrical Engineering, Dongguk University-Seoul, 100715 Seoul (Korea, Republic of); Blick, Robert H., E-mail: rblick@physnet.uni-hamburg.de [Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin-53706 (United States); Center for Hybrid Nanostructures, Universität Hamburg, Jungiusstr. 11c, Hamburg 20355 (Germany); Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Dr. Madison, Wisconsin-53706 (United States)

    2015-02-09

    We present a study on a macroscopic electron shuttle in the transition from linear to nonlinear response. The shuttle consists of a classical mechanical pendulum situated between two capacitor plates. The metallic pendulum enables mechanical transfer of electrons between the plates, hence allowing to directly trace electron shuttling in the time domain. By applying a high voltage to the plates, we drive the system into a controlled nonlinear response, where we observe period doubling.

  11. Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole

    2011-01-01

    It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is ab...... to perform accurate response prediction much faster than the corresponding finite element model. Initial result indicate a reduction in cpu time by two orders of magnitude....

  12. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.; Karakassides, Michael A.; Kouloumpis, Antonios; Gournis, Dimitrios; Bakandritsos, Aristides; Papagiannouli, Irene; Aloukos, Panagiotis; Couris, Stelios; Hola, Katerina; Zboril, Radek; Krysmann, Marta; Giannelis, Emmanuel P.

    2013-01-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  13. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2013-09-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  14. Analysis and Implementation of Nonlinear Transducer Response over a Wider Response Range

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2008-03-01

    Full Text Available In today’s automation systems transducers are making core elements in the instruments and the circuits used for measurement, control and industrial applications. The task of a transducer is to reproduce a physical quantity as an electrical signal which with the help of conditioning circuits, is transformed into a form that suits a corresponding ADC requirement before a digital equivalent output of the required physical quantity is produced. In the most ideal cases a digital quantity is a true replica of the physical quantity when the transducer has got a linear response. However, in most of the cases the transducers characteristics are nonlinear, and hence at very points along the whole range of the transducer characteristics, the corresponding digital output is an exact replica of the concerned physical parameter. This work is about how a physical read more accurately in the case of nonlinear sensor characteristics, and then a microcontroller is programmed with the same technique while reading from an input over the entire range. The data of the microcontroller reading shows very closely matched with the actual sensors response. Further, the reading error is considerably reduced to within 10 % of the actual physical which shows the utility of the technique in very sensitive applications.

  15. The nonlinear response of the complex structural system in nuclear reactors using dynamic substructure method

    International Nuclear Information System (INIS)

    Zheng, Z.C.; Xie, G.; Du, Q.H.

    1987-01-01

    Because of the existence of nonlinear characteristics in practical engineering structures, such as large steam turbine-foundation system and offshore platform, it is necessary to predict nonlinear dynamic responses for these very large and complex structural systems subjected extreme load. Due to the limited storage and high executing cost of computers, there are still some difficulties in the analysis for such systems although the traditional finite element methods provide basic available methods to the problems. The dynamic substructure methods, which were developed as a branch of general structural dynamics in the past more than 20 years and have been widely used from aircraft, space vehicles to other mechanical and civil engineering structures, present a powerful method to the analysis of very large structural systems. The key to success is due to the considerable reduction in the number of degrees of freedom while not changing the physical essence of the problems investigated. The dynamic substructure method has been extended to nonlinear system and applicated to the analysis of nonlinear dynamic response of an offshore platform by Z.C. Zheng, et al. (1983, 1985a, b, c). In this paper, the method is presented to analyze dynamic responses of the systems contained intrinsic nonlinearities and with nonlinear attachments and nonlinear supports of nuclear structural systems. The efficiency of the method becomes more clear for nonlinear dynamic problems due to the adoption of iterating processes. For simplicity, the analysis procedure is demonstrated briefly. The generalized substructure method of nonlinear systems is similar to linear systems, only the nonlinear terms are treated as pseudo-forces. Interface coordinates are classified into two categories, the connecting interface coordinates which connect with each other directly in the global system and the linking interface coordinates which link to each other through attachments. (orig./GL)

  16. The Impact of Dam-Reservoir-Foundation Interaction on Nonlinear Response of Concrete Gravity Dams

    International Nuclear Information System (INIS)

    Amini, Ali Reza; Motamedi, Mohammad Hossein; Ghaemian, Mohsen

    2008-01-01

    To study the impact of dam-reservoir-foundation interaction on nonlinear response of concrete gravity dams, a two-dimensional finite element model of a concrete gravity dam including the dam body, a part of its foundation and a part of the reservoir was made. In addition, the proper boundary conditions were used in both reservoir and foundation in order to absorb the energy of outgoing waves at the far end boundaries. Using the finite element method and smeared crack approach, some different seismic nonlinear analyses were done and finally, we came to a conclusion that the consideration of dam-reservoir-foundation interaction in nonlinear analysis of concrete dams is of great importance, because from the performance point of view, this interaction significantly improves the nonlinear response of concrete dams

  17. Nonlinear dynamics in ecosystem response to climatic change: Case studies and policy implications

    Science.gov (United States)

    Burkett, Virginia R.; Wilcox, Douglas A.; Stottlemyer, Robert; Barrow, Wylie; Fagre, Dan; Baron, Jill S.; Price, Jeff; Nielsen, Jennifer L.; Allen, Craig D.; Peterson, David L.; Ruggerone, Greg; Doyle, Thomas

    2005-01-01

    Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate can lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear.

  18. Experimental and theoretical studies of spectral alteration in ultrasonic waves resulting from nonlinear elastic response in rock

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr. [Los Alamos National Lab., NM (United States)

    1993-11-01

    Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.

  19. Experimental and theoretical studies of spectral alteration in ultrasonic waves resulting from nonlinear elastic response in rock

    International Nuclear Information System (INIS)

    Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.

    1993-01-01

    Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime

  20. Nonlinear laser pulse response in a crystalline lens.

    Science.gov (United States)

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.

  1. Nonlinear ecosystem services response to groundwater availability under climate extremes

    Science.gov (United States)

    Qiu, J.; Zipper, S. C.; Motew, M.; Booth, E.; Kucharik, C. J.; Steven, L. I.

    2017-12-01

    Depletion of groundwater has been accelerating at regional to global scales. Besides serving domestic, industrial and agricultural needs, in situ groundwater is also a key control on biological, physical and chemical processes across the critical zone, all of which underpin supply of ecosystem services essential for humanity. While there is a rich history of research on groundwater effects on subsurface and surface processes, understanding interactions, nonlinearity and feedbacks between groundwater and ecosystem services remain limited, and almost absent in the ecosystem service literature. Moreover, how climate extremes may alter groundwater effects on services is underexplored. In this research, we used a process-based ecosystem model (Agro-IBIS) to quantify groundwater effects on eight ecosystem services related to food, water and biogeochemical processes in an urbanizing agricultural watershed in the Midwest, USA. We asked: (1) Which ecosystem services are more susceptible to shallow groundwater influences? (2) Do effects of groundwater on ecosystem services vary under contrasting climate conditions (i.e., dry, wet and average)? (3) Where on the landscape are groundwater effects on ecosystem services most pronounced? (4) How do groundwater effects depend on water table depth? Overall, groundwater significantly impacted all services studied, with the largest effects on food production, water quality and quantity, and flood regulation services. Climate also mediated groundwater effects with the strongest effects occurring under dry climatic conditions. There was substantial spatial heterogeneity in groundwater effects across the landscape that is driven in part by spatial variations in water table depth. Most ecosystem services responded nonlinearly to groundwater availability, with most apparent groundwater effects occurring when the water table is shallower than a critical depth of 2.5-m. Our findings provide compelling evidence that groundwater plays a vital

  2. The non-linear response of the magnetosphere: 30 October 1978

    International Nuclear Information System (INIS)

    Price, C.P.; Prichard, D.

    1993-01-01

    The authors address the question of whether the response of the earth magnetosphere to the solar wind can be viewed as a nonlinear phenomena, rather than a linear response. The difficulty in answering this question is that the driving function, namely the solar wind, is very aperiodic, and it is difficult to argue that the system has time to go to any sort of a steady state in response to the driving force, prior to its making another random change. The application of nonlinear analysis methods in the face of this type of system is very limited. The authors pick a particular day, namely October 30, 1978, when the solar wind was very uniform for an extended period of time, and there is the possibility the system could converge to some type of strange attractor state within this period. They look at the auroral electrojet as a measure of the potential nonlinear response of the magnetosphere, and apply both nonlinear and linear analysis procedures to the data to try to determine if the data would support a nonlinear response of the magnetosphere to the solar wind driver, taken as the product of the solar wind speed v, and the southward component of the interplanetary magnetic field B s

  3. Particle separations by electrophoretic techniques

    International Nuclear Information System (INIS)

    Ballou, N.E.; Petersen, S.L.; Ducatte, G.R.; Remcho, V.T.

    1996-03-01

    A new method for particle separations based on capillary electrophoresis has been developed and characterized. It uniquely separates particles according to their chemical nature. Separations have been demonstrated with chemically modified latex particles and with inorganic oxide and silicate particles. Separations have been shown both experimentally and theoretically to be essentially independent of particle size in the range of about 0.2 μm to 10 μm. The method has been applied to separations of U0 2 particles from environmental particulate material. For this, an integrated method was developed for capillary electrophoretic separation, collection of separated fractions, and determinations of U0 2 and environmental particles in each fraction. Experimental runs with the integrated method on mixtures of UO 2 particles and environmental particulate material demonstrated enrichment factors of 20 for UO 2 particles in respect to environmental particles in the U0 2 containing fractions. This enrichment factor reduces the costs and time for processing particulate samples by the lexan process by a factor of about 20

  4. Automated Parallel Capillary Electrophoretic System

    Science.gov (United States)

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  5. Predicting tensorial electrophoretic effects in asymmetric colloids

    Science.gov (United States)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  6. Nonlinear dynamics of cortical responses to color in the human cVEP.

    Science.gov (United States)

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2017-09-01

    The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.

  7. A novel method for the preparation of electrophoretic display microcapsules

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao-Meng; He, Jing; Liu, Sheng-Yun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Le, Yuan, E-mail: leyuan@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-07-01

    Highlights: • The electrophoretic display microcapsules were prepared by coaxial jet method aided by gas spray. • The positions of inner tube, liquid and gas flow rate of the process were investigated. • The size and shell thickness of the prepared microcapsules were controllable. • The prepared microcapsules had high coating ratio and exhibit reversible response to DC field. - Abstract: The narrow distributed electrophoretic display microcapsules containing electrophoretic ink were prepared using coaxial jet method aided by gas spray. Experimental results showed the size and shell thickness of the microcapsules could be controlled by adjusting flow rates of core and shell fluids as well as gas. The as-prepared white and red microcapsules, with average size of 100 and 200 μm respectively, had high coating ratio (above 90%) and exhibited reversible response to DC electric field. Compared with the approach of other microencapsulation methods, the new technique not only has a simple procedure but also provides a more effective way of size control. This novel method is expected to prepare microcapsules with potential application in the fields of electronic paper and other material science.

  8. Effects of structural nonlinearity and foundation sliding on probabilistic response of a nuclear structure

    International Nuclear Information System (INIS)

    Hashemi, Alidad; Elkhoraibi, Tarek; Ostadan, Farhang

    2015-01-01

    Highlights: • Probabilistic SSI analysis including structural nonlinearity and sliding are shown. • Analysis is done for a soil and a rock site and probabilistic demands are obtained. • Structural drift ratios and In-structure response spectra are evaluated. • Structural nonlinearity significantly impacts local demands in the structure. • Sliding generally reduces seismic demands and can be accommodated in design. - Abstract: This paper examines the effects of structural nonlinearity and foundation sliding on the results of probabilistic structural analysis of a typical nuclear structure where structural nonlinearity, foundation sliding and soil-structure interaction (SSI) are explicitly included. The evaluation is carried out for a soil and a rock site at 10"4, 10"5, and 10"6 year return periods (1E − 4, 1E − 5, and 1E − 6 hazard levels, respectively). The input motions at each considered hazard level are deaggregated into low frequency (LF) and high frequency (HF) motions and a sample size of 30 is used for uncertainty propagation. The statistical distribution of structural responses including story drifts, and in-structure response spectra (ISRS) as well as foundation sliding displacements are examined. The probabilistic implementation of explicit structural nonlinearity and foundation sliding in combination with the SSI effects are demonstrated using nonlinear response history analysis (RHA) of the structure with the foundation motions obtained from elastic SSI analyses, which are applied as input to fixed-base inelastic analyses. This approach quantifies the expected structural nonlinearity and sliding for the particular structural configuration and provides a robust analytical basis for the estimation of the probabilistic distribution of selected demands parameters both at the design level and beyond design level seismic input. For the subject structure, the inclusion of foundation sliding in the analysis is found to have reduced both

  9. Unusual nonlinear absorption response of graphene oxide in the presence of a reduction process

    International Nuclear Information System (INIS)

    Karimzadeh, Rouhollah; Arandian, Alireza

    2015-01-01

    The nonlinear absorption responses of graphene, graphene oxide and reduced graphene oxide are investigated using the Z-scan technique and laser beams at 405, 532 and 635 nm in a continuous wave regime. Results show that graphene, graphene oxide and reduced graphene oxide do not show any open Z-scan signals at wavelengths of 532 and 635 nm. At the same time, fresh graphene oxide suspension is found to exhibit a nonlinear absorption process in the case of a laser light at 405 nm. Moreover, it can be observed that the reduction of graphene oxide by 405 nm laser irradiation decreases its nonlinear absorption value significantly. These findings highlight the important role of the reduction process on the nonlinear absorption performance of graphene oxide. (letter)

  10. Alkali-Responsive Absorption Spectra and Third-Order Optical Nonlinearities of Imino Squaramides

    International Nuclear Information System (INIS)

    Li Zhong-Yu; Xu Song; Zhou Xin-Yu; Zhang Fu-Shi

    2012-01-01

    Third-order optical nonlinearities and dynamic responses of two imino squaramides under neutral and base conditions were studied using the femtosecond degenerate four-wave mixing technique at 800 nm. Ultrafast optical responses have been observed and the magnitude of the second-order hyperpolarizabilities of the squaramides has been measured to be as large as 10 −31 esu. The absorption spectra, color of solution, and third-order optical nonlinearities of two imino squaramides change with the addition of sodium hydroxide. The γ value under the base condition for each dye is approximately 1.25 times larger than that under neutral conditions. (fundamental areas of phenomenology(including applications))

  11. A novel method to produce nonlinear empirical physical formulas for experimental nonlinear electro-optical responses of doped nematic liquid crystals: Feedforward neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Nihat, E-mail: nyildiz@cumhuriyet.edu.t [Cumhuriyet University, Faculty of Science and Literature, Department of Physics, 58140 Sivas (Turkey); San, Sait Eren; Okutan, Mustafa [Department of Physics, Gebze Institute of Technology, P.O. Box 141, Gebze 41400, Kocaeli (Turkey); Kaya, Hueseyin [Cumhuriyet University, Faculty of Science and Literature, Department of Physics, 58140 Sivas (Turkey)

    2010-04-15

    Among other significant obstacles, inherent nonlinearity in experimental physical response data poses severe difficulty in empirical physical formula (EPF) construction. In this paper, we applied a novel method (namely layered feedforward neural network (LFNN) approach) to produce explicit nonlinear EPFs for experimental nonlinear electro-optical responses of doped nematic liquid crystals (NLCs). Our motivation was that, as we showed in a previous theoretical work, an appropriate LFNN, due to its exceptional nonlinear function approximation capabilities, is highly relevant to EPF construction. Therefore, in this paper, we obtained excellently produced LFNN approximation functions as our desired EPFs for above-mentioned highly nonlinear response data of NLCs. In other words, by using suitable LFNNs, we successfully fitted the experimentally measured response and predicted the new (yet-to-be measured) response data. The experimental data (response versus input) were diffraction and dielectric properties versus bias voltage; and they were all taken from our previous experimental work. We conclude that in general, LFNN can be applied to construct various types of EPFs for the corresponding various nonlinear physical perturbation (thermal, electronic, molecular, electric, optical, etc.) data of doped NLCs.

  12. A novel method to produce nonlinear empirical physical formulas for experimental nonlinear electro-optical responses of doped nematic liquid crystals: Feedforward neural network approach

    International Nuclear Information System (INIS)

    Yildiz, Nihat; San, Sait Eren; Okutan, Mustafa; Kaya, Hueseyin

    2010-01-01

    Among other significant obstacles, inherent nonlinearity in experimental physical response data poses severe difficulty in empirical physical formula (EPF) construction. In this paper, we applied a novel method (namely layered feedforward neural network (LFNN) approach) to produce explicit nonlinear EPFs for experimental nonlinear electro-optical responses of doped nematic liquid crystals (NLCs). Our motivation was that, as we showed in a previous theoretical work, an appropriate LFNN, due to its exceptional nonlinear function approximation capabilities, is highly relevant to EPF construction. Therefore, in this paper, we obtained excellently produced LFNN approximation functions as our desired EPFs for above-mentioned highly nonlinear response data of NLCs. In other words, by using suitable LFNNs, we successfully fitted the experimentally measured response and predicted the new (yet-to-be measured) response data. The experimental data (response versus input) were diffraction and dielectric properties versus bias voltage; and they were all taken from our previous experimental work. We conclude that in general, LFNN can be applied to construct various types of EPFs for the corresponding various nonlinear physical perturbation (thermal, electronic, molecular, electric, optical, etc.) data of doped NLCs.

  13. On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2011-01-01

    Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.

  14. ON-LINE NONLINEAR CHROMATICITY CORRECTION USING OFF-MOMENTUM TUNE RESPONSE MATRIX

    International Nuclear Information System (INIS)

    LUO, Y.; FISCHER, W.; MALISKY, N.; TEPIKIAN, S.; TROBJEVIC, D.

    2007-01-01

    In this article, we propose a method for the online nonlinear chromaticity correction at store in the Relativistic Heavy Ion Collider (RHIC). With 8 arc sextupole families in each RHIC ring, the nonlinear chromaticities can be minimized online by matching the off-momentum tunes onto the wanted tunes given by the linear chromaticities. The Newton method is used for this multi-dimensional nonlinear optimization, where the off-momentum tune response matrix with respect to sextupole strength changes is adopted. The off-momentum tune response matrix can be calculated with the online accelerator optics model or directly measured with the real beam. In this article, the correction algorithm for the RHIC is presented. Simulations are also carried out to verify the method. The preliminary results from the beam experiments taken place in the RHIC 2007 Au run are reviewed

  15. Nonlinear optics response of semiconductor quantum wells under high magnetic fields

    International Nuclear Information System (INIS)

    Chemla, D.S.

    1993-07-01

    Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW's as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H → ∞. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed

  16. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)

    2013-11-14

    The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.

  17. Nonlinear response in runoff magnitude to fluctuating rain patterns.

    Science.gov (United States)

    Curtu, R; Fonley, M

    2015-03-01

    The runoff coefficient of a hillslope is a reliable measure for changes in the streamflow response at the river link outlet. A high runoff coefficient is a good indicator of the possibility of flash floods. Although the relationship between runoff coefficient and streamflow has been the subject of much study, the physical mechanisms affecting runoff coefficient including the dependence on precipitation pattern remain open topics for investigation. In this paper, we analyze a rainfall-runoff model at the hillslope scale as that hillslope is forced with different rain patterns: constant rain and fluctuating rain with different frequencies and amplitudes. When an oscillatory precipitation pattern is applied, although the same amount of water may enter the system, its response (measured by the runoff coefficient) will be maximum for a certain frequency of precipitation. The significant increase in runoff coefficient after a certain pattern of rainfall can be a potential explanation for the conditions preceding flash-floods.

  18. Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli

    Science.gov (United States)

    Aerts, Johan

    The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and

  19. Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis

    Science.gov (United States)

    Rahman, M. A.; Ahmed, U.; Uddin, M. S.

    2013-08-01

    A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement

  20. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  1. Dynamic Response of Non-Linear Inelsatic Systems to Poisson-Driven Stochastic Excitations

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Iwankiewicz, R.

    of an equivalent linearization techni que and substituting the non-analytical non-linearity in the original system by the cubic form in the pertinent state variables. The response moments are evaluated for the equivalent systems with the help of a generalized Ito's differential rule. The analytical results...

  2. Stability of abstract nonlinear nonautonomous differential-delay equations with unbounded history-responsive operators

    Science.gov (United States)

    Gil', M. I.

    2005-08-01

    We consider a class of nonautonomous functional-differential equations in a Banach space with unbounded nonlinear history-responsive operators, which have the local Lipshitz property. Conditions for the boundedness of solutions, Lyapunov stability, absolute stability and input-output one are established. Our approach is based on a combined usage of properties of sectorial operators and spectral properties of commuting operators.

  3. Nonlinear optical response in condensed phases : A microscopic theory using the multipolar Hamiltonian

    NARCIS (Netherlands)

    Knoester, Jasper; Mukamel, Shaul

    1990-01-01

    A general scheme is presented for calculating the nonlinear optical response in condensed phases that provides a unified picture of excitons, polaritons, retardation, and local-field effects in crystals and in disordered systems. A fully microscopic starting point is taken by considering the

  4. Non-linear wave loads and ship responses by a time-domain strip theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    . Based on this time-domain strip theory, an efficient non-linear hydroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented as a Timoshenko beam. Numerical calculations are presented for the S175 Containership...

  5. Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    . Based on this time-domain strip theory, an efficient non-linear hyroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented by the Timoshenko beam theory. Numerical calculations are presented for the S175...

  6. Nonlinear electrostrictive lattice response of EuTiO3

    Science.gov (United States)

    Pappas, P.; Calamiotou, M.; Köhler, J.; Bussmann-Holder, A.; Liarokapis, E.

    2017-07-01

    An epitaxial EuTiO3 (ETO) film grown on the SrTiO3 substrate was studied at room temperature with synchrotron XRD and in situ application of an electric field (nominally up to 7.8 kV/cm) in near grazing incidence geometry, in order to monitor the response of the lattice to the field. 2D diffraction images show that apparently misoriented coherently diffracting domains are present close to the surface whereas the film diffracts more as a single crystal towards the interface. Diffraction intensity profiles recorded from the near surface region of the EuTiO3 film showed systematic modifications upon the application of the electric field, indicating that at a critical electric field (nominally above 3.1 kV/cm), there is a clear change in the lattice response to the field, which was much stronger when the field was almost parallel to the diffraction vector. The data suggest that the ETO film, nominally paraelectric at room temperature, transforms under the application of a critical electric field to piezoelectric in agreement with a theoretical analysis based on a double-well potential. In order to exclude effects arising from the substrate, this has been investigated separately and shown not to be affected by the field.

  7. Nonlinearities in the response of beam position monitors

    International Nuclear Information System (INIS)

    Assmann, R.; Dehning, B.; Matheson, J.; Prochnow, J.

    2000-01-01

    At the LEP e + /e - collider at CERN, Geneva, a Spectrometer is used to determine the beam energy with a relative accuracy of 10 -4 .The Spectrometer measures the change in bending angle in a dipole magnet, the beam trajectory being obtained using beam position monitors (BPMs), which must have an accuracy close to 1 μm in order to achieve the desired precision. The BPMs used feature an aluminum block with an elliptical aperture and capacitive pickup electrodes. The response depends on the electrode geometry and also on the shape of the monitor aperture. In addition, the size of the beam itself contributes if the beam is off-center. The beam size varies according to the beta and dispersion functions at the Spectrometer, so that each BPM may exhibit a systematic shift of the measured beam position. We have investigated the implications of such shifts on the performance of the Spectrometer. We present analytical results, a computer model of the BPM response, and comparison with measurements. The model suggests strategies such as beam-based alignment to minimize the systematic effects arising from the BPMs

  8. Seismic response of the 'Cut-and Cover' type reactor containment considering nonlinear soil behavior

    International Nuclear Information System (INIS)

    El-Tahan, H.; Reddy, D.V.

    1979-01-01

    This paper describes some parametric studies of dynamic soil-structure interaction for the 'cut-and-cover' reactor concept. The dynamic loading considered is a horizontal earthquake motion. The high frequency ranges, which must be considered in the study of soil-structure interaction for nuclear power plants, and the nonlinearity of soil behavior during strong earthquakes are adequately taken into account. Soil nonlinearity is accounted for in an approximate manner using a combination of the 'equivalent linear method' and the method of complex response with complex moduli. The structure considered is a reinforced concrete containment for a 1100 - MWe power plant, buried in a dense sand medium. (orig.)

  9. Identifying the nonlinear mechanical behaviour of micro-speakers from their quasi-linear electrical response

    Science.gov (United States)

    Zilletti, Michele; Marker, Arthur; Elliott, Stephen John; Holland, Keith

    2017-05-01

    In this study model identification of the nonlinear dynamics of a micro-speaker is carried out by purely electrical measurements, avoiding any explicit vibration measurements. It is shown that a dynamic model of the micro-speaker, which takes into account the nonlinear damping characteristic of the device, can be identified by measuring the response between the voltage input and the current flowing into the coil. An analytical formulation of the quasi-linear model of the micro-speaker is first derived and an optimisation method is then used to identify a polynomial function which describes the mechanical damping behaviour of the micro-speaker. The analytical results of the quasi-linear model are compared with numerical results. This study potentially opens up the possibility of efficiently implementing nonlinear echo cancellers.

  10. Nonlinear disruption of ecological interactions in response to nitrogen deposition.

    Science.gov (United States)

    Ochoa-Hueso, Raúl

    2016-10-01

    Global environmental change (GEC) is affecting species interactions and causing a rapid decline in biodiversity. In this study, I present a new Ecosystem Disruption Index to quantify the impacts of simulated nitrogen (N) deposition (0, 10, 20, and 50 kg N·ha -1 ·yr -1  + 6-7 kg N·ha -1 ·yr -1 background) on abiotic and biotic ecological interactions. This comparative index is based on pairwise linear and quadratic regression matrices. These matrices, calculated at the N treatment level, were constructed using a range of abiotic and biotic ecosystem constituents: soil pH, shrub cover, and the first component of several separate principal component analyses using soil fertility data (total carbon and N) and community data (annual plants, microorganisms, biocrusts, edaphic fauna) for a total of seven ecosystem constituents. Four years of N fertilization in a semiarid shrubland completely disrupted the network of ecological interactions, with a greater proportional increase in ecosystem disruption at low N addition levels. Biotic interactions, particularly those involving microbes, shrubs, and edaphic fauna, were more prone to be lost in response to N, whereas interactions involving soil properties were more resilient. In contrast, edaphic fauna was the only group directly affected by N addition, with mites and collembolans increasing their abundance with up to 20 kg N·ha -1 ·yr -1 and then decreasing, which supports the idea of higher-trophic-level organisms being more sensitive to disturbance due to more complex links with other ecosystem constituents. Future experimental studies evaluating the impacts of N deposition, and possibly other GEC drivers, on biodiversity and biotic and abiotic interactions may be able to explain results more effectively in the context of ecological networks as a key feature of ecosystem sensitivity. © 2016 by the Ecological Society of America.

  11. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction

    International Nuclear Information System (INIS)

    Bhaumik, Lopamudra; Raychowdhury, Prishati

    2013-01-01

    Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S a (T 1 )is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure

  12. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)

    2013-12-15

    Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.

  13. Nonlinear seismic response analysis of an embedded reactor building based on the substructure approach

    International Nuclear Information System (INIS)

    Hasegawa, M.; Ichikawa, T.; Nakai, S.; Watanabe, T.

    1987-01-01

    A practical method to calculate the elasto-plastic seismic response of structures considering the dynamic soil-structure interaction is presented. The substructure technique in the time domain is utilized in the proposed method. A simple soil spring system with the coupling effects which are usually evaluated by the impedance matrix is introduced to consider the soil-structure interaction for embedded structures. As a numerical example, the response of a BWR-MARK II type reactor building embedded in the layered soil is calculated. The accuracy of the present method is verified by comparing its numerical results with exact solutions. The nonlinear behaivor and the soil-structure interaction effects on the response of the reactor building are also discussed in detail. It is concluded that the present method is effective for the aseismic design considering both the material nonlinearity of the nuclear reactor building and the dynamic soil-structure interaction. (orig.)

  14. A Two-Step Hybrid Approach for Modeling the Nonlinear Dynamic Response of Piezoelectric Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Claudio Maruccio

    2018-01-01

    Full Text Available An effective hybrid computational framework is described here in order to assess the nonlinear dynamic response of piezoelectric energy harvesting devices. The proposed strategy basically consists of two steps. First, fully coupled multiphysics finite element (FE analyses are performed to evaluate the nonlinear static response of the device. An enhanced reduced-order model is then derived, where the global dynamic response is formulated in the state-space using lumped coefficients enriched with the information derived from the FE simulations. The electromechanical response of piezoelectric beams under forced vibrations is studied by means of the proposed approach, which is also validated by comparing numerical predictions with some experimental results. Such numerical and experimental investigations have been carried out with the main aim of studying the influence of material and geometrical parameters on the global nonlinear response. The advantage of the presented approach is that the overall computational and experimental efforts are significantly reduced while preserving a satisfactory accuracy in the assessment of the global behavior.

  15. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    Science.gov (United States)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  16. Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations.

    Science.gov (United States)

    Happee, Riender; de Vlugt, Erwin; van Vliet, Bart

    2015-01-01

    Ample evidence exists regarding the nonlinearity of the neuromuscular system but linear models are widely applied to capture postural dynamics. This study quantifies the nonlinearity of human arm postural dynamics applying 2D continuous force perturbations (0.2-40 Hz) inducing three levels of hand displacement (5, 15, 45 mm RMS) followed by force-pulse perturbations inducing large hand displacements (up to 250 mm) in a position task (PT) and a relax task (RT) recording activity of eight shoulder and elbow muscles. The continuous perturbation data were used to analyze the 2D endpoint dynamics in the frequency domain and to identify reflexive and intrinsic parameters of a linear neuromuscular shoulder-elbow model. Subsequently, it was assessed to what extent the large displacements in response to force pulses could be predicted from the 'small amplitude' linear neuromuscular model. Continuous and pulse perturbation responses with varying amplitudes disclosed highly nonlinear effects. In PT, a larger continuous perturbation induced stiffening with a factor of 1.5 attributed to task adaptation evidenced by increased co-contraction and reflexive activity. This task adaptation was even more profound in the pulse responses where reflexes and displacements were strongly affected by the presence and amplitude of preceding continuous perturbations. In RT, a larger continuous perturbation resulted in yielding with a factor of 3.8 attributed to nonlinear mechanical properties as no significant reflexive activity was found. Pulse perturbations always resulted in yielding where a model fitted to the preceding 5-mm continuous perturbations predicted only 37% of the recorded peak displacements in RT and 79% in PT. This demonstrates that linear neuromuscular models, identified using continuous perturbations with small amplitudes, strongly underestimate displacements in pulse-shaped (e.g., impact) loading conditions. The data will be used to validate neuromuscular models including

  17. Nonlinear Site Response Validation Studies Using KIK-net Strong Motion Data

    Science.gov (United States)

    Asimaki, D.; Shi, J.

    2014-12-01

    Earthquake simulations are nowadays producing realistic ground motion time-series in the range of engineering design applications. Of particular significance to engineers are simulations of near-field motions and large magnitude events, for which observations are scarce. With the engineering community slowly adopting the use of simulated ground motions, site response models need to be re-evaluated in terms of their capabilities and limitations to 'translate' the simulated time-series from rock surface output to structural analyses input. In this talk, we evaluate three one-dimensional site response models: linear viscoelastic, equivalent linear and nonlinear. We evaluate the performance of the models by comparing predictions to observations at 30 downhole stations of the Japanese network KIK-Net that have recorded several strong events, including the 2011 Tohoku earthquake. Velocity profiles are used as the only input to all models, while additional parameters such as quality factor, density and nonlinear dynamic soil properties are estimated from empirical correlations. We quantify the differences of ground surface predictions and observations in terms of both seismological and engineering intensity measures, including bias ratios of peak ground response and visual comparisons of elastic spectra, and inelastic to elastic deformation ratio for multiple ductility ratios. We observe that PGV/Vs,30 — as measure of strain— is a better predictor of site nonlinearity than PGA, and that incremental nonlinear analyses are necessary to produce reliable estimates of high-frequency ground motion components at soft sites. We finally discuss the implications of our findings on the parameterization of nonlinear amplification factors in GMPEs, and on the extensive use of equivalent linear analyses in probabilistic seismic hazard procedures.

  18. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?

    Science.gov (United States)

    Iler, Amy M.; Høye, Toke T.; Inouye, David W.; Schmidt, Niels M.

    2013-01-01

    Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974–2011) and Zackenberg, Greenland (1996–2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions. PMID:23836793

  19. ELECTROPHORETIC MOBILITY OF MYCOBACTERIUM AVIUM COMPLEX ORGANISMS

    Science.gov (United States)

    The electrophoretic mobilities (EPMs) of thirty Mycobacterium avium Complex (MAC) organisms were measured. The EPMs of fifteen clinical isolates ranged from -1.9 to -5.0 µm cm V-1s-1, and the EPMs of fifteen environmental isolates ranged from -1...

  20. Nonlinear mechanical response of the extracellular matrix: learning from articular cartilage

    Science.gov (United States)

    Kearns, Sarah; Das, Moumita

    2015-03-01

    We study the mechanical structure-function relations in the extracellular matrix (ECM) with focus on nonlinear shear and compression response. As a model system, our study focuses on the ECM in articular cartilage tissue which has two major mechanobiological components: a network of the biopolymer collagen that acts as a stiff, reinforcing matrix, and a flexible aggrecan network that facilitates deformability. We model this system as a double network hydrogel made of interpenetrating networks of stiff and flexible biopolymers respectively. We study the linear and nonlinear mechanical response of the model ECM to shear and compression forces using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings.

  1. Nonlinear seismic response analysis of embedded reactor buildings based on the substructure approach in time domain

    International Nuclear Information System (INIS)

    Hasegawa, M.; Nakai, S.; Watanabe, T.

    1985-01-01

    A practical method for elasto-plastic seismic response analysis is described under considerations of nonlinear material law of a structure and dynamic soil-structure interaction. The method is essentially based on the substructure approach of time domain analysis. Verification of the present method is carried out for typical BWR-MARK II type reactor building which is embedded in a soil, and the results are compared with those of the frequency response analysis which gives good accuracy for linear system. As a result, the present method exhibits sufficient accuracy. Furthermore, elasto-plastic analyses considering the soil-structure interaction are made as an application of the present method, and nonlinear behaviors of the structure and embedment effects are discussed. (orig.)

  2. Linear and nonlinear response matrix and its application to the SIS18 synchrotron

    International Nuclear Information System (INIS)

    Parfenova, Angelina

    2008-01-01

    This Thesis is dedicated to the numerical as well as the experimental study of beam dynamics in circular accelerators. The experimental part was undertaken in the SIS18 synchrotron. The detailed description of the experiments contained in this work can be considered as a starting point for future experiments and machine development. The work has the following structure. In Chapter 2 an overview of the GSI and FAIR accelerator facilities, and a general description of the SIS18 instrumentation related to the study of this work are given. The expected SIS18 performance in view of the upgrade program for FAIR project are outlined. The main beam dynamics issues connected with the purpose of this work are discussed. Chapter 3 is devoted to the study of linear beam dynamics in the SIS18. The resonance beam loss measurements were carried out with residual gas profile monitor in the SIS18 (Chapter 4). In the frame of this work a novel technique 'nonlinear tune response matrix method' to identify strengths, polarities and locations of nonlinear errors in circular accelerators is developed (Chapter 5). In the method the feed down effect of the nonlinear components at level of linear tune response to the closed-orbit change is explored. The closed-orbit change is introduced by varying correction steerers. The tune values are retrieved from the spectrum of coherent betatron oscillations excited by a fast kick. The theoretical background, the robustness of the method and numerical examples for the SIS18 using numerical library MICROMAP are presented. The technique to measure lattice nonlinearities was experimentally validated in the SIS18 where two normal as well as two skew sextupolar errors of the order of natural errors were reconstructed with a tolerant precision. It was shown how this technique can be applied to reconstruct sextupolar nonlinear errors in the complete machine. In Chapter 6 the main results and the conclusions of this work are outlined. (orig.)

  3. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy

    OpenAIRE

    Dondossola, Eleonora; Holzapfel, Boris M.; Alexander, Stephanie; Filippini, Stefano; Hutmacher, Dietmar W.; Friedl, Peter

    2016-01-01

    Implanted biomaterials often fail because they elicit a foreign body response (FBR) and concomitant fibrotic encapsulation. To design clinically relevant interference approaches, it is crucial to first examine the FBR mechanisms. Here, we report the development and validation of infrared-excited nonlinear microscopy to resolve the three-dimensional (3D) organization and fate of 3D-electrospun scaffolds implanted deep into the skin of mice, and the following step-wise FBR process. We observed ...

  4. Dynamic response analysis of block foundations with nonlinear dry friction mounting system to impact loads

    International Nuclear Information System (INIS)

    Zheng, Enlai; Zhu, Sihong; Zhou, Xinlong

    2014-01-01

    It is essential to establish a dynamic model to predict and evaluate the dynamic performance of a nonlinear dry friction mounting system during design procedure, when it is impossible to carry out the test of prototype. Unlike the conventional ideal dry friction model where the direction of dry friction force is always considered to be opposite to that of relative velocity, a new equivalent resistance model of dry friction force is proposed based on the bilinear hysteretic model by introducing a parameter g in this work. The equivalent resistance contains spring force and damping force, whose direction is not opposite to that of relative velocity. Then, a dynamic model of the block foundation with nonlinear dry friction mounting system is established. When the equivalent resistance is applied to the dynamic model, its dynamic responses are obtained under common practical forms of press loads: rectangular pulse, half-sine pulse, and triangular pulse. Compared to experimental results, the dynamic responses based on the equivalent resistance model are more consistent with the simulation results based on the ideal dry friction model and the validity of the equivalent resistance model for the bilinear hysteretic model in this work is verified. Furthermore, the effect of the pulse shape and pulse duration on the dynamic responses of the block foundation with nonlinear dry friction mounting system is investigated.

  5. On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites

    International Nuclear Information System (INIS)

    Fernández-Hernández, Roberto Carlos; Gleason-Villagran, Roberto; Rodríguez-Fernández, Luis; Crespo-Sosa, Alejandro; Cheang-Wong, Juan Carlos; López-Suárez, Alejandra; Oliver, Alicia; Reyes-Esqueda, Jorge Alejandro; Torres-Torres, Carlos; Rangel-Rojo, Raúl

    2012-01-01

    Au and Ag isotropic and anisotropic nanocomposites were prepared using the ion implantation technique. Their optical properties were studied at several wavelengths in the optical range 300–800 nm, across their plasmon resonances. The linear regime was characterized by measuring the absorption spectrum and the third-order nonlinear regime by means of the Z-scan technique using a tunable picosecond pulsed laser system (26 ps). Open-aperture Z-scan traces show a superposition of different optical nonlinear absorption (NLA) processes in the whole range studied. We associate these phenomena with the excitation of inter- and intra-band electronic transitions, which contribute with a positive sign to NLA, and to the formation of hot-electrons, which contribute with opposite sign to NLA. Closed-aperture traces for measuring nonlinear refraction (NLR) show different signs for Au and Ag samples, and a change of sign in Au is found when purely inter-band transitions are excited. In this work, for the appropriate wavelength, it is worth remarking on the free-electron response to the exciting light and its strong contribution to the nonlinear optical properties for low (intra-band) and high (hot-electrons) irradiances. (paper)

  6. Modeling Nonlinear Site Response Uncertainty in Broadband Ground Motion Simulations for the Los Angeles Basin

    Science.gov (United States)

    Assimaki, D.; Li, W.; Steidl, J. M.; Schmedes, J.

    2007-12-01

    The assessment of strong motion site response is of great significance, both for mitigating seismic hazard and for performing detailed analyses of earthquake source characteristics. There currently exists, however, large degree of uncertainty concerning the mathematical model to be employed for the computationally efficient evaluation of local site effects, and the site investigation program necessary to evaluate the nonlinear input model parameters and ensure cost-effective predictions; and while site response observations may provide critical constraints on interpretation methods, the lack of a statistically significant number of in-situ strong motion records prohibits statistical analyses to be conducted and uncertainties to be quantified based entirely on field data. In this paper, we combine downhole observations and broadband ground motion synthetics for characteristic site conditions the Los Angeles Basin, and investigate the variability in ground motion estimation introduced by the site response assessment methodology. In particular, site-specific regional velocity and attenuation structures are initially compiled using near-surface geotechnical data collected at downhole geotechnical arrays, inverse low-strain velocity and attenuation profiles at these sites obtained by inversion of weak motion records and the crustal velocity structure at the corresponding locations obtained from the Southern California Earthquake Centre Community Velocity Model. Successively, broadband ground motions are simulated by means of a hybrid low/high-frequency finite source model with correlated random parameters for rupture scenaria of weak, medium and large magnitude events (M =3.5-7.5). Observed estimates of site response at the stations of interest are first compared to the ensemble of approximate and incremental nonlinear site response models. Parametric studies are next conducted for each fixed magnitude (fault geometry) scenario by varying the source-to-site distance and

  7. Microscopic investigations of the terahertz and the extreme nonlinear optical response of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Golde, Daniel

    2010-06-22

    In the major part of this Thesis, we discuss the linear THz response of semiconductor nanostructures based on a microscopic theory. Here, two different problems are investigated: intersubband transitions in optically excited quantum wells and the THz plasma response of two-dimensional systems. In the latter case, we analyze the response of correlated electron and electron-hole plasmas. Extracting the plasma frequency from the linear response, we find significant deviations from the commonly accepted two-dimensional plasma frequency. Besides analyzing the pure plasma response, we also consider an intermediate regime where the response of the electron-hole plasma consists of a mixture of plasma contributions and excitonic transitions. A quantitative experiment-theory comparison provides novel insights into the behavior of the system at the transition from one regime to the other. The discussion of the intersubband transitions mainly focuses on the coherent superposition of the responses from true THz transitions and the ponderomotively accelerated carriers. We present a simple method to directly identify ponderomotive effects in the linear THz response. Apart from that, the excitonic contributions to intersubband transitions are investigated. The last part of the present Thesis deals with a completely different regime. Here, the extreme nonlinear optical response of low-dimensional semiconductor structures is discussed. Formally, extreme nonlinear optics describes the regime of light-matter interaction where the exciting field is strong enough such that the Rabi frequency is comparable to or larger than the characteristic transition frequency of the investigated system. Here, the Rabi frequency is given by the product of the electrical field strength and the dipole-matrix element of the respective transition. Theoretical investigations have predicted a large number of novel nonlinear effects arising for such strong excitations. Some of them have been observed in

  8. Time domain simulation of the response of geometrically nonlinear panels subjected to random loading

    Science.gov (United States)

    Moyer, E. Thomas, Jr.

    1988-01-01

    The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.

  9. Coupled large earthquakes in the Baikal rift system: Response to bifurcations in nonlinear resonance hysteresis

    Directory of Open Access Journals (Sweden)

    Anatoly V. Klyuchevskii

    2013-11-01

    Full Text Available The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation. The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS. The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes, proximal in time but distant in space, may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors. The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity, with the largest events occurring in pairs, one shortly after another, on two ends of the rift system and with couples of smaller events in the central part of the rift. The event couples appear as peaks of earthquake ‘migration’ rate with an approximately decadal periodicity. Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation. The new knowledge, with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis, may be of theoretical and practical value for earthquake prediction issues. Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region, i.e., there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.

  10. Fabrication and characterization of THUNDER actuators—pre-stress-induced nonlinearity in the actuation response

    International Nuclear Information System (INIS)

    Kim, Younghoon; Jiang, Qing; Cai, Ling; Usher, Timothy

    2009-01-01

    This paper documents an experimental and theoretical investigation into characterizing the mechanical configurations and performances of THUNDER actuators, a type of piezoelectric actuator known for their large actuation displacements, through fabrication, measurements and finite element analysis. Five groups of such actuators with different dimensions were fabricated using identical fabrication parameters. The as-fabricated arched configurations, resulting from the thermo-mechanical mismatch among the constituent layers, and their actuation performances were characterized using an experimental set-up based on a laser displacement sensor and through numerical simulations with ANSYS, a widely used commercial software program for finite element analysis. This investigation shows that the presence of large residual stresses within the piezoelectric ceramic layer, built up during the fabrication process, leads to significant nonlinear electromechanical coupling in the actuator response to the driving electric voltage, and it is this nonlinear coupling that is responsible for the large actuation displacements. Furthermore, the severity of the residual stresses, and thus the nonlinearity, increases with increasing substrate/piezoelectric thickness ratio and, to a lesser extent, with decreasing in-plane dimensions of the piezoelectric layer

  11. Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation

    International Nuclear Information System (INIS)

    Ji, J.C.; Hansen, Colin H.

    2005-01-01

    The trivial equilibrium of a nonlinear autonomous system with time delay may become unstable via a Hopf bifurcation of multiplicity two, as the time delay reaches a critical value. This loss of stability of the equilibrium is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. The resultant dynamic behaviour of the corresponding nonlinear non-autonomous system in the neighbourhood of the Hopf bifurcation is investigated based on the reduction of the infinite-dimensional problem to a four-dimensional centre manifold. As a result of the interaction between the Hopf bifurcating periodic solutions and the external periodic excitation, a primary resonance can occur in the forced response of the system when the forcing frequency is close to the Hopf bifurcating periodic frequency. The method of multiple scales is used to obtain four first-order ordinary differential equations that determine the amplitudes and phases of the phase-locked periodic solutions. The first-order approximations of the periodic solutions are found to be in excellent agreement with those obtained by direct numerical integration of the delay-differential equation. It is also found that the steady state solutions of the nonlinear non-autonomous system may lose their stability via either a pitchfork or Hopf bifurcation. It is shown that the primary resonance response may exhibit symmetric and asymmetric phase-locked periodic motions, quasi-periodic motions, chaotic motions, and coexistence of two stable motions

  12. Study of cumulative fatigue damage detection for used parts with nonlinear output frequency response functions based on NARMAX modelling

    Science.gov (United States)

    Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong

    2017-12-01

    Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.

  13. Arsenite Effects on Mitochondrial Bioenergetics in Human and Mouse Primary Hepatocytes Follow a Nonlinear Dose Response

    Directory of Open Access Journals (Sweden)

    Hemantkumar Chavan

    2017-01-01

    Full Text Available Arsenite is a known carcinogen and its exposure has been implicated in a variety of noncarcinogenic health concerns. Increased oxidative stress is thought to be the primary cause of arsenite toxicity and the toxic effect is thought to be linear with detrimental effects reported at all concentrations of arsenite. But the paradigm of linear dose response in arsenite toxicity is shifting. In the present study we demonstrate that arsenite effects on mitochondrial respiration in primary hepatocytes follow a nonlinear dose response. In vitro exposure of primary hepatocytes to an environmentally relevant, moderate level of arsenite results in increased oxidant production that appears to arise from changes in the expression and activity of respiratory Complex I of the mitochondrial proton circuit. In primary hepatocytes the excess oxidant production appears to elicit adaptive responses that promote resistance to oxidative stress and a propensity to increased proliferation. Taken together, these results suggest a nonlinear dose-response characteristic of arsenite with low-dose arsenite promoting adaptive responses in a process known as mitohormesis, with transient increase in ROS levels acting as transducers of arsenite-induced mitohormesis.

  14. Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, A. D.; Ferraro, N. M.; Lao, L. L.; Lanctot, M. J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Izzo, V. A. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Lazarus, E. A.; Hirshman, S. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Park, J.-K.; Lazerson, S.; Reiman, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Cooper, W. A. [Association Euratom-Confederation Suisse, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Turco, F. [Columbia University, 116th St and Broadway, New York, New York 10027 (United States)

    2013-05-15

    With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10{sup −3} relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.

  15. Nonlinear dynamic response of cantilever beam tip during atomic force microscopy (AFM) nanolithography of copper surface

    International Nuclear Information System (INIS)

    Yeh, Y-L; Jang, M-J; Wang, C-C; Lin, Y-P; Chen, K-S

    2008-01-01

    This paper investigates the nonlinear dynamic response of an atomic force microscope (AFM) cantilever beam tip during the nanolithography of a copper (Cu) surface using a high-depth feed. The dynamic motion of the tip is modeled using a combined approach based on Newton's law and empirical observations. The cutting force is determined from experimental observations of the piling height on the Cu surface and the rotation angle of the cantilever beam tip. It is found that the piling height increases linearly with the cantilever beam carrier velocity. Furthermore, the cantilever beam tip is found to execute a saw tooth motion. Both this motion and the shear cutting force are nonlinear. The elastic modulus in the y direction is variable. Finally, the velocity of the cantilever beam tip as it traverses the specimen surface has a discrete characteristic rather than a smooth, continuous profile

  16. Tridodecylamine, an efficient charge control agent in non-polar media for electrophoretic inks application

    Science.gov (United States)

    Noel, Amélie; Mirbel, Déborah; Cloutet, Eric; Fleury, Guillaume; Schatz, Christophe; Navarro, Christophe; Hadziioannou, Georges; CyrilBrochon

    2018-01-01

    In order to obtain efficient electrophoretic inks, Tridodecylamine (Dod3N), has been studied as charge control agent (CCA) in a non-polar paraffin solvent (Isopar G) for various inorganic pigments (TiO2 and Fe2O3). All hydrophobic mineral oxides, i.e. treated with octyltrimethoxysilane (C8) or dodecyltrimethoxysilane (C12), were found to be negatively charged in presence of Dod3N. The electrophoretic mobilities of inorganic pigments seemed to be strongly dependent of their isoelectric point (IEP) and also of the concentration of dod3N with an optimum range between 10 and 20 mM depending on the pigments. Finally, an electrophoretic ink constituted of hydrophobic mineral oxides in presence of Dod3N was tested in a device. Its efficiency as charge control agent to negatively charge hydrophobic particles was confirmed through good optical properties and fast response time (220 ms at 200 kV m-1).

  17. Combined effects of traveling seismic waves and soil nonlinearity on nuclear power plant response

    International Nuclear Information System (INIS)

    Lee, T.H.; Charman, C.M.

    1981-01-01

    The effects of ground motion nonuniformity on the seismic input have been actively studied in recent years by considering the passage of traveling seismic waves. These studies gave rise to a new class of soil-structure interaction problems in which the seismic input is modified as a result of the spatial variations of ground motion. The phenomena were usually studied by using the elastic half-space simulation or discrete spring-models for modeling the soil medium. Finite element methods were also used recently on a limited scope. Results obtained from these investigations are often manifested by an attenuation of translational excitation along with an addition of rotational ground motion input. The decrease in structural response resulting from the input loss in the translational component was often insignificant since the response reduction tends to be offset by the effects from rotational input. The traveling wave effects have, so far, been investigated within the framework of linear theory with soil nonlinearity ignored. Conversely, the incorporation of soil nonlinearity in soil-structure interaction analyses has been done without including wave effect. Seismic analyses considering the hysteretic behavior of soil have been performed using highly idealized models for steady-state solution. More elaborate nonlinear seismic models deal with only the strain-dependent soil modulus rather than the transient unloading-reloading type of hysteretic characteristics of soil under a time-function input of earthquake trace. Apparently, the traveling wave effect and soil nonlinearity have been separately treated in the past. The purpose of this paper is to demonstrate that these two major effects can be combined in one model such that the influence of wave passage is reflected through the hysteretic behavior of soil particles, and thereby achieving significant reduction in seismic loads. (orig./RW)

  18. Response statistics of rotating shaft with non-linear elastic restoring forces by path integration

    Science.gov (United States)

    Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael

    2017-07-01

    Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.

  19. Diamond electrophoretic microchips-Joule heating effects

    International Nuclear Information System (INIS)

    Karczemska, Anna T.; Witkowski, Dariusz; Ralchenko, Victor; Bolshakov, Andrey; Sovyk, Dmitry; Lysko, Jan M.; Fijalkowski, Mateusz; Bodzenta, Jerzy; Hassard, John

    2011-01-01

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare TM was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  20. Diamond electrophoretic microchips-Joule heating effects

    Energy Technology Data Exchange (ETDEWEB)

    Karczemska, Anna T., E-mail: anna.karczemska@p.lodz.pl [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Witkowski, Dariusz [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Ralchenko, Victor, E-mail: ralchenko@nsc.gpi.ru [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Bolshakov, Andrey; Sovyk, Dmitry [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Lysko, Jan M., E-mail: jmlysko@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Fijalkowski, Mateusz, E-mail: petr.louda@vslib.cz [Technical University of Liberec, Faculty of Mechanical Engineering (Czech Republic); Bodzenta, Jerzy, E-mail: jerzy.bodzenta@polsl.pl [Silesian University of Technology, Institute of Physics, 2 Krzywoustego str., 44-100 Gliwice (Poland); Hassard, John, E-mail: j.hassard@imperial.ac.uk [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    2011-03-15

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare{sup TM} was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  1. The electrophoretic mobility shift assay (EMSA)

    OpenAIRE

    sprotocols

    2015-01-01

    The electrophoretic mobility shift assay (EMSA), also known as “gel shift assay”, is used to examine the binding parameters and relative affinities of protein and DNA interactions. We produced recombinant CCA1 protein and tested its binding affinity for the promoter fragments that contain CBS (AAAAATCT) or evening element (EE, AAAATATCT) (1) using a modified procedure adopted from published protocols (2,3).

  2. Validation for chromatographic and electrophoretic methods

    OpenAIRE

    Ribani, Marcelo; Bottoli, Carla Beatriz Grespan; Collins, Carol H.; Jardim, Isabel Cristina Sales Fontes; Melo, Lúcio Flávio Costa

    2004-01-01

    The validation of an analytical method is fundamental to implementing a quality control system in any analytical laboratory. As the separation techniques, GC, HPLC and CE, are often the principal tools used in such determinations, procedure validation is a necessity. The objective of this review is to describe the main aspects of validation in chromatographic and electrophoretic analysis, showing, in a general way, the similarities and differences between the guidelines established by the dif...

  3. Dynamic buckling and nonlinear response of FBR main vessels under earthquake loading

    International Nuclear Information System (INIS)

    Hagiwara, Yutaka; Kawamoto, Yoji; Nakagawa, Masaki; Akiyama, Hiroshi.

    1991-01-01

    Pseudo-dynamic tests of cylindrical shells under high temperature were performed in order to study elasto-plastic shear-bending buckling and the nonlinear response of FBR main vessels under earthquake loading. The test results showed a response reduction effect due to pre-buckling plasticity, and a large seismic margin due to post-buckling energy absorption of the cylinders. A simple expression of the response reduction effect was proposed, as a contribution to the safe and effective seismic design of FBRs. Two methods for seismic margin evaluation were also proposed, and it was shown that appropriate seismic margins can be ensured, when the response reduction effect is incorporated into the seismic design. (author)

  4. On the Geometrically Nonlinear Elastic Response of Class θ = 1 Tensegrity Prisms

    Directory of Open Access Journals (Sweden)

    Ida Mascolo

    2018-03-01

    Full Text Available The present work studies the geometrically nonlinear response of class θ = 1 tensegrity prisms modeled as a collection of elastic springs reacting in tension (strings or cables or compression (bars, under uniform uniaxial loading. The incremental equilibrium equations of the structure are numerically solved through a path-following procedure, with the aim of modeling the mechanical behavior of the structure in the large displacement regime. Several numerical results are presented with reference to a variety of physical models, which use two different materials for the cables and the bars, and show different aspect ratios associated with either “standard” or “expanded” configurations. An experimental validation of the predicted constitutive response is conducted with reference to a “thick” and a “slender” model, observing rather good theory vs. experiment matching. The given numerical and experimental results highlight that the elastic response of the examined structures may switch from stiffening to softening, depending on the geometry of the system, the magnitude of the external load, and the applied prestress. The outcomes of the current study confirm previous literature results on the elastic response of minimal tensegrity prisms, and pave the way to the use of tensegrity systems as nonlinear spring units forming tunable mechanical metamaterials.

  5. A three-dimensional computer code for the nonlinear dynamic response of an HTGR core

    International Nuclear Information System (INIS)

    Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.

    1979-01-01

    A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged in layers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analytical study is directed towards an investigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathematical model which represents a vertical arrangement of layers of blocks. This comprises a 'block module' of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core. (orig.)

  6. Three-dimensional computer code for the nonlinear dynamic response of an HTGR core

    International Nuclear Information System (INIS)

    Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.

    1979-01-01

    A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged inlayers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analystical study is directed towards an invesstigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathemtical model which represents a vertical arrangement of layers of blocks. This comprises a block module of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core

  7. On the geometrically nonlinear elastic response of class θ = 1 tensegrity prisms

    Science.gov (United States)

    Mascolo, Ida; Amendola, Ada; Zuccaro, Giulio; Feo, Luciano; Fraternali, Fernando

    2018-03-01

    The present work studies the geometrically nonlinear response of class ϑ=1 tensegrity prisms modeled as a collection of elastic springs reacting in tension (strings or cables) or compression (bars), under uniform uniaxial loading. The incremental equilibrium equations of the structure are numerically solved through a path-following procedure, with the aim of modeling the mechanical behavior of the structure in the large displacement regime. Several numerical results are presented with reference to a variety of physical models, which use two different materials for the cables and the bars, and show different aspect ratios associated with either 'standard' or 'expanded' configurations. An experimental validation of the predicted constitutive response is conducted with reference to a 'thick' and a 'slender' model, observing rather good theory vs. experiment matching. The given numerical and experimental results highlight that the elastic response of the examined structures may switch from stiffening to softening, depending on the geometry of the system, the magnitude of the external load, and the applied prestress. The outcomes of the current study confirm previous literature results on the elastic response of minimal tensegrity prisms, and pave the way to the use of tensegrity systems as nonlinear spring units forming tunable mechanical metamaterials.

  8. Stochastic Parameter Estimation of Non-Linear Systems Using Only Higher Order Spectra of the Measured Response

    Science.gov (United States)

    Vasta, M.; Roberts, J. B.

    1998-06-01

    Methods for using fourth order spectral quantities to estimate the unknown parameters in non-linear, randomly excited dynamic systems are developed. Attention is focused on the case where only the response is measurable and the excitation is unmeasurable and known only in terms of a stochastic process model. The approach is illustrated through application to a non-linear oscillator with both non-linear damping and stiffness and with excitation modelled as a stationary Gaussian white noise process. The methods have applications in studies of the response of structures to random environmental loads, such as wind and ocean wave forces.

  9. Mean-state SST Response to global warming caused by the ENSO Nonlinearity

    Science.gov (United States)

    Kohyama, T.; Hartmann, D. L.

    2017-12-01

    The majority of the models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) exhibit El Niño-like trends under global warming. GFDL-ESM2M, however, is an exception that exhibits a La Niña-like response with strengthened trade winds. Our previous studies have shown that this La Niña-like trend could be a physically consistent warming response, and we proposed the Nonlinear ENSO Warming Suppression (NEWS) mechanism to explain this La Niña-like response to global warming. The most important necessary condition of NEWS is the ENSO skewness (El Niños are stronger than La Niñas). Most CMIP5 models do not reproduce the observed ENSO skewness, while GFDL-ESM2M exhibits the realistic ENSO skewness, which suggests that, despite being in the minority, the La Niña-like trend of GFDL-ESM2M could be a plausible equatorial Pacific response to warming. In this study, we introduce another interesting outlier, MIROC5, which reproduces the observed skewness, yet exhibits an El Niño-like response. By decomposing the source of the ENSO nonlinearity into the following three components: "SST anomalies modulate winds", "winds excite oceanic waves", and "oceanic waves modulate the subsurface temperature", we show that the large inter-model spread of the third component appears to explain the most important cause of the poor reproducibility of the ENSO nonlinearity in CMIP5 models. It is concluded that the change in the response of subsurface temperature to oceanic waves is the primary explanation for the different warming response of GFDL-ESM2M and MIROC5. Our analyses suggest that the difference of the warming response are caused by difference in the climatological thermal stratification. This study may shed new light on the fundamental question of why observed ENSO has a strong skewness and on the implications of this skewed ENSO for the mean-state sea surface temperature response to global warming.

  10. Electrophoretic pattern of sera from lambs and kids vaccinated with irradiated Amphistome metacercariae (Cercariae indicae XXVI)

    International Nuclear Information System (INIS)

    Hafeez, Md.; Rao, B.V.

    1986-01-01

    Preliminary work has been done to study certain responses induced by irradiated amphistome metacercariae used as a vaccine to immunise lambs, kids and calves. The electrophoretic pattern of the sera collected from lambs and kids vaccinated with gamma irradiated amphistome matacercariae (C.I. XXVI) has been reported in this study. (author). 10 refs., 1 table

  11. Designing Hybrids of Graphene Oxide and Gold Nanoparticles for Nonlinear Optical Response

    Science.gov (United States)

    Yadav, Rajesh Kumar; Aneesh, J.; Sharma, Rituraj; Abhiramnath, P.; Maji, Tuhin Kumar; Omar, Ganesh Ji; Mishra, A. K.; Karmakar, Debjani; Adarsh, K. V.

    2018-04-01

    Nonlinear optical absorption of light by materials is weak due to its perturbative nature, although a strong nonlinear response is of crucial importance to applications in optical limiting and switching. Here we demonstrate experimentally and theoretically an extremely efficient scheme of excited-state absorption by charge transfer between donor and acceptor materials as a method to enhance the nonlinear absorption by orders of magnitude. With this idea, we demonstrate a strong excited-state absorption (ESA) in reduced graphene oxide that otherwise shows an increased transparency at high fluence and enhancement of ESA by one order of magnitude in graphene oxide by attaching gold nanoparticles (Au NP) in the tandem configuration that acts as an efficient charge-transfer pair when excited at the plasmonic wavelength. To explain the unprecedented enhancement, we develop a five-level rate-equation model based on the charge transfer between the two materials and numerically simulate the results. To understand the correlation of interfacial charge transfer with the concentration and type of the functional ligands attached to the graphene oxide sheet, we investigate the Au-NP—graphene oxide interface with various possible ligand configurations from first-principles calculations. By using the strong ESA of our hybrid materials, we fabricate liquid cell-based high-performance optical limiters with important device parameters better than that of the benchmark optical limiters.

  12. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea.

    Science.gov (United States)

    Meaud, Julien; Grosh, Karl

    2012-03-21

    In this article, a nonlinear mathematical model is developed based on the physiology of the cochlea of the guinea pig. The three-dimensional intracochlear fluid dynamics are coupled to a micromechanical model of the organ of Corti and to electrical potentials in the cochlear ducts and outer hair cells (OHC). OHC somatic electromotility is modeled by linearized piezoelectric relations whereas the OHC hair-bundle mechanoelectrical transduction current is modeled as a nonlinear function of the hair-bundle deflection. The steady-state response of the cochlea to a single tone is simulated in the frequency domain using an alternating frequency time scheme. Compressive nonlinearity, harmonic distortion, and DC shift on the basilar membrane (BM), tectorial membrane (TM), and OHC potentials are predicted using a single set of parameters. The predictions of the model are verified by comparing simulations to available in vivo experimental data for basal cochlear mechanics. In particular, the model predicts more amplification on the reticular lamina (RL) side of the cochlear partition than on the BM, which replicates recent measurements. Moreover, small harmonic distortion and DC shifts are predicted on the BM, whereas more significant harmonic distortion and DC shifts are predicted in the RL and TM displacements and in the OHC potentials. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Reflections on the nature of non-linear responses of the climate to forcing

    Science.gov (United States)

    Ditlevsen, Peter

    2017-04-01

    On centennial to multi-millennial time scales the paleoclimatic record shows that climate responds in a very non-linear way to the external forcing. Perhaps most puzzling is the change in glacial period duration at the Middle Pleistocene Transition. From a dynamical systems perspective, this could be a change in frequency locking between the orbital forcing and the climatic response or it could be a non-linear resonance phenomenon. In both cases the climate system shows a non-trivial oscillatory behaviour. From the records it seems that this behaviour can be described by an effective dynamics on a low-dimensional slow manifold. These different possible dynamical behaviours will be discussed. References: Arianna Marchionne, Peter Ditlevsen, and Sebastian Wieczorek, "Three types of nonlinear resonances", arXiv:1605.00858 Peter Ashwin and Peter Ditlevsen, "The middle Pleistocene transition as a generic bifurcation on a slow manifold", Climate Dynamics, 45, 2683, 2015. Peter D. Ditlevsen, "The bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles", Paleoceanography, 24, PA3204, 2009

  14. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  15. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    International Nuclear Information System (INIS)

    Ngai, K. L.

    2015-01-01

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ 1 (f), the frequency dispersion of the third-order dielectric susceptibility, χ 3 (f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ 1 (f) and χ 3 (f) is the characteristic of the many-body relaxation

  16. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    In the earthquake response analysis for a rigid and massive structure as a nuclear reactor building, it is important to estimate the effect of soil-structure interaction (SSI) appropriately. In case of strong earthquakes, the nonlinearity, such as the wall-ground separation, the base mat uplift of sliding, makes the behavior of the soil-structure system complex. But, if the nuclear reactor building is embedded in a relatively soft ground with surface layer, the wall-ground separation plays the most important role in the response of soil-structure system. Because, it is expected that the base uplift and slide would be less significant due to the effect of the embedment, and the wall-ground friction is usually neglected in design. But, the nonlinearity of ground may have some effect on the wall-ground separation and the response of the structure. These problems have been studied by use of FEM. Others used joint elements between the ground and the structure which does not resist tensile force. Others studied the effect of wall-ground separation with non-tension springs. But the relationship between the ground condition and the effect of the separation has not been clarified yet. To clarify the effect the analyses by FE model and lumped mass model (sway-rocking model) are performed and compared. The key parameter is the ground profile, namely the stiffness of the side soil

  17. Distributed synchronization of networked drive-response systems: A nonlinear fixed-time protocol.

    Science.gov (United States)

    Zhao, Wen; Liu, Gang; Ma, Xi; He, Bing; Dong, Yunfeng

    2017-11-01

    The distributed synchronization of networked drive-response systems is investigated in this paper. A novel nonlinear protocol is proposed to ensure that the tracking errors converge to zeros in a fixed-time. By comparison with previous synchronization methods, the present method considers more practical conditions and the synchronization time is not dependent of arbitrary initial conditions but can be offline pre-assign according to the task assignment. Finally, the feasibility and validity of the presented protocol have been illustrated by a numerical simulation. Copyright © 2017. Published by Elsevier Ltd.

  18. High Tc superconducting nonlinear inductance and quick response magnetic sensor devices

    International Nuclear Information System (INIS)

    Uchiyama, T.; Mohri, K.; Ozeki, A.; Shibata, T.

    1990-01-01

    A flux penetration model considering the demagnetizing effect is presented in order to analyze the nonlinear inductance characteristics for HTcSC. Various quick response magnetic devices such as modulators, magnetic switches and magnetic sensors were constructed. The magnetizing frequency can be set up more than 10 MHz which is difficult to achieve with the conventional ferromagnetic bulk cores. The cut-off frequency of 1.6 MHz was obtained for the sensors using the HTcSC cores at a magnetizing frequency of 11.5 MHz

  19. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    Science.gov (United States)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  20. Seismic response of nuclear reactors in layered liquefiable soil deposits including nonlinear soil-structure interaction

    International Nuclear Information System (INIS)

    Zaman, M.; Mamoon, S.M.

    1989-01-01

    Analysis of seismic response of structures located at a site with potential for soil liquefaction has drawn attention of many researchers. The topic is particularly important in the design of critical facilities like nuclear reactors and defense installations. This paper presents the results of a study involving evaluation of coupled seismic response of structures (model nuclear reactors) and characteristics of soil liquefaction at a site. The analysis procedure employed is based on the nonlinear finite element (FE) technique and accounts for the interaction effects due to a neighboring structure. Emphasis is given to the following features: prediction of spatial and temporal variation of pore water pressure; identification of the on-set of liquefaction based on the effective stress approach, and tracing the propagation of the liquefied zones with time and resulting response of the structures

  1. Investigation of Nonlinear Site Response and Seismic Compression from Case History Analysis and Laboratory Testing

    Science.gov (United States)

    Yee, Eric

    In this thesis I address a series of issues related to ground failure and ground motions during earthquakes. A major component is the evaluation of cyclic volumetric strain behavior of unsaturated soils, more commonly known as seismic compression, from advanced laboratory testing. Another major component is the application of nonlinear and equivalent linear ground response analyses to large-strain problems involving highly nonlinear dynamic soil behavior. These two components are merged in the analysis of a truly unique and crucial field case history of nonlinear site response and seismic compression. My first topic concerns dynamic soil testing for relatively small strain dynamic soil properties such as threshold strains, gammatv. Such testing is often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, I extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses in the small strain range. I utilize linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. I utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strain response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains. My second topic concerns the seismic compression characteristics of non-plastic and low-plasticity silty sands with varying fines content (10 ≤ FC ≤ 60%). Simple shear testing was performed on various sand-fines mixtures at a range of modified Proctor relative compaction levels ( RC) and degrees-of-saturation (S

  2. Non-Linear Dose Response Relationships in Biology, Toxicology, and Medicine (June 8-10, 2004). Final Report

    International Nuclear Information System (INIS)

    Calabrese, Edward J.

    2004-01-01

    The conference attracts approximately 500 scientists researching in the area of non-linear low dose effects. These scientists represent a wide range of biological/medical fields and technical disciplines. Observations that biphasic dose responses are frequently reported in each of these areas but that the recognition of similar dose response relationships across disciplines is very rarely appreciated and exploited. By bringing scientist of such diverse backgrounds together who are working on the common area of non-linear dose response relationships this will enhance our understanding of the occurrence, origin, mechanism, significance and practical applications of such dose response relationships

  3. Nonlinear optical response and its theoretical modelling of Sb2S3 nanorod

    Science.gov (United States)

    Yadav, Rajesh Kumar; Barik, A. R.; Das, Amlan; Adarsh, K. V.

    2018-05-01

    Light-matter interaction in nanoscale regime have unprecedented and accelerating demand in optoelectronics, valley electronics and device applications. Such interaction in 1-dimention (1D) metal chalcogenides has emerged as an important research topic because of its possibility to custom design optical properties, implying enormous application including optical computers, communications, bioimaging, and so on. However, understanding of nonlinear optical response of these nanostructures is still lacking, although it constitutes an interesting problem on the light-matter interaction. Here, we have presented the nonlinear optical response in Sb2S3 nanorod using Z-scan technique. Our experimental findings show a strong saturable absorption (SA). In this context, we have numerically simulated the experimental result using two level rate equation. The solutions of these two-level rate equation for a Gaussian shaped pulse exactly replicated the experimental data. From the best numerical fit, we found excited state decay time (τ ≈ 0.15ns) and saturation intensity (IS ≈ 0.01 GW/cm2). Additionally, we have calculated number of career density (N ≈ 5.31 × 10-17 cm-3), ground state absorption cross section (σ1 ≈ 1.63 × 10-17 cm2). Our experimental finding indicates that they can be employed as saturable absorbers.

  4. Unbalance Response Prediction for Rotors on Ball Bearings Using Speed and Load Dependent Nonlinear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Poplawski, J. V.

    2003-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. For this work bearing forces were calculated by COBRA-AHS, a recently developed rolling-element bearing analysis code. Bearing stiffness was found to be a strong function of bearing deflection, with higher deflection producing markedly higher stiffness. Curves fitted to the bearing data for a range of speeds and loads were supplied to a flexible rotor unbalance response analysis. The rotordynamic analysis showed that vibration response varied nonlinearly with the amount of rotor imbalance. Moreover, the increase in stiffness as critical speeds were approached caused a large increase in rotor and bearing vibration amplitude over part of the speed range compared to the case of constant bearing stiffness. Regions of bistable operation were possible, in which the amplitude at a given speed was much larger during rotor acceleration than during deceleration. A moderate amount of damping will eliminate the bistable region, but this damping is not inherent in ball bearings.

  5. Modeling exposure–lag–response associations with distributed lag non-linear models

    Science.gov (United States)

    Gasparrini, Antonio

    2014-01-01

    In biomedical research, a health effect is frequently associated with protracted exposures of varying intensity sustained in the past. The main complexity of modeling and interpreting such phenomena lies in the additional temporal dimension needed to express the association, as the risk depends on both intensity and timing of past exposures. This type of dependency is defined here as exposure–lag–response association. In this contribution, I illustrate a general statistical framework for such associations, established through the extension of distributed lag non-linear models, originally developed in time series analysis. This modeling class is based on the definition of a cross-basis, obtained by the combination of two functions to flexibly model linear or nonlinear exposure-responses and the lag structure of the relationship, respectively. The methodology is illustrated with an example application to cohort data and validated through a simulation study. This modeling framework generalizes to various study designs and regression models, and can be applied to study the health effects of protracted exposures to environmental factors, drugs or carcinogenic agents, among others. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24027094

  6. Multiscale numerical study on ferroelectric nonlinear response of PZT thin films (Conference Presentation)

    Science.gov (United States)

    Wakabayashi, Hiroki; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi

    2017-06-01

    PZT thin films have excellent performance in deformation precision and response speed, so it is used widely for actuators and sensors of Micro Electro Mechanical System (MEMS). Although PZT thin films outputs large piezoelectricity at morphotropic phase bounfary (MPB), it shows a complicated hysteresis behavior caused by domain switching and structural phase transition between tetragonal and rhombohedral. In general, PZT thin films have some characteristic crystal morphologies. Additionally mechanical strains occur by lattice mismatch with substrate. Therefore it is important for fabrication and performance improvement of PZT thin films to understand the relation between macroscopic hysteresis response and microstructural changes. In this study, a multiscale nonlinear finite element simulation was proposed for PZT thin films at morphotropic phase boundary (MPB) on the substrate. The homogenization theory was employed for scale-bridging between macrostructure and microstructure. Figure 1 shows the proposed multiscale nonlinear simulation [1-3] based on the homogenization theory. Macrostructure is a homogeneous structure to catch the whole behaviors of actuators and sensors. And microstructure is a periodic inhomogeneous structure consisting of domains and grains. Macrostructure and microstructure are connected perfectly by homogenization theory and are analyzed by finite element method. We utilized an incremental form of fundamental constitutive law in consideration with physical property change caused by domain switching and structural phase transition. The developed multiscale finite element method was applied to PZT thin films with lattice mismatch strain on the substrate, and the relation between the macroscopic hysteresis response and microscopic domain switching and structural phase transition were investigated. Especially, we discuss about the effect of crystal morphologies and lattice mismatch strain on hysteresis response.

  7. Electrophoretic mobilities of dissolved polyelectrolyte charging agent and suspended non-colloidal titanium during electrophoretic deposition

    International Nuclear Information System (INIS)

    Lau, Kok-Tee; Sorrell, C.C.

    2011-01-01

    Coarse (≤20 μm) titanium particles were deposited on low-carbon steel substrates by cathodic electrophoretic deposition (EPD) with ethanol as suspension medium and poly(diallyldimethylammonium chloride) (PDADMAC) as polymeric charging agent. Preliminary data on the electrophoretic mobilities and electrical conductivities on the suspensions of these soft particles as well as the solutions themselves as a function of PDADMAC level were used as the basis for the investigation of the EPD parameters in terms of the deposition yield as a function of five experimental parameters: (a) PDADMAC addition level, (b) solids loading, (c) deposition time, (d) applied voltage, and (e) electrode separation. These data were supported by particle sizing by laser diffraction and deposit surface morphology by scanning electron microscopy (SEM). The preceding data demonstrated that Ti particles of ∼1-12 μm size, electrosterically modified by the PDADMAC charging agent, acted effectively as colloidal particles during EPD. Owing to the non-colloidal nature of the particles and the stabilization of the Ti particles by electrosteric forces, the relevance of the zeta potential is questionable, so the more fundamental parameter of electrophoretic mobility was used. A key finding from the present work is the importance of assessing the electrophoretic mobilities of both the suspensions and solutions since the latter, which normally is overlooked, plays a critical role in the ability to interpret the results meaningfully. Further, algebraic uncoupling of these data plus determination of the deposit yield as a function of charging agent addition allow discrimination between the three main mechanistic stages of the electrokinetics of the process, which are: (1) surface saturation; (2) compression of the diffuse layer, growth of polymer-rich layer, and/or competition between the mobility of Ti and PDADMAC; and (3) little or no decrease in electrophoretic mobility of Ti, establishment of

  8. Electrophoretic mobilities of dissolved polyelectrolyte charging agent and suspended non-colloidal titanium during electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Kok-Tee [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76109 Durian Tunggal, Melaka (Malaysia); Sorrell, C.C., E-mail: C.Sorrell@unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2011-03-25

    Coarse ({<=}20 {mu}m) titanium particles were deposited on low-carbon steel substrates by cathodic electrophoretic deposition (EPD) with ethanol as suspension medium and poly(diallyldimethylammonium chloride) (PDADMAC) as polymeric charging agent. Preliminary data on the electrophoretic mobilities and electrical conductivities on the suspensions of these soft particles as well as the solutions themselves as a function of PDADMAC level were used as the basis for the investigation of the EPD parameters in terms of the deposition yield as a function of five experimental parameters: (a) PDADMAC addition level, (b) solids loading, (c) deposition time, (d) applied voltage, and (e) electrode separation. These data were supported by particle sizing by laser diffraction and deposit surface morphology by scanning electron microscopy (SEM). The preceding data demonstrated that Ti particles of {approx}1-12 {mu}m size, electrosterically modified by the PDADMAC charging agent, acted effectively as colloidal particles during EPD. Owing to the non-colloidal nature of the particles and the stabilization of the Ti particles by electrosteric forces, the relevance of the zeta potential is questionable, so the more fundamental parameter of electrophoretic mobility was used. A key finding from the present work is the importance of assessing the electrophoretic mobilities of both the suspensions and solutions since the latter, which normally is overlooked, plays a critical role in the ability to interpret the results meaningfully. Further, algebraic uncoupling of these data plus determination of the deposit yield as a function of charging agent addition allow discrimination between the three main mechanistic stages of the electrokinetics of the process, which are: (1) surface saturation; (2) compression of the diffuse layer, growth of polymer-rich layer, and/or competition between the mobility of Ti and PDADMAC; and (3) little or no decrease in electrophoretic mobility of Ti

  9. A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer

    KAUST Repository

    Khan, Kamran

    2012-11-10

    We formulate a variational constitutive framework that accounts for nonlinear viscous behavior of electrically sensitive polymers, specifically Dielectric Elastomers (DEs), under large deformation. DEs are highly viscoelastic and their actuation response is greatly affected in dynamic applications. We used the generalized Maxwell model to represent the viscoelastic response of DE allowing the material to relax with multiple mechanisms. The constitutive updates at each load increment are obtained by minimizing an objective function formulated using the free energy and electrostatic energy of the elastomer, in addition to the viscous dissipation potential of the dashpots in each Maxwell branch. The model is then used to predict the electromechanical instability (EMI) of DE. The electro-elastic response of the DE is verified with available analytical solutions in the literature and then the material parameters are calibrated using experimental data. The model is integrated with finite element software to perform a variety of simulations on different types of electrically driven actuators under various electromechanical loadings. The electromechanical response of the DE and the critical conditions at which EMI occurs were found to be greatly affected by the viscoelasticity. Our model predicts that under a dead load EMI can be avoided if the DE operates at a high voltage rate. Subjected to constant, ramp and cyclic voltage, our model qualitatively predicts responses similar to the ones obtained from the analytical solutions and experimental data available in the literature. © 2012 Springer-Verlag Berlin Heidelberg.

  10. Electrophoretic Porosimetry of Sol-Gels

    Science.gov (United States)

    Snow, L. A.; Smith, D. D.; Sibille, L.; Hunt, A. J.; Ng, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    It has been hypothesized that gravity has an effect on the formation and resulting microstructure of sol-gels. In order to more clearly resolve the effect of gravity, pores may be non-destructively analyzed in the wet gel, circumventing the shrinkage and coarsening associated with the drying procedure. We discuss the development of an electrophoretic technique, analogous to affinity chromatography, for the determination of pore size distribution and its application to silica gels. Specifically a monodisperse charged dye is monitored by an optical densitometer as it moves through the wet gel under the influence of an electric field. The transmittance data (output) represents the convolution of the dye concentration profile at the beginning of the run (input) with the pore size distribution (transfer function), i.e. linear systems theory applies. Because of the practical difficulty in producing a delta function input dye profile we prefer instead to use a step function. Average pore size is then related to the velocity of this dye front, while the pore size distribution is related to the spreading of the front. Preliminary results of this electrophoretic porosimetry and its application to ground and space-grown samples will be discussed.

  11. Modeling of Nonlinear Mechanical Response in CFRP Angle-Ply Laminates

    Science.gov (United States)

    Ogihara, Shinji

    2014-03-01

    It is known that the failure process in angle-ply laminate involves matrix cracking and delamination and that they exhibit nonlinear stress-strain relation. There may be a significant effect of the constituent blocked ply thickness on the mechanical behavior of angle-ply laminates. These days, thin prepregs whose thickness is, for example 50 micron, are developed and commercially available. Therefore, we can design wide variety of laminates with various constituent ply thicknesses. In this study, effects of constituent ply thickness on the nonlinear mechanical behavior and the damage behavior of CFRP angle-ply laminates are investigated experimentally. Based on the experimental results, the mechanical response in CFRP angle-ply laminates is modeled by using the finite strain viscoplasticity model. We evaluated the mechanical behavior and damage behavior in CFRP angle-ply laminates with different constituent ply thickness under tensile loading experimentally. It was found that as the constituent ply thickness decreases, the strength and failure strain increases. We also observed difference in damage behavior. The preliminary results of finite strain viscoplasticity model considering the damage effect for laminated composites are shown. A qualitative agreement is obtained.

  12. Practical guidelines to select and scale earthquake records for nonlinear response history analysis of structures

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2010-01-01

    Earthquake engineering practice is increasingly using nonlinear response history analysis (RHA) to demonstrate performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. Presented herein is a modal-pushover-based scaling (MPS) method to scale ground motions for use in nonlinear RHA of buildings and bridges. In the MPS method, the ground motions are scaled to match (to a specified tolerance) a target value of the inelastic deformation of the first-'mode' inelastic single-degree-of-freedom (SDF) system whose properties are determined by first-'mode' pushover analysis. Appropriate for first-?mode? dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-'mode' SDF system in selecting a subset of the scaled ground motions. Based on results presented for two bridges, covering single- and multi-span 'ordinary standard' bridge types, and six buildings, covering low-, mid-, and tall building types in California, the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  13. Microstructural Origins of Nonlinear Response in Associating Polymers under Oscillatory Shear

    Directory of Open Access Journals (Sweden)

    Mark A. Wilson

    2017-10-01

    Full Text Available The response of associating polymers with oscillatory shear is studied through large-scale simulations. A hybrid molecular dynamics (MD, Monte Carlo (MC algorithm is employed. Polymer chains are modeled as a coarse-grained bead-spring system. Functionalized end groups, at both ends of the polymer chains, can form reversible bonds according to MC rules. Stress-strain curves show nonlinearities indicated by a non-ellipsoidal shape. We consider two types of nonlinearities. Type I occurs at a strain amplitude much larger than one, type II at a frequency at which the elastic storage modulus dominates the viscous loss modulus. In this last case, the network topology resembles that of the system at rest. The reversible bonds are broken and chains stretch when the system moves away from the zero-strain position. For type I, the chains relax and the number of reversible bonds peaks when the system is near an extreme of the motion. During the movement to the other extreme of the cycle, first a stress overshoot occurs, then a yield accompanied by shear-banding. Finally, the network restructures. Interestingly, the system periodically restores bonds between the same associating groups. Even though major restructuring occurs, the system remembers previous network topologies.

  14. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  15. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    Science.gov (United States)

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  16. Application of HPEM to investigate the response and stability of nonlinear problems in vibration

    DEFF Research Database (Denmark)

    Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.

    2010-01-01

    In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...

  17. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Ngai, K. L. [CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy and Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2015-03-21

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ{sub 1}(f), the frequency dispersion of the third-order dielectric susceptibility, χ{sub 3}(f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ{sub 1}(f) and χ{sub 3}(f) is the characteristic of the many

  18. Response and reliability analysis of nonlinear uncertain dynamical structures by the probability density evolution method

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Peng, Yongbo; Sichani, Mahdi Teimouri

    2016-01-01

    The paper deals with the response and reliability analysis of hysteretic or geometric nonlinear uncertain dynamical systems of arbitrary dimensionality driven by stochastic processes. The approach is based on the probability density evolution method proposed by Li and Chen (Stochastic dynamics...... of structures, 1st edn. Wiley, London, 2009; Probab Eng Mech 20(1):33–44, 2005), which circumvents the dimensional curse of traditional methods for the determination of non-stationary probability densities based on Markov process assumptions and the numerical solution of the related Fokker–Planck and Kolmogorov......–Feller equations. The main obstacle of the method is that a multi-dimensional convolution integral needs to be carried out over the sample space of a set of basic random variables, for which reason the number of these need to be relatively low. In order to handle this problem an approach is suggested, which...

  19. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    The effect of the wall-ground separation depends on the relation between the fundamental frequency of the SSI system and that of the surface layer. The maximum accelerations of the upper floors are increased if the side soil is soft. The building shear force is decreased below the ground level if the fundamental frequency of the SSI system is nearly equal to that of the surface layer. The floor response spectra are slightly increased in the high frequency range. Yielding of the soil occurred only in case that the side soil is soft, and the yield zone was restricted in the upper part of the surface layer. Therefore, the material nonlinearity did not affect the results so much. The results of the sway-rocking model (lumped mass model) analysis showed good agreements with those of the FEM models. (orig./HP)

  20. Nonlinear response of a neoclassical four-field magnetic reconnection model to localized current drive

    International Nuclear Information System (INIS)

    Lazzaro, E.; Comisso, L.; Valdettaro, L.

    2010-01-01

    In tokamaks magnetic islands arise from an unstable process of tearing and reconnecting of helical field lines across rational surfaces. After a linear stage the magnetic instability develops through three characteristic nonlinear stages where increasingly complex topological alterations occur in the form of the magnetic islands. The problem of response of reconnection process to the injection of an external current suitably localized is addressed using a four-field model in a plane slab plasma, with a novel extension to account consistently of the relevant neoclassical effects, such as bootstrap current and pressure anisotropy. The results found have implications on the interpretation of the possible mechanism of present day experimental results on neoclassical tearing modes as well as on the concepts for their control or avoidance.

  1. Fluctuations of two-time quantities and non-linear response functions

    International Nuclear Information System (INIS)

    Corberi, F; Lippiello, E; Sarracino, A; Zannetti, M

    2010-01-01

    We study the fluctuations of the autocorrelation and autoresponse functions and, in particular, their variances and covariance. In a first general part of the paper, we show the equivalence of the variance of the response function to the second-order susceptibility of a composite operator, and we derive an equilibrium fluctuation-dissipation theorem beyond linear order, relating it to the other variances. In a second part of the paper we apply the formalism in the study of non-disordered ferromagnets, in equilibrium or in the coarsening kinetics following a critical or sub-critical quench. We show numerically that the variances and the non-linear susceptibility obey scaling with respect to the coherence length ξ in equilibrium, and with respect to the growing length L(t) after a quench, similar to what is known for the autocorrelation and the autoresponse functions

  2. Quantum mechanical analysis of nonlinear optical response of interacting graphene nanoflakes

    Directory of Open Access Journals (Sweden)

    Hanying Deng

    2018-01-01

    Full Text Available We propose a distant-neighbor quantum-mechanical (DNQM approach to study the linear and nonlinear optical properties of graphene nanoflakes (GNFs. In contrast to the widely used tight-binding description of the electronic states that considers only the nearest-neighbor coupling between the atoms, our approach is more accurate and general, as it captures the electron-core interactions between all atoms in the structure. Therefore, as we demonstrate, the DNQM approach enables the investigation of the optical coupling between two closely separated but chemically unbound GNFs. We also find that the optical response of GNFs depends crucially on their shape, size, and symmetry properties. Specifically, increasing the size of nanoflakes is found to shift their accommodated quantum plasmon oscillations to lower frequency. Importantly, we show that by embedding a cavity into GNFs, one can change their symmetry properties, tune their optical properties, or enable otherwise forbidden second-harmonic generation processes.

  3. Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO

    Directory of Open Access Journals (Sweden)

    C. I. Garfinkel

    2018-04-01

    Full Text Available A series of simulations using the NASA Goddard Earth Observing System Chemistry–Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Niño–Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Niño events lead to cooling in this region, strong El Niño events lead to warming, even as the response of the large-scale Brewer–Dobson circulation appears to scale nearly linearly with El Niño. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Niño: strong El Niño events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Niño event in 1997/1998, followed by more than 2 consecutive years of La Niña, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.

  4. Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO

    Science.gov (United States)

    Garfinkel, Chaim I.; Gordon, Amit; Oman, Luke D.; Li, Feng; Davis, Sean; Pawson, Steven

    2018-04-01

    A series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Niño-Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Niño events lead to cooling in this region, strong El Niño events lead to warming, even as the response of the large-scale Brewer-Dobson circulation appears to scale nearly linearly with El Niño. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Niño: strong El Niño events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Niño event in 1997/1998, followed by more than 2 consecutive years of La Niña, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.

  5. Non-linear dose response of a few plant taxa to acute gamma radiation

    International Nuclear Information System (INIS)

    George, J.T.; Patel, B.B.; Pius, J.; Narula, B.; Shankhadarwar, S.; Rane, V.A.; Venu-Babu, P.; Eapen, S.; Singhal, R.K.

    2014-01-01

    Micronuclei induction serves as an essential biomarker of radiation stress in a living system, and the simplicity of its detection technique has made it a widely used indicator of radiation damage. The present study was conducted to reveal the cytological dose-response of a few plant taxa, viz., Allium cepa var. aggregatum Linn., Allium sativum Linn., Chlorophytum comosum (Thunb.) Jacques and Eichhornia crassipes (Mart.) Solms, to low LET gamma radiation with special emphasis on the pattern of micronuclei induced across low and high dose regimes. A tri-phasic non-linear dose-response pattern was observed in the four taxa studied, characterized by a low dose linear segment, a plateau and a high dose linear segment. Despite a similar response trend, the critical doses where the phase transitions occurred varied amongst the plant taxa, giving an indication to their relative radiosensitivities. E. crassipes and A. sativum, with their lower critical doses for slope modifications of phase transitions, were concluded as being more radiosensitive as compared to C. comosum and A. cepa, which had relatively higher critical doses. (author)

  6. Nonlinear feedback drives homeostatic plasticity in H2O2 stress response

    Science.gov (United States)

    Goulev, Youlian; Morlot, Sandrine; Matifas, Audrey; Huang, Bo; Molin, Mikael; Toledano, Michel B; Charvin, Gilles

    2017-01-01

    Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell’s ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties. DOI: http://dx.doi.org/10.7554/eLife.23971.001 PMID:28418333

  7. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    International Nuclear Information System (INIS)

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-01-01

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO 2 substrates, we confirm recent theoretical predictions of T 2 temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures

  8. Chromatographic and electrophoretic approaches in ink analysis.

    Science.gov (United States)

    Zlotnick, J A; Smith, F P

    1999-10-15

    Inks are manufactured from a wide variety of substances that exhibit very different chemical behaviors. Inks designed for use in different writing instruments or printing methods have quite dissimilar components. Since the 1950s chromatographic and electrophoretic methods have played important roles in the analysis of inks, where compositional information may have bearing on the investigation of counterfeiting, fraud, forgery, and other crimes. Techniques such as paper chromatography and electrophoresis, thin-layer chromatography, high-performance liquid chromatography, gas chromatography, gel electrophoresis, and the relatively new technique of capillary electrophoresis have all been explored as possible avenues for the separation of components of inks. This paper reviews the components of different types of inks and applications of the above separation methods are reviewed.

  9. Optimization of the southern electrophoretic transfer method

    International Nuclear Information System (INIS)

    Allison, M.A.; Fujimura, R.K.

    1987-01-01

    The technique of separating DNA fragments using agarose gel electrophoresis is essential in the analysis of nucleic acids. Further, after the method of transferring specific DNA fragments from those agarose gels to cellulose nitrate membranes was developed in 1975, a method was developed to transfer DNA, RNA, protein and ribonucleoprotein particles from various gels onto diazobenzyloxymethyl (DBM) paper using electrophoresis as well. This paper describes the optimum conditions for quantitative electrophoretic transfer of DNA onto nylon membranes. This method exemplifies the ability to hybridize the membrane more than once with specific RNA probes by providing sufficient retention of the DNA. Furthermore, the intrinsic properties of the nylon membrane allow for an increase in the efficiency and resolution of transfer while using somewhat harsh alkaline conditions. The use of alkaline conditions is of critical importance since we can now denature the DNA during transfer and thus only a short pre-treatment in acid is required for depurination. 9 refs., 7 figs

  10. Frequency response areas in the inferior colliculus: nonlinearity and binaural interaction

    Directory of Open Access Journals (Sweden)

    Jane J Yu

    2013-05-01

    Full Text Available The tuning, binaural properties, and encoding characteristics of neurons in the central nucleus of the inferior colliculus (CNIC were investigated to shed light on nonlinearities in the responses of these neurons. Results were analyzed for three types of neurons (I, O, and V in the CNIC of decerebrate cats. Rate responses to binaural stimuli were characterized using a 1st- plus 2nd-order spectral integration model. Parameters of the model were derived using broadband stimuli with random spectral shapes (RSS. This method revealed four characteristics of CNIC neurons: (1 Tuning curves derived from broadband stimuli have fixed (i. e., level tolerant bandwidths across a 50-60 dB range of sound levels; (2 1st-order contralateral weights (particularly for type I and O neurons were usually larger in magnitude than corresponding ipsilateral weights; (3 contralateral weights were more important than ipsilateral weights when using the model to predict responses to untrained noise stimuli; and (4 2nd-order weight functions demonstrate frequency selectivity different from that of 1st-order weight functions. Furthermore, while the inclusion of 2nd-order terms in the model usually improved response predictions related to untrained RSS stimuli, they had limited impact on predictions related to other forms of filtered broadband noise (e. g., virtual space stimuli. The accuracy of the predictions varied considerably by response type. Predictions were most accurate for I neurons, and less accurate for O and V neurons, except at the lowest stimulus levels. These differences in prediction performance support the idea that type I, O, and V neurons encode different aspects of the stimulus: while type I neurons are most capable of producing linear representations of spectral shape, type O and V neurons may encode spectral features or temporal stimulus properties in a manner not easily explained with the low-order model. Supported by NIH grant DC00115.

  11. ONIOM Investigation of the Second-Order Nonlinear Optical Responses of Fluorescent Proteins.

    Science.gov (United States)

    de Wergifosse, Marc; Botek, Edith; De Meulenaere, Evelien; Clays, Koen; Champagne, Benoît

    2018-05-17

    The first hyperpolarizability (β) of six fluorescent proteins (FPs), namely, enhanced green fluorescent protein, enhanced yellow fluorescent protein, SHardonnay, ZsYellow, DsRed, and mCherry, has been calculated to unravel the structure-property relationships on their second-order nonlinear optical properties, owing to their potential for multidimensional biomedical imaging. The ONIOM scheme has been employed and several of its refinements have been addressed to incorporate efficiently the effects of the microenvironment on the nonlinear optical responses of the FP chromophore that is embedded in a protective β-barrel protein cage. In the ONIOM scheme, the system is decomposed into several layers (here two) treated at different levels of approximation (method1/method2), from the most elaborated method (method1) for its core (called the high layer) to the most approximate one (method2) for the outer surrounding (called the low layer). We observe that a small high layer can already account for the variations of β as a function of the nature of the FP, provided the low layer is treated at an ab initio level to describe properly the effects of key H-bonds. Then, for semiquantitative reproduction of the experimental values obtained from hyper-Rayleigh scattering experiments, it is necessary to incorporate electron correlation as described at the second-order Møller-Plesset perturbation theory (MP2) level as well as implicit solvent effects accounted for using the polarizable continuum model (PCM). This led us to define the MP2/6-31+G(d):HF/6-31+G(d)/IEFPCM scheme as an efficient ONIOM approach and the MP2/6-31+G(d):HF/6-31G(d)/IEFPCM as a better compromise between accuracy and computational needs. Using these methods, we demonstrate that many parameters play a role on the β response of FPs, including the length of the π-conjugated segment, the variation of the bond length alternation, and the presence of π-stacking interactions. Then, noticing the small diversity

  12. Nonlinear Dynamic Response of an Unbalanced Flexible Rotor Supported by Elastic Bearings Lubricated with Piezo-Viscous Polar Fluids

    Directory of Open Access Journals (Sweden)

    Mustapha Lahmar

    2015-04-01

    Full Text Available On the basis of the V. K. Stokes micro-continuum theory, the effects of couple stresses on the nonlinear dynamic response of the unbalanced Jeffcott’s flexible rotor supported by layered hydrodynamic journal bearings is presented in this paper. A nonlinear transient modified Reynolds’ equation is derived and discretized by the finite element method to obtain the fluid-film pressure field as well as the film thickness by means of the implicit Euler method. The nonlinear orbits of the rotor center are determined by solving the nonlinear differential equations of motion with the explicit Euler’s scheme taking into account the flexibility of rotor. According to the obtained results, the combined effects of couple stresses due to the presence of polymer additives in lubricant and the pressure dependent viscosity on the nonlinear dynamic response of the rotor-bearing system are significant and cannot be ignored or overlooked. As expected, these effects are more noticeable for polymers characterized by higher length molecular chains.

  13. Finite Element Modeling and Analysis of Nonlinear Impact and Frictional Motion Responses Including Fluid—Structure Coupling Effects

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    1997-01-01

    Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.

  14. Dynamics of electron wave packet in a disordered chain with delayed nonlinear response

    International Nuclear Information System (INIS)

    Zhu Hongjun; Xiong Shijie

    2010-01-01

    We investigate the dynamics of one electron wave packet in a linear chain with random on-site energies and a nonadiabatic electron-phonon interaction which is described by a delayed cubic nonlinear term in the time-dependent Schroedinger equation. We show that in the regime where the wave packet is delocalized in the case with only the delayed nonlinearity, the wave packet becomes localized when the disorder is added and the localization is enhanced by increasing the disorder. In the regime where the self-trapping phenomenon occurs in the case with only the delayed nonlinearity, by adding the disorder the general dynamical features of the wave packet do not change if the nonlinearity parameter is small, but the dynamics shows the subdiffusive behavior if the nonlinearity parameter is large. The numerical results demonstrate complicated wave packet dynamics of systems with both the disorder and nonlinearity.

  15. Nonlinear dynamic response of cable-suspended systems under swinging and heaving motion

    International Nuclear Information System (INIS)

    Cao, Guohua; Wang, Naige; Wang, Lei; Zhu, Zhencai

    2017-01-01

    In order to enhance the fidelity, convenient and flexibility of swinging motion, the structure of incompletely restrained cablesuspended system controlled by two drums was proposed, and the dynamic response of the system under swinging and heaving motion were investigated in this paper. The cables are spatially discretized using the assumed modes method and the system equations of motion are derived by Lagrange equations of the first kind. Based on geometric boundary conditions and linear complementary theory, the differential algebraic equations are transformed to a set of classical difference equations. Nonlinear dynamic behavior occurs under certain range of rotational velocity and frequency. The results show that asynchronous motion of suspension platform is easily caused imbalance for cable tension. Dynamic response of different swing frequencies were obtained via power frequency analysis, which could be used in the selection of the working frequency of the swing motion. The work will contribute to a better understanding of the swing frequency, cable tension and posture with dynamic characteristics of unilateral geometric and kinematic constraints in this system, and it is also useful to investigate the accuracy and reliability of instruments in future.

  16. Nonlinear dynamic response of cable-suspended systems under swinging and heaving motion

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guohua; Wang, Naige; Wang, Lei; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China)

    2017-07-15

    In order to enhance the fidelity, convenient and flexibility of swinging motion, the structure of incompletely restrained cablesuspended system controlled by two drums was proposed, and the dynamic response of the system under swinging and heaving motion were investigated in this paper. The cables are spatially discretized using the assumed modes method and the system equations of motion are derived by Lagrange equations of the first kind. Based on geometric boundary conditions and linear complementary theory, the differential algebraic equations are transformed to a set of classical difference equations. Nonlinear dynamic behavior occurs under certain range of rotational velocity and frequency. The results show that asynchronous motion of suspension platform is easily caused imbalance for cable tension. Dynamic response of different swing frequencies were obtained via power frequency analysis, which could be used in the selection of the working frequency of the swing motion. The work will contribute to a better understanding of the swing frequency, cable tension and posture with dynamic characteristics of unilateral geometric and kinematic constraints in this system, and it is also useful to investigate the accuracy and reliability of instruments in future.

  17. Nonlinear optical response of chalcogenide glassy semiconductors in the IR and THz ranges studied with the femtosecond resolution in time

    DEFF Research Database (Denmark)

    Romanova, E.; Guizard, S.; Wang, Tianwu

    2017-01-01

    Two time-resolved experimental methods have been used for characterization of the non-linear optical response of chalcogenide glasses of the system As-S-Se-Te in IR and THz ranges upon excitation by femtosecond laser pulses at 800 nm wavelength. Photoinduced conductivity and refractivity were stu...

  18. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.

    Science.gov (United States)

    Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M

    2010-12-01

    Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.

  19. International Benchmark on Numerical Simulations for 1D, Nonlinear Site Response (PRENOLIN) : Verification Phase Based on Canonical Cases

    NARCIS (Netherlands)

    Régnier, Julie; Bonilla, Luis-Fabian; Bard, Pierre-Yves; Bertrand, Etienne; Hollender, Fabrice; Kawase, Hiroshi; Sicilia, Deborah; Arduino, Pedro; Amorosi, Angelo; Asimaki, Dominiki; Pisano, F.

    2016-01-01

    PREdiction of NOn‐LINear soil behavior (PRENOLIN) is an international benchmark aiming to test multiple numerical simulation codes that are capable of predicting nonlinear seismic site response with various constitutive models. One of the objectives of this project is the assessment of the

  20. Multi-cracks identification based on the nonlinear vibration response of beams subjected to moving harmonic load

    Directory of Open Access Journals (Sweden)

    Chouiyakh H.

    2016-01-01

    Full Text Available The aim of this work is to investigate the nonlinear forced vibration of beams containing an arbitrary number of cracks and to perform a multi-crack identification procedure based on the obtained signals. Cracks are assumed to be open and modelled trough rotational springs linking two adjacent sub-beams. Forced vibration analysis is performed by a developed time differential quadrature method. The obtained nonlinear vibration responses are analyzed by Huang Hilbert Transform. The instantaneous frequency is used as damage index tool for cracks detection.

  1. Investigation of the dynamics of a nonlinear optical response in glassy chalcogenide semiconductors by the pump–probe method

    Science.gov (United States)

    Romanova, E. A.; Kuzyutkina, Yu S.; Shiryaev, V. S.; Guizard, S.

    2018-03-01

    An analysis of the results of measurements by using the pump–probe method with a femtosecond resolution in time and computer simulation of the charge carrier kinetics have revealed two types of a nonlinear optical response in samples of chalcogenide glasses belonging to the As – S – Se system, irradiated by 50-fs laser pulses with a wavelength of 0.79 μm. The difference in the nonlinear dynamics is due to the difference in the photoexcitation character, because laser radiation can be absorbed either through bound states in the band gap or without their participation, depending on the ratio of the pump photon energy to the bandgap energy.

  2. The nonlinear flexural response of a whole teleost fish: Contribution of scales and skin.

    Science.gov (United States)

    Szewciw, Lawrence; Zhu, Deju; Barthelat, Francois

    2017-12-01

    The scaled skin of fish is an intricate system that provides mechanical protection against hard and sharp puncture, while maintaining the high flexural compliance required for unhindered locomotion. This unusual combination of local hardness and global compliance makes fish skin an interesting model for bioinspired protective systems. In this work we investigate the flexural response of whole teleost fish, and how scales may affect global flexural stiffness. A bending moment is imposed on the entire body of a striped bass (Morone saxatilis). Imaging is used to measure local curvature, to generate moment-curvature curves as function of position along the entire axis of the fish. We find that the flexural stiffness is the highest in the thick middle portion of the fish, and lowest in the caudal and rostral ends. The flexural response is nonlinear, with an initial soft response followed by significant stiffening at larger flexural deformations. Low flexural stiffness at low curvatures promotes efficient swimming, while higher stiffness at high curvatures enables a possible tendon effect, where the mechanical energy at the end of a stroke is stored in the form of strain energy in the fish skin. To assess the contribution of the scales to stiffening we performed flexural tests with and without scales, following a careful protocol to take in account tissue degradation and the effects of temperature. Our findings suggest that scales do not substantially increase the whole body flexural stiffness of teleost fish over ranges of deformations which are typical of swimming and maneuvering. Teleost scales are thin and relatively flexible, so they can accommodate large flexural deformations. This finding is in contrast to the bulkier ganoid scales which were shown in previous reports to have a profound impact of global flexural deformations and swimming in fish like gar or Polypterus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures

    International Nuclear Information System (INIS)

    Bolisetti, Chandrakanth; Whittaker, Andrew S.; Mason, H. Benjamin; Almufti, Ibrahim; Willford, Michael

    2014-01-01

    Highlights: • Performed equivalent linear and nonlinear site response analyses using industry-standard numerical programs. • Considered a wide range of sites and input ground motions. • Noted the practical issues encountered while using these programs. • Examined differences between the responses calculated from different programs. • Results of biaxial and uniaxial analyses are compared. - Abstract: Site response analysis is a precursor to soil-structure interaction analysis, which is an essential component in the seismic analysis of safety-related nuclear structures. Output from site response analysis provides input to soil-structure interaction analysis. Current practice in calculating site response for safety-related nuclear applications mainly involves the equivalent linear method in the frequency-domain. Nonlinear time-domain methods are used by some for the assessment of buildings, bridges and petrochemical facilities. Several commercial programs have been developed for site response analysis but none of them have been formally validated for large strains and high frequencies, which are crucial for the performance assessment of safety-related nuclear structures. This study sheds light on the applicability of some industry-standard equivalent linear (SHAKE) and nonlinear (DEEPSOIL and LS-DYNA) programs across a broad range of frequencies, earthquake shaking intensities, and sites ranging from stiff sand to hard rock, all with a focus on application to safety-related nuclear structures. Results show that the equivalent linear method is unable to reproduce the high frequency acceleration response, resulting in almost constant spectral accelerations in the short period range. Analysis using LS-DYNA occasionally results in some unrealistic high frequency acceleration ‘noise’, which can be removed by smoothing the piece-wise linear backbone curve. Analysis using DEEPSOIL results in abrupt variations in the peak strains of consecutive soil layers

  4. Estimation of nonlinearities from pseudodynamic and dynamic responses of bridge structures using the Delay Vector Variance method

    Science.gov (United States)

    Jaksic, Vesna; Mandic, Danilo P.; Karoumi, Raid; Basu, Bidroha; Pakrashi, Vikram

    2016-01-01

    Analysis of the variability in the responses of large structural systems and quantification of their linearity or nonlinearity as a potential non-invasive means of structural system assessment from output-only condition remains a challenging problem. In this study, the Delay Vector Variance (DVV) method is used for full scale testing of both pseudo-dynamic and dynamic responses of two bridges, in order to study the degree of nonlinearity of their measured response signals. The DVV detects the presence of determinism and nonlinearity in a time series and is based upon the examination of local predictability of a signal. The pseudo-dynamic data is obtained from a concrete bridge during repair while the dynamic data is obtained from a steel railway bridge traversed by a train. We show that DVV is promising as a marker in establishing the degree to which a change in the signal nonlinearity reflects the change in the real behaviour of a structure. It is also useful in establishing the sensitivity of instruments or sensors deployed to monitor such changes.

  5. A Semi-Analytical Approach for the Response of Nonlinear Conservative Systems

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Barari, Amin; Fooladi, M

    2011-01-01

    This work applies Parameter expanding method (PEM) as a powerful analytical technique in order to obtain the exact solution of nonlinear problems in the classical dynamics. Lagrange method is employed to derive the governing equations. The nonlinear governing equations are solved analytically by ...

  6. Measuring RF circuits exhibiting nonlinear responses combined with short and long term memory effects

    NARCIS (Netherlands)

    Janssen, E.J.G.; Milosevic, D.; Baltus, P.G.M.

    2010-01-01

    All RF circuits that incorporate active devices exhibit nonlinear behavior. Nonlinearities result in signal distortion, and therefore state the upper limit of the dynamic range of the circuits. A measure for linearity used quite commonly in RF is the P1dB and/or IP3 point. These quantities are

  7. Dynamics of a photorefractive response and competition of nonlinear processes in self-pumping double phase-conjugate mirrors

    International Nuclear Information System (INIS)

    Mogaddam, Mehran Wahdani; Shuvalov, Vladimir V

    2005-01-01

    The dynamics of formation of a nonlinear response of a double phase-conjugate (PC) BaTiO 3 mirror is calculated. It is shown that because of competition between processes of different types (related to the presence of several PC channels, the local and nonlocal components of the photorefractive nonlinearity), the transient and dynamic lasing regimes for this mirror can be substantially different. It is found that the development of lasing begins with the successive formation and phasing of dynamic holograms of two different types (two PC channels). It is shown that even under optimal conditions, the lasing regime is not stationary due to competition between processes of different types, and the parameters of output fields fluctuate in time in a nontrivial way (due to the presence of the in-phase and out-of-phase components). Several scenarios of transition to the dynamic chaos are described. (nonlinear optical phenomena)

  8. Rail vehicle dynamic response to a nonlinear physical 'in-service' model of its secondary suspension hydraulic dampers

    Science.gov (United States)

    Wang, W. L.; Zhou, Z. R.; Yu, D. S.; Qin, Q. H.; Iwnicki, S.

    2017-10-01

    A full nonlinear physical 'in-service' model was built for a rail vehicle secondary suspension hydraulic damper with shim-pack-type valves. In the modelling process, a shim pack deflection theory with an equivalent-pressure correction factor was proposed, and a Finite Element Analysis (FEA) approach was applied. Bench test results validated the damper model over its full velocity range and thus also proved that the proposed shim pack deflection theory and the FEA-based parameter identification approach are effective. The validated full damper model was subsequently incorporated into a detailed vehicle dynamics simulation to study how its key in-service parameter variations influence the secondary-suspension-related vehicle system dynamics. The obtained nonlinear physical in-service damper model and the vehicle dynamic response characteristics in this study could be used in the product design optimization and nonlinear optimal specifications of high-speed rail hydraulic dampers.

  9. Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses.

    Science.gov (United States)

    Kim, Kihong; Phung, D K; Rotermund, F; Lim, H

    2008-01-21

    We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.

  10. Predominant nonlinear atmospheric response to meridional shift of the Gulf Stream path from the WRF atmospheric model simulations

    Science.gov (United States)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.

    2016-02-01

    A remarkably strong nonlinear behavior of the atmospheric circulation response to North Atlantic SST anomalies (SSTA) is revealed from a set of large-ensemble, high-resolution, and hemispheric-scale Weather Research and Forecasting (WRF) model simulations. The model is forced with the SSTA associated with meridional shift of the Gulf Stream (GS) path, constructed from a lag regression of the winter SST on a GS Index from observation. Analysis of the systematic set of experiments with SSTAs of varied amplitudes and switched signs representing various GS-shift scenarios provides unique insights into mechanism for emergence and evolution of transient and equilibrium response of atmospheric circulation to extratropical SSTA. Results show that, independent of sign of the SSTA, the equilibrium response is characterized by an anomalous trough over the North Atlantic Ocean and the Western Europe concurrent with enhanced storm track, increased rainfall, and reduced blocking days. To the north of the anomalous low, an anomalous ridge emerges over the Greenland, Iceland, and Norwegian Seas accompanied by weakened storm track, reduced rainfall and increased blocking days. This nonlinear component of the total response dominates the weak and oppositely signed linear response that is directly forced by the SSTA, yielding an anomalous ridge (trough) downstream of the warm (cold) SSTA. The amplitude of the linear response is proportional to that of the SSTA, but this is masked by the overwhelmingly strong nonlinear behavior showing no clear correspondence to the SSTA amplitude. The nonlinear pattern emerges 3-4 weeks after the model initialization in November and reaches its first peak amplitude in December/January. It appears that altered baroclinic wave activity due to the GS SSTA in November lead to low-frequency height responses in December/January through transient eddy vorticity flux convergence.

  11. Nonlinear soil-structure interaction due to base slab uplift on the seismic response of an HTGR plant

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Short, S.A.; Wesley, D.A.; Lee, T.H.

    1975-01-01

    The importance of the nonlinear soil-structure interaction effects resulting from substantial base slab uplift occurring during a seismic excitation are evaluated. The structure considered consisted of the containment building and prestressed concrete reactor vessel for a typical HTGR plant. A simplified dynamic mathematical model was utilized consisting of a conventional lumped mass structure with soil-structure interaction accounted for by translational and rotational springs whose properties are determined by elastic half space theory. Three different site soil conditions (a rock site, a moderately stiff soil and a soft soil site) and two levels of horizontal ground motion (0.3g and 0.5g earthquakes) were considered. It may be concluded that linear analysis can be used to conservatively estimate the important behavior of the base slab, even under conditions of substantial base slab uplift. For all cases investigated, linear analysis resulted in higher base overturning moments, greater toe pressures, and greater heel uplift distances than nonlinear analyses. It may also be concluded that the nonlinear effect of uplift does not result in any significant lengthening of the fundamental period of the structure. Also, except in the short period region only negligible differences exist between instructure response spectra based on linear analysis and those based on nonlinear analysis. Finally, for sites in which soil-structure interaction is not significant, as for the rock site, the peak structural response at all locations above the base mat are not significantly influenced by the nonlinear effects of base slab uplift. However, for the two soil sites, the peak shears and moments are, in a few instances, significantly different between linear and nonlinear analyses

  12. Review of Response and Damage of Linear and Nonlinear Systems under Multiaxial Vibration

    Directory of Open Access Journals (Sweden)

    Ed Habtour

    2014-01-01

    Full Text Available A review of past and recent developments in multiaxial excitation of linear and nonlinear structures is presented. The objective is to review some of the basic approaches used in the analytical and experimental methods for kinematic and dynamic analysis of flexible mechanical systems, and to identify future directions in this research area. In addition, comparison between uniaxial and multiaxial excitations and their impact on a structure’s life-cycles is provided. The importance of understanding failure mechanisms in complex structures has led to the development of a vast range of theoretical, numerical, and experimental techniques to address complex dynamical effects. Therefore, it is imperative to identify the failure mechanisms of structures through experimental and virtual failure assessment based on correctly identified dynamic loads. For that reason, techniques for mapping the dynamic loads to fatigue were provided. Future research areas in structural dynamics due to multiaxial excitation are identified as (i effect of dynamic couplings, (ii modal interaction, (iii modal identification and experimental methods for flexible structures, and (iv computational models for large deformation in response to multiaxial excitation.

  13. Non-linear Response to a Type of Seismic Input Motion. Additional Information

    International Nuclear Information System (INIS)

    2011-06-01

    This publication reports the results and findings of a coordinated research project on the safety significance of near-field earthquakes in the design of nuclear power plants. It describes the outcome of a benchmark exercise conducted by a number of institutions on the effects of low to moderate magnitude near-field earthquakes, comparing model analytical simulations with the results of a shaking test performed in France on a physical model of a conventional shear-wall structure. The results build the basis for proposals for possible evolution of engineering practices in order to realistically take into account the effects of near-field earthquakes. A CD is attached that contains the List of participants; Summary of the Research Coordination Meetings; Description of the Camus data; Description of the Japanese input motions: near-field earthquakes observed recently in Japan; Description of the output requested of the IAEA CRP participants; Summary of the participants' modelling; Results of Benchmark Step 1, 2 and 3; Scientific background on classification of seismic loads as primary or secondary; and Japanese practice on nonlinear seismic response analysis of safety related important structures.

  14. Non-linear Response to a Type of Seismic Input Motion

    International Nuclear Information System (INIS)

    2011-06-01

    This publication reports the results and findings of a coordinated research project on the safety significance of near-field earthquakes in the design of nuclear power plants. It describes the outcome of a benchmark exercise conducted by a number of institutions on the effects of low to moderate magnitude near-field earthquakes, comparing model analytical simulations with the results of a shaking test performed in France on a physical model of a conventional shear-wall structure. The results build the basis for proposals for possible evolution of engineering practices in order to realistically take into account the effects of near-field earthquakes. A CD is attached that contains the List of participants; Summary of the Research Coordination Meetings; Description of the CAMUS data; Description of the Japanese input motions: near-field earthquakes observed recently in Japan; Description of the output requested of the IAEA CRP participants; Summary of the participants' modelling; Results of Benchmark Step 1, 2 and 3; Scientific background on classification of seismic loads as primary or secondary; and Japanese practice on nonlinear seismic response analysis of safety related important structures.

  15. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Huijsmans, G. [ITER Organization, Route de Vinon, F-13115 Saint-Paul-Lez-Durance (France); Pamela, S. [IIFS-PIIM. Aix Marseille Université - CNRS, 13397 Marseille Cedex20 (France); Chapman, I.; Kirk, A.; Thornton, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxon OX14 3DB (United Kingdom); Hoelzl, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Cahyna, P. [Association EURATOM/IPP.CR, Prague (Czech Republic)

    2013-10-15

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  16. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy.

    Science.gov (United States)

    Dondossola, Eleonora; Holzapfel, Boris M; Alexander, Stephanie; Filippini, Stefano; Hutmacher, Dietmar W; Friedl, Peter

    2016-01-01

    Implanted biomaterials often fail because they elicit a foreign body response (FBR) and concomitant fibrotic encapsulation. To design clinically relevant interference approaches, it is crucial to first examine the FBR mechanisms. Here, we report the development and validation of infrared-excited nonlinear microscopy to resolve the three-dimensional (3D) organization and fate of 3D-electrospun scaffolds implanted deep into the skin of mice, and the following step-wise FBR process. We observed that immigrating myeloid cells (predominantly macrophages of the M1 type) engaged and became immobilized along the scaffold/tissue interface, before forming multinucleated giant cells. Both macrophages and giant cells locally produced vascular endothelial growth factor (VEGF), which initiated and maintained an immature neovessel network, followed by formation of a dense collagen capsule 2-4 weeks post-implantation. Elimination of the macrophage/giant-cell compartment by clodronate and/or neutralization of VEGF by VEGF Trap significantly diminished giant-cell accumulation, neovascularization and fibrosis. Our findings identify macrophages and giant cells as incendiaries of the fibrotic encapsulation of engrafted biomaterials via VEGF release and neovascularization, and therefore as targets for therapy.

  17. Linear and Nonlinear Response of a Rotating Tokamak Plasma to a Resonant Error-Field

    Science.gov (United States)

    Fitzpatrick, Richard

    2014-10-01

    An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of resistive-MHD theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived, and their domains of validity mapped out in parameter space. This research was funded by the U.S. Department of Energy under Contract DE-FG02-04ER-54742.

  18. Nonperturbative non-Markovian quantum master equation: Validity and limitation to calculate nonlinear response functions

    Science.gov (United States)

    Ishizaki, Akihito; Tanimura, Yoshitaka

    2008-05-01

    Based on the influence functional formalism, we have derived a nonperturbative equation of motion for a reduced system coupled to a harmonic bath with colored noise in which the system-bath coupling operator does not necessarily commute with the system Hamiltonian. The resultant expression coincides with the time-convolutionless quantum master equation derived from the second-order perturbative approximation, which is also equivalent to a generalized Redfield equation. This agreement occurs because, in the nonperturbative case, the relaxation operators arise from the higher-order system-bath interaction that can be incorporated into the reduced density matrix as the influence operator; while the second-order interaction remains as a relaxation operator in the equation of motion. While the equation describes the exact dynamics of the density matrix beyond weak system-bath interactions, it does not have the capability to calculate nonlinear response functions appropriately. This is because the equation cannot describe memory effects which straddle the external system interactions due to the reduced description of the bath. To illustrate this point, we have calculated the third-order two-dimensional (2D) spectra for a two-level system from the present approach and the hierarchically coupled equations approach that can handle quantal system-bath coherence thanks to its hierarchical formalism. The numerical demonstration clearly indicates the lack of the system-bath correlation in the present formalism as fast dephasing profiles of the 2D spectra.

  19. Orientation phenomena in chromophore DR1-containing polymer films and their non-linear optical response

    International Nuclear Information System (INIS)

    Moencke, Doris; Mountrichas, Grigoris; Pispas, Stergios; Kamitsos, Efstratios I.

    2011-01-01

    The effectiveness of chromophore alignment in polymer films following corona poling can be assessed by the generated second harmonic signal. Optimization of the stability and strength of this nonlinear optical response may improve with a better understanding of the underlying principal order phenomena. Structural analysis by vibrational, optical, and 1 H NMR spectroscopy reveals side chain tacticity, aggregation effects, and changes in orientation as a function of temperature. Co-polymers with the functionalized chromophore Disperse Red 1 methacrylate (MDR1) were prepared for three different methacrylate types. High side chain polarity and short side chain length increase generally chromophore aggregation in films, whereas the very long poly-ether side chains in PMEO based co-polymers are wrapped separately around the DR1 entities. Side chain tacticity depends on space requirements, but also on the capacity of side groups to form OH-bridges. Side chain tacticity might present an additional parameter for the assessment of chromophore aggregation and poling induced alignments. Stepwise heating of co-polymer films causes an increase in the number of random over ordered side chain arrangements. Cross-linking by anhydride formation is observed after heating the methacrylic acid based co-polymer.

  20. Nonlinear dynamic response of whole pool multiple spent fuel racks subject to three-dimensional excitations

    International Nuclear Information System (INIS)

    Zhao, Y.; Wilson, P.R.; Stevenson, J.D.

    1995-01-01

    The seismic evaluation of submerged free standing spent fuel storage racks is more complicated than most other nuclear structural systems. When subjected to three dimensional (3-D) floor seismic excitations the dynamic responses of racks in a pool are hydro dynamically coupled with each other, with the fuel assemblies water in gaps. The motion behavior of the racks is significantly different from that observed using a 3D single rack mode. Few seismic analyses using 3-D whole pool multiple rack models are available in the literature. I this paper an analysis was performed for twelve racks using potential theory for the fluid-structure interaction, and using a 3-D whole pool multi-rack finite element model developed herein. The analysis includes the potential nonlinear dynamic behavior of the impact of fuel-rack, rack-rack and rack-pool wall, the tilting or uplift and the frictional sliding of rack supports, and the impact of the rack supports to the pool floor. (author). 12 refs., 7 figs., 1 tab

  1. Symmetry, strain, defects, and the nonlinear optical response of crystalline BaTiO3/silicon

    Science.gov (United States)

    Kormondy, Kristy; Abel, Stefan; Popoff, Youri; Sousa, Marilyne; Caimi, Daniele; Siegwart, Heinz; Marchiori, Chiara; Rossell, Marta; Demkov, Alex; Fompeyrine, Jean

    Recent progress has been made towards exploiting the linear electro-optic or Pockels effect in ferroelectric BaTiO3 (BTO) for novel integrated silicon photonics devices. In such structures, the crystalline symmetry and domain structure of BTO determine which electro-optic tensor elements are accessible under application of an external electric field. For epitaxial thin films of BTO on Si (001), the role of defects in strain relaxation can lead to very different crystalline symmetry even for films of identical thickness. Indeed, through geometric phase analysis of high-resolution scanning transmission electron microscopy images, we map changes of the in-plane and out-of-plane lattice parameters across two 80-nm-thick BTO films. A corresponding 20% difference in the effective electro-optic response was measured by analyzing induced rotation of the polarization of a laser beam (λ = 1550 nm) transmitted through lithographically defined electrodes. Understanding, controlling, and modelling the role of BTO symmetry in nonlinear optics is of fundamental importance for the development of a hybrid BTO/Si photonics platform.. Work supported by the NSF (IRES-1358111), AFOSR (FA9550-12-10494), and European Commission (FP7-ICT-2013-11-619456-SITOGA).

  2. Application of design of experiment on electrophoretic deposition of ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Coating; electrophoretic deposition; glass-ceramic; design of experiment. 1. Introduction ... other chemicals used were of laboratory reagent grade. ... changes from 7⋅0 to 9⋅5 that adversely affects the deposi- tion efficiency and ...

  3. Microencapsulated Electrophoretic Films for Electronic Paper Displays

    Science.gov (United States)

    Amundson, Karl

    2003-03-01

    Despite the dominance of liquid crystal displays, they do not perform some functions very well. While backlit liquid crystal displays can offer excellent color performance, they wash out in bright lighting and suffer from high power consumption. Reflective liquid crystal displays have limited brightness, making these devices challenging to read for long periods of time. Flexible liquid crystal displays are difficult to manufacture and keep stable. All of these attributes (long battery lifetime, bright reflective appearance, compatibility with flexible substrates) are traits that would be found in an ideal electronic paper display - an updateable substitute for paper that could be employed in electronic books, newspapers, and other applications. I will discuss technologies that are being developed for electronic-paper-like displays, and especially on particle-based technologies. A microencapsulated electrophoretic display technology is being developed at the E Ink corporation. This display film offers offer high brightness and an ink-on-paper appearance, compatibility with flexible substrates, and image stability that can lead to very low power consumption. I will present some of the physical and chemical challenges associated with making display films with high performance.

  4. Fluid Delivery System For Capillary Electrophoretic Applications.

    Science.gov (United States)

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  5. Effects of cooking methods on electrophoretic patterns of rainbow trout

    Directory of Open Access Journals (Sweden)

    Yasemen Yanar

    2011-07-01

    Full Text Available The aim of this study was to determine the effects of different cooking methods on the electrophoretic patterns of rainbow trout (Oncorhynchus mykiss fillets using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Raw rainbow trout were deep-fried, microwaved, grilled, and baked and then monitored for changes in the electrophoretic pattern. All cooking methods resulted in significant moisture loss when compared to the raw sample (P

  6. Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics

    Science.gov (United States)

    Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar

    2018-02-01

    In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  7. When Winners Become Losers: Predicted Nonlinear Responses of Arctic Birds to Increasing Woody Vegetation.

    Directory of Open Access Journals (Sweden)

    Sarah J Thompson

    Full Text Available Climate change is facilitating rapid changes in the composition and distribution of vegetation at northern latitudes, raising questions about the responses of wildlife that rely on arctic ecosystems. One widely observed change occurring in arctic tundra ecosystems is an increasing dominance of deciduous shrub vegetation. Our goals were to examine the tolerance of arctic-nesting bird species to existing gradients of vegetation along the boreal forest-tundra ecotone, to predict the abundance of species across different heights and densities of shrubs, and to identify species that will be most or least responsive to ongoing expansion of shrubs in tundra ecosystems. We conducted 1,208 point counts on 12 study blocks from 2012-2014 in northwestern Alaska, using repeated surveys to account for imperfect detection of birds. We considered the importance of shrub height, density of low and tall shrubs (i.e. shrubs >0.5 m tall, percent of ground cover attributed to shrubs (including dwarf shrubs <0.5 m tall, and percent of herbaceous plant cover in predicting bird abundance. Among 17 species considered, only gray-cheeked thrush (Catharus minimus abundance was associated with the highest values of all shrub metrics in its top predictive model. All other species either declined in abundance in response to one or more shrub metrics or reached a threshold where further increases in shrubs did not contribute to greater abundance. In many instances the relationship between avian abundance and shrubs was nonlinear, with predicted abundance peaking at moderate values of the covariate, then declining at high values. In particular, a large number of species were responsive to increasing values of average shrub height with six species having highest abundance at near-zero values of shrub height and abundance of four other species decreasing once heights reached moderate values (≤ 33 cm. Our findings suggest that increases in shrub cover and density will negatively

  8. Modeling the Non-Linear Response of Fiber-Reinforced Laminates Using a Combined Damage/Plasticity Model

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.

    2008-01-01

    The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.

  9. Enhancing the nonlinear thermoelectric response of a correlated quantum dot in the Kondo regime by asymmetrical coupling to the leads

    Science.gov (United States)

    Pérez Daroca, Diego; Roura-Bas, Pablo; Aligia, Armando A.

    2018-04-01

    We study the low-temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.

  10. Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)

    2015-09-15

    Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10{sup -5} cm{sup 2}/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)

  11. Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta

    2015-01-01

    Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10 -5 cm 2 /W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)

  12. Response analysis and energy transmissibility of a vibration isolation system with real-power nonlinearities under a NMPPF controller

    International Nuclear Information System (INIS)

    Huang, Dongmei; Xu, Wei; Shi, Lingling

    2016-01-01

    Highlights: • The nonlinear modified positive position feedback (NMPPF) scheme and the real-power form of restoring and damping forces are combined to improve the response performance of a vibration isolation system. • The primary resonance, dynamical stability and energy transmissibility of the real-power vibration isolation system are studied. • The sensitivity of the controller parameters on the responses has been analyzed. • In order to suppress the amplitude peak, the feedback parameters have been determined by the frequency response. • The energy transmissibility is investigated. - Abstract: In this paper, the nonlinear modified positive position feedback (NMPPF) scheme and the real-power form of restoring and damping forces are combined to improve the response performance of a vibration isolation system. Based on the method of multiple scales, the frequency response, the stability and the energy transmissibility of the real-power vibration isolation system are studied. It is found that the controlled isolation system exhibits a softening behavior for sub-linear restoring force, while it exhibits the two peak response characteristic rather than a hardening behavior for over-linear restoring force. Further, the sensitivity of the feedback parameters on the responses is discussed. The results, compared to the conventional PPF and IRC methods, show that the proposed method is significantly more effective in controlling the steady-state response, and slightly advantageous for the steady-state dynamics control. The effectiveness of this method is also verified by time domain analysis. Then, the suitable feedback and controller parameters are derived by simulation results in which the amplitude peak is suppressed and the resonance stability is maintained. Finally, the energy transmissibility of the vibration isolation system is investigated. The results show that the feedback gain can reduce the whole transmissibility level and greatly suppress vibration

  13. Broken space-time symmetries and mechanisms of rectification of ac fields by nonlinear (non)adiabatic response

    DEFF Research Database (Denmark)

    Denisov, S.; Flach, S.; Ovchinnikov, A. A.

    2002-01-01

    We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response is em...... is employed to explain the effect. We consider a case of a particle in a periodic potential as an example and discuss the relevant symmetry breakings and the mechanisms of rectification of the current in such a system.......We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response...

  14. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  15. Linear and Non-Linear Dose-Response Functions Reveal a Hormetic Relationship Between Stress and Learning

    OpenAIRE

    Zoladz, Phillip R.; Diamond, David M.

    2008-01-01

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as ...

  16. Identification of defect distribution at ferroelectric domain walls from evolution of nonlinear dielectric response during the aging process

    Czech Academy of Sciences Publication Activity Database

    Mokrý, Pavel; Sluka, T.

    2016-01-01

    Roč. 93, č. 6 (2016), č. článku 064114. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : Nonlinear dielectric response * ferroelectric domain walls * aging process * phase field simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016 http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.064114

  17. Analysis of the quasiperiodic response of a generalized van der Pol nonlinear system in the resonance zone

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Fischer, Cyril

    -, - (2018), , , --- ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : nonlinear dynamics * generalized van der Pol system * quasiperiodic response * synchronization effects * stability of auto-oscillation Subject RIV: JM - Building Engineering OBOR OECD: Mechanical engineering Impact factor: 2.847, year: 2016 http://www.sciencedirect.com/science/article/pii/S004579491730278X

  18. Electrophoretic mobility patterns of collagen following laser welding

    Science.gov (United States)

    Bass, Lawrence S.; Moazami, Nader; Pocsidio, Joanne O.; Oz, Mehmet C.; LoGerfo, Paul; Treat, Michael R.

    1991-06-01

    Clinical application of laser vascular anastomosis in inhibited by a lack of understanding of its mechanism. Whether tissue fusion results from covalent or non-covalent bonding of collagen and other structural proteins is unknown. We compared electrophoretic mobility of collagen in laser treated and untreated specimens of rat tail tendon (>90% type I collagen) and rabbit aorta. Welding was performed, using tissue shrinkage as the clinical endpoint, using the 808 nm diode laser (power density 14 watts/cm2) and topical indocyanine green dye (max absorption 805 nm). Collagen was extracted with 8 M urea (denaturing), 0.5 M acetic acid (non-denaturing) and acetic acid/pepsin (cleaves non- helical protein). Mobility patterns on gel electrophoresis (SDS-PAGE) after urea or acetic acid extraction were identical in the lasered and control tendon and vessel (confirmed by optical densitometry), revealing no evidence of formation of novel covalent bonds. Alpha and beta band intensity was diminished in pepsin incubated lasered specimens compared with controls (optical density ratio 0.00 +/- 9 tendon, 0.65 +/- 0.12 aorta), indicating the presence of denatured collagen. With the laser parameters used, collagen is denatured without formation of covalent bonds, suggesting that non-covalent interaction between denatured collagen molecules may be responsible for the weld. Based on this mechanism, welding parameters can be chosen which produce collagen denaturation without cell death.

  19. Studies of serial serum electrophoretic pattern for prognosis in various cancer patients during irradiation

    International Nuclear Information System (INIS)

    Ra, Woo Youn; Woo, Won Hyung

    1971-01-01

    During the period from June. 1969 to Dec. 1970, the serum protein electrophoretic patterns of 44 cases of various cancer patients have been studied to determine the alterations in serum protein fractions in patients who were responding to irradiation or those failing. The serum electrophoretic pattern could be observed as an indicator of prognosis or radiosensitivity. A blood sample was obtained prior to any treatment and the follow up sampling was performed 2 times during radiation therapy. Serum total protein was determined by the method of Wolfson and serum electrophoresis was carried out by using Spinoco Model R B electrophoresis system. The results were following: Seven cases out of cases of cervical cancer responding favorably to radiotherapy showed decreased in Alpha-2 globulin fraction were increased. A case whose third time serum electrophoretic pattern showed multiple myeloma type died 5 months after radiotherapy with bone metastasis. Four cases out of 9 cases of favorably responded breast cancer patients showed decreased in Alpha-2 globulin foraction compared with 2 cases of unfavorable response showed increased in Alpha-2 globulin fraction

  20. Studies of serial serum electrophoretic pattern for prognosis in various cancer patients during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ra, Woo Youn; Woo, Won Hyung [Kyungpook National University School of Medicine, Taegu (Korea, Republic of)

    1971-10-15

    During the period from June. 1969 to Dec. 1970, the serum protein electrophoretic patterns of 44 cases of various cancer patients have been studied to determine the alterations in serum protein fractions in patients who were responding to irradiation or those failing. The serum electrophoretic pattern could be observed as an indicator of prognosis or radiosensitivity. A blood sample was obtained prior to any treatment and the follow up sampling was performed 2 times during radiation therapy. Serum total protein was determined by the method of Wolfson and serum electrophoresis was carried out by using Spinoco Model R B electrophoresis system. The results were following: Seven cases out of cases of cervical cancer responding favorably to radiotherapy showed decreased in Alpha-2 globulin fraction were increased. A case whose third time serum electrophoretic pattern showed multiple myeloma type died 5 months after radiotherapy with bone metastasis. Four cases out of 9 cases of favorably responded breast cancer patients showed decreased in Alpha-2 globulin foraction compared with 2 cases of unfavorable response showed increased in Alpha-2 globulin fraction.

  1. Control-focused, nonlinear and time-varying modelling of dielectric elastomer actuators with frequency response analysis

    International Nuclear Information System (INIS)

    Jacobs, William R; Dodd, Tony J; Anderson, Sean R; Wilson, Emma D; Porrill, John; Assaf, Tareq; Rossiter, Jonathan

    2015-01-01

    Current models of dielectric elastomer actuators (DEAs) are mostly constrained to first principal descriptions that are not well suited to the application of control design due to their computational complexity. In this work we describe an integrated framework for the identification of control focused, data driven and time-varying DEA models that allow advanced analysis of nonlinear system dynamics in the frequency-domain. Experimentally generated input–output data (voltage-displacement) was used to identify control-focused, nonlinear and time-varying dynamic models of a set of film-type DEAs. The model description used was the nonlinear autoregressive with exogenous input structure. Frequency response analysis of the DEA dynamics was performed using generalized frequency response functions, providing insight and a comparison into the time-varying dynamics across a set of DEA actuators. The results demonstrated that models identified within the presented framework provide a compact and accurate description of the system dynamics. The frequency response analysis revealed variation in the time-varying dynamic behaviour of DEAs fabricated to the same specifications. These results suggest that the modelling and analysis framework presented here is a potentially useful tool for future work in guiding DEA actuator design and fabrication for application domains such as soft robotics. (paper)

  2. Enhancement of nonlinear optical response of weakly confined excitons in GaAs thin films by spectrally rectangle-shape-pulse-excitation

    International Nuclear Information System (INIS)

    Kojima, O; Isu, T; Ishi-Hayase, J; Sasaki, M; Tsuchiya, M

    2007-01-01

    We report the enhancement of the nonlinear optical response of the weakly confined excitons with use of spectrally rectangular pulse. The nonlinear optical response was investigated as a function of excitation energy by a degenerate four-wave-mixing (DFWM) technique. In the case that the laser pulse with the controlled spectral shape excites the plural exciton states simultaneously, the DFWM signal intensity is enhanced by a factor of two in comparison with the intensity under the excitation of a single exciton state. This enhancement is caused by the superposition of the nonlinear optical responses from the plural exciton states

  3. Noise Response Data Reveal Novel Controllability Gramian for Nonlinear Network Dynamics

    Science.gov (United States)

    Kashima, Kenji

    2016-01-01

    Control of nonlinear large-scale dynamical networks, e.g., collective behavior of agents interacting via a scale-free connection topology, is a central problem in many scientific and engineering fields. For the linear version of this problem, the so-called controllability Gramian has played an important role to quantify how effectively the dynamical states are reachable by a suitable driving input. In this paper, we first extend the notion of the controllability Gramian to nonlinear dynamics in terms of the Gibbs distribution. Next, we show that, when the networks are open to environmental noise, the newly defined Gramian is equal to the covariance matrix associated with randomly excited, but uncontrolled, dynamical state trajectories. This fact theoretically justifies a simple Monte Carlo simulation that can extract effectively controllable subdynamics in nonlinear complex networks. In addition, the result provides a novel insight into the relationship between controllability and statistical mechanics. PMID:27264780

  4. Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets.

    Science.gov (United States)

    Cesca, T; Calvelli, P; Battaglin, G; Mazzoldi, P; Mattei, G

    2012-02-13

    We report on the nonlinear optical properties of Au-Ag nanoplanets produced by ion implantation and irradiation in silica, experimentally investigated by means of the single beam z-scan technique. The measurements provided experimental evidence of the intense local-field enhancement effect theoretically demonstrated for these plasmonic nanosystems. In particular, this has a dramatic impact on their nonlinear absorption behavior and results in a tunable changeover from reverse saturable absorption to saturable absorption by slightly varying the pump intensity and in the possibility to activate and observe nonlinear phenomena of the electron dynamics otherwise unaccessible in the intensity range that can be employed to study these materials. Finally, for the nanoplanet configuration we found a dramatic decrease of the intensity-dependent absorption coefficient, which could be very promising for obtaining optical gain materials.

  5. A non-linear association between self-reported negative emotional response to stress and subsequent allostatic load

    DEFF Research Database (Denmark)

    Dich, Nadya; Doan, Stacey N; Kivimäki, Mika

    2014-01-01

    dysregulation. Allostatic load also increased with age, but the association between negative emotional response and allostatic load remained stable over time. These results provide evidence for a more nuanced understanding of the role of negative emotions in long-term physical health....... response to major life events and allostatic load, a multisystem indicator of physiological dysregulation. Study sample was 6764 British civil service workers from the Whitehall II cohort. Negative emotional response was assessed by self-report at baseline. Allostatic load was calculated using...... cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological...

  6. Comparison of simulated and measured response of load rejection on A hydro power plant model with mixed mode nonlinear controller

    Energy Technology Data Exchange (ETDEWEB)

    Babunski, Darko; Tuneski, Atanasko; Zaev, Emil [Faculty of Mechanical Engineering, ' Ss. Cyril and Methodius' University, Skopje (Macedonia, The Former Yugoslav Republic of)

    2014-07-01

    Revised Hydro Power Plant model of the IEEE working group recommended converted to state space model is used for simulation of transient response of hydro turbine, and verification was made using measurements of transients from real Hydro Power Plant (HPP). Nonlinear mixed model controller was designed and implemented into complete HPP simulation model and compared with PID with real parameters used in HPP, and with adjusted PID parameters with consideration of smallest frequency error. Verification of performance of the model was made comparing model response with measured load rejection, which is worst case of HPP operation. (Author)

  7. Order and chaos in the nonlinear response of driven nuclear spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E; Derighetti, B; Holzner, R; Ravani, M [Zurich Univ. (Switzerland). Inst. fuer Physik

    1984-01-01

    The authors report on observations of ordered and chaotic behavior of a nonlinear system of strongly polarized nuclear spins inside the tuning coil of an NMR detector. The combined system: spins plus LC-circuit, may act as a nonlinear bistable absorber or a spin-flip laser, depending on the sign of the nuclear spin polarization. For the NMR laser experimental evidence is presented for limit-cycle behavior, sequences of bifurcations which lead to chaos, intermittency, multistability, and pronounced hysteresis effects. The experimental facts are compared with computer solutions of appropriate Bloch equations for the macroscopic order parameters.

  8. Computation of the frequency response of a nonlinearly loaded antenna within a cavity

    Directory of Open Access Journals (Sweden)

    F. Gronwald

    2004-01-01

    Full Text Available We analyze a nonlinearly loaded dipole antenna which is located within a rectangular cavity and excited by an electromagnetic signal. The signal is composed from two different frequencies. In order to calculate the spectrum of the resulting electromagnetic field within the resonator we transform the antenna problem into a network problem. This requires to precisely determine the antenna impedance within the cavity. The resulting nonlinear equivalent network is solved by means of the harmonic balance technique. As a result the occurrence of low intermodulation frequencies within the spectrum is verified.

  9. The reliability of nonlinear least-squares algorithm for data analysis of neural response activity during sinusoidal rotational stimulation in semicircular canal neurons.

    Science.gov (United States)

    Ren, Pengyu; Li, Bowen; Dong, Shiyao; Chen, Lin; Zhang, Yuelin

    2018-01-01

    Although many mathematical methods were used to analyze the neural activity under sinusoidal stimulation within linear response range in vestibular system, the reliabilities of these methods are still not reported, especially in nonlinear response range. Here we chose nonlinear least-squares algorithm (NLSA) with sinusoidal model to analyze the neural response of semicircular canal neurons (SCNs) during sinusoidal rotational stimulation (SRS) over a nonlinear response range. Our aim was to acquire a reliable mathematical method for data analysis under SRS in vestibular system. Our data indicated that the reliability of this method in an entire SCNs population was quite satisfactory. However, the reliability was strongly negatively depended on the neural discharge regularity. In addition, stimulation parameters were the vital impact factors influencing the reliability. The frequency had a significant negative effect but the amplitude had a conspicuous positive effect on the reliability. Thus, NLSA with sinusoidal model resulted a reliable mathematical tool for data analysis of neural response activity under SRS in vestibular system and more suitable for those under the stimulation with low frequency but high amplitude, suggesting that this method can be used in nonlinear response range. This method broke out of the restriction of neural activity analysis under nonlinear response range and provided a solid foundation for future study in nonlinear response range in vestibular system.

  10. Forests, fire, floods and fish: nonlinear biophysical responses to changing climate

    Science.gov (United States)

    Pierce, J. L.; Baxter, C.; Yager, E. M.; Fremier, A. K.; Crosby, B. T.; Smith, A. M.; Kennedy, B.; Hicke, J. A.; Feris, K.

    2009-12-01

    One goal of interdisciplinarity is to develop a more holistic understanding of a set of interlinked, complex system processes. Studies rarely couple both a mechanistic understanding of individual processes with their coupled influence on the entire system structure, yet the prospects for climate driven changes in western river systems provide justification for such an effort. We apply such a mechanistic and systems approach to understanding the effects of climate on fire frequency, plant-soil infiltration, sediment transport and stream community and ecosystem dynamics in a large wilderness setting that is likely to experience shifts in the timing or intensity of physical forces if projected climate change scenarios are realized. The Middle Fork Salmon River in central Idaho runs through the Frank Church Wilderness area and is the largest roadless area in the conterminous United States. The relatively southern continental position, complex mountain terrain and wealth of long-term landscape and ecological data in this region make it a tractable system to study the multifaceted and potentially non-linear processes of system change. This presents a unique opportunity to study the effects of climate change in the absence of substantial management effects in a system on the cusp of change. This collection of studies investigates the effects of climate-driven changes in hillslope processes on stream geomorphic and ecologic processes. We investigate 1) how wildfire alters the magnitude, timing and size of sediment delivered to stream channels, 2) how climate-driven changes in the proportion of rain vs. snow dominated basins alter stream hydrology, 3) how wildfire and insect disturbances modify aquatic ecosystems through inputs of nutrients and changes to habitat, 4) how paleo-records of drought, fire, and fire-related debris flows compare with recent data, 5) how fire-related inputs of sediment and wood influence the structure and dynamics of aquatic habitats, and their

  11. Documentation for assessment of modal pushover-based scaling procedure for nonlinear response history analysis of "ordinary standard" bridges

    Science.gov (United States)

    Kalkan, Erol; Kwong, Neal S.

    2010-01-01

    The earthquake engineering profession is increasingly utilizing nonlinear response history analyses (RHA) to evaluate seismic performance of existing structures and proposed designs of new structures. One of the main ingredients of nonlinear RHA is a set of ground-motion records representing the expected hazard environment for the structure. When recorded motions do not exist (as is the case for the central United States), or when high-intensity records are needed (as is the case for San Francisco and Los Angeles), ground motions from other tectonically similar regions need to be selected and scaled. The modal-pushover-based scaling (MPS) procedure recently was developed to determine scale factors for a small number of records, such that the scaled records provide accurate and efficient estimates of 'true' median structural responses. The adjective 'accurate' refers to the discrepancy between the benchmark responses and those computed from the MPS procedure. The adjective 'efficient' refers to the record-to-record variability of responses. Herein, the accuracy and efficiency of the MPS procedure are evaluated by applying it to four types of existing 'ordinary standard' bridges typical of reinforced-concrete bridge construction in California. These bridges are the single-bent overpass, multi span bridge, curved-bridge, and skew-bridge. As compared to benchmark analyses of unscaled records using a larger catalog of ground motions, it is demonstrated that the MPS procedure provided an accurate estimate of the engineering demand parameters (EDPs) accompanied by significantly reduced record-to-record variability of the responses. Thus, the MPS procedure is a useful tool for scaling ground motions as input to nonlinear RHAs of 'ordinary standard' bridges.

  12. Fast response of the optical nonlinearity in a GaAs/AlGaAs asymmetric triple quantum well structure

    CERN Document Server

    Ahn, S H; Sawaki, N

    1999-01-01

    The time response of the optical nonlinear behavior in a GaAs/AlGaAs asymmetric triple quantum well structure is estimated by using a picosecond pump-probe method at 77 K. From the results of the transmission of the probe pulse as a function of the delay time at the excitation wavelengths, a rise time of 5 approx 10 ps and a fall time of 8 approx 16 ps are obtained. The nonlinear behavior is attributed to the triple resonance of the electronic states due to the build-up of the internal field induced by the separation of photo-excited electrons and holes. It is found that the rise time is determined by the tunneling transfer time of the electrons in the narrowest well to an adjacent well separated by a thin potential barrier.

  13. Non-linear frequency response of non-isothermal adsorption controlled by micropore diffusion with variable diffusivity

    Directory of Open Access Journals (Sweden)

    MENKA PETKOVSKA

    2000-12-01

    Full Text Available The concept of higher order frequency response functions (FRFs is used for the analysis of non-linear adsorption kinetics on a particle scale, for the case of non-isothermal micropore diffusion with variable diffusivity. Six series of FRFs are defined for the general non-isothermal case. A non-linerar mathematical model is postulated and the first and second order FRFs derived and simulated. A variable diffusivity influences the shapes of the second order FRFs relating the sorbate concentration in the solid phase and t he gas pressure significantly, but they still keep their characteristics which can be used for discrimination of this from other kinetic mechanisms. It is also shown that first and second order particle FRFs offter sufficient information for an easy and fast estimation of all model parameters, including those defining the system non-linearity.

  14. Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.

  15. Interaction-induced effects in the nonlinear coherent response of quantum-well excitons

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner

    1999-01-01

    Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...

  16. Sine sweep and steady-state response of simplified solar array models with nonlinear elements

    NARCIS (Netherlands)

    Fey, R.H.B.; van Liempt, F.P.H.

    2002-01-01

    In this paper the nonlinear dynamic behaviour of two simplified solar array systems is investigated experimentally and numerically. A simplified beam model supported by one snubber (a bilinear spring which can only take compressive forces) is used to investigate the dynamics of the extension arm on

  17. Development of the resolution theory for electrophoretic exclusion.

    Science.gov (United States)

    Kenyon, Stacy M; Keebaugh, Michael W; Hayes, Mark A

    2014-09-01

    Electrophoretic exclusion, a technique that differentiates species in bulk solution near a channel entrance, has been demonstrated on benchtop and microdevice designs. In these systems, separation occurs when the electrophoretic velocity of one species is greater than the opposing hydrodynamic flow, while the velocity of the other species is less than that flow. Although exclusion has been demonstrated in multiple systems for a range of analytes, a theoretical assessment of resolution has not been addressed. To compare the results of these calculations to traditional techniques, the performance is expressed in terms of smallest difference in electrophoretic mobilities that can be completely separated (R = 1.5). The calculations indicate that closest resolvable species (Δμmin ) differ by approximately 10(-13) m(2) /Vs and peak capacity (nc ) is 1000. Published experimental data were compared to these calculated results. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrophoretic deposition of sol-gel-derived ceramic coatings

    International Nuclear Information System (INIS)

    Zhang, Y.; Crooks, R.M.

    1992-01-01

    In this paper the physical, optical, and chemical characteristics of electrophoretically and dip-coated sol-gel ceramic films are compared. The results indicate that electrophoresis may allow a higher level of control over the chemistry and structure of ceramic coatings than dip-coating techniques. For example, controlled-thickness sol-gel coatings can be prepared by adjusting the deposition time or voltage. Additionally, electrophoretic coatings can be prepared in a four-component alumino-borosilicate sol display interesting optical characteristics. For example, the ellipsometrically-measured refractive indices of electrophoretic coatings are higher than the refractive indices of dip-coated films cast from identical sols, and they are also higher than any of the individual sol components. This result suggests that there are physical and/or chemical differences between films prepared by dip-coating and electrophoresis

  19. Assessment of modal-pushover-based scaling procedure for nonlinear response history analysis of ordinary standard bridges

    Science.gov (United States)

    Kalkan, E.; Kwong, N.

    2012-01-01

    The earthquake engineering profession is increasingly utilizing nonlinear response history analyses (RHA) to evaluate seismic performance of existing structures and proposed designs of new structures. One of the main ingredients of nonlinear RHA is a set of ground motion records representing the expected hazard environment for the structure. When recorded motions do not exist (as is the case in the central United States) or when high-intensity records are needed (as is the case in San Francisco and Los Angeles), ground motions from other tectonically similar regions need to be selected and scaled. The modal-pushover-based scaling (MPS) procedure was recently developed to determine scale factors for a small number of records such that the scaled records provide accurate and efficient estimates of “true” median structural responses. The adjective “accurate” refers to the discrepancy between the benchmark responses and those computed from the MPS procedure. The adjective “efficient” refers to the record-to-record variability of responses. In this paper, the accuracy and efficiency of the MPS procedure are evaluated by applying it to four types of existing Ordinary Standard bridges typical of reinforced concrete bridge construction in California. These bridges are the single-bent overpass, multi-span bridge, curved bridge, and skew bridge. As compared with benchmark analyses of unscaled records using a larger catalog of ground motions, it is demonstrated that the MPS procedure provided an accurate estimate of the engineering demand parameters (EDPs) accompanied by significantly reduced record-to-record variability of the EDPs. Thus, it is a useful tool for scaling ground motions as input to nonlinear RHAs of Ordinary Standard bridges.

  20. Toward a unified description of nonlinearity and frequency dispersion of piezoelectric and dielectric responses in Pb(Zr,Ti)O3

    International Nuclear Information System (INIS)

    Damjanovic, D.; Bharadwaja, S.S.N.; Setter, N.

    2005-01-01

    A phenomenological approach is proposed describing both nonlinearity and frequency dispersion in dielectric and piezoelectric properties of lead zirconate titanate, Pb(Zr,Ti)O 3 (PZT), thin films and ceramics. The approach couples the frequency dependent response in form of the power law, 1/ω β , with the rate-independent nonlinear response described by the Rayleigh law. The main experimental trends are well described by the model

  1. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations

    Science.gov (United States)

    Fernandez, Fernando R.; Malerba, Paola; White, John A.

    2015-01-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971

  2. Growth of silver-coated gold nanoshells with enhanced linear and nonlinear optical responses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ya-Fang; Wang, Jia-Hong; Ma, Liang; Nan, Fan; Cheng, Zi-Qiang; Zhou, Li, E-mail: zhouli@whu.edu.cn; Wang, Qu-Quan, E-mail: qqwang@whu.edu.cn [Wuhan University, Department of Physics, Key Laboratory of Artificial Miro- and Nano-structures of the Ministry of Education, and School of Physics and Technology (China)

    2015-03-15

    Silver-coated gold nanoshells with 1,4-BDT molecules as the spacer (Ag/BDT/Au) were synthesized on the surface of SiO{sub 2} nanospheres. The surface plasmon resonance of Au/SiO{sub 2} and Ag/BDT/Au/SiO{sub 2} nanoparticles with single and double shells were tuned by adjusting the thickness of Au and Ag nanoshells. The enhanced local field in the gap of Au and Ag shells is demonstrated by measuring Raman scattering and nonlinear refraction. The results show that the Raman intensity is enhanced by 17 times and the nonlinear refractive index is enhanced by 30 % due to the growth of Ag shells.

  3. Impressive nonlinear optical response exhibited by Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films

    Science.gov (United States)

    Sabira, K.; Saheeda, P.; Divyasree, M. C.; Jayalekshmi, S.

    2017-12-01

    In the present work, the nonlinear optical properties of free-standing films of Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite are investigated to assess their suitability as efficient optical limiters. The PVDF/RGO nanocomposite films are generated by mixing different concentrations of RGO as the filler, with PVDF, using solution casting method. The XRD and FTIR data of these nanocomposite films confirm the enhancement in the β phase of PVDF when RGO is added to PVDF, which is one of the prime factors, enhancing the nonlinear response of the nanocomposite. The open aperture and closed aperture Z-scan technique under nanosecond excitation (532 nm, 7 ns) is used to investigate the nonlinear optical characteristics of the PVDF/RGO nanocomposite films. These films are found to exhibit two photon absorption assisted optical non linearity in the nanosecond regime. The highlight of the present work is the observation of quite low values of the normalized transmittance and low optical limiting threshold power in free standing films of PVDF/RGO nanocomposite. These flexible, free-standing and stable nanocomposite films offer high application prospects in the design of efficient optical limiting devices of any desired size or shape.

  4. Temporal, Spectral, and Polarization Dependence of the Nonlinear Optical Response of Carbon Disulfide

    Science.gov (United States)

    2014-12-18

    liquid. Since the diffusive nature of the relaxation follows the Debye –Stokes–Einstein relation [39], this mechanism is referred to as diffusive...Sigma-Aldrich, 270660, ≥99.9%) are conducted using 1 mm path length , fused silica cuvettes. Using the refractive index measurements of [46], we find...studies of molecular liquids,” Ann. Rev. Phys. Chem. 31, 523–558 (1980). 38. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic/Elsevier, 2008). 39. P. Debye

  5. Non-linear response of electrode-electrolyte interface at high current density

    International Nuclear Information System (INIS)

    Ruiz, G.A.; Felice, C.J.; Valentinuzzi, M.E.

    2005-01-01

    A distributed parameter non-linear circuit is presented as fractal model of an electrode-electrolyte interface. It includes the charge transfer resistance and the double layer capacitance at each fractal level. The circuit explains the linear behavior of its series equivalent resistance R eq with signals of amplitudes eq Fourier spectrum. As a consequence, both the equivalent resistance and reactance drop with voltage, facts reported experimentally by other authors

  6. Identification of the Response of a Controlled Building Structure Subjected to Seismic Load by Using Nonlinear System Models

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2016-10-01

    Full Text Available The present study investigates the prediction efficiency of nonlinear system-identification models, in assessing the behavior of a coupled structure-passive vibration controller. Two system-identification models, including Nonlinear AutoRegresive with eXogenous inputs (NARX and adaptive neuro-fuzzy inference system (ANFIS, are used to model the behavior of an experimentally scaled three-story building incorporated with a tuned mass damper (TMD subjected to seismic loads. The experimental study is performed to generate the input and output data sets for training and testing the designed models. The parameters of root-mean-squared error, mean absolute error and determination coefficient statistics are used to compare the performance of the aforementioned models. A TMD controller system works efficiently to mitigate the structural vibration. The results revealed that the NARX and ANFIS models could be used to identify the response of a controlled structure. The parameters of both two time-delays of the structure response and the seismic load were proven to be effective tools in identifying the performance of the models. A comparison based on the parametric evaluation of the two methods showed that the NARX model outperforms the ANFIS model in identifying structures response.

  7. Orbital-scale nonlinear response of East Asian summer monsoon to its potential driving forces in the late Quaternary

    Science.gov (United States)

    Yi, Liang; Shi, Zhengguo; Tan, Liangcheng; Deng, Chenglong

    2018-03-01

    We conducted a statistical study to characterize the nonlinear response of the East Asian summer monsoon (EASM) to its potential forcing factors over the last 260 ka on orbital timescales. We find that both variation in solar insolation and global ice volume were responsible for the nonlinear forcing of orbital-scale monsoonal variations, accounting for 80% of the total variance. Specifically, EASM records with dominated precession variance exhibit a more sensitive response to changes in solar insolation during intervals of enhanced monsoon strength, but are less sensitive during intervals of reduced monsoon strength. In the case of global ice volume with 100-ka variance, this difference is not one of sensitivity but rather a difference in baseline conditions, such as the relative areas of land and sea which affected the land-sea thermal gradient. We therefore suggest that EASM records with dominated precession variance recorded the signal of a shift in the location of the Inter-tropical Convergence Zone, and the associated changes in the incidence of torrential rainfall; while for proxies with dominated 100-ka variance, it recorded changes in the land-sea thermal gradient via its effects on non-torrential precipitation.

  8. Ocular-following responses to white noise stimuli in humans reveal a novel nonlinearity that results from temporal sampling.

    Science.gov (United States)

    Sheliga, Boris M; Quaia, Christian; FitzGibbon, Edmond J; Cumming, Bruce G

    2016-01-01

    White noise stimuli are frequently used to study the visual processing of broadband images in the laboratory. A common goal is to describe how responses are derived from Fourier components in the image. We investigated this issue by recording the ocular-following responses (OFRs) to white noise stimuli in human subjects. For a given speed we compared OFRs to unfiltered white noise with those to noise filtered with band-pass filters and notch filters. Removing components with low spatial frequency (SF) reduced OFR magnitudes, and the SF associated with the greatest reduction matched the SF that produced the maximal response when presented alone. This reduction declined rapidly with SF, compatible with a winner-take-all operation. Removing higher SF components increased OFR magnitudes. For higher speeds this effect became larger and propagated toward lower SFs. All of these effects were quantitatively well described by a model that combined two factors: (a) an excitatory drive that reflected the OFRs to individual Fourier components and (b) a suppression by higher SF channels where the temporal sampling of the display led to flicker. This nonlinear interaction has an important practical implication: Even with high refresh rates (150 Hz), the temporal sampling introduced by visual displays has a significant impact on visual processing. For instance, we show that this distorts speed tuning curves, shifting the peak to lower speeds. Careful attention to spectral content, in the light of this nonlinearity, is necessary to minimize the resulting artifact when using white noise patterns undergoing apparent motion.

  9. Nonlinear dynamic response analysis in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; He Feng; Hao Pengfei; Wang Xuefang

    2000-01-01

    Based on the elaborate force and moment analysis with characteristics method and control-volume integrating method for the piping system of primary loop under pressurized water reactor' loss of coolant accident (LOCA) conditions, the nonlinear dynamic response of this system is calculated by the updated Lagrangian formulation (ADINA code). The piping system and virtual underpinning are specially processed, the move displacement of the broken pipe with time is accurately acquired, which is very important and useful for the design of piping system and virtual underpinning

  10. A novel method for non-parametric identification of nonlinear restoring forces in nonlinear vibrations from noisy response data: A conservative system

    International Nuclear Information System (INIS)

    Jang, T. S.; Kwon, S. H.; Han, S. L.

    2009-01-01

    A novel procedure is proposed to identify the functional form of nonlinear restoring forces in the nonlinear oscillatory motion of a conservative system. Although the problem of identification has a unique solution, formulation results in a Volterra-type of integral equation of the 'first' kind: the solution lacks stability because the integral equation is the 'first' kind. Thus, the new problem at hand is ill-posed. Inevitable small errors during the identification procedure can make the prediction of nonlinear restoring forces useless. We overcome the difficulty by using a stabilization technique of Landweber's regularization in this study. The capability of the proposed procedure is investigated through numerical examples

  11. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition

    International Nuclear Information System (INIS)

    Du Chunsheng; Pan Ning

    2006-01-01

    Carbon nanotube thin films have been successfully fabricated by the electrophoretic deposition technique. The supercapacitors built from such thin film electrodes have a very small equivalent series resistance, and a high specific power density over 20 kW kg -1 was thus obtained. More importantly, the supercapacitors showed superior frequency response. Our study also demonstrated that these carbon nanotube thin films can serve as coating layers over ordinary current collectors to drastically enhance the electrode performance, indicating a huge potential in supercapacitor and battery manufacturing

  12. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864...

  13. An electrophoretical and immunological study of Pycnogonida, with phylogenetic considerations

    NARCIS (Netherlands)

    Munilla, Tomás; Haro, de Andrés

    1981-01-01

    An electrophoretical and immunological study is made of nine species of pycnogonids, representing seven families, from the Catalan coast. An electrophoretogram of each species is given and the antigenic properties of its protein bands are determined. Taking as comparative basis the serological

  14. Modeling human auditory evoked brainstem responses based on nonlinear cochlear processing

    DEFF Research Database (Denmark)

    Harte, James; Rønne, Filip Munch; Dau, Torsten

    2010-01-01

    . To generate AEPs recorded at remote locations, a convolution was made on an empirically obtained elementary unit waveform with the instantaneous discharge rate function for the corresponding AN unit. AEPs to click-trains, as well as to tone pulses at various frequencies, were both modelled and recorded...... at different stimulation levels and repetition rates. The observed nonlinearities in the recorded potential patterns, with respect to ABR wave V latencies and amplitudes, could be largely accounted for by level-dependent BM processing as well as effects of short-term neural adaptation. The present study...

  15. Non-parametric system identification from non-linear stochastic response

    DEFF Research Database (Denmark)

    Rüdinger, Finn; Krenk, Steen

    2001-01-01

    An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable...... of the energy at mean-level crossings, which yields the damping relative to white noise intensity. Finally, an estimate of the noise intensity is extracted by estimating the absolute damping from the autocovariance functions of a set of modified phase plane variables at different energy levels. The method...

  16. Response of Non-Linear Systems to Renewal Impulses by Path Integration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Iwankiewicz, R.

    The cell-to-cell mapping (path integration) technique has been devised for MDOF non-linear and non-hysteretic systems subjected to random trains of impulses driven by an ordinary renewal point process with gamma-distributed integer parameter interarrival times (an Erlang process). Since the renewal...... point process has not independent increments the state vector of the system, consisting of the generalized displacements and velocities, is not a Markov process. Initially it is shown how the indicated systems can be converted to an equivalent Poisson driven system at the expense of introducing...... additional discrete-valued state variables for which the stochastic equations are also formulated....

  17. Exposure-lag-response in Longitudinal Studies: Application of Distributed Lag Non-linear Models in an Occupational Cohort.

    Science.gov (United States)

    Neophytou, Andreas M; Picciotto, Sally; Brown, Daniel M; Gallagher, Lisa E; Checkoway, Harvey; Eisen, Ellen A; Costello, Sadie

    2018-02-13

    Prolonged exposures can have complex relationships with health outcomes, as timing, duration, and intensity of exposure are all potentially relevant. Summary measures such as cumulative exposure or average intensity of exposure may not fully capture these relationships. We applied penalized and unpenalized distributed lag non-linear models (DLNMs) with flexible exposure-response and lag-response functions in order to examine the association between crystalline silica exposure and mortality from lung cancer and non-malignant respiratory disease in a cohort study of 2,342 California diatomaceous earth workers, followed 1942-2011. We also assessed associations using simple measures of cumulative exposure assuming linear exposure-response and constant lag-response. Measures of association from DLNMs were generally higher than from simpler models. Rate ratios from penalized DLNMs corresponding to average daily exposures of 0.4 mg/m3 during lag years 31-50 prior to the age of observed cases were 1.47 (95% confidence interval (CI) 0.92, 2.35) for lung cancer and 1.80 (95% CI: 1.14, 2.85) for non-malignant respiratory disease. Rate ratios from the simpler models for the same exposure scenario were 1.15 (95% CI: 0.89-1.48) and 1.23 (95% CI: 1.03-1.46) respectively. Longitudinal cohort studies of prolonged exposures and chronic health outcomes should explore methods allowing for flexibility and non-linearities in the exposure-lag-response. © The Author(s) 2018. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  18. Groundwater decline and tree change in floodplain landscapes: Identifying non-linear threshold responses in canopy condition

    Directory of Open Access Journals (Sweden)

    J. Kath

    2014-12-01

    Full Text Available Groundwater decline is widespread, yet its implications for natural systems are poorly understood. Previous research has revealed links between groundwater depth and tree condition; however, critical thresholds which might indicate ecological ‘tipping points’ associated with rapid and potentially irreversible change have been difficult to quantify. This study collated data for two dominant floodplain species, Eucalyptus camaldulensis (river red gum and E. populnea (poplar box from 118 sites in eastern Australia where significant groundwater decline has occurred. Boosted regression trees, quantile regression and Threshold Indicator Taxa Analysis were used to investigate the relationship between tree condition and groundwater depth. Distinct non-linear responses were found, with groundwater depth thresholds identified in the range from 12.1 m to 22.6 m for E. camaldulensis and 12.6 m to 26.6 m for E. populnea beyond which canopy condition declined abruptly. Non-linear threshold responses in canopy condition in these species may be linked to rooting depth, with chronic groundwater decline decoupling trees from deep soil moisture resources. The quantification of groundwater depth thresholds is likely to be critical for management aimed at conserving groundwater dependent biodiversity. Identifying thresholds will be important in regions where water extraction and drying climates may contribute to further groundwater decline. Keywords: Canopy condition, Dieback, Drought, Tipping point, Ecological threshold, Groundwater dependent ecosystems

  19. Physical origin of third order non-linear optical response of porphyrin nanorods

    International Nuclear Information System (INIS)

    Mongwaketsi, N.; Khamlich, S.; Pranaitis, M.; Sahraoui, B.; Khammar, F.; Garab, G.; Sparrow, R.; Maaza, M.

    2012-01-01

    The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H 4 TPPS 4 ] 2- and [SnTPyP] 2+ mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: ► We synthesized porphyrin nanorods by self assembly and molecular recognition method. ► TEM images confirmed solid cylindrical shapes. ► UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. ► The enhanced third-order nonlinearities were observed.

  20. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, Jaime H. [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Correa, J.D., E-mail: jcorrea@udem.edu.co [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2016-03-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  1. Effects of delayed nonlinear response on wave packet dynamics in one-dimensional generalized Fibonacci chains

    International Nuclear Information System (INIS)

    Zhang, Jianxin; Zhang, Zhenjun; Tong, Peiqing

    2013-01-01

    We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth

  2. Effects of delayed nonlinear response on wave packet dynamics in one-dimensional generalized Fibonacci chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianxin; Zhang, Zhenjun [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Tong, Peiqing, E-mail: pqtong@njnu.edu.cn [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023 (China)

    2013-07-15

    We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth.

  3. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    International Nuclear Information System (INIS)

    Hoyos, Jaime H.; Correa, J.D.; Mora-Ramos, M.E.; Duque, C.A.

    2016-01-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  4. Quantum Nonlinear Optics

    CERN Document Server

    Hanamura, Eiichi; Yamanaka, Akio

    2007-01-01

    This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.

  5. A generalized nonlinear tempeature response function for some growth and developmental parameters in kiwifruit (Actinidia deliciosa (A. Chev. C. F. Liang & A. R. Ferguson

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2003-01-01

    Full Text Available Temperature is a major factor that affects metabolic processes in living organisms. Thermal time has been widely used to account for the effects of temperature on crop growth and development. However, the thermal time approach has been criticized because it assumes a linear relationship between the rate of crop growth or development and temperature. The response of the rate of crop growth and development to temperature is nonlinear. The objective of this study was to develop a generalized nonlinear temperature response function for some growth and developmental parameters in kiwifruit (Actinidia deliciosa (A. Chev. C. F. Liang & A. R. Ferguson. The nonlinear function has three coefficients (the cardinal temperatures, which were 0ºC, 25ºC, and 40ºC. Data of temperature response of relative growth rate, relative leaf area growth, net photosynthesis rate, and leaf appearance rate in kiwifruit (female cv. Hayward at two light levels, which are from published research, were used as independent data for evaluating the performance of the nonlinear and the thermal time functions. The results showed that the generalized nonlinear response function is better than the thermal time approach, and the temperature response of several growth and developmental parameters in kiwifruit can be described with the same response function.

  6. Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation

    International Nuclear Information System (INIS)

    Shrimali, M.K.; Jangid, R.S.

    2002-01-01

    Seismic response of the liquid storage tanks isolated by lead-rubber bearings is investigated for bi-directional earthquake excitation (i.e. two horizontal components). The biaxial force-deformation behaviour of the bearings is considered as bi-linear modelled by coupled non-linear differential equations. The continuous liquid mass of the tank is modelled as lumped masses known as convective mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. Since the force-deformation behaviour of the bearings is non-linear, as a result, the seismic response is obtained by the Newmark's step-by-step method. The seismic responses of two types of the isolated tanks (i.e. slender and broad) are investigated under several recorded earthquake ground to study the effects of bi-directional interaction. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) the period of isolation, (ii) the damping of isolation bearings and (iii) the yield strength level of the bearings. It has been observed that the seismic response of isolated tank is found to be insensitive to interaction effect of the bearing forces. Further, there exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value. Therefore, increasing the bearing damping beyond a certain value may decrease the bearing and sloshing displacements but it may increase the base shear

  7. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    Science.gov (United States)

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  8. Do Quercus ilex woodlands undergo abrupt non-linear functional changes in response to human disturbance along a climatic gradient?

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio; José Molina, Maria; Moreno de las Heras, Mariano; Espigares, Tíscar; Nicolau, Jose Manuel; Monleon, Vicente

    2017-04-01

    Theoretical models predict that drylands are particularly prone to suffer critical transitions with abrupt non-linear changes in their structure and functions as a result of the existing complex interactions between climatic fluctuations and human disturbances. However, so far, few studies provide empirical data to validate these models. We aim at determining how holm oak (Quercus ilex) woodlands undergo changes in their functions in response to human disturbance along an aridity gradient (from semi-arid to sub-humid conditions), in eastern Spain. For that purpose, we used (a) remote-sensing estimations of precipitation-use-efficiency (PUE) from enhanced vegetation index (EVI) observations performed in 231x231 m plots of the Moderate Resolution Imaging Spectroradiometer (MODIS); (b) biological and chemical soil parameter determinations (extracellular soil enzyme activity, soil respiration, nutrient cycling processes) from soil sampled in the same plots; (c) vegetation parameter determinations (ratio of functional groups) from vegetation surveys performed in the same plots. We analyzed and compared the shape of the functional change (in terms of PUE and soil and vegetation parameters) in response to human disturbance intensity for our holm oak sites along the aridity gradient. Overall, our results evidenced important differences in the shape of the functional change in response to human disturbance between climatic conditions. Semi-arid areas experienced a more accelerated non-linear decrease with an increasing disturbance intensity than sub-humid ones. The proportion of functional groups (herbaceous vs. woody cover) played a relevant role in the shape of the functional response of the holm oak sites to human disturbance.

  9. Insight into the effect of screw dislocations and oxygen vacancy defects on the optical nonlinear refraction response in chemically grown ZnO/Al2O3 films

    Science.gov (United States)

    Agrawal, Arpana; Saroj, Rajendra K.; Dar, Tanveer A.; Baraskar, Priyanka; Sen, Pratima; Dhar, Subhabrata

    2017-11-01

    We report the effect of screw dislocations and oxygen vacancy defects on the optical nonlinear refraction response of ZnO films grown on a sapphire substrate at various oxygen flow rates using the chemical vapor deposition technique. The nonlinear refraction response was investigated in the off-resonant regime using a CW He-Ne laser source to examine the role of the intermediate bandgap states. It has been observed that the structural defects strongly influence the optical nonlinearity in the off-resonant regime. Nonlinearity has been found to improve as the oxygen flow rate is lowered from 2 sccm to 0.3 sccm. From photoluminescence studies, we observe that the enhanced defect density of the electronic defect levels due to the increased concentration of structural defects (with the decrease in the oxygen flow rate) is responsible for this improved optical nonlinearity along with the thermal effect. This suggests that defect engineering is an effective way to tailor the nonlinearity of ZnO films and their utility for optoelectronic device applications.

  10. Implicit three-dimensional finite-element formulation for the nonlinear structural response of reactor components

    International Nuclear Information System (INIS)

    Kulak, R.F.; Belytschko, T.B.

    1975-09-01

    The formulation of a finite-element procedure for the implicit transient and static analysis of plate/shell type structures in three-dimensional space is described. The triangular plate/shell element can sustain both membrane and bending stresses. Both geometric and material nonlinearities can be treated, and an elastic-plastic material law has been incorporated. The formulation permits the element to undergo arbitrarily large rotations and translations; but, in its present form it is restricted to small strains. The discretized equations of motion are obtained by a stiffness method. An implicit integration algorithm based on trapezoidal integration formulas is used to integrate the discretized equations of motion in time. To ensure numerical stability, an iterative solution procedure with equilibrium checks is used

  11. Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications

    International Nuclear Information System (INIS)

    Teng Xu-Dong; Guo Xia-Sheng; Tu Juan; Zhang Dong

    2016-01-01

    Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry; (ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size; (iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and (iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures. (special topic)

  12. Linear and non-linear dose-response functions reveal a hormetic relationship between stress and learning.

    Science.gov (United States)

    Zoladz, Phillip R; Diamond, David M

    2008-10-16

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as well as the excitatory effects of several neuromodulators, including corticosteroids, norepinephrine, corticotropin-releasing hormone, acetylcholine and dopamine. We propose that this rapid activation of the amygdala-hippocampus brain memory system results in a linear dose-response relation between emotional strength and memory formation. More prolonged stress, however, leads to an inhibition of hippocampal function, which can be attributed to compensatory cellular responses that protect hippocampal neurons from excitotoxicity. This inhibition of hippocampal functioning in response to prolonged stress is potentially relevant to the well-described curvilinear dose-response relationship between arousal and memory. Our emphasis on the temporal features of stress-brain interactions addresses how stress can activate, as well as impair, hippocampal functioning to produce a hormetic relationship between stress and learning.

  13. INTRANS. A computer code for the non-linear structural response analysis of reactor internals under transient loads

    International Nuclear Information System (INIS)

    Ramani, D.T.

    1977-01-01

    The 'INTRANS' system is a general purpose computer code, designed to perform linear and non-linear structural stress and deflection analysis of impacting or non-impacting nuclear reactor internals components coupled with reactor vessel, shield building and external as well as internal gapped spring support system. This paper describes in general a unique computational procedure for evaluating the dynamic response of reactor internals, descretised as beam and lumped mass structural system and subjected to external transient loads such as seismic and LOCA time-history forces. The computational procedure is outlined in the INTRANS code, which computes component flexibilities of a discrete lumped mass planar model of reactor internals by idealising an assemblage of finite elements consisting of linear elastic beams with bending, torsional and shear stiffnesses interacted with external or internal linear as well as non-linear multi-gapped spring support system. The method of analysis is based on the displacement method and the code uses the fourth-order Runge-Kutta numerical integration technique as a basis for solution of dynamic equilibrium equations of motion for the system. During the computing process, the dynamic response of each lumped mass is calculated at specific instant of time using well-known step-by-step procedure. At any instant of time then, the transient dynamic motions of the system are held stationary and based on the predicted motions and internal forces of the previous instant. From which complete response at any time-step of interest may then be computed. Using this iterative process, the relationship between motions and internal forces is satisfied step by step throughout the time interval

  14. Nonlinearity effect of electro-optical modulator response in double spread CDMA radio-over-fiber transmissions

    Science.gov (United States)

    Huang, Jen-Fa; Yen, Chih-Ta; Li, Tzung-Yen

    2008-07-01

    This study presents a double-spread code-division multiple-access (CDMA) scheme for radio-over-fiber (RoF) transmissions. The network coder/decoders (codecs) are implemented using arrayed-waveguide grating (AWG) routers coded with maximal-length sequence ( M-sequence) codes. The effects of phase-induced intensity noise (PIIN) and multiple-access interference (MAI) on the system performance are evaluated numerically for different values of the optical modulation index (OMI) during the nonlinear electro-optical modulator (EOM) response. At low OMI optical device noise is dominant, but at high OMI nonlinear effect becomes significant. Numerical result shows that the system performance is highly sensitive to the OMI. Therefore, specifying an appropriate value of the OMI is essential in optimizing the system performance. The influence of the degree of polarization (DOP) in the system is also discussed. By employing the scrambler in front of the balanced photo-detector, the system performance can be enhanced. The high-performance, low-cost characteristics of the double-spread CDMA render the scheme an ideal solution for radio-CDMA wireless system cascaded with optical CDMA network.

  15. Groundwater response under an electronuclear plant to a river flood wave analyzed by a nonlinear finite element model

    International Nuclear Information System (INIS)

    Gambolati, G.; Toffolo, F.; Uliana, F.

    1984-01-01

    A nonlinear finite element model based on the Dupuit-Boussinesq equation of flow in an unconfined aquifer has been developed and applied to simulate the water table fluctuation under the electronuclear plant of the test site of Trino Vercellese (northwestern Italy) in response to the flood event that occurred in the Po River from March 30 to April 4, 1981. The nonlinearity has been overcome by the aid of an efficient iterative linearization technique wherein the model equations are solved by symbolic factorization, numerical factorization, and backward-forward substitution after an optimal preliminary reordering. The model was run for uniform values of aquifer permeability and specific yield within the typical range evidenced for the Trino sands by the early data in our possession. The results show that the maximum water level elevation below the reactor is almost 3 m lower than the corresponding river flood peak even in the most unfavorable conditions, i.e., with the hydraulic conductivity in the upper range, and is rather insensitive to the specific yield values within the plausible interval. The model allowed for an easy evaluation of the effectiveness of the impermeable protection walls and of a possible secondary aquifer recharge from a minor channel. The modeling approach for the analysis of the water table behavior appears to be a very promising tool to help in the structural design of future electronuclear plants

  16. Chiral ionic liquids in chromatographic and electrophoretic separations.

    Science.gov (United States)

    Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

    2014-10-10

    This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Electrophoretic properties of BSA-coated quantum dots.

    Science.gov (United States)

    Bücking, Wendelin; Massadeh, Salam; Merkulov, Alexei; Xu, Shu; Nann, Thomas

    2010-02-01

    Low toxic InP/ZnS quantum dots (QDs), ZnS:Mn(2+)/ZnS nanocrystals and CdSe/ZnS nanoparticles were rendered water-dispersible by different ligand-exchange methods. Eventually, they were coated with bovine serum albumin (BSA) as a model protein. All particles were characterised by isotachophoresis (ITP), laser Doppler velocimetry (LDV) and agarose gel electrophoresis. It was found that the electrophoretic mobility and colloidal stability of ZnS:Mn(2+)/ZnS and CdSe/ZnS nanoparticles, which bore short-chain surface ligands, was primarily governed by charges on the nanoparticles, whereas InP/ZnS nanocrystals were not charged per se. BSA-coated nanoparticles showed lower electrophoretic mobility, which was attributed to their larger size and smaller overall charge. However, these particles were colloidally stable. This stability was probably caused by steric stabilisation of the BSA coating.

  18. Electrophoretic transport of biomolecules across liquid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Thomas; Hardt, Steffen [Center of Smart Interfaces, TU Darmstadt, Petersenstrasse 32, D-64287 Darmstadt (Germany); Muenchow, Goetz, E-mail: hardt@csi.tu-darmstadt.de [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, D-55129 Mainz (Germany)

    2011-05-11

    The mass transfer resistance of a liquid-liquid interface in an aqueous two-phase system composed of poly(ethylene glycol) and dextran is investigated. Different types of proteins and DNA stained with fluorescent dyes serve as probes to study the transport processes close to the interface. A microfluidic device is employed to enable the electrophoretic transport of biomolecules from one phase to another. The results obtained for proteins can be explained solely via the different electrophoretic mobilities and different affinities of the molecules to the two phases, without any indications of a significant mass transfer resistance of the liquid-liquid interface. By contrast, DNA molecules adsorb to the interface and only desorb under an increased electric field strength. The desorption process carries the signature of a thermally activated escape from a metastable state, as reflected in the exponential decay of the fluorescence intensity at the interface as a function of time.

  19. Nonlinear transient dynamic response of pressure relief valves for a negative containment system

    International Nuclear Information System (INIS)

    Aziz, T.S.; Duff, C.G.; Tang, J.H.K.

    1979-01-01

    The response of the piston for the postulated simultaneous effect of pressure and an earthquake is obtained for different parameters and accident conditions. Response quantities such as accelerations, displacements, rotations, diaphragm forces as well as opening time during a design basis earthquake are obtained. The results of the different analyses, as related to the functional operability of the valves, are evaluated and discussed. (orig.)

  20. Analysis of the Multiple-Solution Response of a Flexible Rotor Supported on Non-Linear Squeeze Film Dampers

    Science.gov (United States)

    ZHU, C. S.; ROBB, D. A.; EWINS, D. J.

    2002-05-01

    The multiple-solution response of rotors supported on squeeze film dampers is a typical non-linear phenomenon. The behaviour of the multiple-solution response in a flexible rotor supported on two identical squeeze film dampers with centralizing springs is studied by three methods: synchronous circular centred-orbit motion solution, numerical integration method and slow acceleration method using the assumption of a short bearing and cavitated oil film; the differences of computational results obtained by the three different methods are compared in this paper. It is shown that there are three basic forms for the multiple-solution response in the flexible rotor system supported on the squeeze film dampers, which are the resonant, isolated bifurcation and swallowtail bifurcation multiple solutions. In the multiple-solution speed regions, the rotor motion may be subsynchronous, super-subsynchronous, almost-periodic and even chaotic, besides synchronous circular centred, even if the gravity effect is not considered. The assumption of synchronous circular centred-orbit motion for the journal and rotor around the static deflection line can be used only in some special cases; the steady state numerical integration method is very useful, but time consuming. Using the slow acceleration method, not only can the multiple-solution speed regions be detected, but also the non-synchronous response regions.

  1. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    OpenAIRE

    Simonis, Matthias; H?bner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for...

  2. Layered ceramic composites via control of electrophoretic deposition kinetics

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Drdlík, D.; Chlup, Zdeněk; Maca, K.; Dlouhý, Ivo; Cihlář, J.

    2013-01-01

    Roč. 33, č. 12 (2013), s. 2305-2312 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GAP108/11/1644; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Alumina * Zirconia * Laminates * Electrophoretic deposition Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.307, year: 2013

  3. Effect of acids and bases on electrophoretic deposition of

    Czech Academy of Sciences Publication Activity Database

    Cihlář, J.; Drdlík, D.; Cihlářová, Z.; Hadraba, Hynek

    2013-01-01

    Roč. 33, č. 10 (2013), s. 1885-1892 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GD106/09/H035 Institutional support: RVO:68081723 Keywords : Electrophoretic deposition * Zirconia * Alumina * 2-Propanol * Electrosteric stabilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.307, year: 2013

  4. Lanthanides separation by counter - current electrophoretic using α - hydroxyisobutyric acid

    International Nuclear Information System (INIS)

    Alleluia, I.B.

    1975-01-01

    Studies about counter-current electrophoretic separation of rare earth metal ions using α-hydroxyisobutyric acid as complexing electrolyte are discussed. La, Pr, Nd, Sm and Eu were separated and fractions with purities better than 99,9% were obtained, using neutron activation analysis. A relation between the first stability constant of the α-hydroxyisobutyrate/lanthanide complexes and their migration velocities were observed. (M.J.C.) [pt

  5. NMR studies of electrophoretic mobility in surfactant systems

    International Nuclear Information System (INIS)

    Conveney, F.M.; Strange, J.H.; Smith, A.L.; Smith, E.G.

    1989-01-01

    An experimental technique is described in which the flow of electrically charged micelles is measured in the presence of an applied electric field using an NMR technique. The method is used to determine the electrophoretic mobility at ambient temperature of a 5% aqueous solution of sodium dodecyl sulphate and is shown to provide a new technique for the study of electrophoresis in surfactant solutions. (author). 8 refs.; 4 figs

  6. Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making.

    Science.gov (United States)

    Deppe, Michael; Schwindt, Wolfram; Kugel, Harald; Plassmann, Hilke; Kenning, Peter

    2005-04-01

    The authors used functional magnetic resonance imaging (fMRI) to investigate how individual economic decisions are influenced by implicit memory contributions. Twenty-two participants were asked to make binary decisions between different brands of sensorily nearly undistinguishable consumer goods. Changes of brain activity comparing decisions in the presence or absence of a specific target brand were detected by fMRI. Only when the tar get brand was the participant's favorite one did the authors find reduced activation in the dorsolateral prefrontal, posterior parietal, and occipital cortices and the left premotor area (Brodmann areas [BA] 9, 46, 7/19, and 6). Simultaneously, activity was increased in the inferior precuneus and posterior cingulate (BA 7), right superior frontal gyrus (BA 10), right supramarginal gyrus (BA 40), and, most pronounced, in the ventromedial prefrontal cortex (BA 10). For products mainly distinguishable by brand information, the authors revealed a nonlinear winner-take-all effect for a participant's favorite brand characterized, on one hand, by reduced activation in brain areas associated with working memory and reasoning and, on the other hand, increased activation in areas involved in processing of emotions and self-reflections during decision making.

  7. Electron-related linear and nonlinear optical responses in vertically coupled triangular quantum dots

    International Nuclear Information System (INIS)

    Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size

  8. Epistasis between dopamine regulating genes identifies a nonlinear response of the human hippocampus during memory tasks.

    Science.gov (United States)

    Bertolino, Alessandro; Di Giorgio, Annabella; Blasi, Giuseppe; Sambataro, Fabio; Caforio, Grazia; Sinibaldi, Lorenzo; Latorre, Valeria; Rampino, Antonio; Taurisano, Paolo; Fazio, Leonardo; Romano, Raffaella; Douzgou, Sofia; Popolizio, Teresa; Kolachana, Bhaskar; Nardini, Marcello; Weinberger, Daniel R; Dallapiccola, Bruno

    2008-08-01

    Dopamine modulation of neuronal activity in prefrontal cortex maps to an inverted U-curve. Dopamine is also an important factor in regulation of hippocampal mediated memory processing. Here, we investigated the effect of genetic variation of dopamine inactivation via catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) on hippocampal activity in healthy humans during different memory conditions. Using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in 82 subjects matched for a series of demographic and genetic variables, we studied the effect of the COMT valine (Val)(158)methionine (Met) and the DAT 3' variable number tandem repeat (VNTR) polymorphisms on function of the hippocampus during encoding of recognition memory and during working memory. Our results consistently demonstrated a double dissociation so that DAT 9-repeat carrier alleles modulated activity in the hippocampus in the exact opposite direction of DAT 10/10-repeat alleles based on COMT Val(158)Met genotype during different memory conditions. Similar results were evident in ventrolateral and dorsolateral prefrontal cortex. These findings suggest that genetically determined dopamine signaling during memory processing maps to a nonlinear relationship also in the hippocampus. Our data also demonstrate in human brain epistasis of two genes implicated in dopamine signaling on brain activity during different memory conditions.

  9. Electron-related linear and nonlinear optical responses in vertically coupled triangular quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Orozco, J.C. [Unidad Académica de Física. Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. (Mexico); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-11-01

    The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size.

  10. Electrophoretic Retardation of Colloidal Particles in Nonpolar Liquids

    Directory of Open Access Journals (Sweden)

    Filip Strubbe

    2013-04-01

    Full Text Available We have measured the electrophoretic mobility of single, optically trapped colloidal particles, while gradually depleting the co-ions and counterions in the liquid around the particle by applying a dc voltage. This is achieved in a nonpolar liquid, where charged reverse micelles act as co-ions and counterions. By increasing the dc voltage, the mobility first increases when the concentrations of co-ions and counterions near the particle start to decrease. At sufficiently high dc voltage (around 2 V, the mobility reaches a saturation value when the co-ions and counterions are fully separated. The increase in mobility is larger when the equilibrium ionic strength is higher. The dependence of the experimental data on the equilibrium ionic strength and on the applied voltage is in good agreement with the standard theory of electrophoretic retardation, assuming that the bare particle charge remains constant. This method is useful for studying the electrophoretic retardation effect and charging mechanisms for nonpolar colloids, and it sheds light on previously unexplained particle acceleration in electronic ink devices.

  11. Properties of electrophoretically deposited single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Lim, Junyoung; Jalali, Maryam; Campbell, Stephen A.

    2015-01-01

    This paper describes techniques for rapidly producing a carbon nanotube thin film by electrophoretic deposition at room temperature and determines the film mass density and electrical/mechanical properties of such films. The mechanism of electrophoretic deposition of thin layers is explained with experimental data. Also, film thickness is measured as a function of time, electrical field and suspension concentration. We use Rutherford backscattering spectroscopy to determine the film mass density. Films created in this manner have a resistivity of 2.14 × 10 −3 Ω·cm, a mass density that varies with thickness from 0.12 to 0.54 g/cm 3 , and a Young's modulus between 4.72 and 5.67 GPa. The latter was found to be independent of thickness from 77 to 134 nm. We also report on fabricating free-standing films by removing the metal seed layer under the CNT film, and selectively etching a sacrificial layer. This method could be extended to flexible photovoltaic devices or high frequency RF MEMS devices. - Highlights: • We explain the electrophoretic deposition process and mechanism of thin SWCNT film deposition. • Characterization of the SWCNT film properties including density, resistivity, transmittance, and Young's modulus. • The film density and resistivity are found to be a function of the film thickness. • Techniques developed to create free standing layers of SW-CNTs for flexible electronics and mechanical actuators

  12. Electrophoretic detection of protein p53 in human leukocytes

    International Nuclear Information System (INIS)

    Paponov, V.D.; Kupsik, E.G.; Shcheglova, E.G.; Yarullin, N.N.

    1986-01-01

    The authors have found an acid-soluble protein with mol. wt. of about 53 kD in peripheral blood leukocytes of persons with Down's syndrome. It was present in different quantities in all 20 patients tested, but was virtually not discovered in 12 healthy blood donors. This paper determines the possible identity of this protein with protein p53 from mouse ascites carcinoma by comparing their electrophoretic mobilities, because the accuracy of electrophoretic determination of the molecular weight of proteins is not sufficient to identify them. The paper also describes experiments to detect a protein with electrophoretic mobility identical with that of a protein in the leukocytes of patients with Down's syndrome in leukocytes of patients with leukemia. To discover if protein p53 is involved in cell proliferation, the protein composition of leukocytes from healthy blood donors, cultured in the presence and absence of phytohemagglutinin (PHA), was compared. Increased incorporation of H 3-thymidine by leukocytes of patients with Down's syndrome is explained by the presence of a population of immature leukocytes actively synthesizing DNA in the peripheral blood of these patients, and this can also explain the presence of protein p53 in the leukocytes of these patients

  13. Antimony orthophosphate glasses with large nonlinear refractive indices, low two-photon absorption coefficients, and ultrafast response

    International Nuclear Information System (INIS)

    Falcao-Filho, E.L.; Araujo, Cid B. de; Bosco, C.A.C.; Maciel, G.S.; Acioli, L.H.; Nalin, M.; Messaddeq, Y.

    2005-01-01

    Antimony glasses based on the composition Sb 2 O 3 -SbPO 4 were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n 2 , of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response ( 2 was observed by adding lead oxide to the Sb 2 O 3 -SbPO 4 composition. Large values of n 2 ≅10 -14 cm 2 /W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications

  14. Nonlinear Absorption-Gain Response and Population Dynamics in a Laser-Driven Four-Level Dense Atomic System

    International Nuclear Information System (INIS)

    Li Jiahua; Liu Jibing; Luo Jinming; Xie Xiaotao

    2006-01-01

    We theoretically investigate the response of nonlinear absorption and population dynamics in optically dense media of four-level atoms driven by a single-mode probe laser, via taking the density-dependent near dipole-dipole (NDD) interactions into consideration. The influence of the NDD effects on the absorption of the probe field and population dynamics is predicted via numerical calculations. It is shown that the NDD effects can reduce gradually to transient absorption with the increase of the strengths of the NDD interactions, and transient amplification can be achieved. In the steady-state limit, the probe field exhibits transparency for strong NDD interactions. Alternatively, the population entirely remains at the ground state due to the NDD effects.

  15. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 2; Thermal and Mechanical Loadings

    Science.gov (United States)

    Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.

  16. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.

    Science.gov (United States)

    Groth, Kevin M; Granata, Kevin P

    2008-06-01

    Due to the mathematical complexity of current musculoskeletal spine models, there is a need for computationally efficient models of the intervertebral disk (IVD). The aim of this study is to develop a mathematical model that will adequately describe the motion of the IVD under axial cyclic loading as well as maintain computational efficiency for use in future musculoskeletal spine models. Several studies have successfully modeled the creep characteristics of the IVD using the three-parameter viscoelastic standard linear solid (SLS) model. However, when the SLS model is subjected to cyclic loading, it underestimates the load relaxation, the cyclic modulus, and the hysteresis of the human lumbar IVD. A viscoelastic standard nonlinear solid (SNS) model was used to predict the response of the human lumbar IVD subjected to low-frequency vibration. Nonlinear behavior of the SNS model was simulated by a strain-dependent elastic modulus on the SLS model. Parameters of the SNS model were estimated from experimental load deformation and stress-relaxation curves obtained from the literature. The SNS model was able to predict the cyclic modulus of the IVD at frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Furthermore, the SNS model was able to quantitatively predict the load relaxation at a frequency of 0.01 Hz. However, model performance was unsatisfactory when predicting load relaxation and hysteresis at higher frequencies (0.1 Hz and 1 Hz). The SLS model of the lumbar IVD may require strain-dependent elastic and viscous behavior to represent the dynamic response to compressive strain.

  17. A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer

    KAUST Repository

    Khan, Kamran; Wafai, Husam; El Sayed, Tamer S.

    2012-01-01

    to perform a variety of simulations on different types of electrically driven actuators under various electromechanical loadings. The electromechanical response of the DE and the critical conditions at which EMI occurs were found to be greatly affected

  18. Linear and nonlinear auditory response properties of interneurons in a high-order avian vocal motor nucleus during wakefulness.

    Science.gov (United States)

    Raksin, Jonathan N; Glaze, Christopher M; Smith, Sarah; Schmidt, Marc F

    2012-04-01

    Motor-related forebrain areas in higher vertebrates also show responses to passively presented sensory stimuli. However, sensory tuning properties in these areas, especially during wakefulness, and their relation to perception, are poorly understood. In the avian song system, HVC (proper name) is a vocal-motor structure with auditory responses well defined under anesthesia but poorly characterized during wakefulness. We used a large set of stimuli including the bird's own song (BOS) and many conspecific songs (CON) to characterize auditory tuning properties in putative interneurons (HVC(IN)) during wakefulness. Our findings suggest that HVC contains a diversity of responses that vary in overall excitability to auditory stimuli, as well as bias in spike rate increases to BOS over CON. We used statistical tests to classify cells in order to further probe auditory responses, yielding one-third of neurons that were either unresponsive or suppressed and two-thirds with excitatory responses to one or more stimuli. A subset of excitatory neurons were tuned exclusively to BOS and showed very low linearity as measured by spectrotemporal receptive field analysis (STRF). The remaining excitatory neurons responded well to CON stimuli, although many cells still expressed a bias toward BOS. These findings suggest the concurrent presence of a nonlinear and a linear component to responses in HVC, even within the same neuron. These characteristics are consistent with perceptual deficits in distinguishing BOS from CON stimuli following lesions of HVC and other song nuclei and suggest mirror neuronlike qualities in which "self" (here BOS) is used as a referent to judge "other" (here CON).

  19. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  20. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Bitenbaev, M.M.

    2004-01-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T l ) and relaxation of nuclear spin dipole-dipole interaction (T d ). It is shown that one can assess an extent of crystal defect by the dependence of T d =f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and type in solid

  1. Electrophoretic Ink Display Prepared by Jelly Fig Pectin/Gelatin Microspheres

    Directory of Open Access Journals (Sweden)

    Wing-Ming Chou

    2015-05-01

    Full Text Available A brand new Bio-Electronic ink (Bio-E ink display device was prepared and characterized in this study. Semiconductor material, copper phthalocyanine (CuPc was modified by cationic surfactants, cetylpyridinium chloride (CPC, as the core material, and the shell of capsule was prepared by jelly fig pectin, gelatin and sodium dodecyl sulphate (SDS. Here, jelly fig pectin was provided as the shell material for the first time. Chemical structure of the modified CuPc was characterized by Fourier Transform Infrared Spectrometer (FTIR. The core-shell microcapsules were achieved by coacervation method in an oil/water (O/W emulsion system. The particle size and morphology of microcapsules were affected by the concentrations of SDS and pH values of the O/W emulsion system. A new microcapsule-based electrophoretic display device was presented. Its image display ability of the microcapsules electrophoretic device was presented as appropriated electric power was applied, and the response time was 0.06 sec under 0.1 V/mm of electric field. Moreover, we found that its image contrast ratio of display device was influenced by the particle sizes of the microcapsules.

  2. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.

    Science.gov (United States)

    Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi

    2011-08-01

    To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Note on nonlinear seismic response of reinforced concrete structures with low initial periods

    International Nuclear Information System (INIS)

    Sozen, M.A.

    1985-01-01

    This note was prepared to illustrate by specific examples an opinion on the seismic response of reinforced concrete structures with low initial periods. The object is to point out what the writer considers to be important in relation to the behavior of such structures at levels of ground shaking higher than indicated by design criteria. Structures of concern are assumed to have low initial periods. A structure with a low initial period is assumed to have both of two attributes: (a) its flexural stiffness is high so that its total overall lateral deformation is not dominated by flexural deformation and (b) its calculated period is below the one at which the calculated response spectrum may be idealized to change from the nearly-constant acceleration to the nearly-constant velocity response range

  4. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    Science.gov (United States)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  5. Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    Directory of Open Access Journals (Sweden)

    E. Çelebi

    2012-11-01

    Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.

  6. Nonlinear mixed effects dose response modeling in high throughput drug screens: application to melanoma cell line analysis.

    Science.gov (United States)

    Ding, Kuan-Fu; Petricoin, Emanuel F; Finlay, Darren; Yin, Hongwei; Hendricks, William P D; Sereduk, Chris; Kiefer, Jeffrey; Sekulic, Aleksandar; LoRusso, Patricia M; Vuori, Kristiina; Trent, Jeffrey M; Schork, Nicholas J

    2018-01-12

    Cancer cell lines are often used in high throughput drug screens (HTS) to explore the relationship between cell line characteristics and responsiveness to different therapies. Many current analysis methods infer relationships by focusing on one aspect of cell line drug-specific dose-response curves (DRCs), the concentration causing 50% inhibition of a phenotypic endpoint (IC 50 ). Such methods may overlook DRC features and do not simultaneously leverage information about drug response patterns across cell lines, potentially increasing false positive and negative rates in drug response associations. We consider the application of two methods, each rooted in nonlinear mixed effects (NLME) models, that test the relationship relationships between estimated cell line DRCs and factors that might mitigate response. Both methods leverage estimation and testing techniques that consider the simultaneous analysis of different cell lines to draw inferences about any one cell line. One of the methods is designed to provide an omnibus test of the differences between cell line DRCs that is not focused on any one aspect of the DRC (such as the IC 50 value). We simulated different settings and compared the different methods on the simulated data. We also compared the proposed methods against traditional IC 50 -based methods using 40 melanoma cell lines whose transcriptomes, proteomes, and, importantly, BRAF and related mutation profiles were available. Ultimately, we find that the NLME-based methods are more robust, powerful and, for the omnibus test, more flexible, than traditional methods. Their application to the melanoma cell lines reveals insights into factors that may be clinically useful.

  7. Maximum in the middle: nonlinear response of microbial plankton to ultraviolet radiation and phosphorus.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Medina-Sánchez

    Full Text Available The responses of heterotrophic microbial food webs (HMFW to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.

  8. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Ryabikin, Yu A; Bitenbaev, M M [Inst. of Physics and Technology, Almaty (Kazakhstan)

    2004-07-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T{sub l}) and relaxation of nuclear spin dipole-dipole interaction (T{sub d}). It is shown that one can assess an extent of crystal defect by the dependence of T{sub d}=f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and

  9. Rationale for nonlinear dose response functions of power greater or less than one

    International Nuclear Information System (INIS)

    Baum, J.W.

    1977-08-01

    Risk estimates and radiation protection standards are generally made using a nonthreshold premise and linear extrapolations from existing data to estimate biological radiation effects at lower doses and at lower dose rates. This seems reasonable in light of the variety of shapes of dose-effect relations which have been observed both in animal studies and in human epidemiological studies. An unexplained observation in several studies was a response which followed a power function of dose with exponent less than one. One explanation offered for this type of response in humans was a postulated population of heterogeneous sensitivity. An alternate, though related, way of considering this question is in terms of multiple-stresses, and this postulate is discussed

  10. Theory of nonlinear optical response of ensembles of double quantum dots

    Science.gov (United States)

    Sitek, Anna; Machnikowski, Paweł

    2009-09-01

    We study theoretically the time-resolved four-wave mixing (FWM) response of an ensemble of pairs of quantum dots undergoing radiative recombination. At short (picosecond) delay times, the response signal shows beats that may be dominated by the subensemble of resonant pairs, which gives access to the information on the interdot coupling. At longer delay times, the decay of the FWM signal is governed by two rates which result from the collective interaction between the two dots and the radiation modes. The two rates correspond to the subradiant and super-radiant components in the radiative decay. Coupling between the dots enhances the collective effects and makes them observable even when the average energy mismatch between the dots is relatively large.

  11. Disorder and non-linear magnetic response of high Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Burin, J.P. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Fouad, Y. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Raboutou, A. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Peyral, P. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Lebeau, C. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Rosenblatt, J. (Lab. de Physique des Solides, INSA, 35 - Rennes (France)); Mokhtari, M. (Lab. de Chimie du Solide et inorganique Moleculaire, Univ. Rennes 1, 35 (France)); Pena, O. (Lab. de Chimie du Solide et inorganique Moleculaire, Univ. Rennes 1, 35 (France)); Perrin, C. (Lab. de Chimie du Solide et inorganique Moleculaire, Univ. Rennes 1, 35 (France))

    1993-05-10

    We measure the low frequency magnetic response of YBa[sub 2]Cu[sub 3]O[sub 6.7]F[sub x] (0 [<=] x < 0.2) ceramics in a wide range of a.c. fields (10[sup -7] T [<=] [mu][sub 0]H[sub 0] [<=] 10[sup -4]). When changing the amount of disorder (varying x) on the microscopic level we find the same non linear response with field amplitude H[sub 0] as in granular conventional superconductors. The real part of the susceptibility appears as a universal function of H[sub 1](T)/H[sub 0] where H[sub 1](T) is the field of first flux penetration. The power law dependence found for H[sub 1](T) can be understood in the framework of the coherence transition of granular superconductors with random couplings. (orig.)

  12. Maximum in the Middle: Nonlinear Response of Microbial Plankton to Ultraviolet Radiation and Phosphorus

    OpenAIRE

    Medina-S?nchez, Juan Manuel; Delgado-Molina, Jos? Antonio; Bratbak, Gunnar; Bullejos, Francisco Jos?; Villar-Argaiz, Manuel; Carrillo, Presentaci?n

    2013-01-01

    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2??5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the ...

  13. Maximum in the middle: nonlinear response of microbial plankton to ultraviolet radiation and phosphorus.

    Science.gov (United States)

    Medina-Sánchez, Juan Manuel; Delgado-Molina, José Antonio; Bratbak, Gunnar; Bullejos, Francisco José; Villar-Argaiz, Manuel; Carrillo, Presentación

    2013-01-01

    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition) in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.

  14. Non-linearity of the response accommodative convergence to accommodation ratio.

    Science.gov (United States)

    Johnston, Miriam S; Firth, Alison Y

    2013-09-01

    Previous studies have reported variation in stimulus accommodative convergence to accommodation (AC/A) ratio across differing accommodative stimuli. Response AC/A ratio was assessed across 4 accommodative demands to determine if these differences could be due to accommodative inaccuracies to stimuli. Twenty-three student participants aged 18 to 26 years (mean age 20.3 ± 1.7 years) successfully completed all testing conditions. The modified Thorington technique was used at 4 m to measure heterophoria. The Shin Nippon SRW 5000 infrared autorefractor was used to determine accommodative change to -1.50, -3.00, -4.50, and -6.00D lens stimuli. Significant differences were found in response AC/A ratio between different minus lens stimulated accommodative demands (p accommodative stimuli, but tended to increase with accommodative demand. Significant variability in response AC/A ratio was found, both within individuals to different accommodative demands, and between individuals across the data set.

  15. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  17. Response analysis of a nuclear containment structure with nonlinear soil-structure interaction under bi-directional ground motion

    Science.gov (United States)

    Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar

    2015-06-01

    Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.

  18. Nonlinear response of the anterior cingulate and prefrontal cortex in schizophrenia as a function of variable attentional control.

    Science.gov (United States)

    Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Caforio, Grazia; Romano, Raffaella; Lobianco, Luciana; Fazio, Leonardo; Di Giorgio, Annabella; Latorre, Valeria; Sambataro, Fabio; Popolizio, Teresa; Nardini, Marcello; Mattay, Venkata S; Weinberger, Daniel R; Bertolino, Alessandro

    2010-04-01

    Previous studies have reported abnormal prefrontal and cingulate activity during attentional control processing in schizophrenia. However, it is not clear how variation in attentional control load modulates activity within these brain regions in this brain disorder. The aim of this study in schizophrenia is to investigate the impact of increasing levels of attentional control processing on prefrontal and cingulate activity. Blood oxygen level-dependent (BOLD) responses of 16 outpatients with schizophrenia were compared with those of 21 healthy subjects while performing a task eliciting increasing levels of attentional control during event-related functional magnetic resonance imaging at 3 T. Results showed reduced behavioral performance in patients at greater attentional control levels. Imaging data indicated greater prefrontal activity at intermediate attentional control levels in patients but greater prefrontal and cingulate responses at high attentional control demands in controls. The BOLD activity profile of these regions in controls increased linearly with increasing cognitive loads, whereas in patients, it was nonlinear. Correlation analysis consistently showed differential region and load-specific relationships between brain activity and behavior in the 2 groups. These results indicate that varying attentional control load is associated in schizophrenia with load- and region-specific modification of the relationship between behavior and brain activity, possibly suggesting earlier saturation of cognitive capacity.

  19. Lysis solution composition and non-linear dose-response to ionizing radiation in the non-denaturing DNA filter elution technique

    International Nuclear Information System (INIS)

    Radford, I.R.

    1990-01-01

    The suggestion by Okayasu and Iliakis (1989) that the non-linear dose-response curve, obtained with the non-denaturing filter elution technique for mammalian cells exposed to low-LET radiation, is the result of a technical artefact, was not confirmed. (author)

  20. Nonlinear transient responses of beams and rings to impulse loading or fragment impact

    International Nuclear Information System (INIS)

    Witmer, E.A.; Stagliano, T.R.; Rodal, J.J.A.

    1977-01-01

    The present paper is concerned with a very limited part of the cited fragment threat; namely, fragments from high speed rotating machinery such as (1) aircraft engine rotors and (2) stationary power plant turbine rotors. Further, it is assumed that the structures intended to contain or control these fragments consist of initially-isotropic elastic-plastic metals. Certain potential containment/control (C/C) structures behave in a planar (or two-dimensional) fashion while other fragment-attacked C/C structures will undergo general three-dimensional deformations. Predictions for only the former category of fragment-attacked structures are discussed in the present paper. Pertinent experimental data discussed here on fragment-attacked structures include (a) steel-sphere impact data involving beam targets and (b) engine rotor fragment impact against a steel containment ring. In all of these cases large-deflection, elastic-plastic transient structural response occur. The governing equations employed are presented in the present analysis to predict the responses of protective (metal) structures to engine-rotor-fragment impact. The protective structure is intended either to contain or to deflect the attacking fragments away from important regions; large-deflection, elasic-plastic structural response is expected because these protective structures must have the least feasible weight. Concise geometric and assumed-displacement-field descriptions of the several types of finite elements to be utilized in subsequent examples are given, together with several categories of strain displacement relations. Both low- and higher-order elements are discussed

  1. Nonlinear response to the multiple sine wave excitation of a softening--hardening system

    International Nuclear Information System (INIS)

    Koplik, B.; Subudhi, M.; Curreri, J.

    1979-01-01

    In studying the earthquake response of the HTGR core, it was observed that the system can display softening--hardening characteristics. This is of great consequence in evaluating the structural safety aspects of the core. In order to obtain a better understanding of the governing parameters, an investigation was undertaken with a single-degree-of-freedom system having a softening--hardening spring characteristic and excited by multiple sine waves. A parametric study varying the input amplitudes and the spring characteristic was performed. Transients were introduced into the system, and the jump phenomena between the lower softening characteristics to the higher hardening curve was studied

  2. Study of horizontal-vertical interactive Sway Rocking (SR) model for basemat uplift. Part 2: non-linear response analysis and validation

    International Nuclear Information System (INIS)

    Momma, T.; Shirahama, K.; Suzuki, K.; Ogihara, M.

    1995-01-01

    Non-linear earthquake response analyses of a BWR MARK-II type nuclear reactor building are conducted by using a Sway Rocking model (SR model) proposed in Part 1 considering the interaction between horizontal and vertical motion. The results are compared with those of accurate mathematical model using the Green Function method. Horizontal response of the SR model agrees very well with that of the Green Function model. The floor response spectra of induced vertical motions by both methods are also corresponding well in periodic characteristics as well as peak-levels. From these results, it is confirmed that the horizontal-vertical interactive SR model is applicable to non-linear response analyses considering basemat uplift. Based on the comparison of the induced vertical motions due to basemat uplift by both methods, an application limit of the horizontal-vertical interactive SR model is set up at the ground contact ratio of about 50%. (author). 4 refs., 8 figs., 1 tab

  3. Nonlinear dynamics of the patient’s response to drug effect during general anesthesia

    Science.gov (United States)

    Ionescu, Clara; Tenreiro Machado, Jose; De Keyser, Robin; Decruyenaere, Johan; Struys, Michel M. R. F.

    2015-03-01

    In today's healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time-frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient's response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.

  4. Nonlinear response of vessel walls due to short-time thermomechanical loading

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1994-01-01

    Maintaining structural integrity of the reactor pressure vessel (RPV) during a postulated core melt accident is an important safety consideration in the design of the vessel. This study addresses the failure predictions of the vessel due to thermal and pressure loadings fro the molten core debris depositing on the lower head of the vessel. Different loading combinations were considered based on the dead load, yield stress assumptions, material response and internal pressurization. The analyses considered only short term failure (quasi static) modes, long term failure modes were not considered. Short term failure modes include plastic instabilities of the structure and failure due to exceeding the failure strain. Long term failure odes would be caused by creep rupture that leads to plastic instability of the structure. Due to the sort time durations analyzed, creep was not considered in the analyses presented

  5. Protein electrophoretic migration data from custom and commercial gradient gels

    Directory of Open Access Journals (Sweden)

    Andrew J. Miller

    2016-12-01

    Full Text Available This paper presents data related to the article “A method for easily customizable gradient gel electrophoresis” (A.J. Miller, B. Roman, E.M. Norstrom, 2016 [1]. Data is presented on the rate of electrophoretic migration of proteins in both hand-poured and commercially acquired acrylamide gradient gels. For each gel, migration of 9 polypeptides of various masses was measured upon completion of gel electrophoresis. Data are presented on the migration of proteins within separate lanes of the same gel as well as migration rates from multiple gels.

  6. Variations in virulence between different electrophoretic types of Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nørrung, Birgit; Andersen, Jens Kirk

    2000-01-01

    A total of 245 strains of Listeria monocytogenes, representing 33 different electrophoretic types (ETs), were examined quantitatively for haemolytic activity. No significant difference was observed in the mean haemolytic activity between different ETs. Eighty four out of 91 strains examined were...... compared with 3.64 among food isolates). The explanation for this may be that more virulent strains are more prone to cause human infection. It is, however, also possible that strains oft. monocytogenes may become more virulent while multiplying in a living organism compared with multiplying in foods....

  7. Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. I. Experimental determination.

    Science.gov (United States)

    Dalstein, L; Revel, A; Humbert, C; Busson, B

    2018-04-07

    We experimentally determine the effective nonlinear second-order susceptibility of gold over the visible spectral range. To reach that goal, we probe by vibrational two-color sum-frequency generation spectroscopy the methyl stretching region of a dodecanethiol self-assembled monolayer adsorbed on a gold film. The sum-frequency generation spectra show a remarkable shape reversal when the visible probe wavelength is tuned from 435 to 705 nm. After correcting from Fresnel effects, the methyl stretching vibrations serve as an internal reference, allowing to extract the dispersion of the absolute phase and relative amplitude of the effective nonlinear optical response of gold in the visible range.

  8. Dryland responses to global change suggest the potential for rapid non-linear responses to some changes but resilience to others

    Science.gov (United States)

    Reed, S.; Ferrenberg, S.; Tucker, C.; Rutherford, W. A.; Wertin, T. M.; McHugh, T. A.; Morrissey, E.; Kuske, C.; Belnap, J.

    2017-12-01

    Drylands represent our planet's largest terrestrial biome, making up over 35% of Earth's land surface. In the context of this vast areal extent, it is no surprise that recent research suggests dryland inter-annual variability and responses to change have the potential to drive biogeochemical cycles and climate at the global-scale. Further, the data we do have suggest drylands can respond rapidly and non-linearly to change. Nevertheless, our understanding of the cross-system consistency of and mechanisms behind dryland responses to a changed environment remains relatively poor. This poor understanding hinders not only our larger understanding of terrestrial ecosystem function, but also our capacity to forecast future global biogeochemical cycles and climate. Here we present data from a series of Colorado Plateau manipulation experiments - including climate, land use, and nitrogen deposition manipulations - to explore how vascular plants, microbial communities, and biological soil crusts (a community of mosses, lichens, and/or cyanobacteria living in the interspace among vascular plants in arid and semiarid ecosystems worldwide) respond to a host of environmental changes. These responses include not only assessments of community composition, but of their function as well. We will explore photosynthesis, net soil CO2 exchange, soil carbon stocks and chemistry, albedo, and nutrient cycling. The experiments were begun with independent questions and cover a range of environmental change drivers and scientific approaches, but together offer a relatively holistic picture of how some drylands can change their structure and function in response to change. In particular, the data show very high ecosystem vulnerability to particular drivers, but surprising resilience to others, suggesting a multi-faceted response of these diverse systems.

  9. Nonlinear transient responses of beams and rings to impulse loading or fragment impact

    International Nuclear Information System (INIS)

    Witmer, E.A.; Stagliano, T.R.; Rodal, J.J.A.

    1977-01-01

    Nuclear power plant protective structures may be subjected to various external missiles such as aircraft and tornado-generated missiles: telephone poles, planks, pipes, rods, automobiles, and other blown vehicles. Also, 'internally-generated missiles' such as fragments from powerplant rotors and aircraft engine rotors may impact protective structures. The present paper is concerned with a very limited part of the cited fragment threat; namely, fragments from high speed rotating machinery such as (1) aircraft engine rotors and (2) stationary power plant turbine rotors. Further, it is assumed that the structures intended to contain or control these fragments consist of initially-isotopic elastic-plastic metals. Certain potential containment/control (C/C) structures behave in a planar (or two-dimensional) fashion while other fragment-attacked C/C structures will undergo general three-dimensional deformations. Predictions for only the former category of fragment-attacked structures are discussed in the present paper. Pertinent experimental data discussed on fragment-attacked structures include (a) steel-sphere impact data involving beam targets and (b) engine rotor fragment impact against a steel containment ring. In all of these cases large-deflection, elastic-plastic transient structural responses occur. (Auth.)

  10. Linear and Non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo

    Science.gov (United States)

    Umari, Paolo

    2006-03-01

    We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence. The polarization is sampled through forward-walking. This approach has been validated for the case of the polarizability of an isolated hydrogen atom, and then applied to a periodic system. We then calculate the linear susceptibility and second-order hyper-susceptibility of molecular-hydrogen chains whith different bond-length alternations, and assess the quality of nodal surfaces derived from density-functional theory or from Hartree-Fock. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.P. Umari, A.J. Williamson, G. Galli, and N. MarzariPhys. Rev. Lett. 95, 207602 (2005).

  11. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation.

    Science.gov (United States)

    Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong

    2009-08-01

    The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.

  12. Efficient analysis of the nonlinear dynamic response of a building with a friction-based seismic base isolation system

    NARCIS (Netherlands)

    Fey, R.H.B.; Suy, H.M.R.; Galanti, F.M.B.; Nijmeijer, H.; Papadrakakis, M.; Charmpis, D.C.; Legaros, N.D.; Ssompanakis, Y.

    2007-01-01

    Many dynamic civil structures are subject to some form of non-smooth or discontinuous nonlinearity. One eminent example of such nonlinearity is friction. This is caused by the fact that friction always opposes the direction of movement, thus changing sign when the sliding velocity changes sign. In

  13. Influence of the aircraft crash induced local nonlinearities on the overall dynamic response of a RC structure through a parametric study

    International Nuclear Information System (INIS)

    Rouzaud, C.; Gatuingt, F.; Hervé, G.; Moussallam, N.; Dorival, O.

    2016-01-01

    Highlights: • Structures could resist to the induced accelerations which they might undergo. • The characterization of non-linearities in the signal of an aircraft impact. • The non linear impact area are studied through a sensitivity analysis. • This analysis should allow to achieve a link between aircraft impact parameters. - Abstract: In the process of nuclear power plant design, the safety of structures is an important aspect. Civil engineering structures have to resist the accelerations induced by, for example, seismic loads or shaking loads resulting from the aircraft impact. This is even more important for the in-structures equipments that have also to be qualified against the vibrations generated by this kind of hazards. In the case of aircraft crash, as a large variety of scenarios has to be envisaged, it is necessary to use methods that are less CPU-time consuming and that consider appropriately the nonlinearities. The analysis presented in this paper deals with the problem of the characterization of nonlinearities (damaged area, transmitted force) in the response of a structure subjected to an aircraft impact. The purpose of our study is part of the development of a new decoupled nonlinear and elastic way for calculating the shaking of structures following an aircraft impact which could be very numerically costly if studied with classical finite element methods. The aim is to identify which parameters control the dimensions of the nonlinear zone and so will have a direct impact on the induced vibrations. In a design context, several load cases (and simulations) are analyzed in order to consider a wide range of impact (different loading surfaces, momentum) and data sets of the target (thickness, reinforcements). In this work, the nonlinear area generated by the impact is localized and studied through a parametric analysis associated with a sensitivity analysis to identify the boundaries between the elastic domain and this nonlinear area.

  14. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw.

    Science.gov (United States)

    Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo; Hutchings, Jack; Natali, Susan M; Pegoraro, Elaine; Salmon, Verity G; Schädel, Christina; Webb, Elizabeth E; Schuur, Edward A G

    2017-09-01

    Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO 2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (R eco ), gross primary productivity (GPP), and net summer CO 2 storage (NEE). Over 7 years R eco , GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, R eco , GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed R eco , GPP, and NEE. However R eco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher R eco in deeply thawed areas during summer months was balanced by GPP. Summer CO 2 flux across treatments fit a single quadratic relationship that captured the functional response of CO 2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO 2 flux: plant growth and water table dynamics. Nonsummer R eco models estimated that the area was an annual CO 2 source during all years of observation. Nonsummer CO 2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO 2 source. © 2017 John Wiley & Sons Ltd.

  15. Electrophoretically deposited multiwalled carbon nanotube based amperometric genosensor for E.coli detection

    International Nuclear Information System (INIS)

    Bhardwaj, Hema; Solanki, Shipra; Sumana, Gajjala

    2016-01-01

    This work reports on a sensitive and selective genosensor fabrication method for Escherichia coli ( E.coli) detection. The functionalized multiwalled carbon nanotubes (MWCNT) synthesized via chemical vapour deposition have been deposited electrophoretically onto indium tin oxide coated glass surface and have been utilized as matrices for the covalent immobilization of E.coli specific probe oligonucleotide that was identified from the 16s rRNA coding region of the E.coli genome. This fabricated functionalized MWCNT based platform sought to provide improved fundamental characteristics to electrode interface in terms of electro-active surface area and diffusion coefficient. Electrochemical cyclic voltammetry revealed that this genosensor exhibits a linear response to complementary DNA in the concentration range of 10 -7 to 10 -12 M with a detection limit of 1×10 -12 M. (paper)

  16. Nonlinear internal waves and plumes generated in response to sea-loch outflow, AUV, and time-lapse photography observations

    Science.gov (United States)

    Toberman, Matthew; Inall, Mark; Boyd, Tim; Dumount, Estelle; Griffiths, Colin

    2017-07-01

    The tidally modulated outflow of brackish water from a sea loch forms a thin surface layer that propagates into the coastal ocean as a buoyant gravity current, transporting nutrients and sediments, as well as fresh water, heat and momentum. The fresh intrusion both propagates into and generates a strongly stratified environment which supports trains of nonlinear internal waves (NLIWs). NLIWs are shown to propagate ahead of this buoyancy input in response to propagation of the outflow water into the stratified environment generated by the previous release as well as in the opposing direction after the reflection from steep bathymetry. Oblique aerial photographs were taken and photogrammetric rectification led to the identification of the buoyant intrusion and the subsequent generation of NLIWs. An autonomous underwater vehicle (AUV) was deployed on repeated reciprocal transects in order to make simultaneous CTD, ADCP, and microstructure shear measurements of the evolution of these phenomena in conjunction with conventional mooring measurements. AUV-based temperature and salinity signals of NLIWs of depression were observed together with increased turbulent kinetic energy dissipation rates of over 2 orders of magnitude within and in the wake of the NLIWs. Repeated measurements allow a unique opportunity to investigate the horizontal structure of these phenomena. Simple metric scaling demonstrates that these processes are likely to be feature of many fjordic systems located on the west coast of Scotland but may also play a key role in the assimilation of the outflow from many tidally dominated fjordic systems throughout the world.

  17. Survival rate of eukaryotic cells following electrophoretic nanoinjection.

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-25

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.

  18. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings

    International Nuclear Information System (INIS)

    Pang Xin; Zhitomirsky, Igor

    2007-01-01

    Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. It was shown that the deposit composition can be changed by a variation of the chitosan or hydroxyapatite concentration in the solutions. Experimental conditions were developed for the fabrication of hydroxyapatite-chitosan nanocomposites containing 40.9-89.8 wt.% hydroxyapatite. The method enabled the formation of adherent and uniform coatings of thicknesses up to 60 μm. X-ray studies revealed that the preferred orientation of the hydroxyapatite nanoparticles in the chitosan matrix increases with decreasing hydroxyapatite content in the composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates

  19. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells. PMID:28120926

  20. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    Science.gov (United States)

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R [Department of Chemistry and Center of Nanoscale Materials, University of Puerto Rico, Rio Piedras, PO Box 23346 San Juan, PR 00931-3346 (Puerto Rico)

    2007-04-15

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO{sub 3} and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 {mu}m) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron.

  2. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    International Nuclear Information System (INIS)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R

    2007-01-01

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO 3 and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 μm) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron

  3. Template-based electrophoretic deposition of perovskite PZT nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nourmohammadi, A. [Solid Surfaces Analysis and Electron Microscopy Group, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz (Germany); Semiconductors Department, Materials and Energy Research Center (MERC), 31779-83634 Karaj (Iran, Islamic Republic of); Bahrevar, M.A. [Semiconductors Department, Materials and Energy Research Center (MERC), 31779-83634 Karaj (Iran, Islamic Republic of)], E-mail: ma.bahrevar@yahoo.com; Hietschold, M. [Solid Surfaces Analysis and Electron Microscopy Group, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz (Germany)

    2009-04-03

    Template-based electrophoretic deposition of perovskite lead zirconate titanate (PZT) nanotubes was achieved using anodic alumina (AA) membranes and sols, containing lead, zirconium and titanium precursors. The effect of various anodizing voltages on the size of the channels in the anodic alumina template was investigated. The prepared sol was driven into the channels under the influence of various electric fields and subsequently sintered at about 700 deg. C. The effects of the initial heating rates and the burn-out temperature on the phase evolution of the samples were studied and a modified firing process was employed. The effects of the electrophoretic voltage and the deposition time on the average wall thickness of the tubes were investigated. Scanning and transmission electron microscopy (SEM and TEM) revealed the efficiency of electrophoresis in the growth of lead zirconate titanate nanotubes in a close-packed array. The X-ray diffraction analyses indicated the presence of perovskite as the principal phase after a modified firing schedule.

  4. New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs

    Science.gov (United States)

    Venturi, D.; Karniadakis, G. E.

    2012-08-01

    By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection-reaction equation. By using a Fourier-Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.

  5. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Yoav, Hadar, E-mail: benyoav@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Amzel, Tal [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Sternheim, Marek [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel); Belkin, Shimshon [Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Rubin, Adi [Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, 69978 (Israel); Shacham-Diamand, Yosi [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Freeman, Amihay [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel)

    2011-11-01

    Highlights: > We present an electrochemical whole-cell biochip that can apply electric fields. > We examine the integration of cells on a biochip using electrophoretic deposition. > The effect of electric fields on the whole-cell biosensor has been demonstrated. > Relatively short DC electric pulse improves the performance of whole-cell biosensors. > Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that relatively

  6. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    International Nuclear Information System (INIS)

    Ben-Yoav, Hadar; Amzel, Tal; Sternheim, Marek; Belkin, Shimshon; Rubin, Adi; Shacham-Diamand, Yosi; Freeman, Amihay

    2011-01-01

    Highlights: → We present an electrochemical whole-cell biochip that can apply electric fields. → We examine the integration of cells on a biochip using electrophoretic deposition. → The effect of electric fields on the whole-cell biosensor has been demonstrated. → Relatively short DC electric pulse improves the performance of whole-cell biosensors. → Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that

  7. Determination and optimization of the ζ potential in boron electrophoretic deposition on aluminium substrates

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.; Pino, E.S.

    1991-05-01

    In this work we present an introduction of the electrophoretic process followed by a detailed experimental treatment of the technique used in the determination and optimization of the ζ-potential, mainly as a function of the electrolyte concentration, in a high purity boron electrophoretics deposition on aluminium substrates used as electrodes in neutron detectors. (author)

  8. Comparative methods to assess harmonic response of nonlinear piezoelectric energy harvesters interfaced with AC and DC circuits

    Science.gov (United States)

    Lan, Chunbo; Tang, Lihua; Harne, Ryan L.

    2018-05-01

    Nonlinear piezoelectric energy harvester (PEH) has been widely investigated during the past few years. Among the majority of these researches, a pure resistive load is used to evaluate power output. To power conventional electronics in practical application, the alternating current (AC) generated by nonlinear PEH needs to be transformed into a direct current (DC) and rectifying circuits are required to interface the device and electronic load. This paper aims at exploring the critical influences of AC and DC interface circuits on nonlinear PEH. As a representative nonlinear PEH, we fabricate and evaluate a monostable PEH in terms of generated power and useful operating bandwidth when it is connected to AC and DC interface circuits. Firstly, the harmonic balance analysis and equivalent circuit representation method are utilized to tackle the modeling of nonlinear energy harvesters connected to AC and DC interface circuits. The performances of the monostable PEH connected to these interface circuits are then analyzed and compared, focusing on the influences of the varying load, excitation and electromechanical coupling strength on the nonlinear dynamics, bandwidth and harvested power. Subsequently, the behaviors of the monostable PEH with AC and DC interface circuits are verified by experiment. Results indicate that both AC and DC interface circuits have a peculiar influence on the power peak shifting and operational bandwidth of the monostable PEH, which is quite different from that on the linear PEH.

  9. Non-Linear Relationships between Aflatoxin B1 Levels and the Biological Response of Monkey Kidney Vero Cells

    Directory of Open Access Journals (Sweden)

    Mendel Friedman

    2013-08-01

    Full Text Available Aflatoxin-producing fungi contaminate food and feed during pre-harvest, storage and processing periods. Once consumed, aflatoxins (AFs accumulate in tissues, causing illnesses in animals and humans. Most human exposure to AF seems to be a result of consumption of contaminated plant and animal products. The policy of blending and dilution of grain containing higher levels of aflatoxins with uncontaminated grains for use in animal feed implicitly assumes that the deleterious effects of low levels of the toxins are linearly correlated to concentration. This assumption may not be justified, since it involves extrapolation of these nontoxic levels in feed, which are not of further concern. To develop a better understanding of the significance of low dose effects, in the present study, we developed quantitative methods for the detection of biologically active aflatoxin B1 (AFB1 in Vero cells by two independent assays: the green fluorescent protein (GFP assay, as a measure of protein synthesis by the cells, and the microculture tetrazolium (MTT assay, as a measure of cell viability. The results demonstrate a non-linear dose-response relationship at the cellular level. AFB1 at low concentrations has an opposite biological effect to higher doses that inhibit protein synthesis. Additional studies showed that heat does not affect the stability of AFB1 in milk and that the Vero cell model can be used to determine the presence of bioactive AFB1 in spiked beef, lamb and turkey meat. The implication of the results for the cumulative effects of low amounts of AFB1 in numerous foods is discussed.

  10. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China

    Directory of Open Access Journals (Sweden)

    Jie Xue

    2015-07-01

    Full Text Available The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth’s hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  11. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China.

    Science.gov (United States)

    Xue, Jie; Gui, Dongwei

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth's hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  12. Electrophoretic Nanocrystalline Graphene Film Electrode for Lithium Ion Battery

    International Nuclear Information System (INIS)

    Kaprans, Kaspars; Bajars, Gunars; Kucinskis, Gints; Dorondo, Anna; Mateuss, Janis; Gabrusenoks, Jevgenijs; Kleperis, Janis; Lusis, Andrejs

    2015-01-01

    Graphene sheets were fabricated by electrophoretic deposition method from water suspension of graphene oxide followed by thermal reduction. The formation of nanocrystalline graphene sheets has been confirmed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrochemical performance of graphene sheets as anode material for lithium ion batteries was evaluated by cycling voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. Fabricated graphene sheets exhibited high discharge capacity of about 1120 mAh·g −1 and demonstrated good reversibility of lithium intercalation and deintercalation in graphene sheet film with capacity retention over 85 % after 50 cycles. Results show that nanocrystalline graphene sheets prepared by EPD demonstrated a high potential for application as anode material in lithium ion batteries

  13. Continuous electrophoretic purification of individual analytes from multicomponent mixtures.

    Science.gov (United States)

    McLaren, David G; Chen, David D Y

    2004-04-15

    Individual analytes can be isolated from multicomponent mixtures and collected in the outlet vial by carrying out electrophoretic purification through a capillary column. Desired analytes are allowed to migrate continuously through the column under the electric field while undesired analytes are confined to the inlet vial by application of a hydrodynamic counter pressure. Using pressure ramping and buffer replenishment techniques, 18% of the total amount present in a bulk sample can be purified when the resolution to the adjacent peak is approximately 3. With a higher resolution, the yield could be further improved. Additionally, by periodically introducing fresh buffer into the sample, changes in pH and conductivity can be mediated, allowing higher purity (>or=99.5%) to be preserved in the collected fractions. With an additional reversed cycle of flow counterbalanced capillary electrophoresis, any individual component in a sample mixture can be purified providing it can be separated in an electrophoresis system.

  14. Electrophoretic deposition of nickel zinc ferrite nanoparticles into microstructured patterns

    Directory of Open Access Journals (Sweden)

    Stefan J. Kelly

    2016-05-01

    Full Text Available Using DC electric fields, nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4 nanoparticles (Dh =16.6 ± 3.6 nm are electrophoretically deposited onto silicon substrates to form dense structures defined by photoresist molds. Parameters such as electric field, bath composition, and deposition time are tuned to produce films ranging in thickness from 177 to 805 nm. The deposited films exhibit soft magnetic properties with a saturation magnetization of 60 emu/g and a coercivity of 2.6 kA/m (33 Oe. Additionally, the influence of the photoresist mold on the deposit profile is studied, and patterned films with different shapes (lines, squares, circles, etc. are demonstrated with feature sizes down to 5 μm.

  15. Preparation of guinea pig macrophage for electrophoretic experiments in space

    Science.gov (United States)

    1979-01-01

    Methods of storage and cultivation of macrophage cells in preparation for space experiments were investigated. Results show that freezing and thawing immediately after extraction did not cause any change in viability or electrophoretic mobility of the cells. A prolonged storage at -80 C did cause cell damage as indicated by a 95% reduction in variable cells. Cell damage was decreased when Glycerol or Dimethyl Sulfoxide (DMSO) was added as a cryogenic protective agent. A 100% viability was observed in cultivation experiments after two weeks due to the additional serum. Results from gamma-glutamyl transpeptidase study showed a zero activity rate. It is suggested that a flat stationary field be used for the collection and use of macrophage. It was found that a 24-hour delay in obtaining macrophage cells helps to maintain a pure culture.

  16. Electrophoretic Deposition of Gallium with High Deposition Rate

    Directory of Open Access Journals (Sweden)

    Hanfei Zhang

    2014-12-01

    Full Text Available In this work, electrophoretic deposition (EPD is reported to form gallium thin film with high deposition rate and low cost while avoiding the highly toxic chemicals typically used in electroplating. A maximum deposition rate of ~0.6 μm/min, almost one order of magnitude higher than the typical value reported for electroplating, is obtained when employing a set of proper deposition parameters. The thickness of the film is shown to increase with deposition time when sequential deposition is employed. The concentration of Mg(NO32, the charging salt, is also found to be a critical factor to control the deposition rate. Various gallium micropatterns are obtained by masking the substrate during the process, demonstrating process compatibility with microfabrication. The reported novel approach can potentially be employed in a broad range of applications with Ga as a raw material, including microelectronics, photovoltaic cells, and flexible liquid metal microelectrodes.

  17. Electrophoretic formation of semiconductor layers with adjustable band gap

    Science.gov (United States)

    Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander

    2017-11-01

    The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.

  18. Electrophoretic deposition and field emission properties of patterned carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao Haifeng; Song Hang; Li Zhiming; Yuan Guang; Jin Yixin

    2005-01-01

    Patterned carbon nanotubes on silicon substrates were obtained using electrophoretic method. The carbon nanotubes migrated towards the patterned silicon electrode in the electrophoresis suspension under the applied voltage. The carbon nanotubes arrays adhered well on the silicon substrates. The surface images of carbon nanotubes were observed by scanning electron microscopy. The field emission properties of the patterned carbon nanotubes were tested in a diode structure under a vacuum pressure below 5 x 10 -4 Pa. The measured emission area was about 1.0 mm 2 . The emission current density up to 30 mA/cm 2 at an electric field of 8 V/μm has been obtained. The deposition of patterned carbon nanotubes by electrophoresis is an alternative method to prepare field emission arrays

  19. Combined electrophoretic-separation and electrospray method and system

    Science.gov (United States)

    Smith, R.D.; Olivares, J.A.

    1989-06-27

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit. 10 figs.

  20. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    OpenAIRE

    Peter W. Tse; Dong Wang

    2017-01-01

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To exten...

  1. Electrophoretic deposition of ultrasonicated and functionalized nanomaterials for multifunctional composites

    Science.gov (United States)

    An, Qi

    Recent advances in the synthesis and characterization of nanostructured composite materials have enabled a broad range of opportunities for engineering the properties of polymer-matrix materials. Carbon nanotubes (CNTs) are known to have exceptional mechanical, electrical and thermal properties. Because of their small size, CNTs can occupy regions between traditional micro-scale reinforcements and create a hierarchical micro/nano structure spanning several orders of magnitude. Since CNTs possess critical reinforcement dimensions below 100 nm, new opportunities exist for tailoring the fiber/matrix interphase regions and ultimately the mechanical and electrical performance of advanced fiber-composites with minimal impact on the fiber-dominated properties. This growing interest in nanoscale hybridization with conventional fiber reinforcement has highlighted the need to develop new processing techniques for successful CNT integration. In this work, a novel and industrially scalable approach for producing multi-scale hybrid carbon nanotube/fiber composites using an electrophoretic deposition (EPD) technique has been studied as an alternative to in situ chemical vapor deposition growth (CVD). EPD is a widely used industrial coating process employed in areas ranging from automotive to electronics production. The method has a number of benefits which include low energy use and the ability to homogenously coat complex shapes with well adhered films of controlled thickness and density. A stable aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) was produced using a novel ozonolysis and ultrasonication (USO) technique that results in dispersion and functionalization in a single step. Networks of CNTs span between adjacent fibers and the resulting composites exhibit significant increases in electrical conductivity and considerable improvements in the interlaminar shear strength and fracture toughness. In order to better understand the underlying mechanisms behind the

  2. Non-linear signal response functions and their effects on the statistical and noise cancellation properties of isotope ratio measurements by multi-collector plasma mass spectrometry

    International Nuclear Information System (INIS)

    Doherty, W.

    2013-01-01

    A nebulizer-centric response function model of the analytical inductively coupled argon plasma ion source was used to investigate the statistical frequency distributions and noise reduction factors of simultaneously measured flicker noise limited isotope ion signals and their ratios. The response function model was extended by assuming i) a single gaussian distributed random noise source (nebulizer gas pressure fluctuations) and ii) the isotope ion signal response is a parabolic function of the nebulizer gas pressure. Model calculations of ion signal and signal ratio histograms were obtained by applying the statistical method of translation to the non-linear response function model of the plasma. Histograms of Ni, Cu, Pr, Tl and Pb isotope ion signals measured using a multi-collector plasma mass spectrometer were, without exception, negative skew. Histograms of the corresponding isotope ratios of Ni, Cu, Tl and Pb were either positive or negative skew. There was a complete agreement between the measured and model calculated histogram skew properties. The nebulizer-centric response function model was also used to investigate the effect of non-linear response functions on the effectiveness of noise cancellation by signal division. An alternative noise correction procedure suitable for parabolic signal response functions was derived and applied to measurements of isotope ratios of Cu, Ni, Pb and Tl. The largest noise reduction factors were always obtained when the non-linearity of the response functions was taken into account by the isotope ratio calculation. Possible applications of the nebulizer-centric response function model to other types of analytical instrumentation, large amplitude signal noise sources (e.g., lasers, pumped nebulizers) and analytical error in isotope ratio measurements by multi-collector plasma mass spectrometry are discussed. - Highlights: ► Isotope ion signal noise is modelled as a parabolic transform of a gaussian variable. ► Flicker

  3. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics.

    Science.gov (United States)

    Tse, Peter W; Wang, Dong

    2017-02-14

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  4. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    Directory of Open Access Journals (Sweden)

    Peter W. Tse

    2017-02-01

    Full Text Available Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL. Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  5. Experimental verificatio of load resistance switching for global stabilization of high-energy response of a nonlinear wideband electromagnetic vibration energy harvester

    International Nuclear Information System (INIS)

    Sato, T; Masuda, A; Sanada, T

    2015-01-01

    This paper presents an experimental verification of a self-excitation control of a resonance- type vibration energy harvester with a Duffing-type nonlinearity which is designed to perform effectively in a wide frequency range. For the conventional linear vibration energy harvester, the performance of the power generation at the resonance frequency and the bandwidth of the resonance peak are trade-off. The resonance frequency band can be expanded by introducing a Duffing-type nonlinear oscillator in order to enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator can have multiple stable steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to provide the global stability to the highest-energy solution by destabilizing other unexpected lower-energy solutions by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. It has been experimentally validated that this control law imparts the self-excitation capability to the oscillator to show an entrainment into the highest-energy solution. (paper)

  6. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  7. A non-linear association between self-reported negative emotional response to stress and subsequent allostatic load: prospective results from the Whitehall II cohort study.

    Science.gov (United States)

    Dich, Nadya; Doan, Stacey N; Kivimäki, Mika; Kumari, Meena; Rod, Naja Hulvej

    2014-11-01

    Previous research suggests that high levels of negative emotions may affect health. However, it is likely that the absence of an emotional response following stressful events may also be problematic. Accordingly, we investigated whether a non-linear association exists between negative emotional response to major life events and allostatic load, a multisystem indicator of physiological dysregulation. Study sample was 6764 British civil service workers from the Whitehall II cohort. Negative emotional response was assessed by self-report at baseline. Allostatic load was calculated using cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological dysregulation. Allostatic load also increased with age, but the association between negative emotional response and allostatic load remained stable over time. These results provide evidence for a more nuanced understanding of the role of negative emotions in long-term physical health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  9. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  10. Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic

    Energy Technology Data Exchange (ETDEWEB)

    Vázquez, A., E-mail: alejandro.lqi@gmail.com [Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico); Hernández-Uresti, D.B., E-mail: ing.dianahdz@gmail.com [Universidad Autónoma de Nuevo León, CICFIM–Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico); Obregón, S. [Universidad Autónoma de Nuevo León, CICFIM–Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455 Nuevo León (Mexico)

    2016-11-15

    Highlights: • CdS photocatalyst was prepared by electrophoretic deposition. • The CdS coating was used in the photodegradation of antibiotics. • O{sub 2}{sup −} and ·OH radicals were responsible for the degradation of tetracycline. - Abstract: The photocatalytic activities of CdS coatings formed by electrophoretic deposition (EPD) were evaluated through the photodegradation of an antibiotic, tetracycline. First, CdS nanoparticles were synthesized under microwave irradiation of aqueous solutions containing the cadmium and sulfur precursors at stoichiometric amounts and by using trisodium citrate as stabilizer. Microwave irradiation was carried out in a conventional microwave oven at 2.45 GHz and 1650 W of nominal power, for 60 s. The CdS nanoparticles were characterized by UV–vis spectrophotometry, photoluminescence and X-ray diffraction. Electrophoretic deposition parameters were 300 mV, 600 mV and 900 mV of applied voltage between aluminum plates separated by 1 cm. The fractal dimensions of the surfaces were evaluated by atomic force microscopy and correlated to the morphological and topographic characteristics of the coatings. The photocatalytic activity of the CdS coatings was investigated by means the photodegradation of the tetracycline antibiotic under simulated sunlight irradiation. According to the results, the photoactivity of the coatings directly depends on the concentration of the precursors and the applied voltage during the deposition. The material obtained at 600 mV showed the best photocatalytic behavior, probably due to its physical properties, such as optimum load and suitable aggregate size.

  11. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals.

    Science.gov (United States)

    Mathew, Dennis; Bhardwaj, Garima; Wang, Qi; Sun, Linlin; Ercan, Batur; Geetha, Manisavagam; Webster, Thomas J

    2014-01-01

    Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.

  12. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    Science.gov (United States)

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  13. Corridengum: Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables (2017 Nonlinearity 30 1204)

    Science.gov (United States)

    Baladi, Viviane; Kuna, Tobias; Lucarini, Valerio

    2017-08-01

    The first main result of Baladi et al (2017 Nonlinearity 30 1204-20) is modified as follows: For any θ in the Sobolev space H^r_p(M) , with 1 and 0, the map t\\mapsto \\int θ dρt is α-Hölder continuous for all \

  14. A New Approach for Studying Nonlinear Dynamic Response of a Thin Plate with Internal Resonance in a Fractional Viscoelastic Medium

    Directory of Open Access Journals (Sweden)

    Yury A. Rossikhin

    2015-01-01

    Full Text Available In the previous analysis, the dynamic behaviour of a nonlinear plate embedded into a fractional derivative viscoelastic medium has been studied by the method of multiple time scales under the conditions of the internal resonances two-to-one and one-to-one, as well as the internal combinational resonances for the case when the linear parts of nonlinear equations of motion occur to be coupled. A new approach proposed in this paper allows one to uncouple the linear parts of equations of motion of the plate, while the same method, the method of multiple time scales, has been utilized for solving nonlinear equations. The influence of viscosity on the energy exchange mechanism between interacting nonlinear modes has been analyzed. It has been shown that for some internal resonances there exist such particular cases when it is possible to obtain two first integrals, namely, the energy integral and the stream function, which allows one to reduce the problem to the calculation of elliptic integrals. The new approach enables one to solve the problems of vibrations of thin bodies more efficiently.

  15. Impurity strength and impurity domain modulated frequency-dependent linear and second non-linear response properties of doped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nirmal Kumar [Department of Physics, Suri Vidyasagar College, Suri, Birbhum 731 101, West Bengal (India); Ghosh, Manas [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2011-08-15

    We explore the pattern of frequency-dependent linear and second non-linear optical responses of repulsive impurity doped quantum dots harmonically confined in two dimensions. The dopant impurity potential chosen assumes a Gaussian form and it is doped into an on-center location. The quantum dot is subject to a periodically oscillating external electric field. For some fixed values of transverse magnetic field strength ({omega}{sub c}) and harmonic confinement potential ({omega}{sub 0}), the influence of impurity strength (V{sub 0}) and impurity domain ({xi}) on the diagonal components of the frequency-dependent linear ({alpha}{sub xx} and {alpha}{sub yy}) and second non-linear ({gamma}{sub xxxx} and {gamma}{sub yyyy}) responses of the dot are computed through a linear variational route. The investigations reveal that the optical responses undergo enhancement with increase in both V{sub 0} and {xi} values. However, in the limitingly small dopant strength regime one observes a drop in the optical responses with increase in V{sub 0}. A time-average rate of energy transfer to the system is often invoked to support the findings. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Electrophoretic deposition of PEEK-TiO 2 composite coatings on stainless steel

    KAUST Repository

    Seuß , Sigrid; Subhani, Tayyab; Yi Kang, Min; Okudaira, Kenji; Ventura, Isaac Aguilar; Boccaccini, Aldo R.

    2012-01-01

    Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO 2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles

  17. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    Science.gov (United States)

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  18. Effect of AOT Microemulsion Composition on the Hydrodynamic Diameter and Electrophoretic Mobility of Titanium Oxide Nanoparticles

    Science.gov (United States)

    Shaparenko, N. O.; Beketova, D. I.; Demidova, M. G.; Bulavchenko, A. I.

    2018-05-01

    The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane-chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2-3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.

  19. Electrophoretic variants of blood proteins in japanese, 5

    International Nuclear Information System (INIS)

    Fujita, Mikio; Satoh, Chiyoko; Asakawa, Jun-ichi; Nagahata, Yuko; Tanaka, Yoshiko; Hazama, Ryuji; Goriki, Kazuaki.

    1985-08-01

    The plasma ceruloplasmin (CP) of 22,367 children of atomic bomb survivors in Hiroshima and Nagasaki was examined for variants by electrophoresis. The sample was composed of 14,964 unrelated children and 7,403 siblings of the unrelated persons. A total of seven types of electrophoretic variants were detected; four migrating anodally and three cathodally to the normal B band. We have reported two of these variants, CP A sub(NG1) and CP C sub(NG1), previously but the other five, CP A sub(NG2), CP A sub(HR1), CP A sub(HR2), CP C sub(HR1), and CP C sub(HR2), are newly identified. The allelic frequency of CP*CNG1 was 0.00916, so that the variant is considered to be a polymorphic allele. Homozygosity for the CP*CNG1 allele was detected in five individuals. This is the first report of a homozygous phenotype for a CP variant in a Japanese population. Family study of the new five variants all demonstrated patterns of codominant inheritance. (author)

  20. Electrophoretic nanotechnology of composite electrodes for electrochemical supercapacitors.

    Science.gov (United States)

    Su, Y; Zhitomirsky, I

    2013-02-14

    The electrophoretic deposition (EPD) method has been developed for the fabrication of MnO(2)-multiwalled carbon nanotube (MWCNT) films for application in electrochemical supercapacitors (ESs). For MWCNT applications, which depend on electrical conductivity, it is challenging to achieve dispersion and EPD of pristine MWCNT and avoid defects due to chemical treatment or functionalization. An important finding was the possibility of efficient dispersion and controlled EPD of MWCNT using calconcarboxylic acid (CCA). Moreover, the use of CCA allowed efficient dispersion of MnO(2) in concentrated suspensions and EPD of MnO(2) films. The comparison of the experimental data for chromotrope FB (CFB) and CCA and chemical structures of the molecules provided insight into the mechanism of CCA adsorption on MnO(2). The fabrication of stable suspensions of MnO(2) nanoparticles containing MWCNT, and controlled codeposition of both materials is a crucial aspect in the EPD of composites. The new approach was based on the use of CCA as a charging and dispersing agent for EPD of MnO(2) nanoparticles and MWCNT. The deposition yield measurements at various experimental conditions and Fourier transform infrared spectroscopy data, coupled with results of electron microscopy, thermogravimetric, and differential thermal analysis provided evidence of the formation of MnO(2)-MWCNT composites. The electrochemical testing results and impedance spectroscopy data showed good capacitive behavior of the composite films and the beneficial effect of MWCNTs.

  1. Validation of an electrophoretic method to detect albuminuria in cats.

    Science.gov (United States)

    Ferlizza, Enea; Dondi, Francesco; Andreani, Giulia; Bucci, Diego; Archer, Joy; Isani, Gloria

    2017-08-01

    Objectives The aims of this study were to validate a semi-automated high-resolution electrophoretic technique to quantify urinary albumin in healthy and diseased cats, and to evaluate its diagnostic performance in cases of proteinuria and renal diseases. Methods Urine samples were collected from 88 cats (healthy; chronic kidney disease [CKD]; lower urinary tract disease [LUTD]; non-urinary tract diseases [OTHER]). Urine samples were routinely analysed and high-resolution electrophoresis (HRE) was performed. Within-assay and between-assay variability, linearity, accuracy, recovery and the lowest detectable and quantifiable bands were calculated. Receiver operating curve (ROC) analysis was also performed. Results All coefficients of variation were HRE allowed the visualisation of a faint band of albumin and a diffused band between alpha and beta zones in healthy cats, while profiles from diseased cats were variable. Albumin (mg/dl) and urine albumin:creatinine ratio (UAC) were significantly ( P HRE is an accurate and precise method that could be used to measure albuminuria in cats. UAC was useful to correctly classify proteinuria and to discriminate between healthy and diseased cats. HRE might also provide additional information on urine proteins with a profile of all proteins (albumin and globulins) to aid clinicians in the diagnosis of diseases characterised by proteinuria.

  2. Polyacrylamide medium for the electrophoretic separation of biomolecules

    Science.gov (United States)

    Madabhushi, Ramakrishna S.; Gammon, Stuart A.

    2003-11-11

    A polyacryalmide medium for the electrophoretic separation of biomolecules. The polyacryalmide medium comprises high molecular weight polyacrylamides (PAAm) having a viscosity average molecular weight (M.sub.v) of about 675-725 kDa were synthesized by conventional red-ox polymerization technique. Using this separation medium, capillary electrophoresis of BigDye DNA sequencing standard was performed. A single base resolution of .about.725 bases was achieved in .about.60 minute in a non-covalently coated capillary of 50 .mu.m i.d., 40 cm effective length, and a filed of 160 V/cm at 40.degree. C. The resolution achieved with this formulation to separate DNA under identical conditions is much superior (725 bases vs. 625 bases) and faster (60 min. vs. 75 min.) to the commercially available PAAm, such as supplied by Amersham. The formulation method employed here to synthesize PAAm is straight-forward, simple and does not require cumbersome methods such as emulsion polymerizaiton in order to achieve very high molecular weights. Also, the formulation here does not require separation of PAAm from the reaction mixture prior to reconstituting the polymer to a final concentration. Furthermore, the formulation here is prepared from a single average mol. wt. PAAm as opposed to the mixture of two different average mo. wt. PAAm previously required to achieve high resolution.

  3. Dynamic Response of a Beam Resting on a Nonlinear Foundation to a Moving Load: Coiflet-Based Solution

    Directory of Open Access Journals (Sweden)

    Piotr Koziol

    2012-01-01

    Full Text Available This paper presents a new semi-analytical solution for the Timoshenko beam subjected to a moving load in case of a nonlinear medium underneath. The finite series of distributed moving loads harmonically varying in time is considered as a representation of a moving train. The solution for vibrations is obtained by using the Adomian's decomposition combined with the Fourier transform and a wavelet-based procedure for its computation. The adapted approximating method uses wavelet filters of Coiflet type that appeared a very effective tool for vibration analysis in a few earlier papers. The developed approach provides solutions for both transverse displacement and angular rotation of the beam, which allows parametric analysis of the investigated dynamic system to be conducted in an efficient manner. The aim of this article is to present an effective method of approximation for the analysis of complex dynamic nonlinear models related to the moving load problems.

  4. Input signal shaping based on harmonic frequency response function for suppressing nonlinear optical frequency in frequency-scanning interferometry

    Science.gov (United States)

    Zhu, Yu; Liu, Zhigang; Deng, Wen; Deng, Zhongwen

    2018-05-01

    Frequency-scanning interferometry (FSI) using an external cavity diode laser (ECDL) is essential for many applications of the absolute distance measurement. However, owing to the hysteresis and creep of the piezoelectric actuator inherent in the ECDL, the optical frequency scanning exhibits a nonlinearity that seriously affects the phase extraction accuracy of the interference signal and results in the reduction of the measurement accuracy. To suppress the optical frequency nonlinearity, a harmonic frequency synthesis method for shaping the desired input signal instead of the original triangular wave is presented. The effectiveness of the presented shaping method is demonstrated through the comparison of the experimental results. Compared with an incremental Renishaw interferometer, the standard deviation of the displacement measurement of the FSI system is less than 2.4 μm when driven by the shaped signal.

  5. Laterally Loaded Single Pile Response Considering the Influence of Suction and Non-Linear Behaviour of Reinforced Concrete Sections

    Directory of Open Access Journals (Sweden)

    Stefano Stacul

    2017-12-01

    Full Text Available A hybrid BEM-p-y curves approach was developed for the single pile analysis with free/fixed head restraint conditions. The method considers the soil non-linear behaviour by means of p-y curves in series to a multi-layered elastic half-space. The non-linearity of reinforced concrete pile sections, also considering the influence of tension-stiffening, has been considered. The model reproduces the influence of suction by increasing the stress state and hence the stiffness of shallow soil-layers. Suction is modeled using the Modified-Kovacs model. The hybrid BEM-py curves method was validated by comparing results from data of 22 load tests on single piles. In addition, a detailed comparison is presented between measured and computed data on a large-diameter reinforced concrete bored single pile.

  6. Preparation and encapsulation of white/yellow dual colored suspensions for electrophoretic displays

    Science.gov (United States)

    Han, Jingjing; Li, Xiaoxu; Feng, Yaqing; Zhang, Bao

    2014-11-01

    C.I. Pigment Yellow 181 (PY181) composite particles encapsulated by polyethylene (PE) were prepared by dispersion polymerization method, and C.I. Pigment Yellow 110 (PY110) composite particles encapsulated by polystyrene (PS) with mini-emulsion polymerization method were achieved, respectively. The modified pigments were characterized by fourier transform infrared spectroscopy, scanning electron microscope and transmission electron microscope. Compared with the PE-coated PY 181 pigments, the PS-coated PY-110 particles had a narrow particle size distribution, regular spherical and average particle size of 450 nm. Suspension 1 and suspension 3 were prepared by the two composite particles dispersed in isopar M. A chromatic electrophoretic display cell consisting of yellow particles was successfully fabricated using dispersions of yellow ink particles in a mixed dielectric solvent with white particles as contrast. The response behavior and the contrast ratio to the electric voltage were also examined. The contrast ratio of pigments modified by polystyrene was 1.48, as well as the response time was 2 s, which were better than those of pigments modified by polyethylene.

  7. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  8. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  9. Nonlinear response of a post-tensioned concrete structure to static and dynamic internal-pressure loads

    International Nuclear Information System (INIS)

    Butler, T.A.; Bennett, J.G.

    1981-01-01

    A nonlinear finite element model of a nuclear power plant containment building was developed to determine its ultimate pressure capability under quasistatic and impulsive dynamic loads. The ADINA finite element computer code was used to develop the model because of its capability to handle concrete cracking and crushing. Results indicate that, even though excessive concrete cracking occurs, failure is ultimately caused by rupture of post-tensioning tendons

  10. Thermal nonlinear optical response of meso-tetraphenylporphyrin under aggregation conditions versus that in the absence of aggregation

    Science.gov (United States)

    Rasouli, Saifollah; Sakha, Fereshteh; Mojarrad, Aida G.; Zakavi, Saeed

    2018-05-01

    In this work, measurement of thermally induced nonlinear refractive index of meso-tetraphenylporphyrin (H2TPP) at different concentrations in 1,2-dicoloroethane using a double-grating interferometer set-up in a pump-probe configuration is reported. The formation of aggregates of H2TPP at concentrations greater than ca. 5 × 10-5 M was evident by deviation from Beer's law. An almost focused pump beam passes through the solution. A part of the pump beam energy is absorbed by the sample and therefore a thermal lens is generated in the sample. An expanded probe beam propagates through the sample and indicates the sample refractive index changes. Just after the sample a band-pass filter cuts off the pump beam from the path but the distorted probe beam passes through a double-grating interferometer consisting of two similar diffraction gratings with a few centimetres distance. A CCD camera is installed after the interferometer in which on its sensitive area two diffraction orders of the gratings are overlying and producing interference pattern. The refractive index changes of the sample are obtained from the phase distribution of the successive interference patterns recorded at different times after turning on of the pump beam using Fourier transform method. In this study, for different concentrations of H2TPP in 1,2-dichloroethane solution the thermal nonlinear refractive index is determined. Also, we present the measurement of the temperature changes induced by the pump beam in the solution. We found that value of nonlinear refractive index increased by increasing the concentration up to a concentration of 5 × 10-4 M and then decreased at higher concentrations. In addition, we have investigated the stability of the observed thermal nonlinearity after a period of two weeks from the sample preparation.

  11. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    Science.gov (United States)

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  12. Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, México (Mexico); Kasapoglu, E.; Ungan, F.; Yesilgul, U. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey); Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sökmen, I. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey)

    2013-11-15

    The 1s-like and 2p-like donor impurity energy states are studied in a semiconductor quantum wire of equilateral triangular cross section as functions of the impurity position and the geometrical size of the structure. Linear and nonlinear coefficients for the optical absorption and relative refractive index change associated with 1s→2p transitions are calculated for both the x-polarization and y-polarization of the incident light. The results show a mixed effect of redshift and blueshift depending on the location of the donor atom. Also, strong nonlinear contributions to the optical absorption coefficient are obtained for both polarizations in the on-center impurity case. -- Highlights: • The 1s- and 2p-like impurity states in triangular quantum-well wires. • Optical absorption and relative refractive index changes are calculated. • Redshift and blueshift in the optical structures depend on the donor position. • Strong nonlinear contributions to the absorption coefficient have been obtained.

  13. Nonlinear dynamics of skin blood flow response to mechanical and thermal stresses in the plantar foot of diabetics with peripheral neuropathy.

    Science.gov (United States)

    Liao, Fuyuan; Jan, Yih-Kuen

    2017-01-01

    Diabetic foot ulcers (DFU) are a major complication in diabetics. Impaired microvascular reactivity is a major contributor to the development of DFU and has been traditionally quantified by time-domain or frequency-domain measures of skin blood flow (SBF). These measures, however, are unable to characterize the changes of nonlinear dynamics of SBF associated with diabetes and peripheral neuropathy. The objective of this study was to investigate altered nonlinear dynamics of skin blood flow in the plantar foot of diabetics with peripheral neuropathy. 18 type 2 diabetics with peripheral neuropathy and 8 healthy controls were recruited. SBF at the first metatarsal head in response to a loading pressure of 300 mmHg and a local heating was measured using laser Doppler flowmetry. A sample entropy approach was used to quantify the degree of regularity of SBF. Our results showed that the regularity degree of SBF in the diabetic foot underwent only small changes during post-occlusive reactive hyperemia and thermally induced biphasic response compared to non-diabetics. SBF of the diabetic foot has higher degree of irregularity during reactive hyperemia because of attenuated myogenic activity, and demonstrated higher regularity during the biphasic response largely due to significantly enhanced cardiac activities. This study suggests that the regularity degree of SBF at the first metatarsal head could be used to assess impaired microvascular reactivity and thus may be used to assess the risk for DFU in diabetics with peripheralneuropathy.

  14. Nonlinear optical switching of PDA/Ag hybrid materials based on temperature- and pH-responsive threading and dethreading of cyclodextrin polypseudorotaxane

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Jinan; Wen, Xiaolei; Leng, Jing; Wang, Jin; Zou, Gang; Zhang, Qijin [University of Science and Technology of China, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Key Laboratory of Optoelectronic Science and Technology in Anhui Province, Anhui (China)

    2012-11-15

    We developed a novel temperature and pH dual-responsive supramolecular system in which the aggregation and disaggregation of polydiacetylene/silver (PDA/Ag) hybrid nanocrystals can be mediated by environmentally responsive threading and dethreading processes of polypseudorotaxane. The PDA/Ag hybrid nanocrystals provide a nonlinear optical (NLO) property. The host-guest interaction between poly(ethylene glycol) (PEG) and cyclodextrin (CD) cavities on the surface of the hybrid nanocrystals causes the PDA/Ag hybrid nanocrystals to be sufficiently close to each other for providing an enhanced surface plasmon resonance and a corresponding NLO effect. NLO switching of the colloidal materials can be easily realized by varying temperature and pH. The facile preparation procedures and their response to the surrounding media render these novel hybrid colloidal materials potential candidates for applications in sensors, catalysis and optical/electronic devices. (orig.)

  15. Nonlinear systems

    CERN Document Server

    Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

    2018-01-01

    This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

  16. An update on modeling dose-response relationships: Accounting for correlated data structure and heterogeneous error variance in linear and nonlinear mixed models.

    Science.gov (United States)

    Gonçalves, M A D; Bello, N M; Dritz, S S; Tokach, M D; DeRouchey, J M; Woodworth, J C; Goodband, R D

    2016-05-01

    Advanced methods for dose-response assessments are used to estimate the minimum concentrations of a nutrient that maximizes a given outcome of interest, thereby determining nutritional requirements for optimal performance. Contrary to standard modeling assumptions, experimental data often present a design structure that includes correlations between observations (i.e., blocking, nesting, etc.) as well as heterogeneity of error variances; either can mislead inference if disregarded. Our objective is to demonstrate practical implementation of linear and nonlinear mixed models for dose-response relationships accounting for correlated data structure and heterogeneous error variances. To illustrate, we modeled data from a randomized complete block design study to evaluate the standardized ileal digestible (SID) Trp:Lys ratio dose-response on G:F of nursery pigs. A base linear mixed model was fitted to explore the functional form of G:F relative to Trp:Lys ratios and assess model assumptions. Next, we fitted 3 competing dose-response mixed models to G:F, namely a quadratic polynomial (QP) model, a broken-line linear (BLL) ascending model, and a broken-line quadratic (BLQ) ascending model, all of which included heteroskedastic specifications, as dictated by the base model. The GLIMMIX procedure of SAS (version 9.4) was used to fit the base and QP models and the NLMIXED procedure was used to fit the BLL and BLQ models. We further illustrated the use of a grid search of initial parameter values to facilitate convergence and parameter estimation in nonlinear mixed models. Fit between competing dose-response models was compared using a maximum likelihood-based Bayesian information criterion (BIC). The QP, BLL, and BLQ models fitted on G:F of nursery pigs yielded BIC values of 353.7, 343.4, and 345.2, respectively, thus indicating a better fit of the BLL model. The BLL breakpoint estimate of the SID Trp:Lys ratio was 16.5% (95% confidence interval [16.1, 17.0]). Problems with

  17. Recent advances on glass-forming systems driven far from equilibrium. Special issue marking the completion of the Research Unit FOR 1394 `Nonlinear response to probe vitrification'

    Science.gov (United States)

    Fuchs, Matthias

    2017-08-01

    The nature of the glass transition is one of the frontier questions in Statistical Physics and Materials Science. Highly cooperative structural processes develop in glass-forming melts exhibiting relaxational dynamics which is spread out over many decades in time. While considerable progress has been made in recent decades towards understanding dynamical slowing-down in quiescent systems, the interplay of glassy dynamics with external fields reveals a wealth of novel phenomena yet to be explored. This special issue focuses on recent results obtained by the Research Unit FOR 1394 `Nonlinear response to probe vitrification' which was funded by the German Science Foundation (DFG). In the projects of the research unit, strong external fields were used in order to gain insights into the complex structural and transport phenomena at the glass transition under far-from-equilibrium conditions. This aimed inter alia to test theories of the glass transition developed for quiescent systems by pushing them beyond their original regime. Combining experimental, simulational, and theoretical efforts, the eight projects within the FOR 1394 measured and determined aspects of the nonlinear response of supercooled metallic, polymeric, and silica melts, of colloidal dispersions, and of ionic liquids. Applied fields included electric and mechanic fields, and forced active probing (`micro-rheology'), where a single probe is forced through the glass-forming host. Nonlinear stress-strain and force-velocity relations as well as nonlinear dielectric susceptibilities and conductivities were observed. While the physical manipulation of melts and glasses is interesting in its own right, especially technologically, the investigations performed by the FOR 1394 suggest to use the response to strong homogeneous and inhomogeneous fields as technique to explore on the microscopic level the cooperative mechanisms in dense melts of strongly interacting constituents. Questions considered concern the

  18. Optimization of a microfluidic electrophoretic immunoassay using a Peltier cooler.

    Science.gov (United States)

    Mukhitov, Nikita; Yi, Lian; Schrell, Adrian M; Roper, Michael G

    2014-11-07

    Successful analysis of electrophoretic affinity assays depends strongly on the preservation of the affinity complex during separations. Elevated separation temperatures due to Joule heating promotes complex dissociation leading to a reduction in sensitivity. Affinity assays performed in glass microfluidic devices may be especially prone to this problem due to poor heat dissipation due to the low thermal conductivity of glass and the large amount of bulk material surrounding separation channels. To address this limitation, a method to cool a glass microfluidic chip for performing an affinity assay for insulin was achieved by a Peltier cooler localized over the separation channel. The Peltier cooler allowed for rapid stabilization of temperatures, with 21°C the lowest temperature that was possible to use without producing detrimental thermal gradients throughout the device. The introduction of cooling improved the preservation of the affinity complex, with even passive cooling of the separation channel improving the amount of complex observed by 2-fold. Additionally, the capability to thermostabilize the separation channel allowed for utilization of higher separation voltages than what was possible without temperature control. Kinetic CE analysis was utilized as a diagnostic of the affinity assay and indicated that optimal conditions were at the highest separation voltage, 6 kV, and the lowest separation temperature, 21°C, leading to 3.4% dissociation of the complex peak during the separation. These optimum conditions were used to generate a calibration curve and produced 1 nM limits of detection, representing a 10-fold improvement over non-thermostated conditions. This methodology of cooling glass microfluidic devices for performing robust and high sensitivity affinity assays on microfluidic systems should be amenable in a number of applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Serum Protein Electrophoretic Pattern in Neonatal Calves Treated with Clinoptilolite

    Directory of Open Access Journals (Sweden)

    Simona Marc

    2018-05-01

    Full Text Available The objective of our study was to determine the effects of clinoptilolite supplemented in colostrum on the blood serum protein electrophoretic pattern of new-born calves. Methods: Romanian Black and White new-born calves involved in the study were divided into 3 groups: the control group (C that received colostrum without clinoptilolite, and experimental groups I (E1 and II (E2 that received colostrum supplemented with 0.5% and 2% clinoptilolite, respectively. The concentration of total protein and protein fractions (albumin, α1-globulin, α2-globulin, β-globulin and γ-globulin were analyzed by electrophoresis on cellulose acetate. Results: At hour 30 after birth, concentrations of γ-globulins, β-globulin and total protein in E1 group of calves were higher than in control group by 42.11% (p < 0.05, 28.48% (p > 0.05 and 18.52% (p > 0.05, respectively, and were higher, but not significantly, in group E2 compared to the control group. This was in accordance with a significant lower albumin/globulin ratio in groups E1 and E2 (29.35%, p < 0.05 and 35.87%, p < 0.05, respectively than in control group at 30 h postpartum, which indicates an obvious increase of the globulins fraction in experimental groups. The conclusion: Clinoptilolite was effective in improving passive transfer in new-born calves, but it was more effective if added in colostrum with a dose of 0.5% than with a dose of 2%.

  20. Nonlinearity and thresholds in dose-response relationships for carcinogenicity due to sampling variation, logarithmic dose scaling, or small differences in individual susceptibility

    International Nuclear Information System (INIS)

    Lutz, W.K.; Gaylor, D.W.; Conolly, R.B.; Lutz, R.W.

    2005-01-01

    Nonlinear and threshold-like shapes of dose-response curves are often observed in tests for carcinogenicity. Here, we present three examples where an apparent threshold is spurious and can be misleading for low dose extrapolation and human cancer risk assessment. Case 1: For experiments that are not replicated, such as rodent bioassays for carcinogenicity, random variation can lead to misinterpretation of the result. This situation was simulated by 20 random binomial samplings of 50 animals per group, assuming a true linear dose response from 5% to 25% tumor incidence at arbitrary dose levels 0, 0.5, 1, 2, and 4. Linearity was suggested only by 8 of the 20 simulations. Four simulations did not reveal the carcinogenicity at all. Three exhibited thresholds, two showed a nonmonotonic behavior with a decrease at low dose, followed by a significant increase at high dose ('hormesis'). Case 2: Logarithmic representation of the dose axis transforms a straight line into a sublinear (up-bent) curve, which can be misinterpreted to indicate a threshold. This is most pronounced if the dose scale includes a wide low dose range. Linear regression of net tumor incidences and intersection with the dose axis results in an apparent threshold, even with an underlying true linear dose-incidence relationship. Case 3: Nonlinear shapes of dose-cancer incidence curves are rarely seen with epidemiological data in humans. The discrepancy to data in rodents may in part be explained by a wider span of individual susceptibilities for tumor induction in humans due to more diverse genetic background and modulation by co-carcinogenic lifestyle factors. Linear extrapolation of a human cancer risk could therefore be appropriate even if animal bioassays show nonlinearity

  1. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields.

    Science.gov (United States)

    Sadek, Samir H; Pimenta, Francisco; Pinho, Fernando T; Alves, Manuel A

    2017-04-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron-sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro-particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time-scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. © 2016 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  3. Nonlinear systems

    National Research Council Canada - National Science Library

    Drazin, P. G

    1992-01-01

    This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...

  4. Nonlinear analysis

    CERN Document Server

    Gasinski, Leszek

    2005-01-01

    Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.

  5. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 1; Stringer-Feet Imperfections and Assembly

    Science.gov (United States)

    Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.

  6. An Optimized Elasto-Plastic Subgrade Reaction For Modeling The Response Of A Nonlinear Foundation For A Structural Analysis

    Directory of Open Access Journals (Sweden)

    Ray Richard Paul

    2015-09-01

    Full Text Available Geotechnical and structural engineers are faced with a difficult task when their designs interact with each other. For complex projects, this is more the norm than the exception. In order to help bridge that gap, a method for modeling the behavior of a foundation using a simple elasto-plastic subgrade reaction was developed. The method uses an optimization technique to position 4-6 springs along a pile foundation to produce similar load deflection characteristics that were modeled by more sophisticated geotechnical finite element software. The methodology uses an Excel spreadsheet for accepting user input and delivering an optimized subgrade spring stiffness, yield, and position along the pile. In this way, the behavior developed from the geotechnical software can be transferred to the structural analysis software. The optimization is achieved through the solver add-in within Excel. Additionally, a beam on a nonlinear elastic foundation model is used to compute deflections of the optimized subgrade reaction configuration.

  7. The Pedersen current carried by electrons: a non-linear response of the ionosphere to magnetospheric forcing

    Directory of Open Access Journals (Sweden)

    S. C. Buchert

    2008-09-01

    Full Text Available Observations by the EISCAT Svalbard radar show that electron temperatures Te in the cusp electrojet reach up to about 4000 K. The heat is tapped and converted from plasma convection in the near Earth space by a Pedersen current that is carried by electrons due to the presence of irregularities and their demagnetising effect. The heat is transfered to the neutral gas by collisions. In order to enhance Te to such high temperatures the maximally possible dissipation at 50% demagnetisation must nearly be reached. The effective Pedersen conductances are found to be enhanced by up to 60% compared to classical values. Conductivities and conductances respond significantly to variations of the electric field strength E, and "Ohm's law" for the ionosphere becomes non-linear for large E.

  8. Three-dimensional fluorescence analysis of chernozem humic acids and their electrophoretic fractions

    Science.gov (United States)

    Trubetskoi, O. A.; Trubetskaya, O. E.

    2017-09-01

    Polyacrylamide gel electrophoresis in combination with size-exclusion chromatography (SEC-PAGE) has been used to obtain stable electrophoretic fractions of different molecular size (MS) from chernozem humic acids (HAs). Three-dimensional fluorescence charts of chernozem HAs and their fractions have been obtained for the first time, and all fluorescence excitation-emission maxima have been identified in the excitation wavelength range of 250-500 nm. It has been found that fractionation by the SEC-PAGE method results in a nonuniform distribution of protein- and humin-like fluorescence of the original HA preparation among the electrophoretic fractions. The electrophoretic fractions of the highest and medium MSs have only the main protein-like fluorescence maximum and traces of humin-like fluorescence. In the electrophoretic fraction of the lowest MS, the intensity of protein-like fluorescence is low, but the major part of humin-like fluorescence is localized there. Relationships between the intensity of protein-like fluorescence and the weight distribution of amino acids have been revealed, as well as between the degree of aromaticity and the intensity of humin-like fluorescence in electrophoretic fractions of different MSs. The obtained relationships can be useful in the interpretation of the spatial structural organization and ecological functions of soil HAs.

  9. Characterization of the yttria-stabilized zirconia thin film electrophoretic deposited on La0.8Sr0.2MnO3 substrate

    International Nuclear Information System (INIS)

    Yang, Koho; Shen, Jung-Hsiung; Yang, Kai-Yun; Hung, I-Ming; Fung, Kuan-Zong; Wang, Moo-Chin

    2007-01-01

    The yttria-stabilized zirconia (YSZ) thin films electrophoretic deposited on the La 0.8 Sr 0.2 MnO 3 (LSM) substrate have been characterized by using zeta potential analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The La 2 Zr 2 O 7 (LZ) formed at the interface between the YSZ thin film and LSM substrate, after sintered at 1400 o C for 52 h, are identified by XRD. The zeta potential of the YSZ particles in pure ethanol-acetone is about 7.8 mV, but when the I 2 concentration is greater than 0.6 g/1, the zeta potential attains a constant value, 46 mV. The relation between deposit weight of the YSZ films and the applied voltage shows a non-linear behavior. Thickness of the YSZ thin film deposited on the LSM substrate by electrophoretic deposition is controlled by a diffusion process. A larger LZ with the thickness of 200 nm is formed at the interface between the YSZ film and the LSM substrate

  10. Short-term population-based and spatiotemporal nonlinear concentration-response associations between fine particulate matter and children's respiratory clinic visits

    Science.gov (United States)

    Yu, Hwa-Lung; Chien, Lung-Chang

    2014-05-01

    Advert health impacts associated with the PM2.5 exposure have been confirmed in mortality and cardiovascular diseases; however, findings of the influence of PM2.5 on respiratory diseases investigated among previous studies are still inconsistent. We investigated the short-term population-based associations between the respiratory clinic visits of children population and the PM2.5 exposure levels with considering both the spatiotemporal distributions of the ambient pollution and clinic visit data. We applied a spatiotemporal structured additive regression model to examine the concentration-response (C-R) association between daily children's respiratory clinic visits and PM2.5 concentrations. The analysis was performed separately on the four selected respiratory disease categories of the population-based dataset, obtained from Taiwan National Health Insurance database, covering the 41 districts in Taipei area during the period of 2005 to 2007. This study reveals a strong nonlinear C-R pattern that the PM2.5 increment can significantly affect respiratory health at PM2.5 concentration ≤ 18.17µg/m3 for both preschool children and schoolchildren. The elevated risks are especially present in the category of acute respiratory infections. PM2.5 increase is mostly non-significant to the more severe respiratory diseases, e.g., COPD and pneumonia, over the ranges of 8.85-92.45µg/m3. The significantly higher relative rate of respiratory clinic visit most likely concentrated at populated areas. We highlight the nonlinearity of the respiratory health impacts of PM2.5 on children's populations from the first study, to our knowledge, to investigate this population-based association. The strong nonlinearity can possibly cause the inconsistency of PM2.5 health impact assessments with linear assumptions.

  11. A New Computational Model for Neuro-Glio-Vascular Coupling: Astrocyte Activation Can Explain Cerebral Blood Flow Nonlinear Response to Interictal Events.

    Directory of Open Access Journals (Sweden)

    Solenna Blanchard

    Full Text Available Developing a clear understanding of the relationship between cerebral blood flow (CBF response and neuronal activity is of significant importance because CBF increase is essential to the health of neurons, for instance through oxygen supply. This relationship can be investigated by analyzing multimodal (fMRI, PET, laser Doppler… recordings. However, the important number of intermediate (non-observable variables involved in the underlying neurovascular coupling makes the discovery of mechanisms all the more difficult from the sole multimodal data. We present a new computational model developed at the population scale (voxel with physiologically relevant but simple equations to facilitate the interpretation of regional multimodal recordings. This model links neuronal activity to regional CBF dynamics through neuro-glio-vascular coupling. This coupling involves a population of glial cells called astrocytes via their role in neurotransmitter (glutamate and GABA recycling and their impact on neighboring vessels. In epilepsy, neuronal networks generate epileptiform discharges, leading to variations in astrocytic and CBF dynamics. In this study, we took advantage of these large variations in neuronal activity magnitude to test the capacity of our model to reproduce experimental data. We compared simulations from our model with isolated epileptiform events, which were obtained in vivo by simultaneous local field potential and laser Doppler recordings in rats after local bicuculline injection. We showed a predominant neuronal contribution for low level discharges and a significant astrocytic contribution for higher level discharges. Besides, neuronal contribution to CBF was linear while astrocytic contribution was nonlinear. Results thus indicate that the relationship between neuronal activity and CBF magnitudes can be nonlinear for isolated events and that this nonlinearity is due to astrocytic activity, highlighting the importance of astrocytes in

  12. V S30, slope, H 800 and f 0: performance of various site-condition proxies in reducing ground-motion aleatory variability and predicting nonlinear site response

    Science.gov (United States)

    Derras, Boumédiène; Bard, Pierre-Yves; Cotton, Fabrice

    2017-09-01

    The aim of this paper is to investigate the ability of various site-condition proxies (SCPs) to reduce ground-motion aleatory variability and evaluate how SCPs capture nonlinearity site effects. The SCPs used here are time-averaged shear-wave velocity in the top 30 m ( V S30), the topographical slope (slope), the fundamental resonance frequency ( f 0) and the depth beyond which V s exceeds 800 m/s ( H 800). We considered first the performance of each SCP taken alone and then the combined performance of the 6 SCP pairs [ V S30- f 0], [ V S30- H 800], [ f 0-slope], [ H 800-slope], [ V S30-slope] and [ f 0- H 800]. This analysis is performed using a neural network approach including a random effect applied on a KiK-net subset for derivation of ground-motion prediction equations setting the relationship between various ground-motion parameters such as peak ground acceleration, peak ground velocity and pseudo-spectral acceleration PSA ( T), and M w, R JB, focal depth and SCPs. While the choice of SCP is found to have almost no impact on the median ground-motion prediction, it does impact the level of aleatory uncertainty. V S30 is found to perform the best of single proxies at short periods ( T < 0.6 s), while f 0 and H 800 perform better at longer periods; considering SCP pairs leads to significant improvements, with particular emphasis on [ V S30- H 800] and [ f 0-slope] pairs. The results also indicate significant nonlinearity on the site terms for soft sites and that the most relevant loading parameter for characterising nonlinear site response is the "stiff" spectral ordinate at the considered period.[Figure not available: see fulltext.

  13. Pescara benchmarks: nonlinear identification

    Science.gov (United States)

    Gandino, E.; Garibaldi, L.; Marchesiello, S.

    2011-07-01

    Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled "Monitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing", financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

  14. Pescara benchmarks: nonlinear identification

    International Nuclear Information System (INIS)

    Gandino, E; Garibaldi, L; Marchesiello, S

    2011-01-01

    Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled M onitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing , financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

  15. Estimation of Joule heating and its role in nonlinear electrical response of Tb0.5Sr0.5MnO3 single crystal

    Science.gov (United States)

    Nhalil, Hariharan; Elizabeth, Suja

    2016-12-01

    Highly non-linear I-V characteristics and apparent colossal electro-resistance were observed in non-charge ordered manganite Tb0.5Sr0.5MnO3 single crystal in low temperature transport measurements. Significant changes were noticed in top surface temperature of the sample as compared to its base while passing current at low temperature. By analyzing these variations, we realize that the change in surface temperature (ΔTsur) is too small to have caused by the strong negative differential resistance. A more accurate estimation of change in the sample temperature was made by back-calculating the sample temperature from the temperature variation of resistance (R-T) data (ΔTcal), which was found to be higher than ΔTsur. This result indicates that there are large thermal gradients across the sample. The experimentally derived ΔTcal is validated with the help of a simple theoretical model and estimation of Joule heating. Pulse measurements realize substantial reduction in Joule heating. With decrease in sample thickness, Joule heating effect is found to be reduced. Our studies reveal that Joule heating plays a major role in the nonlinear electrical response of Tb0.5Sr0.5MnO3. By careful management of the duty cycle and pulse current I-V measurements, Joule heating can be mitigated to a large extent.

  16. Electrophoretic separations on paper: Past, present, and future-A review.

    Science.gov (United States)

    Nanthasurasak, Pavisara; Cabot, Joan Marc; See, Hong Heng; Guijt, Rosanne M; Breadmore, Michael C

    2017-09-08

    Point-of-collection (POC) devices aim for a fast, on-site detection for medical and environmental purposes. In this area, microfluidic Paper-based Analytical Devices (μPADs) have recently gained popularity because these are potentially cheap and environmentally friendly to produce, and easy to use. From an analytical perspective, paper is well known for its use as a substrate for chromatography, but less known for its use in electrophoretic separations. With the recent interest in μPADs, most applications are based on rather simple assays with relatively few applications incorporating an analytical separation. The focus of this review is on paper-based electrophoresis, originating with the key developments in the 1940s and 1950s as well as the recent developments of electrophoretic μPADs, and concluding with a critical discussion of the opportunities and challenges for electrophoretic μPADS in the future. Copyright © 2017. Published by Elsevier B.V.

  17. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    Science.gov (United States)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  18. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    Science.gov (United States)

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    International Nuclear Information System (INIS)

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Dobrodumov, Anatolii V.; Marchenko, Yaroslav Y.; Margulis, Boris A.; Pitkin, Emil; Guzhova, Irina V.

    2015-01-01

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M 2 ). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T 2 -weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M 2 measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M 2 ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates effectively target the

  20. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing–Tianjin–Hebei region

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2017-10-01

    Full Text Available The Beijing–Tianjin–Hebei (BTH region has been suffering from the most severe fine-particle (PM2. 5 pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM. The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24–36 % to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM

  1. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Zhao, Bin; Wu, Wenjing; Wang, Shuxiao; Xing, Jia; Chang, Xing; Liou, Kuo-Nan; Jiang, Jonathan H.; Gu, Yu; Jang, Carey; Fu, Joshua S.; Zhu, Yun; Wang, Jiandong; Lin, Yan; Hao, Jiming

    2017-10-01

    The Beijing-Tianjin-Hebei (BTH) region has been suffering from the most severe fine-particle (PM2. 5) pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM) technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM). The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24-36 %) to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA) to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM2. 5 concentrations. The contributions of primary

  2. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...

  3. A deep learning approach to estimate chemically-treated collagenous tissue nonlinear anisotropic stress-strain responses from microscopy images.

    Science.gov (United States)

    Liang, Liang; Liu, Minliang; Sun, Wei

    2017-11-01

    Biological collagenous tissues comprised of networks of collagen fibers are suitable for a broad spectrum of medical applications owing to their attractive mechanical properties. In this study, we developed a noninvasive approach to estimate collagenous tissue elastic properties directly from microscopy images using Machine Learning (ML) techniques. Glutaraldehyde-treated bovine pericardium (GLBP) tissue, widely used in the fabrication of bioprosthetic heart valves and vascular patches, was chosen to develop a representative application. A Deep Learning model was designed and trained to process second harmonic generation (SHG) images of collagen networks in GLBP tissue samples, and directly predict the tissue elastic mechanical properties. The trained model is capable of identifying the overall tissue stiffness with a classification accuracy of 84%, and predicting the nonlinear anisotropic stress-strain curves with average regression errors of 0.021 and 0.031. Thus, this study demonstrates the feasibility and great potential of using the Deep Learning approach for fast and noninvasive assessment of collagenous tissue elastic properties from microstructural images. In this study, we developed, to our best knowledge, the first Deep Learning-based approach to estimate the elastic properties of collagenous tissues directly from noninvasive second harmonic generation images. The success of this study holds promise for the use of Machine Learning techniques to noninvasively and efficiently estimate the mechanical properties of many structure-based biological materials, and it also enables many potential applications such as serving as a quality control tool to select tissue for the manufacturing of medical devices (e.g. bioprosthetic heart valves). Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Electrophoretic and chemical studies on the X-ray damage of malate synthase

    International Nuclear Information System (INIS)

    Durchschlag, H.; Zipper, P.

    1981-01-01

    1) Both X-irradiation and treatment with H 2 O 2 caused a decrease of total and an increase of available sulfhydryl groups of the enzyme and led to a loss of enzymic activity. The presence of dithiothreitol turned out to be able to protect the enzyme against X-ray or H 2 O 2 induced inactivation. Moreover, addition of dithiothreitol after X-irradiation or H 2 O 2 treatment allowed a considerable repair of enzymic activity. 2) Polyacrylamide gel disc electrophoreses of X-irradiated enzyme solutions, performed in the presence of sodium dodecyl sulfate, showed the occurrence of covalently cross-linked subunits (preferably dimers and trimers) and of various definite fragments. Electrophoreses in the absence of the denaturant indicated the occurrence of enzyme aggregation. The effects were more pronounced with increasing X-ray doses. The electrophoreses also clearly reflected a radioprotection by dithiothreitol against cross-linking, but not against fragmentation. Addition of excess of 2-mercaptoethanol or of dithiothreitol to the X-irradiated enzyme clearly demonstrated that part of the covalent cross-links were disulfide bridges; the aggregates themselves, however, were held together primarily by non-covalent bonds. Blocking of exposed enzyme sulfhydryls by means of Ellman's reagent prevented both covalent cross-linking and enzyme aggregation. 3) Similar electrophoretic patterns as found for the X-irradiated enzyme were obtained for the unirradiated enzyme after treatment with H 2 O 2 . The similarity of the electropherograms, as well as the reversible diminution of enzymic activity and the loss of sulfhydryls in the presence of H 2 O 2 , suggest an involvement of H 2 O 2 in the radiation damage of the enzyme. It seems plausible that oxidation reactions are responsible for the effects caused by X-irradiation or H 2 O 2 treatment. (orig./AJ)

  5. Identification of the nonlinear excitation force acting on a bowed string using the dynamical responses at remote locations

    International Nuclear Information System (INIS)

    Debut, V.; Antunes, J.; Delaune, X.

    2010-01-01

    For achieving realistic numerical simulations of bowed string instruments, based on physical modeling, a good understanding of the actual friction interaction phenomena is of great importance. Most work published in the field including our own has assumed that bow/string frictional forces behave according to the classical Coulomb stick-slip model, with an empirical velocity-dependent sliding friction coefficient. Indeed, the basic self-excited string motions (such as the Helmholtz regime) are well captured using such friction model. However, recent work has shown that the tribological behavior of the bow/string rosin interface is rather complex, therefore the basic velocity-dependent Coulomb model may be an over-simplistic representation of the friction force. More specifically, it was suggested that a more accurate model of the interaction force can be achieved by coupling the system dynamical equations with a thermal model which encapsulates the complex interface phenomena. In spite of the interesting work performed by Askenfelt, a direct measurement of the actual dynamical friction forces without disturbing the string motion is quite difficult. Therefore, in this work we develop a modal-based identification technique making use of inverse methods and optimization techniques, which enables the identification of the interface force, as well as the string self-excited motion, from the dynamical reactions measured at the string end supports. The method gives convincing results using simulated data originated from nonlinear computations of a bowed string. Furthermore, in cases where the force identifications are very sensitive to errors in the transfer function modal parameters, we suggest a method to improve the modal frequencies used for the identifications. Preliminary experimental results obtained using a basic bowing device, by which the string is excited with the stick of the bow, are then presented. Our identifications, from the two dynamical string reactions

  6. Sintering of MnCo2O4 coatings prepared by electrophoretic deposition

    DEFF Research Database (Denmark)

    Bobruk, M.; Molin, Sebastian; Chen, Ming

    2018-01-01

    Sintering of MnCo2O4 coatings prepared by electrophoretic deposition on steel substrates has been studied in air and in reducing-oxidizing atmosphere. Effect of temperature and pO2 on the resulting coating density was evaluated from scanning electron microscopy images of polished cross sections...

  7. Zirconium phosphate coating on aluminium foams by electrophoretic deposition for acidic catalysis

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    The electrophoretic deposition method has been applied for the formation of an amorphous zirconium phosphate layer on the surface of open-cell aluminum foam. The aluminum foam was fully and uniformly covered by the zirconium phosphate layer with a good mechanical adherence to the support. The

  8. Capillary electrophoretic enantioseparation of selegiline, methamphetamine and ephedrine using a neutral β-cyclodextrin epichlorhydrin polymer

    NARCIS (Netherlands)

    Sevcik, J.; Stransky, Z.; Ingelse, B.A.; Lemr, K.

    1996-01-01

    This paper describes the development of a capillary zone electrophoretic method for chiral separation of three basic compounds of the selegiline synthetic pathway: ephedrine, methamphetamine and selegiline. The method developed allows one to separate the studied compounds in one run using a neutral

  9. Characterization of Dickeya and Pectobacterium species by capillary electrophoretic techniques and MALDI-TOF MS

    Czech Academy of Sciences Publication Activity Database

    Šalplachta, Jiří; Kubesová, Anna; Horký, J.; Matoušková, H.; Tesařová, Marie; Horká, Marie

    2015-01-01

    Roč. 407, č. 25 (2015), s. 7625-7635 ISSN 1618-2642 R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : bacteria * electrophoretic techniques * MALDI Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.125, year: 2015 http://hdl.handle.net/11104/0250090

  10. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    Science.gov (United States)

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  11. A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture

    NARCIS (Netherlands)

    Gelinck, G.H.; Huitema, H.E.A.; Mil, M. van; Veenendaal, E. van; Lieshout, P.J.G. van; Touwslager, F.; Patry, S.F.; Sohn, S.; Whitesides, T.; McCreary, M.D.

    2006-01-01

    A 100-um thin QVGA display was made by combining a 25-um thin organic transistor active-matrix backplane with an electrophoretic display film. High contrast and low crosstalk was achieved by the addition of a field shield to the backplane. The display can be bent repeatedly to a radius of 2 mm

  12. Field inversion gel electrophoretic analysis of Legionella pneumophila strains associated with nosocomial legionellosis in children.

    Science.gov (United States)

    Green, M; Wald, E R; Dashefsky, B; Barbadora, K; Wadowsky, R M

    1996-01-01

    Two nosocomial cases of Legionnaires' disease occurred in children. Legionella pneumophila serogroup 1 was isolated from both patients and 30 of 39 plumbing system sites in the hospital. The patient and hospital environmental isolates yielded identical field inversion gel electrophoretic patterns which differed from patterns observed with epidemiologically unrelated strains.

  13. Sialic acid accelerates the electrophoretic velocity of injured dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Chen-xu Li

    2015-01-01

    Full Text Available Peripheral nerve injury has been shown to result in ectopic spontaneous discharges on soma and injured sites of sensory neurons, thereby inducing neuropathic pain. With the increase of membrane proteins on soma and injured site neurons, the negatively charged sialic acids bind to the external domains of membrane proteins, resulting in an increase of this charge. We therefore speculate that the electrophoretic velocity of injured neurons may be faster than non-injured neurons. The present study established rat models of neuropathic pain via chronic constriction injury. Results of the cell electrophoresis test revealed that the electrophoretic velocity of injured neuronal cells was faster than that of non-injured (control cells. We then treated cells with divalent cations of Ca 2+ and organic compounds with positive charges, polylysine to counteract the negatively charged sialic acids, or neuraminidase to specifically remove sialic acids from the membrane surface of injured neurons. All three treatments significantly reduced the electrophoretic velocity of injured neuronal cells. These findings suggest that enhanced sialic acids on injured neurons may accelerate the electrophoretic velocity of injured neurons.

  14. A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution.

    Science.gov (United States)

    Nasari, Masoud M; Szyszkowicz, Mieczysław; Chen, Hong; Crouse, Daniel; Turner, Michelle C; Jerrett, Michael; Pope, C Arden; Hubbell, Bryan; Fann, Neal; Cohen, Aaron; Gapstur, Susan M; Diver, W Ryan; Stieb, David; Forouzanfar, Mohammad H; Kim, Sun-Young; Olives, Casey; Krewski, Daniel; Burnett, Richard T

    2016-01-01

    The effectiveness of regulatory actions designed to improve air quality is often assessed by predicting changes in public health resulting from their implementation. Risk of premature mortality from long-term exposure to ambient air pollution is the single most important contributor to such assessments and is estimated from observational studies generally assuming a log-linear, no-threshold association between ambient concentrations and death. There has been only limited assessment of this assumption in part because of a lack of methods to estimate the shape of the exposure-response function in very large study populations. In this paper, we propose a new class of variable coefficient risk functions capable of capturing a variety of potentially non-linear associations which are suitable for health impact assessment. We construct the class by defining transformations of concentration as the product of either a linear or log-linear function of concentration multiplied by a logistic weighting function. These risk functions can be estimated using hazard regression survival models with currently available computer software and can accommodate large population-based cohorts which are increasingly being used for this purpose. We illustrate our modeling approach with two large cohort studies of long-term concentrations of ambient air pollution and mortality: the American Cancer Society Cancer Prevention Study II (CPS II) cohort and the Canadian Census Health and Environment Cohort (CanCHEC). We then estimate the number of deaths attributable to changes in fine particulate matter concentrations over the 2000 to 2010 time period in both Canada and the USA using both linear and non-linear hazard function models.

  15. Short-term population-based non-linear concentration-response associations between fine particulate matter and respiratory diseases in Taipei (Taiwan): a spatiotemporal analysis.

    Science.gov (United States)

    Yu, Hwa-Lung; Chien, Lung-Chang

    2016-01-01

    Fine particulate matter respiratory disease remain inconsistent. The short-term, population-based association between the respiratory clinic visits of children and PM2.5 exposure levels were investigated by considering both the spatiotemporal distributions of ambient pollution and clinic visit data. We applied a spatiotemporal structured additive regression model to examine the concentration-response (C-R) association between children's respiratory clinic visits and PM2.5 concentrations. This analysis was separately performed on three respiratory disease categories that were selected from the Taiwanese National Health Insurance database, which includes 41 districts in the Taipei area of Taiwan from 2005 to 2007. The findings reveal a non-linear C-R pattern of PM2.5, particularly in acute respiratory infections. However, a PM2.5 increase at relatively lower levels can elevate the same-day respiratory health risks of both preschool children (increase from 0.76 to 7.44 μg/m(3), and in schoolchildren, same-day health risks rise when concentrations increase from 0.76 to 7.52 μg/m(3). Changes in PM2.5 levels generally exhibited no significant association with same-day respiratory risks, except in instances where PM2.5 levels are extremely high, and these occurrences do exhibit a significant positive influence on respiratory health that is especially notable in schoolchildren. A significant high relative rate of respiratory clinic visits are concentrated in highly populated areas. We highlight the non-linearity of the respiratory health effects of PM2.5 on children to investigate this population-based association. The C-R relationship in this study can provide a highly valuable alternative for assessing the effects of ambient air pollution on human health.

  16. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    Science.gov (United States)

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  17. Nonlinear response of a forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two

    International Nuclear Information System (INIS)

    Ji, J.C.; Zhang, N.

    2009-01-01

    Non-resonant bifurcations of codimension two may appear in the controlled van der Pol-Duffing oscillator when two critical time delays corresponding to a double Hopf bifurcation have the same value. With the aid of centre manifold theorem and the method of multiple scales, the non-resonant response and two types of primary resonances of the forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two are investigated by studying the possible solutions and their stability of the four-dimensional ordinary differential equations on the centre manifold. It is shown that the non-resonant response of the forced oscillator may exhibit quasi-periodic motions on a two- or three-dimensional (2D or 3D) torus. The primary resonant responses admit single and mixed solutions and may exhibit periodic motions or quasi-periodic motions on a 2D torus. Illustrative examples are presented to interpret the dynamics of the controlled system in terms of two dummy unfolding parameters and exemplify the periodic and quasi-periodic motions. The analytical predictions are found to be in good agreement with the results of numerical integration of the original delay differential equation.

  18. Nonlinear dynamic response of a 'flexible-and-heavy' printed circuit board (PCB) to an impact load applied to its support contour

    International Nuclear Information System (INIS)

    Suhir, E; Vujosevic, M; Reinikainen, T

    2009-01-01

    Based on the developed simple and physically meaningful analytical ('mathematical') stress model, we evaluate some major parameters (amplitude, frequency, maximum acceleration, stresses and strains) of the response of a 'flexible-and-heavy' square simply supported printed circuit board (PCB) to an impact drop load applied to its support contour. The analysis is restricted to the first mode of vibrations and is carried out in application to the PCB design employed in an advanced accelerated test setup (test vehicle). This setup is aimed at the assessment of the performance, in accelerated test conditions on the board level, of packaging materials (and, first of all, BGA solder joint interconnections) subjected to dynamic (drop or shock) loading. It is anticipated that heavy masses could be mounted on the PCB to accelerate its dynamic response to an impact load. These masses are expected to be small in size, so that while changing the total mass of the board and generating significant inertia forces, they do not affect the board's flexural rigidity or its stiffness with respect to the in-plane loading. The PCB's contour is considered non-deformable, which is indeed the case in many practical situations. This circumstance, if the drop height and/or the induced inertia forces are significant, leads to elevated in-plane ('membrane') stresses in the PCB and, as a result of that, to the nonlinear response of the board to the impact load: the relationship between the magnitude of the load (determined by the initial impact velocity) and the induced PCB deflections becomes geometrically nonlinear, with a rigid cubic characteristic of the restoring force. The carried out numerical example, although reflects the characteristics of the PCB and loading conditions in an actual experimental setup, is merely an illustration of the general concept and is intended to demonstrate the abilities of the suggested method. Predictions based on this method agree well with the finite element

  19. On-capillary sample cleanup method for the electrophoretic determination of carbohydrates in juice samples.

    Science.gov (United States)

    Morales-Cid, Gabriel; Simonet, Bartolomé M; Cárdenas, Soledad; Valcárcel, Miguel

    2007-05-01

    On many occasions, sample treatment is a critical step in electrophoretic analysis. As an alternative to batch procedures, in this work, a new strategy is presented with a view to develop an on-capillary sample cleanup method. This strategy is based on the partial filling of the capillary with carboxylated single-walled carbon nanotube (c-SWNT). The nanoparticles retain interferences from the matrix allowing the determination and quantification of carbohydrates (viz glucose, maltose and fructose). The precision of the method for the analysis of real samples ranged from 5.3 to 6.4%. The proposed method was compared with a method based on a batch filtration of the juice sample through diatomaceous earth and further electrophoretic determination. This method was also validated in this work. The RSD for this other method ranged from 5.1 to 6%. The results obtained by both methods were statistically comparable demonstrating the accuracy of the proposed methods and their effectiveness. Electrophoretic separation of carbohydrates was achieved using 200 mM borate solution as a buffer at pH 9.5 and applying 15 kV. During separation, the capillary temperature was kept constant at 40 degrees C. For the on-capillary cleanup method, a solution containing 50 mg/L of c-SWNTs prepared in 300 mM borate solution at pH 9.5 was introduced for 60 s into the capillary just before sample introduction. For the electrophoretic analysis of samples cleaned in batch with diatomaceous earth, it is also recommended to introduce into the capillary, just before the sample, a 300 mM borate solution as it enhances the sensitivity and electrophoretic resolution.

  20. The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code

    Energy Technology Data Exchange (ETDEWEB)

    Kirtman, Bernard [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Springborg, Michael [Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken (Germany); Rérat, Michel [Equipe de Chimie Physique, IPREM UMR5254, Université de Pau et des Pays de l' Adour, 64000 Pau (France); Ferrero, Mauro; Lacivita, Valentina; Dovesi, Roberto [Departimeno di Chimica, IFM, Università di Torino and NIS - Nanostructure Interfaces and Surfaces - Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Orlando, Roberto [Departimento di Scienze e Tecnologie Avanzati, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria (Italy)

    2015-01-22

    An implementation of the vector potential approach (VPA) for treating the response of infinite periodic systems to static and dynamic electric fields has been initiated within the CRYSTAL code. The VPA method is based on the solution of a time-dependent Hartree-Fock or Kohn-Sham equation for the crystal orbitals wherein the usual scalar potential, that describes interaction with the field, is replaced by the vector potential. This equation may be solved either by perturbation theory or by finite field methods. With some modification all the computational procedures of molecular ab initio quantum chemistry can be adapted for periodic systems. Accessible properties include the linear and nonlinear responses of both the nuclei and the electrons. The programming of static field pure electronic (hyper)polarizabilities has been successfully tested. Dynamic electronic (hyper)polarizabilities, as well as infrared and Raman intensities, are in progress while the addition of finite fields for calculation of vibrational (hyper)polarizabilities, through nuclear relaxation procedures, will begin shortly.

  1. Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study

    International Nuclear Information System (INIS)

    Tang, Collin H H; Savkin, Andrey V; Chan, Gregory S H; Middleton, Paul M; Bishop, Sarah; Lovell, Nigel H

    2010-01-01

    Sepsis has been defined as the systemic response to infection in critically ill patients, with severe sepsis and septic shock representing increasingly severe stages of the same disease. Based on the non-invasive cardiovascular spectrum analysis, this paper presents a pilot study on the potential use of the nonlinear support vector machine (SVM) in the classification of the sepsis continuum into severe sepsis and systemic inflammatory response syndrome (SIRS) groups. 28 consecutive eligible patients attending the emergency department with presumptive diagnoses of sepsis syndrome have participated in this study. Through principal component analysis (PCA), the first three principal components were used to construct the SVM feature space. The SVM classifier with a fourth-order polynomial kernel was found to have a better overall performance compared with the other SVM classifiers, showing the following classification results: sensitivity = 94.44%, specificity = 62.50%, positive predictive value = 85.00%, negative predictive value = 83.33% and accuracy = 84.62%. Our classification results suggested that the combinatory use of cardiovascular spectrum analysis and the proposed SVM classification of autonomic neural activity is a potentially useful clinical tool to classify the sepsis continuum into two distinct pathological groups of varying sepsis severity

  2. The time-walk of analog constant fraction discriminators using very fast scintillator detectors with linear and non-linear energy response

    Energy Technology Data Exchange (ETDEWEB)

    Regis, J.-M., E-mail: regis@ikp.uni-koeln.de [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Rudigier, M.; Jolie, J.; Blazhev, A.; Fransen, C.; Pascovici, G.; Warr, N. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2012-08-21

    The electronic {gamma}-{gamma} fast timing technique allows for direct nuclear lifetime determination down to the few picoseconds region by measuring the time difference between two coincident {gamma}-ray transitions. Using high resolution ultra-fast LaBr{sub 3}(Ce) scintillator detectors in combination with the recently developed mirror symmetric centroid difference method, nuclear lifetimes are measured with a time resolving power of around 5 ps. The essence of the method is to calibrate the energy dependent position (centroid) of the prompt response function of the setup which is obtained for simultaneously occurring events. This time-walk of the prompt response function induced by the analog constant fraction discriminator has been determined by systematic measurements using different photomultiplier tubes and timing adjustments of the constant fraction discriminator. We propose a universal calibration function which describes the time-walk or the combined {gamma}-{gamma} time-walk characteristics, respectively, for either a linear or a non-linear amplitude versus energy dependency of the scintillator detector output pulses.

  3. Nonlinear optics principles and applications

    CERN Document Server

    Rottwitt, Karsten

    2014-01-01

    IntroductionReview of linear opticsInduced polarizationHarmonic oscillator modelLocal field correctionsEstimated nonlinear responseSummaryTime-domain material responseThe polarization time-response functionThe Born-Oppenheimer approximationRaman scattering response function of silicaSummaryMaterial response in the frequency domain, susceptibility tensorsThe susceptibility tensorThe induced polarization in the frequency domainSum of monochromatic fieldsThe prefactor to the induced polarizationThird-order polarization in the Born-Oppenheimer approximation in the frequency domainKramers-Kronig relationsSummarySymmetries in nonlinear opticsSpatial symmetriesSecond-order materialsThird-order nonlinear materialsCyclic coordinate-systemContracted notation for second-order susceptibility tensorsSummaryThe nonlinear wave equationMono and quasi-monochromatic beamsPlane waves - the transverse problemWaveguidesVectorial approachNonlinear birefringenceSummarySecond-order nonlinear effectsGeneral theoryCoupled wave theoryP...

  4. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    Energy Technology Data Exchange (ETDEWEB)

    Shevtsov, Maxim A., E-mail: shevtsov-max@mail.ru [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); A.L. Polenov Russian Research Scientific Institute of Neurosurgery, Mayakovsky str. 12, St. Petersburg 191014 (Russian Federation); Nikolaev, Boris P. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Ryzhov, Vyacheslav A. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina 188300 (Russian Federation); Yakovleva, Ludmila Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Dobrodumov, Anatolii V. [Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), Bolshoi pr. 31, St. Petersburg 199004 (Russian Federation); Marchenko, Yaroslav Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Margulis, Boris A. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); Pitkin, Emil [The Wharton School, University of Pennsylvania, 3730 Walnut St., Philadelphia, PA 19104 (United States); Guzhova, Irina V. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation)

    2015-08-15

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M{sub 2}). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T{sub 2}-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M{sub 2} measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M{sub 2} ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates

  5. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...

  6. Nonlinear response of hail precipitation rate to environmental moisture content: A real case modeling study of an episodic midlatitude severe convective event

    Science.gov (United States)

    Li, Mingxin; Zhang, Fuqing; Zhang, Qinghong; Harrington, Jerry Y.; Kumjian, Matthew R.

    2017-07-01

    The dependence of hail production on initial moisture content in a simulated midlatitude episodic convective event occurred in northeast China on 10-11 June 2005 was investigated using the Weather Research and Forecasting (WRF) model with a double-moment microphysics scheme where both graupel and hail are considered. Three sensitivity experiments were performed by modifying the initial water vapor mixing ratio profile to 90% ("Q-10%"), 105% ("Q+5%"), and 110% ("Q+10%") of the initial conditions used for the control simulation. It was found that increasing the initial water vapor content caused the hail and total precipitation rates to increase during the first 5 h. The precipitation response to increasing water vapor content was monotonic for this first episode; however, for the event's second episode, the hail precipitation rate responds to the initial water vapor profile nonlinearly, while the total precipitation rate responds mostly monotonically. In particular, simulation Q+5% achieves the largest hail production rate while simulation Q+10% has the largest total precipitation rate. In contrast, during the second episode simulation Q-10% has the strongest vertical motion, produces the most cloud ice and snow, but has the lowest hail production. Analysis shows that increasing the initial moisture content directly increases the precipitation during the first episode, which subsequently induces a stronger, longer-lasting cold pool that limits the development of deep convection during the second episode.

  7. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network.

    Science.gov (United States)

    Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O

    2015-05-01

    Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.

  8. Non-linear least squares curve fitting of a simple theoretical model to radioimmunoassay dose-response data using a mini-computer

    International Nuclear Information System (INIS)

    Wilkins, T.A.; Chadney, D.C.; Bryant, J.; Palmstroem, S.H.; Winder, R.L.

    1977-01-01

    Using the simple univalent antigen univalent-antibody equilibrium model the dose-response curve of a radioimmunoassay (RIA) may be expressed as a function of Y, X and the four physical parameters of the idealised system. A compact but powerful mini-computer program has been written in BASIC for rapid iterative non-linear least squares curve fitting and dose interpolation with this function. In its simplest form the program can be operated in an 8K byte mini-computer. The program has been extensively tested with data from 10 different assay systems (RIA and CPBA) for measurement of drugs and hormones ranging in molecular size from thyroxine to insulin. For each assay system the results have been analysed in terms of (a) curve fitting biases and (b) direct comparison with manual fitting. In all cases the quality of fitting was remarkably good in spite of the fact that the chemistry of each system departed significantly from one or more of the assumptions implicit in the model used. A mathematical analysis of departures from the model's principal assumption has provided an explanation for this somewhat unexpected observation. The essential features of this analysis are presented in this paper together with the statistical analyses of the performance of the program. From these and the results obtained to date in the routine quality control of these 10 assays, it is concluded that the method of curve fitting and dose interpolation presented in this paper is likely to be of general applicability. (orig.) [de

  9. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  10. Nonlinear Optics: Principles and Applications

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Tidemand-Lichtenberg, Peter

    of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....

  11. Nonlinear plasma waves excited near resonance

    International Nuclear Information System (INIS)

    Cohen, B.I.; Kaufman, A.N.

    1977-01-01

    The nonlinear resonant response of a uniform plasma to an external plane-wave field is formulated in terms of the mismatch Δ/sub n l/ between the driving frequency and the time-dependent, complex, nonlinear normal mode frequency at the driving wavenumber. This formalism is applied to computer simulations of this process, yielding a deduced nonlinear frequency shift. The time dependence of the nonlinear phenomena, at frequency Δ/sub n l/ and at the bounce frequency of the resonant particles, is analyzed. The interdependence of the nonlinear features is described by means of energy and momentum relations

  12. Electrophoretic deposits of boron on duralumin plates used for measuring neutron flux

    International Nuclear Information System (INIS)

    Lang, F.M.; Magnier, P.; Finck, C.

    1956-01-01

    Preparation of boron thin film deposits of around 1 mg per cm 2 on duralumin plates with a diameter of 8 cm. The boron coated plates for ionization chambers were originally prepared at the CEA by pulverization of boron carbides on sodium silicates. This method is not controlling precisely enough the quantity of boron deposit. Thus, an electrophoretic method is considered for a better control of the quantity of boron deposit in the scope of using in the future boron 10 which is costly and rare. The method described by O. Flint is not satisfying enough and a similar electrophoretic process has been developed. Full description of the method is given as well as explanation of the use of dried methanol as solvent, tannin as electrolyte and magnesium chloride to avoid alumina formation. (M.P.)

  13. Stabilization of green bodies via sacrificial gelling agent during electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kuntz, Joshua D.; Rose, Klint A.

    2016-03-22

    In one embodiment, a method for electrophoretic deposition of a three-dimensionally patterned green body includes suspending a first material in a gelling agent above a patterned electrode of an electrophoretic deposition (EPD) chamber, and gelling the suspension while applying a first electric field to the suspension to cause desired patterning of the first material in a resulting gelation. In another embodiment, a ceramic, metal, or cermet includes a plurality of layers, wherein each layer includes a gradient in composition, microstructure, and/or density in an x-y plane oriented parallel to a plane of deposition of the plurality of layers along a predetermined distance in a z-direction perpendicular to the plane of deposition.

  14. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    International Nuclear Information System (INIS)

    Munjal, Sandeep; Khare, Neeraj

    2016-01-01

    We have synthesized CoFe 2 O 4 (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible in water and form a stable aqueous solution with high electrophoretic mobility.

  15. Electrophoretic deposition of carbon nanotubes on a carbon fiber surface with different index graphitization

    International Nuclear Information System (INIS)

    Almeida, E.C.; Baldan, M.R.; Ferreira, N.G.; Edwards, E.R.

    2009-01-01

    Full text: The purpose of this work is to examine the electrophoretic deposition of carbon nanotubes powder on carbon fibers, produced at different heat treatments temperatures. Besides, a systematic study of the effects of graphitization index from substrate on the structure and morphology of CNTs has been available. Carbon fibers were produced from polyacrylonitrile at three different heat treatments temperatures, 1000, 1500 and 2000 deg C. The carbon fibers microstructure or its graphitization index may be controlled by the heat treatments temperatures. The electrophoretic deposition of carbon nanotubes was obtained with the powder of carbon nanotubes dispersed in water by ultrasonication to obtain dispersions of 0.05 mg/mL. The carbon fibers were immersed in the nanotube dispersion, and a positive potential of 10 V/cm was applied. Morphology and microstructure of carbon nanotubes on carbon fibers were obtained by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. (author)

  16. Preparation and surface encapsulation of hollow TiO nanoparticles for electrophoretic displays

    International Nuclear Information System (INIS)

    Zhao Qian; Tan Tingfeng; Qi Peng; Wang Shirong; Bian Shuguang; Li Xianggao; An Yong; Liu Zhaojun

    2011-01-01

    Hollow black TiO nanosparticles were obtained via deposition of inorganic coating on the surface of hollow core-shell polymer latex with Ti(OBu) 4 as precursor and subsequent calcination in ammonia gas. Hollow TiO particles were characterized by scanning electron microscope, transmission electronic microscopy, X-ray diffraction, and thermogravimetric analysis. Encapsulation of TiO via dispersion polymerization was promoved by pretreating the pigments with 3-(trimethoxysilyl) propyl methacrylate, making it possible to prepare hollow TiO-polymer particles. When St and DVB were used as polymerization monomer, hollow TiO-polymer core-shell particles came into being via dispersion polymerization, and the lipophilic degree is 28.57%. Glutin-arabic gum microcapsules containing TiO-polymer particles electrophoretic liquid were prepared using via complex coacervation. It was founded that hollow TiO-polymer particles had enough electrophoretic mobility after coating with polymer.

  17. Strategies for the capillary electrophoretic separation of indole alkaloids in Psilocybe semilanceata.

    Science.gov (United States)

    Pedersen-Bjergaard, S; Rasmussen, K E; Sannes, E

    1998-01-01

    While the hallucinogenic mushrooms Psilocybe semilanceata have previously been analyzed for the indole alkaloids psilocybin and baeocystin by capillary zone electrophoresis (CZE) at pH 11.5, the present work focused on the development of an alternative and complementary capillary electrophoretic method for their identification. Owing to their structural similarity and zwitterionic nature, the compounds were difficult to resolve based on different interactions with cationic or anionic micelles. However, while the attempts with micellar electrokinetic chromatography (MEKC) were unsuccessful, rapid derivatization with propyl chloroformate and reanalysis by CZE at pH 11.5 was effective to support identification of the two indole alkaloids. Psilocin was difficult to analyze by CZE at pH 11.5 owing to comigration with the electroosmotic flow. For this compound, the pH of the running buffer was reduced to 7.2 to effectively enhance the electrophoretic mobility.

  18. Frequency of electrophoretic changes consistent with feline infectious peritonitis in two different time periods (2004-2009 vs 2013-2014).

    Science.gov (United States)

    Stranieri, Angelica; Giordano, Alessia; Bo, Stefano; Braghiroli, Chiara; Paltrinieri, Saverio

    2017-08-01

    Objectives The aim of this study was to evaluate whether the frequency of electrophoretic changes in serum of cats with feline infectious peritonitis (FIP) changed in recent years vs past years. Methods Agarose gel electrophoresis (AGE) and capillary zone electrophoresis (CZE) from cats with FIP and healthy cats recorded in the periods 2004-2009 and 2013-2014 were retrospectively analysed. Relative and absolute values of each electrophoretic fraction were recorded and the number of cats showing single or combined electrophoretic changes consistent with FIP (hypoalbuminaemia, inverted albumin to globulin [A:G] ratio, increased total protein, total globulin, alpha [α] 2 -globulin and gamma [γ]-globulin concentration) were counted. Additionally, a visual analysis of electrophoretograms was also performed. Results for the two time periods were statistically compared. Results The details of 91 AGE procedures (41 from cats with FIP and 50 from healthy cats) and 45 CZE procedures (26 from cats with FIP and 19 from healthy cats) were obtained from the database. No significant differences between the two time periods were found both in FIP and in healthy cats analysed with CZE and in healthy cats analysed with AGE. Compared with 2004-2009, cats with FIP sampled in 2013-2014 with AGE showed a significantly lower concentration of total protein, γ-globulins and total globulins, and a significantly higher A:G ratio and percentage of albumin and α 2 -globulins. Using both AGE and CZE, in recent years the proportion of cats with high α2-globulins without gammopathy and the proportion of cats with gammopathy alone decreased. With a visual approach, the number of patterns considered as dubious increased in the second period with AGE (non-statistically significant). Conclusions and relevance The frequency of electrophoretic abnormalities in cats with FIP decreased in recent years, independently of the technique employed. Although the mechanism responsible for this change was

  19. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  20. Hydroxyapatite/zirconia-microfibre composites with controlled microporosity and fracture properties prepared by electrophoretic deposition

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Sláma, M.; Hadraba, Hynek; Cihlář, J.

    2015-01-01

    Roč. 41, č. 9 (2015), s. 11202-11212 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GAP108/11/1644; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : hydroxyapatite * zirconia * composite * electrophoretic deposition * porosity Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.758, year: 2015

  1. Association of electrophoretic karyotype of Candida stellatoidea with virulence for mice

    International Nuclear Information System (INIS)

    Kwon-Chung, K.J.; Wickes, B.L.; Merz, W.G.

    1988-01-01

    Seven isolates of Candida stellatoidea were studied for their electrophoretic karyotype, virulence for mice, sensitivity to UV radiation, growth rate in vitro, reaction on cycloheximide-indicator medium, and proteinase activity. The isolates exhibited one of two distinct electrophoretic karyotypes as determined by orthogonal field alternating gel electrophoresis (OFAGE). Four isolates, including the type culture of C. stellatoidea, belonged to electrophoretic karyotype type I by OFAGE, showing eight to nine bands of which at least two bands were less than 1,000 kilobases in size as estimated by comparison with the DNA bands of Saccharomyces cerevisiae. These isolates failed to produce fatal infection in mice within 20 days when 5 X 10(5) cells were injected intravenously. The yeasts were cleared from the kidneys of two of three mice tested by day 30. Type I showed proteinase activity on bovine serum albumin agar at pH 3.8 and produced a negative reaction on cycloheximide-bromcresol green medium within 48 h. The three grouped in type II by OFAGE showed banding patterns similar to those of a well-characterized isolate of Candida albicans. The isolates of type II had an electrophoretic karyotype of six to seven bands approximately 1,200 kilobases or greater in size. All three type II isolates were highly virulent for mice, producing fatality curves similar to those of a previously studied C. albicans isolate. From 80 to 90% of the mice injected with 5 X 10(5) cells intravenously died within 20 days. The type II isolates produced a positive reaction on cycloheximide-bromcresol green agar and showed no proteinase activity on bovine serum albumin agar at the low pH. In addition, the type II isolates grew faster and were significantly more resistant to UV irradiation than the type I isolates

  2. Sol-gel synthesis of 45S5 bioglass – Prosthetic coating by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Faure Joel

    2013-11-01

    Full Text Available In this work, the 45S5 bioactive glass has been prepared by the sol-gel process using an organic acid catalyst instead of nitric acid usually used. The physico-chemical and structural characterizations confirmed and validated the elemental composition of the resulting glass. In addition, the 45S5 bioactive glass powder thus obtained was successfully used to elaborate by electrophoretic deposition a prosthetic coating on titanium alloy Ti6Al4V.

  3. Synthesis and Application of Carbon–Iron Oxide Microspheres’ Black Pigments in Electrophoretic Displays

    Directory of Open Access Journals (Sweden)

    Meng Xianwei

    2010-01-01

    Full Text Available Abstract Carbon–iron oxide microspheres’ black pigments (CIOMBs had been prepared via ultrasonic spray pyrolysis of aqueous solutions containing ferrous chloride and glucose. Due to the presence of carbon, CIOMBs not only exhibited remarkably acid resistance, but also could be well dispersed in both polar solvents and nonpolar solvent. Finally, dispersions of hollow CIOMBs in tetrachloroethylene had successfully been applied in electrophoretic displays.

  4. Demonstrating Interactions of Transcription Factors with DNA by Electrophoretic Mobility Shift Assay.

    Science.gov (United States)

    Yousaf, Nasim; Gould, David

    2017-01-01

    Confirming the binding of a transcription factor with a particular DNA sequence may be important in characterizing interactions with a synthetic promoter. Electrophoretic mobility shift assay is a powerful approach to demonstrate the specific DNA sequence that is bound by a transcription factor and also to confirm the specific transcription factor involved in the interaction. In this chapter we describe a method we have successfully used to demonstrate interactions of endogenous transcription factors with sequences derived from endogenous and synthetic promoters.

  5. Electrophoretic Deposition as a New Bioactive Glass Coating Process for Orthodontic Stainless Steel

    OpenAIRE

    Kyotaro Kawaguchi; Masahiro Iijima; Kazuhiko Endo; Itaru Mizoguchi

    2017-01-01

    This study investigated the surface modification of orthodontic stainless steel using electrophoretic deposition (EPD) of bioactive glass (BG). The BG coatings were characterized by spectrophotometry, scanning electron microscopy with energy dispersive X-ray spectrometry, and X-ray diffraction. The frictional properties were investigated using a progressive load scratch test. The remineralization ability of the etched dental enamel was studied according to the time-dependent mechanical proper...

  6. Protonation of the polyethyleneimine and titanium particles and their effect on the electrophoretic mobility and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Kok-Tee, E-mail: ktlau@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia); Anand, T. Joseph Sahaya [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka (Malaysia); Sorrell, Charles C. [School of Materials Science and Engineering, UNSW Australia, Sydney, NSW 2052 (Australia)

    2016-10-01

    Proton activities of suspensions of Ti particles with added cationic polyelectrolyte as a function of acid additions have been investigated and compared in terms of the electrophoretic mobility and deposition yield. The proton activity in ethanol medium decreased with the addition of PEI polyelectrolyte and reduced further in the presence of Ti particles. The decrease in proton activity in the suspension indicates that protonation occurred on both the PEI molecules and Ti particles. It is proposed that the protonation of the amine groups of PEI and hydroxyl sites of Ti particle led to the formation of hydrogen bonding between the Ti particle and PEI molecules. Increase in the PEI and Ti with increasing acid addition translated to higher electrophoretic mobilities and deposition yield at low ranges of acetic acid addition (<0.75 vol%). - Highlights: • Protonation characteristics of polyelectrolytes and suspension particles are reported. • The protonation characteristics explained the electrophoretic mobility and yield results. • Adsorption mechanisms of protonated polyelectrolytes on the titanium particle is proposed. • Hydroxyl sites on the particles link the oxide particle and the polyelectrolyte molecules.

  7. Protonation of the polyethyleneimine and titanium particles and their effect on the electrophoretic mobility and deposition

    International Nuclear Information System (INIS)

    Lau, Kok-Tee; Anand, T. Joseph Sahaya; Sorrell, Charles C.

    2016-01-01

    Proton activities of suspensions of Ti particles with added cationic polyelectrolyte as a function of acid additions have been investigated and compared in terms of the electrophoretic mobility and deposition yield. The proton activity in ethanol medium decreased with the addition of PEI polyelectrolyte and reduced further in the presence of Ti particles. The decrease in proton activity in the suspension indicates that protonation occurred on both the PEI molecules and Ti particles. It is proposed that the protonation of the amine groups of PEI and hydroxyl sites of Ti particle led to the formation of hydrogen bonding between the Ti particle and PEI molecules. Increase in the PEI and Ti with increasing acid addition translated to higher electrophoretic mobilities and deposition yield at low ranges of acetic acid addition (<0.75 vol%). - Highlights: • Protonation characteristics of polyelectrolytes and suspension particles are reported. • The protonation characteristics explained the electrophoretic mobility and yield results. • Adsorption mechanisms of protonated polyelectrolytes on the titanium particle is proposed. • Hydroxyl sites on the particles link the oxide particle and the polyelectrolyte molecules.

  8. Determination of the Median Lethal Dose and Electrophoretic Pattern of Hottentotta saulcyi (Scorpiones, Buthidae Scorpion Venom

    Directory of Open Access Journals (Sweden)

    ErsenAydın Yağmur

    2015-10-01

    Full Text Available Background: In this study, we investigated the lethal potency, electrophoretic protein pattern and in vivo effects of Hottentotta saulcyi scorpion venom in mice.Methods: Scorpions were collected at night, by using a UV lamp from Mardin Province, Turkey. Venom was obtained from mature H. saulcyi scorpions by electrical stimulation of the telson. The lethality of the venom was determined by i.v. injections using Swiss mice. In vivo effects of the venom were assessed by using the intraperitoneal route (ip injections into mice (20±1g and monitored for 24 h. The protein profiles of the scorpion venom were analyzed by NuPAGE® Novex® 4–12 % gradient Bis-Tris gel followed by Coomassie blue staining.Results: The lethal assay of the venom was 0.73 mg/kg in mice. We determined the electrophoretic protein pattern of this scorpion venom to be 4, 6, 9, 31, 35, 40, 46 and 69 kDa by SDS-PAGE. Analysis of electrophoresis indicated that H. saulcyi scorpion intoxicated mice exhibited autonomic nervous system symptoms (tachypnea, restlessness, hyperexcitability, convulsions, salivation, lacrimation, weakness.Conclusions: Hottentotta saulcyi scorpion venom includes short-chain neurotoxins and long-chain neurotoxins according to the electrophoretic protein patterns. The stings of H. saulcyi scorpion must be considered of risk for humans in the southeastern region, Turkey.

  9. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry.

    Science.gov (United States)

    Holtkamp, Hannah; Grabmann, Gerlinde; Hartinger, Christian G

    2016-04-01

    Electrophoretic methods have been widely applied in research on the roles of metal complexes in biological systems. In particular, CE, often hyphenated to a sensitive MS detector, has provided valuable information on the modes of action of metal-based pharmaceuticals, and more recently new methods have been added to the electrophoretic toolbox. The range of applications continues to expand as a result of enhanced CE-to-MS interfacing, with sensitivity often at picomolar level, and evolved separation modes allowing for innovative sample analysis. This article is a followup to previous reviews about CE methods in metallodrug research (Electrophoresis, 2003, 24, 2023-2037; Electrophoresis, 2007, 28, 3436-3446; Electrophoresis, 2012, 33, 622-634), also providing a comprehensive overview of metal species studied by electrophoretic methods hyphenated to MS. It highlights the latest CE developments, takes a sneak peek into gel electrophoresis, traces biomolecule labeling, and focuses on the importance of early-stage drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nonlinear Elasticity

    Science.gov (United States)

    Fu, Y. B.; Ogden, R. W.

    2001-05-01

    This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.

  11. A non-linear and stochastic response surface method for Bayesian estimation of uncertainty in soil moisture simulation from a land surface model

    Directory of Open Access Journals (Sweden)

    F. Hossain

    2004-01-01

    Full Text Available This study presents a simple and efficient scheme for Bayesian estimation of uncertainty in soil moisture simulation by a Land Surface Model (LSM. The scheme is assessed within a Monte Carlo (MC simulation framework based on the Generalized Likelihood Uncertainty Estimation (GLUE methodology. A primary limitation of using the GLUE method is the prohibitive computational burden imposed by uniform random sampling of the model's parameter distributions. Sampling is improved in the proposed scheme by stochastic modeling of the parameters' response surface that recognizes the non-linear deterministic behavior between soil moisture and land surface parameters. Uncertainty in soil moisture simulation (model output is approximated through a Hermite polynomial chaos expansion of normal random variables that represent the model's parameter (model input uncertainty. The unknown coefficients of the polynomial are calculated using limited number of model simulation runs. The calibrated polynomial is then used as a fast-running proxy to the slower-running LSM to predict the degree of representativeness of a randomly sampled model parameter set. An evaluation of the scheme's efficiency in sampling is made through comparison with the fully random MC sampling (the norm for GLUE and the nearest-neighborhood sampling technique. The scheme was able to reduce computational burden of random MC sampling for GLUE in the ranges of 10%-70%. The scheme was also found to be about 10% more efficient than the nearest-neighborhood sampling method in predicting a sampled parameter set's degree of representativeness. The GLUE based on the proposed sampling scheme did not alter the essential features of the uncertainty structure in soil moisture simulation. The scheme can potentially make GLUE uncertainty estimation for any LSM more efficient as it does not impose any additional structural or distributional assumptions.

  12. Finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    Nuclear material shipping containers have shells of revolution as basic structural components. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Existing models are limited to large displacements, small rotations, and nonlinear materials. The paper presents a finite element model for a nonlinear shell of revolution that will account for large displacements, large strains, large rotations, and nonlinear materials

  13. Classification of Spanish white wines using their electrophoretic profiles obtained by capillary zone electrophoresis with amperometric detection.

    Science.gov (United States)

    Arribas, Alberto Sánchez; Martínez-Fernández, Marta; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2014-06-01

    A method was developed for the simultaneous detection of eight polyphenols (t-resveratrol, (+)-catechin, quercetin and p-coumaric, caffeic, sinapic, ferulic, and gallic acids) by CZE with electrochemical detection. Separation of these polyphenols was achieved within 25 min using a 200 mM borate buffer (pH 9.4) containing 10% methanol as separation electrolyte. Amperometric detection of polyphenols was carried out with a glassy carbon electrode (GCE) modified with a multiwalled carbon nanotubes (CNT) layer obtained from a dispersion of CNT in polyethylenimine. The excellent electrochemical properties of this modified electrode allowed the detection and quantification of the selected polyphenols in white wines without any pretreatment step, showing remarkable signal stability despite the presence of potential fouling substances in wine. The electrophoretic profiles of white wines, obtained using this methodology, have proven to be useful for the classification of these wines by means of chemometric multivariate techniques. Principal component analysis and discriminant analysis allowed accurate classification of wine samples on the basis of their grape varietal (verdejo and airén) using the information contained in selected zones of the electropherogram. The utility of the proposed CZE methodology based on the electrochemical response of CNT-modified electrodes appears to be promising in the field of wine industry and it is expected to be successfully extended to classification of a wider range of wines made of other grape varietals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In Situ Synthesis and Electrophoretic Deposition of NiO/Ni Core-Shell Nanoparticles and Its Application as Pseudocapacitor

    Directory of Open Access Journals (Sweden)

    Joaquin Yus

    2017-11-01

    Full Text Available A simple, low cost and transferable colloidal processing method and the subsequent heat treatment has been optimized to prepare binder-free electrodes for their application in supercapacitors. NiO/Ni core–shell hybrid nanostructures have been synthetized by heterogeneous precipitation of metallic Ni nanospheres onto NiO nanoplatelets as seed surfaces. The electrophoretic deposition (EPD has been used to shape the electroactive material onto 3D substrates such as Ni foams. The method has allowed us to control the growth and the homogeneity of the NiO/Ni coatings. The presence of metallic Nickel in the microstructure and the optimization of the thermal treatment have brought several improvements in the electrochemical response due to the connectivity of the final microstructure. The highest specific capacitance value has been obtained using a thermal treatment of 325 °C during 1 h in Argon. At this temperature, necks formed among ceramic-metallic nanoparticles preserve the structural integrity of the microstructure avoiding the employment of binders to enhance their connectivity. Thus, a compromise between porosity and connectivity should be established to improve electrochemical performance.

  15. [Nonlinear magnetohydrodynamics

    International Nuclear Information System (INIS)

    1994-01-01

    Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile

  16. Nonlinear optical interactions in silicon waveguides

    Directory of Open Access Journals (Sweden)

    Kuyken B.

    2017-03-01

    Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  17. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method

    International Nuclear Information System (INIS)

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere

  18. JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method

    International Nuclear Information System (INIS)

    Biffle, J.H.

    1993-02-01

    JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere

  19. Analysis of nonlinear systems using ARMA [autoregressive moving average] models

    International Nuclear Information System (INIS)

    Hunter, N.F. Jr.

    1990-01-01

    While many vibration systems exhibit primarily linear behavior, a significant percentage of the systems encountered in vibration and model testing are mildly to severely nonlinear. Analysis methods for such nonlinear systems are not yet well developed and the response of such systems is not accurately predicted by linear models. Nonlinear ARMA (autoregressive moving average) models are one method for the analysis and response prediction of nonlinear vibratory systems. In this paper we review the background of linear and nonlinear ARMA models, and illustrate the application of these models to nonlinear vibration systems. We conclude by summarizing the advantages and disadvantages of ARMA models and emphasizing prospects for future development. 14 refs., 11 figs

  20. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.