Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya; Sumpter, Bobby G
2016-09-13
The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; Nat. Commun. 2014, 5, 3180) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. The protonic and deuteronic wave functions for the H/D isotopologues of the hexyl side chains are described within a quantum trajectory/electronic structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wave functions; the classical forces are generated with a density functional tight binding method. The resulting protonic and deuteronic time-dependent wave functions are used to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. While the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wave functions may account for experimental trends by promoting charge transfer in P3HT:PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT:PCBM.
Towards managing nonlinear regional development trajectories
Hartman, Stefan; De Roo, Gert
2013-01-01
Regions can become 'locked' into a spatial-economic development trajectory, thereby losing their capacity to adapt to spatial dynamics. This is in contrast to those regions that seem to be able to reinvent themselves by adapting to processes that drive spatial change, deviating from past development
Nonlinear Optimal Trajectories Using Successive Linearization
1977-06-28
integral sign represents a penalty for the local vertical and passing through the vehicle deviations of the perturbed trajectory from the at time equals... integral sign represents the penalty for control variations about the nominal, and needs z s - sin y (14) to be weighted to ensure that the control does
Towards managing nonlinear regional development trajectories
Hartman, Stefan; De Roo, Gert
2013-01-01
Regions can become 'locked' into a spatial-economic development trajectory, thereby losing their capacity to adapt to spatial dynamics. This is in contrast to those regions that seem to be able to reinvent themselves by adapting to processes that drive spatial change, deviating from past development
Spectral lineshapes in nonlinear electronic spectroscopy.
Nenov, Artur; Giussani, Angelo; Fingerhut, Benjamin P; Rivalta, Ivan; Dumont, Elise; Mukamel, Shaul; Garavelli, Marco
2015-12-14
We outline a computational approach for nonlinear electronic spectra, which accounts for the electronic energy fluctuations due to nuclear degrees of freedom and explicitly incorporates the fluctuations of higher excited states, induced by the dynamics in the photoactive state(s). This approach is based on mixed quantum-classical dynamics simulations. Tedious averaging over multiple trajectories is avoided by employing the linearly displaced Brownian harmonic oscillator to model the correlation functions. The present strategy couples accurate computations of the high-lying excited state manifold with dynamics simulations. The application is made to the two-dimensional electronic spectra of pyrene, a polycyclic aromatic hydrocarbon characterized by an ultrafast (few tens of femtoseconds) decay from the bright S2 state to the dark S1 state. The spectra for waiting times t2 = 0 and t2 = 1 ps demonstrate the ability of this approach to model electronic state fluctuations and realistic lineshapes. Comparison with experimental spectra [Krebs et al., New Journal of Physics, 2013, 15, 085016] shows excellent agreement and allows us to unambiguously assign the excited state absorption features.
The Electron Trajectory in a Relativistic Femtosecond Laser Pulse
Institute of Scientific and Technical Information of China (English)
He Feng; Yu Wei; Lu Peixiang; Xu Han; Shen Baifei; Li Ruxin; Xu Zhizhan
2005-01-01
In this report, we start from Lagrange equation and analyze theoretically the electron dynamics in electromagnetic field. By solving the relativistic government equations of electron,the trajectories of an electron in plane laser pulse, focused laser pulse have been given for different initial conditions. The electron trajectory is determined by its initial momentum, the amplitude,spot size and polarization of the laser pulse. The optimum initial momentum of the electron for LSS (laser synchrotron source) is obtained. Linear polarized laser is more advantaged than circular polarized laser for generating harmonic radiation.
Electron trajectories in free electron laser with realizable helical wiggler and ion channel guiding
Directory of Open Access Journals (Sweden)
S. Ebrahimi
2004-12-01
Full Text Available A detailed analysis of electron trajectories in a realizable helical wiggler free electron laser with ion channel guiding using electron (single particle dynamics is presented. Conditions for stability of electron orbit have been investigated, calculations are made to illustrate. Conclusion shows that there are differences stable (unstable condition(s electron trajectories between ideal helical wiggler(2D and realizable helical wiggler (3D.
Hi-G electronic gated camera for precision trajectory analysis
Snyder, Donald R.; Payne, Scott; Keller, Ed; Longo, Salvatore; Caudle, Dennis E.; Walker, Dennis C.; Sartor, Mark A.; Keeler, Joe E.; Kerr, David A.; Fail, R. Wallace; Gannon, Jim; Carrol, Ernie; Jamison, Todd A.
1997-12-01
It is extremely difficult and expensive to determine the flight attitude and aimpoint of small maneuvering miniature air vehicles from ground based fixed or tracking photography. Telemetry alone cannot provide sufficient information bandwidth on 'what' the ground tracking is seeing and consequently 'why' it did or did not function properly. Additionally, it is anticipated that 'smart' and 'brilliant' guided vehicles now in development will require a high resolution imaging support system to determine which target and which part of a ground feature is being used for navigation or targeting. Other requirements include support of sub-component separation from developmental supersonic vehicles, where the clean separation from the container is not determinable from ground based film systems and film cameras do not survive vehicle breakup and impact. Hence, the requirement is to develop and demonstrate an imaging support system for development/testing that can provide the flight vehicle developer/analyst with imagery (combined with miniature telemetry sources) sufficient to recreate the trajectory, terminal navigation, and flight termination events. This project is a development and demonstration of a real-time, launch-rated, shuttered, electronic imager, transmitter, and analysis system. This effort demonstrated boresighted imagery from inside small flight vehicles for post flight analysis of trajectory, and capture of ground imagery during random triggered vehicle functions. The initial studies for this capability have been accomplished by the Experimental Dynamics Section of the Air Force Wright Laboratory, Armament Directorate, Eglin AFB, Florida, and the Telemetry Support Branch of the Army Material Research and Development Center at Picatinny Arsenal, New Jersey. It has been determined that at 1/10,000 of a second exposure time, new ultra-miniature CCD sensors have sufficient sensitivity to image key ground target features without blur, thereby providing data for
BITLLES: Electron Transport Simulation with Quantum Trajectories
Albareda, Guillermo; Benali, Abdelilah; Alarcón, Alfonso; Moises, Simeon; Oriols, Xavier
2016-01-01
After the seminal work of R. Landauer in 1957 relating the electrical resistance of a conductor to its scattering properties, much progress has been made in our ability to predict the performance of electron devices in the DC (stationary) regime. Computational tools to describe their dynamical behavior (including the AC, transient and noise performance), however, are far from being as trustworthy as would be desired by the electronic industry. While there is no fundamental limitation to correctly modeling the high-frequency quantum transport and its fluctuations, certainly more careful attention must be paid to delicate issues such as overall charge neutrality, total current conservation, or the back action of the measuring apparatus. In this review, we will show how the core ideas behind the Bohmian formulation of quantum mechanics can be exploited to design an efficient Monte Carlo algorithm that provides a quantitative description of electron transport in open quantum systems. By making the most of traject...
Nonlinear identification of power electronic systems
Chau, KT; Chan, CC
1995-01-01
This paper presents a new approach to modelling power electronic systems using nonlinear system identification. By employing the nonlinear autoregressive moving average with exogenous input (NARMAX) technique, the parametric model of power electronic systems can be derived from the time-domain data. This approach possesses some advantages over available circuit-oriented modelling approaches, such as no small-signal approximation, no circuit idealization and no detailed knowledge of system ope...
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.......Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...
Nonlinear electronic transport behavior in Indium Nitride
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, Cloves G., E-mail: cloves@pucgoias.edu.br [Departamento de Fisica, Pontificia Universidade Catolica de Goias, CP 86, 74605-010 Goiania, Goias (Brazil)
2012-11-15
A theoretical study on the nonlinear transport of electrons and of the nonequilibrium temperature in n-doped Indium Nitride under influence of moderate to high electric fields (in this nonlinear domain) is presented. It is based on a nonlinear quantum kinetic theory which provides a description of the dissipative phenomena developing in the system. The electric current and the mobility in the steady state are obtained, and their dependence on the electric field strength and on the concentration (that is, a mobility dependent nonlinearly on field and concentration) is obtained and analyzed. -- Highlights: Black-Right-Pointing-Pointer We have reported on the topic of nonlinear transport (electron mobility) in n-doped InN. Black-Right-Pointing-Pointer The results evidence the presence of two distinctive regimes. Black-Right-Pointing-Pointer The dependence of the mobility on the electric field is manifested through of the relaxation times.
Trajectory optimization for vehicles using control vector parameterization and nonlinear programming
Energy Technology Data Exchange (ETDEWEB)
Spangelo, I.
1994-12-31
This thesis contains a study of optimal trajectories for vehicles. Highly constrained nonlinear optimal control problems have been solved numerically using control vector parameterization and nonlinear programming. Control vector parameterization with shooting has been described in detail to provide the reader with the theoretical background for the methods which have been implemented, and which are not available in standard text books. Theoretical contributions on accuracy analysis and gradient computations have also been presented. Optimal trajectories have been computed for underwater vehicles controlled in all six degrees of freedom by DC-motor driven thrusters. A class of nonlinear optimal control problems including energy-minimization, possibly combined with time minimization and obstacle avoidance, has been developed. A program system has been specially designed and written in the C language to solve this class of optimal control problems. Control vector parameterization with single shooting was used. This special implementation has made it possible to perform a detailed analysis, and to investigate numerical details of this class of optimization methods which would have been difficult using a general purpose CVP program system. The results show that this method for solving general optimal control problems is well suited for use in guidance and control of marine vehicles. Results from rocket trajectory optimization has been studied in this work to bring knowledge from this area into the new area of trajectory optimization of marine vehicles. 116 refs., 24 figs., 23 tabs.
Layton, Kelvin J; Gallichan, Daniel; Testud, Frederik; Cocosco, Chris A; Welz, Anna M; Barmet, Christoph; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim
2013-09-01
It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments. Copyright © 2012 Wiley Periodicals, Inc.
TF/TA2 trajectory tracking using nonlinear predictive control approach
Institute of Scientific and Technical Information of China (English)
Tang Qiang; Zhang Xinguo; Liu Xicheng
2006-01-01
The use of a methodology of nonlinear continuous predictive control to design the guidance control law for the aircraft TF/TA2 trajectory tracking problem is emplojed. For the derivation of the predictive control law, by using Taylor series expansion, and based on optimizing a performance index which is a quadratic function of both the predictive value of the state variables and the control inputs, a state variable feedback controller for nonlinear systems is obtained, and it provides a tradeoff between satisfactory tracking performance and the control magnitude requirements. Numerical simulation results for a supersonic fighter aircraft model show the viability of this approach.
Electron Trajectory Reconstruction for Advanced Compton Imaging of Gamma Rays
Plimley, Brian Christopher
Gamma-ray imaging is useful for detecting, characterizing, and localizing sources in a variety of fields, including nuclear physics, security, nuclear accident response, nuclear medicine, and astronomy. Compton imaging in particular provides sensitivity to weak sources and good angular resolution in a large field of view. However, the photon origin in a single event sequence is normally only limited to the surface of a cone. If the initial direction of the Compton-scattered electron can be measured, the cone can be reduced to a cone segment with width depending on the uncertainty in the direction measurement, providing a corresponding increase in imaging sensitivity. Measurement of the electron's initial direction in an efficient detection material requires very fine position resolution due to the electron's short range and tortuous path. A thick (650 mum), fully-depleted charge-coupled device (CCD) developed for infrared astronomy has 10.5-mum position resolution in two dimensions, enabling the initial trajectory measurement of electrons of energy as low as 100 keV. This is the first time the initial trajectories of electrons of such low energies have been measured in a solid material. In this work, the CCD's efficacy as a gamma-ray detector is demonstrated experimentally, using a reconstruction algorithm to measure the initial electron direction from the CCD track image. In addition, models of fast electron interaction physics, charge transport and readout were used to generate modeled tracks with known initial direction. These modeled tracks allowed the development and refinement of the reconstruction algorithm. The angular sensitivity of the reconstruction algorithm is evaluated extensively with models for tracks below 480 keV, showing a FWHM as low as 20° in the pixel plane, and 30° RMS sensitivity to the magnitude of the out-of-plane angle. The measurement of the trajectories of electrons with energies as low as 100 keV have the potential to make electron
Dai, Juan; Gao, Ai; Xia, Yuanqing
2017-03-01
A robust entry guidance law based on terminal sliding mode and second-order differentiator is designed for trajectory tracking in this paper. The bank angle is regarded as the control variable. A novel nonlinear compound controller is designed to make the system with the trajectory-tracking error and its rate as states be input-to-state stable (ISS) with respect to uncertainties. The terminal sliding mode controller is designed to the problem of entry guidance by using the second-order differentiator to estimate the total disturbances. The proposed nonlinear compound control law by employing the second-order differentiator and the terminal sliding mode controller, provide robustness, higher control precision. Also, simulation results are presented to illustrate the effectiveness of the control strategy.
Smelyanskiy, V N; Millons, M
2006-01-01
The problem of determining dynamical models and trajectories that describe observed time-series data allowing for the understanding, prediction and possibly control of complex systems in nature is of a great interest in a wide variety of fields. Often, however, only part of the system's dynamical variables can be measured, the measurements are corrupted by noise and the dynamics is complicated by an interplay of nonlinearity and random perturbations. The problem of dynamical inference in these general settings is challenging researchers for decades. We solve this problem by applying a path-integral approach to fluctuational dynamics, and show that, given the measurements, the system trajectory can be obtained from the solution of the certain auxiliary Hamiltonian problem in which measured data act effectively as a control force driving the estimated trajectory toward the most probable one that provides a minimum to certain mechanical action. The dependance of the minimum action on the model parameters determi...
Photodissociation of CCH: Classical trajectory calculations involving seven electronic states
Apaydın, Gökşin; Fink, William H.; Jackson, William M.
2004-11-01
The photodissociation dynamics of ethynyl radical, C2H, involving seven electronic states is studied by classical trajectory calculations. Initial values of the trajectories are selected based on relative absorption intensities calculated by Mebel et al. The energies and the derivatives are interpolated by three-dimensional cubic spline interpolator using an extended data pool. Mean square errors and standard deviations in interpolation of energies for 450 data points are found to be in the range 3.1×10-6-1.4×10-5 and 1.7×10-3-3.8×10-3 hartrees, respectively. The photofragments of C2 and H are produced mainly in the X 1Σg+, a 3Πu, b 3Σg-, c 3Σu+, A 1Πu, B 1Δg electronic states of C2 as product. The avoided crossings do not appear to be in the main dissociation pathways. The internal distributions are in good accord with the experimental results where comparison is possible, suggesting that the fragmentation mechanism of C2H2 into C2 and H is a two step process involving C2H radical as an intermediate with a life time long enough to allow complete collection of the phase space in the experiments.
Electron impact double ionization of helium from classical trajectory calculations
Geyer, T
2004-01-01
With a recently proposed quasiclassical ansatz [Geyer and Rost, J. Phys. B 35 (2002) 1479] it is possible to perform classical trajectory ionization calculations on many electron targets. The autoionization of the target is prevented by a M\\o{}ller type backward--forward propagation scheme and allows to consider all interactions between all particles without additional stabilization. The application of the quasiclassical ansatz for helium targets is explained and total and partially differential cross sections for electron impact double ionization are calculated. In the high energy regime the classical description fails to describe the dominant TS1 process, which leads to big deviations, whereas for low energies the total cross section is reproduced well. Differential cross sections calculated at 250 eV await their experimental confirmation.
Characterizing Electron Trapping Nonlinearity in Langmuir Waves
Strozzi, D J; Rose, H A; Hinkel, D E; Langdon, A B; Banks, J W
2012-01-01
We assess when electron trapping nonlinearities are expected to be important in Langmuir waves. The basic criterion is that the effective lifetime, t_d, of resonant electrons in the trapping region of velocity space must exceed the period of trapped motion for deeply-trapped electrons, tau_B = (n_e/delta n)^{1/2} 2pi/omega_pe. A unitless figure of merit, the "bounce number" N_B = t_d/tau_B, encapsulates this condition and allows an effective threshold amplitude for which N_B=1 to be defined. The lifetime is found for convective loss (transverse and longitudinal) out of a spatially finite Langmuir wave. Simulations of driven waves with a finite transverse profile, using the 2D-2V Vlasov code Loki, show trapping nonlinearity increases continuously with N_B for side loss, and is significant for N_B ~ 1. The lifetime due to Coulomb collisions (both electron-electron and electron-ion) is also found, with pitch-angle scattering and parallel drag and diffusion treated in a unified way. A simple way to combine convec...
Electron dynamics with radiation and nonlinear wigglers
Energy Technology Data Exchange (ETDEWEB)
Jowett, J.M.
1986-06-01
The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches.
Nonlinear dynamic analysis and optimal trajectory planning of a high-speed macro-micro manipulator
Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Zhao, Xiao-wei
2017-09-01
This paper reports the nonlinear dynamic modeling and the optimal trajectory planning for a flexure-based macro-micro manipulator, which is dedicated to the large-scale and high-speed tasks. In particular, a macro- micro manipulator composed of a servo motor, a rigid arm and a compliant microgripper is focused. Moreover, both flexure hinges and flexible beams are considered. By combining the pseudorigid-body-model method, the assumed mode method and the Lagrange equation, the overall dynamic model is derived. Then, the rigid-flexible-coupling characteristics are analyzed by numerical simulations. After that, the microscopic scale vibration excited by the large-scale motion is reduced through the trajectory planning approach. Especially, a fitness function regards the comprehensive excitation torque of the compliant microgripper is proposed. The reference curve and the interpolation curve using the quintic polynomial trajectories are adopted. Afterwards, an improved genetic algorithm is used to identify the optimal trajectory by minimizing the fitness function. Finally, the numerical simulations and experiments validate the feasibility and the effectiveness of the established dynamic model and the trajectory planning approach. The amplitude of the residual vibration reduces approximately 54.9%, and the settling time decreases 57.1%. Therefore, the operation efficiency and manipulation stability are significantly improved.
Nonlinear dynamics of electron-positron clusters
Manfredi, Giovanni; Haas, Fernando; 10.1088/1367-2630/14/7/075012
2012-01-01
Electron-positron clusters are studied using a quantum hydrodynamic model that includes Coulomb and exchange interactions. A variational Lagrangian method is used to determine their stationary and dynamical properties. The cluster static features are validated against existing Hartree-Fock calculations. In the linear response regime, we investigate both dipole and monopole (breathing) modes. The dipole mode is reminiscent of the surface plasmon mode usually observed in metal clusters. The nonlinear regime is explored by means of numerical simulations. We show that, by exciting the cluster with a chirped laser pulse with slowly varying frequency (autoresonance), it is possible to efficiently separate the electron and positron populations on a timescale of a few tens of femtoseconds.
Quantum-trajectory Monte Carlo method for study of electron-crystal interaction in STEM.
Ruan, Z; Zeng, R G; Ming, Y; Zhang, M; Da, B; Mao, S F; Ding, Z J
2015-07-21
In this paper, a novel quantum-trajectory Monte Carlo simulation method is developed to study electron beam interaction with a crystalline solid for application to electron microscopy and spectroscopy. The method combines the Bohmian quantum trajectory method, which treats electron elastic scattering and diffraction in a crystal, with a Monte Carlo sampling of electron inelastic scattering events along quantum trajectory paths. We study in this work the electron scattering and secondary electron generation process in crystals for a focused incident electron beam, leading to understanding of the imaging mechanism behind the atomic resolution secondary electron image that has been recently achieved in experiment with a scanning transmission electron microscope. According to this method, the Bohmian quantum trajectories have been calculated at first through a wave function obtained via a numerical solution of the time-dependent Schrödinger equation with a multislice method. The impact parameter-dependent inner-shell excitation cross section then enables the Monte Carlo sampling of ionization events produced by incident electron trajectories travelling along atom columns for excitation of high energy knock-on secondary electrons. Following cascade production, transportation and emission processes of true secondary electrons of very low energies are traced by a conventional Monte Carlo simulation method to present image signals. Comparison of the simulated image for a Si(110) crystal with the experimental image indicates that the dominant mechanism of atomic resolution of secondary electron image is the inner-shell ionization events generated by a high-energy electron beam.
XXIII International Conference on Nonlinear Dynamics of Electronic Systems
Stoop, Ruedi; Stramaglia, Sebastiano
2017-01-01
This book collects contributions to the XXIII international conference “Nonlinear dynamics of electronic systems”. Topics range from non-linearity in electronic circuits to synchronisation effects in complex networks to biological systems, neural dynamics and the complex organisation of the brain. Resting on a solid mathematical basis, these investigations address highly interdisciplinary problems in physics, engineering, biology and biochemistry.
Nonlinear fiber optics formerly quantum electronics
Agrawal, Govind
1995-01-01
The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is
Nonlinear charge transport in bipolar semiconductors due to electron heating
Energy Technology Data Exchange (ETDEWEB)
Molina-Valdovinos, S., E-mail: sergiom@fisica.uaz.edu.mx [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, CP 98060, Zacatecas, Zac, México (Mexico); Gurevich, Yu.G. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, México D.F., CP 07360, México (Mexico)
2016-05-27
It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).
Quaternion-based nonlinear trajectory tracking control of a quadrotor unmanned aerial vehicle
Zha, Changliu; Ding, Xilun; Yu, Yushu; Wang, Xueqiang
2017-01-01
At present, most controllers of quadrotor unmanned aerial vehicles(UAVs) use Euler angles to express attitude. These controllers suffer a singularity problem when the pitch angle is near 90°C, which limits the maneuverability of the UAV. To overcome this problem, based on the quaternion attitude representation, a 6 degree of freedom(DOF) nonlinear controller of a quadrotor UAV is designed using the trajectory linearization control(TLC) method. The overall controller contains a position sub-controller and an attitude sub-controller. The two controllers regulate the translational and rotational motion of the UAV, respectively. The controller is improved by using the commanded value instead of the nominal value as the input of the inner control loop. The performance of controller is tested by simulation before and after the improvement, the results show that the improved controller is better. The proposed controller is also tested via numerical simulation and real flights and is compared with the traditional controller based on Euler angles. The test results confirm the feasibility and the robustness of the proposed nonlinear controller. The proposed controller can successfully solve the singularity problem that usually occurs in the current attitude control of UAV and it is easy to be realized.
Directory of Open Access Journals (Sweden)
Deyuan Meng
2014-05-01
Full Text Available The dynamics of pneumatic systems are highly nonlinear, and there normally exists a large extent of model uncertainties; the precision motion trajectory tracking control of pneumatic cylinders is still a challenge. In this paper, two typical nonlinear controllers—adaptive controller and deterministic robust controller—are constructed firstly. Considering that they have both benefits and limitations, an adaptive robust controller (ARC is further proposed. The ARC is a combination of the first two controllers; it employs online recursive least squares estimation (RLSE to reduce the extent of parametric uncertainties, and utilizes the robust control method to attenuate the effects of parameter estimation errors, unmodeled dynamics, and disturbances. In order to solve the conflicts between the robust control design and the parameter adaption law design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Theoretically, ARC possesses the advantages of the adaptive control and the deterministic robust control, and thus an even better tracking performance can be expected. Extensive comparative experimental results are presented to illustrate the achievable performance of the three proposed controllers and their performance robustness to the parameter variations and sudden disturbance.
Simulation of Electron Trajectories in the Multicusp Ion Source Using Geantn4 Monte Carlo Code
Khodadadi Azadboni, Fatemeh; Sedaghatizade, Mahmood
2010-04-01
To optimize the multicusp ion source, understanding of transport properties of electrons is indispensable. Since the transport of electrons in the multicusp ion source is a three-dimensional problem, we use the 3D computer code Geant4, to model the particle trajectories. The goal is to study the effect of electron injection into a cylindrical gas chamber and the electron trajectories. The role of the magnetic filter in contemporary negative ion sources is analyzed. The conditions in the magnetic filter adjacent to the plasma electrode optimum for the generation, formation, and extraction of an H- ion beam are found. The simulation results are in good agreement with the experimental data.
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...
Rapid energization of radiation belt electrons by nonlinear wave trapping
Directory of Open Access Journals (Sweden)
Y. Katoh
2008-11-01
Full Text Available We show that nonlinear wave trapping plays a significant role in both the generation of whistler-mode chorus emissions and the acceleration of radiation belt electrons to relativistic energies. We have performed particle simulations that successfully reproduce the generation of chorus emissions with rising tones. During this generation process we find that a fraction of resonant electrons are energized very efficiently by special forms of nonlinear wave trapping called relativistic turning acceleration (RTA and ultra-relativistic acceleration (URA. Particle energization by nonlinear wave trapping is a universal acceleration mechanism that can be effective in space and cosmic plasmas that contain a magnetic mirror geometry.
Nonlinear single Compton scattering of an electron wave-packet
Angioi, A; Di Piazza, A
2016-01-01
In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...
DEFF Research Database (Denmark)
Power, Stephen; Thomsen, Morten Rishøj; Jauho, Antti-Pekka
2017-01-01
exceptional control of electron behavior, but it is hindered by the requirement to maintain ballistic transport over large length scales. Recent experiments have overcome this obstacle and observed distinct magnetoresistance commensurability peaks for perforated graphene sheets (antidot lattices...
Electron trajectories and growth rates of the plasma wave pumped free-electron laser
Jafari, S.; Jafarinia, F.; Nilkar, M.; Amiri, M.
2014-12-01
A theory for a plasma wave wiggler has been described which employs the plasma whistler wave for producing laser radiation in a free-electron laser (FEL). While electromagnetically pumped FELs have been proven to be an effective means generating short wavelengths, practical difficulties occur in the design of these wigglers. For this reason, it is found that a plasma wave wiggler can be employed in concept with an electromagnetic wave wiggler due to both higher tunability and holding the focus of pump wave and e-beam over a significant distance to achieve a suitable amplification. Plasma in the presence of static magnetic field supports a plasma whistler wave. The plasma wiggler period can be tuned by varying the plasma density and/or ambient magnetic field. Electron trajectories have been analyzed using single particle dynamics and regimes of orbital stability have been demonstrated. A polynomial dispersion relation for electromagnetic and space-charge waves has then been derived, analytically. Numerical studies of the dispersion relation reveal that the growth rates are sensitive functions of the cyclotron frequency. It has been shown that by increasing the axial magnetic field strength (or cyclotron frequency), the growth rate for groups I and III orbits increases, while a growth decrement has been obtained for groups II and IV orbits.
Collapse of nonlinear electron plasma waves in a plasma layer
Grimalsky, V.; Koshevaya, S.; Rapoport, Yu; Kotsarenko, A.
2016-10-01
The excitation of nonlinear electron plasma waves in the plasma layer is investigated theoretically. This excitation is realized by means of initial oscillatory perturbations of the volume electron concentration or by initial oscillatory distributions of the longitudinal electron velocity. The amplitudes of the initial perturbations are small and the manifestation of the volume nonlinearity is absent. When the amplitudes of the initial perturbations exceed some thresholds, the values of the electron concentration near the plasma boundary increase catastrophically. The maxima of the electron concentration reach extremely high magnitudes, and sharp peaks in the electron concentration occur, which are localized both in the longitudinal and transverse directions. This effect is interpreted as wave collapse near the plasma boundary.
Nonlinear electron acoustic waves in presence of shear magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)
2013-12-15
Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.
Nonlinear electronic circuit with neuron like bursting and spiking dynamics.
Savino, Guillermo V; Formigli, Carlos M
2009-07-01
It is difficult to design electronic nonlinear devices capable of reproducing complex oscillations because of the lack of general constructive rules, and because of stability problems related to the dynamical robustness of the circuits. This is particularly true for current analog electronic circuits that implement mathematical models of bursting and spiking neurons. Here we describe a novel, four-dimensional and dynamically robust nonlinear analog electronic circuit that is intrinsic excitable, and that displays frequency adaptation bursting and spiking oscillations. Despite differences from the classical Hodgkin-Huxley (HH) neuron model, its bifurcation sequences and dynamical properties are preserved, validating the circuit as a neuron model. The circuit's performance is based on a nonlinear interaction of fast-slow circuit blocks that can be clearly dissected, elucidating burst's starting, sustaining and stopping mechanisms, which may also operate in real neurons. Our analog circuit unit is easily linked and may be useful in building networks that perform in real-time.
Energy Technology Data Exchange (ETDEWEB)
Landry, Brian R.; Falk, Martin J.; Subotnik, Joseph E. [Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104 (United States)
2013-12-07
In a recent paper, we presented a road map for how Tully's fewest switches surface hopping (FSSH) algorithm can be derived, under certain circumstances, from the mixed quantum-classical Liouville equation. In this communication, we now demonstrate how this new interpretation of surface hopping can yield significantly enhanced results for electronic properties in nonadiabatic calculations. Specifically, we calculate diabatic populations for the spin-boson problem using FSSH trajectories. We show that, for some Hamiltonians, without changing the FSSH algorithm at all but rather simply reinterpreting the ensemble of surface hopping trajectories, we recover excellent results and remove any and all ambiguity about the initial condition problem.
Analysis of free text in electronic health records for identification of cancer patient trajectories
DEFF Research Database (Denmark)
Jensen, Kasper; Soguero-Ruiz, Cristina; Mikalsen, Karl Oyvind
2017-01-01
a methodology that allows disease trajectories of the cancer patients to be estimated from free text in electronic health records (EHRs). By using these disease trajectories, we predict 80% of patient events ahead in time. By control of confounders from 8326 quantified events, we identified 557 events......, there has never been a greater need to enforce evidence-led medical decision-making using available health care data. In the present work, we studied a cohort of 7,741 patients, of whom 4,080 were diagnosed with cancer, surgically treated at a University Hospital in the years 2004-2012. We have developed...
Energy Technology Data Exchange (ETDEWEB)
Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)
2014-10-15
In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.
Li, Xiao-Dong; Lv, Mang-Mang; Ho, John K. L.
2016-07-01
In this article, two adaptive iterative learning control (ILC) algorithms are presented for nonlinear continuous systems with non-parametric uncertainties. Unlike general ILC techniques, the proposed adaptive ILC algorithms allow that both the initial error at each iteration and the reference trajectory are iteration-varying in the ILC process, and can achieve non-repetitive trajectory tracking beyond a small initial time interval. Compared to the neural network or fuzzy system-based adaptive ILC schemes and the classical ILC methods, in which the number of iterative variables is generally larger than or equal to the number of control inputs, the first adaptive ILC algorithm proposed in this paper uses just two iterative variables, while the second even uses a single iterative variable provided that some bound information on system dynamics is known. As a result, the memory space in real-time ILC implementations is greatly reduced.
Electron trajectory selection for high harmonic generation inside a short hollow fiber.
Igarashi, Hironori; Makida, Ayumu; Sekikawa, Taro
2013-09-09
The 19th harmonic beam divergences from a Ti:sapphire laser generated using a gas jet and 10-mm-long hollow fibers with bore diameters of 300 and 200 μm were investigated. The beam quality factor M(2) of the harmonic beam generated in a 300-μm hollow fiber was found to be better than the gas jet using the phase match including the atomic dipole phase induced by the short trajectory. On the other hand, a 200-μm hollow fiber was found to generate a more divergent beam with a larger M(2) because of the long trajectory. The electron trajectory contributing to high harmonic generation was selected using the phase-matching process inside a short hollow fiber.
Feng, Xin; Winters, Jack M
2011-01-01
Individualizing a neurorehabilitation training protocol requires understanding the performance of subjects with various capabilities under different task settings. We use multivariate regression to evaluate the performance of subjects with stroke-induced hemiparesis in trajectory tracking tasks using a force-reflecting joystick. A nonlinear effect was consistently shown in both dimensions of force field strength and impairment level for selected kinematic performance measures, with greatest sensitivity at lower force fields. This suggests that the form of a force field may play a different "role" for subjects with various impairment levels, and confirms that to achieve optimized therapeutic benefit, it is necessary to personalize interfaces.
Modeling and Non-Linear Self-Tuning Robust Trajectory Control of an Autonomous Underwater Vehicle
Directory of Open Access Journals (Sweden)
Thor Inge Fossen
1988-10-01
Full Text Available A non-linear self-tuning algorithm is demonstrated for an autonomous underwater vehicle. Tighter control is achieved by a non-linear parameter identification algorithm which reduces the parameter uncertainty bounds. Expensive hydrodynamic tests for parameter determination can thus be avoided. Excellent tracking performance and robustness to parameter uncertainty are guaranteed through a robust control strategy based on the estimated parameters. The nonlinear control law is highly robust for imprecise models and the neglected dynamics. The non-linear self-tuning control strategy is simulated for the horizontal positioning of an underwater vehicle.
Nonlinear saturation of trapped electron modes via perpendicular particle diffusion.
Merz, F; Jenko, F
2008-01-25
In magnetized fusion plasmas, trapped electron mode (TEM) turbulence constitutes, together with ion temperature gradient (ITG) turbulence, the dominant source of anomalous transport on ion scales. While ITG modes are known to saturate via nonlinear zonal flow generation, this mechanism is shown to be of little importance for TEM turbulence in the parameter regime explored here. Instead, a careful analysis of the statistical properties of the ExB nonlinearity in the context of gyrokinetic turbulence simulations reveals that perpendicular particle diffusion is the dominant saturation mechanism. These findings allow for the construction of a rather realistic quasilinear model of TEM induced transport.
Nonlinear electron transport in normally pinched-off quantum wire
Novoselov, K.S.; Dubrovskii, Yu. V.; Sablikov, V. A.; Ivanov, D. Yu.; Vdovin, E. E.; Khanin, Yu N.; Tulin, V. A.; Esteve, D.; Beaumont, S.
2000-01-01
Nonlinear electron transport in normally pinched-off quantum wires was studied. The wires were fabricated from AlGaAs/GaAs heterostructures with high-mobility two-dimensional electron gas by electron beam lithography and following wet etching. At certain critical source-drain voltage the samples exhibited a step rise of the conductance. The differential conductance of the open wires was noticeably lower than e^2/h as far as only part of the source-drain voltage dropped between source contact ...
Nonlinear optics with coherent free electron lasers
Bencivenga, F.; Capotondi, F.; Mincigrucci, R.; Cucini, R.; Manfredda, M.; Pedersoli, E.; Principi, E.; Simoncig, A.; Masciovecchio, C.
2016-12-01
We interpreted the recent construction of free electron laser (FELs) facilities worldwide as an unprecedented opportunity to bring concepts and methods from the scientific community working with optical lasers into the domain of x-ray science. This motivated our efforts towards the realization of FEL-based wave-mixing applications. In this article we present new extreme ultraviolet transient grating (X-TG) data from vitreous SiO2, collected using two crossed FEL pulses (photon frequency 38 eV) to generate the X-TG and a phase matched optical probing pulse (photon frequency 3.1 eV). This experiment extends our previous investigation, which was carried out on a nominally identical sample using a different FEL photon frequency (45 eV) to excite the X-TG. The present data are featured by a peak intensity of the X-TG signal substantially larger than that previously reported and by slower modulations of the X-TG signal at positive delays. These differences could be ascribed to the different FEL photon energy used in the two experiments or to differences in the sample properties. A systematic X-TG study on the same sample as a function of the FEL wavelength is needed to draw a consistent conclusion. We also discuss how the advances in the performance of the FELs, in terms of generation of fully coherent photon pulses and multi-color FEL emission, may push the development of original experimental strategies to study matter at the femtosecond-nanometer time-length scales, with the unique option of element and chemical state specificity. This would allow the development of advanced experimental tools based on wave-mixing processes, which may have a tremendous impact in the study of a large array of phenomena, ranging from nano-dynamics in complex materials to charge and energy transfer processes.
Light-enhanced electron-phonon coupling from nonlinear electron-phonon coupling
Sentef, M. A.
2017-05-01
We investigate an exact nonequilibrium solution of a two-site electron-phonon model, where an infrared-active phonon that is nonlinearly coupled to the electrons is driven by a laser field. The time-resolved electronic spectrum shows coherence-incoherence spectral weight transfer, a clear signature of light-enhanced electron-phonon coupling. The present study is motivated by recent evidence for enhanced electron-phonon coupling in pump-probe terahertz and angle-resolved photoemission spectroscopy in bilayer graphene when driven near resonance with an infrared-active phonon mode [E. Pomarico et al., Phys. Rev. B 95, 024304 (2017), 10.1103/PhysRevB.95.024304], and by a theoretical study suggesting that transient electronic attraction arises from nonlinear electron-phonon coupling [D. M. Kennes et al., Nat. Phys. 13, 479 (2017), 10.1038/nphys4024]. We show that a linear scaling of light-enhanced electron-phonon coupling with the pump field intensity emerges, in accordance with a time-nonlocal self-energy based on a mean-field decoupling using quasiclassical phonon coherent states. Finally, we demonstrate that this leads to enhanced double occupancies in accordance with an effective electron-electron attraction. Our results suggest that materials with strong phonon nonlinearities provide an ideal playground to achieve light-enhanced electron-phonon coupling and possibly light-induced superconductivity.
Stagnation of electron flow by a nonlinearly generated whistler wave
Taguchi, Toshihiro; Mima, Kunioki
2016-01-01
Relativistic electron beam transport through a high-density, magnetized plasma is studied numerically and theoretically. An electron beam injected into a cold plasma excites Weibel and two-stream instabilities that heat the beam and saturate. In the absence of an applied magnetic field, the heated beam continues to propagate. However, when a magnetic field of particular strength is applied along the direction of beam propagation, a secondary instability of off-angle whistler modes is excited. These modes then couple nonlinearly creating a large amplitude parallel propagating whistler that stops the beam. In this letter, we will show the phenomena in detail and explain the mechanism of whistler mediated beam stagnation.
Garashchuk, Sophya; Jakowski, Jacek; Wang, Lei; Sumpter, Bobby G
2013-12-10
A massively parallel, direct quantum molecular dynamics method is described. The method combines a quantum trajectory (QT) representation of the nuclear wave function discretized into an ensemble of trajectories with an electronic structure (ES) description of electrons, namely using the density functional tight binding (DFTB) theory. Quantum nuclear effects are included into the dynamics of the nuclei via quantum corrections to the classical forces. To reduce computational cost and increase numerical accuracy, the quantum corrections to dynamics resulting from localization of the nuclear wave function are computed approximately and included into selected degrees of freedom representing light particles where the quantum effects are expected to be the most pronounced. A massively parallel implementation, based on the message passing interface allows for efficient simulations of ensembles of thousands of trajectories at once. The QTES-DFTB dynamics approach is employed to study the role of quantum nuclear effects on the interaction of hydrogen with a model graphene sheet, revealing that neglect of nuclear effects can lead to an overestimation of adsorption.
Nonlinear Control for Trajectory Tracking of a Nonholonomic RC-Hovercraft with Discrete Inputs
Dictino Chaos; David Moreno-Salinas; Rocío Muñoz-Mansilla; Joaquín Aranda
2013-01-01
This work studies the problem of trajectory tracking for an underactuated RC-hovercraft, the control of which must be done by means of discrete inputs. Thus, the aim is to control a vehicle with very simple propellers that produce only a discrete set of control commands, and with minimal information about the dynamics of the actuators. The control problem is approached as a cascade control problem, where the outer loop stabilizes the position error, and the inner loop stabilizes the orientat...
Xie, Weiwei; Domcke, Wolfgang; Farantos, Stavros C.; Grebenshchikov, Sergy Yu.
2016-03-01
A trajectory method of calculating tunneling probabilities from phase integrals along straight line tunneling paths, originally suggested by Makri and Miller [J. Chem. Phys. 91, 4026 (1989)] and recently implemented by Truhlar and co-workers [Chem. Sci. 5, 2091 (2014)], is tested for one- and two-dimensional ab initio based potentials describing hydrogen dissociation in the 1B1 excited electronic state of pyrrole. The primary observables are the tunneling rates in a progression of bending vibrational states lying below the dissociation barrier and their isotope dependences. Several initial ensembles of classical trajectories have been considered, corresponding to the quasiclassical and the quantum mechanical samplings of the initial conditions. It is found that the sampling based on the fixed energy Wigner density gives the best agreement with the quantum mechanical dissociation rates.
Nonlinear growth of electron holes in cross-field wakes
Hutchinson, Ian; Haakonsen, C. B.; Zhou, C.
2015-11-01
Cross-field plasma flow past an obstacle is key to the physics underlying Mach-probes, space-craft charging, and the wakes of non-magnetic bodies: the solar-wind wake of the moon is a typical example. We report associated new nonlinear instability mechanisms. Ions are accelerated along the B-field into the wake, forming two beams, but they are not initially unstable to ion two-stream instabilities. Electron Langmuir waves become unstable much earlier because of an electron velocity-distribution distortion called the ``dimple''. The magnetic field, perpendicular to the flow, defines the 1-D direction of particle dynamics. In high-fidelity PIC simulations at realistic mass ratio, small electron holes--non-linearly self-binding electron density deficits--are spawned by the dimple in fe (v) near the phase-space separatrix. Most holes accelerate rapidly out of the wake, along B. However, some remain at very low speed, and grow until they are large enough to disrupt the two ion-streams, well before the ions are themselves linearly unstable. This non-linear hole growth is caused by the same mechanism that causes the dimple: cross-field drift from a lower to a higher density. Related mechanisms cause plasma near magnetized Langmuir probes to be unsteady. Partially supported by the NSF/DOE Basic Plasma Science Partnership grant DE-SC0010491.
Simplex didactics: A non-linear trajectory for research in education.
Sibilio, Maurizio
2015-12-01
The concept of simplexity, as proposed by Alain Berthoz, is based on the assumption that solutions elaborated by living organisms to decipher and face complexity could be applicable to all complex adaptive systems. Within the pedagogical and didactic context the proposal of the French physiologist could provide a scientific research trajectory aiming at solving the tension between theory, praxis, descriptive approaches and practical needs. Thus, simplexity seems to be an operational strategy based on the identification of the principles that rule and guide the didactic action through patterns of adaptation, which allow to decipher complexity in terms of data elaboration and decision making among different opportunities.
Xu, Y; Li, N
2014-09-01
Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator-prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework.
Discharge stratification in noble gases as convergence of electron phase trajectories to attractors
Golubovskii, Yu.; Valin, S.; Pelyukhova, E.; Nekuchaev, V.; Sigeneger, F.
2016-12-01
A new dynamic method to analyse resonance effects in glow discharges is proposed as a supplement to fluid and kinetic approaches for the investigation of discharge stratification. The method is applicable to striations, which are caused by the nonlocal electron behaviour at lower pressure and current. It is based on the analysis of the electron phase trajectories in spatially periodic fields. Being quite intuitive and easier than the solution of the Boltzmann equation, this method gives a quantitative description of the main effects arising from the kinetic analysis, for example, the appearance of attractors of the phase trajectories. The dynamic theory eliminates the main difficulty of the kinetic theory associated with the large relaxation length of the electron energy distribution function in periodic fields and describes the integer and rational resonances that correspond to S-, P- and R-striations. As a result, the stratification of the discharge can be interpreted as the excitation of one of the spatial resonator modes of the positive column.
Strategy for alignment of electron beam trajectory in LEReC cooling section
Energy Technology Data Exchange (ETDEWEB)
Seletskiy, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kayran, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kewisch, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-09-23
We considered the steps required to align the electron beam trajectory through the LEReC cooling section. We devised a detailed procedure for the beam-based alignment of the cooling section solenoids. We showed that it is critical to have an individual control of each CS solenoid current. Finally, we modeled the alignment procedure and showed that with two BPM fitting the solenoid shift can be measured with 40 um accuracy and the solenoid inclination can be measured with 30 urad accuracy. These accuracies are well within the tolerances of the cooling section solenoid alignment.
Non-linear Plasma Wake Growth of Electron Holes
Hutchinson, I H; Zhou, C
2015-01-01
An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...
Non-linear plasma wake growth of electron holes
Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.
2015-03-01
An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.
Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy.
Karadimitriou, M E; Kavousanaki, E G; Dani, K M; Fromer, N A; Perakis, I E
2011-05-12
We discuss a many-body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time-evolved many-body state due to correlated and uncorrelated multiple optical transitions, and use "Hubbard operator" density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including "pure dephasing". Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two-dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time-delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter-Landau-level magnetoplasmon and magnetoroton excitations and compare to three-pulse four-wave-mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four-particle correlations between an electron-hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton-exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non-equilibrium co-operative phenomena in strongly correlated systems.
Nonlinear Control for Trajectory Tracking of a Nonholonomic RC-Hovercraft with Discrete Inputs
Directory of Open Access Journals (Sweden)
Dictino Chaos
2013-01-01
Full Text Available This work studies the problem of trajectory tracking for an underactuated RC-hovercraft, the control of which must be done by means of discrete inputs. Thus, the aim is to control a vehicle with very simple propellers that produce only a discrete set of control commands, and with minimal information about the dynamics of the actuators. The control problem is approached as a cascade control problem, where the outer loop stabilizes the position error, and the inner loop stabilizes the orientation of the vehicle. Stability of the controller is theoretically demonstrated and the robustness of the control law against disturbances and noise is established. Simulation examples and experiments on a real setup validate the control law showing the real system to be robust against disturbances, noise, and outdated dynamics.
Calculation of electron trajectory and energy deposition in no screening region
Energy Technology Data Exchange (ETDEWEB)
Kia, Mohammad Reza, E-mail: m_r_kia@aut.ac.ir; Noshad, Houshyar, E-mail: hnoshad@aut.ac.ir
2016-01-01
The probability density function (PDF) of energy for inelastic collision is obtained by solving the integro-differential form of the quantity equation with the Bhabha differential cross section for particles with spin 1/2. Hence, the total PDF in no screening region is determined by folding theory with the following two assumptions: (1) the electron loses energy by collision and radiation and (2) the electron velocity does not change with a thin absorber. Therefore, a set of coupled stochastic differential equations based on the deviation and energy loss PDFs for electron is presented to obtain the electron trajectory inside the target. The energy PDFs for an electron beam with incident energy of 15.7 MeV inside aluminum and copper are calculated. Besides, the dose distributions for an electron beam with incident energies of 20, 10.2, 6, and 0.5 MeV in water are obtained. The results are in excellent agreement with the experimental data reported in the literature.
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma
El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.
2015-08-01
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.
Directory of Open Access Journals (Sweden)
Aguilar-Lopez, R
2006-04-01
Full Text Available This work addresses the problem of robust tracking of the substrate concentration in a continuous bioreactor in anindustrial wastewater treatment plant of an oil refinery. The entire nonlinear operating region of the process wasapproached by several linear models. The suggested global controller is designed considering an average betweenthe linear single controllers designed for each operating region. The averaging methodology is conducted viainterpolation, considering Gaussian distributions as the interpolating functions. The robust properties of the globalcontroller are shown by employing a Lyapunov function. The corresponding performance of the proposedmethodology is illustrated via numerical simulations.
A nonlinear trajectory command generator for a digital flight-control system
Cicolani, L. S.; Weissenberger, S.
1978-01-01
Operational application of the command generator (CG) was examined in detail in a simulation of a flight control system with the augmentor wing jet STOL research aircraft. The basic repertoire of single axis maneuvers and operational constraints are discussed, and the system behavior is tested on a rigorous STOL approach path and as affected by various approximations in the CG synthesis and types of disturbances found in the operational environment. The simulation results indicate that a satisfactory nonlinear system with general maneuvering capabilities throughout the flight envelope was developed which satisfies the basic design objectives while maintaining a practicable degree of simplicity.
Takemoto, Norio
2010-01-01
We analyze the attosecond electron dynamics in hydrogen molecular ion driven by an external intense laser field using ab-initio numerical simulations of the corresponding time-dependent Schr{\\"{o}}dinger equation and Bohmian trajectories. To this end, we employ a one-dimensional model of the molecular ion in which the motion of the protons is frozen. The results of the Bohmian trajectory calculations do agree well with those of the ab-initio simulations and clearly visualize the electron transfer between the two protons in the field. In particular, the Bohmian trajectory calculations confirm the recently predicted attosecond transient localization of the electron at one of the protons and the related multiple bunches of the ionization current within a half cycle of the laser field. Further analysis based on the quantum trajectories shows that the electron dynamics in the molecular ion can be understood via the phase difference accumulated between the Coulomb wells at the two protons. Modeling of the dynamics ...
Institute of Scientific and Technical Information of China (English)
S. Saviz; E. Lashani; Farzin M. Aghamir
2012-01-01
A theory for the two-stream free-electron laser (TSFEL) with a helical wiggler and an axial guide magnetic field is developed.In the analysis,the effects of self-fields are taken into account.An analysis of the two-stream steady-state electron trajectories is given by solving the equation of motion.Numerical calculations show that there are seven groups of orbits in the presence of self-fields instead of two groups reported in the absence of self-fields.The stability of the trajectories is studied numerically.
Directory of Open Access Journals (Sweden)
Julie Vercelloni
Full Text Available Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.
Vercelloni, Julie; Caley, M Julian; Kayal, Mohsen; Low-Choy, Samantha; Mengersen, Kerrie
2014-01-01
Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.
Organic non-linear optics and opto-electronics
Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.
2010-12-01
π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.
一种非线性航迹自适应跟踪控制方法%Adaptive tracking control method for nonlinear trajectory
Institute of Scientific and Technical Information of China (English)
缪存孝; 房建成; 盛蔚
2012-01-01
For flight trajectory tracking accuracy and quality problem of small unmanned aerial vehicle（SUAV）,an adaptive tracking control method for nonlinear trajectory was proposed.Waypoints were fitted utilizing five-order B-spline to built nonlinear desired trajectory.The location and crossing heading error equations were established within the Serret-Frenet coordinates.The asymptotically stable convergence adaptive crossing heading law was designed based on the error formulations.The flight experimental results show that the proposed adaptive tracking control method are effective and can improve the tracking accuracy.%针对小型无人飞行器航迹跟踪精度和飞行品质问题,提出了一种基于非线性航迹的自适应跟踪控制方法.应用五阶B样条拟合航点,构建非线性期望航迹;建立基于非线性期望航迹Serret-Frenet坐标系下的位置和运动航向误差方程;根据误差方程设计渐近稳定收敛的自适应运动航向控制律.并应用此方法进行了外场飞行实验,实验结果表明自适应航迹跟踪控制方法有效且能保证航迹跟踪精度.
Fang, Yigang; Liu, Jianbo
2009-10-22
Reaction of protonated tyrosine with the lowest electronically excited singlet state of molecular oxygen, (1)O(2) (a(1)Delta(g)), is reported over the center-of-mass collision energy (E(col)) range from 0.1 to 3.0 eV, using an electrospray-ionization, guided-ion-beam scattering instrument, in conjunction with ab initio electronic structure calculations and direct dynamics trajectory simulations. Only one product channel is observed, corresponding to generation of hydrogen peroxide via transfer of two hydrogen atoms from protonated tyrosine. Despite being exoergic, the reaction is in competition with physical quenching of (1)O(2) and is very inefficient. At low E(col), the reaction may be mediated by intermediate complexes and shows strong inhibition by collision energy. At high E(col), the reaction efficiency drops to approximately 1% and starts to have contribution from a direct mechanism. Quasi-classical trajectory simulations were performed to probe the mechanism at high collision energies. Analysis of trajectories shows that, at E(col) of 3.0 eV, a small fraction of hydrogen peroxide (25%) is produced via a direct, concerted mechanism where two hydrogen atoms are transferred simultaneously, but most hydrogen peroxide (75%) is formed by dissociation of hydroperoxide intermediates. According to ab initio calculations and trajectory simulations, collisions also lead to formation of various endoperoxides, and dissociation of endoperoxides may play a role in physical quenching of (1)O(2). The apparatus and experimental techniques are described in detail.
Nonlinear wave collapse, shock, and breather formation in an electron magnetohydrodynamic plasma.
Ghosh, Samiran; Chakrabarti, Nikhil
2014-12-01
Low-frequency nonlinear wave dynamics is investigated in a two-dimensional inhomogeneous electron magnetohydrodynamic (EMHD) plasma in the presence of electron viscosity. In the long-wavelength limit, the dynamics of the wave is found to be governed by a novel nonlinear equation. The result of the moving-frame nonlinear analysis is noteworthy, which shows that this nonlinear equation does have a breather solution and electron viscosity is responsible for the breather. A breather is a nonlinear wave in which energy accumulates in a localized and oscillatory manner. Analytical solution and time-dependent numerical simulation of this novel equation reveal the collapse of a soliton (localized pulse) into a weak noise shelf and formation of shocklike structures.
Directory of Open Access Journals (Sweden)
Алексей Андреевич Заславский
2010-09-01
Full Text Available In this paper the approach for the use of automated information system directly in the classroom to form a personal set of tasks for a particular student and build individual trajectory of its development.
María Ruth Vargas Leyva
2000-01-01
This is a study of the career trajectories of engineers in the company Sanyo Video Components. Three stages in the development of the professional career are recognized: initial career stage, mid-career and late stage career. Results indicate that the career’s trajectory is internally determined by the area of career development and job hierarchy. In external mobility, there are limitations of individual and family type; those of an individual type are age and area of career developmen...
Energy Technology Data Exchange (ETDEWEB)
Reber, T. J.; Plumb, N. C.; Waugh, J. A.; Dessau, D. S. [Department of Physics, University of Colorado, Boulder, Colorado 80309-0390 (United States)
2014-04-15
Detector counting rate nonlinearity, though a known problem, is commonly ignored in the analysis of angle resolved photoemission spectroscopy where modern multichannel electron detection schemes using analog intensity scales are used. We focus on a nearly ubiquitous “inverse saturation” nonlinearity that makes the spectra falsely sharp and beautiful. These artificially enhanced spectra limit accurate quantitative analysis of the data, leading to mistaken spectral weights, Fermi energies, and peak widths. We present a method to rapidly detect and correct for this nonlinearity. This algorithm could be applicable for a wide range of nonlinear systems, beyond photoemission spectroscopy.
Thomson, R; Kawrakow, I
2012-06-01
Widely-used classical trajectory Monte Carlo simulations of low energy electron transport neglect the quantum nature of electrons; however, at sub-1 keV energies quantum effects have the potential to become significant. This work compares quantum and classical simulations within a simplified model of electron transport in water. Electron transport is modeled in water droplets using quantum mechanical (QM) and classical trajectory Monte Carlo (MC) methods. Water droplets are modeled as collections of point scatterers representing water molecules from which electrons may be isotropically scattered. The role of inelastic scattering is investigated by introducing absorption. QM calculations involve numerically solving a system of coupled equations for the electron wavefield incident on each scatterer. A minimum distance between scatterers is introduced to approximate structured water. The average QM water droplet incoherent cross section is compared with the MC cross section; a relative error (RE) on the MC results is computed. RE varies with electron energy, average and minimum distances between scatterers, and scattering amplitude. The mean free path is generally the relevant length scale for estimating RE. The introduction of a minimum distance between scatterers increases RE substantially (factors of 5 to 10), suggesting that the structure of water must be modeled for accurate simulations. Inelastic scattering does not improve agreement between QM and MC simulations: for the same magnitude of elastic scattering, the introduction of inelastic scattering increases RE. Droplet cross sections are sensitive to droplet size and shape; considerable variations in RE are observed with changing droplet size and shape. At sub-1 keV energies, quantum effects may become non-negligible for electron transport in condensed media. Electron transport is strongly affected by the structure of the medium. Inelastic scatter does not improve agreement between QM and MC simulations of low
Nonlinear behavior of electron acoustic waves in an un-magnetized plasma
Energy Technology Data Exchange (ETDEWEB)
Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata 700 108 (India)
2011-10-15
The nonlinear electron acoustic wave, which is found in the earth's magnetosphere by satellite observations, is studied analytically by Lagrangian fluid description. The basic linear mode is observed in a two temperature electron species plasma where ions form stationary charge neutral background. We have obtained nonlinear description of this mode, which depends on both time and space. A possible solution shows a soliton like structure, which is localized in space, and the amplitude increases with time in the absence of dispersion. Small dispersive correction, however, shows spread of the solution in space. This method can be generalized to study the nonlinear behavior of a general class of multispecies plasma.
Small amplitude nonlinear electron acoustic solitary waves in weakly magnetized plasma
Energy Technology Data Exchange (ETDEWEB)
Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata-700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata-700 108 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar Kolkata-700 064 (India)
2013-01-15
Nonlinear propagation of electron acoustic waves in homogeneous, dispersive plasma medium with two temperature electron species is studied in presence of externally applied magnetic field. The linear dispersion relation is found to be modified by the externally applied magnetic field. Lagrangian transformation technique is applied to carry out nonlinear analysis. For small amplitude limit, a modified KdV equation is obtained, the modification arising due to presence of magnetic field. For weakly magnetized plasma, the modified KdV equation possesses stable solitary solutions with speed and amplitude increasing temporally. The solutions are valid upto some finite time period beyond which the nonlinear wave tends to wave breaking.
Energy Technology Data Exchange (ETDEWEB)
Yang, Mou, E-mail: yangmou1222@gmail.com [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Cui, Yan; Wang, Rui-Qiang; Zhao, Hong-Bo [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)
2012-03-05
We investigate the electronic structure of graphene ribbons under the competition between lateral electric and normal magnetic fields. The squeezing of quantum level spacings caused by either field is studied. Based on the knowledge of the dispersion under both fields, we analyze the electronic trajectories near the junctions of different electric and magnetic fields configurations. The junctions can split and join electron beams, and the conductance is quite robust against disorder near the junction interfaces. These junction devices can be used as bricks for building more complicated interference devices. -- Highlights: ► Unified physical picture of graphene ribbon under electric and magnetic fields is provided. ► Squeezing of level spacings caused by electric and magnetic fields is investigated. ► Graphene devices for electron beam split and joint are proposed.
Jiang, Wei; Wang, Langping; Zhou, Guangxue; Wang, Xiaofeng
2017-02-01
In order to study electron trajectories in an annular cathode high current pulsed electron beam (HCPEB) source based on carbon fiber bunches, the transmission process of electrons emitted from the annular cathode was simulated using a particle-in-cell model with Monte Carlo collisions (PIC-MCC). The simulation results show that the intense flow of the electrons emitted from the annular cathode are expanded during the transmission process, and the uniformity of the electron distribution is improved in the transportation process. The irradiation current decreases with the irradiation distance and the pressure, and increases with the negative voltage. In addition, when the irradiation distance and the cathode voltage are larger than 40 mm and -15 kV, respectively, a uniform irradiation current distribution along the circumference of the anode can be obtained. The simulation results show that good irradiation uniformity of circular components can be achieved by this annular cathode HCPEB source.
Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma
Energy Technology Data Exchange (ETDEWEB)
Umeda, Takayuki; Saito, Shinji [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya City, Aichi 464-8601 (Japan); Nariyuki, Yasuhiro, E-mail: umeda@stelab.nagoya-u.ac.jp, E-mail: saito@stelab.nagoya-u.ac.jp, E-mail: nariyuki@edu.u-toyama.ac.jp [Faculty of Human Development, University of Toyama, Toyama City, Toyama 930-8555 (Japan)
2014-10-10
Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.
Yu, Shukai; Talbayev, Diyar
2016-01-01
We present an experimental and computational study of the nonlinear optical response of conduction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption and an amplitude-dependent group refractive index) can be understood on the qualitative level as the breakdown of the effective mass approximation. However, a predictive theoretical description of the nonlinearity has been missing. We propose a model based on the semiclassical electron dynamics, a realistic band structure, and the free electron Drude parameters to accurately calculate the experimental observables in InSb. Our results open a path to predictive modeling of the conduction-electron optical nonlinearity in semiconductors, metamaterials, as well as high-field effects in THz plasmonics.
Dichotomy of nonlinear systems: Application to chaos control of nonlinear electronic circuit
Energy Technology Data Exchange (ETDEWEB)
Wang Jinzhi [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)]. E-mail: jinzhiw@pku.edu.cn; Duan Zhisheng [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China); Huang Lin [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)
2006-02-27
In this Letter a new method of chaos control for Chua's circuit and the modified canonical Chua's electrical circuit is proposed by using the results of dichotomy in nonlinear systems. A linear feedback control based on linear matrix inequality (LMI) is given such that chaos oscillation or hyperchaos phenomenon of circuit systems injected control signal disappear. Numerical simulations are presented to illustrate the efficiency of the proposed method.
Electron vortex magnetic holes: A nonlinear coherent plasma structure
Haynes, C.T.; Burgess, D.; Camporeale, E.; Sundberg, T.
2015-01-01
We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic
Electron vortex magnetic holes: a nonlinear coherent plasma structure
Haynes, Christopher T; Camporeale, Enrico; Sundberg, Torbjorn
2014-01-01
We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional PIC simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is ...
Directory of Open Access Journals (Sweden)
María Ruth Vargas Leyva
2000-11-01
Full Text Available This is a study of the career trajectories of engineers in the company Sanyo Video Components. Three stages in the development of the professional career are recognized: initial career stage, mid-career and late stage career. Results indicate that the career’s trajectory is internally determined by the area of career development and job hierarchy. In external mobility, there are limitations of individual and family type; those of an individual type are age and area of career development; those of a family type are civil state, spouse’s occupation and the presence and number of children. The results of other studies are confirmed in relation to the engineers’ practical training in the business, based on the initial career stage, the step from the technical dimension to the administrative, and the decrease in promotion potential which comes with age, as well as the professional conversion process of engineers who have various types of professional training.
A Nonlinear Model for Relativistic Electrons at Positive Temperature
Hainzl, Christian; Lewin, Mathieu; Seiringer, Robert
2008-01-01
We study the relativistic electron-positron field at positive temperature in the Hartree-Fock-approximation. We consider both the case with and without exchange term, and investigate the existence and properties of minimizers. Our approach is non-perturbative in the sense that the relevant electron subspace is determined in a self-consistent way. The present work is an extension of previous work by Hainzl, Lewin, S\\'er\\'e, and Solovej where the case of zero temperature was considered.
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Ermakov, A V; Ciftlikli, E Z; Syssoev, S E; Shuttleworth, I G; Hinch, B J
2010-10-01
We report on the application of a novel nondestructive in-vacuum technique for relative work function measurements, employing a grazing incidence electron deflection above a sample with a planar surface. Two deflected electron beam detectors are used as a position sensitive detector to control feedback to the sample potential as the sample work function changes. With feedback the sample potential exactly follows the surface sample-size averaged work function variation, so that the deflected beam trajectory remains stable. We also discuss methods to optimize the initial electron trajectories for this method, so as to minimize unwanted effects such as from uncontrolled external magnetic fields. As the electron beam does not impinge on the surface in this new technique electron induced desorption, ionization, dissociation, and/or decomposition is not induced at the interface. Importantly also the technique allows for free access to the surfaces enabling simultaneous deposition/evaporation and/or application of other surface characterization methods. We demonstrate its application in concurrent measurements of helium atom reflectivity and work function changes taking place during molecular oxygen exposure of a Cu(001) surface. A work function measurement sensitivity and stability is demonstrated at ∼10 mV at a sampling rate of 1 Hz and after application of an ∼7 s smoothing routine. In comparison to the helium atom reflectivity measurements, the work function measurements are more sensitive to the initial O uptake, and less so to the final coverage variations and possible surface reordering at higher O coverages.
A nonlinear optoelectronic filter for electronic signal processing
Loh, William; Yegnanarayanan, Siva; Ram, Rajeev J.; Juodawlkis, Paul W.
2014-01-01
The conversion of electrical signals into modulated optical waves and back into electrical signals provides the capacity for low-loss radio-frequency (RF) signal transfer over optical fiber. Here, we show that the unique properties of this microwave-photonic link also enable the manipulation of RF signals beyond what is possible in conventional systems. We achieve these capabilities by realizing a novel nonlinear filter, which acts to suppress a stronger RF signal in the presence of a weaker signal independent of their separation in frequency. Using this filter, we demonstrate a relative suppression of 56 dB for a stronger signal having a 1-GHz center frequency, uncovering the presence of otherwise undetectable weaker signals located as close as 3.5 Hz away. The capabilities of the optoelectronic filter break the conventional limits of signal detection, opening up new possibilities for radar and communication systems, and for the field of precision frequency metrology. PMID:24402418
Electron vortex magnetic holes: A nonlinear coherent plasma structure
Haynes, Christopher T.; Burgess, David; Camporeale, Enrico; Sundberg, Torbjorn
2015-01-01
We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.
Electron vortex magnetic holes: A nonlinear coherent plasma structure
Energy Technology Data Exchange (ETDEWEB)
Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)
2015-01-15
We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.
Indian Academy of Sciences (India)
Tarun K Mandal; Sudipta Dutta; Swapan K Pati
2009-09-01
We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in oligomers because of the intermolecular interactions. The resulting dipole moments reflect in the electronic excitation spectra of the molecular assemblies. The observation of significant nonlinear optical properties suggests the potential application of the dense carbon dioxide phases in opto-electronic devices.
Energy Technology Data Exchange (ETDEWEB)
Gul-e-Ali,; Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Masood, W. [COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics, Shahdara Valley Road, Islamabad (Pakistan)
2016-02-15
Coupling of drift vortex and the ion acoustic modes in the linear and nonlinear regimes are investigated with sheared ion flow perpendicular to the ambient magnetic field in a plasma comprising of hot ions and nonthermal population of electrons. In this regard, generation of nonlinear vortex structures in the presence of kappa, Cairns, and q-nonextensive electron distributions are investigated in detail, and comparison with the Maxwellian distribution is also made. The appositeness of the present investigation in the matter of auroral F-region is also pointed out.
New nonlinear structures in a degenerate one-dimensional electron gas
Ghosh, S; Haas, F
2014-01-01
The collective dynamics of nonlinear electron waves in an one-dimensional degenerate electron gas is treated using the Lagrangian fluid approach. A new class of solutions with a nontrivial space and time dependence is derived. Both analytical and numerical results demonstrate the formation of stable, breather-like modes, provided certain conditions are meet. For large amplitude of the initial density perturbation, a catastrophic collapse of the plasma density is predicted, even in the presence of the quantum statistical pressure and quantum diffraction dispersive effects. The results are useful for the understanding of the properties of general nonlinear structures in dense plasmas.
Institute of Scientific and Technical Information of China (English)
GAO Jie
2009-01-01
In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC Ⅱ. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations.
Energy Technology Data Exchange (ETDEWEB)
Eliasson, B., E-mail: bengt.eliasson@strath.ac.uk [SUPA, Physics Department, John Anderson Building, Strathclyde University, Glasgow G4 0NG, Scotland (United Kingdom); Lazar, M., E-mail: mlazar@tp4.rub.de [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum (Germany)
2015-06-15
This paper presents a numerical study of the linear and nonlinear evolution of the electromagnetic electron-cyclotron (EMEC) instability in a bi-Kappa distributed plasma. Distributions with high energy tails described by the Kappa power-laws are often observed in collision-less plasmas (e.g., solar wind and accelerators), where wave-particle interactions control the plasma thermodynamics and keep the particle distributions out of Maxwellian equilibrium. Under certain conditions, the anisotropic bi-Kappa distribution gives rise to plasma instabilities creating low-frequency EMEC waves in the whistler branch. The instability saturates nonlinearly by reducing the temperature anisotropy until marginal stability is reached. Numerical simulations of the Vlasov-Maxwell system of equations show excellent agreement with the growth-rate and real frequency of the unstable modes predicted by linear theory. The wave-amplitude of the EMEC waves at nonlinear saturation is consistent with magnetic trapping of the electrons.
Nonlinear effects in propagation of radiation of X-ray free-electron lasers
Nosik, V. L.
2016-05-01
Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.
A nonlinear model for magnetoacoustic waves in dense dissipative plasmas with degenerate electrons
Energy Technology Data Exchange (ETDEWEB)
Masood, W. [COMSATS Institute of Information Technology, Islamabad (Pakistan); National Centre for Physics (NCP), Shahdra Valley Road, Islamabad (Pakistan); Jahangir, R.; Siddiq, M. [National Centre for Physics (NCP), Shahdra Valley Road, Islamabad (Pakistan); Eliasson, B. [SUPA, Physics Department, University of Strathclyde, Glasgow (United Kingdom)
2014-10-15
The properties of nonlinear fast magnetoacoustic waves in dense dissipative plasmas with degenerate electrons are studied theoretically in the framework of the Zabolotskaya-Khokhlov (ZK) equation for small but finite amplitude excitations. Shock-like solutions of the ZK equation are obtained and are applied to parameters relevant to white dwarf stars.
Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating
Nafari, F.; Ghoranneviss, M.
2016-08-01
In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
Making use of disk targets composed of several peculiar materials (foam Au, foam C8H8)and hohlraum with a special structure, experiments have been done at"Xing Guang - II" laser facility,which study the characteristics of hot electrons and therelated nonlinear processes such as StimulatedRaman Scattering (SRS), Two Plasma Decay (TPD), StimulatedBrillouin Scattering (SBS), etc.
Katsouleas, Thomas; Sahai, Aakash
2015-11-01
The excitation of a non-linear ion-wake by a train of non-linear electron wake of an electron and a positron beam is modeled and its use for positron acceleration is explored. The ion-wake is shown to be a driven non-linear ion-acoustic wave in the form of a cylindrical ion-soliton similar to the solution of the cKdV equation. The phases of the oscillating radial electric fields of the slowly-propagating electron wake are asymmetric in time and excite time-averaged inertial ion motion radially. The radial field of the electron compression region sucks-in the ions and the field of space-charge region of the wake expels them, driving a cylindrical ion-soliton structure with on-axis and bubble-edge density-spikes. Once formed, the channel-edge density-spike is driven radially outwards by the thermal pressure of the thermalized wake energy. Its channel-like structure due to the flat-residue left behind by the propagating ion-soliton, is independent of the energy-source driving the non-linear electron wake. We explore the use of the partially-filled channel formed by the cylindrical ion-soliton for a novel regime of positron acceleration. PIC simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration (arXiv:1504.03735). Work supported by the US Department of Energy under DE-SC0010012 and the National Science Foundation under NSF-PHY-0936278.
Institute of Scientific and Technical Information of China (English)
YU You-Bin
2008-01-01
The electron-phonon interaction influences on linear and nonlinear optical absorption in cylindrical quantum wires (CQW) with an infinite confining potential are investigated. The optical absorption coefficients are obtained by using the compact-density-matrix approach and iterative method, and the numerical results are presented for GaAs CQW. The results show that the electron-phonon interaction makes a distinct influence on optical absorption in CQW. The electron-phonon interaction on the wave functions of electron dominates the values of absorption coefficients and the correction of the electron-phonon effect on the energies of the electron makes the absorption peaks blue shift and become wider. Moreover, the electron-phonon interaction influence on optical absorption with an infinite confining potential is different from that with a finite confining potential.
The Effect of Magnetic Field of Multicusp and Wall Material on Electron Trajectories
Khodadadi Azadboni, Fatemeh; Sedaghatizade, Mahmood
2010-04-01
In this paper, the effect of electron confinement with magnetic fields in the multicusp ion source has been investigated. That is, electron confinement with magnetic fields plays a very important role for the generation of negative ions at plasma. Three-dimensional spatial distributions of electrons production are obtained for a multicusp ion source. The electron confinement of magnetic fields from various surface materials (such as Al2O3, Al, Au, Cu, w and stainless-steel) have been compared in a multicusp plasma source. The electron confinement effect becomes stronger with increasing N (the number of rows of permanent magnets) and using Al for plasma chamber wall material. The results of investigations have demonstrated good correspondence with experimental data, and therefore the adequacy of the developed approach and the possibility to build more effective source on this basis.
Nonlinear modeling of low-to-high-frequency noise up-conversion in microwave electron devices
Filicori, Fabio; Traverso, Pier A.; Florian, Corrado
2003-05-01
Measurement-based, circuit-oriented non-linear noise modeling of microwave electron devices is still an open field of research, since existing approaches are not always suitable for the accurate prediction of low-frequency noise up-conversion to RF, which represents an essential information for the non-linear circuit analyses performed in the CAD of low phase-noise oscillators. In this paper a technology-independent, empirical approach to the modeling of noise contributions at the ports of electron devices, operating under strongly non-linear conditions, is proposed. Details concerning the analytical formulation of the model, which is derived by considering randomly time-varying perturbations in the basic equations of an otherwise conventional charge-controlled non-linear model, are presented, along with a discussion about the measurement techniques devoted to its experimental characterization. An example of application of the proposed Charge-Controlled Non-linear Noise (CCNN) model is considered in the case of a HBT transistor. Techniques devoted to the implementation of the obtained model in the framework of commercial CAD tools for circuit analysis and design are provided as well.
Saito, Shinji; Miyoshi, Yoshizumi; Seki, Kanako
2016-07-01
Wave-particle interactions with whistler chorus waves are believed to provide a primary acceleration for electrons in the outer radiation belt. Previous models for flux enhancement of the radiation belt have assumed the stochastic process as a diffusion manner of successive random-phase interactions, but physical mechanisms for the acceleration are not fully incorporated in these models because of the lack of a nonlinear scattering process. Here we report rapid increase in relativistic electron flux by using an innovative computer simulation model that incorporates not only diffusive process but also nonlinear scattering processes. The simulations show that three types of scattering simultaneously occur, which are diffusive, phase trapping, and phase bunching. It is found that the phase trapping is the most efficient mechanism to produce the MeV electrons rapidly in the scattering processes. The electrons are accelerated from 400 keV to over 1 MeV in time scale less than 60 s. On the other hand, as the phase trapping is suppressed by the breaking of relative phase angle between waves and gyrating electrons during the interaction, the increase of electron flux at MeV energy is clearly reduced. Our simulations conclude that the phase-trapping process causes a significant effect for the increase in relativistic electron flux and suggest that a quasi-linear diffusion model is not always valid to fully describe the relativistic electron acceleration.
Theory of nonlinear harmonic generation in free-electron lasers with helical wigglers
Energy Technology Data Exchange (ETDEWEB)
Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.
2007-05-15
CoherentHarmonicGeneration (CHG), and in particularNonlinearHarmonicGeneration (NHG), is of importance for both short wavelength Free-Electron Lasers (FELs), in relation with the achievement of shorter wavelengths with a fixed electron-beam energy, and high-average power FEL resonators, in relation with destructive effects of higher harmonics radiation on mirrors. In this paper we present a treatment of NHG from helical wigglers with particular emphasis on the second harmonic. Our study is based on an exact analytical solution of Maxwell's equations, derived with the help of a Green's function method. In particular, we demonstrate that nonlinear harmonic generation (NHG) fromhelicalwigglers vanishes on axis. Our conclusion is in open contrast with results in literature, that include a kinematical mistake in the description of the electron motion. (orig.)
Çakır, Bekir; Yakar, Yusuf; Özmen, Ayhan
2015-02-01
Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s2, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients.
Energy Technology Data Exchange (ETDEWEB)
Çakır, Bekir, E-mail: bcakir@selcuk.edu.tr [Physics Department, Faculty of Science, Selcuk University, Campus 42075, Konya (Turkey); Yakar, Yusuf, E-mail: yuyakar@yahoo.com [Physics Department, Faculty of Arts and Science, Aksaray University, Campus 68100, Aksaray (Turkey); Özmen, Ayhan [Physics Department, Faculty of Science, Selcuk University, Campus 42075, Konya (Turkey)
2015-02-01
Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s{sup 2}, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients.
Non-linear Ion-wake Excitation by Ultra-relativistic Electron Wakefields
Sahai, Aakash A
2015-01-01
The excitation of a non-linear ion-wake by a train of ultra-relativistic plasmons is modeled and its use for a novel regime of positron acceleration is explored. Its channel-like structure is independent of the energy-source driving the bubble-shaped slowly-propagating high phase-velocity electron density waves. The back of the bubble electron compression sucks-in the ions and the space-charge within the bubble expels them, forming a near-void channel with on-axis and bubble-edge density-spikes. The channel-edge density-spike is driven radially outwards as a non-linear ion acoustic-wave by the wake electron thermal pressure. OSIRIS PIC simulations are used to study the ion-wake structure, its evolution and its use for positron acceleration.
Nonlinear electron-magnetohydrodynamic simulations of three dimensional current shear instability
Energy Technology Data Exchange (ETDEWEB)
Jain, Neeraj [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau (Germany); Das, Amita; Sengupta, Sudip; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2012-09-15
This paper deals with detailed nonlinear electron-magnetohydrodynamic simulations of a three dimensional current shear driven instability in slab geometry. The simulations show the development of the instability in the current shear layer in the linear regime leading to the generation of electromagnetic turbulence in the nonlinear regime. The electromagnetic turbulence is first generated in the unstable shear layer and then spreads into the stable regions. The turbulence spectrum shows a new kind of anisotropy in which power transfer towards shorter scales occurs preferentially in the direction perpendicular to the electron flow. Results of the present three dimensional simulations of the current shear instability are compared with those of our earlier two dimensional simulations of sausage instability. It is found that the flattening of the mean velocity profile and thus reduction in the electron current due to generation of electromagnetic turbulence in the three dimensional case is more effective as compared to that in the two dimensional case.
Institute of Scientific and Technical Information of China (English)
张天莉; 严继民
2001-01-01
Quantum-chemical AM1 calculations were performed to study the geometries,the electronic structures and the second nonlinear optical properties of phthalocyanine and some asymmetrically substituted phthalocyanines,which include tert-butyl,amino,dimethylamino,nitro,fluoro,chloro,bromo iodo and nitrile substituents. The relationships of the second nonlinear optical coefficients β with dipole moment μ, and β with the energy-gap differences of frontier orbitals ΔEDA were discussed. Two relationships are regular and all ΔEDA-μ show very good linear relationship.
Nonlinear plasma processes and the formation of electron kappa distribution
Yoon, Peter
2016-07-01
The goal of nonequilibrium statistical mechanics is to establish fundamental relationship between the time irreversible macroscopic dynamics and the underlying time reversible behavior of microscopic system. The paradigm of achieving this seemingly paradoxical goal is through the concept of probability. For classical systems Boltzmann accomplished this through his H theorem and his kinetic equation for dilute gas. Boltzmann's H function is the same as classical extensive entropy aside from the minus sign, and his kinetic equation is applicable for short-range molecular interaction. For plasmas, the long-range electromagnetic force dictates the inter-particular interaction, and the underlying entropy is expected to exhibit non-extensive, or non-additive behavior. Among potential models for the non-additive entropy, the celebrated Tsallis entropy is the most well known. One of the most useful fundamental kinetic equations that governs the long-range plasma interaction is that of weak turbulence kinetic theory. At present, however, there is no clear-cut connection between the Tsallis entropy and the kinetic equations that govern plasma behavior. This can be contrasted to Boltzmann's H theorem, which is built upon his kinetic equation. The best one can do is to show that the consequences of Tsallis entropy and plasma kinetic equation are the same, that is, they both imply kappa distribution. This presentation will overview the physics of electron acceleration by beam-generated Langmuir turbulence, and discuss the asymptotic solution that rigorously can be shown to correspond to the kappa distribution. Such a finding is a strong evidence, if not water-tight proof, that there must be profound inter-relatioship between the Tsallis thermostatistical theory and the plasma kinetic theory.
Islam, Nasarul; Pandith, Altaf Hussain
2017-07-01
Density functional theory at CAM-B3LYP/6-311G++ (2d, 2p) level was employed to study the Triphenylboroxine derivatives (TB) containing electron donating and electron substituents, for their charge transfer and nonlinear optical properties. The results reveal that electron donating groups facilitate the rapid electron injection as compared to unsubstituted TB. It was observed that upon substitution with electron donating groups, the TB derivatives show an increased double bond character in the B3-C18 bond indicating an increase in the degree of conjugation. The Frontier molecular orbital studies indicate that highest occupied molecular orbitals of the neutral molecules delocalize primarily over the three phenyl rings and bridging oxygen atoms, whereas the lowest unoccupied molecular orbitals localize largely on the two phenyl rings and the boron atoms. Further, the TD-DFT studies indicate that the maximum absorption band results from the electron transitions from the initial states that are contributed by the HOMO and HOMO-1 to the final states that are mainly contributed by the LUMOs. In addition, we have observed that the introduction of electron donating group to the TB-7 leads to more active nonlinear performance.
Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode
Li, Yunyun; Marchesoni, Fabio; Li, Baowen
2014-01-01
Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schr\\"odinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring.
Correction of non-linearity effects in detectors for electron spectroscopy
Mannella, N; Kay, A W; Nambu, A; Gresch, T; Yang, S H; Mun, B S; Bussat, J M; Rosenhahn, A; Fadley, C S
2004-01-01
Using photoemission intensities and a detection system employed by many groups in the electron spectroscopy community as an example, we have quantitatively characterized and corrected detector non-linearity effects over the full dynamic range of the system. Non-linearity effects are found to be important whenever measuring relative peak intensities accurately is important, even in the low-countrate regime. This includes, for example, performing quantitative analyses for surface contaminants or sample bulk stoichiometries, where the peak intensities involved can differ by one or two orders of magnitude, and thus could occupy a significant portion of the detector dynamic range. Two successful procedures for correcting non-linearity effects are presented. The first one yields directly the detector efficiency by measuring a flat-background reference intensity as a function of incident x-ray flux, while the second one determines the detector response from a least-squares analysis of broad-scan survey spectra at di...
Osmane, Adnane; Wilson, Lynn B., III; Blum, Lauren; Pulkkinen, Tuija I.
2016-01-01
Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave-particle interactions. We show that wave parameters, consistent with large amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (greater than 1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles Theta (sub k)B greater than 50 degrees and phase-speeds v(sub phi) greater than or equal to c/9. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales (of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons (E greater than or equal to 100 keV) on kinetic timescales, which is much faster than previously inferred.
Kong, Chao; Hai, Kuo; Tan, Jintao; Chen, Hao; Hai, Wenhua
2016-03-01
Nonlinear Kronig-Penney model has been frequently employed to study transmission problem of electron wave in a doped semiconductor superlattice or in a nonlinear electrified chain. Here from an integral equation we derive a novel exact solution of the problem, which contains a simple nonlinear map connecting transmission coefficient with system parameters. Consequently, we propose a scheme to manipulate electronic distribution and transmission by adjusting the system parameters. A new quantum coherence effect is evidenced by the strict expression of transmission coefficient, which results in the aperiodic electronic distributions and different transmission coefficients including the approximate zero transmission and total transmission, and the multiple transmissions. The method based on the concise exact solution can be applied directly to some nonlinear cold atomic systems and a lot of linear Kronig-Penney systems, and also can be extended to investigate electronic transport in different discrete nonlinear systems.
Chatterjee, Debjani; Misra, A P
2015-12-01
The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' q-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Saberian and Esfandyari-Kalejahi, Phys. Rev. E 87, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schrödinger (NLS) equation with a nonlocal nonlinear term ∝P∫|ϕ(ξ',τ)|(2)dξ'ϕ/(ξ-ξ') [where P denotes the Cauchy principal value, ϕ is the small-amplitude electrostatic (complex) potential, and ξ and τ are the stretched coordinates in MST], which appears due to the wave-particle resonance. It is found that a subregion 1/3Landau damping) due to the nonlocal nonlinearity in the NLS equation. Furthermore, the effect of the nonlinear Landau damping is to slow down the amplitude of the wave envelope, and the corresponding decay rate can be faster the larger is the number of superthermal particles in pair plasmas.
Energy Technology Data Exchange (ETDEWEB)
Cotton, Stephen J.; Igumenshchev, Kirill; Miller, William H., E-mail: millerwh@berkeley.edu [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2014-08-28
It has recently been shown [S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112 (2013)] that a symmetrical windowing quasi-classical (SQC) approach [S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013)] applied to the Meyer-Miller model [H.-D. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979)] for the electronic degrees of freedom in electronically non-adiabatic dynamics is capable of quantitatively reproducing quantum mechanical results for a variety of test applications, including cases where “quantum” coherence effects are significant. Here we apply this same SQC methodology, within a flux-side correlation function framework, to calculate thermal rate constants corresponding to several proposed models of electron transfer processes [P. Huo, T. F. Miller III, and D. F. Coker, J. Chem. Phys. 139, 151103 (2013); A. R. Menzeleev, N. Ananth, and T. F. Miller III, J. Chem. Phys. 135, 074106 (2011)]. Good quantitative agreement with Marcus Theory is obtained over several orders of magnitude variation in non-adiabatic coupling. Moreover, the “inverted regime” in thermal rate constants (with increasing bias) known from Marcus Theory is also reproduced with good accuracy by this very simple classical approach. The SQC treatment is also applied to a recent model of photoinduced proton coupled electron transfer [C. Venkataraman, A. V. Soudackov, and S. Hammes-Schiffer, J. Chem. Phys. 131, 154502 (2009)] and population decay of the photoexcited donor state is found to be in reasonable agreement with results calculated via reduced density matrix theory.
Nonlinear electrodynamics of electrons in a quasi-one-dimensional ballistic ring
Energy Technology Data Exchange (ETDEWEB)
Epshtein, E.M. [Institute for Radioengineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); Shmelev, G.M.; Maglevanny, I.I. [Volgograd State Pedagogical University, Volgograd (Russian Federation)
2000-09-01
We consider ballistic electron motion in a quasi-one-dimensional ring under the uniform high-frequency electric field induced by an electromagnetic field. The electron satisfies a nonlinear equation of motion which is formally identical to that for a pendulum with a vibrating suspension point. The averaging method of Kapitza is used. The electromagnetic emission spectrum is calculated. The spectrum consists of low-frequency radiation, scattered radiation at the incident radiation frequency and combination scattered radiation; the intensities and frequencies of all components depend nonlinearly on the incident radiation frequency. At a certain value of that intensity the spontaneous symmetry breakdown occurs. As a result, the system acquires some static electric dipole moment. (author)
Nonlinear electrodynamics of electrons in a quasi-one-dimensional ballistic ring
Epshtein, E. M.; Shmelev, G. M.; Maglevanny, I. I.
2000-09-01
We consider ballistic electron motion in a quasi-one-dimensional ring under the uniform high-frequency electric field induced by an electromagnetic field. The electron satisfies a nonlinear equation of motion which is formally identical to that for a pendulum with a vibrating suspension point. The averaging method of Kapitza is used. The electromagnetic emission spectrum is calculated. The spectrum consists of low-frequency radiation, scattered radiation at the incident radiation frequency and combination scattered radiation; the intensities and frequencies of all components depend nonlinearly on the incident radiation frequency. At a certain value of that intensity the spontaneous symmetry breakdown occurs. As a result, the system acquires some static electric dipole moment.
Energy Technology Data Exchange (ETDEWEB)
Tran, H.N., E-mail: tranngochoang@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Dao, D.D. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Incerti, S. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Université de Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); Bernal, M.A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Karamitros, M. [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Université de Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); Nhan Hao, T.V. [Center of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Center for Theoretical and Computational Physics, College of Education, Hue University, 34 Le Loi Street, Hue City (Viet Nam); Dang, T.M. [VNUHCM-University of Science (Viet Nam); Francis, Z. [Saint Joseph University, Beyrouth (Lebanon)
2016-01-01
In this work, we present a derivation of cross sections for single ionization and electron capture processes within the Classical Trajectory Monte Carlo (CTMC) approach. Specifically, we have used a potential stemming from an ab initio calculation in Green et al.’s framework to describe the dynamics of the water molecule system. Proposing a modified version of the Classical Over-Barrier (COB) potential, we have found that a cut-off of roughly 28 a.u. on the initial distance of the projectile produced a reasonable accuracy. A global agreement has been obtained in our calculations compared to experimental and other theoretical results for C{sup 6+} ion energies ranging from 10 keV/u to 10 MeV/u.
On the linear and non-linear electronic spectroscopy of chlorophylls: a computational study.
Graczyk, Alicja; Żurek, Justyna M; Paterson, Martin J
2014-01-01
A theoretical analysis of linear and non-linear (two-photon absorption) electronic spectroscopy of all known porphyrinic pigments has been performed using linear and quadratic density functional response theory, with the long-range corrected CAM-B3LYP functional. We found that higher Soret transitions often contain non-Gouterman contributions and that each chlorophyll has the possibility for resonance enhanced TPA in the Soret region, although there is also significant TPA in the Q region.
Nonlinear spectroscopy of photon-dressed Dirac electrons in a quantum dot
Roslyak, O.; Gumbs, Godfrey; Mukamel, S.
2013-01-01
We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed on monolayer and bilayer graphene by spatially different potential profiles. Short-lived excitonic states which are too broad to be resolved in linear spectroscopy are revealed by cross-peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-dimensional photon-echo spectra are discussed.
Wave-particle interaction and the nonlinear saturation of the electron temperature gradient mode
Vadlamani, Srinath; Parker, Scott E.; Chen, Yang; Howard, James E.
2004-11-01
It has been proposed that the electron temperature gradient (ETG) driven turbulence is responsible for experimentally relevant electron thermal transport in tokamak plasmas. Significant transport levels are possible by the creation of radially elongated vortices or ``streamers" [1,2], which are sustained by the nonlinear saturation of the instability and are not susceptible to shear flow destruction, as is the case with the ion temperature gradient (ITG) mode. We present a dynamical system to explore the dependence of saturation level due to E × B and E_\\| motion, as well as the effect of radial elongation. With this model, we can predict the nonlinear saturation level of the ETG streamers. We compare our theoretical predictions with a 2D shear-less slab gyrokinetic electron code that includes the E_\\| nonlinearity. [1]F. Jenko, W. Dorland, M Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7, 1904 (2000). [2]C. Holland, and P.H. Diamond, Phys. Plasmas 9, 3857 (2002). [3]W. M. Manheimer, Phys. Fluids 14, 579 (1971). [4]R. A. Smith, John A. Krommes, and W. W. Lee, Phys. Fluids 28, 1069 (1985).
Efficiency enhancement of a two-beam free-electron laser using a nonlinearly tapered wiggler
Institute of Scientific and Technical Information of China (English)
Maryam Zahedian; B.Maraghechi; M.H.Rouhani
2012-01-01
A nonlinear and non-averaged model of a two-beam free-electron laser (FEL) wiggler that is tapered nonlinearly in the absence of slippage is presented.The two beams are assumed to have different energies,and the fundamental resonance of the higher energy beam is at the third harmonic of the lower energy beam.By using Maxwell's equations and the full Lorentz force equation of motion for the electron beams,coupled differential equations are derived and solved numerically by the fourth-order Runge-Kutta method.The amplitude of the wiggler field is assumed to decrease nonlinearly when the saturation of the third harmonic occurs.By simulation,the optimum starting point of the tapering and the slopes for reducing the wiggler amplitude are found.This technique can be applied to substantially improve the efficiency of the two-beam FEL in the XUV and X-ray regions.The effect of tapering on the dynamical stability of the fast electron beam is also studied.
Nonlinear electron acoustic cyclotron waves in presence of uniform magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata 700 108 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)
2013-04-15
Nonlinear electron acoustic cyclotron waves (EACW) are studied in a quasineutral plasma in presence of uniform magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary charge neutral inhomogeneous background. In long wavelength limit, it is shown that the linear electron acoustic wave is modified by the uniform magnetic field similar to that of electrostatic ion cyclotron wave. Nonlinear equations for these waves are solved by using Lagrangian variables. Results show that the spatial solitary wave-like structures are formed due to nonlinearities and dispersions. These structures transiently grow to larger amplitude unless dispersive effect is actively operative and able to arrest this growth. We have found that the wave dispersion originated from the equilibrium inhomogeneity through collective effect and is responsible for spatiotemporal structures. Weak dispersion is not able to stop the wave collapse and singular structures of EACW are formed. Relevance of the results in the context of laboratory and space plasmas is discussed.
Misra, Nilanjal; Rapolu, Mounika; Venugopal Rao, S.; Varshney, Lalit; Kumar, Virendra
2016-05-01
The optical nonlinearity of metal nanoparticles in dielectrics is of special interest because of their high polarizability and ultrafast response that can be utilized in potential device applications. In this study nanocomposite thin films containing in situ generated Ag nanoparticles dispersed in an aliphatic urethane acrylate (AUA) matrix were synthesized using electron beam curing technique, in presence of an optimized concentration of diluent Trimethylolpropanetriacrylate (TMPTA). The metal nanocomposite films were characterized using UV-visible spectrophotometry, transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM) techniques. Ag nanoparticle impregnated films demonstrated an absorption peak at ∼420 nm whose intensity increased with increase in the Ag concentration. The optical limiting property of the coatings was tested using a nanosecond Nd-YAG laser operated at third harmonic wavelength of 355 nm. For a 25 ns pulse and 10 Hz cycle, Ag-polymer coatings showed good optical limiting property and the threshold fluence for optical limiting was found to be ∼3.8×10-2 J/cm2 while the transmission decreased to 82%. The nonlinear optical coefficients were also determined using the standard Z-scan technique with picosecond (∼2 ps, 1 kHz) and femtosecond (∼150 fs, 100 MHz) pulses. Open aperture Z-scan data clearly suggested two-photon absorption as the dominant nonlinear absorption mechanism. Our detailed studies suggest these composites are potential candidates for optical limiting applications.
Coherent combs of anti-matter from nonlinear electron-positron pair creation
Krajewska, K
2014-01-01
Electron-positron pair creation in collisions of a modulated laser pulse with a high-energy photon (nonlinear Breit-Wheeler process) is studied by means of strong-field quantum electrodynamics. It is shown that the driving pulse modulations lead to appearance of comb structures in the energy spectra of produced positrons (electrons). It is demonstrated that these combs result from a coherent enhancement of probability amplitudes of pair creation from different modulations of the laser pulse. Thus, resembling the Young-double slit experiment for anti-matter (matter) waves.
Model for nonlinear behavior in the self-amplified spontaneous-emission free-electron laser
Krinsky, S.
2004-06-01
We introduce a simplified model for the saturation of a self-amplified spontaneous-emission free-electron laser. Within this model, we determine the effect of nonlinearity upon the statistical properties of the output radiation. Comparing our results with the computer simulations of Saldin, Schneidmiller, and Yurkov [The Physics of Free Electron Lasers (Springer-Verlag, Berlin, 2000)], we find that the model provides a good description of the average intensity, field correlation function, and coherence time, but underestimates the intensity fluctuation. Asymmetric spectral broadening phenomena are not included in the model.
The Non-linear Trajectory of Change in Play Profiles of Three Children in Psychodynamic Play Therapy
Halfon, Sibel; Çavdar, Alev; Orsucci, Franco; Schiepek, Gunter K.; Andreassi, Silvia; Giuliani, Alessandro; de Felice, Giulio
2016-01-01
interruptions. Conclusion: The results support that these children express different psychic states in play, which can be captured through the lens of play profiles, and begin to modify less dysfunctional profiles over the course of treatment. The methodology employed showed the productivity of treating psychodynamic play therapy as a complex system, taking advantage of non-linear methods to study psychotherapeutic play activity. PMID:27777561
Energy Technology Data Exchange (ETDEWEB)
Hussain, S.; Mahmood, S.; Rehman, Aman-ur- [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 44000 (Pakistan)
2014-11-15
Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.
Electron density of states of Fe-based superconductors: Quantum trajectory Monte Carlo method
Kashurnikov, V. A.; Krasavin, A. V.; Zhumagulov, Ya. V.
2016-03-01
The spectral and total electron densities of states in two-dimensional FeAs clusters, which simulate iron-based superconductors, have been calculated using the generalized quantum Monte Carlo algorithm within the full two-orbital model. Spectra have been reconstructed by solving the integral equation relating the Matsubara Green's function and spectral density by the method combining the gradient descent and Monte Carlo algorithms. The calculations have been performed for clusters with dimensions up to 10 × 10 FeAs cells. The profiles of the Fermi surface for the entire Brillouin zone have been presented in the quasiparticle approximation. Data for the total density of states near the Fermi level have been obtained. The effect of the interaction parameter, size of the cluster, and temperature on the spectrum of excitations has been studied.
Numerical Simulations of Nonlinear Dynamics of Electron Cyclotron Maser with a Straight Beam
Institute of Scientific and Technical Information of China (English)
KONG Ling-Bao; HOU Zhi-Ling
2011-01-01
An electron cyclotron maser based on anomalous Doppler effect (ADECM) with an initially axial beam velocity is considered,and the nonlinear equation of beam-wave interaction is presented.With the numerical methods,the nonlinear dynamics of the ADECM is investigated.It is shown that the saturated interaction efficiency of the ADECM approaches 90％ and the interaction length for the saturated efficiency spans about 5-20cm.The results may be of importance for designing a compact device in applications in microwave generations or microwave heating of ceramic laminates.In the late 1950s,the theoretical studies on the instability of electron cyclotron maser based on normal Doppler effect (NDECM) were performed almost simultaneously by Gaponov,[1] Twiss,[2] and Schneider.[3] Their discoveries have resulted in the most successful fast-wave devices such as the gyrotron and variants.[4,5] The possible applications of microwaves span a wide range of technologies such as in thermonuclear fusion energy,charged particle accelerations,radar systems,and processing of advanced ceramics.[6-16]%An electron cyclotron maser based on anomalous Doppler effect (ADECM) with an initially axial beam velocity is considered, and the nonlinear equation of beam-wave interaction is presented. With the numerical methods, the nonlinear dynamics of the ADECM is investigated. It is shown that the saturated interaction efficiency of the ADECM approaches 90% and the interaction length for the saturated efficiency spans about 5-20 cm. The results may be of importance for designing a compact device in applications in microwave generations or microwave heating of ceramic laminates.
Van Aert, S; Chen, J H; Van Dyck, D
2010-10-01
A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has
Directory of Open Access Journals (Sweden)
Altaf Hussain Pandith
Full Text Available A comprehensive theoretical study was carried out on a series of aryldimesityl borane (DMB derivatives using Density Functional theory. Optimized geometries and electronic parameters like electron affinity, reorganization energy, frontiers molecular contours, polarizability and hyperpolarizability have been calculated by employing B3PW91/6-311++G (d, p level of theory. Our results show that the Hammett function and geometrical parameters correlates well with the reorganization energies and hyperpolarizability for the series of DMB derivatives studied in this work. The orbital energy study reveals that the electron releasing substituents increase the LUMO energies and electron withdrawing substituents decrease the LUMO energies, reflecting the electron transport character of aryldimesityl borane derivatives. From frontier molecular orbitals diagram it is evident that mesityl rings act as the donor, while the phenylene and Boron atom appear as acceptors in these systems. The calculated hyperpolarizability of secondary amine derivative of DMB is 40 times higher than DMB (1. The electronic excitation contributions to the hyperpolarizability studied by using TDDFT calculation shows that hyperpolarizability correlates well with dipole moment in ground and excited state and excitation energy in terms of the two-level model. Thus the results of these calculations can be helpful in designing the DMB derivatives for efficient electron transport and nonlinear optical material by appropriate substitution with electron releasing or withdrawing substituents on phenyl ring of DMB system.
Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.
Schroeder, C B; Esarey, E
2010-05-01
A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.
Spoorthi, K.; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Sekkati, M.; El Fakir, A.; Rao, Ashok; Sanjeev, Ganesh; Poornesh, P.
2017-06-01
In this article, we report the third-order nonlinear optical properties of electron beam irradiated gadolinium-doped zinc oxide (GZO) thin films prepared using the spray pyrolysis deposition technique. GZO thin films were treated with an electron beam from a variable energy microtron accelerator at dose rates ranging from 1-5 kGy. Nonlinear optical measurements were conducted by employing the single beam Z-scan technique. A continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Closed aperture Z-scan results reveal that the films exhibit self-defocusing nonlinearity. Open aperture Z-scan results exhibit a switching over phenomena of reverse saturable absorption to saturable absorption for thin film irradiated at 3 kGy, indicating the influence of electron beams on optical nonlinearity. The significant change in third-order nonlinear optical susceptibility χ (3) ranging from 2.14 × 10-3 to 3.12 × 10-3 esu is attributed to the effect of electron beam irradiation. The study shows that the nonlinear coefficients of GZO films can be tuned by electron beams for use in nonlinear optical device applications.
Wang, Geng; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Zhang, Min; Wang, Shui
2017-02-01
Cyclotron resonant scattering by electromagnetic ion cyclotron (EMIC) waves has been considered to be responsible for the rapid loss of radiation belt high-energy electrons. For parallel-propagating EMIC waves, the nonlinear character of cyclotron resonance has been revealed in recent studies. Here we present the first study on the nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique EMIC waves on the basis of test particle simulations. Higher wave obliquity produces stronger nonlinearity of harmonic resonances but weaker nonlinearity of fundamental resonance. Compared to the quasi-linear prediction, these nonlinear resonances yield a more rapid loss of electrons over a wider pitch angle range. In the quasi-linear regime, the ultrarelativistic electrons are lost in the equatorial pitch angle range αeq87.5° at ψ = 20° and 40°. At the resonant pitch angles αeq<75°, the difference between quasi-linear and nonlinear loss timescales tends to decrease with the wave normal angle increasing. At ψ = 0° and 20°, the nonlinear electron loss timescale is 10% shorter than the quasi-linear prediction; at ψ = 40°, the difference in loss timescales is reduced to <5%.
Saha, Asit
2017-03-01
Positron acoustic shock waves (PASHWs) in unmagnetized electron-positron-ion (e-p-i) plasmas consisting of mobile cold positrons, immobile positive ions, q-nonextensive distributed electrons, and hot positrons are studied. The cold positron kinematic viscosity is considered and the reductive perturbation technique is used to derive the Burgers equation. Applying traveling wave transformation, the Burgers equation is transformed to a one dimensional dynamical system. All possible vector fields corresponding to the dynamical system are presented. We have analyzed the dynamical system with the help of potential energy, which helps to identify the stability and instability of the equilibrium points. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PASHWs. Furthermore, fully nonlinear arbitrary amplitude positron acoustic waves are also studied applying the theory of planar dynamical systems. It is also observed that the fundamental features of the small amplitude and arbitrary amplitude PASHWs are significantly affected by the effect of the physical parameters q e , q h , μ e , μ h , σ , η , and U. This work can be useful to understand the qualitative changes in the dynamics of nonlinear small amplitude and fully nonlinear arbitrary amplitude PASHWs in solar wind, ionosphere, lower part of magnetosphere, and auroral acceleration regions.
Nonlinear ionization of many-electron systems over a broad photon-energy range
Energy Technology Data Exchange (ETDEWEB)
Karamatskou, Antonia
2015-11-15
Rapid developments in laser technology and, in particular, the advances in the realm of free-electron lasers have initiated tremendous progress in both theoretical and experimental atomic, molecular and optical physics. Owing to high intensities in combination with short pulse durations we can enter the utterly nonlinear regime of light-matter interaction and study the dynamics and features of matter under extreme conditions. The capabilities of X-ray free-electron laser sources have promoted the importance of nonlinear optics also in the X-ray regime. I show in my thesis how we can exploit the nonlinear response regime to reveal hidden information about resonance structures that are not resolved in the weak-field regime. This prospect points to many applications for future investigations of various complex systems with free-electron lasers. In the present thesis the interaction of atomic closed-shell systems with ultrashort and strong laser pulses is investigated. Over a broad photon-energy range the characteristics of the atomic shell are studied with a particular focus on the nonlinear response regime and on electron correlation effects. Several computational extensions of the XCID package for multi-electron dynamics are presented and their applications in various studies are demonstrated; a completely new capability of the numerical method is realized by implementing the calculation of photoelectron spectra and by calculating eigenstates of the many-electron Hamiltonian. The field of study within the present work encompasses (1) the strong-field regime, where the question of the adiabatic character in tunneling ionization is discussed and analyzed, especially for the case of few-cycle pulses; (2) the XUV regime, in which we show for the first time that the collectivity in resonant excitation reveals new information; and (3) the (hard) x-ray regime, which is highly relevant for x-ray free-electron laser experiments, and where we show how important two
Institute of Scientific and Technical Information of China (English)
Xiao-Feng Pang
2008-01-01
The properties and rules of motion of superconductive electrons in steady and time-dependent non-equilibrium states of superconductors are studied by using the Ginzberg-Landau (GL) equations and nonlinear quantum theory. In the absence of external fields, the superconductive electrons move in the solitons with certain energy and velocity in a uniform system, The superconductive electron is still a soliton under action of an electromagnetic field, but its amplitude, phase and shape are changed. Thus we conclude that super- conductivity is a result of motion of soliton of superconductive electrons. Since soliton has the feature of motion for retaining its energy and form, thus a permanent current occurs in superconductor. From these solutions of GL equations under action of an electromagnetic field, we gain the structure of vortex lines-magnetic flux lines observed experimentally in type-II superconductors. In the time-dependent non- equilibrium states of superconductor, the motions of superconductive electrons exhibit still the soliton features, but the shape and amplitude have changed. In an invariant electric-field, it moves in a constant acceleration. In the medium with dissipation, the superconductive electron behaves still like a soliton, although its form, amplitude, and velocity are altered. Thus we have to convince that the superconductive electron is essentially a soliton in both non-equilibrium and equilibrium superconductors.
Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere
Hsieh, Yi-Kai; Omura, Yoshiharu
2017-01-01
We perform test particle simulations for relativistic electrons interacting with a whistler mode chorus packet propagating at oblique angles. By confirming that the energy transport of oblique lower band chorus is nearly along the ambient magnetic field, we apply the gyroaveraging method in calculating equations of motion of electrons. We trace evolution of a delta function of relativistic electrons in a phase space of kinetic energy and equatorial pitch angle and obtain numerical Green's functions of the chorus wave-particle interactions. Examining the Green's functions in a wide range of kinetic energies, we find that Landau resonance can accelerate MeV electrons efficiently and that higher nth resonances such as n =- 1 and n = 2 also contribute to acceleration of electrons at high equatorial pitch angles (˜70°) and high energies (˜2 MeV). We investigate the rate of energy gain of the cyclotron resonance acceleration and the Landau resonance acceleration and find that the perpendicular component of wave electric field dominates both accelerations for MeV electrons. Furthermore, the proximity between the parallel components of Vp and Vg of oblique whistler mode waves and the nonlinear trapping condition make the interaction time of Landau resonance much longer than that of n = 1 cyclotron resonance, resulting in efficient acceleration of MeV electrons.
Nonlinear Photoemission Electron Micrographs of Plasmonic Nanoholes in Gold Thin Films
Energy Technology Data Exchange (ETDEWEB)
Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.
2014-11-06
Nonlinear photoemission electron microscopy of isolated nanoholes in gold thin films map propagating surface plasmon polaritons (SPPs) launched from the lithographically patterned plasmonic structures. A damped sinusoidal elongated ring-like photoemission beat pattern is observed from the nanoholes, following low angle of incidence irradiation of these structures with sub-15 fs 780 nm laser pulses. A notable agreement between finite difference time domain simulations and experiment corroborates our assignment of the observed photoemission patterns to SPPs launched from isolated nanoholes and probed through nonlinear photoemission. We also demonstrate how the efficiency of coupling light waves into isolated plasmonic holes can be tuned by varying hole diameter. In this regard, a simple intuitive geometrical model, which accounts for the observed and simulated diameter dependent plasmonic response, is proposed. Overall, this study paves the way for designing nanohole assemblies where optical coupling and subsequent plasmon propagation can be rationally controlled through 2D SPP interferometry
Energy Technology Data Exchange (ETDEWEB)
Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)
2013-08-15
The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ω{sub c}/ω<1 (ω{sub c} and ω are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ω{sub c}/ω>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (ω{sub c}/ω)<1/(ω{sub c}/ω)>1 by increasing the magnetic field strength.
Calibration of a Non-Linear Beam Position Monitor Electronics by Switching Electrode Signals
Gasior, M
2013-01-01
Button electrode signals from beam position monitors embedded into new LHC collimators will be individually processed with front-end electronics based on compensated diode detectors and digitized with 24-bit audio-range ADCs. This scheme allows sub-micrometre beam orbit resolution to be achieved with simple hardware and no external timing. As the diode detectors only operate in a linear regime with large amplitude signals, offset errors of the electronics cannot be calibrated in the classical way with no input. This paper describes the algorithms developed to calibrate the offset and gain asymmetry of these nonlinear electronic channels. Presented algorithm application examples are based on measurements performed with prototype diode orbit systems installed on the CERN SPS and LHC machines.
Fu, Feichao; Zhu, Pengfei; Zhao, Lingrong; Jiang, Tao; Lu, Chao; Liu, Shengguang; Shi, Libin; Yan, Lixin; Deng, Haixiao; Feng, Chao; Gu, Qiang; Huang, Dazhang; Liu, Bo; Wang, Dong; Wang, Xingtao; Zhang, Meng; Zhao, Zhentang; Stupakov, Gennady; Xiang, Dao; Zhang, Jie
2015-01-01
High quality electron beams with flat distributions in both energy and current are critical for many accelerator-based scientific facilities such as free-electron lasers and MeV ultrafast electron diffraction and microscopes. In this Letter we report on using corrugated structures to compensate for the beam nonlinear energy chirp imprinted by the curvature of the radio-frequency field, leading to a significant reduction in beam energy spread. By using a pair of corrugated structures with orthogonal orientations, we show that the quadrupole wake fields which otherwise increase beam emittance can be effectively canceled. This work also extends the applications of corrugated structures to the low beam charge (a few pC) and low beam energy (a few MeV) regime and may have a strong impact in many accelerator-based facilities.
El-Wakil, S A; Abd-El-Hamid, H M; Abulwafa, E M
2010-01-01
A rigorous theoretical investigation has been made on electron acoustic wave propagating in unmagnetized collisionless plasma consisting of a cold electron fluid, non-thermal hot electrons and stationary ions. Based on the pseudo-potential approach, large amplitude potential structures and the existence of solitary waves are discussed. The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV) equation for small but finite amplitude electrostatic waves. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters close to those values corresponding to the dayside auroral zone reveals different solutions i.e., bell-shaped solitary pulses, rational pulses and solutions with singularity at a finite points which called blowup solutions in addition to the propagation of an explosive pu...
Institute of Scientific and Technical Information of China (English)
Zhao Di; Li Fu-Li
2013-01-01
We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of the dependence of high-order harmonic generation on the waveform of laser fields.The dependence is investigated via detailed analysis of the classical trajectories of the ionized electron moving in the continuum in the velocity-position plane.The classical trajectory consists of three sections (Acceleration Away,Deceleration Away,and Acceleration Back),and their relationship with the electron recollision energy is investigated.The analysis of classical trajectories indicates that,besides the final (Acceleration Back) section,the electron recollision energy also relies on the previous two sections.We simultaneously optimize the waveform in all three sections to increase the electron recollision energy,and an extension of the cutoff frequency up to Ip + 20.26Up is presented with a theoretically synthesized waveform of the laser field.
Foster, J. C.; Erickson, P. J.; Omura, Y.; Baker, D. N.; Kletzing, C. A.; Claudepierre, S. G.
2017-01-01
Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of nonlinear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy of hundreds of keV to 3 MeV can be accelerated by 50 keV-200 keV in resonant interactions with a single VLF rising tone on a time scale of 10-100 ms.
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Ali [National Centre for Physics, Shahdara Valley Road, Islamabad (Pakistan); Masood, W. [National Centre for Physics, Shahdara Valley Road, Islamabad (Pakistan); COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan)
2016-05-15
Linear and nonlinear electrostatic ion acoustic waves in a weakly relativistic magnetorotating plasma in the presence of non-Maxwellian electrons and warm ions have been examined. The system under consideration has yielded two solutions, namely, the fast and slow acoustic modes which have been observed to depend on the streaming velocity, ion to electron temperature ratio, and the nonthermality parameter of the non-Maxwellian electrons. Using the multiple time scale analysis, we have derived the three dimensional nonlinear Zakharov–Kuznetsov equation and also presented its solution. Both compressive and rarefactive solitary structures have been found in consonance with the satellite observations. It has been observed that although the linear dispersion relation gives both fast and slow ion acoustic waves, the solitary structures form only for the fast acoustic mode. The dependence of the characteristics of the solitary structures on several plasma parameters has also been explored. The present investigation may be beneficial to understanding the rotating plasma environments such as those found in the planetary magnetospheres of Saturn and Jupiter.
Antony, Albin; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Douayar, A.; Cherkaoui El Moursli, F.; Sanjeev, Ganesh; Manjunatha, K. B.; Poornesh, P.
2017-10-01
Electron beam induced effects on Fluorine doped ZnO thin films (FZO) grown by chemical spray pyrolysis deposition technique were studied. The samples were exposed to 8 MeV electron beam at different dose rate ranging from 1 kGy to 4 kGy. All films exhibit a polycrystalline nature which shows an increase in crystallanity with irradiation dosages. The electron beam irradiation effectively controls the films surface morphology and its linear optical characteristics. Z-Scan technique was employed to evaluate the sign and magnitude of nonlinear refractive index and nonlinear absorption coefficient using a continuous wave laser at 632.8 nm as light source. Enhancement in the third order nonlinear optical properties was were noted due to electron beam irradiation. Tailoring the physical and NLO properties by electron beam, the FZO thin films becomes a promising candidate for various optoelectronic applications such as phase change memory devices, optical pulse compression, optical switching and laser pulse narrowing.
Fixed-node errors in quantum Monte Carlo: interplay of electron density and node nonlinearities
Rasch, Kevin M; Mitas, Lubos
2013-01-01
We elucidate the origin of large differences (twofold or more) in valence fixed-node errors between the first- vs second-row atom systems for single-configuration trial wave functions. The differences are studied on a set of atoms, molecules, and Si, C solids. These systems are valence isoelectronic and have similar correlation energies, bond patterns, geometries, ground states, and symmetries. We show that the key reasons are the differences between the electron densities combined with the degree of node nonlinearities. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems and provide new perspectives on the origins of the fixed-node biases.
Electrostatic Nonlinear Structures in Dissipative Electron-Positron-Ion Quantum Plasmas
Institute of Scientific and Technical Information of China (English)
S. A. Khan; Q. Haque
2008-01-01
@@ Low frequency (in comparison to ion plasma frequency) ion-acoustic shocks and solitons in superdense electron-positron-ion quantum plasmas are studied.The quantum hydrodynamic model is used incorporating quantum Bohm forces and Fermi-Dirac statistical corrections to derive the deformed Korteweg de Vries-Burgers (dKdVB) equation in weakly nonlinear limit.The travelling wave solution of dKdVB equation is presented and results are discussed in different limits.It is found that shock height increases with increase of quantum pressure, positron concentration and dissipation.Further, it is seen that the width of soliton decreases with increase of quantum pressure.
Energy Technology Data Exchange (ETDEWEB)
Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)
2015-06-07
Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide
Chatterjee, D
2015-01-01
The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' $q$-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Phys. Rev. E {\\bf87}, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schr{\\"o}dinger (NLS) equation with a nonlocal nonlinear term $\\propto {\\cal{P}}\\int|\\phi(\\xi',\\tau)|^2d\\xi'\\phi/(\\xi-\\xi') $ [where ${\\cal P}$ denotes the Cauchy principal value, $\\phi$ is the small-amplitude electrostatic (complex) potential, and $\\xi$ and $\\tau$ are the stretched coordinates in MST] which appears due to the wave-particle resonance. It is found that a subregion $1/3
Nonlinear resonances in a multi-stage free-electron laser amplifier
Energy Technology Data Exchange (ETDEWEB)
Hashimoto, S. [Graduate Univ. for Advanced Studies, Ibaraki-ken (Japan); Takayama, K. [National Lab. for High Energy Physics, Ibaraki-ken (Japan)
1995-12-31
A two-beam accelerator (TBA) is a possible candidate of future linear colliders, in which the demanded rf power is provided by a multi-stage free-electron laser (MFEL). After if amplification in each stage, a driving beam is re-accelerated by an induction unit and propagates into the next stage. Recently it has been recognized that the multi-stage character of the MFEL causes resonances between its periodicity and the synchrotron motion in an rf bucket. Since the synchrotron oscillation is strongly modulated by the resonance and at the worst a large fraction of particles is trapped in the resonance islands, the nonlinear resonances in the FEL longitudinal beam dynamics can lead to notable degradation of the MFEL performance, such as output fluctuation and phase modulation which have been big concerns in the accelerator society. The overall efficiency of the MFEL and the quality of the amplified microwave power are key issues for realizing the TBA/FEL Particularly the rf phase and amplitude errors must be maintained within tolerance. One of significant obstacles is an amplification of undesired modes. If a small-size waveguide is employed, the FEL resonance energies for undesired higher order modes shift very far from that for a fundamental mode; so it is possible to prevent higher order modes from evolving. Such a small-size waveguide, however, gives a high power density in the FEL. Simulation results have demonstrated that the nonlinear resonances occur in die FEL longitudinal motion when the power density exceeds some threshold. An analytical method for studying the nonlinear resonance in the TBA/FEL is developed based on the macroparticle model which can describe analytically the drastic behaviors in the evolutions of the phase and amplitude. In the theory the basic 1D-FEL equations are reduced to a nonlinear pendulum equation with respect to the ponderomotive phase.
Cichalewski, w
2010-01-01
The high power amplifiers transfer characteristics nonlinearities can have a negative influence on the overall system performance. This is also true for the TESLA superconducting cavities accelerating field parameters control systems. This Low Level Radio Frequency control systems uses microwave high power amplifiers (like 10 MW klystrons) as actuators in the mentioned feedback loops. The amplitude compression and phase deviations phenomena introduced to the control signals can reduce the feedback performance and cause electron beam energy instabilities. The transfer characteristics deviations in the Free Electron Laser in Hamburg experiment have been investigated. The outcome of this study together with the description of the developed linearization method based on the digital predistortion approach have been described in this paper. Additionally, the results from the linearization tool performance tests in the FLASH's RF systems have been placed.
Nonlinear dynamics and bifurcation mechanisms in intense electron beam with virtual cathode
Frolov, Nikita S.; Kurkin, Semen A.; Koronovskii, Alexey A.; Hramov, Alexander E.
2017-07-01
In this paper we report on the results of investigations of nonlinear dynamics and bifurcation mechanisms in intense electron beam with virtual cathode in micrometer-scaled source of sub-THz electromagnetic radiation. The numerical analysis is provided by means of 3D electromagnetic particle-in-cell (PIC) simulation. We have studied evolution of the system dynamics with the change of beam current value by means of Fourier and bifurcation analysis. The bifurcation diagram has identified a number of the alternating regions of beam current with regular or chaotic regimes of system dynamics. The study of spatiotemporal dynamics of formed electron structures in the beam has revealed the physical mechanisms responsible for the regimes switchings in the system.
Kyriakos, Alexander G.
2004-01-01
The present paper is the continuity of the previous papers "Non-linear field theory" I and II. Here on the basis of the electromagnetic representation of Dirac's electron theory we consider the geometrical distribution of the electromagnetic fields of the electron-positron. This gives the posibility to obtain the explanation and solution of many fundamental problems of the QED.
Energy Technology Data Exchange (ETDEWEB)
Stancari, G. [Fermilab; Carlson, K. [Fermilab; McGee, M. W. [Fermilab; Nobrega, L. E. [Fermilab; Romanov, A. L. [Fermilab; Ruan, J. [Fermilab; Valishev, A. [Fermilab; Noll, D. [Frankfurt U.
2015-06-01
Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.
Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers
Fabiano, Simone; Sani, Negar; Kawahara, Jun; Kergoat, Loïg; Nissa, Josefin; Engquist, Isak; Crispin, Xavier; Berggren, Magnus
2017-01-01
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability—functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors. PMID:28695197
Structural, electronic, linear, and nonlinear optical properties of ZnCdTe{sub 2} chalcopyrite
Energy Technology Data Exchange (ETDEWEB)
Ouahrani, Tarik [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P. 230, Tlemcen 13000 (Algeria); Reshak, Ali H. [Institute of Physical Biology, South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Microelectronic Engineering, University of Malaysia Perlis (UniMAP), Block A, Kompleks Pusat Pengajian, 02600 Arau Jejawi, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Baltache, H.; Amrani, B. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Bouhemadou, A. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Faculty of Sciences, Department of Physics, University of Setif, Setif 19000 (Algeria)
2011-03-15
We report results of first-principles density functional calculations using the full-potential linearized augmented plane wave method. The generalized gradient approximation (GGA) and the Engel-Vosko-GGA (EV-GGA) formalism were used for the exchange-correlation energy to calculate the structural, electronic, linear, and nonlinear optical properties of the chalcopyrite ZnCdTe{sub 2} compound. The valence band maximum and the conduction band minimum are located at the {gamma}-point, resulting in a direct band gap of about 0.71 eV for GGA and 1.29 eV for EV-GGA. The results of bulk properties, such as lattice parameters (a, c, and u), bulk modulus B, and its pressure derivative B' are evaluated. The optical properties of this compound, namely the real and the imaginary parts of the dielectric function, reflectivity, and refractive index, show a considerable anisotropy as a consequence ZnCdTe{sub 2} posseses a strong birefringence. In addition, the extinction coefficient, the electron energy loss function, and the nonlinear susceptibility are calculated and their spectra are analyzed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Nonlinear reflection of high-amplitude laser pulses from relativistic electron mirrors
Kulagin, V. V.; Kornienko, V. N.; Cherepenin, V. A.
2016-04-01
A coherent X-ray pulse of attosecond duration can be formed in the reflection of a counterpropagating laser pulse from a relativistic electron mirror. The reflection of a high-amplitude laser pulse from the relativistic electron mirror located in the field of an accelerating laser pulse is investigated by means of two-dimensional (2D) numerical simulation. It is shown that provided the amplitude of the counterpropagating laser pulse is several times greater than the amplitude of the accelerating laser pulse, the reflection process is highly nonlinear, which causes a significant change in the X-ray pulse shape and its shortening up to generation of quasi-unipolar pulses and single-cycle pulses. A physical mechanism responsible for this nonlinearity of the reflection process is explained, and the parameters of the reflected X-ray pulses are determined. It is shown that the duration of these pulses may constitute 50 - 60 as, while their amplitude may be sub-relativistic.
Chen, Guannan
Understanding the effects of finite size and dimensionality on the interaction of light with nanoscale semiconductor heterostructure is central to identifying and exploiting novel modes in optoelectronic devices. In type-I heterostructured core-shell GaAs/AlxGa1-xAs nanowires, the real space transfer (RST) of photogenerated hot electrons across the interface from the GaAs core to the AlxGa1-xAs shell forms the basis of a new family of optoelectronic devices by a carefully designed and optimized nanofabrication process. Due to the large mobility difference, we observed negative differential resistance (NDR) on single nanowire devices. External modulation of the transfer rates, manifested as a large tunability of the voltage onset of NDR, is achieved using three different modes: electrostatic gating, incident photon flux, and photon energy. In this dissertation, the physics of coupling of external control to transfer rate was investigated. The combined influences of geometric confinement, heterojunction shape and carrier scattering on hot-electron transfer is discussed. Temperature-dependent transport study under monochromatic tunable laser illumination reveals an ultrafast carrier dynamics related to RST of excess carriers, which provides an insight into hot carrier cooling. Device element showing adjustable phase shift and frequency doubling of ac modulation is demonstrated. For a full understanding, Carrier transport properties are probed through electron beam induced current, which is capable of imaging sub-surface feature in excess carrier transport. Along with simulation of injected electron trajectories, selective probing of core and shell by tuning electron beam energies reveals axial and bias dependent transport along parallel channels. The drift and diffusion component of the excess carrier current is deconvoluted from a coupled decay length, from which lower than bulk shell electron mobility is extracted. A precise knowledge of band edge discontinuities at
Menon, P. K. A.; Badgett, M. E.; Walker, R. A.
1992-01-01
Trajectory-control laws based on singular-perturbation theory and nonlinear dynamical modeling. Nonlinear maneuver autopilot commands flight-test trajectories of F-15 airplane. Underlying theory of controller enables separation of variables processed in fast and slow control loops, reducing amount of computation required.
Energy Technology Data Exchange (ETDEWEB)
Moran, M.J.
1976-11-15
The investigation of two poorly understood but technologically important physical properties of silicate glasses and related materials is described. The use of Electron Paramagnetic Resonance to investigate the nature of radiation-induced damage in glasses exposed to a variety of high-energy radiation sources is discussed first. Second, the measurement of the nonlinear index of refraction coefficient in a variety of optical materials related to the design of high-power laser systems is described. The radiation damage investigations rely heavily on the comparison of experimental results for different experimental situations. The comparison of EPR lineshapes, absolute spin densities and power saturation behavior is used to probe a variety of microscopic and macroscopic aspects of radiation damage in glasses. Comparison of radiation damage associated with exposure to gamma rays and fast neutrons (and combinations thereof) are interpreted in terms of the microscopic damage mechanisms which are expected to be associated with the specific radiations. Comparison of radiation damage behavior in different types of glasses is also interpreted in terms of the behavior expected for the specific materials. The body of data which is generated is found to be internally self-consistent and is also generally consistent with the radiation damage behavior expected for specific situations. A new and versatile technique for measuring the nonlinear index of refraction coefficient, n/sub 2/, in optical materials is described. The technique utilizes a 1 ns pulsed neodymium-glass laser system and time-resolved interferometry to determine the ratio of the coefficient n/sub 2/ of sample materials to the n/sub 2/ of CS/sub 2/. This method avoids some of the complications associated with performing absolute measurements of n/sub 2/ and allows the use of a relatively simple experimental technique. The measurements determine the nonlinear index ratios of the samples with an accuracy of about
Filicori, Fabio; Traverso, Pier Andrea; Florian, Corrado; Borgarino, Mattia
2004-05-01
The basic features of the recently proposed Charge-Controlled Non-linear Noise (CCNN) model for the prediction of low-to-high-frequency noise up-conversion in electron devices under large-signal RF operation are synthetically presented. It is shown that the different noise generation phenomena within the device can be described by four equivalent noise sources, which are connected at the ports of a "noiseless" device model and are non-linearly controlled by the time-varying instantaneous values of the intrinsic device voltages. For the empirical identification of the voltage-controlled equivalent noise sources, different possible characterization procedures, based not only on conventional low-frequency noise data, but also on different types of noise measurements carried out under large-signal RF operating conditions are discussed. As an example of application, the measurement-based identification of the CCNN model for a GaInP heterojunction bipolar microwave transistor is presented. Preliminary validation results show that the proposed model can describe with adequate accuracy not only the low-frequency noise of the HBT, but also its phase-noise performance in a prototype VCO implemented by using the same monolithic GaAs technology.
Rury, Aaron S.
2016-06-01
This study reports experimental, computational, and theoretical evidence for a previously unobserved coherent phonon-phonon interaction in an organic solid that can be described by the application of Fano's analysis to a case without the presence of a continuum. Using Raman spectroscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700 cm-1 we assign as phonons whose position and line-shape asymmetry depend on the sample temperature and light scattering excitation energy. Density functional theory calculations find two nearly degenerate phonons possessing frequencies near the values found in experiment that share similar atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone. Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin of the asymmetric features of each peak's line shape to an interaction between two discrete phonons via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to qualify the temperature dependence of the magnitude of this coupling in the valence band of quinhydrone. These results broaden the range of phonon-phonon interactions in materials in general while also highlighting the rich physics and fundamental attributes specific to organic solids that may determine their applicability in next generation electronics and photonics technologies.
Energy Technology Data Exchange (ETDEWEB)
Gaur, Gurudatt; Das, Amita [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2012-07-15
The study of electron velocity shear driven instability in electron magnetohydrodynamics (EMHD) regime in three dimensions has been carried out. It is well known that the instability is non-local in the plane defined by the flow direction and that of the shear, which is the usual Kelvin-Helmholtz mode, often termed as the sausage mode in the context of EMHD. On the other hand, a local instability with perturbations in the plane defined by the shear and the magnetic field direction exists which is termed as kink mode. The interplay of these two modes for simple sheared flow case as well as that when an external magnetic field exists has been studied extensively in the present manuscript in both linear and nonlinear regimes. Finally, these instability processes have been investigated for the exact 2D dipole solutions of EMHD equations [M. B. Isichenko and A. N. Marnachev, Sov. Phys. JETP 66, 702 (1987)] for which the electron flow velocity is sheared. It has been shown that dipoles are very robust and stable against the sausage mode as the unstable wavelengths are typically longer than the dipole size. However, we observe that they do get destabilized by the local kink mode.
Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity.
Srinivasan, K; Senthilkumar, D V; Murali, K; Lakshmanan, M; Kurths, J
2011-06-01
Experimental observations of typical kinds of synchronization transitions are reported in unidirectionally coupled time-delay electronic circuits with a threshold nonlinearity and two time delays, namely feedback delay τ(1) and coupling delay τ(2). We have observed transitions from anticipatory to lag via complete synchronization and their inverse counterparts with excitatory and inhibitory couplings, respectively, as a function of the coupling delay τ(2). The anticipating and lag times depend on the difference between the feedback and the coupling delays. A single stability condition for all the different types of synchronization is found to be valid as the stability condition is independent of both the delays. Further, the existence of different kinds of synchronizations observed experimentally is corroborated by numerical simulations and from the changes in the Lyapunov exponents of the coupled time-delay systems.
Semiclassical description of nonlinear electron-positron photoproduction in strong laser fields
Meuren, Sebastian; Di Piazza, Antonino
2015-01-01
The nonlinear Breit-Wheeler process is studied in the presence of strong and short laser pulses. We show that for a relativistically intense plane-wave laser field many aspects of the momentum distribution for the produced electron-positron pair like its extend, region of highest probability and carrier-envelope phase effects can be explained from the classical evolution of the created particles in the background field. To this end we verify that the local constant-crossed field approximation is also appropriate for the calculation of the spectrum if applied on the probability-amplitude level. To compare the exact expressions with the semiclassical approach, we introduce a very fast numerical scheme, which makes it feasible to completely resolve the interference structure of the spectrum over the available multidimensional phase space.
Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy
Kaiser, Thomas; Qi, Jing; Klein, Angela; Steinert, Michael; Menzel, Christoph; Rockstuhl, Carsten; Pertsch, Thomas
2015-01-01
We report on the investigation of an advanced circular plasmonic nanoantenna under ultrafast excitation using nonlinear photoemission electron microscopy (PEEM) under near-normal incidence. The circular nanoantenna is enhanced in its performance by a supporting grating and milled out from a gold film. The considered antenna shows a sophisticated physical resonance behavior that is ideal to demonstrate the possibilities of PEEM for the experimental investigations of plasmonic effects on the nanoscale. Field profiles of the antenna resonance for both possible linear polarizations of the incident field are measured with high spatial resolution. In addition, outward propagating Hankel plasmons, which are also excited by the structure, are measured and analyzed. We compare our findings to measurements of an isolated plasmonic nanodisc resonator and scanning near-field optical microscopy (SNOM) measurements of both structures. All results are in very good agreement with numerical simulations as well as analytial mo...
Tanjia, Fatema; Fedele, Renato; Shukla, P K; Jovanovic, Dusan
2011-01-01
A numerical analysis of the self-interaction induced by a relativistic electron/positron beam in the presence of an intense external longitudinal magnetic field in plasmas is carried out. Within the context of the Plasma Wake Field theory in the overdense regime, the transverse beam-plasma dynamics is described by a quantumlike Zakharov system of equations in the long beam limit provided by the Thermal Wave Model. In the limiting case of beam spot size much larger than the plasma wavelength, the Zakharov system is reduced to a 2D Gross-Pitaevskii-type equation, where the trap potential well is due to the external magnetic field. Vortices, "beam halos" and nonlinear coherent states (2D solitons) are predicted.
Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers.
Shen, Xuling; Li, Wenxue; Yan, Ming; Zeng, Heping
2012-08-15
We demonstrate a convenient approach to precisely tune the polarization state of a nonlinear-polarization-rotation mode-locked Yb-doped fiber laser by using an electronic polarization controller. It is shown to benefit self-starting of mode-locking states, with precise tuning of the spectral profile, pulse width, and carrier-envelope offset frequency. The pulse width changed linearly by 0.78 ps in the time domain, and the carrier-envelope offset frequency shifted ~77.5 MHz in the frequency domain with a slight change of the driving voltage of 30.7 mV applied on the controller, corresponding to a polarization rotation of 0.0135π. This facilitated precise and automatic regeneration of a particular mode-locking state by setting an accurate voltage at the polarization controller with a programmed microprocessor control unit.
Energy Technology Data Exchange (ETDEWEB)
Rasch, Kevin M.; Hu, Shuming; Mitas, Lubos [Center for High Performance Simulation and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)
2014-01-28
We elucidate the origin of large differences (two-fold or more) in the fixed-node errors between the first- vs second-row systems for single-configuration trial wave functions in quantum Monte Carlo calculations. This significant difference in the valence fixed-node biases is studied across a set of atoms, molecules, and also Si, C solid crystals. We show that the key features which affect the fixed-node errors are the differences in electron density and the degree of node nonlinearity. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems, provide new perspectives on the origins of the fixed-node biases in calculations of molecular and condensed systems, and carry implications for pseudopotential constructions for heavy elements.
Rasch, Kevin M.; Hu, Shuming; Mitas, Lubos
2014-01-01
We elucidate the origin of large differences (two-fold or more) in the fixed-node errors between the first- vs second-row systems for single-configuration trial wave functions in quantum Monte Carlo calculations. This significant difference in the valence fixed-node biases is studied across a set of atoms, molecules, and also Si, C solid crystals. We show that the key features which affect the fixed-node errors are the differences in electron density and the degree of node nonlinearity. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems, provide new perspectives on the origins of the fixed-node biases in calculations of molecular and condensed systems, and carry implications for pseudopotential constructions for heavy elements.
Agapitov, Oleksiy; Drake, James; Mozer, Forrest
2016-04-01
Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.
Directory of Open Access Journals (Sweden)
Nam Lyong Kang
2013-07-01
Full Text Available The projection-reduction method introduced by the present authors is known to give a validated theory for optical transitions in the systems of electrons interacting with phonons. In this work, using this method, we derive the linear and first order nonlinear optical conductivites for an electron-impurity system and examine whether the expressions faithfully satisfy the quantum mechanical philosophy, in the same way as for the electron-phonon systems. The result shows that the Fermi distribution function for electrons, energy denominators, and electron-impurity coupling factors are contained properly in organized manners along with absorption of photons for each electron transition process in the final expressions. Furthermore, the result is shown to be represented properly by schematic diagrams, as in the formulation of electron-phonon interaction. Therefore, in conclusion, we claim that this method can be applied in modeling optical transitions of electrons interacting with both impurities and phonons.
Institute of Scientific and Technical Information of China (English)
HAO Dong-shan; L(U) Jian
2005-01-01
The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-captured electron phase orbits from periodicity to non-periodicity is found after the energy has been exchanged between the electron and photons. With the increase of the absorbed photon number n by an electron,this evolution will be more and more intense, while which is rapidly decreased with the enhancement of the collision non-flexibility ξ and their initial speeds of the electrons and photons, but this evolution is lower than that in the high power laser field. When the electrons are captured by the laser field, the evolution is finished, and the electrons will stably transport,and the photons don't provide the energy for these electrons any more.
Institute of Scientific and Technical Information of China (English)
PENG,Qiang(彭强); HUANG,Yan(黄艳); LU,Zhi-Yun(卢志云); QIN,Sheng-Ying(秦圣英); XIE,Ming-Gui(谢明贵); GAO,Wei-Xianb(高维先); PENG,Jun-Biao(彭俊彪); CAO,Yong(曹镛)
2004-01-01
Two novel fluorene-based copolymers (PFSD and PFMD) containing squaric acid or maleimide unit in the main chain were synthesized in good yields by Suzuki coupling reaction. The resulting polymers possess excellent thermal stability, high electron affinity and high photoluminescence (PL) quantum yields. They can fluoresce in yellow-light range due to either the charge transfer between a fluorene segment and an electron-deficient containing squaric acid/maleimide segment of the polymers or the Forster energy transfer between different polymer chains.The results from PL measurements of the isothermally heated polymer thin films show that the commonly observed aggregate excimer formation in polyfluorenes is very effectively suppressed in these two polymers due to the nonlinear structures of maleimide and squaric acid moieties. Double-layer polymer light-emitting diodes (PLED)were fabricated using the resulting polymers as the emitting layers and Ba or Mg :Ag (V :V= 10 :1) as cathodes.All the devices show bright yellow emission (562-579 nm) with different maximum external quantum efficiencies (0.006%-1.13%). Compared with the other devices, indium-tin oxide (ITO)/polyethylenedioxythiophene (PEDOT):polystyrene sulfonic acid (PSS)/PFMD/Mg:Ag has the higher maximum external quantum efficiency of 1.13% at 564 cd/m2 with a bias of 8.4 V.
Energy Technology Data Exchange (ETDEWEB)
Gill, Tarsem Singh [Dept. of Physics, Guru Nanak Dev Univ., Amritsar (India); Bala, Parveen [Dept. of Math. Stat. and Physics, Punjab Agricultural Univ., Ludhiana (India); Kaur, Harvinder [Dept. of Physics, Khalsa Coll., Amritsar (India)
2010-04-15
In the present investigation, we have studied ion-acoustic solitary waves in a plasma consisting of warm positive and negative ions and nonisothermal electron distribution. We have used reductive perturbation theory (RPT) and derived a dispersion relation which supports only two ion-acoustic modes, viz. slow and fast. The expression for phase velocities of these modes is observed to be a function of parameters like nonisothermality, charge and mass ratio, and relative temperature of ions. A modified Korteweg-de Vries (KdV) equation with a (1+1/2) nonlinearity, also known as Schamel-mKdV model, is derived. RPT is further extended to include the contribution of higher-order terms. The results of numerical computation for such contributions are shown in the form of graphs in different parameter regimes for both, slow and fast ion-acoustic solitary waves having several interesting features. For the departure from the isothermally distributed electrons, a generalized KdV equation is derived and solved. It is observed that both rarefactive and compressive solitons exist for the isothermal case. However, nonisothermality supports only the compressive type of solitons in the given parameter regime. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan - 731 204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700 075 (India)
2015-09-15
A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.
Ayten, B.; Westerhof, E.; ASDEX Upgrade team,
2014-01-01
Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived
Nonlinear analysis of wiggler-imperfections in free-electron lasers
Energy Technology Data Exchange (ETDEWEB)
Freund, H.P. [Naval Research Lab., Washington, DC (United States); Yu, L.H. [Brookhaven National Lab., Upton, NY (United States)
1995-12-31
We present an analysis of the effect of wiggler imperfections in FELs using a variety of techniques. Our basic intention is to compare wiggler averaged nonlinear simulations to determine the effect of various approximations on the estimates of gain degradation due to wiggler imperfections. The fundamental assumption in the wiggler-averaged formulations is that the electrons are described by a random walk model, and an analytic representation of the orbits is made. This is fundamentally different from the approach taken for the non-wiggler-averaged formulation in which the wiggler imperfections are specified at the outset, and the orbits are integrated using a field model that is consistent with the Maxwell equations. It has been conjectured on the basis of prior studies using the non-wiggler-averaged formalism that electrons follow a {open_quotes}meander line{close_quotes} through the wiggler governed by the specific imperfections; hence, the electrons behave more as a ball-in-groove than as a random walk. This conjecture is tested by comparison of the wiggler-averaged and non-wiggler-averaged simulations. In addition, two different wiggler models are employed in the non-wiggler-averaged simulation: one based upon a parabolic pole face wiggler which is not curl and divergence free in the presence of wiggler imperfections, and a second model in which the divergence and z-component of the curl vanish identically. This will gauge the effect of inconsistencies in the wiggler model on the estimation of the effect of the imperfections. Preliminary results indicate that the inconsistency introduced by the non-vanishing curl and divergence result in an overestimation of the effect of wiggler imperfections on the orbit. The wiggler-averaged simulation is based upon the TDA code, and the non-wiggler-averaged simulation is a variant of the ARACHNE and WIGGLIN codes called MEDUSA developed to treat short-wavelength Gauss-Hermite modes.
Nonlinear ion-acoustic solitary waves with warm ions and non-Maxwellian electrons in space plasmas
Hussain Shah, Khalid; Qureshi, Nouman
2017-04-01
Electrons velocity distributions are often observed with non-Maxwellian features such flat tops at low energies and/or superthermal tails at high energies from different regions of near Earth plasmas such as Earth's bow shock, auroral zone and magnetosphere by numerous satellites. Such non-Maxwellian distributions are well modelled by generalized (r,q) distribution or Cairns distribution. Solitons are nonlinear solitary structures and are integral part of space plasmas. In this paper, we present a fluid model containing Cairns (r,q) distributed non-Maxwellian electrons and derive the Sagdeev potential for fully nonlinear fluid equations. We found that compressive solitons can be developed in such a plasma. The results from our model can be used to interpret solitary structures in space plasmas when electrons are obeying the non-Maxwellian flat tops along with the high energy tails.
Ying, Xiaoguo; Liu, Wei; Hui, Guohua
2015-01-01
In this paper, litchi freshness rapid non-destructive evaluating method using electronic nose (e-nose) and non-linear stochastic resonance (SR) was proposed. EN responses to litchi samples were continuously detected for 6 d Principal component analysis (PCA) and non-linear stochastic resonance (SR) methods were utilized to analyze EN detection data. PCA method could not totally discriminate litchi samples, while SR signal-to-noise ratio (SNR) eigen spectrum successfully discriminated all litchi samples. Litchi freshness predictive model developed using SNR eigen values shows high predictive accuracy with regression coefficients R(2) = 0 .99396.
Sun, Jia-Lin; Zhang, Wei; Wei, Jinquan; Gu, Bingfu
2014-01-01
We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor (MIEC) composite nanostructures made of superionic conductor RbAg4I5 films and carbon nanotube (CNT) bundle spiderwebs. Our experimental and theoretical studies indicate that the formation of ion-electron bound states (IEBSs) leads to strong ion-electron interference effect and interesting electronic transport of CNT, such as nonlinear current-voltage (I-V) characteristics and novel temperature dependence of the current. With increasing temperature, the hybrid nanostructures show rich phases with different dependence of current on temperature, which is related to the structural phase transition of RbAg4I5 and the transition of dissociation of IEBSs. The ion-modulation of the electric conductivity in such MIEC composite nanostructures with great tunability has been used to design new ionic-electronic composite nano-devices with function like field effect transistor.
Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.
Krafft, C; Volokitin, A
2013-05-01
Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.
van der Schaaf, Marieke E; Warmerdam, Eveline; Crone, Eveline A; Cools, Roshan
2011-10-01
Abnormalities in value-based decision making during adolescence have often been attributed to non-linear, inverted-U shaped development of reward-related processes. This hypothesis is strengthened by functional imaging work revealing an inverted-U shaped relationship between age and reward-related activity in the striatum. However, behavioural studies have mostly reported linear rather than non-linear increases in reward-related performance. In the present study, we investigated the mechanisms underlying the development of reward- and punishment-related processing across four age groups using a reversal learning task previously shown to depend on striatal dopamine. We demonstrate both linear and non-linear age effects on distinct components of reversal learning. Specifically, results revealed a linear shift with age in terms of valence-dependent reversal learning, with children exhibiting better punishment than reward reversal learning, adults exhibiting better reward than punishment reversal learning and adolescents exhibiting an intermediate performance pattern. In addition, we also observed a non-linear, inverted-U shaped relationship between age and valence-independent reversal learning, which was due to aberrant ability of adolescents to update behaviour in response to negative performance feedback. These findings indicate that the (linear or nonlinear) nature of the relationship between age and reward learning depends on the type of reward learning under study.
Trajectory Synthesis for Fisher Information Maximization
Wilson, Andrew D.; Schultz, Jarvis A.; Murphey, Todd D.
2015-01-01
Estimation of model parameters in a dynamic system can be significantly improved with the choice of experimental trajectory. For general nonlinear dynamic systems, finding globally “best” trajectories is typically not feasible; however, given an initial estimate of the model parameters and an initial trajectory, we present a continuous-time optimization method that produces a locally optimal trajectory for parameter estimation in the presence of measurement noise. The optimization algorithm is formulated to find system trajectories that improve a norm on the Fisher information matrix (FIM). A double-pendulum cart apparatus is used to numerically and experimentally validate this technique. In simulation, the optimized trajectory increases the minimum eigenvalue of the FIM by three orders of magnitude, compared with the initial trajectory. Experimental results show that this optimized trajectory translates to an order-of-magnitude improvement in the parameter estimate error in practice. PMID:25598763
Gerousis, Costa P.
It is currently predicted that semiconductor device scaling will end at the 22-nm device feature size (7 nm physical channel length) according to the International Technology Roadmap for Semiconductors. The main challenge is then to develop innovative technologies that will extend the scaling beyond roadmap projection. Any new technology must be well matched with complementary metal oxide semiconductor (CMOS) technology and scaleable beyond CMOS scaling projections and must provide low-power high-speed signal processing. Nanotechnology will become an appealing option for developing devices for integrated circuits with dimensions and performances well beyond roadmap predictions. Such devices, based on the controllable transfer of charge between dots or 'islands', can take advantage of the quantum mechanical effects, such as tunneling and energy quantization, which would normally occur at the nanometer scale. An outstanding challenge is in arranging such nanodevices in new architectures that can be integrated on a single chip. In particular, locally interconnected architectures are believed to be necessary to alleviate the problems associated with increasing interconnect length and complexity in ultra-dense circuits. The goal of this work is to investigate the use of nanoelectronic structures in cellular non-linear network (CNN) architectures for potential application in future high-density and low-power CMOS-nanodevice hybrid circuits. The operation of the single-electron tunneling (SET) transistor is first reviewed, followed by a discussion of simple CNN linear architectures using a SET inverter topology as the basis for the non-linear transfer characteristics for individual cells to be used in analog processing arrays for image-processing applications. The basic SET CNN cell acts as a summing node that is capacitively coupled to the inputs and outputs of nearest neighbor cells. Monte Carlo simulation results are used to show CNN-like behavior in attempting to
Sung, C.; White, A. E.; Mikkelsen, D. R.; Greenwald, M.; Holland, C.; Howard, N. T.; Churchill, R.; Theiler, C.
2016-04-01
Long wavelength turbulent electron temperature fluctuations (kyρs 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (kyρs ≲ 1.7) performed at r/a ˜ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the "Transport Shortfall" [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].
Energy Technology Data Exchange (ETDEWEB)
Sung, C., E-mail: csung@physics.ucla.edu [University of California, Los Angeles, Los Angeles, California 90095 (United States); White, A. E.; Greenwald, M.; Howard, N. T. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Mikkelsen, D. R.; Churchill, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Holland, C. [University of California, San Diego, La Jolla, California 92093 (United States); Theiler, C. [Ecole Polytechnique Fédérale de Lausanne, SPC, Lausanne 1015 (Switzerland)
2016-04-15
Long wavelength turbulent electron temperature fluctuations (k{sub y}ρ{sub s} < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (k{sub y}ρ{sub s} ≲ 1.7) performed at r/a ∼ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the “Transport Shortfall” [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].
Directory of Open Access Journals (Sweden)
Hong Qin
2003-01-01
Full Text Available Two-stream instabilities in intense charged particle beams, described self-consistently by the nonlinear Vlasov-Maxwell equations, are studied using a 3D multispecies perturbative particle simulation method. The recently developed Beam Equilibrium, Stability and Transport code is used to simulate the linear and nonlinear properties of the electron-proton (e-p two-stream instability observed in the Proton Storage Ring (PSR experiment for a long, coasting beam. Simulations in a parameter regime characteristic of the PSR experiment show that the e-p instability has a dipole-mode structure, and that the growth rate is an increasing function of beam intensity, but a decreasing function of the longitudinal momentum spread. It is also shown that the instability threshold decreases with increasing fractional charge neutralization and increases with increasing axial momentum spread of the beam particles. In the nonlinear phase, the simulations show that the proton density perturbation first saturates at a relatively low level and subsequently grows to a higher level. Finally, the nonlinear space-charge-induced transverse tune spread, which introduces a major growth-rate reduction effect on the e-p instability, is studied for self-consistent equilibrium populations of protons and electrons.
Ayten, B
2013-01-01
Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived previously by Harvey et al, Phys. Rev. Lett. 62 (1989) 426. We study the non-linear electron cyclotron current drive (ECCD) efficiency through bounce-averaged, quasi-linear Fokker-Planck calculations in the magnetic geometry as created by the islands. The calculations are performed for the parameters of a typical NTM stabilization experiment on ASDEX Upgrade. A particular feature of these experiments is that the rays of the EC wave beam propagate tangential to the flux surfaces in the power deposition region. The calculations show significant non-linear effects on the ECCD efficiency, when the ECCD power is increased from its experimental value of 1 MW to a larger value of 4 MW. The nonlinear effects are largest in case of...
Dietrich, Scott
Heterostructures made of semiconductor materials may be one of most versatile environments for the study of the physics of electron transport in two dimensions. These systems are highly customizable and demonstrate a wide range of interesting physical phenomena. In response to both microwave radiation and DC excitations, strongly nonlinear transport that gives rise to non-equilibrium electron states has been reported and investigated. We have studied GaAs quantum wells with a high density of high mobility two-dimensional electrons placed in a quantizing magnetic field. This study presents the observation of several nonlinear transport mechanisms produced by the quantum nature of these materials. The quantum scattering rate, 1tau/q, is an important parameter in these systems, defining the width of the quantized energy levels. Traditional methods of extracting 1tau/q involve studying the amplitude of Shubnikov-de Haas oscillations. We analyze the quantum positive magnetoresistance due to the cyclotron motion of electrons in a magnetic field. This method gives 1tau/q and has the additional benefit of providing access to the strength of electron-electron interactions, which is not possible by conventional techniques. The temperature dependence of the quantum scattering rate is found to be proportional to the square of the temperature and is in very good agreement with theory that considers electron-electron interactions in 2D systems. In quantum wells with a small scattering rate - which corresponds to well-defined Landau levels - quantum oscillations of nonlinear resistance that are independent of magnetic field strength have been observed. These oscillations are periodic in applied bias current and are connected to quantum oscillations of resistance at zero bias: either Shubnikov-de Haas oscillations for single subband systems or magnetointersubband oscillations for two subband systems. The bias-induced oscillations can be explained by a spatial variation of electron
Shin, Tacksoo
2012-01-01
This study introduced various nonlinear growth models, including the quadratic conventional polynomial model, the fractional polynomial model, the Sigmoid model, the growth model with negative exponential functions, the multidimensional scaling technique, and the unstructured growth curve model. It investigated which growth models effectively…
Shin, Tacksoo
2012-01-01
This study introduced various nonlinear growth models, including the quadratic conventional polynomial model, the fractional polynomial model, the Sigmoid model, the growth model with negative exponential functions, the multidimensional scaling technique, and the unstructured growth curve model. It investigated which growth models effectively…
Chattaraj, Pratim Kumar
2010-01-01
The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area of quantum mechanics. Quantum Trajectories brings the expertise of an international panel of experts who focus on the epistemological significance of quantum mechanics through the quantum theory of motion.Emphasizing a classical interpretation of quan
Mezher, M H; Nady, A; Penny, R; Chong, W Y; Zakaria, R
2015-11-20
This paper details the fabrication process for placing single-layer gold (Au) nanoparticles on a planar substrate, and investigation of the resulting optical properties that can be exploited for nonlinear optics applications. Preparation of Au nanoparticles on the substrate involved electron beam deposition and subsequent thermal dewetting. The obtained thin films of Au had a variation in thicknesses related to the controllable deposition time during the electron beam deposition process. These samples were then subjected to thermal annealing at 600°C to produce a randomly distributed layer of Au nanoparticles. Observation from field-effect scanning electron microscope (FESEM) images indicated the size of Au nanoparticles ranges from ∼13 to ∼48 nm. Details of the optical properties related to peak absorption of localized surface plasmon resonance (LSPR) of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear effects on the fabricated Au nanoparticle layers where it strongly relates LSPR and nonlinear optical properties.
Energy Technology Data Exchange (ETDEWEB)
Stancari, Giulio
2014-09-11
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Energy Technology Data Exchange (ETDEWEB)
Jain, Neeraj; Büchner, Jörg [Max Planck/Princeton Center for Plasma Physics, Göttingen (Germany); Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen (Germany)
2014-07-15
Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheets (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.
Stahl, A.; Landreman, M.; Embréus, O.; Fülöp, T.
2017-03-01
Energetic electrons are of interest in many types of plasmas, however previous modeling of their properties has been restricted to the use of linear Fokker-Planck collision operators or non-relativistic formulations. Here, we describe a fully non-linear kinetic-equation solver, capable of handling large electric-field strengths (compared to the Dreicer field) and relativistic temperatures. This tool allows modeling of the momentum-space dynamics of the electrons in cases where strong departures from Maxwellian distributions may arise. As an example, we consider electron runaway in magnetic-confinement fusion plasmas and describe a transition to electron slide-away at field strengths significantly lower than previously predicted.
Stahl, A; Embréus, O; Fülöp, T
2016-01-01
Energetic electrons are of interest in many types of plasmas, however previous modelling of their properties have been restricted to the use of linear Fokker-Planck collision operators or non-relativistic formulations. Here, we describe a fully non-linear kinetic-equation solver, capable of handling large electric-field strengths (compared to the Dreicer field) and relativistic temperatures. This tool allows modelling of the momentum-space dynamics of the electrons in cases where strong departures from Maxwellian distributions may arise. As an example, we consider electron runaway in magnetic-confinement fusion plasmas and describe a transition to electron slide-away at field strengths significantly lower than previously predicted.
Directory of Open Access Journals (Sweden)
Takahashi Hiromi
2015-01-01
Full Text Available The electron-cyclotron (EC -beam refraction due to the presence of plasma was investigated in the Large Helical Device. The transmitted-EC-beam measurement system was constructed and the beam pattern on the opposite side of the irradiated surface was measured using an IR camera. Clear dependence of the EC-beam refraction on the electron density was observed and the beam shift in the toroidal direction showed good agreement with the ray-trace calculation of TRAVIS. The influence of the peripheral density profile and the thermal effect on the beam refraction were discussed.
Energy Technology Data Exchange (ETDEWEB)
Sousa, A.A.; Hohmann-Marriott, M.F.; Zhang, G. [Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bldg. 13, Rm. 3N17, 13 South Drive, Bethesda, MD 20892-5766 (United States); Leapman, R.D. [Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bldg. 13, Rm. 3N17, 13 South Drive, Bethesda, MD 20892-5766 (United States)], E-mail: leapmanr@mail.nih.gov
2009-02-15
A Monte Carlo electron-trajectory calculation has been implemented to assess the optimal detector configuration for scanning transmission electron microscopy (STEM) tomography of thick biological sections. By modeling specimens containing 2 and 3 at% osmium in a carbon matrix, it was found that for 1-{mu}m-thick samples the bright-field (BF) and annular dark-field (ADF) signals give similar contrast and signal-to-noise ratio provided the ADF inner angle and BF outer angle are chosen optimally. Spatial resolution in STEM imaging of thick sections is compromised by multiple elastic scattering which results in a spread of scattering angles and thus a spread in lateral distances of the electrons leaving the bottom surface. However, the simulations reveal that a large fraction of these multiply scattered electrons are excluded from the BF detector, which results in higher spatial resolution in BF than in high-angle ADF images for objects situated towards the bottom of the sample. The calculations imply that STEM electron tomography of thick sections should be performed using a BF rather than an ADF detector. This advantage was verified by recording simultaneous BF and high-angle ADF STEM tomographic tilt series from a stained 600-nm-thick section of C. elegans. It was found that loss of spatial resolution occurred markedly at the bottom surface of the specimen in the ADF STEM but significantly less in the BF STEM tomographic reconstruction. Our results indicate that it might be feasible to use BF STEM tomography to determine the 3D structure of whole eukaryotic microorganisms prepared by freeze-substitution, embedding, and sectioning.
Energy Technology Data Exchange (ETDEWEB)
Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Wilayat, E-mail: walayat76@gmail.com [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)
2014-04-01
Highlights: • FP-LAPW technique is used for calculating the electronic structure. • The band structure shows that the calculated compound is semiconductor. • The complex dielectric function has been calculated. • Nonlinear optical properties has also been calculated. • This compound can be used for molecular engineering of the crystals. - Abstract: Self-consistent calculations is performed using the full potential linear augmented plane wave (FP-LAPW) technique based on density functional theory (DFT) to investigate the electronic band structure, density of states, electronic charge density, linear and non-linear optical properties of α-LiAlTe{sub 2} compound having tetragonal symmetry with space group I4{sup ¯}2d. The electronic structure are calculated using the Ceperley Alder local density approach (CA-LDA), Perdew Burke and Ernzerhof generalize gradient approach (PBE-GGA), Engel–Vosko generalize gradient approach (EVGGA) and modified Becke Johnson approach (mBJ). Band structure calculations of (α-LiAlTe{sub 2}) depict semiconducting nature with direct band gap of 2.35 eV (LDA), 2.48 eV (GGA), 3.05 eV (EVGGA) and 3.13 eV (mBJ), which is comparable to experimental value. The calculated electronic charge density show ionic interaction between Te and Li atoms and polar covalent interaction between Al and Te atoms. Some optical susceptibilities like dielectric constants, refractive index, extension co-efficient, reflectivity and energy loss function have been calculated and analyzed on the basis of electronic structure. The compound α-LiAlTe{sub 2} provides a considerable negative value of birefringence of −0.01. Any anisotropy observed in the linear optical properties which are in favor to enhance the nonlinear optical properties. The symbol χ{sub abc}{sup (2)}(ω) represents the second order nonlinear optical susceptibilities, possess six non-zero components in this symmetry (tetragonal), called: 1 2 3, 2 1 3, 2 3 1, 1 3 2, 3 1 2 and 3 2 1
Directory of Open Access Journals (Sweden)
Daniel Guyomar
2011-06-01
Full Text Available This paper aims at providing an up-to-date review of nonlinear electronic interfaces for energy harvesting from mechanical vibrations using piezoelectric coupling. The basic principles and the direct application to energy harvesting of nonlinear treatment of the output voltage of the transducers for conversion enhancement will be recalled, and extensions of this approach presented. Latest advances in this field will be exposed, such as the use of intermediate energy tanks for decoupling or initial energy injection for conversion magnification. A comparative analysis of each of these techniques will be performed, highlighting the advantages and drawbacks of the methods, in terms of efficiency, performance under several excitation conditions, complexity of implementation and so on. Finally, a special focus of their implementation in the case of low voltage output transducers (as in the case of microsystems will be presented.
Indian Academy of Sciences (India)
O Rahman; A A Mamun
2013-06-01
A theoretical investigation of dust-acoustic solitary waves in three-component unmagnetized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold mobile dust was done. It has been found that, owing to the departure from the Maxwellian electron distribution to a vortex-like one, the dynamics of small but finite amplitude dust-acoustic (DA) waves is governed by a nonlinear equation of modified Korteweg–de Vries (mKdV) type (instead of KdV). The reductive perturbation method was employed to study the basic features (amplitude, width, speed, etc.) of DA solitary waves which are significantly modified by the presence of trapped electrons. The implications of our results in space and laboratory plasmas are briefly discussed.
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2016-09-01
This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped-clamped boundary conditions.
Bhakta, Subrata; Ghosh, Uttam; Sarkar, Susmita
2017-02-01
In this paper, we have investigated the effect of secondary electron emission on nonlinear propagation of dust acoustic waves in a complex plasma where equilibrium dust charge is negative. The primary electrons, secondary electrons, and ions are Boltzmann distributed, and only dust grains are inertial. Electron-neutral and ion-neutral collisions have been neglected with the assumption that electron and ion mean free paths are very large compared to the plasma Debye length. Both adiabatic and nonadiabatic dust charge variations have been separately taken into account. In the case of adiabatic dust charge variation, nonlinear propagation of dust acoustic waves is governed by the KdV (Korteweg-de Vries) equation, whereas for nonadiabatic dust charge variation, it is governed by the KdV-Burger equation. The solution of the KdV equation gives a dust acoustic soliton, whose amplitude and width depend on the secondary electron yield. Similarly, the KdV-Burger equation provides a dust acoustic shock wave. This dust acoustic shock wave may be monotonic or oscillatory in nature depending on the fact that whether it is dissipation dominated or dispersion dominated. Our analysis shows that secondary electron emission increases nonadiabaticity induced dissipation and consequently increases the monotonicity of the dust acoustic shock wave. Such a dust acoustic shock wave may accelerate charge particles and cause bremsstrahlung radiation in space plasmas whose physical process may be affected by secondary electron emission from dust grains. The effect of the secondary electron emission on the stability of the equilibrium points of the KdV-Burger equation has also been investigated. This equation has two equilibrium points. The trivial equilibrium point with zero potential is a saddle and hence unstable in nature. The nontrivial equilibrium point with constant nonzero potential is a stable node up to a critical value of the wave velocity and a stable focus above it. This critical
On nonlinear control design for autonomous chaotic systems of integer and fractional orders
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Wajdi M. E-mail: wajdi@sharjah.ac.ae; Harb, Ahmad M. E-mail: aharb@just.edu.jo
2003-11-01
In this paper, we address the problem of chaos control for autonomous nonlinear chaotic systems. We use the recursive 'backstepping' method of nonlinear control design to derive the nonlinear controllers. The controller effect is to stabilize the output chaotic trajectory by driving it to the nearest equilibrium point in the basin of attraction. We study two nonlinear chaotic systems: an electronic chaotic oscillator model, and a mechanical chaotic 'jerk' model. We demonstrate the robustness of the derived controllers against system order reduction arising from the use of fractional integrators in the system models. Our results are validated via numerical simulations.
Insuasty, Braulio; Atienza, Carmen; Seoane, Carlos; Martín, Nazario; Garín, Javier; Orduna, Jesús; Alcalá, Rafael; Villacampa, Belén
2004-10-15
A novel D-pi-A system in which tetrathiafulvalene (TTF) and pi-extended TTFs as strong electron donors are covalently connected to a tricarbonyl (eta(6)-arene)chromium complex as the acceptor moiety through a systematically increased conjugated bridge of vinylene units (12a-c, 16a-c) have been synthesized by Wittig-Horner olefination reaction. The electronic spectra as well as the electrochemical data reveal a different behavior of TTF derivatives (12a-c) and of exTTF derivatives (16a-c). Cyclic voltammetry shows the influence of the tricarbonylchromium arene on the oxidation potentials in compounds 12a-c, and no remarkable effect is observed for exTTFs (16a-c). The nonlinear optical properties of 12a-c and 16a-c have been calculated by using the ab initio CPHF/6-31G//B3P86/6-31G model, and the time-dependent density functional theory (TD-DFT) method has been used for the calculation of the electronic transitions. The calculations reveal that an intraligand charge-transfer transition (ILCT) and the metal to ligand charge-transfer transition (MLCT) are responsible for the nonlinear response. In addition, the large angles formed by the ground-state dipole moment and the vectorial hyperpolarizability are responsible for the mubeta values determined experimentally by the EFISH technique.
Jalali, B.; Hon, NK; Tsia, KK
2013-01-01
Periodically poled silicon (PePSi) induces substantial 2nd order optical nonlinearity and at the same time achieves quasi-phase matching. PePSi is made by alternating strain gradients along the waveguide using periodic arrangement of stressed cladding layers. © 2013 OSA.
Otten, Daniel; Rubbert, Sebastian; Ulrich, Jascha; Hassler, Fabian
2016-09-01
Josephson junctions are the most prominent nondissipative and at the same time nonlinear elements in superconducting circuits allowing Cooper pairs to tunnel coherently between two superconductors separated by a tunneling barrier. Due to this, physical systems involving Josephson junctions show highly complex behavior and interesting novel phenomena. Here, we consider an infinite one-dimensional chain of superconducting islands where neighboring islands are coupled by capacitances. We study the effect of Josephson junctions shunting each island to a common ground superconductor. We treat the system in the regime where the Josephson energy exceeds the capacitive coupling between the islands. For the case of two offset charges on two distinct islands, we calculate the interaction energy of these charges mediated by quantum phase slips due to the Josephson nonlinearities. We treat the phase slips in an instanton approximation and map the problem onto a classical partition function of interacting particles. Using the Mayer cluster expansion, we find that the interaction potential of the offset charges decays with a universal inverse-square power-law behavior.
Nonlinear electron acoustic structures generated on the high-potential side of a double layer
Directory of Open Access Journals (Sweden)
R. Pottelette
2009-04-01
Full Text Available High-time resolution measurements of the electron distribution function performed in the auroral upward current region reveals a large asymmetry between the low- and high-potential sides of a double-layer. The latter side is characterized by a large enhancement of a locally trapped electron population which corresponds to a significant part (~up to 30% of the total electron density. As compared to the background hot electron population, this trapped component has a very cold temperature in the direction parallel to the static magnetic field. Accordingly, the differential drift between the trapped and background hot electron populations generates high frequency electron acoustic waves in a direction quasi-parallel to the magnetic field. The density of the trapped electron population can be deduced from the frequency where the electron acoustic spectrum maximizes. In the auroral midcavity region, the electron acoustic waves may be modulated by an additional turbulence generated in the ion acoustic range thanks to the presence of a pre-accelerated ion beam located on the high-potential side of the double layer. Electron holes characterized by bipolar pulses in the electric field are sometimes detected in correlation with these electron acoustic wave packets.
Directory of Open Access Journals (Sweden)
S. C. Buchert
2008-09-01
Full Text Available Observations by the EISCAT Svalbard radar show that electron temperatures T_{e} in the cusp electrojet reach up to about 4000 K. The heat is tapped and converted from plasma convection in the near Earth space by a Pedersen current that is carried by electrons due to the presence of irregularities and their demagnetising effect. The heat is transfered to the neutral gas by collisions. In order to enhance T_{e} to such high temperatures the maximally possible dissipation at 50% demagnetisation must nearly be reached. The effective Pedersen conductances are found to be enhanced by up to 60% compared to classical values. Conductivities and conductances respond significantly to variations of the electric field strength E, and "Ohm's law" for the ionosphere becomes non-linear for large E.
Chen, W; Yu, L M; Ji, X Q; Dong, J Q; Yang, Q W; Liu, Yi; Yan, L W; Zhou, Y; Li, W; Song, X M; Chen, S Y; Cheng, J; Shi, Z B; Duan, X R
2012-01-01
In this letter, it is reported that the ?rst experimental results are associated with the GAM induced by energetic electrons (eEGAM) in HL-2A Ohmic plasma. The energetic-electrons are generated by parallel electric ?elds during magnetic reconnection associated with tearing mode (TM). The eEGAM localizes in the core plasma, i.e. in the vicinity of q=2 surface, and is very di?erent from one excited by the drift-wave turbulence in the edge plasma. The analysis indicated that the eEGAM is provided with the magnetic components, whose intensities depend on the poloidal angles, and its mode numbers are jm/nj=2/0. Further, there exist intense nonlinear interactions among eEGAM, BAEs and strong tearing modes (TMs). These new ?ndings shed light on the underlying physics mechanism for the excitation of the low frequency (LF) Alfv?enic and acoustic uctuations.
Energy Technology Data Exchange (ETDEWEB)
Hassanabadi, Hassan, E-mail: h.hasanabadi@shahroodut.ac.ir [Physics Department, Shahrood University of Technology, P.O. Box 3619995161-316, Shahrood (Iran, Islamic Republic of); Rahimov, Hamed [Physics Department, Shahrood University of Technology, P.O. Box 3619995161-316, Shahrood (Iran, Islamic Republic of); Lu Liangliang [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)
2012-05-15
In this study, a detailed investigation of the nonlinear optical properties such as optical absorption and refractive index change associated with intersubband transitions in a three-electron quantum dot in two dimensions in the presence of the Rashba spin-orbit interaction has been carried out. We present the exact wave functions and energy levels of the system. Numerical results on typical GaAs/AlGaAs materials show that the decrease of the quantum dot radius blueshifts and amplifies the absorption coefficients as well as the refractive index changes, as expected. Additionally, an increase of the optical intensity and relaxation time considerably changes the absorption coefficients and the refractive index changes. - Highlights: Black-Right-Pointing-Pointer We consider a three-electron quantum dot in 2D in the presence of the Rashba spin-orbit interaction. Black-Right-Pointing-Pointer We present the exact wave functions and energy levels of the system. Black-Right-Pointing-Pointer We apply this model for GaAs/AlGaAs materials. Black-Right-Pointing-Pointer The detailed nonlinear optical properties have been investigated.
Electronic dynamics under effect of a nonlinear Morse interaction and a static electric field
Ranciaro Neto, A.; de Moura, F. A. B. F.
2016-11-01
Considering non-interacting electrons in a one-dimension alloy in which atoms are coupled by a Morse potential, we study the system dynamics in the presence of a static electric field. Calculations are performed assuming a quantum mechanical treatment for the electronic transport and a classical Hamiltonian model for the lattice vibrations. We report numerical evidence of the existence of a soliton-electron pair, even when the electric field is turned on, and we offer a description of how the existence of such a phase depends on the magnitude of the electric field and the electron-phonon interaction.
Atkinson, William
2009-11-01
A model is presented that models the disturbance of electrical components by high energy electrons trapped in the Van Allen radiation belts; the model components consists of module computing the electron fluence rate given the altitude, the time of the year, and the sunspot number, a module that transports the electrons through the materials of the electrical component, and a module that computes the charge and electrical fields of the insulating materials as a function of time. A non-linear relationship (the Adameic-Calderwood equation) for the variation of the electrical conductivity with the electrical field strength is used as the field intensities can be quite high due to the small size of the electrical components and the high fluence rate of the electrons. The results show that the electric fields can often be as high as 10 MV/m in materials commonly used in cables such as Teflon and that the field can stay at high levels as long as an hour after the irradiation ends.
Paul, S. N.; Chatterjee, A.; Paul, Indrani
2017-01-01
Nonlinear propagation of ion-acoustic waves in self-gravitating multicomponent dusty plasma consisting of positive ions, non-isothermal two-temperature electrons and negatively charged dust particles with fluctuating charges and drifting ions has been studied using the reductive perturbation method. It has been shown that nonlinear propagation of ion-acoustic waves in gravitating dusty plasma is described by an uncoupled third order partial differential equation which is a modified form of Korteweg-deVries equation, in contraries to the coupled nonlinear equations obtained by earlier authors. Quasi-soliton solution for the ion-acoustic solitary wave has been obtained from this uncoupled nonlinear equation. Effects of non-isothermal two-temperature electrons, gravity, dust charge fluctuation and drift motion of ions on the ion-acoustic solitary waves have been discussed.
Energy Technology Data Exchange (ETDEWEB)
Gao, Tao [Fundamental Science on EHF Laboratory, University of Electronic Science and Technology of China (UESTC), Chengdu 611731 (China); Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016 (China); Xu, Ruimin [Fundamental Science on EHF Laboratory, University of Electronic Science and Technology of China (UESTC), Chengdu 611731 (China); Kong, Yuechan, E-mail: kycfly@163.com; Zhou, Jianjun; Kong, Cen; Dong, Xun; Chen, Tangsheng [Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016 (China)
2015-06-15
We demonstrate highly improved linearity in a nonlinear ferroelectric of Pb(Zr{sub 0.52}Ti{sub 0.48})-gated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). Distinct double-hump feature in the transconductance-gate voltage (g{sub m}-V{sub g}) curve is observed, yielding remarkable enhancement in gate voltage swing as compared to MIS-HEMT with conventional linear gate dielectric. By incorporating the ferroelectric polarization into a self-consistent calculation, it is disclosed that in addition to the common hump corresponding to the onset of electron accumulation, the second hump at high current level is originated from the nonlinear polar nature of ferroelectric, which enhances the gate capacitance by increasing equivalent dielectric constant nonlinearly. This work paves a way for design of high linearity GaN MIS-HEMT by exploiting the nonlinear properties of dielectric.
Institute of Scientific and Technical Information of China (English)
SUN,Gang(孙刚); QIU,Yong-Qing(仇永清); SUN,Hai-Zhu(孙海珠); SU,Zhong-Min(苏忠民); FENG,Jing-Dong(冯静东); ZHU,Yu-Lan(朱玉兰)
2004-01-01
The structures of barbituric acid derivatives substituted with Schiff base were optimized using ab initio HF method at 6-31G basis set.Based on the optimized structures,the electronic spectra were obtained by INDO/CI method.The second-order nonlinear optical (NLO) coefficients βu were calculated according to the sum-over-states (SOS) formula.In addition,the effect of conjugation on electronic spectra and second-order NLO coefficients was investigated.The influence of exchange between C and N atoms as well as the substituted effect on the barbituric acid was discussed.It was indicated that the exchange between C and N atoms on Schiff base is important for enhancing the NLO coefficient of the whole molecule with donor and acceptor (D-A).Meanwhile significant changes in electron donation and acception were observed as substituents changes positions.Among the designed models,molecule 1b has maximal βμ value of 124.65 × 10-30 esu.About molecule 1b,barbituric acid is considered as an accepted electronic group and the position of N atom on Schiff base is close to it.
Perching aerodynamics and trajectory optimization
Wickenheiser, Adam; Garcia, Ephrahim
2007-04-01
Advances in smart materials, actuators, and control architecture have enabled new flight capabilities for aircraft. Perching is one such capability, described as a vertical landing maneuver using in-flight shape reconfiguration in lieu of high thrust generation. A morphing, perching aircraft design is presented that is capable of post stall flight and very slow landing on a vertical platform. A comprehensive model of the aircraft's aerodynamics, with special regard to nonlinear affects such as flow separation and dynamic stall, is discussed. Trajectory optimization using nonlinear programming techniques is employed to show the effects that morphing and nonlinear aerodynamics have on the maneuver. These effects are shown to decrease the initial height and distance required to initiate the maneuver, reduce the bounds on the trajectory, and decrease the required thrust for the maneuver. Perching trajectories comparing morphing versus fixed-configuration and stalled versus un-stalled aircraft are presented. It is demonstrated that a vertical landing is possible in the absence of high thrust if post-stall flight capabilities and vehicle reconfiguration are utilized.
Beta-functions of non-linear $\\sigma$-models for disordered and interacting electron systems
Dell'Anna, Luca
2016-01-01
We provide and study complete sets of one-loop renormalization group equations, calculated at all orders in the interaction parameters, of several Finkel'stein non-linear $\\sigma$-models, the effective field theories describing the diffusive quantum fluctuations in correlated disordered systems. We consider different cases according to the presence of certain symmetries induced by the original random Hamiltonians, and we show that, for interacting systems, the Cartan's classification of symmetry classes is not enough to uniquely determine their scaling behaviors.
Meera, M. R.; Dipuna Das, C. N.; Bena Jothy, V.; Rayar, S. L.
2016-10-01
Nonlinear optics is a topic of much current interest that exhibits a great diversity. This is due to the technological potentials of certain nonlinear optical effects for photonic based technologies. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. In this context, the present work it is attempted to grow NLO active Triglycine phosphate [(NH2CH2COOH)3H3PO4](TGP) crystal from aqueous solution at room temperature by slow evaporation method. The geometry, intermolecular hydrogen bonding and harmonic vibrational wavenumbers of TGP was investigated with the help of B3LYP density functional theory (DFT) methods. Natural Bond Orbital (NBO) analysis confirms the occurrence of strong intermolecular N-H...O hydrogen bond. Second harmonic frequency generation was examined by Kurtz and Perry powder test. Theoretical first order hyperpolarizability value was calculated.
Jain, Neeraj
2016-01-01
The dissipation mechanism by which the magnetic field reconnects in the presence of an external (guide) magnetic field in the direction of the main current is not well understood. In thin electron current sheets (ECS) (thickness ~ an electron inertial length) formed in collisionless magnetic reconnection, electron shear flow instabilities (ESFI) are potential candidates for providing an anomalous dissipation mechanism which can break the frozen-in condition of the magnetic field affecting the structure and rate of reconnection. We investigate the evolution of ESFI in guide field magnetic reconnection. The properties of the resulting plasma turbulence and their dependence on the strength of the guide field are studied. Utilizing 3-D electron-magnetohydrodynamic simulations of ECS we show that, unlike the case of ECS self-consistently embedded in anti-parallel magnetic fields, the evolution of thin ECS in the presence of a guide field (equal to the asymptotic value of the reconnecting magnetic field or larger) ...
Afeyan, Bedros; Crouseilles, Nicolas; Dodhy, Adila; Faou, Erwan; Mehrenberger, Michel; Sonnendrücker, Eric
2014-01-01
KEEN waves are nonlinear, non-stationary, self-organized asymptotic states in Vlasov plasmas outside the scope or purview of linear theory constructs such as electron plasma waves or ion acoustic waves. Nonlinear stationary mode theories such as those leading to BGK modes also do not apply. The range in velocity that is strongly perturbed by KEEN waves depends on the amplitude and duration of the ponderomotive force used to drive them. Smaller amplitude drives create highly localized structures attempting to coalesce into KEEN waves. These cases have much more chaotic and intricate time histories than strongly driven ones. The narrow range in which one must maintain adequate velocity resolution in the weakly driven cases challenges xed grid numerical schemes. What is missing there is the capability of resolving locally in velocity while maintaining a coarse grid outside the highly perturbed region of phase space. We here report on a new Semi-Lagrangian Vlasov-Poisson solver based on conservative non-uniform c...
Guo, Z. B.; Hahm, T. S.
2016-06-01
We investigate zonal flow (ZF) generation in ion temperature gradient driven trapped-electron-mode (ITG-driven TEM) turbulence via modulational instability analysis. We show that the acceleration of a seed ZF is a consequence of the competition of negative radiation pressure (NRP, acting as a driving force) and positive radiation pressure (PRP, acting as a retarding force) of the ITG-driven TEM turbulence. A critical dimensionless ion temperature logarithmic gradient (R/{{L}{{T\\text{i}},\\text{c}}} ) normalized to the major radius is obtained by balancing the NRP- and PRP effects. For \\frac{R}{{{L}{{T\\text{i}}}}}text{i}},\\text{c}}}} , the NRP effect is dominant and the seed ZF is accelerated. Otherwise, the PRP effect is dominant and the seed ZF is decelerated. In addition, a new nonlinear evolution mechanism of the ZF is also proposed. It is shown that the turbulence energy intensity spectrum gets steepened in k-space due to the ZF shearing, which in turn induces nonlinear growth of the ZF.
Mendiratta, Shruti; Lee, Cheng-Hua; Usman, Muhammad; Lu, Kuang-Lieh
2015-10-01
Metal-organic frameworks (MOFs) have been intensively studied over the past decade because they represent a new category of hybrid inorganic-organic materials with extensive surface areas, ultrahigh porosity, along with the extraordinary tailorability of structure, shape and dimensions. In this highlight, we summarize the current state of MOF research and report on structure-property relationships for nonlinear optical (NLO) and dielectric applications. We focus on the design principles and structural elements needed to develop potential NLO and low dielectric (low-κ) MOFs with an emphasis on enhancing material performance. In addition, we highlight experimental evidence for the design of devices for low-dielectric applications. These results motivate us to develop better low-dielectric and NLO materials and to perform in-depth studies related to deposition techniques, patterning and the mechanical performance of these materials in the future.
Simulation of Electrons' Trajectories in the Lunar Electric and Magnetic Field%太阳风电子在月表电磁场中的运动
Institute of Scientific and Technical Information of China (English)
冯永勇; 赵华; 刘振兴
2011-01-01
月表磁异常区的分布是月球探测工程的重要内容.但是由于月表电磁环境错综复杂,通常认为月球表面在特殊的空间天气条件下会带有数千伏电压.以往的空间研究已经证实,表面的带电与放电容易造成卫星仪器的异常或失联.月表电场对电子反射法有重要影响,研究分析不同电磁条件下太阳风电子的运动轨迹,对月表环境(电磁环境,太阳风条件,等离子体参数等)的研究可以更加深入细致.通过模拟向月表运动的太阳风电子的运动轨迹,分析了月表电磁环境的改变对太阳风电子反射的影响,并着重研究了月表电场对电子反射法遥感探测月表磁异常的影响,为探测月表电磁环境提供了重要的信息.%The increasing interest in lunar exploration requires a better understanding of environment at the lunar surface. Like any object in plasma, the surface of the Moon charges to an electric potential that minimizes the total incident current. Surface charging is an universal process affecting all airless regolith-covered bodies. However, there are still many details that remain unclear and need to be discussed to understand those possible processes such as ion sputtering and electrically-driven dust transport. There are also many subjects that require further study, such as the temporal and spatial variation of lunar surface charging. Simulation and analysis of trajectories of the electrons under different conditions would help to predict surface potential, which in turn would benefit the understanding of the lunar environment. In this paper, the solar wind electrons which are moving toward the moon surface are traced to study the effect of surface potential on solar wind electrons reflected by the lunar crustal magnetic field. Statistic of number of electrons that reflected under different conditions is also analyzed. The calculations and simulations show that the variation of either magnetic field or potential
Naima, Boubegra; Abdelkader, Chouaih; Mokhtaria, Drissi; Fodil, Hamzaoui
2014-01-01
The 4,4 dimethyl amino cyano biphenyl crystal (DMACB) is characterized by its nonlinear activity. The intra molecular charge transfer of this molecule results mainly from the electronic transmission of the electro-acceptor (cyano) and electro-donor (di-methyl-amino) groups. An accurate electron density distribution around the molecule has been calculated based on a high-resolution X-ray diffraction study. The data were collected at 123 K using graphite-monochromated Mo K α radiation to sin(β)/λ = 1.24 Å-1. The integrated intensities of 13796 reflections were measured and reduced to 6501 independent reflections with I >= 3σ(I). The crystal structure was refined using the experimental model of Hansen and Coppens (1978). The crystal structure has been validated and deposited at the Cambridge Crystallographic Data Centre with the deposition number CCDC 876507. In this article, we present the thermal motion and the structural analysis obtained from the least-square refinement based on F2 and the electron density distribution obtained from the multipolar model.
Zhang, Xiaohang; Yu, Liuqi; von Molnár, Stephan; Fisk, Zachary; Xiong, Peng
2009-09-04
This work reports a study of the nonlinear Hall effect (HE) in the semimetallic ferromagnet EuB(6). A distinct switch in its Hall resistivity slope is observed in the paramagnetic phase, which occurs at a single critical magnetization over a wide temperature range. The observation is interpreted as the point of percolation for entities of a more conducting and magnetically ordered phase in a less ordered background. With an increasing applied magnetic field, the conducting regions either increase in number or expand beyond the percolation limit, hence increasing the global conductivity and effective carrier density. An empirical two-component model provides excellent scaling and a quantitative fit to the HE data and may be applicable to other correlated electron systems.
Moon, Chanho; Kaneko, Toshiro; Itoh, Kimitaka; Ida, Katsumi; Kobayashi, Tatsuya; Inagaki, Shigeru; Itoh, Sanae-I.; Hatakeyama, Rikizo
2016-11-01
Turbulence in fluids and plasmas is ubiquitous in Nature and in the laboratory. Contrary to the importance of the ‘scale-free’ nature of cascade in neutral fluid turbulence, the turbulence in plasma is characterised by dynamics of distinct length scales. The cross-scale interactions can be highly non-symmetric so as to generate the plasma turbulence structures. Here we report that the system of hyper-fine electron-temperature-gradient (ETG) fluctuations and microscopic drift-wave (DW) fluctuations is strongly influenced by the sign of the gradient of the radial electric field through multiscale nonlinear interactions. The selective suppression effects by radial electric field inhomogeneity on DW mode induce a new route to modify ETG mode. This suppression mechanism shows disparity with respect to the sign of the radial electric field inhomogeneity, which can be driven by turbulence, so that it could be a new source for symmetry breaking in the turbulence structure formation in plasmas.
Intrator, T.; Hershkowitz, N.; Chan, C.
1984-01-01
Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.
Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh
2016-12-01
We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.
Nonlinear kinetic Alfvén waves with non-Maxwellian electron population in space plasmas
Masood, W.; Qureshi, M. N. S.; Yoon, P. H.; Shah, H. A.
2015-01-01
The present work discusses the effects of non-Maxwellian electron distributions on kinetic Alfvén waves in low-beta plasmas. Making use of the two-potential theory and employing the Sagdeev potential approach, the existence of solitary kinetic Alfvén waves having arbitrary amplitude is investigated. It is found that the use of non-Maxwellian population of electrons in the study of kinetic Alfvén waves leads to solutions corresponding to solitary structures that do not exist for Maxwellian electrons. The present investigation solves the riddle of plasma density fluctuations associated with strong electromagnetic perturbations observed by the Freja satellite. The present findings can also be applied to regions of space where various satellite missions have observed the presence of suprathermal populations of plasma species and where the low β assumption is valid.
Nonlinear dust-ion-acoustic waves in a multi-ion plasma with trapped electrons
Indian Academy of Sciences (India)
S S Duha; B Shikha; A A Mamun
2011-08-01
A dusty multi-ion plasma system consisting of non-isothermal (trapped) electrons, Maxwellian (isothermal) light positive ions, warm heavy negative ions and extremely massive charge ﬂuctuating stationary dust have been considered. The dust-ion-acoustic solitary and shock waves associated with negative ion dynamics, Maxwellian (isothermal) positive ions, trapped electrons and charge ﬂuctuating stationary dust have been investigated by employing the reductive perturbation method. The basic features of such dust-ion-acoustic solitary and shock waves have been identiﬁed. The implications of our ﬁndings in space and laboratory dusty multi-ion plasmas are discussed.
Zimbovskaya, Natalya A.
2016-07-01
In this paper, we theoretically analyze steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. The thermally induced charge current in the system is explored using a nonequilibrium Green function formalism. We study the combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both the magnitude and the direction of the thermocurrent, and vibrational signatures may appear.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.
2015-02-01
Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these
Directory of Open Access Journals (Sweden)
W. Lu
2007-06-01
Full Text Available The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels. We demonstrate our results by presenting a sample particle-in-cell (PIC simulation of a 30 fs, 200 TW laser interacting with a 0.75 cm long plasma with density 1.5×10^{18} cm^{-3} to produce an ultrashort (10 fs monoenergetic bunch of self-injected electrons at 1.5 GeV with 0.3 nC of charge. For future higher-energy accelerator applications, we propose a parameter space, which is distinct from that described by Gordienko and Pukhov [Phys. Plasmas 12, 043109 (2005PHPAEN1070-664X10.1063/1.1884126] in that it involves lower plasma densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.
Energy Technology Data Exchange (ETDEWEB)
Martínez-Orozco, J.C. [Unidad Académica de Física. Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. (Mexico); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-11-01
The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size.
Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system
Whelan, D. A.; Stenzel, R. L.
1985-01-01
It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.
Electron Interactions with Non-Linear Polyatomic Molecules and Their Radicals
1993-12-01
Phys. (NY) 19, 262 (1962). 14. T. Koga and T. Matsuhashi, J. Chem. Phys. 88, 1110 (1988). 15. G. Arfken , Mathematical Methods For Physicists, Third...Luther, and J.0. Wilkes, Applied Numerical Methods , New York, N.Y., Wiley, (1969). 4. M. Abramowitz and I. Stegun, Handbook of Mathematical ...approximation for electron scattering from molecules in the gas phase. In addition, a method for calculating the required cross sections by solving the Schr
Electronic structure, bonding, spectra, and linear and nonlinear electric properties of Ti@C28.
Skwara, Bartłomiej; Góra, Robert W; Zaleśny, Robert; Lipkowski, Paweł; Bartkowiak, Wojciech; Reis, Heribert; Papadopoulos, Manthos G; Luis, Josep M; Kirtman, Bernard
2011-09-22
The potential energy surface (PES) of Ti@C(28) has been revisited, and the stationary points have been carefully characterized. In particular, the C(2v) symmetry structure considered previously turns out to be a transition state lying 2.3 kcal/mol above the ground state of C(3v) symmetry at the MP2/6-31G(d) level. A large binding energy of 181.3 kcal/mol is found at the ROMP2/6-31G(d) level. Topological analysis of the generalized Ti@C(28) density reveals four bond paths between Ti and carbon atoms of the host. The character of all four contacts corresponds to a partially covalent closed shell interaction. UV-vis, IR, and Raman spectra are calculated and compared with C(28)H(4). The dipole moment and the static electronic and double harmonic vibrational (hyper)polarizabilities have been obtained. Distortion of the fullerene cage due to encapsulation leads to nonzero diagonal components of the electronic first hyperpolarizability β, and to an increase in the diagonal components of the electronic polarizability α and second hyperpolarizability γ. However, introduction of the Ti atom causes a comparable or larger reduction in most cases due to localized bonding interactions. At the double harmonic level, the average vibrational β is much larger than its electronic counterpart, but the opposite is true for α and for the contribution to γ that has been calculated. There is also a very large anharmonic (nuclear relaxation) contribution to β which results from a shallow PES with four minima separated by very low barriers. Thus, the vibrational γ (and α) may, likewise, become much larger when anharmonicity is taken into account. © 2011 American Chemical Society
Konecny, Lukas; Kadek, Marius; Komorovsky, Stanislav; Malkina, Olga L; Ruud, Kenneth; Repisky, Michal
2016-12-13
The Liouville-von Neumann equation based on the four-component matrix Dirac-Kohn-Sham Hamiltonian is transformed to a quasirelativistic exact two-component (X2C) form and then used to solve the time evolution of the electronic states only. By this means, a significant acceleration by a factor of 7 or more has been achieved. The transformation of the original four-component equation of motion is formulated entirely in matrix algebra, following closely the X2C decoupling procedure of Ilias and Saue [ J. Chem. Phys. 2007 , 126 , 064102 ] proposed earlier for a static (time-independent) case. In a dynamic (time-dependent) regime, however, an adiabatic approximation must in addition be introduced in order to preserve the block-diagonal form of the time-dependent Dirac-Fock operator during the time evolution. The resulting X2C Liouville-von Neumann electron dynamics (X2C-LvNED) is easy to implement as it does not require an explicit form of the picture-change transformed operators responsible for the (higher-order) relativistic corrections and/or interactions with external fields. To illustrate the accuracy and performance of the method, numerical results and computational timings for nonlinear optical properties are presented. All of the time domain X2C-LvNED results show excellent agreement with the reference four-component calculations as well as with the results obtained from frequency domain response theory.
Directory of Open Access Journals (Sweden)
H.-C. Wu (武慧春
2011-07-01
Full Text Available A new way to generate intense attosecond x-ray pulses is discussed. It relies on coherent Thomson scattering (CTS from relativistic electron sheets. A double layer technique is used to generate planar solid-density sheets of monochromatic high-γ electrons with zero transverse momentum such that coherently backscattered light is frequency upshifted by factors up to 4γ^{2}. Here previous work [H.-C. Wu et al., Phys. Rev. Lett. 104, 234801 (2010PRLTAO0031-900710.1103/PhysRevLett.104.234801] is extended to the regime of high-intensity probe light with normalized amplitude a_{0}>1 leading to nonlinear CTS effects such as pulse contraction and steepening. The results are derived both by particle-in-cell (PIC simulation in a boosted frame and by analytic theory. PIC simulation shows that powerful x-ray pulses (1 keV, 10 gigawatt can be generated. They call for experimental verification. Required prerequisites such as manufacture of nanometer-thick target foils is ready and ultrahigh contrast laser pulses should be within reach in the near future.
Collins, P.J.
2005-01-01
In this paper, we present a general framework for describing and studying hybrid systems. We represent the trajectories of the system as functions on a hybrid time domain, and the system itself by its trajectory space, which is the set of all possible trajectories. The trajectory space is given a na
Directory of Open Access Journals (Sweden)
L. S. Konev
2015-09-01
Full Text Available Numerical method for calculation of forward and backward waves of intense few-cycle laser pulses propagating in an optical waveguide with dispersion and cubic nonlinearity of electronic and electronic-vibration nature is described. Simulations made with the implemented algorithm show that accounting for Raman nonlinearity does not lead to qualitative changes in behavior of the backward wave. Speaking about quantitative changes, the increase of efficiency of energy transfer from the forward wave to the backward wave is observed. Presented method can be also used to simulate interaction of counterpropagating pulses.
Energy Technology Data Exchange (ETDEWEB)
Ali Shan, S. [Theoretical Plasma Physics Division, PINSTECH, Nilore, 44000 Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, 44000 Islamabad (Pakistan); Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); El-Tantawy, S. A.; Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt)
2013-08-15
Arbitrary amplitude ion-acoustic waves in an unmagnetized plasma consisting of cold positive ions, superthermal electrons, and positrons beam are reported. The basic set of fluid equations is reduced to an energy-balance like equation. The latter is numerically analyzed to examine the existence regions for solitary and shock waves. It is found that only solitary waves can propagate, however, the model cannot support shocks. The effects of superthermality and beam parameters (via, positrons concentration and streaming velocity) on the existence region, as well as solitary wave profile have been discussed.
Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang
2016-05-01
High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μ J -level energies and tunable central frequency of the spectrum in the range of ˜0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang
2016-05-05
High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radiofrequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μJ-level energies and tunable central frequency of the spectrum in the range of ~0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.
Energy Technology Data Exchange (ETDEWEB)
Wang, Qian [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Bincheng, E-mail: bcli@uestc.ac.cn [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2015-12-07
In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtained by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.
Energy Technology Data Exchange (ETDEWEB)
Brunner, S. [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, Lausanne, (Switzerland); Berger, R. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cohen, B. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hausammann, L. [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, Lausanne, (Switzerland); Valeo, E. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2014-10-01
Kinetic Vlasov simulations of one-dimensional finite amplitude Electron Plasma Waves are performed in a multi-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and quasi- wavenumber δk, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are successfully compared against numerical and analytical solutions to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] for the Trapped Particle Instability (TPI). A model recently suggested by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)], which in addition to the TPI accounts for the so-called Negative Mass Instability because of a more detailed representation of the trapped particle dynamics, is also studied and compared with simulations.
Dynamic Thomson Scattering from Nonlinear Electron Plasma Waves in a Raman Plasma Amplifier
Davies, A.; Katz, J.; Bucht, S.; Haberberger, D.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.
2016-10-01
Electron plasma waves (EPW's) can be used to transfer significant energy from a long-pulse laser to a short-pulse seed laser through the Raman scattering instability. Successful implementation of Raman amplification could open an avenue to producing high-intensity pulses beyond the capabilities of current laser technology ( 1022 W / cm 2). This three-wave interaction takes advantage of the plasma's ability to sustain large-amplitude plasma waves. Having complete knowledge of the EPW amplitude is essential to establishing optimal parameters for high-efficiency Raman amplification. A dynamic Thomson-scattering diagnostic is being developed to spatially and temporally resolve the amplitude of the driven and thermal EPW's. By imaging the scattered probe light onto a novel pulse-front tilt compensated streaked optical spectrometer, the diffraction efficiency of this plasma wave can be measured as a function of space and time. These data will be used in conjunction with particle-in-cell simulations to determine the EPW's spatial and temporal profile. This will allow the effect of the EPW profile on Raman scattering to be experimentally determined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Directory of Open Access Journals (Sweden)
E. Ríos
2005-01-01
Full Text Available Se presenta una metodología para el diseño de sistemas no lineales en tiempo óptimo. Se emplea la teoría de control óptimo y un conjunto de funciones de control especiales para generalizar la metodología y producir varias estrategias de diseño dentro del mismo procedimiento de optimización. La combinación de algunas estrategias define la trayectoria de diseño óptima o cuasi-óptima en tiempo de computación. Para generar los resultados numéricos en un computador personal se escribió un programa en lenguaje C++. El diseño de algunos circuitos electrónicos no lineales muestra que esta metodología puede reducir sustancialmente el número total de operaciones y acelerar el proceso de diseño. Se concluye que la ganancia en tiempo de esta metodología de diseño aumenta con respecto a la metodología tradicional a medida que el tamaño y la complejidad del sistema crecen.A methodology is presented for the time-optimal design of non-linear systems. Optimal control theory and a set of special control functions are introduced in order to generalize the design methodology and to produce various different design strategies within the same optimization procedure. The combination of some of these strategies defines the optimal or quasi-optimal design trajectory based on computation time. The numerical results were obtained by personal computer using a C++ language program. The design of some nonlinear electronic circuits showed that this methodology can substantially reduce the total number of operations and accelerate the design process. It is concluded that the gain in time using this design methodology increases, in comparison with traditional methodology, as the complexity of the system grows.
Szymusiak; Zielinski; Domagalska; Wilk
2000-05-01
Several model polyenes with modified indanone groups were studied by means of density functional theory (DFT) B3LYP/6-31G*, ab initio HF/3-21G* and semiempirical AM1 methods. We investigated the effect of several substituents upon the relationship between the structure, spatial distribution of the highest occupied and the lowest unoccupied pi-MOs, a concept of the global softness and the global hardness as well as both linear and nonlinear polarizabilities for the set of pi-electron chromophores represented by the short-chain model polyene (butadiene) carrying out p-methoxyphenyl group on the one end and several modified indanone groups on the opposite end of the molecule. As probing endocyclic groups used to modify the structure of indanone the following substituents: > CH2; > C=O; > SO2, > C=CH(NO2) and > C=C(CN)2 were selected. The cubic relationship between the polarizability and the global softness was found. The highest polarizabilities (alpha, beta, gamma) are predicted for the derivatives with > C=C(CN)2 group. It was found that the value of beta depends mainly on the difference between dipole moments in the excited and ground states of the molecules. In the case of > SO2 group the results of AMI calculations significantly deviate from relationships found for other derivatives. Experimental IR and Raman spectra of newly synthesized indandione derivative of cinnamaldehyde were compared with computed ones.
Progress in reentry trajectory planning for hypersonic vehicle
Institute of Scientific and Technical Information of China (English)
Jiang Zhao; Rui Zhou; Xuelian Jin
2014-01-01
The reentry trajectory planning for hypersonic vehicles is critical and chal enging in the presence of numerous nonlinear equations of motion and path constraints, as wel as guaranteed satisfaction of accuracy in meeting al the specified boundary con-ditions. In the last ten years, many researchers have investigated various strategies to generate a feasible or optimal constrained reentry trajectory for hypersonic vehicles. This paper briefly re-views the new research efforts to promote the capability of reentry trajectory planning. The progress of the onboard reentry trajectory planning, reentry trajectory optimization, and landing footprint is summarized. The main chal enges of reentry trajectory planning for hypersonic vehicles are analyzed, focusing on the rapid reentry trajectory optimization, complex geographic constraints, and coop-erative strategies.
Muhammad, Shabbir; Al-Sehemi, Abdullah G; Su, Zhongmin; Xu, Hongliang; Irfan, Ahmad; Chaudhry, Aijaz Rasool
2017-03-01
Using first-principle methods, several key electronic, optical and nonlinear optical properties are calculated for two recently synthesized chalcone derivatives i.e. (2E)-3-(4-methylphenyl)-1-(3-nitrophenyl)prop-2-en-1-one (comp.1) and (2E)-3-[4-(dimethylamino)phenyl]-1-(3-nitrophenyl)prop-2-en-1-one (comp.2). The calculation of dipole moment, polarizability , anisotropy of polarizability as well as second hyperpolarizability (usually considered as a signature for two photon absorption phenomenon) are performed using density functional theory methods at PBE0/6-311G** level of theory. The linear average polarizability for comp.1 and comp.2 are found to be 32.15×10(-24) and 38.76×10(-24)esu, respectively. Similarly, the second hyperpolarizability amplitudes of comp.1 and comp.2 are found to be reasonably larger mounting to 79.31×10(-36) and 181.36×10(-36)esu, respectively. The importance of donor end is determined by comparing p-methylphenyl group of comp.1 with that of N,N-dimethylaniline group of comp.2 that results a remarkable increase in its amplitude, which is ∼2 times larger as compared with that of comp.1 owing to the stronger donor-acceptor configuration of comp.2. Interestingly, a comparison of average static third-order nonlinear polarizabilities shows that amplitudes of comp.1 and comp.2 are ∼13 times and ∼29 times larger than that of para-nitroaniline (a typical standard push-pull NLO-phore) at the same PBE0/6-311G** level of theory, which indicates a real time NLO application of our titled compounds. Time dependent density functional theory (TD-DFT) calculations along with frontier molecular orbitals, density of states (DOS), second hyperpolarizability density analysis and molecular electrostatic potential (MEP) diagrams are used to trace the origin of electro-optical as well as structure property relationships. Copyright © 2016 Elsevier Inc. All rights reserved.
Computing with spatial trajectories
2011-01-01
Covers the fundamentals and the state-of-the-art research inspired by the spatial trajectory data Readers are provided with tutorial-style chapters, case studies and references to other relevant research work This is the first book that presents the foundation dealing with spatial trajectories and state-of-the-art research and practices enabled by trajectories
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
Chou, Chia-Chun
2016-10-01
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton-Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.
Trajectory attractors of equations of mathematical physics
Energy Technology Data Exchange (ETDEWEB)
Vishik, Marko I; Chepyzhov, Vladimir V [Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow (Russian Federation)
2011-08-31
In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier-Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier-Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics. Bibliography: 96 titles.
Energy Technology Data Exchange (ETDEWEB)
Radu, I.E.
2006-03-15
This thesis presents the femtosecond laser-induced electron, lattice and spin dynamics on two representative rare-earth systems: The ferromagnetic gadolinium Gd(0001) and the paramagnetic yttrium Y(0001) metals. The employed investigation tools are the time-resolved linear reflectivity and second-harmonic generation, which provide complementary information about the bulk and surface/interface dynamics, respectively. The femtosecond laser excitation of the exchange-split surface state of Gd(0001) triggers simultaneously the coherent vibrational dynamics of the lattice and spin subsystems in the surface region at a frequency of 3 THz. The coherent optical phonon corresponds to the vibration of the topmost atomic layer against the underlying bulk along the normal direction to the surface. The coupling mechanism between phonons and magnons is attributed to the modulation of the exchange interaction J between neighbour atoms due to the coherent lattice vibration. This leads to an oscillatory motion of the magnetic moments having the same frequency as the lattice vibration. Thus these results reveal a new type of phonon-magnon coupling mediated by the modulation of the exchange interaction and not by the conventional spin-orbit interaction. Moreover, we show that coherent spin dynamics in the THz frequency domain is achievable, which is at least one order of magnitude faster than previously reported. The laser-induced (de)magnetization dynamics of the ferromagnetic Gd(0001) thin films have been studied. Upon photo-excitation, the nonlinear magneto-optics measurements performed in this work show a sudden drop in the spin polarization of the surface state by more than 50% in a <100 fs time interval. Under comparable experimental conditions, the time-resolved photoemission studies reveal a constant exchange splitting of the surface state. The ultrafast decrease of spin polarization can be explained by the quasi-elastic spin-flip scattering of the hot electrons among spin
Handbook of nonlinear optical crystals
Dmitriev, Valentin G; Nikogosyan, David N
1991-01-01
This Handbook of Nonlinear Optical Crystals provides a complete description of the properties and applications of nonlinear crystals In addition, it presents the most important equations for calculating the main parameters of nonlinear frequency converters This comprehensive reference work will be of great value to all scientists and engineers working in nonlinear optics, quantum electronics and laser physics
Energy Technology Data Exchange (ETDEWEB)
Goto, T. [Tohoku University, Sendai (Japan)
1996-08-20
Investigations were given on nanocrystals of CuCl and CdTe with regard to their nonlinear optical mechanism. The experiment used a femto-second pump probe spectroscope. The experiment on CuCl nanocrystals revealed the following facts: in the case where one photon is absorbed into one nanocrystal, cascade mitigation occurs to the pair of electrons and holes, and exciters; and in the case where two photons are absorbed into one nanocrystal, exciter molecules are made via the pair of electrons and holes and the exciters. Thus, it was found that the optical nonlinearity occurs when more than two photons are absorbed into one nanocrystal, and inter-exciter interactions and formation of the exciter molecules are the physical causes thereof. The experiment on CdTe nanocrystals indicated that electrons and holes produced by laser beam are distributed instantaneously between the size-quantized discrete levels, and that temperature in the electron system drops with lapse of time. 9 refs., 6 figs.
Pilia, Luca; Pizzotti, Maddalena; Tessore, Francesca; Robertson, Neil
2014-05-05
We report the synthesis, characterization, nonlinear-optical (NLO) properties, and density functional theory (DFT) calculations for three nickel diiminedithiolate complexes [Ni(4,4'-R2carboxy-bpy)(L)] [R = methyl, L = 1,2-benzenedithiolate (bdt), 1; R = ethyl, L = 5,6-dihydro-1,4-dithine-2,3-dithiolate (dddt), 2; R = ethyl, L = 1-(N-methylindol-5-yl)ethene-1,2-dithiolate (mi-5edt), 3]. The crystal structure of 1 shows a square-planar coordination for the nickel ion and bond distances consistent with a diiminedithiolate description for the complex. For all complexes, the cyclic voltammetry measurements show two reversible reduction processes (-1.353/-1.380 V and -0798/-0.830 V, respectively) and an anodic wave (+0.372/+0.601 V). The UV-vis spectra present a band around 600-700 nm (ε = 4880-6000 dm(3) mol(-1) cm(-1)) mainly attributed to a charge-transfer highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) transition, which shows a large negative solvatochromic shift, characteristic of push-pull complexes, and is responsible for the NLO properties of these molecules. The charge-transfer character of this electronic transition is confirmed by DFT calculations, with the HOMO mainly centered on the dithiolate moiety and the LUMO on the bpy ligand, with important contribution given by the carboxyl groups (≈13%). Small contributions from the nickel(II) ion are present in both of the frontier orbitals. The carboxyl groups enhance the optical properties of this class of complexes, confirmed by comparison with the corresponding unsubstituted compounds. The second-order NLO properties have been measured by an electric-field-induced second-harmonic-generation technique using a 10(-3) M solution in N,N-dimethylformamide and working with a 1.907 μm incident wavelength, giving for μβ1.907 (μβ0) values of -1095 (-581), -2760 (-954), and -1650 (-618) × 10(-48) esu for 1-3, respectively. These values are among the highest in the class of
Lunar and interplanetary trajectories
Biesbroek, Robin
2016-01-01
This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .
Institute of Scientific and Technical Information of China (English)
Subbaiah Annadurai; Thiyagarajan Kalyani; Vincent Rajkumar Dare; Durairaj Gnanaraj Thomas
2008-01-01
Membrane computing is a branch of natural computing aiming to abstract computing ideas for the structure and the functioning of living cells as well as from the way the cells are organized in tissues or higher-order structures.Trajectories are used as a tool for modeling language operations and other related objects.A trajectory P system consists of a membrane structure in which the object in each membrane is a collection of words and the evolutionary rules are given in terms of trajectories.In this paper,we present some properties of trajectory P systems.
Biggs, Jason D
2009-01-01
The preceding paper describes a strategy for externally influencing the course of short-time electronic excitation transfer (EET) in molecular dimers and observing the process by nonlinear wave-packet interferometry (nl-WPI). Within a sample of isotropically oriented dimers having a specified internal geometry, a vibrational mode internal to the acceptor chromophore can be preferentially driven by electronically nonresonant impulsive stimulated Raman (or resonant infrared) excitation with a short polarized control pulse. A subsequent electronically resonant polarized pump then preferentially excites the donor, and EET ensues. Here we test both the control strategy and its spectroscopic investigation-with some sacrifice of amplitude-level detail-by calculating the pump-probe difference signal. That signal is the limiting case of the control-influenced nl-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference ...
Geometric diffusion of quantum trajectories.
Yang, Fan; Liu, Ren-Bao
2015-07-16
A quantum object can acquire a geometric phase (such as Berry phases and Aharonov-Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects.
Trajectory Optimization Design for Morphing Wing Missile
Institute of Scientific and Technical Information of China (English)
Ruisheng Sun; Chao Ming; Chuanjie Sun
2015-01-01
This paper presents a new particle swarm optimization ( PSO) algorithm to optimize the trajectory of morphing⁃wing missile so as to achieve the enlargement of the maximum range. Equations of motion for the two⁃dimensional dynamics are derived by treating the missile as an ideal controllable mass point. An investigation of aerodynamic characteristics of morphing⁃wing missile with varying geometries is performed. After deducing the optimizing trajectory model for maximizing range, a type of discrete method is put forward for taking optimization control problem into nonlinear dynamic programming problem. The optimal trajectory is solved by using PSO algorithm and penalty function method. The simulation results suggest that morphing⁃wing missile has the larger range than the fixed⁃shape missile when launched at supersonic speed, while morphing⁃wing missile has no obvious range increment than the fixed⁃shape missile at subsonic speed.
Energy Technology Data Exchange (ETDEWEB)
Narayanan, M. [Department of Physics, Yadava College Govindarajan Campus, Thiruppalai, Madurai-625 014 (India); John Peter, A., E-mail: a.john.peter@gmail.com [Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701 (Korea, Republic of); Yoo, Chang Kyoo [Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701 (Korea, Republic of)
2012-02-01
Binding energy, interband emission energy and the non-linear optical properties of exciton in an InSb/InGa{sub x}Sb{sub 1-x} quantum dot are computed as functions of dot radius and the Ga content. Optical properties are obtained using the compact density matrix approach. The dependence of non-linear optical processes on the dot sizes is investigated for different Ga concentrations. The linear, third order non-linear optical absorption coefficients, susceptibility values and the refractive index changes of the exciton are calculated for different concentrations of gallium content. It is found that gallium concentration has great influence on the optical properties of InSb/InGa{sub x}Sb{sub 1-x} dots.
Rodríguez-Cabello, Cristina; González-Pola, Cesar; Sánchez, Francisco
2016-09-01
A total of nine leafscale gulper sharks Centrophorus squamosus (Bonnaterre, 1788), were tagged with pop-up, satellite, archival, transmitting tags (PSAT) in the Marine Protected Area (MPA) of El Cachucho (Le Danois Bank) located in waters to the north of Spain, (NE Atlantic). Tags provided data on time, pressure and temperature that were used to examine movement patterns and diving behavior. Data collected from Argo floats in the study area have been used to devise a simple geolocation algorithm to infer the probable routes followed by this species. Tag release points revealed that C. squamosus moved both to the west (Galician waters) and to the north (Porcupine Bank) from the tagging area, suggesting well defined preferred pathways. The inferred trajectories indicated that sharks alternate periods constrained to specific geographical regions with quick and prompt movements covering large distances. Two sharks made conspicuous diurnal vertical migrations being at shallower depths around midnight and at maximum depths at midday, while other sharks did not make vertical migrations. Vertical movements were done smoothly and independently of the fish swimming long-distances or resting in the area. Overall results confirm that this species is highly migratory, supporting speeds of 20 nautical miles.day-1 and well capable to swim and make vertical migrations well above the abyssal plain.
14 CFR 417.207 - Trajectory analysis.
2010-01-01
... potential three-sigma trajectory dispersions about the nominal trajectory. (2) A fuel exhaustion trajectory...) Trajectory model. A final trajectory analysis must use a six-degree of freedom trajectory model to...
Energy Technology Data Exchange (ETDEWEB)
Rintoul, Mark Daniel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Wilson, Andrew T. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Valicka, Christopher G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kegelmeyer, W. Philip [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Shead, Timothy M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Newton, Benjamin D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Czuchlewski, Kristina Rodriguez [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-09-01
We want to organize a body of trajectories in order to identify, search for, classify and predict behavior among objects such as aircraft and ships. Existing compari- son functions such as the Fr'echet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as total distance traveled and distance be- tween start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to behaviors of interest to humans that are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to iden- tify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories, predict destination and apply unsupervised machine learning algorithms.
AYEB, Y.; OUAHRANI, T.; Khenata, R.; Reshak, Ali H.; RACHED, D.; Bouhemadou, A.; ARRAR, R.
2010-01-01
A theoretical study of structural, electronic, linear and nonlinear optical properties of ZnIn2Te4 defect-chalcopyrite is presented using the full-potential linearized augmented plane-wave (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA). Moreover, the Engel and Vosko GGA formalism (EV-GGA) is also used to improve the band gap results. The lattice parameters (a, c) and the atomic positions (x, y and z) are optimized and found ...
Institute of Scientific and Technical Information of China (English)
洒荣建; 吴克琛; 林晨升; 刘萍; 莽朝永
2003-01-01
Time-dependent density-functional theory(TDDFT)has been applied to calculate the electronic structure and second-order nonlinear optical(NLO) properties of some organic molecules.The two-dimensional(2-D)charge transfer charateristics of calculated molecules were studied and compared with corresponding experimental results.All the theoretical results agree well with the measurement.For 2-D molecule with two-fold symmetry,the dominant charge transfer is off-diagonal,while for three-fold symmetry 2-D molecule,the dominant charge transfer is not only between branches and central group but also among branches.
Sapaev, U; Husakou, A.; Herrmann, J.
2013-01-01
We study numerically low-order harmonic generation in noble gases pumped by intense femtosecond laser pulses in the tunneling ionization regime. We analyze the influence of the phase-mismatching on this process, caused by the generated plasma, and study in dependence on the pump intensity the origin of harmonic generation arising either from the bound-electron nonlinearity or the tunnel-ionization current. It is shown that in argon the optimum pump intensity of about 100 TW/cm$^2$ leads to th...
Sliding Mode Control for Trajectory Tracking of an Intelligent Wheelchair
Directory of Open Access Journals (Sweden)
Razvan SOLEA
2009-12-01
Full Text Available This paper deal with a robust sliding-mode trajectory tracking controller, fornonholonomic wheeled mobile robots and its experimental evaluation by theimplementation in an intelligent wheelchair (RobChair. The proposed control structureis based on two nonlinear sliding surfaces ensuring the tracking of the three outputvariables, with respect to the nonholonomic constraint. The performances of theproposed controller for the trajectory planning problem with comfort constraint areverified through the real time acceleration provided by an inertial measurement unit.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
Energy Technology Data Exchange (ETDEWEB)
Maharaj, S. K. [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Modderdam Road, Bellville 7530 (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India); School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)
2012-12-15
A three-component plasma model composed of ions, cool electrons, and hot electrons is adopted to investigate the existence of large amplitude electron-acoustic solitons not only for the model for which inertia and pressure are retained for all plasma species which are assumed to be adiabatic but also neglecting inertial effects of the hot electrons. Using the Sagdeev potential formalism, the Mach number ranges supporting the existence of large amplitude electron-acoustic solitons are presented. The limitations on the attainable amplitudes of electron-acoustic solitons having negative potentials are attributed to a number of different physical reasons, such as the number density of either the cool electrons or hot electrons ceases to be real valued beyond the upper Mach number limit, or, alternatively, a negative potential double layer occurs. Electron-acoustic solitons having positive potentials are found to be supported only if inertial effects of the hot electrons are retained and these are found to be limited only by positive potential double layers.
Sapaev, Usman; Husakou, Anton; Herrmann, Joachim
2013-10-21
We study numerically low-order harmonic generation in noble gases pumped by intense femtosecond laser pulses in the tunneling ionization regime. We analyze the influence of the phase-mismatching on this process, caused by the generated plasma, and study in dependence on the pump intensity the origin of harmonic generation arising either from the bound-electron nonlinearity or the tunnel-ionization current. It is shown that in argon the optimum pump intensity of about 100 TW/cm² leads to the maximum efficiency, where the main contribution to low-order harmonics originates from the bound-electron third and fifth order susceptibilities, while for intensities higher than 300 TW/cm² the tunnel-ionization current plays the dominant role. Besides, we predict that VUV pulses at 133 nm can be generated with relatively high efficiency of about 1.5 × 10⁻³ by 400 nm pump pulses.
Sapaev, U; Herrmann, J
2013-01-01
We study numerically low-order harmonic generation in noble gases pumped by intense femtosecond laser pulses in the tunneling ionization regime. We analyze the influence of the phase-mismatching on this process, caused by the generated plasma, and study in dependence on the pump intensity the origin of harmonic generation arising either from the bound-electron nonlinearity or the tunnel-ionization current. It is shown that in argon the optimum pump intensity of about 100 TW/cm$^2$ leads to the maximum efficiency, where the main contribution to low-order harmonics originates from the bound-electron third and fifth order susceptibilities, while for intensities higher than 300 TW/cm$^2$ the tunnel-ionization current plays the dominant role. Besides, we predict that VUV pulses at 133 nm can be generated with relatively high efficiency of about $1.5\\times10^{-3}$ by 400 nm pump pulses.
2011-07-21
cowork- ers in the Mechanical Systems Lab. Thanks to Mauro, Dino, Clay, Eric, Debbie, Jens, and Marca for their discussions and assistance with...through static equilibrium simultaneously. iii. Displacement of one mass uniquely defines the displacements of all masses. These criteria are analogous to...be greater. Shaw and Pierre [10, 11] present an alternative definition of nonlinear normal modes, defined for both conservative and dissipative systems
Electronic structure, stability and non-linear optical properties of aza-fullerenes C60-2nN2n(n=1–12
Directory of Open Access Journals (Sweden)
K. Srinivasu
2012-12-01
Full Text Available Through ab initio based density functional theory calculations, we have investigated the electronic structure, stability and non-linear optical properties of a series of nitrogen substituted fullerenes (azafullerenes with the general formula C60-2nN2n (n=1–12. For each system, we have considered different possible isomers and the minimum energy isomer is subjected to further detailed investigations. We have calculated different properties such as HOMO-LUMO gaps, vertical ionization potentials, vertical electron affinities, etc. to verify the stability of the considered fullerenes. From the Hessian calculations, it is observed that all the fullerenes are not only associated with real vibrational frequencies, but the minimum frequencies are also found to be considerably large which further confirms the stability of the considered fullerenes. We find that the presence of unperturbed C6 rings enhances the stability of the fullerene whereas, the -N-C-N- fragments are found to destabilize the structure. At lower doping concentration, the stabilization due to C6 is more predominant and as the doping concentration is increased, the destabilization due to nitrogen-nitrogen repulsion plays a more important role. Our calculated polarizability and hyperpolarizability parameters of C60 are found to be in good agreement with the earlier reported results. On nitrogen doping, considerable variation is observed in the non-linear optical coefficients, which can be helpful in designing new photonic devices.
Moustafa, H.; Elshakre, Mohamed E.; Elramly, Salwa
2017-05-01
The electronic structure of and NLO of 2,4-di-aryl-1,5-benzothiazepine and some of its derivatives are investigated theoretically at the B3LYP/6-311G**level of theory. The extent of delocalization and intramolecular charge transfer are estimated and discussed in terms of natural bond orbital analysis (NBO) and second order perturbation interactions between donor and acceptor MOs. The calculated EHOMO and ELUMO energies of the studied compounds can be used to calculate the global properties; chemical hardness (η), softness (S) and electronegativity (χ). The equilibrium geometries of the studied compounds are determined, and it was found that these geometries are non plannar. The choice of these substituents aims at creating a push- pull system on the 1,5-thiazepine basic structure which pave the way to understand their nonlinear optical properties. The calculated nonlinear optical parameters (NLO); polarizability (α), anisotropy of the polarizibility (Δα) and first order hyperpolarizibility (β) of the studied compounds show promising optical properties. 3D-plots of the molecular electrostatic potential (MEP) for some selected molecules are investigated and analyzed showing the distribution of electronic density of orbitals describing the electrophilic and nucleophilic sites of the selected molecules.
Ornithopter transition trajectories
Dietl, John M.; Garcia, Ephrahim
2010-04-01
The design of stable trim conditions for forward flight and for hover has been achieved. In forward flight, an ornithopter is configured like a conventional airplane or large bird. Its fuselage is essentially horizontal and the wings heave in a vertical plane. In hover, however, the body pitches vertically so that the wing stroke in the horizontal plane. Thrust directed downward, the vehicle remains aloft while the downdraft envelops the tail to provide enough flow for vehicle control and stabilization. To connect these trajectories dynamically is the goal. The naïve approach-to choose two stable trajectories and switch between them-has been accomplished. A new approach is to establish an open-loop trajectory through a trajectory optimization algorithm-optimized for shortest altitude drop, shortest stopping distance, or lowest energy consumption.
Automated Cooperative Trajectories
Hanson, Curt; Pahle, Joseph; Brown, Nelson
2015-01-01
This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.
Hramov, A E; Koronovskii, A A; Filatova, A E; 10.1063/1.4765062
2013-01-01
The report is devoted to the results of the numerical study of the virtual cathode formation conditions in the relativistic electron beam under the influence of the self-magnetic and external axial magnetic fields. The azimuthal instability of the relativistic electron beam leading to the formation of the vortex electron structure in the system was found out. This instability is determined by the influence of the self-magnetic fields of the relativistic electron beam and it leads to the decrease of the critical value of the electron beam current (current when the non-stationary virtual cathode is formed in the drift space). The typical dependencies of the critical current on the external uniform magnetic field value were discovered. The effect of the beam thickness on the virtual cathode formation conditions was also analyzed.
Energy Technology Data Exchange (ETDEWEB)
Saberian, E. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of); Department of Physics, Faculty of Basic Sciences, University of Neyshabur, Neyshabur (Iran, Islamic Republic of); Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzadeh, A.; Afsari-Ghazi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of)
2013-03-15
The propagation of ion-acoustic (IA) solitons is studied in a plasma system, comprised of warm ions and superthermal (Kappa distributed) electrons in the presence of an electron-beam by using a hydrodynamic model. In the linear analysis, it is seen that increasing the superthermality lowers the phase speed of the IA waves. On the other hand, in a fully nonlinear investigation, the Mach number range and characteristics of IA solitons are analyzed, parametrically and numerically. It is found that the accessible region for the existence of IA solitons reduces with increasing the superthermality. However, IA solitons with both negative and positive polarities can coexist in the system. Additionally, solitary waves with both subsonic and supersonic speeds are predicted in the plasma, depending on the value of ion-temperature and the superthermality of electrons in the system. It is examined that there are upper critical values for beam parameters (i.e., density and velocity) after which, IA solitary waves could not propagate in the plasma. Furthermore, a typical interaction between IA waves and the electron-beam in the plasma is confirmed.
Energy Technology Data Exchange (ETDEWEB)
Maharaj, S. K. [South African National Space Agency (SANSA) Space Science, P.O. Box 32, Hermanus 7200 (South Africa); Bharuthram, R. [University of the Western Cape, Modderdam Road, Bellville 7530 (South Africa); Singh, S. V. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India); School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Lakhina, G. S. [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai 410218 (India)
2012-07-15
Using the Sagdeev pseudopotential technique, the existence of large amplitude ion-acoustic solitons is investigated for a plasma composed of ions, and hot and cool electrons. Not only are all species treated as adiabatic fluids but the model for which inertial effects of the hot electrons is neglected whilst retaining inertia and pressure for the ions and cool electrons has also been considered. The focus of this investigation has been on identifying the admissible Mach number ranges for large amplitude nonlinear ion-acoustic soliton structures. The lower Mach number limit yields a minimum velocity for the existence of ion-acoustic solitons. The upper Mach number limit for positive potential solitons is found to coincide with the limiting value of the potential (positive) beyond which the ion number density ceases to be real valued, and ion-acoustic solitons can no longer exist. Small amplitude solitons having negative potentials are found to be supported when the temperature of the cool electrons is negligible.
Toutounji, Mohamad
2005-03-22
While an optical linear response function of linearly and quadratically coupled mixed quantum-classical condensed-phase systems was derived by Toutounji [J. Chem. Phys. 121, 2228 (2004)], the corresponding analytical optical line shape is derived. The respective nonlinear correlation functions are also derived. Model calculations involving photon-echo, pump-probe, and hole-burning signals of model systems with both linear and quadratic coupling are provided. Hole-burning formula of Hayes-Small is compared to that of Mukamel in mixed quantum-classical systems.
Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Mozer, Forrest; Krasnoselskikh, Vladimir
2016-04-01
Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ˜1-10 keV electrons and their acceleration up to 100-300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We demonstrate that the electron energy corresponding to the observed plateau remains in very good agreement with the energy required for Landau resonant interaction with the simultaneously measured oblique chorus waves over 6 h and a wide range of L shells (from 4 to 6) in the outer belt. The efficient parallel acceleration modifies electron pitch angle distributions at energies ˜50-200 keV, allowing us to distinguish the energized population. The observed energy range and the density of accelerated electrons are in reasonable agreement with test particle numerical simulations.
Stancari, Giulio
2014-01-01
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compens...
Organic nonlinear optical materials
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Compressing spatio-temporal trajectories
DEFF Research Database (Denmark)
Gudmundsson, Joachim; Katajainen, Jyrki; Merrick, Damian
2009-01-01
A trajectory is a sequence of locations, each associated with a timestamp, describing the movement of a point. Trajectory data is becoming increasingly available and the size of recorded trajectories is getting larger. In this paper we study the problem of compressing planar trajectories such tha...
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Moon Landing Trajectory Optimization
Directory of Open Access Journals (Sweden)
Ibrahim Mustafa MEHEDI
2016-03-01
Full Text Available Trajectory optimization is a crucial process during the planning phase of a spacecraft landing mission. Once a trajectory is determined, guidance algorithms are created to guide the vehicle along the given trajectory. Because fuel mass is a major driver of the total vehicle mass, and thus mission cost, the objective of most guidance algorithms is to minimize the required fuel consumption. Most of the existing algorithms are termed as “near-optimal” regarding fuel expenditure. The question arises as to how close to optimal are these guidance algorithms. To answer this question, numerical trajectory optimization techniques are often required. With the emergence of improved processing power and the application of new methods, more direct approaches may be employed to achieve high accuracy without the associated difficulties in computation or pre-existing knowledge of the solution. An example of such an approach is DIDO optimization. This technique is applied in the current research to find these minimum fuel optimal trajectories.
Nonlinear double Compton scattering in the full quantum regime
Mackenroth, F
2012-01-01
A detailed analysis of the process of two photon emission by an electron scattered from a high-intensity laser pulse is presented. The calculations are performed in the framework of strong-field QED and include exactly the presence of the laser field, described as a plane wave. We investigate the full quantum regime of interaction, where photon recoil plays an essential role in the emission process, and substantially alters the emitted photon spectra as compared to those in previously-studied regimes. We provide a semiclassical explanation for such differences, based on the possibility of assigning a trajectory to the electron in the laser field before and after each quantum photon emission. Our numerical results indicate the feasibility of investigating experimentally the full quantum regime of nonlinear double Compton scattering with already available plasma-based electron accelerator and laser technology.
Energy Technology Data Exchange (ETDEWEB)
Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)
2013-09-15
We demonstrate that the output radiation characteristics of the European XFEL sources at nominal operation point can be easily made significantly better than what is currently reported in the TDRs of scientific instruments and X-ray optics. In fact, the output SASE characteristics of the baseline European XFEL have been previously optimized assuming uniform undulators at a nominal operating point of 5 kA peak current, without considering the potential of undulator tapering in the SASE regime. In order to illustrate this point, we analyze the case of an electron bunch with nominal parameters. Based on start-to-end simulations, we demonstrate that nonlinear undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime, without modification to the baseline design. The FEL code Genesis has been extensively used for these studies. In order to increase our confidence in simulation results, we cross-checked outcomes by reproducing simulations in the deep nonlinear SASE regime with tapered undulator using the code ALICE.
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2017-01-01
Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RL-shunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.
Gieseking, Rebecca L.
2014-10-16
Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.
Energy Technology Data Exchange (ETDEWEB)
YATES,GEORGE J.; MCDONALD,THOMAS E. JR.; BLISS,DAVID E.; CAMERON,STEWART M.; GREIVES,KENNETH H.; ZUTAVERN,FRED J.
2000-12-20
Laboratory experiments utilizing different near-infrared (NIR) sensitive imaging techniques for LADAR range gated imaging at eye-safe wavelengths are presented. An OPO/OPA configuration incorporating a nonlinear crystal for wavelength conversion of 1.56 micron probe or broadcast laser light to 807 nm light by utilizing a second pump laser at 532 nm for gating and gain, was evaluated for sensitivity, resolution, and general image quality. These data are presented with similar test results obtained from an image intensifier based upon a transferred electron (TE) photocathode with high quantum efficiency (QE) in the 1-2 micron range, with a P-20 phosphor output screen. Data presented include range-gated imaging performance in a cloud chamber with varying optical attenuation of laser reflectance images.
Nassar, Antonio B; Miret-Artés, Salvador
2013-10-11
This Letter proposes an answer to a challenge posed by Bell on the lack of clarity in regards to the dividing line between the quantum and classical regimes in a measurement problem. To this end, a generalized logarithmic nonlinear Schrödinger equation is proposed to describe the time evolution of a quantum dissipative system under continuous measurement. Within the Bohmian mechanics framework, a solution to this equation reveals a novel result: it displays a time constant that should represent the dividing line between the quantum and classical trajectories. It is shown that continuous measurements and damping not only disturb the particle but compel the system to converge in time to a Newtonian regime. While the width of the wave packet may reach a stationary regime, its quantum trajectories converge exponentially in time to classical trajectories. In particular, it is shown that damping tends to suppress further quantum effects on a time scale shorter than the relaxation time of the system. If the initial wave packet width is taken to be equal to 2.8×10(-15) m (the approximate size of an electron), the Bohmian time constant is found to have an upper limit, i.e., τ(Bmax)=10(-26) s.
Li, Zhipeng; Yu, Guangtao; Zhang, Xueying; Huang, Xuri; Chen, Wei
2017-10-01
Inspired by the fascinating finding of all-boron fullerene B40 (Nat Chem, 2014, 6, 727), we propose a new and effective strategy to construct a series of typical Donor-Acceptor (D-A) frameworks via linking the superalkali M3O (M = Li and K) unit with the low ionization potential to the B40 nanocage with large electron affinity. By means of the density functional theory computations, we have systematically investigated the structures, electronic properties, the first and second hyperpolarizabilities of these modified B40 nanocage systems. Owing to the formation of a B-O chemical bond, these composite systems (M3O)n-B40 (M = Li and K, n = 1 and 2) can possess the considerably large binding energy ranging from 57.0 to 99.8 kcal/mol, indicating their high structure stabilities. Compared with the pristine B40 nanocage, linking the superalkali M3O can effectively narrow the wide energy gap from the original 2.86 eV to 0.61-1.11 eV, and significantly increase the first and second hyperpolarizabilities to as large as 5.00 × 104-2.46 × 105 au and 1.48 × 107-4.85 × 108 au, respectively, owing to the occurrence of evident electron transfer process in this kind of typical D-A framework. These fascinating findings will be advantageous for promoting the potential applications of the inorganic boron-based nanosystems in the new type of electronic nanodevices and high-performance nonlinear optical materials.
Trajectory Based Traffic Analysis
DEFF Research Database (Denmark)
Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin
2013-01-01
-and-click analysis, due to a novel and efficient indexing structure. With the web-site daisy.aau.dk/its/spqdemo/we will demonstrate several analyses, using a very large real-world data set consisting of 1.9 billion GPS records (1.5 million trajectories) recorded from more than 13000 vehicles, and touching most...
El-Wakil, S A; El-Shewy, E K; Abd-El-Hamid, H M
2010-01-01
A theoretical investigation has been made of electron acoustic wave propagating in unmagnetized collisionless plasma consisting of a cold electron fluid and isothermal ions with two different temperatures obeying Boltzmann type distributions. Based on the pseudo-potential approach, large amplitude potential structures and the existence of Solitary waves are discussed. The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV) equation for small but finite amplitude electrostatic waves. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the KdV equation, is used here. Numerical studies have been made using plasma parameters close to those values corresponding to Earth's plasma sheet boundary layer region reveals different solutions i.e., bell-shaped solitary pulses and singularity solutions at a finite point which called "blowup" solutions, Jaco...
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...
Directory of Open Access Journals (Sweden)
Maike Buchin
2015-03-01
Full Text Available The collective motion of a set of moving entities like people, birds, or other animals, is characterized by groups arising, merging, splitting, and ending. Given the trajectories of these entities, we define and model a structure that captures all of such changes using the Reeb graph, a concept from topology. The trajectory grouping structure has three natural parameters that allow more global views of the data in group size, group duration, and entity inter-distance. We prove complexity bounds on the maximum number of maximal groups that can be present, and give algorithms to compute the grouping structure efficiently. We also study how the trajectory grouping structure can be made robust, that is, how brief interruptions of groups can be disregarded in the global structure, adding a notion of persistence to the structure. Furthermore, we showcase the results of experiments using data generated by the NetLogo flocking model and from the Starkey project. The Starkey data describe the movement of elk, deer, and cattle. Although there is no ground truth for the grouping structure in this data, the experiments show that the trajectory grouping structure is plausible and has the desired effects when changing the essential parameters. Our research provides the first complete study of trajectory group evolvement, including combinatorial,algorithmic, and experimental results.
Zhang, Z. L.; Nie, Q. Y.; Wang, Z. B.; Gao, X. T.; Kong, F. R.; Sun, Y. F.; Jiang, B. H.
2016-07-01
Dielectric barrier discharges (DBDs) provide a promising technology of generating non-equilibrium cold plasmas in atmospheric pressure gases. For both application-focused and fundamental studies, it is important to explore the strategy and the mechanism for enabling effective independent tuning of key plasma parameters in a DBD system. In this paper, we report numerical studies of effects of dual-frequency excitation on atmospheric DBDs, and modulation as well as separate tuning mechanism, with emphasis on dual-frequency coupling to the key plasma parameters and discharge evolution. With an appropriately applied low frequency to the original high frequency, the numerical calculation demonstrates that a strong nonlinear coupling between two frequencies governs the process of ionization and energy deposition into plasma, and thus raises the electron density significantly (e.g., three times in this case) in comparisons with a single frequency driven DBD system. Nevertheless, the gas temperature, which is mainly determined by the high frequency discharge, barely changes. This method then enables a possible approach of controlling both averaged electron density and gas temperature independently.
Clustering vessel trajectories with alignment kernels under trajectory compression
de Vries, G.; van Someren, M.
2010-01-01
In this paper we apply a selection of alignment measures, such as dynamic time warping and edit distance, to the problem of clustering vessel trajectories. Vessel trajectories are an example of moving object trajectories, which have recently become an important research topic. The alignment measures
Nonlinear transmission sputtering
Bitensky, I. S.; Sigmund, P.
1996-05-01
General expressions have been derived for the nonlinear yield of transmission sputtering for an incident polyatomic ion under the assumption that the molecule breaks up on entering the target and that sputter yields are enhanced due to proximity of atomic trajectories. Special attention is given to the case of negligible Coulomb explosion where projectile atoms penetrate independently. For weakly overlapping trajectories, the yield enhancement factor of a polyatomic molecule can be expressed by that of a diatom, amended with a correction for triple correlations if necessary. This expression is in good agreement with recent experimental findings on phenylalanine targets. Pertinent results on multiple scattering of atomic ions are reviewed and applied to independently-moving fragment atoms. The merits of measurements at variable layer thickness in addition to variable projectile energy are mentioned.
Directory of Open Access Journals (Sweden)
Zhengnan Li
2016-01-01
Full Text Available To solve the multiobjective optimization problem on hypersonic glider vehicle trajectory design subjected to complex constraints, this paper proposes a multiobjective trajectory optimization method that combines the boundary intersection method and pseudospectral method. The multiobjective trajectory optimization problem (MTOP is established based on the analysis of the feature of hypersonic glider vehicle trajectory. The MTOP is translated into a set of general optimization subproblems by using the boundary intersection method and pseudospectral method. The subproblems are solved by nonlinear programming algorithm. In this method, the solution that has been solved is employed as the initial guess for the next subproblem so that the time consumption of the entire multiobjective trajectory optimization problem shortens. The maximal range and minimal peak heat problem is solved by the proposed method. The numerical results demonstrate that the proposed method can obtain the Pareto front of the optimal trajectory, which can provide the reference for the trajectory design of hypersonic glider vehicle.
Colloquium: Nonlinear Collective Interactions in Dense Plasmas
Shukla, P K
2010-01-01
The current understanding of some important collective processes in dense quantum plasmas is presented. After reviewing the basic properties of dense quantum plasmas with degenerate electrons, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wave functions that result in a nonlinear quantum electron pressure and tunneling/diffusion of electrons through a nonlinear quantum Bohm potential. Since degenerate electrons have $1/2-$spin due to their Fermionic nature, there also appear a spin electron current and a spin force acting on the electrons due to the Bohr magnetization. The present nonlinear equations do not include strong electron correlations and electron-exchange interactions. The quantum effects caused by the electron degeneracy produce n...
Trajectory optimization for real-time guidance. I - Time-varying LQR on a parallel processor
Psiaki, Mark L.; Park, Kihong
1990-01-01
A key algorithmic element of a real-time trajectory optimization hardware/software implementation, the quadratic program (QP) solver element, is presented. The purpose of the effort is to make nonlinear trajectory optimization fast enough to provide real-time commands during guidance of a vehicle such as an aeromaneuvering orbiter. Many methods of nonlinear programming require the solution of a QP at each iteration. In the trajectory optimization case the QP has a special dynamic programming structure, a LQR-like structure. QP algorithm speed is increased by taking advantage of this special structure and by parallel implementation.
Analysis of Controlled Trajectory Optimization for Canard Trajectory Correction Fuze
Institute of Scientific and Technical Information of China (English)
郭泽荣; 李世义; 申强
2004-01-01
The optimization method of the canard trajectory correction fuze's controlled trajectory phase is researched by using the aerodynamics of aerocraft and the optimal control theory, the trajectory parameters of the controlled trajectory phase based on the least energy cost are determined. On the basis of determining the control starting point and the target point, the optimal trajectory and the variation rule of the normal overload with the least energy cost are provided, when there is no time restriction in the simulation process. The results provide a theoretical basis for the structure design of the canard mechanism.
Semantic enrichment of GPS trajectories
Graaff, de Victor; Keulen, van Maurice; By, de Rolf
2012-01-01
Semantic annotation of GPS trajectories helps us to recognize the interests of the creator of the GPS trajectories. Automating this trajectory annotation circumvents the requirement of additional user input. To annotate the GPS traces automatically, two types of automated input are required: 1) a co
Directory of Open Access Journals (Sweden)
S. A. El-Wakil
2012-01-01
Full Text Available The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV equation for small- but finite-amplitude electrostatic ion-acoustic waves in weakly relativistic plasma consisting of warm ions and isothermal electrons. An algebraic method with computerized symbolic computation is applied in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters which reveal different solutions, that is, bell-shaped solitary pulses, rational pulses, and solutions with singularity at finite points, which called “blowup” solutions in addition to the propagation of an explosive pulses. The weakly relativistic effect is found to significantly change the basic properties (namely, the amplitude and the width of the ion-acoustic waves. The result of the present investigation may be applicable to some plasma environments, such as ionosphere region.
Second-order nonlinear optical properties of Ge-Ga-Ag-S glass irradiated by electron beam
Institute of Scientific and Technical Information of China (English)
TAO Hai-zheng; DONG Guo-ping; XIAO Hai-yan; LIN Chang-gui; ZHAO Xiu-jian
2006-01-01
Ge-Ga-Ag-S chalcogenide glasses with the composition Ge30Ga3Ag4S63 were obtained by the conventional melt-quenching method. According to the visible-infrared and infrared spectra,Ge30Ga3Ag4S63 chalcogenide glass possesses wide transmittance window from 510 nm in the visible region up to 11.5 ìm in the infrared region. And the present glass has better glass-forming ability (the difference between glass transition temperature and the peak temperature of crystallization is larger than 100 ℃). Utilizing maker-fringe technique,a prominent second-harmonic generation was observed in Ge30Ga3Ag4S63 chalcogenide glass after irradiated by an electron beam (Accelerating voltage: 25 kV:Irradiating current: 15 nA:Irradiating time: 10 min). And the mechanism of second-harmonic generation in the Ge-Ga-Ag-S system glasses was discussed.
DEVELOPMENT OF TRAJECTORY CONTROL SYSTEM FOR THE OMNIDIRECTIONAL MOBILE ROBOT
Directory of Open Access Journals (Sweden)
Y. A. Kapitanyuk
2014-03-01
Full Text Available The article deals with a trajectory control system development for the omnidirectional mobile robot. This kind of robots gives the possibility to control separately each degree of freedom due to special design of the wheels, which greatly facilitates the solution of the spatial control tasks and makes it possible to focus directly on the development of algorithms. Control law synthesis is based on kinematic model of a solid body on a plane. Desired trajectory is defined as a smooth implicit function in a fixed coordinate system. Procedure of control design is represented by using a differential-geometric method of nonlinear transformation of the original model to the task-oriented form, which describes the longitudinal motion along a trajectory and orthogonal deviation. Proportional controllers with direct compensation of nonlinear terms are synthesized for the transformed model. Main results are represented by nonlinear control algorithms and experimental data. Practical implementation of considered control laws for the Robotino mobile robot by Festo Didactics Company is done for illustration of this approach workability. The cases of straight line motion and movement along a circle are represented as desirable trajectories, and the majority of practical tasks for mobile robots control can be implemented by their combination.
Interference, Reduced Action, and Trajectories
Floyd, Edward R.
2007-09-01
Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the trajectories of the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichromatic wave function’s trajectory. The quantum effective mass renders insight into the behavior of the trajectory. The trajectory in turn renders insight into quantum nonlocality.
Nonlinear Peltier effect in semiconductors
Zebarjadi, Mona; Esfarjani, Keivan; Shakouri, Ali
2007-09-01
Nonlinear Peltier coefficient of a doped InGaAs semiconductor is calculated numerically using the Monte Carlo technique. The Peltier coefficient is also obtained analytically for single parabolic band semiconductors assuming a shifted Fermi-Dirac electronic distribution under an applied bias. Analytical results are in agreement with numerical simulations. Key material parameters affecting the nonlinear behavior are doping concentration, effective mass, and electron-phonon coupling. Current density thresholds at which nonlinear behavior is observable are extracted from numerical data. It is shown that the nonlinear Peltier effect can be used to enhance cooling of thin film microrefrigerator devices especially at low temperatures.
Directory of Open Access Journals (Sweden)
Margaret A. Ryan
2005-12-01
Full Text Available The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministrationÃ¢Â€Â™s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples.
Mishra, M. K.; Jain, S. K.; Jain
2013-10-01
Ion-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg-de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (α c ), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of α c decreases with increase in γ.
Energy Technology Data Exchange (ETDEWEB)
El-Tantawy, S. A., E-mail: samireltantawy@yahoo.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Moslem, W. M., E-mail: wmmoslem@hotmail.com [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt)
2014-05-15
Solitons (small-amplitude long-lived waves) collision and rogue waves (large-amplitude short-lived waves) in non-Maxwellian electron-positron-ion plasma have been investigated. For the solitons collision, the extended Poincaré-Lighthill-Kuo perturbation method is used to derive the coupled Korteweg-de Vries (KdV) equations with the quadratic nonlinearities and their corresponding phase shifts. The calculations reveal that both positive and negative polarity solitons can propagate in the present model. At critical value of plasma parameters, the coefficients of the quadratic nonlinearities disappear. Therefore, the coupled modified KdV (mKdV) equations with cubic nonlinearities and their corresponding phase shifts have been derived. The effects of the electron-to-positron temperature ratio, the ion-to-electron temperature ratio, the positron-to-ion concentration, and the nonextensive parameter on the colliding solitons profiles and their corresponding phase shifts are examined. Moreover, generation of ion-acoustic rogue waves from small-amplitude initial perturbations in plasmas is studied in the framework of the mKdV equation. The properties of the ion-acoustic rogue waves are examined within a nonlinear Schrödinger equation (NLSE) that has been derived from the mKdV equation. The dependence of the rogue wave profile on the relevant physical parameters has been investigated. Furthermore, it is found that the NLSE that has been derived from the KdV equation cannot support the propagation of rogue waves.
Energy Technology Data Exchange (ETDEWEB)
Gazhulina, A.P., E-mail: asyagazhulina@yandex.ru; Marychev, M.O.
2015-02-25
Highlights: • We consider 111 compounds of B3 and B20 types by FP-LAPW method using LDA, GGA, mBJ. • Structural, electronic and nonlinear optical properties were investigated. • Some data calculated for the first time for a large part of considered compounds. • NLO properties considered in relation with pseudoinversion for all 111 crystals. - Abstract: The structural, electronic, and nonlinear optical properties of 111 crystals belonging to structural types B3 (84 crystals) and B20 (27 crystals) have been investigated by first-principles calculations using the full-potential linearized augmented plane wave (FP-LAPW) method in the framework of density functional theory. Calculations of the electronic band structure and nonlinear optical properties were performed using local-density approximation (LDA), generalized gradient approximation (GGA), and a combination of modified Becke—Johnson exchange potential plus LDA (mBJ + LDA) for exchange–correlation potential. Equilibrium lattice constant a{sub 0}, bulk modulus B{sub 0}, first pressure derivative B′ of the bulk modulus, band gaps E{sub g}, and second-order nonlinear susceptibility tensor components |χ{sub 123}| at 0 eV and at 1.064 and 10.6 μm wavelengths are presented. The obtained results are compared to available experimental and theoretical (computational) data. A correlation between the |χ{sub 123}| tensor component data arrays and the distributions of crystal structures with respect to their degree of pseudoinversion is analyzed.
Young adults' trajectories of Ecstasy use: a population based study.
Smirnov, Andrew; Najman, Jake M; Hayatbakhsh, Reza; Plotnikova, Maria; Wells, Helene; Legosz, Margot; Kemp, Robert
2013-11-01
Young adults' Ecstasy use trajectories have important implications for individual and population-level consequences of Ecstasy use, but little relevant research has been conducted. This study prospectively examines Ecstasy trajectories in a population-based sample. Data are from the Natural History Study of Drug Use, a retrospective/prospective cohort study conducted in Australia. Population screening identified a probability sample of Ecstasy users aged 19-23 years. Complete data for 30 months of follow-up, comprising 4 time intervals, were available for 297 participants (88.4% of sample). Trajectories were derived using cluster analysis based on recent Ecstasy use at each interval. Trajectory predictors were examined using a generalized ordered logit model and included Ecstasy dependence (World Mental Health Composite International Diagnostic Instrument), psychological distress (Hospital Anxiety Depression Scale), aggression (Young Adult Self Report) and contextual factors (e.g. attendance at electronic/dance music events). Three Ecstasy trajectories were identified (low, intermediate and high use). At its peak, the high-use trajectory involved 1-2 days Ecstasy use per week. Decreasing frequency of use was observed for intermediate and high-use trajectories from 12 months, independently of market factors. Intermediate and high-use trajectory membership was predicted by past Ecstasy consumption (>70 pills) and attendance at electronic/dance music events. High-use trajectory members were unlikely to have used Ecstasy for more than 3 years and tended to report consistently positive subjective effects at baseline. Given the social context and temporal course of Ecstasy use, Ecstasy trajectories might be better understood in terms of instrumental rather than addictive drug use patterns.
On Asymptotic Completeness of Scattering in the Nonlinear Lamb System, II
Komech, A I
2012-01-01
We establish the asymptotic completeness in the nonlinear Lamb system for hyperbolic stationary states. For the proof we construct a trajectory of a reduced equation (which is a nonlinear nonautonomous ODE) converging to a hyperbolic stationary point using the Inverse Function Theorem in a Banach space. We give the counterexamples showing nonexistence of such trajectories for nonhyperbolic stationary points.
Dynamics of boundary layer electrons around a laser wakefield bubble
Luo, J.; Chen, M.; Zhang, G.-B.; Yuan, T.; Yu, J.-Y.; Shen, Z.-C.; Yu, L.-L.; Weng, S.-M.; Schroeder, C. B.; Esarey, E.
2016-10-01
The dynamics of electrons forming the boundary layer of a highly nonlinear laser wakefield driven in the so called bubble or blowout regime is investigated using particle-in-cell simulations. It is shown that when the driver pulse intensity increases or the focal spot size decreases, a significant amount of electrons initially pushed by the laser pulse can detach from the bubble structure at its tail, middle, or front and form particular classes of waves locally with high densities, referred to as the tail wave, lateral wave, and bow wave. The tail wave and bow wave correspond to real electron trajectories, while the lateral wave does not. The detached electrons can be ejected transversely, containing considerable energy, and reducing the efficiency of the laser wakefield accelerator. Some of the transversely emitted electrons may obtain MeV level energy. These electrons can be used for wake evolution diagnosis and producing high frequency radiation.
Rigamonti, Luca; Demartin, Francesco; Forni, Alessandra; Righetto, Stefania; Pasini, Alessandro
2006-12-25
This paper presents some copper(II) complexes of salen analogues in which the two salicylaldehyde moieties carry different (electron donor, D, and acceptor, A) substituents in position 5, producing a push-pull charge asymmetry. The X-ray structures of some compounds show the presence of pairs of stacked molecules with head-to-tail intermolecular associations. The geometries of all complexes have been optimized through density functional theory (DFT) studies, which have shown that a major influence on the coordination bond lengths is given by the presence of the electron acceptor NO2 group. Such an influence operates mainly on the Cu-phenolato bonds: elongation of the Cu-O distance of the 5-nitrosalicylaldehyde moiety, with a concomitant decrease of the other Cu-O distance; the Cu-N bonds are less affected. The D groups have only a minor influence. The nonlinear optical responses, microgBetavec, of some molecules have been determined by EFISH measurements, and the Beta-vec values have been obtained using the DFT-calculated microg values because solubility problems hampered the experimental measurements of microg of some derivatives; the former, however, have been found to be in agreement with the experimental values that could be obtained. Deconvolution of the absorption bands in the near-UV region has allowed recognition of the charge-transfer (CT) transition, assigned to a ligand-to-metal CT (LMCT) by time-dependent DFT computations; we have then used the solvatochromism of this transition to obtain Beta0 and BetaCT values using the two-state model. These values were compared with those obtained by computational studies, which have also allowed evaluation of the influence of the substituents on the directions of microg and Betatot.
Multiphase Return Trajectory Optimization Based on Hybrid Algorithm
Directory of Open Access Journals (Sweden)
Yi Yang
2016-01-01
Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.
Receding Horizon Trajectory Optimization with Terminal Impact Specifications
Directory of Open Access Journals (Sweden)
Limin Zhang
2014-01-01
Full Text Available The trajectory optimization problem subject to terminal impact time and angle specifications can be reformulated as a nonlinear programming problem using the Gauss pseudospectral method. The cost function of the trajectory optimization problem is modified to reduce the terminal control energy. A receding horizon optimization strategy is implemented to reject the errors caused by the motion of a surface target. Several simulations were performed to validate the proposed method via the C programming language. The simulation results demonstrate the effectiveness of the proposed algorithm and that the real-time requirement can be easily achieved if the C programming language is used to realize it.
Optimal trajectory generation for mechanical arms. M.S. Thesis
Iemenschot, J. A.
1972-01-01
A general method of generating optimal trajectories between an initial and a final position of an n degree of freedom manipulator arm with nonlinear equations of motion is proposed. The method is based on the assumption that the time history of each of the coordinates can be expanded in a series of simple time functions. By searching over the coefficients of the terms in the expansion, trajectories which minimize the value of a given cost function can be obtained. The method has been applied to a planar three degree of freedom arm.
Serkez, Svitozar; Saldin, Evgeni; Zagorodnov, Igor; Geloni, Gianluca
2013-01-01
We demonstrate that the output radiation characteristics of the European XFEL sources at nominal operation point can be easily made significantly better than what is currently reported in the TDRs of scientific instruments and X-ray optics. In fact, the output SASE characteristics of the baseline European XFEL have been previously optimized assuming uniform undulators at a nominal operating point of 5 kA peak current, without considering the potential of udulator tapering in the SASE regime. In order to illustrate this point, we analyze the case of an electron bunch with nominal parameters. Based on start-to-end simulations, we demonstrate that nonlinear undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime, without modification to the baseline design. The FEL code Genesis has been extensively used for these studies. In order to increase our confidence in simulation results, we cross-checked outcomes by reproducing simulatio...
Energy Technology Data Exchange (ETDEWEB)
Khan, Wilayat, E-mail: wkhan@ntc.zcu.cz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Murtaza, G., E-mail: murtaza@icp.edu.pk [Department of Physics, Islamia College Peshawar, KPK (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 230, Université de Tlemcen, Tlemcen 13000 (Algeria); École Préparatoire en Sciences et Techniques, BP 165 R.P., 13000 Tlemcen (Algeria); Mahmood, Asif [College of Engineering, Chemical Engineering Department, King Saud University Riyadh (Saudi Arabia); Khenata, R.; El Amine Monir, Mohammed; Baltache, H. [Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M), Université de Mascara, Mascara 29000 (Algeria)
2016-07-25
Recently a new sulphide compound Li{sub 2}Ga{sub 2}GeS{sub 6} was synthesized. It has attracted great attention due to its nonlinear optical properties. Quite surprisingly no theoretical study yet been reported on the physical properties of this important material. We have paid attention to study the electronic and optical properties of Li{sub 2}Ga{sub 2}GeS{sub 6} using first principles techniques of density functional theory. Different exchange-correlation techniques have been applied to study these properties. From local density and generalized gradient approximations the compound is predicted to be direct bandgap. However the band gap is indirect when calculated through the Engle–Vosko and modified Becke–Johnson potentials. Therefore the bandgap of the compound is pseudo direct (direct and indirect band gaps are very close). In optical properties dielectric function, refractive index, reflectivity and absorption coefficient were studied. Furthermore, the second harmonic generation properties of the compound are predicted. - Highlights: • Li{sub 2}Ga{sub 2}GeS{sub 6} studied for the first time using first principles calculations. • Different exchange correlation potentials have been adopted for the calculations. • Bandgap of the compound is pseudo direct. • Optical structures are prominent in the low frequency ultraviolet region. • The lone pair basins seem to have a non-negligible role in the optical properties.
Nonlinear maneuver autopilot for the F-15 aircraft
Menon, P. K. A.; Badgett, M. E.; Walker, R. A.
1989-01-01
A methodology is described for the development of flight test trajectory control laws based on singular perturbation methodology and nonlinear dynamic modeling. The control design methodology is applied to a detailed nonlinear six degree-of-freedom simulation of the F-15 and results for a level accelerations, pushover/pullup maneuver, zoom and pushover maneuver, excess thrust windup turn, constant thrust windup turn, and a constant dynamic pressure/constant load factor trajectory are presented.
Trajectory Optimization: OTIS 4
Riehl, John P.; Sjauw, Waldy K.; Falck, Robert D.; Paris, Stephen W.
2010-01-01
The latest release of the Optimal Trajectories by Implicit Simulation (OTIS4) allows users to simulate and optimize aerospace vehicle trajectories. With OTIS4, one can seamlessly generate optimal trajectories and parametric vehicle designs simultaneously. New features also allow OTIS4 to solve non-aerospace continuous time optimal control problems. The inputs and outputs of OTIS4 have been updated extensively from previous versions. Inputs now make use of objectoriented constructs, including one called a metastring. Metastrings use a greatly improved calculator and common nomenclature to reduce the user s workload. They allow for more flexibility in specifying vehicle physical models, boundary conditions, and path constraints. The OTIS4 calculator supports common mathematical functions, Boolean operations, and conditional statements. This allows users to define their own variables for use as outputs, constraints, or objective functions. The user-defined outputs can directly interface with other programs, such as spreadsheets, plotting packages, and visualization programs. Internally, OTIS4 has more explicit and implicit integration procedures, including high-order collocation methods, the pseudo-spectral method, and several variations of multiple shooting. Users may switch easily between the various methods. Several unique numerical techniques such as automated variable scaling and implicit integration grid refinement, support the integration methods. OTIS4 is also significantly more user friendly than previous versions. The installation process is nearly identical on various platforms, including Microsoft Windows, Apple OS X, and Linux operating systems. Cross-platform scripts also help make the execution of OTIS and post-processing of data easier. OTIS4 is supplied free by NASA and is subject to ITAR (International Traffic in Arms Regulations) restrictions. Users must have a Fortran compiler, and a Python interpreter is highly recommended.
Going Ballistic: Bullet Trajectories
Directory of Open Access Journals (Sweden)
Amanda Wade
2011-01-01
Full Text Available This project seeks to answer at what angle does a gun marksman have to aim in order to hit the center of a target one meter off the ground and 1000 meters away? We begin by modeling the bullet's trajectory using Euler's method with the help of a Microsoft Excel spreadsheet solver, and then systematically search for the angle corresponding to the center of the target. It was found that a marksman shooting a target 1000 meters away and 1 meter off the ground has to aim the rifle 0.436° above horizontal to hit the center.
Niu, Min; Yu, Guangtao; Yang, Guanghui; Chen, Wei; Zhao, Xingang; Huang, Xuri
2014-01-06
Under ab initio computations, several new inorganic electride compounds with high stability, M@x-Al12N12 (M = Li, Na, and K; x = b66, b64, and r6), were achieved for the first time by doping the alkali metal atom M on the fullerene-like Al12N12 nanocage, where the alkali atom is located over the Al-N bond (b66/b64 site) or six-membered ring (r6 site). It is revealed that independent of the doping position and atomic number, doping the alkali atom can significantly narrow the wide gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) (EH-L = 6.12 eV) of the pure Al12N12 nanocage in the range of 0.49-0.71 eV, and these doped AlN nanocages can exhibit the intriguing n-type characteristic, where a high energy level containing the excess electron is introduced as the new HOMO orbital in the original gap of pure Al12N12. Further, the diffuse excess electron also brings these doped AlN nanostructures the considerable first hyperpolarizabilities (β0), which are 1.09 × 10(4) au for Li@b66-Al12N12, 1.10 × 10(4), 1.62 × 10(4), 7.58 × 10(4) au for M@b64-Al12N12 (M = Li, Na, and K), and 8.89 × 10(5), 1.36 × 10(5), 5.48 × 10(4) au for M@r6-Al12N12 (M = Li, Na, and K), respectively. Clearly, doping the heavier Na/K atom over the Al-N bond can get the larger β0 value, while the reverse trend can be observed for the series with the alkali atom over the six-membered ring, where doping the lighter Li atom can achieve the larger β0 value. These fascinating findings will be advantageous for promoting the potential applications of the inorganic AlN-based nanosystems in the new type of electronic nanodevices and high-performance nonlinear optical (NLO) materials.
Energy Technology Data Exchange (ETDEWEB)
Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)
2003-05-07
A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.
Nonlinear Control of Magnetic Bearings
Institute of Scientific and Technical Information of China (English)
Khac Duc Do; Dang Hoe Nguyen; Thanh Binh Nguyen
2010-01-01
In this paper, recent results controling nonlinear systems with output tracking error constraints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the rotor to track a bounded and sufficiently smooth refer-ence trajectory asymptotically and guarantee non-contactedness be-tween the rotor and the stator of the magnetic bearings. Simulation results are included to illustrate the effectiveness of the proposed con-trollers.
Trajectories in parallel optics.
Klapp, Iftach; Sochen, Nir; Mendlovic, David
2011-10-01
In our previous work we showed the ability to improve the optical system's matrix condition by optical design, thereby improving its robustness to noise. It was shown that by using singular value decomposition, a target point-spread function (PSF) matrix can be defined for an auxiliary optical system, which works parallel to the original system to achieve such an improvement. In this paper, after briefly introducing the all optics implementation of the auxiliary system, we show a method to decompose the target PSF matrix. This is done through a series of shifted responses of auxiliary optics (named trajectories), where a complicated hardware filter is replaced by postprocessing. This process manipulates the pixel confined PSF response of simple auxiliary optics, which in turn creates an auxiliary system with the required PSF matrix. This method is simulated on two space variant systems and reduces their system condition number from 18,598 to 197 and from 87,640 to 5.75, respectively. We perform a study of the latter result and show significant improvement in image restoration performance, in comparison to a system without auxiliary optics and to other previously suggested hybrid solutions. Image restoration results show that in a range of low signal-to-noise ratio values, the trajectories method gives a significant advantage over alternative approaches. A third space invariant study case is explored only briefly, and we present a significant improvement in the matrix condition number from 1.9160e+013 to 34,526.
Discrete time learning control in nonlinear systems
Longman, Richard W.; Chang, Chi-Kuang; Phan, Minh
1992-01-01
In this paper digital learning control methods are developed primarily for use in single-input, single-output nonlinear dynamic systems. Conditions for convergence of the basic form of learning control based on integral control concepts are given, and shown to be satisfied by a large class of nonlinear problems. It is shown that it is not the gross nonlinearities of the differential equations that matter in the convergence, but rather the much smaller nonlinearities that can manifest themselves during the short time interval of one sample time. New algorithms are developed that eliminate restrictions on the size of the learning gain, and on knowledge of the appropriate sign of the learning gain, for convergence to zero error in tracking a feasible desired output trajectory. It is shown that one of the new algorithms can give guaranteed convergence in the presence of actuator saturation constraints, and indicate when the requested trajectory is beyond the actuator capabilities.
Differentially Private Trajectory Data Publication
Chen, Rui; Desai, Bipin C
2011-01-01
With the increasing prevalence of location-aware devices, trajectory data has been generated and collected in various application domains. Trajectory data carries rich information that is useful for many data analysis tasks. Yet, improper publishing and use of trajectory data could jeopardize individual privacy. However, it has been shown that existing privacy-preserving trajectory data publishing methods derived from partition-based privacy models, for example k-anonymity, are unable to provide sufficient privacy protection. In this paper, motivated by the data publishing scenario at the Societe de transport de Montreal (STM), the public transit agency in Montreal area, we study the problem of publishing trajectory data under the rigorous differential privacy model. We propose an efficient data-dependent yet differentially private sanitization algorithm, which is applicable to different types of trajectory data. The efficiency of our approach comes from adaptively narrowing down the output domain by building...
Periodic billiard trajectories in polygons: generating mechanisms
Vorobets, Ya B.; Gal'perin, G. A.; Stepin, Anatolii M.
1992-06-01
CONTENTSIntroduction §1. Billiard trajectories in a plane domain §2. Fagnano's problem. Mechanical interpretations of periodic trajectories in triangles §3. An extremal property of billiard trajectories. Birkhoff's theorem. The non-existence of a unified construction of periodic trajectories in obtuse triangles §4. 'Perpendicular' trajectories in obtuse triangles of special shape §5. 'Perpendicular' trajectories in rational polygons and polyhedra §6. Stable trajectories §7. Stable perpendicular trajectories §8. Isolated trajectories §9. Isolated trajectories in acute and obtuse triangles. The bifurcation diagram of isolated trajectories (a 'hang-glider' configuration) §10. The density of F-triangles in a neighbourhood of (0, 0) §11. Generalization of the construction of isolated trajectories in obtuse triangles §12. Stable and unstable billiard trajectories in plane Weyl chambers §13. A criterion for the stability of periodic trajectories in a regular hexagonConclusionReferences
Interference, reduced action, and trajectories
Floyd, E R
2006-01-01
Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichromatic wave function's trajectory. The quantum effective mass renders insight into the behavior of the trajectory. The trajectory in turn renders insight into quantum nonlocality.
Nonlinear scattering in plasmonic nanostructures
Chu, Shi-Wei
2016-09-01
Nonlinear phenomena provide novel light manipulation capabilities and innovative applications. Recently, we discovered nonlinear saturation on single-particle scattering of gold nanospheres by continuous-wave laser excitation and innovatively applied to improve microscopic resolution down to λ/8. However, the nonlinearity was limited to the green-orange plasmonic band of gold nanosphere, and the underlying mechanism has not yet been fully understood. In this work, we demonstrated that nonlinear scattering exists for various material/geometry combinations, thus expanding the applicable wavelength range. For near-infrared, gold nanorod is used, while for blue-violet, silver nanospheres are adopted. In terms of mechanism, the nonlinearity may originate from interband/intraband absorption, hot electron, or hot lattice, which are spectrally mixed in the case of gold nanosphere. For gold nanorod and silver nanosphere, nonlinear scattering occurs at plasmonic resonances, which are spectrally far from interband/intraband absorptions, so they are excluded. We found that the nonlinear index is much larger than possible contributions from hot electrons in literature. Therefore, we conclude that hot lattice is the major mechanism. In addition, we propose that similar to z-scan, which is the standard method to characterize nonlinearity of a thin sample, laser scanning microscopy should be adopted as the standard method to characterize nonlinearity from a nanostructure. Our work not only provides the physical mechanism of the nonlinear scattering, but also paves the way toward multi-color superresolution imaging based on non-bleaching plasmonic scattering.
Earth-moon Trajectory Optimization Using Solar Electric Propulsion
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The optimization of the Earth-moon trajectory using solar electric propulsion is presented. A feasible method is proposed to optimize the transfer trajectory starting from a low Earth circular orbit (500 km altitude) to a low lunar circular orbit (200 km altitude). Due to the use of low-thrust solar electric propulsion, the entire transfer trajectory consists of hundreds or even thousands of orbital revolutions around the Earth and the moon. The Earth-orbit ascending (from low Earth orbit to high Earth orbit) and lunar descending (from high lunar orbit to low lunar orbit) trajectories in the presence of J2 perturbations and shadowing effect are computed by an analytic orbital averaging technique. A direct/indirect method is used to optimize the control steering for the trans-lunar trajectory segment, a segment fiom a high Earth orbit to a high lunar orbit, with a fixed thrust-coast-thrust engine sequence. For the trans-lunar trajectory segment, the equations of motion are expressed in the inertial coordinates about the Earth and the moon using a set of nonsingular equinoctial elements inclusive of the gravitational forces of the sun, the Earth, and the moon. By way of the analytic orbital averaging technique and the direct/indirect method, the Earth-moon transfer problem is converted to a parameter optimization problem, and the entire transfer trajectory is formulated and optimized in the form of a single nonlinear optimization problem with a small number of variables and constraints. Finally, an example of an Earth-moon transfer trajectory using solar electric propulsion is demonstrated.
Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois
2016-01-01
In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...
Multiview Trajectory Mapping Using Homography with Lens Distortion Correction
Directory of Open Access Journals (Sweden)
Andrea Cavallaro
2008-11-01
Full Text Available We present a trajectory mapping algorithm for a distributed camera setting that is based on statistical homography estimation accounting for the distortion introduced by camera lenses. Unlike traditional approaches based on the direct linear transformation (DLT algorithm and singular value decomposition (SVD, the planar homography estimation is derived from renormalization. In addition to this, the algorithm explicitly introduces a correction parameter to account for the nonlinear radial lens distortion, thus improving the accuracy of the transformation. We demonstrate the proposed algorithm by generating mosaics of the observed scenes and by registering the spatial locations of moving objects (trajectories from multiple cameras on the mosaics. Moreover, we objectively compare the transformed trajectories with those obtained by SVD and least mean square (LMS methods on standard datasets and demonstrate the advantages of the renormalization and the lens distortion correction.
Multiview Trajectory Mapping Using Homography with Lens Distortion Correction
Directory of Open Access Journals (Sweden)
Kayumbi Gabin
2008-01-01
Full Text Available Abstract We present a trajectory mapping algorithm for a distributed camera setting that is based on statistical homography estimation accounting for the distortion introduced by camera lenses. Unlike traditional approaches based on the direct linear transformation (DLT algorithm and singular value decomposition (SVD, the planar homography estimation is derived from renormalization. In addition to this, the algorithm explicitly introduces a correction parameter to account for the nonlinear radial lens distortion, thus improving the accuracy of the transformation. We demonstrate the proposed algorithm by generating mosaics of the observed scenes and by registering the spatial locations of moving objects (trajectories from multiple cameras on the mosaics. Moreover, we objectively compare the transformed trajectories with those obtained by SVD and least mean square (LMS methods on standard datasets and demonstrate the advantages of the renormalization and the lens distortion correction.
Allen, Adriana; Hofmann, Pascale; Teh, Tse-Hui
2017-01-01
Water is an essential element in the future of cities. It shapes cities’ locations, form, ecology, prosperity and health. The changing nature of urbanisation, climate change, water scarcity, environmental values, globalisation and social justice mean that the models of provision of water services and infrastructure that have dominated for the past two centuries are increasingly infeasible. Conventional arrangements for understanding and managing water in cities are being subverted by a range of natural, technological, political, economic and social changes. The prognosis for water in cities remains unclear, and multiple visions and discourses are emerging to fill the space left by the certainty of nineteenth century urban water planning and engineering. This book documents a sample of those different trajectories, in terms of water transformations, option, services and politics. Water is a key element shaping urban form, economies and lifestyles, part of the ongoing transformation of cities. Cities are face...
Nonlinearities in Microwave Superconductivity
Ledenyov, Dimitri O.; Ledenyov, Viktor O.
2012-01-01
The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.
Simulation of molecular transitions using classical trajectories
Energy Technology Data Exchange (ETDEWEB)
Donoso, A.; Martens, C. C. [University of California, California (United States)
2001-03-01
In the present work, we describe the implementation of a semiclassical method to study physical-chemical processes in molecular systems where electronic state transitions and quantum coherence play a dominant role. The method is based on classical trajectory propagation on the underlying coupled electronic surfaces and is derived from the semiclassical limit of the quantum Liouville equation. Unlike previous classical trajectory-based methods, quantum electronic coherence are treated naturally within this approach as complex weighted trajectory ensembles propagating on the average electronic surfaces. The method is tested on a model problem consisting of one-dimensional motion on two crossing electronic surfaces. Excellent agreement is obtained when compared to the exact results obtained by wave packet propagation. The method is applied to model quantum wave packet interferometry, where two wave packets, differing only in a relative phase, collide in the region where the two electronic surfaces cross. The dependence of the resulting population transfer on the initial relative phase of the wave packets is perfectly captured by our classical trajectory method. Comparison with an alternative method, surface hopping, shows that our approach is appropriate for modelling quantum interference phenomena. [Spanish] En este trabajo se describe la implementacion de un metodo semiclasico para estudiar procesos fisicos-quimicos en sistemas moleculares donde las transiciones entre estados electronicos y las coherencias cuanticas juegan un papel predominante. El metodo se basa en la propagacion de trayectorias clasicas sobre las correspondientes superficies electronicas acopladas y se deriva a partir del limite semiclasico de la ecuacion cuantica de Liouville. A diferencia de metodos previos basados en trayectoria clasica, dentro de este esquema, las coherencias electronicas cuanticas son tratadas de manera natural como ensamble de trayectorias con pesos complejos, moviendose en
Institute of Scientific and Technical Information of China (English)
陈盈盈; 韩奎; 李海鹏; 李明雪; 唐刚; 沈晓鹏
2015-01-01
Organic nonlinear optical materials have attracted considerable attention in recent years because of their potential applications in photonic devices and optical information processing. Recent studies have shown that annulene derivatives exhibit good second-order nonlinear optical properties, but their third-order nonlinear optical properties are studied little. In this paper, the values of molecular static linear polarizabilityαand second hyperpolarizabilityγ of substituted annulenes have been investigated with different levels of HF, B3LYP, BHandHLYP and CAM-B3LYP at different basis sets, respectively. Their ultraviolet spectra have also been calculated by using the TD-B3LYP method. It is found that the quality of the basis set is important for the hyperpolarizability calculations, and diffuse functions are important to obtain accurate results for the second hyperpolarizability. We also study the structure-optical property relationship for annulene. It is found that annulene molecular structure has a significant influence on third-order nonlinear optical response. Increasing the conjugation length and introducing push-pull electronic groups can enhance the second hyperpolarizability. But the introduction of push-pull electronic groups can enhance the hyperpolarizability more remarkably than increasing the conjugation length dose, which may be due to the fact that the introduction of push-pull electronic groups can provide a large number of polarizable electrons whereas increasing the conjugation length can only enhance the electron delocalization. Meanwhile the push-pull electronic group substituted annulenes can also exhibit high transparency in visible region. Thus, this work has a good reference for designing nonlinear optical material with high, nonlinear optical coeﬃcient and good transparency. In addition, for the same push-pull electronic groups, the higher conjugation degree and the longerπ-conjugated bridge result in the decrease of HOMO-LUMO energy
Energy Technology Data Exchange (ETDEWEB)
Santos, G.B.; Pinheiro Neto, D.; Lisita, L.R.; Machado, P.C.M.; Oliveira, J.V.M. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Escola de Engenharia Eletrica e de Computacao], Emails: guilhermebsantos@gmail.com, daywes@gmail.com, lrlisi-ta@gmail.com, pcesar@eee.ufg.br, joao.eee@gmail.com
2009-07-01
This paper analyzes the behavior of a electronic meter of single-phase in the laboratory when it is subjected to a environment with linear loads and nonlinear loads kind residential and commercial. It differs from correlated studies mainly for making use of real loads encountered in day-to-day, rather than as sources of electronic loads how has been observed in the state of the art. The comparison of results is made based on high precision energy pattern developed by virtual instrumentation means.
2016-07-01
Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9
Missile trajectory shaping using sampling-based path planning
Pharpatara, Pawit; Pepy, Romain; Hérissé, Bruno; Bestaoui, Yasmina
2013-01-01
International audience; This paper presents missile guidance as a complex robotic problem: a hybrid non-linear system moving in a heterogeneous environment. The proposed solution to this problem combines a sampling-based path planner, Dubins' curves and a locally-optimal guidance law. This algorithm aims to find feasible trajectories that anticipate future flight conditions, especially the loss of manoeuverability at high altitude. Simulated results demonstrate the substantial performance imp...
IMPORTANCE OF KINETIC MEASURES IN TRAJECTORY PREDICTION WITH OPTIMAL CONTROL
Directory of Open Access Journals (Sweden)
Ömer GÜNDOĞDU
2001-02-01
Full Text Available A two-dimensional sagittally symmetric human-body model was established to simulate an optimal trajectory for manual material handling tasks. Nonlinear control techniques and genetic algorithms were utilized in the optimizations to explore optimal lifting patterns. The simulation results were then compared with the experimental data. Since the kinetic measures such as joint reactions and moments are vital parameters in injury determination, the importance of comparing kinetic measures rather than kinematical ones was emphasized.
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nanda, Sudarsan
2013-01-01
"Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.
Segmenting Trajectories by Movement States
Buchin, M.; Kruckenberg, H.; Kölzsch, A.; Timpf, S.; Laube, P.
2013-01-01
Dividing movement trajectories according to different movement states of animals has become a challenge in movement ecology, as well as in algorithm development. In this study, we revisit and extend a framework for trajectory segmentation based on spatio-temporal criteria for this purpose. We adapt
Geometric Algorithms for Trajectory Analysis
Staals, Frank
2015-01-01
Technology such as the Global Positing System (GPS) has made tracking moving entities easy and cheap. As a result there is a large amount of trajectory data available, and an increasing demand on tools and techniques to analyze such data. We consider several analysis tasks for trajectory data, and d
Potylitsyn, A. P.; Kolchuzhkin, A. M.; Strokov, S. A.
2016-07-01
A photon spectrum of undulator radiation (UR) is calculated in the semi-classical approach. The UR intensity spectrum is determined by an electron trajectory in the undulator neglecting by energy losses for radiation. Using the Planck's law, the UR photon spectrum can be calculated from the classical intensity spectrum both for linear and nonlinear regimes. The radiation of an electron in a field of strong electromagnetic wave (radiation in the "light" undulator) is considered in the quantum electromagnetic frame. Comparison of results obtained by both approaches has been shown that UR spectra in the whole cone coincide with high accuracy for the case xbeam were simulated with taking into account the discrete process of photon emission along an electron trajectory in both kinds of undulators.
Optimal growth trajectories with finite carrying capacity.
Caravelli, F; Sindoni, L; Caccioli, F; Ududec, C
2016-08-01
We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.
Optimal growth trajectories with finite carrying capacity
Caravelli, F.; Sindoni, L.; Caccioli, F.; Ududec, C.
2016-08-01
We consider the problem of finding optimal strategies that maximize the average growth rate of multiplicative stochastic processes. For a geometric Brownian motion, the problem is solved through the so-called Kelly criterion, according to which the optimal growth rate is achieved by investing a constant given fraction of resources at any step of the dynamics. We generalize these finding to the case of dynamical equations with finite carrying capacity, which can find applications in biology, mathematical ecology, and finance. We formulate the problem in terms of a stochastic process with multiplicative noise and a nonlinear drift term that is determined by the specific functional form of carrying capacity. We solve the stochastic equation for two classes of carrying capacity functions (power laws and logarithmic), and in both cases we compute the optimal trajectories of the control parameter. We further test the validity of our analytical results using numerical simulations.
Minimum Time Trajectory Optimization of CNC Machining with Tracking Error Constraints
Directory of Open Access Journals (Sweden)
Qiang Zhang
2014-01-01
Full Text Available An off-line optimization approach of high precision minimum time feedrate for CNC machining is proposed. Besides the ordinary considered velocity, acceleration, and jerk constraints, dynamic performance constraint of each servo drive is also considered in this optimization problem to improve the tracking precision along the optimized feedrate trajectory. Tracking error is applied to indicate the servo dynamic performance of each axis. By using variable substitution, the tracking error constrained minimum time trajectory planning problem is formulated as a nonlinear path constrained optimal control problem. Bang-bang constraints structure of the optimal trajectory is proved in this paper; then a novel constraint handling method is proposed to realize a convex optimization based solution of the nonlinear constrained optimal control problem. A simple ellipse feedrate planning test is presented to demonstrate the effectiveness of the approach. Then the practicability and robustness of the trajectory generated by the proposed approach are demonstrated by a butterfly contour machining example.
Institute of Scientific and Technical Information of China (English)
Shaohua MENG; Jinwu XIANG; Zhangping LUO; Yiru REN; Nanjian ZHUANG
2014-01-01
To improve the survivability during an emergency situation, an algorithm for aircraft forced landing trajectory planning is proposed. The method integrates damaged aircraft modelling and trajectory planning into an optimal control framework. In order to deal with the complex aircraft flight dynamics, a solving strategy based on Gauss pseudospetral method (GPM) is presented. A 3-DOF nonlinear mass-point model taking into account the wind is developed to approximate the aircraft flight dynamics after loss of thrust. The solution minimizes the forced landing duration, with respect to the constraints that translate the changed dynamics, flight envelope limitation and operational safety requirements. The GPM is used to convert the trajectory planning problem to a nonlinear programming problem (NLP), which is solved by sequential quadratic programming algorithm. Simulation results show that the proposed algorithm can generate the minimum-time forced landing trajectory in event of engine-out with high efficiency and precision.
Unsymmetrical squaraines for nonlinear optical materials
Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)
1996-01-01
Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Nonlinear evolution of drift instabilities
Energy Technology Data Exchange (ETDEWEB)
Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.
1984-01-01
The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.
Aircraft Trajectory Optimization Using Parametric Optimization Theory
Valenzuela Romero, Alfonso
2012-01-01
In this thesis, a study of the optimization of aircraft trajectories using parametric optimization theory is presented. To that end, an approach based on the use of predefined trajectory patterns and parametric optimization is proposed. The trajectory pat
Lyapunov optimal feedback control of a nonlinear inverted pendulum
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
Lyapunov optimal feedback control of a nonlinear inverted pendulum
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
Trajectory Design to Benefit Trajectory-Based Surface Operations Project
National Aeronautics and Space Administration — Trajectory-based operations constitute a key mechanism considered by the Joint Planning and Development Office (JPDO) for managing traffic in high-density or...
Trajectory Design to Benefit Trajectory-Based Surface Operations Project
National Aeronautics and Space Administration — Trajectory-based operations constitute a key mechanism considered by the Joint Planning and Development Office (JPDO) for managing traffic in high-density or...
Fractional trajectories: Decorrelation versus friction
Svenkeson, A.; Beig, M. T.; Turalska, M.; West, B. J.; Grigolini, P.
2013-11-01
The fundamental connection between fractional calculus and subordination processes is explored and affords a physical interpretation of a fractional trajectory, that being an average over an ensemble of stochastic trajectories. Heretofore what has been interpreted as intrinsic friction, a form of non-Markovian dissipation that automatically arises from adopting the fractional calculus, is shown to be a manifestation of decorrelations between trajectories. We apply the general theory developed herein to the Lotka-Volterra ecological model, providing new insight into the final equilibrium state. The relaxation time to achieve this state is also considered.
Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran
2016-01-01
We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.
Trajectory tracking control of underactuated USV based on modified backstepping approach
Directory of Open Access Journals (Sweden)
Dong Zaopeng
2015-09-01
Full Text Available This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV in the horizontal plane. A nonlinear three Degree of Freedom (DOF underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat’s Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.
Directory of Open Access Journals (Sweden)
Sai Hong Tang
2014-10-01
Full Text Available Mathematically, the motion of a robot manipulator can be computed through the integration of kinematics, dynamics, and trajectories calculations. However, the calculations are complex and only can be applied if the configuration of the robot and the characteristics of the joint trajectories are known. This paper introduces the use of artificial neural networks (ANN to overcome these shortcomings by solving nonlinear functions and adapting the characteristics of unknown trajectories. A virtual six-degree-of-freedom (DOF robot manipulator is exploited as an example to show the robustness of the developed ANN topology.
Regularities in hadron systematics, Regge trajectories and a string quark model
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Levchenko, B.B. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics
2006-08-15
An empirical principle for the construction of a linear relationship between the total angular momentum and squared-mass of baryons is proposed. In order to examine linearity of the trajectories, a rigorous least-squares regression analysis was performed. Unlike the standard Regge-Chew-Frautschi approach, the constructed trajectories do not have non-linear behaviour. A similar regularity may exist for lowest-mass mesons. The linear baryonic trajectories are well described by a semi-classical picture based on a spinning relativistic string with tension. The obtained numerical solution of this model was used to extract the (di)quark masses. (orig.)
Directory of Open Access Journals (Sweden)
Ma Bao-Li
2013-09-01
Full Text Available In this work, we investigate the trajectory tracking and point stabilization problems of asymmetric underactuated surface ships with non-diagonal inertia and damping matrices. By combining the novel state and input transformations, the direct Lyapunov approach, and the nonlinear time-varying tools, the trajectory tracking controller is derived, guaranteeing global κ-exponential convergence of state trajectory to the reference one satisfying mild persistent exciting conditions. By properly designing the reference trajectory, the proposed tracking scheme is also generalized to achieve global uniform asymptotic point stabilization. Simulation examples are given to illustrate the effectiveness of the proposed control schemes.
Adaptive Trajectory Design (ATD) Project
National Aeronautics and Space Administration — Mission design within unstable/stable regions needs unification of individual trajectories from different dynamical regimes. NASA needs an automated process to blend...
Galileo's Trajectory with Mild Resistance
Groetsch, C. W.
2012-01-01
An aspect of Galileo's classical trajectory that persists in a simple resistance model is noted. The resistive model provides a case study for the classroom analysis of limiting behaviour of an implicitly defined function. (Contains 1 note.)
Discontinuity and complexity in nonlinear physical systems
Baleanu, Dumitru; Luo, Albert
2014-01-01
This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....
Meyer, George
1997-01-01
The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of way points through which the aircraft trajectory must pass. The way points typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory which satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multi-dimensional, multi-axis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of possible operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions must be smooth. The guidance algorithm is based on the inversion of the pure feedback approximations, which is followed by iterative corrections for the effects of zero dynamics. The paper describes the structure and modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.
Silantyev, Denis A.; Lushnikov, Pavel M.; Rose, Harvey A.
2017-04-01
We consider two kinds of pumped Langmuir waves (LWs) in the kinetic regime, k λ D ≳ 0.2 , where k is the LW wavenumber and λD is the Debye length, driven to finite amplitude by a coherent external potential whose amplitude is either weak or strong. These dynamically prepared nonlinear LWs develop a transverse (filamentation) instability whose nonlinear evolution destroys the LW's transverse coherence. Instability growth rates in the weakly pumped regime are the same as those of Bernstein-Greene-Kruskal modes considered in Part I (D. A. Silantyev et al., Phys. Plasmas 24, 042104 (2017)), while strongly pumped LWs have higher filamentation grow rates.
Silantyev, Denis A; Rose, Harvey A
2016-01-01
We consider two kinds of pumped Langmuir waves (LWs) in the kinetic regime, $k\\lambda_D\\gtrsim0.2,$ where $k$ is the LW wavenumber and $\\lambda_D$ is the Debye length. They are driven to finite amplitude by a coherent external potential whose amplitude is either weak or strong. These dynamically prepared nonlinear LWs develop a transverse (filamentation) instability whose nonlinear evolution destroys the LW's transverse coherence. Instability growth rates in the weakly pumped regime are the same as those of BGK modes considered in Part I, while strongly pumped LWs have higher filamentation grow rates.
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t
Peláez, J R
2016-01-01
We review how the Regge trajectory of an elastic resonance can be obtained just from its pole position and coupling, using a dispersive formalism. This allows us to deal correctly with the finite widths of resonances in Regge trajectories. In this way we can calculate the Regge trajectories for the $K^*(892)$, $K_1(1400)$ and $K^*_0(1430)$, obtaining ordinary linear Regge trajectories, expected for $q \\bar q$ resonances. In contrast, for the $K^*_0(800)$ meson, the resulting Regge trajectory is non-linear and with much smaller slope, strongly supporting its non-ordinary nature.
Zhao, Xingang; Yu, Guangtao; Huang, Xuri; Chen, Wei; Niu, Min
2013-12-01
Under high-level ab initio calculations, the geometrical structures and nonlinear optical properties of M@P₄ (M=Li, Na, K and Li₃O) and M@C₃H₆ (M=Li and Li₃O) were investigated; all were found to exhibit considerable first hyperpolarizabilities (18110, 1440, 22490, 50487, 2757 and 31776 au, respectively). The computational results revealed that when doping the (super)alkali atom M into the tetrahedral P₄ molecule, the original dual spherical aromaticity of the P₄ moiety is broken and new σ electron cloud is formed on the face of P₄ part interacting with the M atom. It was found that interaction of the (super)alkali atom with the σ electron cloud is a novel mode to produce diffuse excess electrons effectively to achieve a considerable β₀ value. Further, beyond the alkali atom, employing the superalkali unit can be a more effective approach to significantly enhance the first hyperpolarizability of the systems, due to the much lower vertical ionization potential. These results were further supported by the case of the (super)alkali atom interacting with the cyclopropane C₃H₆ molecule with its typical σ aromatic electron cloud. Moreover, the β₀ values of the M@P₄ series are nonmonotonic dependent on alkali atomic number, namely, 1440 au (M = Na) alkali atom and the interacting surface with the σ electron cloud in P4 is a crucial geometrical factor in determining their first hyperpolarizabilities. These intriguing findings will be advantageous for promoting the design of novel high-performance nonlinear optical materials.
Trajectories in Operating a Handheld Tool
Heuer, Herbert; Sulzenbruck, Sandra
2009-01-01
The authors studied the trajectories of the hand and of the tip of a handheld sliding first-order lever in aiming movements. With this kind of tool, straight trajectories of the hand are generally associated with curved trajectories of the tip of the lever and vice versa. Trajectories of the tip of the lever exhibited smaller deviations from…
Trajectories in Operating a Handheld Tool
Heuer, Herbert; Sulzenbruck, Sandra
2009-01-01
The authors studied the trajectories of the hand and of the tip of a handheld sliding first-order lever in aiming movements. With this kind of tool, straight trajectories of the hand are generally associated with curved trajectories of the tip of the lever and vice versa. Trajectories of the tip of the lever exhibited smaller deviations from…
Constrained Multi-Level Algorithm for Trajectory Optimization
Adimurthy, V.; Tandon, S. R.; Jessy, Antony; Kumar, C. Ravi
The emphasis on low cost access to space inspired many recent developments in the methodology of trajectory optimization. Ref.1 uses a spectral patching method for optimization, where global orthogonal polynomials are used to describe the dynamical constraints. A two-tier approach of optimization is used in Ref.2 for a missile mid-course trajectory optimization. A hybrid analytical/numerical approach is described in Ref.3, where an initial analytical vacuum solution is taken and gradually atmospheric effects are introduced. Ref.4 emphasizes the fact that the nonlinear constraints which occur in the initial and middle portions of the trajectory behave very nonlinearly with respect the variables making the optimization very difficult to solve in the direct and indirect shooting methods. The problem is further made complex when different phases of the trajectory have different objectives of optimization and also have different path constraints. Such problems can be effectively addressed by multi-level optimization. In the multi-level methods reported so far, optimization is first done in identified sub-level problems, where some coordination variables are kept fixed for global iteration. After all the sub optimizations are completed, higher-level optimization iteration with all the coordination and main variables is done. This is followed by further sub system optimizations with new coordination variables. This process is continued until convergence. In this paper we use a multi-level constrained optimization algorithm which avoids the repeated local sub system optimizations and which also removes the problem of non-linear sensitivity inherent in the single step approaches. Fall-zone constraints, structural load constraints and thermal constraints are considered. In this algorithm, there is only a single multi-level sequence of state and multiplier updates in a framework of an augmented Lagrangian. Han Tapia multiplier updates are used in view of their special role in
Designing Complex Interplanetary Trajectories for the Global Trajectory Optimization Competitions
Izzo, Dario; Simões, Luís F; Märtens, Marcus
2015-01-01
The design of interplanetary trajectories often involves a preliminary search for options that are later refined into one final selected trajectory. It is this broad search that, often being intractable, inspires the international event called Global Trajectory Optimization Competition. In the first part of this chapter, we introduce some fundamental problems of space flight mechanics, building blocks of any attempt to participate successfully in these competitions and we describe the use of the open source software PyKEP to assemble them into a final global solution strategy. In the second part, we formulate an instance of a multiple asteroid rendezvous problem, related to the 7th edition of the competition, and we show step by step how to build a possible solution strategy. We introduce two new techniques useful in the design of this particular mission type: the use of an asteroid phasing value and its surrogates and the efficient computation of asteroid clusters. We show how basic building blocks, sided to...
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
Complexity of trajectories in rectangular billiards
Baryshnikov, Yu
1994-01-01
To a trajectory of a billiard in a parallelogram we assign its symbolic trajectory --- the sequence of numbers of coordinate planes, to which the faces met by the trajectory are parallel. The complexity of the trajectory is the number of different words of length n occurring in it. We prove that for generic trajectories the complexity is well defined and calculate it, confirming the conjecture of Arnoux, Mauduit, Shiokawa and Tamura[AMST].
Complexity of trajectories in rectangular billiards
Baryshnikov, Yu.
1995-11-01
To a trajectory of the billiard in a cube we assign its symbolic trajectory-the sequence of numbers of coordinate planes, to which the faces met by the trajectory are parallel. The complexity of the trajectory is the number of different words of lengthn occurring in it. We prove that for generic trajectories the complexity is well defined and calculate it, confirming the conjecture of Arnoux, Mauduit, Shiokawa and Tamura [AMST].
Observation of Nonlinear Compton Scattering
Energy Technology Data Exchange (ETDEWEB)
Kotseroglou, T.
2003-12-19
This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.
Stolz, A; Markey, L; Francs, G Colas des; Bouhelier, A
2013-01-01
We introduce strongly-coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion and demonstrate that a two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
Generic trajectory representation and trajectory following for wheeled robots
DEFF Research Database (Denmark)
Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole
2014-01-01
This article presents the work towards a purely generic navigation solution for wheeled mobile robots motivated by the following goals: Generic: Works for different types of robots. Configurable: Parameters maps to geometric properties of the robot. Predictable: Well defined where the robot...... will drive. Safe: Avoid fatal collisions. Based on a survey of existing methods and algorithms the article presents a generic way to represent constraints for different types of robots, a generic way to represent trajectories using Bëzier curves, a method to convert the trajectory so it can be driven...
Trajectory Dispersion Control for the Cassini Grand Finale Mission
Wong, Mau; Hahn, Yungsun; Roth, Duane; Vaquero, Mar
2015-01-01
The Cassini Grand Finale Mission, which consists of 22 ballistic orbits, will begin on April 22, 2017 after the last targeted Titan flyby. It will end on September 15, 2017 when the spacecraft dives into Saturn's atmosphere and be permanently captured. High volumes of unique science data from various onboard instruments are expected from the mission. To ensure its success and facilitate science planning, the trajectory dispersion needs to be controlled below 250 km (root-mean-square spatial deviation at the 68th percentile level) for a few segments of trajectory in the mission. This paper reports the formulation and solution of this dispersion control problem. We consider various sources of uncertainties including flyby error, orbit determination error, maneuver execution error, thruster firing control error, and uncertainty in Saturn's atmospheric model. A non-linear Monte Carlo Trajectory Dispersion tool is developed and employed for the analysis. It is found that a total of three Orbit Trim Maneuvers with a 99% (Delta)V usage of less than 2 m/s will adequately control the trajectory.
Energy Technology Data Exchange (ETDEWEB)
Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)
1989-01-01
Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.
Statistical methods in nonlinear dynamics
Indian Academy of Sciences (India)
K P N Murthy; R Harish; S V M Satyanarayana
2005-03-01
Sensitivity to initial conditions in nonlinear dynamical systems leads to exponential divergence of trajectories that are initially arbitrarily close, and hence to unpredictability. Statistical methods have been found to be helpful in extracting useful information about such systems. In this paper, we review briefly some statistical methods employed in the study of deterministic and stochastic dynamical systems. These include power spectral analysis and aliasing, extreme value statistics and order statistics, recurrence time statistics, the characterization of intermittency in the Sinai disorder problem, random walk analysis of diffusion in the chaotic pendulum, and long-range correlations in stochastic sequences of symbols.
Li, Kang; Tang, Guodong; Kou, ShanShan; Culnane, Lance F.; Zhang, Yu; Song, Yinglin; Li, Rongqing; Wei, Changmei
2015-03-01
Three complexes of M(DPIP)2 (M = Cu, Co, Zn as 1, 2, 3) were synthesized and characterized by elemental analysis, IR, UV-Vis, thermogravimetry, and X-ray diffraction. Their nonlinear optical properties were measured by the Z-scan technique and yielded a normalized transmittance of about 70% for complex 1 (45 μJ pulse), and 93% for complex 3 (68 μJ pulse at the focus point). The nonlinear absorption coefficient, β, is 1.4 × 10-11 m/W for 1 and 5.6 × 10-13 m/W for 3, and the third-order nonlinear refraction index, n2, is 1.0 × 10-18 m2/W for 3. Complex 1 shows self-defocusing property, while complex 3 exhibits self-focusing property. The thermogravimetric results show that the frame structure of compounds 1-3 begin to collapse at 400, 250 and 280 °C, respectively, which suggests that they elicit excellent thermal stability. This research aims to provide better understanding of these compounds, and offer preliminary explanations for the significant differences between compounds 1-3, in order to potentially help in the designing of future novel materials with NLO properties.
Trajectory generation of space telerobots
Lumia, R.; Wavering, A. J.
1989-01-01
The purpose is to review a variety of trajectory generation techniques which may be applied to space telerobots and to identify problems which need to be addressed in future telerobot motion control systems. As a starting point for the development of motion generation systems for space telerobots, the operation and limitations of traditional path-oriented trajectory generation approaches are discussed. This discussion leads to a description of more advanced techniques which have been demonstrated in research laboratories, and their potential applicability to space telerobots. Examples of this work include systems that incorporate sensory-interactive motion capability and optimal motion planning. Additional considerations which need to be addressed for motion control of a space telerobot are described, such as redundancy resolution and the description and generation of constrained and multi-armed cooperative motions. A task decomposition module for a hierarchical telerobot control system which will serve as a testbed for trajectory generation approaches which address these issues is also discussed briefly.
Trajectory Indexing Using Movement Constraints
DEFF Research Database (Denmark)
Pfoser, D.; Jensen, Christian Søndergaard
2005-01-01
With the proliferation of mobile computing, the ability to index efficiently the movements of mobile objects becomes important. Objects are typically seen as moving in two-dimensional (x,y) space, which means that their movements across time may be embedded in the three-dimensional (x,y,t) space...... is to reduce movements to occur in one spatial dimension. As a consequence, the movement occurs in two-dimensional (x,t) space. The advantages of considering such lower-dimensional trajectories are that the overall size of the data is reduced and that lower-dimensional data is to be indexed. Since off......-the-shelf database management systems typically do not offer higher-dimensional indexing, this reduction in dimensionality allows us to use existing DBMSes to store and index trajectories. Moreover, we argue that, given the right circumstances, indexing these dimensionality-reduced trajectories can be more efficient...
Dynamical Convergence Trajectory in Networks
Institute of Scientific and Technical Information of China (English)
TAN Ning; ZHANG Yun-Jun; OUYANG Qi; GENG Zhi
2005-01-01
@@ It is well known that topology and dynamics are two major aspects to determine the function of a network. We study one of the dynamic properties of a network: trajectory convergence, i.e. how a system converges to its steady state. Using numerical and analytical methods, we show that in a logical-like dynamical model, the occurrence of convergent trajectory in a network depends mainly on the type of the fixed point and the ratio between activation and inhibition links. We analytically proof that this property is induced by the competition between two types of state transition structures in phase space: tree-like transition structure and star-like transition structure. We show that the biological networks, such as the cell cycle network in budding yeast, prefers the tree-like transition structures and suggest that this type of convergence trajectories may be universal.
Fractional Trajectories: Decorrelation Versus Friction
2013-07-27
function, andmoving back to the time domain yields the fractional trajectory V(t) = Eα(Otα)V(0). (4) Note that the Mittag-Leffler function is defined...bxy) ∂ ∂x − (cy − δxy) ∂ ∂y , (35) with the vector V having the components x and y. The predictor– corrector integration method is adopted to solve...Using the predictor– corrector method with α = 1 we numerically integrate the system of differential equations to find the operational time trajectory
Classical trajectories and quantum tunneling
Ivlev, B I
2003-01-01
The problem of inter-band tunneling in a semiconductor (Zener breakdown) in a nonstationary and homogeneous electric field is solved exactly. Using the exact analytical solution, the approximation based on classical trajectories is studied. A new mechanism of enhanced tunneling through static non-one-dimensional barriers is proposed in addition to well known normal tunneling solely described by a trajectory in imaginary time. Under certain conditions on the barrier shape and the particle energy, the probability of enhanced tunneling is not exponentially small even for non-transparent barriers, in contrast to the case of normal tunneling.
Dynamic trajectory control of gliders
Dilão, Rui
2013-01-01
We propose a new dynamic control algorithm in order to direct the trajectory of a glider to a pre-assigned target point. The algorithms runs iteratively and the approach to the target point is self-correcting. The algorithm is applicable to any non-powered lift-enabled vehicle (glider) travelling in planetary atmospheres. As a proof of concept, we have applied the new algorithm to the command and control of the trajectory of the Space Shuttle during the Terminal Area Energy Management (TAEM) phase.
Numerical Analysis of Nonlinear Rotor-bearing-seal System
Institute of Scientific and Technical Information of China (English)
CHENG Mei; MENG Guang; JING Jian-ping
2008-01-01
The system state trajectory, Poincaré maps, largest Lyapunov exponents, frequency spectra and bifurcation diagrams were used to investigate the non-linear dynamic behaviors of a rotor-bearing-seal coupled system and to analyze the influence of the seal and bearing on the nonlinear characteristics of the rotor system. Various nonlinear phenomena in the rotor-bearing-seal system, such as periodic motion, double-periodicmotion, multi-periodic motion and quasi-periodic motion were investigated. The results may contribute to a further understanding of the non-linear dynamics of the rotor-bearing-seal coupled system.
Seider, Warren D.; Ungar, Lyle H.
1987-01-01
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
Optimal trajectory planning and train scheduling for urban rail transit systems
Wang, Yihui; van den Boom, Ton; De Schutter, Bart
2016-01-01
This book contributes to making urban rail transport fast, punctual and energy-efficient –significant factors in the importance of public transportation systems to economic, environmental and social requirements at both municipal and national levels. It proposes new methods for shortening passenger travel times and for reducing energy consumption, addressing two major topics: (1) train trajectory planning: the authors derive a nonlinear model for the operation of trains and present several approaches for calculating optimal and energy-efficient trajectories within a given schedule; and (2) train scheduling: the authors develop a train scheduling model for urban rail systems and optimization approaches with which to balance total passenger travel time with energy efficiency and other costs to the operator. Mixed-integer linear programming and pseudospectral methods are among the new methods proposed for single- and multi-train systems for the solution of the nonlinear trajectory planning problem which involv...
Diagnosis trajectories of prior multi-morbidity predict sepsis mortality
DEFF Research Database (Denmark)
Beck, Mette Kristina; Jensen, Anders Boeck; Nielsen, Annelaura Bach
2016-01-01
Sepsis affects millions of people every year, many of whom will die. In contrast to current survival prediction models for sepsis patients that primarily are based on data from within-admission clinical measurements (e.g. vital parameters and blood values), we aim for using the full disease history...... to predict sepsis mortality. We benefit from data in electronic medical records covering all hospital encounters in Denmark from 1996 to 2014. This data set included 6.6 million patients of whom almost 120,000 were diagnosed with the ICD-10 code: A41 'Other sepsis'. Interestingly, patients following...... recurrent trajectories of time-ordered co-morbidities had significantly increased sepsis mortality compared to those who did not follow a trajectory. We identified trajectories which significantly altered sepsis mortality, and found three major starting points in a combined temporal sepsis network: Alcohol...
Route Sanitizer: Connected Vehicle Trajectory De-Identification Tool
Energy Technology Data Exchange (ETDEWEB)
2017-03-01
Route Sanitizer is ORNL's connected vehicle moving object database de-identification tool and a graphical user interface to ORNL's connected vehicle de-identification algorithm. It uses the Google Chrome (soon to be Electron) platform so it will run on different computing platforms. The basic de-identification strategy is record redaction: portions of a vehicle trajectory (e.g. sequences of precise temporal spatial records) are removed. It does not alter retained records. The algorithm uses custom techniques to find areas within trajectories that may be considered private, then it suppresses those in addition to enough of the trajectory surrounding those locations to protect against "inference attacks" in a mathematically sound way. Map data is integrated into the process to make this possible.
Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.
2017-09-01
Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.
Available Instruments for Analyzing Molecular Dynamics Trajectories.
Likhachev, I V; Balabaev, N K; Galzitskaya, O V
2016-01-01
Molecular dynamics trajectories are the result of molecular dynamics simulations. Trajectories are sequential snapshots of simulated molecular system which represents atomic coordinates at specific time periods. Based on the definition, in a text format trajectory files are characterized by their simplicity and uselessness. To obtain information from such files, special programs and information processing techniques are applied: from molecular dynamics animation to finding characteristics along the trajectory (versus time). In this review, we describe different programs for processing molecular dynamics trajectories. The performance of these programs, usefulness for analyses of molecular dynamics trajectories, strong and weak aspects are discussed.
Predicting Comorbid Conditions and Trajectories using Social Health Records.
Ji, Xiang; Ae Chun, Soon; Geller, James
2016-05-05
Many patients suffer from comorbidity conditions, for example, obese patients often develop type-2 diabetes and hypertension. In the US, 80% of Medicare spending is for managing patients with these multiple coexisting conditions. Predicting potential comorbidity conditions for an individual patient can promote preventive care and reduce costs. Predicting possible comorbidity progression paths can provide important insights into population heath and aid with decisions in public health policies. Discovering the comorbidity relationships is complex and difficult, due to limited access to Electronic Health Records by privacy laws. In this paper, we present a collaborative comorbidity prediction method to predict likely comorbid conditions for individual patients, and a trajectory prediction graph model to reveal progression paths of comorbid conditions. Our prediction approaches utilize patient generated health reports on online social media, called Social Health Records (SHR). The experimental results based on one SHR source show that our method is able to predict future comorbid conditions for a patient with coverage values of 48% and 75% for a top-20 and a top-100 ranked list, respectively. For risk trajectory prediction, our approach is able to reveal each potential progression trajectory between any two conditions and infer the confidence of the future trajectory, given any observed condition. The predicted trajectories are validated with existing comorbidity relations from the medical literature.
Classical Trajectories and Quantum Spectra
Mielnik, Bogdan; Reyes, Marco A.
1996-01-01
A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.
Canonical Transformations of Kepler Trajectories
Mostowski, Jan
2010-01-01
In this paper, canonical transformations generated by constants of motion in the case of the Kepler problem are discussed. It is shown that canonical transformations generated by angular momentum are rotations of the trajectory. Particular attention is paid to canonical transformations generated by the Runge-Lenz vector. It is shown that these…
Privacy-Preserving Trajectory Collection
DEFF Research Database (Denmark)
Gidofalvi, Gyozo; Xuegang, Huang; Pedersen, Torben Bach
2008-01-01
. To remedy this situation, this paper first formally defines novel location privacy requirements. Then, it briefly presents a system for privacy--preserving trajectory collection that meets these requirements. The system is composed of an untrusted server and clients communicating in a P2P network. Location...
Fuzzy Logic Trajectory Tracking Controller for a Tanker
Directory of Open Access Journals (Sweden)
Dur Muhammad Pathan
2012-04-01
Full Text Available This paper proposes a fuzzy logic controller for design of autopilot of a ship. Triangular membership functions have been use for fuzzification and the centroid method for defuzzification. A nonlinear mathematical model of an oil tanker has been considered whose parameters vary with the depth of water. The performance of proposed controller has been tested under both course changing and trajectory keeping mode of operations. It has been demonstrated that the performance is robust in shallow as well as deep waters.
Nonlinear Resistivity for Magnetohydrodynamical Models
Lingam, Manasvi; Pfefferlé, David; Comisso, Luca; Bhattacharjee, Amitava
2016-01-01
A nonlinear current-dependent resistivity that accurately accounts for the collisional electron-ion momentum transfer rate is derived. It is shown that the Spitzer resistivity overestimates the resistivity in certain observationally relevant regimes. The nonlinear resistivity computed herein is a strictly decreasing function of the current, in contrast to some notable previous proposals. The relative importance of the new expression with respect to the well-established electron inertia and Hall terms is also examined. The subtle implications of this current-dependent resistivity are discussed in the context of plasma systems and phenomena such as magnetic reconnection.
Regge trajectories of ordinary and non-ordinary mesons from their scattering poles
Energy Technology Data Exchange (ETDEWEB)
Nebreda, J.; Carrasco, J. A.; Londergan, J. T.; Pelaez, J. R.; Szczepaniak, A. P.
2016-01-01
Our results on obtaining the Regge trajectory of a resonance from its pole in a scattering process and from analytic constraints in the complex angular momentum plane are presented. The method, suited for resonances that dominate an elastic scattering amplitude, has been applied to the ρ(770), f2(1270), f'2(1525) and f0(500) resonances. Whereas for the first three we obtain linear Regge trajectories, characteristic of ordinary quark-antiquark states, for the latter we find a non-linear trajectory with a much smaller slope at the resonance mass. We also show that if a linear trajectory with a slope of typical size is imposed for the f0(500), the corresponding amplitude is at odds with the data. This provides a strong indication of the non-ordinary nature of the sigma meson.
Regge trajectories of ordinary and non-ordinary mesons from their scattering poles
Energy Technology Data Exchange (ETDEWEB)
Nebreda, J. [Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502 Kyoto (Japan); Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47403 (United States); Physics Department Indiana University, Bloomington, IN 47405 (United States); Departamento de Física Teórica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Carrasco, J. A.; Pelaez, J. R. [Departamento de Física Teórica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Londergan, J. T. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47403 (United States); Physics Department Indiana University, Bloomington, IN 47405 (United States); Szczepaniak, A. P. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47403 (United States); Physics Department Indiana University, Bloomington, IN 47405 (United States); Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)
2016-01-22
Our results on obtaining the Regge trajectory of a resonance from its pole in a scattering process and from analytic constraints in the complex angular momentum plane are presented. The method, suited for resonances that dominate an elastic scattering amplitude, has been applied to the ρ(770), f{sub 2}(1270), f{sub 2}(1525) and f{sub 0}(500) resonances. Whereas for the first three we obtain linear Regge trajectories, characteristic of ordinary quark-antiquark states, for the latter we find a non-linear trajectory with a much smaller slope at the resonance mass. We also show that if a linear trajectory with a slope of typical size is imposed for the f{sub 0}(500), the corresponding amplitude is at odds with the data. This provides a strong indication of the non-ordinary nature of the sigma meson.
Nonlinear optical properties of ultrathin metal layers
DEFF Research Database (Denmark)
Lysenko, Oleg
2016-01-01
. The optical characterization of the plasmonic waveguides is performed using femtosecond and picosecond optical pulses. Two nonlinear optical effects in the strip plasmonic waveguides are experimentally observed and reported. The first effect is the nonlinear power transmission of the plasmonic mode......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...... duration dependence of the third-order nonlinear susceptibility of gold is calculated in the broad range from tens of femtoseconds to tens of picoseconds using the two-temperature model of the free-electron temporal dynamics of gold, and shows the saturation of the thirdorder nonlinear susceptibility...
Precision robotic control of agricultural vehicles on realistic farm trajectories
Bell, Thomas
High-precision "autofarming", or precise agricultural vehicle guidance, is rapidly becoming a reality thanks to increasing computing power and carrier-phase differential GPS ("CPDGPS") position and attitude sensors. Realistic farm trajectories will include not only rows but also arcs created by smoothly joining rows or path-planning algorithms, spirals for farming center-pivot irrigated fields, and curved trajectories dictated by nonlinear field boundaries. In addition, fields are often sloped, and accurate control may be required either on linear trajectories or on curved contours. A three-dimensional vehicle model which adapts to changing vehicle and ground conditions was created, and a low-order model for controller synthesis was extracted based on nominal conditions. The model was extended to include a towed implement. Experimentation showed that an extended Kalman filter could identify the vehicle's state in real-time. An approximation was derived for the additional positional uncertainty introduced by the noisy "lever-arm correction" necessary to translate the GPS position measurement at the roof antenna to the vehicle's control point on the ground; this approximation was then used to support the assertion that attitude measurement accuracy was as important to control point position measurement as the original position measurement accuracy at the GPS antenna. The low-order vehicle control model was transformed to polar coordinates for control on arcs and spirals. Experimental data showed that the tractor's control, point tracked an arc to within a -0.3 cm mean and a 3.4 cm standard deviation and a spiral to within a -0.2 cm mean and a 5.3 cm standard deviation. Cubic splines were used to describe curve trajectories, and a general expression for the time-rate-of-change of curve-related parameters was derived. Four vehicle control algorithms were derived for curve tracking: linear local-error control based on linearizing the vehicle about the curve's radius of
Dynamics and control of trajectory tubes theory and computation
Kurzhanski, Alexander B
2014-01-01
This monograph presents theoretical methods involving the Hamilton–Jacobi–Bellman formalism in conjunction with set-valued techniques of nonlinear analysis to solve significant problems in dynamics and control. The emphasis is on issues of reachability, feedback control synthesis under complex state constraints, hard or double bounds on controls, and performance in finite time. Guaranteed state estimation, output feedback control, and hybrid dynamics are also discussed. Although the focus is on systems with linear structure, the authors indicate how to apply each approach to nonlinear and nonconvex systems. The main theoretical results lead to computational schemes based on extensions of ellipsoidal calculus that provide complete solutions to the problems. These computational schemes in turn yield software tools that can be applied effectively to high-dimensional systems. Dynamics and Control of Trajectory Tubes: Theory and Computation will interest graduate and senior undergraduate students, as well as...
2015-01-01
From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...
Trajectories of delinquency and parenting styles
Hoeve, M.; Blokland, A.; Dubas, J.S.; Loeber, R.; Gerris, J.R.M.; Laan, P.H. van der
2008-01-01
We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering
Trajectories of Delinquency and Parenting Styles
Hoeve, M.; Blokland, A.; Dubas, J.S.; Loeber, R.; Gerris, J.R.M.; Laan, P.H. van der
2008-01-01
We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering
Trajectories of Delinquency and Parenting Styles
Hoeve, M.; Blokland, A.; Dubas, J.S.; Loeber, R.; Gerris, J.R.M.; Laan, P.H. van der
2008-01-01
We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering
Trajectories of delinquency and parenting styles
M. Hoeve; A. van Blokland; J.S. Dubas; R Loeber; J.R.M. Gerris; P.H. van der Laan
2008-01-01
We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering
The Trajectory Synthesizer Generalized Profile Interface
Lee, Alan G.; Bouyssounouse, Xavier; Murphy, James R.
2010-01-01
The Trajectory Synthesizer is a software program that generates aircraft predictions for Air Traffic Management decision support tools. The Trajectory Synthesizer being used by researchers at NASA Ames Research Center was restricted in the number of trajectory types that could be generated. This limitation was not sufficient to support the rapidly changing Air Traffic Management research requirements. The Generalized Profile Interface was developed to address this issue. It provides a flexible approach to describe the constraints applied to trajectory generation and may provide a method for interoperability between trajectory generators. It also supports the request and generation of new types of trajectory profiles not possible with the previous interface to the Trajectory Synthesizer. Other enhancements allow the Trajectory Synthesizer to meet the current and future needs of Air Traffic Management research.
Successful Aging: Multiple Trajectories and Population Heterogeneity
Fengyan Tang
2014-01-01
Following Rowe and Kahn¡¯s successful aging model, this study identified successful aging as a distinctive aging trajectory and examined gender differences in the aging process. Using the Health and Retirement Study data (2000-2008), this study applied group-based trajectory analysis to identify multiple aging trajectories in a sample of older Americans aged 65 and over (N=9,226). Six dimensions were analyzed in the multi-trajectory model: chronic disease, physical functional limitation, disa...
Minimal Exit Trajectories with Optimum Correctional Manoeuvres
Directory of Open Access Journals (Sweden)
T. N. Srivastava
1980-10-01
Full Text Available Minimal exit trajectories with optimum correctional manoeuvers to a rocket between two coplaner, noncoaxial elliptic orbits in an inverse square gravitational field have been investigated. Case of trajectories with no correctional manoeuvres has been analysed. In the end minimal exit trajectories through specified orbital terminals are discussed and problem of ref. (2 is derived as a particular case.
Ciattoni, Alessandro
2014-01-01
Strong nonlinear optical mechanisms operating in a miniaturized environment have a key role in photonics since they allow complex and versatile light manipulation within subwavelength devices. On the other hand, due to its two-dimensional planar geometry, graphene can easily be embedded within miniaturized structures and has fascinating linear and nonlinear optical properties arising from its relativistic electron dynamics. However, very few light steering graphene-based setups with a strong nonlinear behavior have been proposed since, due to its intrinsic planar localization, graphene nonlinearity has to be exploited through novel schemes not available in standard bulk nonlinear optics. Here we show that an active cavity hosting a graphene sheet, when tuned near its lasing threshold, is able to isolate the spatially localized graphene nonlinearity thus producing a very strong nonlinear device response with multi-valued features. The proposed strategy for exploiting graphene nonlinearity through its baring co...
Design and Analysis of Optimal Ascent Trajectories for Stratospheric Airships
Mueller, Joseph Bernard
Stratospheric airships are lighter-than-air vehicles that have the potential to provide a long-duration airborne presence at altitudes of 18-22 km. Designed to operate on solar power in the calm portion of the lower stratosphere and above all regulated air traffic and cloud cover, these vehicles represent an emerging platform that resides between conventional aircraft and satellites. A particular challenge for airship operation is the planning of ascent trajectories, as the slow moving vehicle must traverse the high wind region of the jet stream. Due to large changes in wind speed and direction across altitude and the susceptibility of airship motion to wind, the trajectory must be carefully planned, preferably optimized, in order to ensure that the desired station be reached within acceptable performance bounds of flight time and energy consumption. This thesis develops optimal ascent trajectories for stratospheric airships, examines the structure and sensitivity of these solutions, and presents a strategy for onboard guidance. Optimal ascent trajectories are developed that utilize wind energy to achieve minimum-time and minimum-energy flights. The airship is represented by a three-dimensional point mass model, and the equations of motion include aerodynamic lift and drag, vectored thrust, added mass effects, and accelerations due to mass flow rate, wind rates, and Earth rotation. A representative wind profile is developed based on historical meteorological data and measurements. Trajectory optimization is performed by first defining an optimal control problem with both terminal and path constraints, then using direct transcription to develop an approximate nonlinear parameter optimization problem of finite dimension. Optimal ascent trajectories are determined using SNOPT for a variety of upwind, downwind, and crosswind launch locations. Results of extensive optimization solutions illustrate definitive patterns in the ascent path for minimum time flights across
Sato, Shunsuke A.; Taniguchi, Yasutaka; Shinohara, Yasushi; Yabana, Kazuhiro
2015-12-01
We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.
Energy Technology Data Exchange (ETDEWEB)
Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)
2015-12-14
We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.
An Expert System-Driven Method for Parametric Trajectory Optimization During Conceptual Design
Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen; Diaz, Manuel J.; Holt, James B.
2015-01-01
During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle cost. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult in both cost and schedule to enact. The current capability-based paradigm, which has emerged because of the constrained economic environment, calls for the infusion of knowledge usually acquired during later design phases into earlier design phases, i.e. bringing knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture yet little of the information required to successfully optimize a trajectory is known early in the design phase. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. When these obstacles are coupled with the Program to Optimize Simulated Trajectories (POST), an industry standard program to optimize ascent trajectories that is difficult to use, expert trajectory analysts are required to effectively optimize a vehicle's ascent trajectory. Over the course of this paper, the authors discuss a methodology developed at NASA Marshall's Advanced Concepts Office to address these issues
DEFF Research Database (Denmark)
Axén, Iben; Leboeuf-Yde, Charlotte
2013-01-01
Low back pain is not a self-limiting problem, but rather a recurrent and sometimes persistent disorder. To understand the course over time, detailed investigation, preferably using repeated measurements over extended periods of time, is needed. New knowledge concerning short-term trajectories...... indicates that the low back pain 'episode' is short lived, at least in the primary care setting, with most patients improving. Nevertheless, in the long term, low back pain often runs a persistent course with around two-thirds of patients estimated to be in pain after 12 months. Some individuals never have...... low back pain, but most have it on and off or persistently. Thus, the low back pain 'condition' is usually a lifelong experience. However, subgroups of patients with different back pain trajectories have been identified and linked to clinical parameters. Further investigation is warranted...
Trajectory Indexing Using Movement Constraints
DEFF Research Database (Denmark)
Pfoser, D.; Jensen, Christian Søndergaard
2005-01-01
With the proliferation of mobile computing, the ability to index efficiently the movements of mobile objects becomes important. Objects are typically seen as moving in two-dimensional (x,y) space, which means that their movements across time may be embedded in the three-dimensional (x,y,t) space....... Further, the movements are typically represented as trajectories, sequences of connected line segments. In certain cases, movement is restricted; specifically, in this paper, we aim at exploiting that movements occur in transportation networks to reduce the dimensionality of the data. Briefly, the idea...... is to reduce movements to occur in one spatial dimension. As a consequence, the movement occurs in two-dimensional (x,t) space. The advantages of considering such lower-dimensional trajectories are that the overall size of the data is reduced and that lower-dimensional data is to be indexed. Since off...
Ray trajectories for Alcubierre spacetime
Anderson, Tom H; Lakhtakia, Akhlesh
2011-01-01
The Alcubierre spacetime was simulated by means of a Tamm medium which is asymptotically identical to vacuum and has constitutive parameters which are ontinuous functions of the spatial coordinates. Accordingly, the Tamm medium is amenable to physical realization as a nanostructured metamaterial. A comprehensive characterization of ray trajectories in the Tamm medium was undertaken, within the geometric-optics regime. Propagation directions corresponding to evanescent waves were identified: these occur in the region of the Tamm medium which corresponds to the warp bubble of the Alcubierre spacetime, especially for directions perpendicular to the velocity of the warp bubble at high speeds of that bubble. Ray trajectories are acutely sensitive to the magnitude and direction of the warp bubble's velocity, but rather less sensitive to the thickness of the transition zone between the warp bubble and its background. In particular, for rays which travel in the same direction as the warp bubble, the latter acts as a ...
Quantum frictionless trajectories versus geodesics
Barbado, Luis C.; Barceló, Carlos; Garay, Luis J.
2015-10-01
Moving particles outside a star will generally experience quantum friction caused by the Unruh radiation reaction. There exist however radial trajectories that lack this effect (in the outgoing radiation sector, and ignoring backscattering). Along these trajectories, observers perceive just stellar emission, without further contribution from the Unruh effect. They turn out to have the property that the variations of the Doppler and the gravitational shifts compensate each other. They are not geodesics, and their proper acceleration obeys an inverse square law, which means that it could in principle be generated by outgoing stellar radiation. In the case of a black hole emitting Hawking radiation, this may lead to a buoyancy scenario. The ingoing radiation sector has little effect and seems to slow down the fall even further.
Energy Technology Data Exchange (ETDEWEB)
Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.
2008-11-05
Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).
Chaos in nonlinear oscillations controlling and synchronization
Lakshamanan, M
1996-01-01
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
Sasikala, V.; Sajan, D.; Joseph, Lynnette; Balaji, J.; Prabu, S.; Srinivasan, P.
2017-04-01
Single crystals of (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide (CBMBSH) have been grown by slow evaporation crystal growth method. The structure stabilizing intramolecular donor-acceptor interactions and the presence of the Nsbnd H⋯O, Csbnd H⋯O and Csbnd H⋯C(π) hydrogen bonds in the crystal were confirmed by vibrational spectroscopic and DFT methods. The linear optical absorption characteristics of the solvent phase of CBMBSH were investigated using UV-Vis-NIR spectroscopic and TD-DFT approaches. The 2PA assisted RSA nonlinear absorption and the optical limiting properties of CBMBSH were studied using the open-aperture Z-scan method. The topological characteristics of the electron density have been determined using the quantum theory of atoms in molecules method.
Interference, reduced action, and trajectories
2006-01-01
Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichroma...
[Oxaliplatin -- A 10-Year Trajectory].
Kanaji, Shingo; Oki, Eiji; Saeki, Hiroshi; Kitao, Hiroyuki; Maehara, Yoshihiko; Kakeji, Yoshihiro
2016-06-01
Oxaliplatin(Elplat(®)iv infusion solution)is a third-generation 1,2-DACH-platinum derivative. A number of international clinical trials have investigated the effects of this drug for each of its four indications. Building on the results of these earlier studies, much research has also been carried out in Japan in terms of developing and accumulating evidence on oxaliplatin. This report reviews the trajectory of its use over the last 10-years and considers its future potential.
Periodic billiard trajectories in polyhedra
Bedaride, Nicolas
2011-01-01
We consider the billiard map inside a polyhedron. We give a condition for the stability of the periodic trajectories. We apply this result to the case of the tetrahedron. We deduce the existence of an open set of tetrahedra which have a periodic orbit of length four (generalization of Fagnano's orbit for triangles), moreover we can study completly the orbit of points along this coding.
Bohmian trajectories of Airy packets
Energy Technology Data Exchange (ETDEWEB)
Nassar, Antonio B., E-mail: anassar@hw.com [Science Department, Harvard-Westlake School, 3700 Coldwater Canyon, Studio City, 91604 (United States); Department of Sciences, University of California, Los Angeles, Extension Program, 10995 Le Conte Avenue, Los Angeles, CA 90024 (United States); Miret-Artés, Salvador [Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain)
2014-09-15
The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.
He, Hui-Min; Li, Ying; Sun, Wei-Ming; Wang, Jia-Jun; Wu, Di; Zhong, Rong-Lin; Zhou, Zhong-Jun; Li, Zhi-Ru
2016-02-14
All-metal electride molecules, CuAg@Ca7M (M = Be, Mg and Ca), have been designed and researched in theory for the first time. In these molecules, a pull-push electron relay occurs. Unusually, the all-metal polyanions of fourfold negatively charged [Cu-Ag-Be/Mg](4-) and [Cu-Ag](4-) with 4 extra electrons gained from Ca atoms push the remaining valence electrons of the Ca atoms forming the multi-excess electrons (Ne = 10/12). Therefore, these molecules can be described as salt-like [(Ca(2+))7(CuAgM)(4-)] + 10e(-) (M = Be and Mg) and [(Ca(2+))8(CuAg)(4-)] + 12e(-). In these salt-like molecules, there are extraordinary covalent bonding modes, which include 2c-2e/3c-2e σ-bonding in the polyanions and the Ca(2+) cations sharing the diffuse multi-excess electrons. For an intriguing nonlinear optical (NLO) response, these all-metal electride molecules display large electronic first hyperpolarizabilities (β0), thus a new class of NLO molecules, all-metal electride NLO molecules, emerge. Moreover, it is also found that manipulating the atomic number and position of M is a new strategy to enhance β0. As a result, CuAg@Ca7Mg(1) exhibits a considerable β0 (1.43 × 10(4) au), which is 16 times the β0 sum of two isolated CuAg and Ca7Mg(1) subunits, and this deeply reveals the fundamental origin of the considerable β0, namely, the multi-excess electrons generated by the subunit interaction. These all-metal electride molecules have the infrared (IR) transparent region of 1.3-6 μm, and hence are new IR NLO molecules. In addition the electronic contribution, β0, the large effects of vibrations on the static first hyperpolarizabilities of these all-metal electride molecules are also estimated. Thus, this study opens the new research field of all-metal electride IR NLO molecules.
Optimized Fuzzy Control For Natural Trajectory Based Fes- Swinging Motion
Directory of Open Access Journals (Sweden)
B.S.K.K Ibrahim
2011-12-01
Full Text Available The use of electrical signals to restore the function of paralyzed muscles is called functional electrical stimulation (FES. FES is a promising method to restore mobility to individuals paralyzed due to spinal cord injury (SCI. A crucial issue of FES is the control of motor function by the artificial activation of paralyzed muscles due to the various characteristics of the underlying physiological/biomechanical system. Muscle response characteristics are nonlinear and time-varying. After developing a nonlinear model describing the dynamic behavior of the knee joint and muscles, a closed-loop approach of control strategy to track the reference trajectory is assessed in computer simulations. Then, the controller was validated through experimental work. In this approach only the quadriceps muscle is stimulated to perform the swinging motion by controlling the amount of stimulation pulsewidth. An approach of fuzzy trajectory tracking control of swinging motion optimized with genetic algorithm is presented. The results show the effectiveness of the approach in controlling FES-induced swinging motion in the simulation as well as in the practical environment.
Mobile Information Collectors' Trajectory Data Warehouse Design
oueslati, wided
2010-01-01
To analyze complex phenomena which involve moving objects, Trajectory Data Warehouse (TDW) seems to be an answer for many recent decision problems related to various professions (physicians, commercial representatives, transporters, ecologists ...) concerned with mobility. This work aims to make trajectories as a first class concept in the trajectory data conceptual model and to design a TDW, in which data resulting from mobile information collectors' trajectory are gathered. These data will be analyzed, according to trajectory characteristics, for decision making purposes, such as new products commercialization, new commerce implementation, etc.
Multi-objective trajectory optimization for the space exploration vehicle
Qin, Xiaoli; Xiao, Zhen
2016-07-01
The research determines temperature-constrained optimal trajectory for the space exploration vehicle by developing an optimal control formulation and solving it using a variable order quadrature collocation method with a Non-linear Programming(NLP) solver. The vehicle is assumed to be the space reconnaissance aircraft that has specified takeoff/landing locations, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom aircraft model is adapted from previous work and includes flight dynamics, and thermal constraints.Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and exploration of space targets. In addition, the vehicle models include the environmental models(gravity and atmosphere). How these models are appropriately employed is key to gaining confidence in the results and conclusions of the research. Optimal trajectories are developed using several performance costs in the optimal control formation,minimum time,minimum time with control penalties,and maximum distance.The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for large-scale space exloration.
Energy Technology Data Exchange (ETDEWEB)
Kakudji, Ernest [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), B-5000 Namur (Belgium); Physics Department, University of Kinshasa (UNIKIN), Kinshasa (CD); Silien, Christophe [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Lis, Dan; Cecchet, Francesca; Thiry, Paul A.; Peremans, Andre; Caudano, Yves [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), B-5000 Namur (Belgium); Nouri, Abdelkader [Laboratoire Materiaux, Ecole Normale Superieure d' Enseignement Technique (ENSET), Oran 31000 (Algeria)
2010-08-15
We use doubly resonant, infrared-visible sum-frequency generation spectroscopy (DR-SFG) to probe vibrational and electronic properties of C{sub 60} and K-doped C{sub 60} monolayers adsorbed on Ag(111) single crystal under ultra-high vacuum (UHV). We recorded the interface SFG spectra for five visible wavelengths. We observe a strong dependence of the SFG intensity of the totally symmetric A{sub g}(2) mode of the fullerene while scanning the visible wavelength, due to the DR-SFG phenomenon. The SFG intensity of the A{sub g}(2) mode is the strongest at 488 nm and at 532 nm for the pure and fully doped monolayers, respectively. These results demonstrate the occurrence of electron-phonon couplings at the C{sub 60}/Ag(111) and saturated K/C{sub 60}/Ag(111) interfaces. They enable us to determine the energy of the coupled electronic transition and to link the electronic resonance to the h{sub u} (HOMO) to t{sub 1g} (LUMO + 1) transition of C{sub 60}. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Energy Technology Data Exchange (ETDEWEB)
Lai, W. N.; Chapman, S. C., E-mail: S.C.Chapman@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Dendy, R. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)
2015-11-15
The kinetic evolution in velocity space of a minority suprathermal electron population that is undergoing the anomalous Doppler instability (ADI) is investigated using the results from fully nonlinear numerical simulations that self-consistently evolve particles and fields in a plasma. Electron trajectories in phase space during different stages of the ADI are captured, and are analysed in relation to the characteristics of the excited electric fields and of the overall distribution of particles. For some electrons, trapping and mirroring effects are observed during the saturation phase. A relationship between the second order moments of the perpendicular electron distribution function and time is established, and is used to investigate the range of applicability of analytical approximations drawn from classical theory, that involve a quasilinear wave-driven diffusion operator.
Path-based Queries on Trajectory Data
DEFF Research Database (Denmark)
Krogh, Benjamin Bjerre; Pelekis, Nikos; Theodoridis, Yannis
2014-01-01
a specific path by only retrieving data from the first and last edge in the path. To correctly answer strict path queries existing network-constrained trajectory indexes must retrieve data from all edges in the path. An extensive performance study of NETTRA using a very large real-world trajectory data set....... To efficiently support strict path queries, we present a novel NETwork-constrained TRAjectory index (NETTRA). This index enables very efficient retrieval of trajectories that follow a specific path, i.e., strict path queries. NETTRA uses a new path encoding scheme that can determine if a trajectory follows......, consisting of 1.7 million trajectories (941 million GPS records) and a road network with 1.3 million edges, shows a speed-up of two orders of magnitude compared to state-of-the-art trajectory indexes....
Ascent trajectory optimization for stratospheric airship with thermal effects
Guo, Xiao; Zhu, Ming
2013-09-01
Ascent trajectory optimization with thermal effects is addressed for a stratospheric airship. Basic thermal characteristics of the stratospheric airship are introduced. Besides, the airship’s equations of motion are constructed by including the factors about aerodynamic force, added mass and wind profiles which are developed based on horizontal-wind model. For both minimum-time and minimum-energy flights during ascent, the trajectory optimization problem is described with the path and terminal constraints in different scenarios and then, is converted into a parameter optimization problem by a direct collocation method. Sparse Nonlinear OPTimizer(SNOPT) is employed as a nonlinear programming solver and two scenarios are adopted. The solutions obtained illustrate that the trajectories are greatly affected by the thermal behaviors which prolong the daytime minimum-time flights of about 20.8% compared with that of nighttime in scenario 1 and of about 10.5% in scenario 2. And there is the same trend for minimum-energy flights. For the energy consumption of minimum-time flights, 6% decrease is abstained in scenario 1 and 5% decrease in scenario 2. However, a few energy consumption reduction is achieved for minimum-energy flights. Solar radiation is the principal component and the natural wind also affects the thermal behaviors of stratospheric airship during ascent. The relationship between take-off time and performance of airship during ascent is discussed. it is found that the take-off time at dusk is best choice for stratospheric airship. And in addition, for saving energy, airship prefers to fly downwind.
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
Analysis of nonlinear systems with time varying inputs and its application to gain scheduling
Directory of Open Access Journals (Sweden)
J.-T. Lim
1996-01-01
Full Text Available An analytical framework for analysis of a class of nonlinear systems with time varying inputs is presented. It is shown that the trajectories of the transformed nonlinear systems are uniformly bounded with an ultimate bound under certain conditions shown in this paper. The result obtained is useful for applications, in particular, analysis and design of gain scheduling.
Gümüş, Hacer Pir; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf; Tarcan, Erdoğan
2016-10-01
Density functional theory calculations on ground state molecular geometry, stable conformers, and vibrational wavenumbers for 1-[(E)-{[4-(morpholin-4-yl)phenyl]imino}methyl]naphthalen-2-ol (MPIMN) molecule were performed by using B3LYP and B3PW91 functionals for the exchange-correlation energy with the 6-311++G(d,p) basis set. The detailed assignments of vibrational wavenumbers were carried out on the basis of potential energy distribution (PED) analysis. Nonlinear optical (NLO) behavior of MPIMN was investigated by the determining of electric dipole moment (μ), polarizability (α), and first hyperpolarizability (β) by using B3LYP and B3PW91 functionals. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. The frontier molecular orbitals (HOMO and LUMO) were simulated, and the obtained relatively small energy gap confirmed that charge transfer occurs within MPIMN. Finally, molecular electrostatic potential (MEP) surface was simulated to demonstrate reactive sites for the title molecule.
Enabling Parametric Optimal Ascent Trajectory Modeling During Early Phases of Design
Holt, James B.; Dees, Patrick D.; Diaz, Manuel J.
2015-01-01
During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult -- in both cost and schedule -- to enact. Indeed, the current capability-based paradigm that has emerged because of the constrained economic environment calls for the infusion of knowledge acquired during later design phases into earlier design phases, i.e. bring knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture as the need for more economically viable access to space solutions are needed in today's constrained economic environment. The problem of ascent trajectory optimization is not a new one. There are several programs that are widely used in industry that allows trajectory analysts to, based on detailed vehicle and insertion orbit parameters, determine the optimal ascent trajectory. Yet, little information is known about the launch vehicle early in the design phase - information that is required of many different disciplines in order to successfully optimize the ascent trajectory. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi
Fainberg, B D
2015-01-01
Purely organic materials with negative and near-zero dielectric permittivity can be easily fabricated. Here we develop a theory of nonlinear non-steady-state organic plasmonics with strong laser pulses. The bistability response of the electron-vibrational model of organic materials in the condensed phase has been demonstrated. Non-steady-state organic plasmonics enable us to obtain near-zero dielectric permittivity during a short time. We have proposed to use non-steady-state organic plasmonics for the enhancement of intersite dipolar energy-transfer interaction in the quantum dot wire that influences on electron transport through nanojunctions. Such interactions can compensate Coulomb repulsions for particular conditions. We propose the exciton control of Coulomb blocking in the quantum dot wire based on the non-steady-state near-zero dielectric permittivity of the organic host medium.
ARTISTIC VISUALIZATION OF TRAJECTORY DATA USING CLOUD MODEL
Directory of Open Access Journals (Sweden)
T. Wu
2017-09-01
Full Text Available Rapid advance of location acquisition technologies boosts the generation of trajectory data, which track the traces of moving objects. A trajectory is typically represented by a sequence of timestamped geographical locations. Data visualization is an efficient means to represent distributions and structures of datasets and reveal hidden patterns in the data. In this paper, we explore a cloud model-based method for the generation of stylized renderings of trajectory data. The artistic visualizations of the proposed method do not have the goal to allow for data mining tasks or others but instead show the aesthetic effect of the traces of moving objects in a distorted manner. The techniques used to create the images of traces of moving objects include the uncertain line using extended cloud model, stroke-based rendering of geolocation in varying styles, and stylistic shading with aesthetic effects for print or electronic displays, as well as various parameters to be further personalized. The influence of different parameters on the aesthetic qualities of various painted images is investigated, including step size, types of strokes, colour modes, and quantitative comparisons using four aesthetic measures are also involved into the experiment. The experimental results suggest that the proposed method is with advantages of uncertainty, simplicity and effectiveness, and it would inspire professional graphic designers and amateur users who may be interested in playful and creative exploration of artistic visualization of trajectory data.
Design of Nonlinear Circuits: The Linear Time-Varying Approach
Kuijstermans, F.C.M.
2003-01-01
Over the last years the ever-growing demand for higher performance has led to much interest in using nonlinear circuit concepts for electronic circuit design. For this we have to deal with analysis and synthesis of dynamic nonlinear circuits. This thesis proposes to handle the nonlinear design
Design of Nonlinear Circuits: The Linear Time-Varying Approach
Kuijstermans, F.C.M.
2003-01-01
Over the last years the ever-growing demand for higher performance has led to much interest in using nonlinear circuit concepts for electronic circuit design. For this we have to deal with analysis and synthesis of dynamic nonlinear circuits. This thesis proposes to handle the nonlinear design comp
The maximal process of nonlinear shot noise
Eliazar, Iddo; Klafter, Joseph
2009-05-01
In the nonlinear shot noise system-model shots’ statistics are governed by general Poisson processes, and shots’ decay-dynamics are governed by general nonlinear differential equations. In this research we consider a nonlinear shot noise system and explore the process tracking, along time, the system’s maximal shot magnitude. This ‘maximal process’ is a stationary Markov process following a decay-surge evolution; it is highly robust, and it is capable of displaying both a wide spectrum of statistical behaviors and a rich variety of random decay-surge sample-path trajectories. A comprehensive analysis of the maximal process is conducted, including its Markovian structure, its decay-surge structure, and its correlation structure. All results are obtained analytically and in closed-form.
Zarei, Seyed Amir; Khaledian, Donya; Akhtari, Keivan; Hassanzadeh, Keyumars
2015-11-01
The experimental fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectra of copper(II) and nickel(II) complexes of the deprotonated tetradentate Schiff base ligand N,N‧-bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine (H2L) are compared with their corresponding theoretical ones. The applied theoretical method is based on the density functional theory and time-dependent density functional theory at the UPBE0/PBE0 levels using Def2-TZVP basis set. The computational optimised geometric parameters of the complexes are in good agreement with their corresponding experimental data. The FT-IR and UV-Vis spectra of the complexes were reproduced on the basis of their optimised structures. The vibrational assignments of some fundamental modes of the complexes are performed. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies are calculated. The analyses of the calculated electronic absorption spectra of the complexes are carried out to elucidate the electronic transitions assignments and their characters. Second-order nonlinear optical property of the complexes is evaluated by the above-mentioned theoretical method that implies much greater values for the complexes in comparison with the corresponding value of urea.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Institute of Scientific and Technical Information of China (English)
1996-01-01
3.1 A Unified Nonlinear Feedback Functional Method for Study Both Control and Synchronization of Spatiotemporal Chaos Fang Jinqing Ali M. K. (Department of Physics, The University of Lethbridge,Lethbridge, Alberta T1K 3M4,Canada) Two fundamental questions dominate future chaos control theories.The first is the problem of controlling hyperchaos in higher dimensional systems.The second question has yet to be addressed:the problem of controlling spatiotemporal chaos in a spatiotemporal system.In recent years, control and synchronization of spatiotemporal chaos and hyperchaos have became a much more important and challenging subject. The reason for this is the control and synchronism of such behaviours have extensive and great potential of interdisciplinary applications, such as security communication, information processing, medicine and so on. However, this subject is not much known and remains an outstanding open.
Mobility, education and life trajectories
DEFF Research Database (Denmark)
Olwig, Karen Fog; Valentin, Karen
2015-01-01
the perspective that education includes a broad range of formative experiences, the articles explore different educational trajectories and the local, regional and transnational relations in which they are embedded. Three key issues emerge from the analyses: firstly, the central role of temporality in terms...... of both the overall historical conditions and the specific biographical circumstances shaping educational opportunities; secondly, the complex agendas informing individuals’ migration and the adjustment of these agendas in the light of the vagaries of migrant life; and thirdly, the importance of migrants...
Quantum Tunneling and Complex Trajectories
Meynig, Max; Haggard, Hal
2017-01-01
In general, the semiclassical approximation of quantum mechanical tunneling fails to treat tunneling through barriers if real initial conditions and trajectories are used. By analytically continuing classical dynamics to the complex plane the problems encountered in the approximation can be resolved. While, the complex methods discussed here have been previously explored, no one has exhibited an analytically solvable case. The essential features of the complex method will be discussed in the context of a novel, analytically solvable problem. These methods could be useful in quantum gravity, with applications to the tunneling of spacetime geometries.
Quantum frictionless trajectories versus geodesics
Barbado, Luis C; Garay, Luis J
2015-01-01
Moving particles outside a star will generally experience quantum friction caused by Unruh radiation reaction. There exist however radial trajectories that lack this effect (in the outgoing radiation sector, and ignoring back-scattering). They turn out to have the property that the variations of the Doppler and the gravitational shifts compensate each other. They are not geodesics, and their proper acceleration obeys an inverse square law, which means that could in principle be generated by outgoing stellar radiation. In the case of a black hole emitting Hawking radiation, this may lead to a buoyancy scenario. The ingoing radiation sector has little effect and seems to slow down the fall even further.
Privacy-Preserving Trajectory Collection
DEFF Research Database (Denmark)
Gidofalvi, Gyozo; Xuegang, Huang; Pedersen, Torben Bach
2008-01-01
In order to provide context--aware Location--Based Services, real location data of mobile users must be collected and analyzed by spatio--temporal data mining methods. However, the data mining methods need precise location data, while the mobile users want to protect their location privacy....... To remedy this situation, this paper first formally defines novel location privacy requirements. Then, it briefly presents a system for privacy--preserving trajectory collection that meets these requirements. The system is composed of an untrusted server and clients communicating in a P2P network. Location...
Spherical aberration from trajectories in real and hard-edge solenoid fields
Indian Academy of Sciences (India)
BISWAS B
2016-06-01
For analytical, real and hard-edge solenoidal axial magnetic fields, the low-energy electron trajectories are obtained using the third-order paraxial ray equation. Using the particle trajectories, it is shown that the spherical aberration in the hard-edge model is high and it increases monotonously with hard edginess, although the focal length converges, in agreement with a recentfield and spherical aberration model. The model paved the way for a hard-edge approximation that gives correct focal length and spherical aberration, which is verified here by the trajectory method. In essence, we show that exact hard-edge fields give infinite spherical aberrations.
Bachelard, R; Mercère, P; Idir, M; Couprie, M-E; Labat, M; Chubar, O; Lambert, G; Zeitoun, Ph; Kimura, H; Ohashi, H; Higashiya, A; Yabashi, M; Nagasono, M; Hara, T; Ishikawa, T
2011-06-10
The single-shot spatial characteristics of the vacuum ultraviolet self-amplified spontaneous emission of a free electron laser (FEL) is measured at different stages of amplification up to saturation with a Hartmann wavefront sensor. We show that the fundamental radiation at 61.5 nm tends towards a single-mode behavior as getting closer to saturation. The measurements are found in good agreement with simulations and theory. A near diffraction limited wavefront was measured. The analysis of Fresnel diffraction through the Hartmann wavefront sensor hole array also provides some further insight for the evaluation of the FEL transverse coherence, of high importance for various applications.
Energy Technology Data Exchange (ETDEWEB)
Bachelard, R.; Chubar, O.; Mercere, P.; Idir, M.; Couprie, M.E.; Lambert, G.; Zeitoun, Ph.; Kimura, H.; Ohashi, H.; Higashiya, A.; Yabashi, M.; Nagasono, M.; Hara, T. and Ishikawa, T.
2011-06-08
The single-shot spatial characteristics of the vacuum ultraviolet self-amplified spontaneous emission of a free electron laser (FEL) is measured at different stages of amplification up to saturation with a Hartmann wavefront sensor. We show that the fundamental radiation at 61.5 nm tends towards a single-mode behavior as getting closer to saturation. The measurements are found in good agreement with simulations and theory. A near diffraction limited wavefront was measured. The analysis of Fresnel diffraction through the Hartmann wavefront sensor hole array also provides some further insight for the evaluation of the FEL transverse coherence, of high importance for various applications.
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Trajectory description of the quantum–classical transition for wave packet interference
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow the main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.
Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa
2016-09-01
The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.
Trajectory Codes for Flash Memory
Anxiao,; Langberg, Michael; Schwartz, Moshe; Bruck, Jehoshua
2010-01-01
Flash memory is well-known for its inherent asymmetry: the flash-cell charge levels are easy to increase but are hard to decrease. In a general rewriting model, the stored data changes its value with certain patterns. The patterns of data updates are determined by the data structure and the application, and are independent of the constraints imposed by the storage medium. Thus, an appropriate coding scheme is needed so that the data changes can be updated and stored efficiently under the storage-medium's constraints. In this paper, we define the general rewriting problem using a graph model. It extends many known rewriting models such as floating codes, WOM codes, buffer codes, etc. We present a new rewriting scheme for flash memories, called the trajectory code, for rewriting the stored data as many times as possible without block erasures. We prove that the trajectory code is asymptotically optimal in a wide range of scenarios. We also present randomized rewriting codes optimized for expected performance (g...
Debt trajectories and mental health.
Hojman, Daniel A; Miranda, Álvaro; Ruiz-Tagle, Jaime
2016-10-01
In the last few decades, there was a marked increase in consumer debt in the United States, Latin America and other emerging countries, spurring a debate about the real costs and benefits of household credit. Using a unique longitudinal dataset with detailed health and balance sheet information from a large sample of 10,900 Chilean households we study the relationship between debt trajectories in a three-year time window and mental health. We find that depressive symptoms are higher for those who have been persistently over-indebted, followed by those who transit from moderate to high debt levels. We also find that those who transition from over-indebtedness to moderate debt levels have no additional depressive symptoms compared to those with trajectories of moderate debt throughout (never over-indebted). This suggests that the debt-related contribution to depressive symptoms vanishes as debt levels fall. The association between debt and depressive symptoms seems to be driven by non-mortgage debt -primarily consumer credit- or late mortgage payments; secured debt (secured by collateral) per se is not associated with depressive symptoms. Policy interventions to reduce the negative association of over-indebtedness on mental health are discussed.
Winding light beams along elliptical helical trajectories
Wen, Yuanhui; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan
2016-01-01
Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We develop a superposition caustic method capable of winding light beams along non-convex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implement the method with a compact and robust integrated optics approach by fabricating micro-optical structures on quartz glass plates to perform the spatial phase and amplitude modulation to the incident light, generating beam trajectories highly consistent with prediction. The theoretical and implementation methods can in principle be extended to the construction of accelerating beams with a wide variety of non-convex trajectories, thereby opening up a new route of manipulating light beams for fundamental research and practical ap...
Stochastic and fractal analysis of fracture trajectories
Bessendorf, Michael H.
1987-01-01
Analyses of fracture trajectories are used to investigate structures that fall between 'micro' and 'macro' scales. It was shown that fracture trajectories belong to the class of nonstationary processes. It was also found that correlation distance, which may be related to a characteristic size of a fracture process, increases with crack length. An assemblage of crack trajectory processes may be considered as a diffusive process. Chudnovsky (1981-1985) introduced a 'crack diffusion coefficient' d which reflects the ability of the material to deviate the crack trajectory from the most energetically efficient path and thus links the material toughness to its structure. For the set of fracture trajectories in AISI 304 steel, d was found to be equal to 1.04 microns. The fractal dimension D for the same set of trajectories was found to be 1.133.
Augmenting Parametric Optimal Ascent Trajectory Modeling with Graph Theory
Dees, Patrick D.; Zwack, Matthew R.; Edwards, Stephen; Steffens, Michael
2016-01-01
It has been well documented that decisions made in the early stages of Conceptual and Pre-Conceptual design commit up to 80% of total Life-Cycle Cost (LCC) while engineers know the least about the product they are designing [1]. Once within Preliminary and Detailed design however, making changes to the design becomes far more difficult to enact in both cost and schedule. Primarily this has been due to a lack of detailed data usually uncovered later during the Preliminary and Detailed design phases. In our current budget-constrained environment, making decisions within Conceptual and Pre-Conceptual design which minimize LCC while meeting requirements is paramount to a program's success. Within the arena of launch vehicle design, optimizing the ascent trajectory is critical for minimizing the costs present within such concerns as propellant, aerodynamic, aeroheating, and acceleration loads while meeting requirements such as payload delivered to a desired orbit. In order to optimize the vehicle design its constraints and requirements must be known, however as the design cycle proceeds it is all but inevitable that the conditions will change. Upon that change, the previously optimized trajectory may no longer be optimal, or meet design requirements. The current paradigm for adjusting to these updates is generating point solutions for every change in the design's requirements [2]. This can be a tedious, time-consuming task as changes in virtually any piece of a launch vehicle's design can have a disproportionately large effect on the ascent trajectory, as the solution space of the trajectory optimization problem is both non-linear and multimodal [3]. In addition, an industry standard tool, Program to Optimize Simulated Trajectories (POST), requires an expert analyst to produce simulated trajectories that are feasible and optimal [4]. In a previous publication the authors presented a method for combatting these challenges [5]. In order to bring more detailed information
Nonlinear Materials Characterization Facility
Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...