WorldWideScience

Sample records for nonlinear electromagnetic structures

  1. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  2. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    Science.gov (United States)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  3. Analysis of Nonlinear Electromagnetic Metamaterials

    CERN Document Server

    Poutrina, Ekaterina; Smith, David R

    2010-01-01

    We analyze the properties of a nonlinear metamaterial formed by integrating nonlinear components or materials into the capacitive regions of metamaterial elements. A straightforward homogenization procedure leads to general expressions for the nonlinear susceptibilities of the composite metamaterial medium. The expressions are convenient, as they enable inhomogeneous system of scattering elements to be described as a continuous medium using the standard notation of nonlinear optics. We illustrate the validity and accuracy of our theoretical framework by performing measurements on a fabricated metamaterial sample composed of an array of split ring resonators (SRRs) with packaged varactors embedded in the capacitive gaps in a manner similar to that of Wang et al. [Opt. Express 16, 16058 (2008)]. Because the SRRs exhibit a predominant magnetic response to electromagnetic fields, the varactor-loaded SRR composite can be described as a magnetic material with nonlinear terms in its effective magnetic susceptibility...

  4. Measurement of ultrasonic nonlinear parameter by using electromagnetic acoustic transducer

    Science.gov (United States)

    Cai, Zhichao; Liu, Suzhen; Zhang, Chuang

    2017-02-01

    The nonlinear ultrasonic technology is generally known as an effective method for the microcrack detection. However, most of the previous experimental studies were limited by a contact nonlinearity method. Since measurement by the contact method is affected by the coupling conditions, additional nonlinear coefficient are lead into the measurement. This research presents a novel technique for nonlinear ultrasonic wave measurements that uses a non-contact electromagnetic ultrasonic transducer (EMAT). And for a better understanding and a more in-depth analysis of the macroscopic nonlinear behavior of microcrack, the developed FEM modeling approach was built to simulate microcrack induced nonlinearities manifested in electromagnetic ultrasonic waves and validated experimentally. This study has yielded a quantitative characterization strategy for microcrack using EMAT, facilitating deployment of structural health monitoring by noncontact electromagnetic nondestructive testing.

  5. Coupling electromagnetic pulse-shaped waves into wire-like interconnection structures with a non-linear protection – Time domain calculations by the PEEC method

    Directory of Open Access Journals (Sweden)

    G. Wollenberg

    2004-01-01

    Full Text Available An interconnection system whose loads protected by a voltage suppressor and a low-pass filter against overvoltages caused by coupling pulse-shaped electromagnetic waves is analyzed. The external wave influencing the system is assumed as a plane wave with HPM form. The computation is provided by a full-wave PEEC model for the interconnection structure incorporated in the SPICE code. Thus, nonlinear elements of the protection circuit can be included in the calculation. The analysis shows intermodulation distortions and penetrations of low frequency interferences caused by intermodulations through the protection circuits. The example examined shows the necessity of using full-wave models for interconnections together with non-linear circuit solvers for simulation of noise immunity in systems protected by nonlinear devices.

  6. Detection of electromagnetic radiation using nonlinear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  7. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla

    2015-07-29

    A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the ``measured\\'\\' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.

  8. Nonlinear Electromagnetic Interactions in Energetic Materials

    CERN Document Server

    Wood, M A; Moore, D S

    2016-01-01

    We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for non-ionizing identification of explosives. We use molecular dynamics simulations to compute such two-dimensional Raman spectra in the terahertz range for planar slabs made of PETN and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for stand-off explosive detection.

  9. Electromagnetic beam propagation in nonlinear media

    Institute of Scientific and Technical Information of China (English)

    V.V.Semak; M.N.Shneider

    2015-01-01

    We deduce a complete wave propagation equation that includes inhomogeneity of the dielectric constant and present this propagation equation in compact vector form. Although similar equations are known in narrow fields such as radio wave propagation in the ionosphere and electromagnetic and acoustic wave propagation in stratified media, we develop here a novel approach of using such equations in the modeling of laser beam propagation in nonlinear media. Our approach satisfies the correspondence principle since in the limit of zero-length wavelength it reduces from physical to geometrical optics.

  10. Sparse Reconstruction Schemes for Nonlinear Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2016-03-01

    Electromagnetic imaging is the problem of determining material properties from scattered fields measured away from the domain under investigation. Solving this inverse problem is a challenging task because (i) it is ill-posed due to the presence of (smoothing) integral operators used in the representation of scattered fields in terms of material properties, and scattered fields are obtained at a finite set of points through noisy measurements; and (ii) it is nonlinear simply due the fact that scattered fields are nonlinear functions of the material properties. The work described in this thesis tackles the ill-posedness of the electromagnetic imaging problem using sparsity-based regularization techniques, which assume that the scatterer(s) occupy only a small fraction of the investigation domain. More specifically, four novel imaging methods are formulated and implemented. (i) Sparsity-regularized Born iterative method iteratively linearizes the nonlinear inverse scattering problem and each linear problem is regularized using an improved iterative shrinkage algorithm enforcing the sparsity constraint. (ii) Sparsity-regularized nonlinear inexact Newton method calls for the solution of a linear system involving the Frechet derivative matrix of the forward scattering operator at every iteration step. For faster convergence, the solution of this matrix system is regularized under the sparsity constraint and preconditioned by leveling the matrix singular values. (iii) Sparsity-regularized nonlinear Tikhonov method directly solves the nonlinear minimization problem using Landweber iterations, where a thresholding function is applied at every iteration step to enforce the sparsity constraint. (iv) This last scheme is accelerated using a projected steepest descent method when it is applied to three-dimensional investigation domains. Projection replaces the thresholding operation and enforces the sparsity constraint. Numerical experiments, which are carried out using

  11. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.

    Science.gov (United States)

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-06-15

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.

  12. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium

    Science.gov (United States)

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066

  13. Nonlinear optical field sensors in extreme electromagnetic and acoustic environments

    Science.gov (United States)

    Garzarella, Anthony; Wu, Dong Ho

    2014-03-01

    Sensors based on electro-optic (EO) and magneto-optic (MO) crystals measure external electric and magnetic fields through changes in birefringence which the fields induce on the nonlinear crystals. Due to their small size and all-dielectric structure, EO and MO sensors are ideal in environments involving very large electromagnetic powers. Conventional antennas and metallic probes not only present safety hazards, due to their metallic structure and the presence of large currents, but they can also perturb the very fields they intend to measure. In the case of railguns, the large electromagnetic signals are also accompanied by tremendous acoustic noise, which presents a noise background that the sensors must overcome. In this presentation, we describe extensive data obtained from fiber optic EO and MO sensors used in the railgun of the Naval Research Laboratory. Along with the field measurements obtained, we will describe the interactions between the acoustic noise and the nonlinear crystals (most notably, photoelastic effects), the noise equivalent fields they produce, and methods they could be suppressed through the optical and geometrical configurations of the sensor so that the signal to noise ratio can be maximized.

  14. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

    KAUST Repository

    Desmal, Abdulla

    2015-04-13

    A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

  15. Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Pakter, R.; Rizzato, F.B. [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Rio Grande do Sul (Brazil)

    2004-07-01

    The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)

  16. Nonlinear dynamics of structures

    CERN Document Server

    Oller, Sergio

    2014-01-01

    This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics.   This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects.   Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution  are studied, and the theoretical concepts and its programming algorithms are presented.  

  17. Nonlinear Electromagnetic Fields As a Source of Universe Acceleration

    CERN Document Server

    Kruglov, S I

    2016-01-01

    A model of nonlinear electromagnetic fields with a dimensional parameter $\\beta$ is proposed. From PVLAS experiment the bound on the parameter $\\beta$ was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the PLANCK, WMAP, and BICEP2 data.

  18. Nonlinear interaction of electromagnetic field with quantum plasma

    CERN Document Server

    Latyshev, A V

    2014-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures.

  19. Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials

    CERN Document Server

    Fang, Ming; Sha, Wei E I; Xiong, Xiaoyan Y Z; Wu, Xianliang

    2016-01-01

    Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities f...

  20. Investigation of Equivalent Unsprung Mass and Nonlinear Features of Electromagnetic Actuated Active Suspension

    Directory of Open Access Journals (Sweden)

    Jun Yin

    2015-01-01

    Full Text Available Electromagnetic actuated active suspension benefits active control and energy harvesting from vibration at the same time. However, the rotary type electromagnetic actuated active suspension introduces a significant extra mass on the unsprung mass due to the inertia of the rotating components of the actuator. The magnitude of the introduced unsprung mass is studied based on a gearbox type actuator and a ball screw type actuator. The geometry of the suspension and the actuator also influence the equivalent unsprung mass significantly. The suspension performance simulation or control logic derived should take this equivalent unsprung mass into account. Besides, an extra force should be compensated due to the nonlinear features of the suspension structure and it is studied. The active force of the actuator should compensate this extra force. The discovery of this paper provides a fundamental for evaluating the rotary type electromagnetic actuated active suspension performance and control strategy derived as well as controlling the electromagnetic actuated active suspension more precisely.

  1. Strong nonlinear focusing of light in nonlinearly controlled electromagnetic active metamaterial field concentrators

    Science.gov (United States)

    Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.

    2014-05-01

    The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects

  2. Electromagnetic Transmission Through Resonant Structures

    Science.gov (United States)

    Young, Steven M.

    Electromagnetic resonators store energy in the form of oscillatory electric and magnetic fields and gradually exchange that energy by coupling with their environment. This coupling process can have profound effects on the transmission and reflection properties of nearby interfaces, with rapid transitions from high transmittance to high reflectance over narrow frequency ranges, and has been exploited to design useful optical components such as spectral filters and dielectric mirrors. This dissertation includes analytic, numeric, and experimental investigations of three different electromagnetic resonators, each based on a different method of confining electromagnetic fields near the region of interest. First, we show that a structure with two parallel conducting plates, each containing a subwavelength slit, supports a localized resonant mode bound to the slits and therefore exhibits (in the absence of nonradiative losses), perfect resonant transmission over a narrow frequency range. In practice, the transmission is limited by conduction losses in the sidewalls; nevertheless, experimental results at 10 GHz show a narrowband transmission enhancement by a factor of 104 compared to the non-resonant transmission, with quality factor (ratio of frequency to peak width) Q ~ 3000. Second, we describe a narrowband transmission filter based on a single-layer dielectric grating. We use a group theory analysis to show that, due to their symmetry, several of the grating modes cannot couple to light at normal incidence, while several others have extremely large coupling. We then show how selectively breaking the system symmetry using off-normal light incidence can produce transmission peaks by enabling weak coupling to some of the previously protected modes. The narrowband filtering capabilities are validated by an experimental demonstration in the long wavelength infrared, showing transmission peaks of quality factor Q ~ 100 within a free-spectral range of 8-15 mum. Third, we

  3. Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm

    KAUST Repository

    Desmal, Abdulla

    2017-04-03

    An efficient electromagnetic inversion scheme for imaging sparse 3-D domains is proposed. The scheme achieves its efficiency and accuracy by integrating two concepts. First, the nonlinear optimization problem is constrained using L₀ or L₁-norm of the solution as the penalty term to alleviate the ill-posedness of the inverse problem. The resulting Tikhonov minimization problem is solved using nonlinear Landweber iterations (NLW). Second, the efficiency of the NLW is significantly increased using a steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without sacrificing the convergence of the algorithm. Numerical results demonstrate the efficiency and accuracy of the proposed imaging scheme in reconstructing sparse 3-D dielectric profiles.

  4. Vibration control of a flexible structure with electromagnetic actuators

    DEFF Research Database (Denmark)

    Gruzman, Maurício; Santos, Ilmar

    2016-01-01

    This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....

  5. Enhanced nonlinear susceptibility via double-double electromagnetically induced transparency

    Science.gov (United States)

    Alotaibi, Hessa M. M.; Sanders, Barry C.

    2016-11-01

    We investigate the nonlinear optical susceptibility of an alkali-metal atom with tripod electronic configuration responsible for generating cross-phase modulation and self-phase modulation under the condition of double-double electromagnetically induced transparency. Our investigation demonstrates an enhancement in the nonlinear optical susceptibility of an alkali-metal atom by a factor of 1000 in the region of the second transparency window. This enhancement is in comparison with the atom's susceptibility in the first transparency window for the same parameters under the same conditions. Nonlinear-absorption enhancement arises by canceling Raman-gain generation, which arises when the probe and signal fields have equal intensities. At the center of the second transparency window, we obtain the condition required to attain a nonvanishing nonlinear optical susceptibility. In the bare-state picture, the coupling field must be off resonant from a bare-to-bare-state transition, while working in the semiclassical dressed picture required the signal field to be tuned off resonantly with a bare-to-dressed-state transition. The relation that governs the values of coupling- and signal-field detuning are also obtained. Our scheme exhibits the fact that the second transparency window has advantages over the first transparency window with respect to obtaining an enhanced Kerr effect, and our calculation includes simulation of both low-temperature and Doppler-broadened regimes.

  6. Nonlinear metamaterials for electromagnetic energy harvesting (Conference Presentation)

    Science.gov (United States)

    Oumbe Tekam, Gabin Thibaut; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-09-01

    Surrounded by electromagnetic radiation coming from wireless power transfer to consumer devices such as mobile phones, computers and television, our society is facing the scientific and technological challenge to recover energy that is otherwise lost to the environment. Energy harvesting is an emerging field of research focused on this largely unsolved problem, especially in the microwave regime. Metamaterials provide a very promising platform to meet this purpose. These artificial materials are made from subwavelength building blocks, and can be designed by resonate at particular frequencies, depending on their shape, geometry, size, and orientation. In this work, we show that an efficient electromagnetic energy harvester can be design by inserting a nonlinear element directly within the metamaterial unit cell, leading to the conversion of RF input power to DC charge accumulation. The electromagnetic energy harvester operating at microwave frequencies is built from a cut-wire metasurface, which operates as a quasistatic electric dipole resonator. Using the equivalent electrical circuit, we design the parameters to tune the resonance frequency of the harvester at the desired frequency, and we compare these results with numerical simulations. Finally, we discuss the efficiency of our metamaterial energy harvesters. This work potentially offers a variety of applications, for example in the telecommunications industry to charge phones, in robotics to power microrobots, and also in medicine to advance pacemakers or health monitoring sensors.

  7. Resonant Electromagnetic Shunt Damping of Flexible Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2016-01-01

    Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...

  8. Electromagnetic Behaviour of Metallic Wire Structures

    CERN Document Server

    Chui, S T

    2013-01-01

    Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations.   Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials.   Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and ...

  9. Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Horton, W.

    1998-02-01

    A new nonlinear electromagnetic gyrokinetic equation is derived for plasmas with large flow velocities on the order of the ion thermal speed. The gyrokinetic equation derived here is given in the form which is valid for general magnetic geometries including the slab, cylindrical and toroidal configurations. The source term for the anomalous viscosity arising through the Reynolds stress is identified in the gyrokinetic equation. For the toroidally rotating plasma, particle, energy and momentum balance equations as well as the detailed definitions of the anomalous transport fluxes and the anomalous entropy production are shown. The quasilinear anomalous transport matrix connecting the conjugate pairs of the anomalous fluxes and the forces satisfies the Onsager symmetry. (author)

  10. Nonlinear electromagnetic waves in a degenerate electron-positron plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)

    2015-08-15

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)

  11. A sparse electromagnetic imaging scheme using nonlinear landweber iterations

    KAUST Repository

    Desmal, Abdulla

    2015-10-26

    Development and use of electromagnetic inverse scattering techniques for imagining sparse domains have been on the rise following the recent advancements in solving sparse optimization problems. Existing techniques rely on iteratively converting the nonlinear forward scattering operator into a sequence of linear ill-posed operations (for example using the Born iterative method) and applying sparsity constraints to the linear minimization problem of each iteration through the use of L0/L1-norm penalty term (A. Desmal and H. Bagci, IEEE Trans. Antennas Propag, 7, 3878–3884, 2014, and IEEE Trans. Geosci. Remote Sens., 3, 532–536, 2015). It has been shown that these techniques produce more accurate and sharper images than their counterparts which solve a minimization problem constrained with smoothness promoting L2-norm penalty term. But these existing techniques are only applicable to investigation domains involving weak scatterers because the linearization process breaks down for high values of dielectric permittivity.

  12. Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma

    Science.gov (United States)

    El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.

    2015-08-01

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.

  13. Acoustic-gravity nonlinear structures

    Directory of Open Access Journals (Sweden)

    D. Jovanović

    2002-01-01

    Full Text Available A catalogue of nonlinear vortex structures associated with acoustic-gravity perturbations in the Earth's atmosphere is presented. Besides the previously known Kelvin-Stewart cat's eyes, dipolar and tripolar structures, new solutions having the form of a row of counter-rotating vortices, and several weakly two-dimensional vortex chains are given. The existence conditions for these nonlinear structures are discussed with respect to the presence of inhomogeneities of the shear flows. The mode-coupling mechanism for the nonlinear generation of shear flows in the presence of linearly unstable acoustic-gravity waves, possibly also leading to intermittency and chaos, is presented.

  14. A preconditioned inexact newton method for nonlinear sparse electromagnetic imaging

    KAUST Repository

    Desmal, Abdulla

    2015-03-01

    A nonlinear inversion scheme for the electromagnetic microwave imaging of domains with sparse content is proposed. Scattering equations are constructed using a contrast-source (CS) formulation. The proposed method uses an inexact Newton (IN) scheme to tackle the nonlinearity of these equations. At every IN iteration, a system of equations, which involves the Frechet derivative (FD) matrix of the CS operator, is solved for the IN step. A sparsity constraint is enforced on the solution via thresholded Landweber iterations, and the convergence is significantly increased using a preconditioner that levels the FD matrix\\'s singular values associated with contrast and equivalent currents. To increase the accuracy, the weight of the regularization\\'s penalty term is reduced during the IN iterations consistently with the scheme\\'s quadratic convergence. At the end of each IN iteration, an additional thresholding, which removes small \\'ripples\\' that are produced by the IN step, is applied to maintain the solution\\'s sparsity. Numerical results demonstrate the applicability of the proposed method in recovering sparse and discontinuous dielectric profiles with high contrast values.

  15. Electromagnetic Detection and Identification of Complex Structures

    Science.gov (United States)

    2008-12-01

    1 ELECTROMAGNETIC DETECTION AND IDENTIFICATION OF COMPLEX STRUCTURES I. Kohlberg Kohlberg Associates Reston, Virginia, 20190-4440 S.A...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Kohlberg Associates Reston, Virginia, 20190-4440 8...Electromagnetic Theory, 2 nd ed. IEEE Press, New York. von Laven, S.A., Albritton, N.G., Baginski, T.A., Hodel, A.S., McMillan, R.W., Kohlberg

  16. Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents

    CERN Document Server

    Khardikov, V; Prosvirnin, S; Tuz, V

    2014-01-01

    We present a theory which explains how to achieve an enhancement of nonlinear effects in a thin layer of nonlinear medium by involving a planar periodic structure specially designed to bear a trapped-mode resonant regime. In particular, the possibility of a nonlinear thin metamaterial to produce the bistable response at a relatively low input intensity due to a large quality factor of the trapped-mode resonance is shown. Also a simple design of an all-dielectric low-loss silicon-based planar metamaterial which can provide an extremely sharp resonant reflection and transmission is proposed. The designed metamaterial is envisioned for aggregating with a pumped active medium to achieve an enhancement of quantum dots luminescence and to produce an all-dielectric analog of a 'lasing spaser'.

  17. Scaling effects in a non-linear electromagnetic energy harvester for wearable sensors

    Science.gov (United States)

    Geisler, M.; Boisseau, S.; Perez, M.; Ait-Ali, I.; Perraud, S.

    2016-11-01

    In the field of inertial energy harvesters targeting human mechanical energy, the ergonomics of the solutions impose to find the best compromise between dimensions reduction and electrical performance. In this paper, we study the properties of a non-linear electromagnetic generator at different scales, by performing simulations based on an experimentally validated model and real human acceleration recordings. The results display that the output power of the structure is roughly proportional to its scaling factor raised to the power of five, which indicates that this system is more relevant at lengths over a few centimetres.

  18. Optical nonlinear response of a single nonlinear dielectric layer sandwiched between two linear dielectric structures

    Energy Technology Data Exchange (ETDEWEB)

    Lidorikis, E. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Busch, K. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Instituet fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, D-76128, Karlsruhe (Germany); Li, Q. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Chan, C.T. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Soukoulis, C.M. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)

    1997-12-01

    We consider the general problem of electromagnetic wave propagation through a one-dimensional system consisting of a nonlinear medium sandwiched between two linear structures. Special emphasis is given to systems where the latter comprise Bragg reflectors. We obtain an exact expression for the nonlinear response of such dielectric superlattices when the nonlinear impurity is very thin, or in the {delta}-function limit. We find that both the switching-up and switching-down intensities of the bistable response can be made very low, when the frequency of the incident wave matches that of the impurity mode of the structure. Numerical results for a nonlinear layer of finite width display qualitatively similar behavior, thus confirming the usefulness of the simpler {delta}-function model. In addition, an analytical solution for the resonance states of an infinitely extended finite-width superlattice with a finite-width nonlinear impurity is presented. {copyright} {ital 1997} {ital The American Physical Society}

  19. A 3D printed electromagnetic nonlinear vibration energy harvester

    Science.gov (United States)

    Constantinou, P.; Roy, S.

    2016-09-01

    A 3D printed electromagnetic vibration energy harvester is presented. The motion of the device is in-plane with the excitation vibrations, and this is enabled through the exploitation of a leaf isosceles trapezoidal flexural pivot topology. This topology is ideally suited for systems requiring restricted out-of-plane motion and benefits from being fabricated monolithically. This is achieved by 3D printing the topology with materials having a low flexural modulus. The presented system has a nonlinear softening spring response, as a result of designed magnetic force interactions. A discussion of fatigue performance is presented and it is suggested that whilst fabricating, the raster of the suspension element is printed perpendicular to the flexural direction and that the experienced stress is as low as possible during operation, to ensure longevity. A demonstrated power of ˜25 μW at 0.1 g is achieved and 2.9 mW is demonstrated at 1 g. The corresponding bandwidths reach up-to 4.5 Hz. The system’s corresponding power density of ˜0.48 mW cm-3 and normalised power integral density of 11.9 kg m-3 (at 1 g) are comparable to other in-plane systems found in the literature.

  20. Bandwidth enhanced electromagnetic bandgap structure structured closed ground monopole antenna

    National Research Council Canada - National Science Library

    Modali S. S. S. SRINIVAS; Tottempudi Venkata RAMAKRISHNA; Boddapati T. P. MADHAV; Sathuluri Venkata RAMA RAO; Shaik ASHRAF ALI

    2016-01-01

    .... To overcome this problem a coplanar wave guide fed square patch monopole antenna with closed ground structure is proposed in this paper and electromagnetic band gap structure is added to the antenna...

  1. Electromagnetic Siegert states for periodic dielectric structures

    CERN Document Server

    Ndangali, Friends R

    2011-01-01

    The formalism of Siegert states to describe the resonant scattering in quantum theory is extended to the resonant scattering of electromagnetic waves on periodic dielectric arrays. The excitation of electromagnetic Siegert states by an incident wave packet and their decay is studied. The formalism is applied to develop a theory of coupled electromagnetic resonances arising in the electromagnetic scattering problem for two such arrays separated by a distance 2h (or, generally, when the physical properties of the scattering array depend on a real coupling parameter h). Analytic properties of Siegert states as functions of the coupling parameter h are established by the Regular Perturbation Theorem which is an extension the Kato-Rellich theorem to the present case. By means of this theorem, it is proved that if the scattering structure admits a bound state in the radiation continuum at a certain value of the coupling parameter h, then there always exist regions within the structure in which the near field can be...

  2. Electromagnetism

    CERN Multimedia

    Without the electromagnetic force, you would not be solid. The atoms of your body are held together by electromagnetism: negatively charged electrons are held around the positively charged nucleus. Atoms share electrons to form molecules, so building up the structure of matter. As its name suggests, electromagnetism has a double nature: a moving electric charge creates a magnetic field. This intimate connection between electricity and magnetism was described by James Maxwell in 1864. The electromagnetic force can be both positive and negative : opposite charges attract, whereas like charges repel. Electromagnetic radiation, such as radio, microwaves, light and X-rays, is emitted by charges when they are made to move. For example, an oscillating current in a wire emits radio waves. Text for the interactive: Why do the needles move when you switch on the current ?

  3. Controls-structures-electromagnetics interaction program

    Science.gov (United States)

    Grantham, William L.; Bailey, Marion C.; Belvin, Wendell K.; Williams, Jeffrey P.

    1987-01-01

    A technology development program is described involving Controls Structures Electromagnetics Interaction (CSEI) for large space structures. The CSEI program was developed as part of the continuing effort following the successful kinematic deployment and RF tests of the 15 meter Hoop/Column antenna. One lesson learned was the importance of making reflector surface adjustment after fabrication and deployment. Given are program objectives, ground based test configuration, Intelsat adaptive feed, reflector shape prediction model, control experiment concepts, master schedule, and Control Of Flexible Structures-II (COFS-II) baseline configuration.

  4. Quasinormal modes of nonlinear electromagnetic black holes from unstable null geodesics

    CERN Document Server

    Breton, N

    2016-01-01

    The expressions for the quasinormal modes (QNMs) of black holes with nonlinear electrodynamics, calculated in the eikonal approximation, are presented. In the eikonal limit QNMs of black holes are determined by the parameters of the circular null geodesics. The unstable circular null orbits are derived from the effective metric that is the one obeyed by light rays under the influence of a nonlinear electromagnetic field. As an illustration we calculate the QNMs of four nonlinear electromagnetic black holes, two singular and two regular, namely from Euler-Heisenberg and Born-Infeld theories, for singular, and the magnetic Bardeen black hole and the one derived by Bronnikov for regular ones. Comparison is shown with the QNMs of the linear electromagnetic counterpart, their Reissner-Nordstr\\"{o}m black hole.

  5. Quasinormal modes of nonlinear electromagnetic black holes from unstable null geodesics

    Science.gov (United States)

    Bretón, Nora; López, L. A.

    2016-11-01

    The expressions for the quasinormal modes (QNM) of black holes with nonlinear electrodynamics, calculated in the eikonal approximation, are presented. In the eikonal limit QNM of black holes are determined by the parameters of the circular null geodesics. The unstable circular null orbits are derived from the effective metric that is the one obeyed by light rays under the influence of a nonlinear electromagnetic field. As an illustration we calculate the QNM of four nonlinear electromagnetic black holes, two singular and two regular, namely, from Euler-Heisenberg and Born-Infeld theories, for singular ones, and the magnetic Bardeen black hole and the one derived by Bronnikov for regular ones. Comparing with the QNM of the linear electromagnetic counterpart, their Reissner-Nordström black hole is done.

  6. Nonlinear Propagation of Light in One Dimensional Periodic Structures

    OpenAIRE

    Goodman, Roy H.; Weinstein, Michael I.; Philip J Holmes

    2000-01-01

    We consider the nonlinear propagation of light in an optical fiber waveguide as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is assumed to have an index of refraction which varies periodically along its length. The wavelength of light is selected to be in resonance with the periodic structure (Bragg resonance). The AMLE system considered incorporates the effects non-instantaneous response of the medium to the electromagnetic field (chromatic or material dispersion...

  7. Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide

    Science.gov (United States)

    Valovik, D. V.; Smol'kin, E. Yu.

    2017-08-01

    The problem of the propagation of coupled surface electromagnetic waves in a two-layer cylindrical circular waveguide filled with an inhomogeneous nonlinear medium is considered. A nonlinear coupled TE-TM wave is characterized by two (independent) frequencies ωe and ωm and two propagation constants {\\widehat γ _e} and {\\widehat γ _m}. The physical problem reduces to a nonlinear two-parameter eigenvalue problem for a system of nonlinear ordinary differential equations. The existence of eigenvalues ({\\widehat γ _e}, {\\widehat γ _m}) in proven and intervals of their localization are determined.

  8. Electromagnetic studies of nucleon and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Heisenberg, J.H.; Calarco, J.R.; Hersman, F.W.; Dawson, J.F.

    1993-06-01

    Important objectives of the group are the study of subatomic structure through experimental measurements and the interpretation of the data through modeling. The common theme that unifies the studies of strong interactions and hadronic systems is the effort to determine the electromagnetic response as completely as possible. The general approach is coincidence detection of exclusive final states and determination of the dependence on the spin variables using polarized beams and targets and outgoing nucleon polarimetry. Direct reaction and giant resonance studies of electron quasi-elastic scattering on {sup 12}C and {sup 16}O are reported, as well as work on nuclear structure models and instrumentation development.

  9. Nonlinear properties of gated graphene in a strong electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: cos@ucy.ac.cy [University of Cyprus, Department of Physics (Cyprus)

    2017-03-15

    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  10. An explicit MOT-TDVIE scheme for analyzing electromagnetic field interactions on nonlinear scatterers

    KAUST Repository

    Ulku, Huseyin Arda

    2015-02-01

    An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.

  11. Nonlinear phenomena of generation of longitudinal electric current by transversal electromagnetic field in plasmas

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with collisionless plasma is carried out. Formulas for calculation electric current in collisionless plasma with arbitrary degree of degeneration of electronic gas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis.

  12. Electromagnetic Radiation of Electrons in Periodic Structures

    CERN Document Server

    Potylitsyn, Alexander Petrovich

    2011-01-01

    Periodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation a...

  13. The non-linear evolution of the tearing mode in electromagnetic turbulence using gyrokinetic simulations

    CERN Document Server

    Hornsby, William A; Buchholz, Rico; Grosshauser, Stefan; Weikl, Arne; Zarzoso, David; Casson, Francis J; Poli, Emanuele; Peeters, Artur G

    2015-01-01

    The non-linear evolution of a magnetic island is studied using the Vlasov gyro-kinetic code GKW. The interaction of electromagnetic turbulence with a self-consistently growing magnetic island, generated by a tearing unstable $\\Delta' > 0$ current profile, is considered. The turbulence is able to seed the magnetic island and bypass the linear growth phase by generating structures that are approximately an ion gyro-radius in width. The non-linear evolution of the island width and its rotation frequency, after this seeding phase, is found to be modified and is dependent on the value of the plasma beta and equilibrium pressure gradients. At low values of beta the island evolves largely independent of the turbulence, while at higher values the interaction has a dramatic effect on island growth, causing the island to grow exponentially at the growth rate of its linear phase, even though the island is larger than linear theory validity. The turbulence forces the island to rotate in the ion-diamagnetic direction as o...

  14. Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tsitsas, N.L. [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografos, Athens 15773 (Greece); Horikis, T.P. [Department of Mathematics, University of Ioannina, Ioannina 45110 (Greece); Shen, Y.; Kevrekidis, P.G.; Whitaker, N. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D.J., E-mail: dfrantz@phys.uoa.g [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)

    2010-03-01

    We consider short pulse propagation in nonlinear metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response. Two short-pulse equations (SPEs) are derived for the high- and low-frequency 'band gaps' (where linear electromagnetic waves are evanescent) with linear effective permittivity epsilon<0 and permeability mu>0. The structure of the solutions of the SPEs is also briefly discussed, and connections with the soliton solutions of the nonlinear Schroedinger equation are made.

  15. Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses.

    Science.gov (United States)

    Kim, Kihong; Phung, D K; Rotermund, F; Lim, H

    2008-01-21

    We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.

  16. Nonlinear structural analysis using integrated force method

    Indian Academy of Sciences (India)

    N R B Krishnam Raju; J Nagabhushanam

    2000-08-01

    Though the use of the integrated force method for linear investigations is well-recognised, no efforts were made to extend this method to nonlinear structural analysis. This paper presents the attempts to use this method for analysing nonlinear structures. General formulation of nonlinear structural analysis is given. Typically highly nonlinear bench-mark problems are considered. The characteristic matrices of the elements used in these problems are developed and later these structures are analysed. The results of the analysis are compared with the results of the displacement method. It has been demonstrated that the integrated force method is equally viable and efficient as compared to the displacement method.

  17. Electromagnetic radiation from linearly and nonlinearly oscillating charge drops

    Science.gov (United States)

    Grigor'ev, A. I.; Shiryaeva, S. O.

    2016-12-01

    It has been shown that analytic calculations of the intensity of electromagnetic radiation from an oscillating charged drop in the approximation linear in the oscillation amplitude (small parameter is on the order of 0.1) give only the quadrupole component of the total radiation. The dipole component can only be obtained in calculations using higher-order approximations. Nevertheless, the intensity of the dipole radiation turns out to be substantially higher (by 14-15 orders of magnitude). This is because the decomposition of radiation from a system of charges into multipole components (differing even in the rates of decrease in the potential with the distance) is carried out using the expansion in a substantially smaller parameter, viz., the ratio of the size of the emitting system (in our case, a drop of radius 10 μm) to the distance to the point of observation in the wave zone of the emission of radiation (emitted wavelength) of 100-1000 m. As a result, this second small parameter is on the order of 10-7 to 10-8. On the other hand, in accordance with the field theory, the ratio of intensities of quadrupole and dipole radiations is proportional to the squared ratio of the hydrodynamic velocity of the oscillating surface of a charged drop to the velocity of propagation of an electromagnetic signal in vacuum (velocity of light), which yields a ratio of 10-14 to 10-15.

  18. Rapid Electromagnetic Analysis of Entire Accelerator Structures

    CERN Document Server

    Cooke, Simon

    2005-01-01

    We present results of a new method for fast, accurate calculation, in 3-D, of the electromagnetic mode spectrum of long, tapered accelerator structures. Instead of discretizing the entire structure directly and solving a huge matrix eigenvalue problem, we use a new two-step technique that scales much better to long, multi-cavity structures. In the first step we compute a small number of eigenmodes of individual cavities, achieving 0.05% frequency accuracy using a new second-order finite-element code. In the second step we use these 3-D mode solutions as field basis functions to obtain a reduced matrix representation of Maxwell's equations for the complete structure. Solving the reduced system takes just a few minutes on a desktop PC even with more than 100 non-identical cavities, and gives the complete mode spectrum in the first few bands of the structure. By judicious choice of the basis modes, we retain 0.05% frequency accuracy for these global solutions, and can reconstruct the complete 3-D field of each m...

  19. Effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency based nonlinear frequency conversion in quantum ring

    Science.gov (United States)

    Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man

    2016-10-01

    We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.

  20. A relation between electromagnetically induced absorption resonances and nonlinear magneto-optics in Lambda-systems

    CERN Document Server

    Budker, D

    2003-01-01

    Recent work on Lambda-resonances in alkali metal vapors (E. Mikhailov, I. Novikova, Yu. V. Rostovtsev, and G. R. Welch, quant-ph/0309171, and references therein) has revealed a novel type of electromagnetically induced absorption resonance that occurs in three-level systems under specific conditions normally associated with electromagnetically induced transparency. In this note, we show that these resonances have a direct analog in nonlinear magneto-optics, and support this conclusion with a calculation for a J=1->J'=0 system interacting with a single nearly circularly polarized light field in the presence of a weak longitudinal magnetic field.

  1. Nonlinear wave structures as exact solutions of Vlasov-Maxwell equations.

    Science.gov (United States)

    Dasgupta, B.; Tsurutani, B. T.; Janaki, M. S.; Sharma, A. S.

    2001-12-01

    Many recent observations by POLAR and Geotail spacecraft of the low-latitudes magnetopause boundary layer (LLBL) and the polar cap boundary layer (PCBL) have detected nonlinear wave structures [Tsurutani et al, Geophys. Res. Lett., 25, 4117, 1998]. These nonlinear waves have electromagnetic signatures that are identified with Alfven and Whistler modes. Also solitary waves with mono- and bi-polar features were observed. In general such electromagnetic structures are described by the full Vlasov-Maxwell equations for waves propagating at an angle to the ambient magnetic field, but it has been a diffficult task obtaining the solutions because of the inherent nonlinearity. We have obtained an exact nonlinear solution of the full Vlasov-Maxwell equations in the presence of an electromagnetic wave propagating at an arbitrary direction with an ambient magnetic field. This is accomplished by finding the constants of motion of the charged particles in the electromagnetic field of the wave and then constructing a realistic distribution function as a function of these constants of motion. The corresponding trapping conditions for such waves are obtained, yielding the self-consistent description for the particles in the presence of the nonlinear waves. The interpretation of the observed nonlinear structures in terms of these general solutions will be presented.

  2. RESEARCH ON NONLINEAR PROBLEMS IN STRUCTURAL DYNAMICS.

    Science.gov (United States)

    Research on nonlinear problems structural dynamics is briefly summarized. Panel flutter was investigated to make a critical comparison between theory...panel flutter in aerospace vehicles, plausible simplifying assumptions are examined in the light of experimental results. Structural dynamics research

  3. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2014-05-04

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  4. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2014-01-06

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  5. Realization of electromagnetically induced phase grating and Kerr nonlinearity in a graphene ensemble under Raman excitation

    Science.gov (United States)

    Naseri, Tayebeh; Moradi, Ronak

    2017-01-01

    Some optical properties including the linear and nonlinear susceptibility and electromagnetically induced phase grating (EIG) in graphene under Raman excitation is studied. A single-layer graphene nanostructure driven by coherent and incoherent fields is investigated theoretically. It is revealed that by adjusting the amplitude of control and incoherent fields, the linear and nonlinear absorption as well as Kerr nonlinearity of the medium can be optimized. It is realized that the enhanced Kerr nonlinearity can occur with zero linear absorption and nonlinear amplification. Furthermore, it should be noted that EIG in graphene is studied for the first time. The results indicate that the diffraction efficiency of the phase grating is dramatically enhanced by controlling the amplitude of coherent and incoherent fields, and an efficient electromagnetically induced phase grating can be obtained. A novel result shows a considerable improvement of the intensity of higher-order diffractions and switching between different orders of grating via incoherent pumping field. Therefore, this model can be used in real experiments for the development of new types of nanoelectronic devices used for the realization of all-optical switching processes.

  6. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    Science.gov (United States)

    Wong, Alfred Y.

    1999-09-01

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.

  7. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  8. Nonlinear analysis on the coupling process of electromagnetic vibrator and earth

    Institute of Scientific and Technical Information of China (English)

    CHEN; Zubin; TENG; Jiwen; LIN; Jun; ZHANG; Linhang; JIANG

    2005-01-01

    The linear model based on the hydraulic pressure vibrator has been no longer adaptable to the electromagnetic vibrator. In order to realize the effective transmission of the limited energy from the vibrator to the ground, it is important to study the coupling model of the electromagnetic vibrator and the earth. In this paper, a nonlinear restore term was introduced to the coupling model because of the existence of a large amount of harmonics in the vibrator baseplate. The nonlinear vibration analysis was applied to the model by the multiscale method. In the course of energy transmission from the vibrator to the ground, ultraharmonic resonance was used to explain the generation of harmonics. An improved scheme was advanced to select the cross correlation reference signal in the vibrator seismic exploration. Good application results were obtained in field experiments.

  9. The non-linear field theory III: Geometrical illustration of the electromagnetic representation of Dirac's electron theory

    OpenAIRE

    Kyriakos, Alexander G.

    2004-01-01

    The present paper is the continuity of the previous papers "Non-linear field theory" I and II. Here on the basis of the electromagnetic representation of Dirac's electron theory we consider the geometrical distribution of the electromagnetic fields of the electron-positron. This gives the posibility to obtain the explanation and solution of many fundamental problems of the QED.

  10. Structural optimization for nonlinear dynamic response.

    Science.gov (United States)

    Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S

    2015-09-28

    Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.

  11. BRST structure of non-linear superalgebras

    CERN Document Server

    Asorey, M; Radchenko, O V; Sugamoto, A

    2008-01-01

    In this paper we analyse the structure of the BRST structure of nonlinear superalgebras. We consider quadratic non-linear superalgebras where a commutator (in terms of (super) Poisson brackets) of the generators is a quadratic polynomial of the generators. We find the explicit form of the BRST charge up to cubic order in Faddeev-Popov ghost fields for arbitrary quadratic nonlinear superalgebras. We point out the existence of constraints on structure constants of the superalgebra when the nilpotent BRST charge is quadratic in Faddeev-Popov ghost fields. The general results are illustrated by simple examples of superalgebras.

  12. Nonlinear electromagnetic fields in 0.5 MHz inductively coupled plasmas

    DEFF Research Database (Denmark)

    Ostrikov, K.N.; Tsakadze, E.L.; Xu, S.

    2003-01-01

    Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (similar to500 kHz) inductively coupled plasmas have been measured using miniature magnetic probes. In the low-power (similar to170 W) E-mode, the magnetic field pattern is purely linear......, with the fundamental frequency harmonics only. After transition to higher-power (similar to1130 W) H-mode, the second-harmonic nonlinear azimuthal magnetic field B-phi(2omega) that is in 4-6 times larger than the fundamental frequency component B-phi(omega), has been observed. A simplified plasma fluid model...... explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source is proposed. The nonlinear second harmonic poloidal (r-z) rf current generating the azimuthal magnetic field B-phi(2omega) is attributed to nonlinear interactions between the fundamental frequency radial...

  13. Nonlinear evolution of the electromagnetic electron-cyclotron instability in bi-Kappa distributed plasma

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, B., E-mail: bengt.eliasson@strath.ac.uk [SUPA, Physics Department, John Anderson Building, Strathclyde University, Glasgow G4 0NG, Scotland (United Kingdom); Lazar, M., E-mail: mlazar@tp4.rub.de [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum (Germany)

    2015-06-15

    This paper presents a numerical study of the linear and nonlinear evolution of the electromagnetic electron-cyclotron (EMEC) instability in a bi-Kappa distributed plasma. Distributions with high energy tails described by the Kappa power-laws are often observed in collision-less plasmas (e.g., solar wind and accelerators), where wave-particle interactions control the plasma thermodynamics and keep the particle distributions out of Maxwellian equilibrium. Under certain conditions, the anisotropic bi-Kappa distribution gives rise to plasma instabilities creating low-frequency EMEC waves in the whistler branch. The instability saturates nonlinearly by reducing the temperature anisotropy until marginal stability is reached. Numerical simulations of the Vlasov-Maxwell system of equations show excellent agreement with the growth-rate and real frequency of the unstable modes predicted by linear theory. The wave-amplitude of the EMEC waves at nonlinear saturation is consistent with magnetic trapping of the electrons.

  14. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  15. Harmonic balance finite element method applications in nonlinear electromagnetics and power systems

    CERN Document Server

    Lu, Junwei; Yamada, Sotoshi

    2016-01-01

    The first book applying HBFEM to practical electronic nonlinear field and circuit problems * Examines and solves wide aspects of practical electrical and electronic nonlinear field and circuit problems presented by HBFEM * Combines the latest research work with essential background knowledge, providing an all-encompassing reference for researchers, power engineers and students of applied electromagnetics analysis * There are very few books dealing with the solution of nonlinear electric- power-related problems * The contents are based on the authors' many years' research and industry experience; they approach the subject in a well-designed and logical way * It is expected that HBFEM will become a more useful and practical technique over the next 5 years due to the HVDC power system, renewable energy system and Smart Grid, HF magnetic used in DC/DC converter, and Multi-pulse transformer for HVDC power supply * HBFEM can provide effective and economic solutions to R&D product development * Includes Matlab e...

  16. Nonlinear response of the quantum Hall system to a strong electromagnetic radiation

    Science.gov (United States)

    Avetissian, H. K.; Mkrtchian, G. F.

    2016-12-01

    We study nonlinear response of a quantum Hall system in semiconductor-hetero-structures via third harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects remain robust against the significant broadening of Landau levels. We predict realization of an experiment through the observation of the third harmonic signal and Faraday rotation angle, which are within the experimental feasibility.

  17. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped–clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...... by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance...

  18. Nonlinear Dynamics of Structures with Material Degradation

    Science.gov (United States)

    Soltani, P.; Wagg, D. J.; Pinna, C.; Whear, R.; Briody, C.

    2016-09-01

    Structures usually experience deterioration during their working life. Oxidation, corrosion, UV exposure, and thermo-mechanical fatigue are some of the most well-known mechanisms that cause degradation. The phenomenon gradually changes structural properties and dynamic behaviour over their lifetime, and can be more problematic and challenging in the presence of nonlinearity. In this paper, we study how the dynamic behaviour of a nonlinear system changes as the thermal environment causes certain parameters to vary. To this end, a nonlinear lumped mass modal model is considered and defined under harmonic external force. Temperature dependent material functions, formulated from empirical test data, are added into the model. Using these functions, bifurcation parameters are defined and the corresponding nonlinear responses are observed by numerical continuation. A comparison between the results gives a preliminary insight into how temperature induced properties affects the dynamic response and highlights changes in stability conditions of the structure.

  19. A fuzzy robust control scheme for vibration suppression of a nonlinear electromagnetic-actuated flexible system

    Science.gov (United States)

    Tavakolpour-Saleh, A. R.; Haddad, M. A.

    2017-03-01

    In this paper, a novel robust vibration control scheme, namely, one degree-of-freedom fuzzy active force control (1DOF-FAFC) is applied to a nonlinear electromagnetic-actuated flexible plate system. First, the flexible plate with clamped-free-clamped-free (CFCF) boundary conditions is modeled and simulated. Then, the validity of the simulation platform is evaluated through experiment. A nonlinear electromagnetic actuator is developed and experimentally modeled through a parametric system identification scheme. Next, the obtained nonlinear model of the actuator is applied to the simulation platform and performance of the proposed control technique in suppressing unwanted vibrations is investigated via simulation. A fuzzy controller is applied to the robust 1DOF control scheme to tune the controller gain using acceleration feedback. Consequently, an intelligent self-tuning vibration control strategy based on an inexpensive acceleration sensor is proposed in the paper. Furthermore, it is demonstrated that the proposed acceleration-based control technique owns the benefits of the conventional velocity feedback controllers. Finally, an experimental rig is developed to investigate the effectiveness of the 1DOF-FAFC scheme. It is found that the first, second, and third resonant modes of the flexible system are attenuated up to 74%, 81%, and 90% respectively through which the effectiveness of the proposed control scheme is affirmed.

  20. Numerical analysis of nonlinear electromagnetic waves in nematic liquid crystal cells

    Science.gov (United States)

    Papanicolaou, N. C.; Christou, M. A.; Polycarpou, A. C.

    2012-10-01

    In the current work, the nonlinear problem of electromagnetic wave propagation in a Nematic Liquid Crystal (NLC) cell is solved numerically. The LC is sandwiched between two glass layers of finite thickness and a linearly polarized beam is obliquely incident to the cell. The dielectric properties of N-LCs depend on the tilt angle of the directors. When the excitation beam enters the cell, and providing the incident intensity is above the Fréedericksz threshold, the directors reorient themselves changing the LC's relative permittivity tensor. In turn, this affects beam propagation throughout the crystal. The electromagnetic field is modeled by the time-harmonic Maxwell equations whereas the director field is governed by a nonlinear ordinary differential equation (ODE). Our solution method is iterative, consistently taking into account this interaction between the excitation beam and the director field. The Maxwell equations are solved employing the Mode-Matching Technique (MMT). The solution of the nonlinear differential equation for the director field is obtained with the aid of a finite difference (FD) scheme.

  1. Observation of electromagnetically induced Talbot effect in an atomic system with nonlinearity

    CERN Document Server

    Zhang, Zhaoyang; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2016-01-01

    We experimentally demonstrate the Talbot effect resulting from the repeatedly self-reconstruction of a spatially intensity-modulated probe field under the Fresnel near-field regime. By launching the probe beam into an optically induced atomic lattice (established by interfering two coupling fields) inside a thermal rubidium vapor cell, we can obtain an electromagnetically induced grating (EIG) on probe beam in a coherent three-level $\\Lambda$-type Doppler-free atomic configuration with the assistance of electromagnetically induced transparency (EIT) window, which can modify and greatly enhance the Kerr nonlinearity near atomic resonance. The EIG patterns out of the cell can repeat the image at the output plane of the cell at integer multiples of Talbot length, which agree well with the theoretical prediction [Appl. Phys. Lett., 98, 081108 (2011)]. Such first demonstrated EIT Talbot effect in a coherent atomic system may pave a lensless and nondestructive way for imaging ultracold atoms or molecules.

  2. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  3. Supratransmission in a disordered nonlinear periodic structure

    Science.gov (United States)

    Yousefzadeh, B.; Phani, A. Srikantha

    2016-10-01

    We study the interaction among dispersion, nonlinearity, and disorder effects in the context of wave transmission through a discrete periodic structure, subjected to continuous harmonic excitation in its stop band. We consider a damped nonlinear periodic structure of finite length with disorder. Disorder is introduced throughout the structure by small changes in the stiffness parameters drawn from a uniform statistical distribution. Dispersion effects forbid wave transmission within the stop band of the linear periodic structure. However, nonlinearity leads to supratransmission phenomenon, by which enhanced wave transmission occurs within the stop band of the periodic structure when forced at an amplitude exceeding a certain threshold. The frequency components of the transmitted waves lie within the pass band of the linear structure, where disorder is known to cause Anderson localization. There is therefore a competition between dispersion, nonlinearity, and disorder in the context of supratransmission. We show that supratransmission persists in the presence of disorder. The influence of disorder decreases in general as the forcing frequency moves away from the pass band edge, reminiscent of dispersion effects subsuming disorder effects in linear periodic structures. We compute the dependence of the supratransmission force threshold on nonlinearity and strength of coupling between units. We observe that nonlinear forces are confined to the driven unit for weakly coupled systems. This observation, together with the truncation of higher-order nonlinear terms, permits us to develop closed-form expressions for the supratransmission force threshold. In sum, in the frequency range studied here, disorder does not influence the supratransmission force threshold in the ensemble-average sense, but it does reduce the average transmitted wave energy.

  4. Model-order reduction of nonlinear models of electromagnetic phased-array hyperthermia.

    Science.gov (United States)

    Kowalski, Marc E; Jin, Jian-Ming

    2003-11-01

    A method based on the Karhunen-Loéve (KL) transform is proposed for the reduction of large-scale, nonlinear ordinary differential equations such as those arising from the finite difference modeling of biological heat transfer. The method of snapshots is used to expedite computation of the required quantities in the KL procedure. Guidelines are presented and validated for snapshot selection and resultant basis series truncation, emphasizing the special physical features of the electromagnetic phased-array heat transfer physics. Applications to fast temperature prediction are presented.

  5. Nonlinear Dynamics and Control of Flexible Structures

    Science.gov (United States)

    1991-03-01

    Freedom," Ph.D. Thesis, Department of Theoretical and Applied Mechanics, Cornell University, in preparation. 5I I URI Reorts Islam , Saiful and Mircea...Theoretical and Applied Mechanics I S. Islam Civil and Environmental Engineering I 2! I 3 URI Accomplishments 3 -Nonlinear Dynamics and Chaos in Flexible...Structures with Symmetry," 31 (1991) 265-285. Islam , S. and M. Grigoriu, "Nonlinear Random Vibration of Pin-Jointed Trusses with Imperfections," in

  6. Electromagnetic wave propagation in alternating material-metamaterial layered structures

    CERN Document Server

    Carrera-Escobedo, V H

    2016-01-01

    Using the transfer matrix method, we examine the parametric behavior of the transmittance of an electromagnetic plane wave propagating in the lossless regime through a periodic multilayered system as a function of the frequency and angle of incidence of the electromagnetic wave for the case in which the periodic structure comprises alternating material-metamaterial layers. A specific example of high transmittance at any angle of incidence in the visible region of the spectrum is identified

  7. Intrinsic nonlinearity of interaction of an electromagnetic field with quantum plasma and its research

    CERN Document Server

    Latyshev, A V

    2014-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. The concept of longitudinal-transversal conductivity is entered. The graphic analysis of the real and imaginary parts of dimensionless coefficient of longitudinal-transversal conductivity is made. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures. In this formula we have allocated known Kohn's singularities (W. Kohn, 1959).

  8. Self-organization of ULF electromagnetic wave structures in the shear flow driven dissipative ionosphere

    Directory of Open Access Journals (Sweden)

    G. Aburjania

    2014-08-01

    Full Text Available This work is devoted to investigation of nonlinear dynamics of planetary electromagnetic (EM ultra-low-frequency wave (ULFW structures in the rotating dissipative ionosphere in the presence of inhomogeneous zonal wind (shear flow. Planetary EM ULFW appears as a result of interaction of the ionospheric medium with the spatially inhomogeneous geomagnetic field. The shear flow driven wave perturbations effectively extract energy of the shear flow increasing own amplitude and energy. These perturbations undergo self organization in the form of the nonlinear solitary vortex structures due to nonlinear twisting of the perturbation's front. Depending on the features of the velocity profiles of the shear flows the nonlinear vortex structures can be either monopole vortices, or dipole vortex, or vortex streets and vortex chains. From analytical calculation and plots we note that the formation of stationary nonlinear vortex structure requires some threshold value of translation velocity for both non-dissipation and dissipation complex ionospheric plasma. The space and time attenuation specification of the vortices is studied. The characteristic time of vortex longevity in dissipative ionosphere is estimated. The long-lived vortices transfer the trapped medium particles, energy and heat. Thus they represent structural elements of turbulence in the ionosphere.

  9. Study on the nonlinear electromagnetic acoustic resonancee method for th evaluation of hidden damage in a metallic material

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seung Hyun; Park, Choon Su; Seo, Dae Cheol [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Cho, Seung Wan [Dept. of Mechanical Engineering, Sunngkyunkwan University, Suwon (Korea, Republic of); Jhang, Kyung Young [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of)

    2014-08-15

    Recently, much attention has been paid to nonlinear ultrasonic technology as a potential tool to assess hidden damages that cannot be detected by conventional ultrasonic testing. One nonlinear ultrasonic technique is measurement of the resonance frequency shift, which is based on the hysteresis of the material elasticity. Sophisticated measurement of resonance frequency is required, because the change in resonance frequency is usually quite small. In this investigation, the nonlinear electromagnetic acoustic resonance (NEMAR) method was employed. The NEMAR method uses noncontact electromagnetic acoustic transducers (EMATs) in order to minimize the effect of the transducer on the frequency response of the object. Aluminum plate specimens that underwent three point bending fatigue were tested witha shear wave EMAT. The hysteretic nonlinear parameter α, a key indicator of damage, was calculated from the resonance frequency shift at several levels of input voltage. The hysteretic nonlinear parameter of a damaged sample was compared to that of an intact one, showing a difference in the values.

  10. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  11. Nonlinear system identification in offshore structural reliability

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corporation, Houston, TX (United States)

    1995-08-01

    Nonlinear forces acting on offshore structures are examined from a system identification perspective. The nonlinearities are induced by ocean waves and may become significant in many situations. They are not necessarily in the form of Morison`s equation. Various wave force models are examined. The force function is either decomposed into a set of base functions or it is expanded in terms of the wave and structural kinematics. The resulting nonlinear system is decomposed into a number of parallel no-memory nonlinear systems, each followed by a finite-memory linear system. A conditioning procedure is applied to decouple these linear sub-systems; a frequency domain technique involving autospectra and cross-spectra is employed to identify the linear transfer functions. The structural properties and those force transfer parameters are determine with the aid of the coherence functions. The method is verified using simulated data. It provides a versatile and noniterative approach for dealing with nonlinear interaction problems encountered in offshore structural analysis and design.

  12. Nonlinearities in Periodic Structures and Metamaterials

    CERN Document Server

    Denz, Cornelia; Kivshar, Yuri S

    2010-01-01

    Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest. This book focuses on nonlinear optical phenomena in periodic media, such as photonic crystals, optically-induced, adaptive lattices, atomic lattices or metamaterials. The main purpose is to describe and overview new physical phenomena that result from the interplay between nonlinearities and structural periodicities and is a guide to actual and future developments for the expert reader in optical information processing, as well as in the physics of cold atoms in optical lattices.

  13. Electromagnetic Simulations of Helical-Based Ion Acceleration Structures

    CERN Document Server

    Nelson, Scott D; Caporaso, George; Friedman, Alex; Poole, Brian R; Waldron, William

    2005-01-01

    Helix structures have been proposed* for accelerating low energy ion beams using MV/m fields in order to increase the coupling effeciency of the pulsed power system and to tailor the electromagnetic wave propagation speed with the particle beam speed as the beam gains energy. Calculations presented here show the electromagnetic field as it propagates along the helix structure, field stresses around the helix structure (for voltage breakdown determination), optimizations to the helix and driving pulsed power waveform, and simulations showing test particles interacting with the simulated time varying fields.

  14. A Novel Miniaturized Electromagnetic Bandgap Structure and Its Effects on Signal Integrity and Electromagnetic Emission

    Directory of Open Access Journals (Sweden)

    Zhaowen Yan

    2013-01-01

    Full Text Available A miniaturized planar electromagnetic bandgap (EBG structure with embedded meander line as bridge is proposed in this paper. The dimensions of the unit cell of the proposed EBG structure are 15 mm × 15 mm × 0.36 mm. Simulation and measurement of the noise transmission coefficient (S21 have been performed for the structure, and good agreement can be seen. According to the measured results, the −30 dB noise suppression bandwidth ranges from 0.97 to 21.54 GHz, which cover almost the whole noise band in ultrawideband applications. Moreover, its effects on signal integrity and electromagnetic emission are also analyzed.

  15. Highlights in the hadron electromagnetic structure

    Directory of Open Access Journals (Sweden)

    Tomasi-Gustafsson Egle

    2017-01-01

    Full Text Available In frame of a general view of proton electromagnetic form factors, two recent findings related to reanalyses of data are presented. Recent experiments in the scattering and in the annihilation region provided us with more precise data and/or extending the kinematical region, allowing a deeper analysis and a common view of these fundamental quantities. We will discuss two issues: the discrepancy between the form factors extracted from unpolarized and polarized ep elastic scattering experiments, in connection with the commonly used dipole parametrization; peculiar oscillations in e+e− → p̄p(γ annihilation cross section, that become periodical when plotted as a function of the 3-momentum of the relative motion of the final proton and antiproton, after subtraction of a smooth function.

  16. Systematic parameter study of a nonlinear electromagnetic energy harvester with matched magnetic orientation: Numerical simulation and experimental investigation

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-02-01

    This paper reports the systematic parameter study of a tristable nonlinear electromagnetic energy harvester for ambient low-frequency vibration. Numerical simulations and experimental investigations are performed on the harvester which consists of a cantilever beam, a tip coil, two tip magnets and two external side magnets. The external side magnets are deployed symmetrically along a concave surface parallel to the trajectory of the cantilever tip with a controllable distance so that the magnetic orientation of the tip magnets are matched with that of the side magnets. Therefore, instead of the ternary position parameters (d, h, α), a binary parameters pair (d0, d) is used to characterize the position of the side magnets and the performance of the energy harvester. The magnetic force and magnetic field on the cantilever tip therefore depend on the relative distance in the tip displacement direction between the tip magnets and side magnets, but is independent of the position of the side magnets on the concave surface. The magnetic force (field)-distance relationship is measured experimentally and curve fitted to obtain explicit expressions, in order to characterize the magnetic force (field) when the side magnets are placed at varied positions along the concave surface. Numerical simulation is, then, performed to predict the electromagnetic voltage output and the bandwidth of the energy harvester. The simulation results coincided with the measured data. Significant broadband response is obtained experimentally and the maximum RMS power output is 40.2 mW at 0.45g of excitation. The proposed structure showcasing the matched magnetic orientation is characterized by the binary parameters pair (d0, d) and the systematic parametric approach could contribute to the design and study of nonlinear broadband energy harvesters.

  17. Control of nonlinear flexible space structures

    Science.gov (United States)

    Shi, Jianjun

    With the advances made in computer technology and efficiency of numerical algorithms over last decade, the MPC strategies have become quite popular among control community. However, application of MPC or GPC to flexible space structure control has not been explored adequately in the literature. The work presented in this thesis primarily focuses on application of GPC to control of nonlinear flexible space structures. This thesis is particularly devoted to the development of various approximate dynamic models, design and assessment of candidate controllers, and extensive numerical simulations for a realistic multibody flexible spacecraft, namely, Jupiter Icy Moons Orbiter (JIMO)---a Prometheus class of spacecraft proposed by NASA for deep space exploratory missions. A stable GPC algorithm is developed for Multi-Input-Multi-Output (MIMO) systems. An end-point weighting (penalty) is used in the GPC cost function to guarantee the nominal stability of the closed-loop system. A method is given to compute the desired end-point state from the desired output trajectory. The methodologies based on Fake Algebraic Riccati Equation (FARE) and constrained nonlinear optimization, are developed for synthesis of state weighting matrix. This makes this formulation more practical. A stable reconfigurable GPC architecture is presented and its effectiveness is demonstrated on both aircraft as well as spacecraft model. A representative in-orbit maneuver is used for assessing the performance of various control strategies using various design models. Different approximate dynamic models used for analysis include linear single body flexible structure, nonlinear single body flexible structure, and nonlinear multibody flexible structure. The control laws evaluated include traditional GPC, feedback linearization-based GPC (FLGPC), reconfigurable GPC, and nonlinear dissipative control. These various control schemes are evaluated for robust stability and robust performance in the presence of

  18. CISM course on exploiting nonlinear behaviour in structural dynamics

    CERN Document Server

    Virgin, Lawrence; Exploiting Nonlinear Behavior in Structural Dynamics

    2012-01-01

    The articles in this volume give an overview and introduction to nonlinear phenomena in structural dynamics. Topics treated are approximate methods for analyzing nonlinear systems (where the level of nonlinearity is assumed to be relatively small), vibration isolation, the mitigation of undesirable torsional vibration in rotating systems utilizing specifically nonlinear features in the dynamics, the vibration of nonlinear structures in which the motion is sufficiently large amplitude and structural systems with control.

  19. Nonlinear frequency response analysis of structural vibrations

    Science.gov (United States)

    Weeger, Oliver; Wever, Utz; Simeon, Bernd

    2014-12-01

    In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.

  20. Probing Delta structure with pion electromagnetic production

    CERN Document Server

    Yang, S N; Yang, Shin Nan

    2003-01-01

    The Dubna-Mainz-Taipei dynamical model for pion electromagnetic production, which can describe well the existing data from threshold up to 1 GeV photon lab energy, is presented and used to analyze the recent precision data in the $\\Delta$ region. We find that, within our model, the bare Delta is almost spherical while the physical Delta is oblate. The deformation is almost saturated by the pion cloud effects. We further find that up to Q^2 = 4.0 (GeV/c)^2, the extracted helicity amplitude A_{3/2} and A_{1/2} remain comparable with each other, implying that hadronic helicity is not conserved at this range of Q^2. The ratio E_{1+}/M_{1+} obtained show, starting from a small and negative value at the real photon point, a clear tendency to cross zero, and to become positive with increasing Q^2. This is a possible indication of a very slow approach toward the pQCD region. Finally, we find that the bare helicity amplitude A_{1/2} and S_{1/2}, but not A_{3/2}, starts exhibiting the scaling behavior at about Q^2 \\ge ...

  1. Nucleon Structure Studies with Electromagnetic Probes

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, Michael F.

    2011-03-31

    Summarized in this report is the progress achieved during the period from March 1, 2008 to June 14, 2009 under contract number DE-FG02-03ER41252. This is the final technical report under this contract. The experimental work described here is part of the electromagnetic nuclear physics program of the CEBAF Large Acceptance Spectrometer (CLAS) Collaboration at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) that published 17 journal articles during the period of this report. One of these journal articles reported on the results of precise measurements of the neutron magnetic form factor. I was a spokesperson on this experiment and the publication of these results is the culmination of years of effort by a small subset of the CLAS Collaboration. As usual, undergraduate students were involved in all aspects of this work. Three Union College students participated in this program during the window of this report and one presented a paper on his work at the 2009 National Conference on Undergraduate Research (NCUR22). In this report, I discuss recent progress on the measurements of the neutron magnetic form factor and describe my service work for the CLAS Collaboration.

  2. Centers of structures in electromagnetism--a critical analysis

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1982-01-01

    Some principles for finding reference points or centers of structures in electromagnetism are outlined. It is pointed out that the centers which are found depend on arbitrary choices. Since some of the principles are based on Friis's transmission formula and the radar equation, these are given...

  3. Non-linear quantum dynamics in strong and short electromagnetic fields

    CERN Document Server

    Titov, Alexander I; Hosaka, Atsushi; Takabe, Hideaki

    2016-01-01

    In our contribution we give a brief overview of two widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.m.) (e.g.\\ laser) wave field or generalized Breit-Wheeler process and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that at small and moderate laser field intensities the shape and duration of the pulse are very important for the probability of considered processes. However, at high intensities the multi-photon interactions of the fermions with laser field are decisive and completely determined all aspects of subthreshold electron-positron pairs and photon production

  4. Nonlinear interaction of intense electromagnetic waves with a magnetoactive electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2013-08-15

    The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ω{sub c}/ω<1 (ω{sub c} and ω are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ω{sub c}/ω>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (ω{sub c}/ω)<1/(ω{sub c}/ω)>1 by increasing the magnetic field strength.

  5. Fractal structures in nonlinear plasma physics.

    Science.gov (United States)

    Viana, R L; da Silva, E C; Kroetz, T; Caldas, I L; Roberto, M; Sanjuán, M A F

    2011-01-28

    Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

  6. Nonlinear transient analysis of joint dominated structures

    Science.gov (United States)

    Chapman, J. M.; Shaw, F. H.; Russell, W. C.

    1987-01-01

    A residual force technique is presented that can perform the transient analyses of large, flexible, and joint dominated structures. The technique permits substantial size reduction in the number of degrees of freedom describing the nonlinear structural models and can account for such nonlinear joint phenomena as free-play and hysteresis. In general, joints can have arbitrary force-state map representations but these are used in the form of residual force maps. One essential feature of the technique is to replace the arbitrary force-state maps describing the nonlinear joints with residual force maps describing the truss links. The main advantage of this replacement is that the incrementally small relative displacements and velocities across a joint are not monitored directly thereby avoiding numerical difficulties. Instead, very small and 'soft' residual forces are defined giving a numerically attractive form for the equations of motion and thereby permitting numerically stable integration algorithms. The technique was successfully applied to the transient analyses of a large 58 bay, 60 meter truss having nonlinear joints. A method to perform link testing is also presented.

  7. The pion electromagnetic structure with self-energy

    CERN Document Server

    Mello, Clayton Santos; Frederico, T

    2016-01-01

    We study the electromagnetic structure of the pion in terms of the quantum cromodynamic~(QCD) model on the Breit-frame. We calculated the observables, such as the electromagnetic form factor. The priori to have a calculation covariant need to get the valence term of the eletromagnetic form factor. We use the usual formalism in quantum field theory (QFT) and light-front quantum field theory (LFQFT) in order to test the properties of form factor in nonperturbative QCD. In this particular case, the form factor can be obtained using the pion Light-Front (LF) wave function including self-energy from Lattice-QCD. Specifically, these calculations was performed in LF formalism. We consider a quark-antiquark vertex model having a quark self-energy. Also we can use other models to compare the pion electromagnetic form factor with different wave function and to observe the degree of agreement between them.

  8. Algebraic sub-structuring for electromagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao; Gao, Weiguo; Bai, Zhaojun; Li, Xiaoye; Lee, Lie-Quan; Husbands, Parry; Ng, Esmond G.

    2004-09-14

    Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, we show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.

  9. Algebraic Sub-Structuring for Electromagnetic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Gao, W.G.; Bai, Z.J.; Li, X.Y.S.; Lee, L.Q.; Husbands, P.; Ng, E.G.; /LBL, Berkeley /UC, Davis /SLAC

    2006-06-30

    Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, they show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.

  10. A Novel 2D Z-Shaped Electromagnetic Bandgap Structure

    Directory of Open Access Journals (Sweden)

    I. Iliev

    2015-02-01

    Full Text Available This paper researches a novel 2D Z-shaped Electromagnetic Band-Gap (EBG structure, its dispersion diagram and application field. Based on a transmission line model, the dispersion equation is derived and theoretically investigated. In order to validate theoretical results, a full wave analysis is performed and the electromagnetic properties of the structure are revealed. The theoretical results show good agreement with the full wave simulation results. The frequency response of the structure is compared to the well know structures of Jerusalem cross and patch EBG. The results show the applicability of the proposed 2D Z-shaped EBG in microstrip patch antennas, microstrip filters and high speed switching circuits, where the suppression of parasitic surface wave is required.

  11. Ultrafast Structure Switching through Nonlinear Phononics

    Science.gov (United States)

    Juraschek, D. M.; Fechner, M.; Spaldin, N. A.

    2017-02-01

    We describe a mechanism by which nonlinear phononics allows ultrafast coherent and directional control of transient structural distortions. With ErFeO3 as a model system, we use density functional theory to calculate the structural properties as input into an anharmonic phonon model that describes the response of the system to a pulsed optical excitation. We find that the trilinear coupling of two orthogonal infrared-active phonons to a Raman-active phonon causes a transient distortion of the lattice. In contrast to the quadratic-linear coupling that has been previously explored, the direction of the distortion is determined by the polarization of the exciting light, introducing a novel mechanism for nonlinear phononic switching. Since the occurrence of the coupling is determined by the symmetry of the system we propose that it is a universal feature of orthorhombic and tetragonal perovskites.

  12. Identification of Nonlinearities in Joints of a Wing Structure

    OpenAIRE

    Sani M.S.M.; Ouyang H

    2016-01-01

    Nonlinear structural identification is essential in engineering. As new materials are being used andstructures become slender and lighter, nonlinear behaviour of structures becomes more important. There have been many studies into the development and application of system identification methods for structural nonlinearity based on changes in natural frequencies, mode shapes and damping ratios. A great challenge is to identify nonlinearity in large structural systems. Much work has been undert...

  13. Nonlinear electromagnetic quasinormal modes and Hawking radiation of a regular black hole with magnetic charge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin [Chongqing University, Department of Physics, Chongqing (China); Lin, Kai [Universidade de Sao Paulo, Instituto de Fisica, CP 66318, Sao Paulo (Brazil); Yang, Nan [Huazhong University of Science and Technology, Department of Physics, Wuhan (China)

    2015-03-01

    Based on a regular exact black hole (BH) from nonlinear electrodynamics (NLED) coupled to general relativity, we investigate the stability of such BH through the Quasinormal Modes (QNMs) of electromagnetic (EM) field perturbations and its thermodynamics through Hawking radiation. In perturbation theory, we can deduce the effective potential from a nonlinear EM field. The comparison of the potential function between regular and RN BHs could predict similar QNMs. The QNM frequencies tell us the effect of the magnetic charge q, the overtone n, and the angular momentum number l on the dynamic evolution of NLED EM field. Furthermore we also discuss the cases of near-extreme conditions of such a magnetically charged regular BH. The corresponding QNM spectrum illuminates some special properties in the near-extreme cases. For the thermodynamics, we employ the Hamilton-Jacobi method to calculate the near-horizon Hawking temperature of the regular BH and reveal the relationship between the classical parameters of the black hole and its quantum effects. (orig.)

  14. On the formation of shocks of electromagnetic plane waves in non-linear crystals

    CERN Document Server

    Christodoulou, Demetrios

    2015-01-01

    An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global $C^2$-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density...

  15. On the formation of shocks of electromagnetic plane waves in non-linear crystals

    Science.gov (United States)

    Christodoulou, Demetrios; Perez, Daniel Raoul

    2016-08-01

    An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global C2-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density, assuming no dispersion.

  16. Electromagnetic studies of nuclear structure and reactions

    Science.gov (United States)

    Hersman, F. W.; Dawson, J. F.; Heisenberg, J. H.; Calarco, J. R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  17. Earthquake analysis of structures using nonlinear models

    OpenAIRE

    Cemalovic, Miran

    2015-01-01

    Throughout the governing design codes, several different methods are presented for the evaluation of seismic problems. This thesis assesses the non-linear static and dynamic procedures presented in EN 1998-1 through the structural response of a RC wall-frame building. The structure is designed in detail according to the guidelines for high ductility (DCH) in EN 1998-1. The applied procedures are meticulously evaluated and the requirements in EN 1998-1 are reviewed. In addition, the finite ele...

  18. Waves and Structures in Nonlinear Nondispersive Media General Theory and Applications to Nonlinear Acoustics

    CERN Document Server

    Gurbatov, S N; Saichev, A I

    2012-01-01

    "Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...

  19. Nonlinear helicons bearing multi-scale structures

    Science.gov (United States)

    Abdelhamid, Hamdi M.; Yoshida, Zensho

    2017-02-01

    The helicon waves exhibit varying characters depending on plasma parameters, geometry, and wave numbers. Here, we elucidate an intrinsic multi-scale property embodied by the combination of the dispersive effect and nonlinearity. The extended magnetohydrodynamics model (exMHD) is capable of describing a wide range of parameter space. By using the underlying Hamiltonian structure of exMHD, we construct an exact nonlinear solution, which turns out to be a combination of two distinct modes, the helicon and Trivelpiece-Gould (TG) waves. In the regime of relatively low frequency or high density, however, the combination is made of the TG mode and an ion cyclotron wave (slow wave). The energy partition between these modes is determined by the helicities carried by the wave fields.

  20. Conditions on Structural Controllability of Nonlinear Systems: Polynomial Method

    Directory of Open Access Journals (Sweden)

    Qiang Ma

    2011-03-01

    Full Text Available In this paper the structural controllability of a class of a nonlinear system is investigated. The transfer function (matrix of nonlinear systems is obtained by putting the nonlinear system model on non-commutative ring. Conditions of structural controllability of nonlinear systems are presented according to the criterion of linear systems structural controllability in frequency domain. An example is used to testify the presented conditions finally.

  1. Gradient-based optimization in nonlinear structural dynamics

    DEFF Research Database (Denmark)

    Dou, Suguang

    The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider, fr...

  2. Nonlinear and Variable Structure Excitation Controller for Power System Stability

    Institute of Scientific and Technical Information of China (English)

    Wang Ben; Ronnie Belmans

    2006-01-01

    A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.

  3. Second Order Nonlinear Hydroelastic Analyses of Floating Bodies - the Primary Consideration of Nonlinear Structure

    DEFF Research Database (Denmark)

    Chen, X.; Cui, W.; Jensen, Jørgen Juncher

    2003-01-01

    The theory and typical numerical results of a second order nonlinear hydroelastic analysis of floating bodies are presented in a series of papers in which only nonlinearity in fluids is considered. Under the assumption of linear fluid, the hydroelastic analysis methods of nonlinear structure are ...

  4. Application of the nonlinear antenna theory model to a tall tower struck by lightning for the evaluation of return stroke channel current and radiated electromagnetic fields

    Science.gov (United States)

    Moosavi, S. H. S.; Moini, R.; Sadeghi, S. H. H.; Kordi, B.

    2011-06-01

    In this paper an improved antenna theory (AT) model with nonlinearly varying resistive loading and fixed inductive loading is used to electromagnetically simulate lightning strikes to tall structures. Measurement data captured from Toronto's CN tower are used to verify the validity of the new model. Both the return stroke channel (RSC) and the tower are modeled by straight thin conducting wires. The wire model of the channel is assumed to have distributed nonlinear resistive elements as a function of current and time, adopted from the numerical models of a spark channel and consequent shockwave from a lightning discharge, yielding a varying value of the channel radius from the base to the cloud along the RSC. Such distributed elements are used to take into account the current attenuation while propagating along the channel and varying propagation speeds lower than the speed of light. RSC current distribution and radiated electromagnetic fields in near, intermediate, and far range distances predicted by the proposed model are compared with those obtained from the measurement data and with those of the original AT model and the AT with fixed inductive loading (ATIL-F) model. Current wave propagation speed profile in RSC and tower is investigated as a function of height as well. The effects of applying different tower geometry models are also studied. It is shown that the new model is able to reproduce one of the characteristic features of the electromagnetic fields radiated by lightning, namely, the far-field inversion of polarity with a zero crossing occurring in the tens of microseconds range. We have also investigated the effect of nonlinearity of the channel assumed in the new model. It is shown that among the electromagnetic models, distributed nonlinear resistance along the channel leads to a zero crossing in the tens of microseconds range even for large values of resistance. It is also shown that decreasing the nonlinearity results in the predictions

  5. Model updating of nonlinear structures from measured FRFs

    Science.gov (United States)

    Canbaloğlu, Güvenç; Özgüven, H. Nevzat

    2016-12-01

    There are always certain discrepancies between modal and response data of a structure obtained from its mathematical model and experimentally measured ones. Therefore it is a general practice to update the theoretical model by using experimental measurements in order to have a more accurate model. Most of the model updating methods used in structural dynamics are for linear systems. However, in real life applications most of the structures have nonlinearities, which restrict us applying model updating techniques available for linear structures, unless they work in linear range. Well-established frequency response function (FRF) based model updating methods would easily be extended to a nonlinear system if the FRFs of the underlying linear system (linear FRFs) could be experimentally measured. When frictional type of nonlinearity co-exists with other types of nonlinearities, it is not possible to obtain linear FRFs experimentally by using low level forcing. In this study a method (named as Pseudo Receptance Difference (PRD) method) is presented to obtain linear FRFs of a nonlinear structure having multiple nonlinearities including friction type of nonlinearity. PRD method, calculates linear FRFs of a nonlinear structure by using FRFs measured at various forcing levels, and simultaneously identifies all nonlinearities in the system. Then, any model updating method can be used to update the linear part of the mathematical model. In this present work, PRD method is used to predict the linear FRFs from measured nonlinear FRFs, and the inverse eigensensitivity method is employed to update the linear finite element (FE) model of the nonlinear structure. The proposed method is validated with different case studies using nonlinear lumped single-degree of freedom system, as well as a continuous system. Finally, a real nonlinear T-beam test structure is used to show the application and the accuracy of the proposed method. The accuracy of the updated nonlinear model of the

  6. Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order Duffing model

    Science.gov (United States)

    Maĭmistov, A. I.

    2003-02-01

    We discuss propagation of an ultimately short (single-cycle) pulse of an electromagnetic field in a medium whose dispersion and nonlinear properties can be described by the cubic-quintic Duffing model, i.e., by an oscillator with third-and fifth-order anharmonicity. A system of equations governing the evolution of a unidirectional electromagnetic wave is analyzed without using the approximation of slowly varying envelopes. Three types of solutions of this system describing stationary propagation of a pulse in such a medium are found. When the signs of the anharmonicity constants are different, then the amplitude of a steady-state pulse is limited, but its energy may grow on account of an increase in its duration. The characteristics of such a pulse, referred to as an electromagnetic domain, are discussed.

  7. Electromagnetic nonlinearities in a Roebel-cable-based accelerator magnet prototype: variational approach

    Science.gov (United States)

    Ruuskanen, J.; Stenvall, A.; Lahtinen, V.; Pardo, E.

    2017-02-01

    Superconducting magnets are the most expensive series of components produced in the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). When developing such magnets beyond state-of-the-art technology, one possible option is to use high-temperature superconductors (HTS) that are capable of tolerating much higher magnetic fields than low-temperature superconductors (LTS), carrying simultaneously high current densities. Significant cost reductions due to decreased prototype construction needs can be achieved by careful modelling of the magnets. Simulations are used, e.g. for designing magnets fulfilling the field quality requirements of the beampipe, and adequate protection by studying the losses occurring during charging and discharging. We model the hysteresis losses and the magnetic field nonlinearity in the beampipe as a function of the magnet’s current. These simulations rely on the minimum magnetic energy variation principle, with optimization algorithms provided by the open-source optimization library interior point optimizer. We utilize this methodology to investigate a research and development accelerator magnet prototype made of REBCO Roebel cable. The applicability of this approach, when the magnetic field dependence of the superconductor’s critical current density is considered, is discussed. We also scrutinize the influence of the necessary modelling decisions one needs to make with this approach. The results show that different decisions can lead to notably different results, and experiments are required to study the electromagnetic behaviour of such magnets further.

  8. Nonlinear electromagnetic energy harvesters fabricated by rigid-flex printed circuit board technology

    Science.gov (United States)

    Chiu, Yi; Hong, Hao-Chiao; Hsu, Wei-Hung

    2015-12-01

    In this paper, a wideband electromagnetic energy harvester designed and fabricated by commercial rigid-flex PCB technology is demonstrated. The rigid FR-4 boards are used for mechanical frames and coil winding whereas the flexible polyimide film is used for mechanical springs and mass platforms. The total dimension of the device is 20 × 20 × 2 mm3. The internal coil resistance is 15 Ω. In vibration tests, nonlinearity can be observed even at 0.1 g vibration level due to the spring hardening effect. The peak frequency was increased as the vibration level increased. The effective bandwidth was increased from 6 Hz at 0.1 g to 21 Hz at 0.5 g and 27 Hz at 1 g, respectivel, due to the hysteresis effect. For a matched load and 1 g vibration at 240 Hz, the maximum output power is 24.5 nW, corresponding to a power density of 31 nW/cm3.

  9. Optical nonlinearity of Rydberg electromagnetically induced transparency in thermal vapor using the optical-heterodyne-detection technique

    Science.gov (United States)

    Bhowmick, Arup; Sahoo, Sushree S.; Mohapatra, Ashok K.

    2016-08-01

    We discuss the optical-heterodyne-detection technique to study the absorption and dispersion of a probe beam propagating through a medium with a narrow resonance. The technique has been demonstrated for Rydberg electromagnetically induced transparency in rubidium thermal vapor and the optical nonlinearity of a probe beam with variable intensity has been studied. A quantitative comparison of the experimental result with a suitable theoretical model is presented. The limitations and the working regime of the technique are discussed.

  10. Three-wave mixing of ordinary and backward electromagnetic waves: extraordinary transients in the nonlinear reflectivity and parametric amplification.

    Science.gov (United States)

    Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A

    2016-09-01

    Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings.

  11. Experimental evaluation of structural integrity of scram release electromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Patri, Sudheer, E-mail: patri@igcar.gov.in [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Ruhela, S.P.; Punniyamoorthy, R. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Vijayashree, R. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chandramouli, S.; Kumar, P. Madan; Rajendraprasad, R.; Rao, P. Vijayamohana; Narmadha, S.; Sreedhar, B.K.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2014-07-01

    Highlights: • The structural integrity of scram release electromagnet is evaluated against thermal shocks. • A simple test facility, employed for simulating the thermal shocks in a typical FBR, is presented. • The cold shock experienced by electromagnet during scram is simulated. • The testing qualified electromagnet for 11.6 yr of reactor operation. - Abstract: Prototype fast breeder reactor (PFBR), under construction at Kalpakkam, India, plays an important role in the commercialisation of fast breeder reactors (FBR) in India. It consists of two independent, fast acting and diverse shutdown systems. An electromagnet (EM) immersed in sodium acts as scram release device for the second shutdown system of prototype fast breeder reactor. The inside of EM is sealed from the sodium to achieve the required response time and to prevent the exposure of EM coil to sodium. As the EM response time is an important parameter for reactor safety, the integrity of EM is to be maintained under all anticipated loadings. The EM experiences thermal shocks and thermal stresses during reactor transients such as scram. The dissimilar weld joint present in EM is more susceptible to fatigue failure due to these thermal stresses. Failure of weld joint results in the entry of sodium into the EM, increasing its response time with associated safety implications. In this connection, the structural integrity of EM against thermal shocks was experimentally evaluated in Thermal Shock Test Facility. The EM was subjected to 1000 cycles of thermal shocks, which constitutes 29% of total number of shocks required to qualify the EM for 40 years of reactor operation, thus qualifying it for 11.6 yr of reactor operation. The testing has enhanced the confidence level for safe and reliable operation of EM of DSRDM in PFBR. The testing not only qualified the EM for use in reactor but also provided input for licensing the erection of DSRDM on reactor pile. Moreover, it provided a direction for

  12. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    Science.gov (United States)

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  13. Nonlinear Correlations of Protein Sequences and Symmetries of Their Structures

    Institute of Scientific and Technical Information of China (English)

    LI Ming-Feng; HUANG Yan-Zhao; XIAO Yi

    2005-01-01

    @@ We investigate the nonlinear correlations of protein sequences by using the nonlinear prediction method developed in nonlinear dynamical theory.It is found that a lot of protein sequences show strong nonlinear correlations and have deterministic structures.Further investigations show that the strong nonlinear correlations of these protein sequences are due to the symmetries of their tertiary structures.Furthermore, the correlation lengths of the sequences are related to the degrees of the symmetries.These results support the duplication mechanism of protein evolution and also reveal one aspect how amino acid sequences encode their spatial structures.

  14. New 3D parallel GILD electromagnetic modeling and nonlinear inversion using global magnetic integral and local differential equation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, G.; Li, J.; Majer, E.; Zuo, D.

    1998-07-01

    This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.

  15. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  16. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  17. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  18. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  19. Meson-cloud effects in the electromagnetic nucleon structure

    CERN Document Server

    Kupelwieser, Daniel

    2013-01-01

    We study how the electromagnetic structure of the nucleon is influenced by a pion cloud. To this aim we make use of a constituent-quark model with instantaneous confinement and a pion that couples directly to the quarks. To derive the invariant 1- photon-exchange electron-nucleon scattering amplitude we employ a Poincar\\'e- invariant coupled-channel formulation which is based on the point-form of relativistic quantum mechanics. We argue that the electromagnetic nucleon current extracted from this amplitude can be reexpressed in terms of pure hadronic degrees of freedom with the quark substructure of the pion and the nucleon being encoded in electromagnetic and strong vertex form factors. These are form factors of bare particles, i.e. eigenstates of the pure confinement problem. First numerical results for (bare) photon-nucleon and pion-nucleon form factors, which are the basic ingredients of the further calculation, are given for a simple 3-quark wave function of the nucleon.

  20. Nonlinear rheological models for structured interfaces

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2010-01-01

    The GENERIC formalism is a formulation of nonequilibrium thermodynamics ideally suited to develop nonlinear constitutive equations for the stress–deformation behavior of complex interfaces. Here we develop a GENERIC model for multiphase systems with interfaces displaying nonlinear viscoelastic stres

  1. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  2. A nonlinear variable structure stabilizer for power system stability

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Jiang, L.; Cheng, S.; Chen, D. (Huazhong Univ. of Science and Technology, Wuhan (China). Dept. of Electrical Power Engineering); Malik, O.P.; Hope, G.S. (Univ. of Calgary, Alberta (Canada). Dept. of Electrical and Computer Engineering)

    1994-09-01

    A nonlinear variable structure stabilizer is proposed in this paper. Design of this stabilizer involves the nonlinear transformation technique, the variable structure control technique and the linear system theory. Performance of the proposed nonlinear variable structure controller in a single machine connected to an infinite bus power and a multi-machine system with multi-mode oscillations is simulated. The responses of the system with the proposed stabilizer are compared with those obtained with some other kinds of stabilizers when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure stabilizer gives satisfactory dynamic performance and good robustness.

  3. Acceleration of solar wind ions to 1 MeV by electromagnetic structures upstream of the Earth's bow shock

    CERN Document Server

    Stasiewicz, K; Eliasson, B; Strumik, M; Yamauchi, M

    2013-01-01

    We present measurements from the ESA/NASA Cluster mission that show in situ acceleration of ions to energies of 1 MeV outside the bow shock. The observed heating can be associated with the presence of electromagnetic structures with strong spatial gradients of the electric field that lead to ion gyro-phase breaking and to the onset of chaos in ion trajectories. It results in rapid, stochastic acceleration of ions in the direction perpendicular to the ambient magnetic field. The electric potential of the structures can be compared to a field of moguls on a ski slope, capable of accelerating and ejecting the fast running skiers out of piste. This mechanism may represent the universal mechanism for perpendicular acceleration and heating of ions in the magnetosphere, the solar corona and in astrophysical plasmas. This is also a basic mechanism that can limit steepening of nonlinear electromagnetic structures at shocks and foreshocks in collisionless plasmas.

  4. The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Liu Bing-Can; Yu Li; Lu Zhi-Xin

    2011-01-01

    The analytic surface plasmon polaritons (SPPs) dispersion relation is studied in a system consisting of a thin metallic film bounded by two sides media of nonlinear dielectric of arbitrary nonlinearity is studied by applying a generalised first integral approach. We consider both asymmetric and symmetric structures. Especially, in the symmetric system, two possible modes can exist: the odd mode and the even mode. The dispersion relations of the two modes are obtained. Due to the nonlinear dielectric, the magnitude of the electric field at the interface appears and alters the dispersion relations. The changes in SPPs dispersion relations depending on film thicknesses and nonlinearity are studied.

  5. Identification of Nonlinearities in Joints of a Wing Structure

    Directory of Open Access Journals (Sweden)

    Sani M.S.M.

    2016-01-01

    Full Text Available Nonlinear structural identification is essential in engineering. As new materials are being used andstructures become slender and lighter, nonlinear behaviour of structures becomes more important. There have been many studies into the development and application of system identification methods for structural nonlinearity based on changes in natural frequencies, mode shapes and damping ratios. A great challenge is to identify nonlinearity in large structural systems. Much work has been undertaken in the development of nonlinear system identification methods (e.g. Hilbert Transform, NARMAX, and Proper Orthogonal Decomposition, however, it is arguable that most of these methods are cumbersome when applied to realistic large structures that contain mostly linear modes with some local nonlinearity (e.g. aircraft engine pylon attachment to a wing. In this paper, a multi-shaker force appropriation method is developed to determine the underlying linear and nonlinear structural properties through the use of the measurement and generation of restoring force surfaces. One undamped mode is excited in each multi-shaker test. Essentially, this technique is a derivative of the restoring surface method and involves a non-linear curve fitting performed in modal space. A reduced finite element model is established and its effectiveness in revealing the nonlinear characteristics of the system is discussed. The method is demonstrated through both numerical simulations and experiments on a simple jointed laboratory structure with seeded faults, which represents an engine pylon structure that consists of a rectangular wing with two stores suspended underneath.

  6. MUTUAL COUPLING REDUCTION BETWEEN MICROSTRIP ANTENNAS USING ELECTROMAGNETIC BANDGAP STRUCTURE

    Directory of Open Access Journals (Sweden)

    G.N. Gaikwad

    2011-03-01

    Full Text Available When the number of antenna elements is placed in forming the arrays, mutual coupling between the antenna elements is a critical issue. This is particularly concern in phase array antennas. Mutual coupling is a potential source of performance degradation in the form of deviation of the radiation pattern from the desired one, gain reduction due to excitation of surface wave, increased side lobe levels etc. EBG (Electromagnetic Band Gap structure (also called as Photonic Bandgap Structure PBG not only enhances the performance of the patch antennas but also provides greater amount of isolation when placed between the microstrip arrays. This greatly reduces the mutual coupling between the antenna elements. The radiation efficiency, gain, antenna efficiency, VSWR, frequency, directivity etc greatly improves over the conventional patch antennas using EBG. The EBG structure and normal patch antenna is simulated using IE3D antenna simulation software.

  7. Electromagnetic normal modes and Casimir effects in layered structures

    CERN Document Server

    Sernelius, Bo E

    2014-01-01

    We derive a general procedure for finding the electromagnetic normal modes in layered structures. We apply this procedure to planar, spherical and cylindrical structures. These normal modes are important in a variety of applications. They are the only input needed in calculations of Casimir interactions. We present explicit expression for the condition for modes and Casimir energy for a large number of specific geometries. The layers are allowed to be two-dimensional so graphene and graphene-like sheets as well as two-dimensional electron gases can be handled within the formalism. Also forces on atoms in layered structures are obtained. One side-result is the van der Waals and Casimir-Polder interaction between two atoms.

  8. Numerical modelling of electromagnetic loads on fusion device structures

    Science.gov (United States)

    Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben

    2014-03-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.

  9. Robust stabilization of general nonlinear systems with structural uncertainty

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies the zero-state detectability, Furthermore, it also implies the robust stabilization for such nonlinear systems. We then establish a stabilization method for the nonlinear systems with structural uncertainty. The smooth state feedback law can be constructed with the solution of an equation. Finally, it is worth noting that the main contribution of the paper establishes the relation between robust passivity and feedback stabilization for the general nonlinear systems with structural uncertainty. The simulation shows the effectiveness of the method.

  10. Experimental observations of nonlinearly enhanced 2omega-UH electromagnetic radiation excited by steady-state colliding electron beams

    Science.gov (United States)

    Intrator, T.; Hershkowitz, N.; Chan, C.

    1984-01-01

    Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.

  11. Detailed electromagnetic simulation for the structural color of butterfly wings.

    Science.gov (United States)

    Lee, R Todd; Smith, Glenn S

    2009-07-20

    Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.

  12. Structure and Performance Analysis of Regenerative Electromagnetic Shock Absorber

    Directory of Open Access Journals (Sweden)

    Longxin Zhen

    2010-12-01

    Full Text Available This paper analyzed the structure and principle of a regenerative electromagnetic shock absorber in detail. The innovative shock absorber resembles linear generator in principle and can generate electric power through the relative reciprocating motion between coil assembly and permanent magnet assembly. At the same time, the damping can remove discomfort caused by road roughness. The regenerated electric power can be recovered through battery. Analysis of magnetic flux density of the permanent magnet array of the innovative shock absorber was performed using ANSYS software based on the structure parameters given in the paper,then the performance parameters of the shock absorber was determined . Analysis and calculation results prove the viability of this shock absorber.

  13. Nonlinear structural damage detection using support vector machines

    Science.gov (United States)

    Xiao, Li; Qu, Wenzhong

    2012-04-01

    An actual structure including connections and interfaces may exist nonlinear. Because of many complicated problems about nonlinear structural health monitoring (SHM), relatively little progress have been made in this aspect. Statistical pattern recognition techniques have been demonstrated to be competitive with other methods when applied to real engineering datasets. When a structure existing 'breathing' cracks that open and close under operational loading may cause a linear structural system to respond to its operational and environmental loads in a nonlinear manner nonlinear. In this paper, a vibration-based structural health monitoring when the structure exists cracks is investigated with autoregressive support vector machine (AR-SVM). Vibration experiments are carried out with a model frame. Time-series data in different cases such as: initial linear structure; linear structure with mass changed; nonlinear structure; nonlinear structure with mass changed are acquired.AR model of acceleration time-series is established, and different kernel function types and corresponding parameters are chosen and compared, which can more accurate, more effectively locate the damage. Different cases damaged states and different damage positions have been recognized successfully. AR-SVM method for the insufficient training samples is proved to be practical and efficient on structure nonlinear damage detection.

  14. Structure property relationships for the nonlinear optical response of fullerenes

    Science.gov (United States)

    Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.

    1994-11-01

    We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.

  15. Nonlinear damage detection in composite structures using bispectral analysis

    Science.gov (United States)

    Ciampa, Francesco; Pickering, Simon; Scarselli, Gennaro; Meo, Michele

    2014-03-01

    Literature offers a quantitative number of diagnostic methods that can continuously provide detailed information of the material defects and damages in aerospace and civil engineering applications. Indeed, low velocity impact damages can considerably degrade the integrity of structural components and, if not detected, they can result in catastrophic failure conditions. This paper presents a nonlinear Structural Health Monitoring (SHM) method, based on ultrasonic guided waves (GW), for the detection of the nonlinear signature in a damaged composite structure. The proposed technique, based on a bispectral analysis of ultrasonic input waveforms, allows for the evaluation of the nonlinear response due to the presence of cracks and delaminations. Indeed, such a methodology was used to characterize the nonlinear behaviour of the structure, by exploiting the frequency mixing of the original waveform acquired from a sparse array of sensors. The robustness of bispectral analysis was experimentally demonstrated on a damaged carbon fibre reinforce plastic (CFRP) composite panel, and the nonlinear source was retrieved with a high level of accuracy. Unlike other linear and nonlinear ultrasonic methods for damage detection, this methodology does not require any baseline with the undamaged structure for the evaluation of the nonlinear source, nor a priori knowledge of the mechanical properties of the specimen. Moreover, bispectral analysis can be considered as a nonlinear elastic wave spectroscopy (NEWS) technique for materials showing either classical or non-classical nonlinear behaviour.

  16. Nonlinear Viscoelastic Characterization of Structural Adhesives.

    Science.gov (United States)

    1983-06-01

    neat resin properties 20. ABSTRACT (Cainlnuo OR revaWco aide II necessay amd identify br blck number) Measurements of the nonlinear viscoelastic...which is utilized. 17. Key Words and Document Analysis. l7a. Descriptors Adhesives, nonlinear viscoelasticity, FM-73 and FM-300 neat resin properties 17b

  17. Nonlinear structural finite element model updating and uncertainty quantification

    Science.gov (United States)

    Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.

    2015-04-01

    This paper presents a framework for nonlinear finite element (FE) model updating, in which state-of-the-art nonlinear structural FE modeling and analysis techniques are combined with the maximum likelihood estimation method (MLE) to estimate time-invariant parameters governing the nonlinear hysteretic material constitutive models used in the FE model of the structure. The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem. A proof-of-concept example, consisting of a cantilever steel column representing a bridge pier, is provided to verify the proposed nonlinear FE model updating framework.

  18. Nonlinear structure formation in Nonlocal Gravity

    CERN Document Server

    Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia

    2014-01-01

    We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d'Alembertian operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from $\\Lambda{\\rm CDM}$ by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength ($\\sim 6\\%$ larger today). Compared to $\\Lambda{\\rm CDM}$ today, in the nonlocal model, massive haloes are slightly more abundant (by $\\sim 10\\%$ at $M \\sim 10^{14} M_{\\odot}/h$) and concentrated ($\\approx 8\\%$ enhancement over a range of mass scales), but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo concentrations is however essential to ensure the good performance of the halo model on small scales. For...

  19. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Pacini, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayes, Randall L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roettgen, Daniel R [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.

  20. Nonlinear normal modes and their application in structural dynamics

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Recent progress in the area of nonlinear modal analysis for structural systems is reported. Systematic methods are developed for generating minimally sized reduced-order models that accurately describe the vibrations of large-scale nonlinear engineering structures. The general approach makes use of nonlinear normal modes that are defined in terms of invariant manifolds in the phase space of the system model. An efficient Galerkin projection method is developed, which allows for the construction of nonlinear modes that are accurate out to large amplitudes of vibration. This approach is successfully extended to the generation of nonlinear modes for systems that are internally resonant and for systems subject to external excitation. The effectiveness of the Galerkin-based construction of the nonlinear normal modes is also demonstrated for a realistic model of a rotating beam.

  1. Microwave characteristic simulation research for a kind of novel electromagnetic structure

    Institute of Scientific and Technical Information of China (English)

    Xu Zhanxian; Kong Lidu; Lin Weigan; Jia Baofu

    2008-01-01

    A kind of novel electromagnetic structure of Cassini cross section is proposed and simulation is implemented with business microwave soft CST based on finite integral technique (FIT). The electromagnetic field mode type of Cassini wave-guide belongs to TE, and the electromagnetic field intensity is stronger near the neck region than at other areas. For Cassini electromagnetic patches and lumped elements, the radar cross section (RCS) is smaller around 7 GHz with -30.85dBsm, and the absorbing property is better around 13GHz with 4.56dBsm difference of RCS from comparing of pure medium. For novel radiation structure of Cassini cross-section patches, the electromagnetic field value is larger in the neck areas of two half patches. At last, the potential application and development of Cassini oval structure are put forward in the electromagnetic stealth technology and antennae design.

  2. Electromagnetic Structure of the Z_c(3900)

    CERN Document Server

    Wilbring, E; Meißner, U -G

    2013-01-01

    The observation of the exotic quarkonium state Z_c(3900) by the BESIII collaboration supports the concept of hadronic molecules. Charmonium states interpreted as such molecules would be bound states of heavy particles with small binding energies. This motivates their description using an effective theory with contact interactions. In particular, we focus on the electromagnetic structure of the charged state Z_c(3900). Using first experimental results concerning spin and parity, we interpret it as an S-wave molecule and calculate the form factors as well as charge and magnetic radii up to next-to-leading order. We also present first numerical estimations of some of these observables at leading order.

  3. Nucleon electromagnetic structure studies in the spacelike and timelike regions

    Energy Technology Data Exchange (ETDEWEB)

    Guttmann, Julia

    2013-07-23

    The thesis investigates the nucleon structure probed by the electromagnetic interaction. One of the most basic observables, reflecting the electromagnetic structure of the nucleon, are the form factors, which have been studied by means of elastic electron-proton scattering with ever increasing precision for several decades. In the timelike region, corresponding with the proton-antiproton annihilation into a electron-positron pair, the present experimental information is much less accurate. However, in the near future high-precision form factor measurements are planned. About 50 years after the first pioneering measurements of the electromagnetic form factors, polarization experiments stirred up the field since the results were found to be in striking contradiction to the findings of previous form factor investigations from unpolarized measurements. Triggered by the conflicting results, a whole new field studying the influence of two-photon exchange corrections to elastic electron-proton scattering emerged, which appeared as the most likely explanation of the discrepancy. The main part of this thesis deals with theoretical studies of two-photon exchange, which is investigated particularly with regard to form factor measurements in the spacelike as well as in the timelike region. An extraction of the two-photon amplitudes in the spacelike region through a combined analysis using the results of unpolarized cross section measurements and polarization experiments is presented. Furthermore, predictions of the two-photon exchange effects on the e{sup +}p/e{sup -}p cross section ratio are given for several new experiments, which are currently ongoing. The two-photon exchange corrections are also investigated in the timelike region in the process p anti p → e{sup +}e{sup -} by means of two factorization approaches. These corrections are found to be smaller than those obtained for the spacelike scattering process. The influence of the two-photon exchange corrections on

  4. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  5. Stability analysis and non-linear behaviour of structural systems using the complex non-linear modal analysis (CNLMA)

    OpenAIRE

    Sinou, Jean-Jacques; Thouverez, Fabrice; Jezequel, Louis

    2006-01-01

    International audience; Herein, a novel non-linear procedure for producing non-linear behaviour and stable limit cycle amplitudes of non-linear systems subjected to super-critical Hopf bifurcation point is presented. This approach, called Complex Non-Linear Modal Analysis (CNLMA), makes use of the non-linear unstable mode which governs the non-linear dynamic of structural systems in unstable areas. In this study, the computational methodology of CNLMA is presented for the systematic estimatio...

  6. Nonlinear Kinetic Development of the Weibel Instability and the generation of electrostatic coherent structures

    CERN Document Server

    Palodhi, L; Pegoraro, F; 10.1088/0741-3335/51/12/125006

    2010-01-01

    The nonlinear evolution of the Weibel instability driven by the anisotropy of the electron distribution function in a collisionless plasma is investigated in a spatially one-dimensional configuration with a Vlasov code in a two-dimensional velocity space. It is found that the electromagnetic fields generated by this instability cause a strong deformation of the electron distribution function in phase space, corresponding to highly filamented magnetic vortices. Eventually, these deformations lead to the generation of short wavelength Langmuir modes that form highly localized electrostatic structures corresponding to jumps of the electrostatic potential.

  7. Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma

    DEFF Research Database (Denmark)

    Xu, G.S.; Naulin, Volker; Fundamenski, W.

    2010-01-01

    Drift-Alfvén vortex filaments associated with electromagnetic turbulence were recently identified in reversed field pinch devices. Similar propagating filamentary structures were observed in the Earth magnetosheath, magnetospheric cusp and Saturn’s magnetosheath by spacecrafts. The characteristic......, heat, and momentum in the fusion plasmas can be interpreted in terms of the ballistic motion of these solitary electromagnetic filamentary structures....

  8. New foundations for applied electromagnetics the spatial structure of fields

    CERN Document Server

    Mikki, Said

    2016-01-01

    This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.

  9. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  10. Prolongation Structure of Semi-discrete Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schr(o)dinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.

  11. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  12. Towards homoscedastic nonlinear cointegration for structural health monitoring

    Science.gov (United States)

    Zolna, Konrad; Dao, Phong B.; Staszewski, Wieslaw J.; Barszcz, Tomasz

    2016-06-01

    The paper presents the homoscedastic nonlinear cointegration. The method leads to stable variances in nonlinear cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity (or homoscedasticity) in the cointegration residuals obtained from the nonlinear cointegration analysis. Three different time series - i.e. one with a nonlinear quadratic deterministic trend, simulated vibration data and experimental wind turbine data - are used to illustrate the application of the proposed method. The proposed approach can be used for effective removal of nonlinear trends from various types of data and for reliable structural damage detection based on data that are corrupted by environmental and/or operational nonlinear trends.

  13. Nonlinear and stochastic dynamics of coherent structures

    DEFF Research Database (Denmark)

    Rasmussen, Kim

    1997-01-01

    system described by a tight-binding Hamiltonian and a harmonic lattice coupled b y a deformation-type potential. This derivation results in a two-dimensional nonline ar Schrödinger model, and considering the harmonic lattice to be in thermal contact with a heat bath w e show that the nonlinear...... phenomenon. We find numerically and analytically that the collapse can be delayed and ultimatively arrested by the fluctuations. Allowing the system to reach thermal equilibrium we further augment the model by a nonlineardamping term and find that this prohibits collapse in the strict mathematical se nse....... However a collapse like behavior still persists in the presence of the nonlinear damping . Apart from the absence of the collapse in the strict mathematical sense we find that the nonlinear damping term has rather weak influence on the interplay between fluctuations and self-focusing. The study...

  14. Nonlinear Phononic Periodic Structures and Granular Crystals

    Science.gov (United States)

    2012-02-10

    of the advanced delay equation (13) and they compared the numerically obtained solutions with those of approximated PDEs. Recently, Starosvetsky... KdV ), a nonlinear partial differential equation , and have been discovered in myriad systems and discrete nonlinear lattices of all the above types...granular chain, and derived the following KdV equation : t 0 0 1/2 2 2 2 2 0 0 0 0 0 0, 2 6 , , . 6 xx x xc uc A R c R c Rc m σξ ξ γξ ξξ ξ δ γ σ δ

  15. Crystalline structure and symmetry dependence of acoustic nonlinearity parameters

    Science.gov (United States)

    Cantrell, John H.

    1994-01-01

    A quantitative measure of elastic wave nonlinearity in crystals is provided by the acoustic nonlinearity parameters. The nonlinearity parameters are defined for arbitrary propagation modes for solids of arbitrary crystalline symmetry and are determined along the pure mode propagation directions for 33 crystals of cubic symmetry from data reported in the literature. The magnitudes of the nonlinearity parameters are found to exhibit a strong dependence on the crystalline structure and symmetries associated with the modal direction in the solid. Calculations based on the Born-Mayer potential for crystals having a dominant repulsive contribution to the elastic constants from the interatomic pair potential suggest that the origin of the structure dependence is associated with the shape rather than the strength of the potential. Considerations based on variations in crystal symmetry during loading along pure mode propagation directions of face-centered-cubic solids provide a qualitative explanation for the dependence of the acoustic nonlinearity parameters on modal direction.

  16. Experiment on Nonlinear Properties Coupling Electromagnetism with Mechanics of Giant Rare Earth Magnetostrictive Materials

    Institute of Scientific and Technical Information of China (English)

    Yuan Huiqun; Sun Huagang

    2004-01-01

    The electromagnetic and mechanical coupling properties of giant rare earth giant magnetostriction material TbxDy1 -xFe2 -z (0. 27 ≤x ≤ 0.3, 0 ≤ z ≤ 0.1 ) alloys were investigated by means of self-fabricated test apparatus. The effect of coupling mechanical with electromagnetic on magnetostrictive strain coefficient was discussed. The physical model of the coupling system was established. Based on the equivalent circuit of the coupling system, the magnetomechanical coupling coefficient was derived by means of impedance resistance analysis method.

  17. Structural and functional polymer-matrix composites for electromagnetic applications

    Science.gov (United States)

    Wu, Junhua

    This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES

  18. Coupled parametric processes in binary nonlinear photonic structures

    CERN Document Server

    Saygin, M Yu

    2016-01-01

    We study parametric interactions in a new type of nonlinear photonic structures, which is realized in the vicinity of a pair of nonlinear crystals. In this kind of structure, which we call binary, multiple nonlinear optical processes can be implemented simultaneously, owing to multiple phase-matching conditions, fulfilled separately in the constituent crystals. The coupling between the nonlinear processes by means of modes sharing similar frequency is attained by the spatially-broadband nature of the parametric fields. We investigate the spatial properties of the fields generated in the binary structure constructed from periodically poled crystals for the two examples: 1) single parametric down-conversion, and 2) coupled parametric down-conversion and up-conversion processes. The efficacy of the fields' generation in these examples is analyzed through comparison with the cases of traditional single periodically poled crystal and aperiodic photonic structure, respectively. It has been shown that the relative s...

  19. International Conference on Structural Nonlinear Dynamics and Diagnosis

    CERN Document Server

    CSNDD 2012; CSNDD 2014

    2015-01-01

    This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics.  Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characteriz...

  20. Pattern reconfigurable antenna using electromagnetic band gap structure

    Science.gov (United States)

    Ismail, M. F.; Rahim, M. K. A.; Majid, H. A.; Hamid, M. R.; Yusoff, M. F. M.; Dewan, R.

    2017-01-01

    In this paper, a single rectangular patch antenna incorporated with an array of electromagnetic band gap (EBG) structures is proposed. The proposed antenna features radiation pattern agility by means of connecting the shorting pin vias to the EBG unit cells. The proposed design consists of 32 mm × 35.5 mm rectangular patch antenna and 10.4-mm-square mushroom-like EBG unit cells. The EBGs are placed at both sides of the antenna radiating patch and located on the thicker substrate of thickness, h. The copper tape which represents the PIN diode is used to control the connection between the EBG's via and the ground plane as reconfigurable mechanism of the antenna. The simulated result shows by switching the ON and OFF EBG structures in either sides or both, the directional radiation pattern can be tilted from 0 to +14°. The proposed antenna exhibits 7.2 dB realized gain at 2.42 GHz. The parametric study on EBG and antenna is also discussed.

  1. Nonlinear seed island generation by three-dimensional electromagnetic, gyrokinetic turbulence

    CERN Document Server

    Hornsby, William; Buchholz, Rico; Peeters, Arthur; Zarzoso, David; Casson, Francis; Poli, Emanuele

    2014-01-01

    Turbulence is shown to be critical to the onset and evolution of the neoclassical tearing mode, affecting both its growth and rotation. The interaction is here studied for the first time in the three dimensional, toroidal gyrokinetic framework. Turbulent fluctuations do not destroy the growing island early in its development, which maintains a coherent form as it grows, in fact the island is seeded and its rotation frequency determined, by nonlinear interaction. This process provides an initial structure that is of the order of an ion gyro-radius wide, allowing the island to rapidly reach a large size. A large degree of stochastisation around the seperatrix, and a complete breakdown of the X-point is seen, which significantly reduces the effective island width. A turbulent modification of the electrostatic field in and around the island greatly affects the size of the resonant layer width, and the island is seen to grow at the linear rate even though the island is significantly wider than the singular layer w...

  2. Multiwave nonlinear couplings in elastic structures

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available This short contribution considers the essentials of nonlinear wave properties in typical mechanical systems such as an infinite straight bar, a circular ring, and a flat plate. It is found that nonlinear resonance is experienced in all the systems exhibiting continuous and discrete spectra, respectively. Multiwave interactions and the stability of coupled modes with respect to small perturbations are discussed. The emphasis is placed on mechanical phenomena, for example, stress amplification, although some analogies with some nonlinear optical systems are also obvious. The nonlinear resonance coupling in a plate within the Kirchhoff-Love approximation is selected as a two-dimensional example exhibiting a rich range of resonant wave phenomena. This is originally examined by use of Whitham's averaged Lagrangian method. In particular, the existence of three basic resonant triads between longitudinal, shear, and bending modes is shown. Some of these necessarily enter cascade wave processes related to the instability of some mode components of the triad under small perturbations.

  3. SEISMIC RANDOM VIBRATION ANALYSIS OF LOCALLY NONLINEAR STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    ZhaoYan; LinJiahao; ZhangYahui; AnWei

    2003-01-01

    A nonlinear seismic analysis method for complex frame structures subjected to stationary random ground excitations is proposed. The nonlinear elasto-plastic behaviors may take place only on a small part of the structure. The Bouc-Wen differential equation model is used to model the hysteretic characteristics of the nonlinear components. The Pseudo Excitation Method (PEM) is used in solving the linearized random differential equations to replace the solution of the less efficient Lyapunov equation. Numerical results of a real bridge show that .the method proposed is effective for practical engineering analysis.

  4. Nonlinear electromagnetic responses of active membrane protein complexes in live cells and organelles

    Science.gov (United States)

    Nawarathna, Dharmakirthi

    The response of biological cells to an applied oscillating electric field contains both linear and nonlinear components (eg. induced harmonics). Such noninvasive measurements can be used to study active processes taking place inside the cells. The measurement of induced harmonics is the tool used for the study described here. A highly sensitive superconducting quantum interference device (SQUID) is used to detect the response at low frequencies, which greatly reduces electrode polarization effects. At high frequencies, a four- probe method is used. At low frequencies, harmonic generation by budding yeast cells in response to a sinusoidal electric field is reported, which is seen to be minimal when the field amplitude is less than a threshold value. Surprisingly, sodium metavanadate, an inhibitor of P-type ATPases and glucose, a substrate of P-type ATPase responsible for nonlinear response in yeast, reduces the threshold field amplitude, increasing harmonic generation at low amplitudes while reducing it at large amplitudes. We have thus proposed a model that explicitly introduces a threshold field, similar to those observed in density waves, where fields above threshold drive charge transport through an energy landscape with multiple wells, and in Coulomb blockade tunnel junctions, recently exploited to define the current standard. At high frequencies, the induced harmonics exhibit pronounced features that depend on the specific organism. Budding yeast (S. cerevisiae ) cells produce numerous harmonics. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by the respiratory inhibitor potassium cyanide. We then measured the response to oscillatory electric fields of intact bovine heart mitochondria, a reproducible second harmonic (at ˜3-4 kHz applied frequency) was detected. Further, with coupled mouse mitochondria, an ADP sensitive peak (˜ 12-15 kHz applied frequency) was

  5. Embedding electromagnetic band gap structures in printed circuit boards for electromagnetic interference reduction

    NARCIS (Netherlands)

    Tereshchenko, Olga Victorivna

    2015-01-01

    Due to the tendency of faster data rates and lower power supply voltage in the integrated circuit (IC) design, Simultaneously Switching Noise (SSN) and ground bounce become serious concerns for designers and testers. This noise can be a source of electromagnetic interference (EMI). It propagates thr

  6. Parametric localized modes in quadratic nonlinear photonic structures

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole;

    2001-01-01

    We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental and second-harmonic fields excited at quadratic (or chi2) nonlinear interfaces embedded in a linear layered structure-a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear...... interfaces, we derive an effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces (the so-called discrete chi2 equations) and find, numerically and analytically, the spatially localized solutions-discrete gap solitons. For a single nonlinear interface...... in a linear superlattice, we study the properties of two-color localized modes, and describe both similarities to and differences from quadratic solitons in homogeneous media....

  7. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. F.; Yu, Q.; Huang, S.; Kong, Q., E-mail: qkong@fudan.edu.cn [Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gu, Y. J. [Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic); Kawata, S. [Department of Advanced Interdisciplinary Sciences, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585 (Japan)

    2015-08-15

    The electromagnetic field in the electron “bubble” regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption.

  8. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    Science.gov (United States)

    Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.

    2017-09-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.

  9. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David

    2015-01-01

    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  10. [Effect of doxorubicine and heterogenous electromagnetic and thermal fields on the nonlinear dynamics of carcinoma Guerin development].

    Science.gov (United States)

    Orel, V E; Dziatkovs'ka, I I; Nikolov, M O; Romanov, A V; Mel'nyk, Iu H; Dziatkovs'ka, N M

    2010-07-01

    While local hyperthermia application the intratumoral blood flow is enhancing, leading to oxygenation and vascular permeability for antitumoral medicines. The work objective was to investigate the dependence of the development kinetics in carcinoma Gereni (CG) from combined action of doxorubicin (DR) and the kind of thermal impact, a contact one--due to a contact delivery of heat from a water heater and without contact - due to the tumor electromagnetic irradiation (EMI) using heterogenous electromagnetic field (EMF). DR was injected to the animals in a mass concentration of 1,5 mg on 1 kg of their body mass. The DR injection, a contact heating and EMI were started on the 8th day after the tumor reinoculation and kept on conducting once a 2 days. The course had included 5 injections and/or 5 seances of a contact heating and/or EMF. The combined action of DR and EMI, using spatially heterogenous EMF of applicator in environment of physiological hyperthermia, have had influenced mostly the inhibition of a nonlinear dynamics in CG development. Antitumoral action of DR in the animals with CG was influenced by thermal and nonthermal effects, which were initiated by spatially heterogenous EMF. Nonlinear dynamics of a CG development in animals did not depend from horizontal direction of isolines of a spatially heterogenous EMF of inductive applicator towards the tumor and duration of the irradiation procedure (15 or 30 minutes) after DR injection. The data obtained were exploited in clinical practice for the inductothermy optimal regimes elaboration while conducting complex treatment of patients, suffering oncological diseases.

  11. Geometric and material nonlinear analysis of tensegrity structures

    Institute of Scientific and Technical Information of China (English)

    Hoang Chi Tran; Jaehong Lee

    2011-01-01

    A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stressstrain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.

  12. Dynamics of a qubit in a linear/nonlinear structured environment

    Energy Technology Data Exchange (ETDEWEB)

    Frammelsberger, Carmen; Hausinger, Johannes; Grifoni, Milena [Institute for Theoretical Physics, University of Regensburg (Germany)

    2008-07-01

    The understanding of the main dephasing and relaxation mechanisms is crucial for the realization of efficient solid state qubits. In this contribution we focus on the case in which the qubit is coupled to a driven linear or non-linear oscillator which in turn interacts with a dissipative environment. This situation mimicks the case of flux qubits read-out by a DC-SQUID, the latter being a linear or non-linear oscillator, or a cooper-pair box in a resonant electromagnetic cavity. In our work we adopt the point of view that the oscillator is part of the environment itself. In the linear oscillator case, this amounts to consider a spin-boson problem with a structured spectral density. Generalizing to the case of a finite bias, we show that analytic solutions for the dynamics can be obtained, at arbitrary detuning and finite temperatures, in the case of large Q-factors of the oscillator. One, two or more dominating oscillation frequencies of the qubit can be observed as a consequence of the entanglement with the oscillator. In the nonlinear case we show, using a mapping procedure which is exact in the linear case, that the problem can be approximated to a spin-boson model whose spectral density is proportional to the imaginary part of the nonlinear susceptibility of a quantum Duffing oscillator.

  13. Observability and Information Structure of Nonlinear Systems,

    Science.gov (United States)

    1985-10-01

    defined by Shannon and used as a measure of mut.:al infor-mation between event x. and y4. If p(x.l IY.) I I(x., y.) xil -in (1/p(x.)) =- JInp (x.) (2...entropy H(x,y) in a similar way as H(x,y) = - fx,yp(xiy)lnp(x,y)cdlY, = -E[ JInp (x,y)]. (3-13) With the above definitions, mutual information between x...Observabiity of Nonlinear Systems, Eng. Cybernetics, Volume 1, pp 338-345, 1972. 18. Sen , P., Chidambara, M.R., Observability of a Class of Nonli-.ear

  14. Nonlinear Quantum Optics in Artificially Structured Media

    Science.gov (United States)

    Helt, Lukas Gordon

    This thesis presents an analysis of photon pairs generated via either spontaneous parametric downconversion or spontaneous four-wave mixing in channel waveguides as well as in microring resonators side-coupled to channel waveguides. The state of photons exiting a particular device is calculated within a general Hamiltonian formalism that simplifies the link between quantum nonlinear optics experiments and classical nonlinear optics experiments. This state contains information regarding photon pair production efficiency as well as modal and spectral correlations between the two photons, characterized by a two-dimensional spectral distribution function called the biphoton wave function. In the limit of a low probability of pair production, photon pair production efficiencies are cast into forms resembling corresponding well-known classical nonlinear optical frequency conversion efficiencies, making it easy to see what plays the role of a classical "seed" field in an un-seeded (quantum) process. This also allows photon pair production efficiencies to be calculated based on the results of classical nonlinear optical experiments. It is further calculated that, unless generated photons are collected over a very narrow frequency range, their generation efficiency does not scale the same way with device length in a channel waveguide, or resonance quality factor in a microring resonator, as might be expected from the corresponding classical frequency conversion efficiency. Although calculations do not include self- or cross-phase modulation, nor two-photon absorption or free-carrier absorption, it is calculated that their neglect is justified in the low pair production probability limit. Linear (scattering) loss is also neglected, though partially addressed in the final chapter of this thesis. Biphoton wave functions are calculated explicitly, such that their shape and orientation, including approximate analytic expressions for their widths, can easily be determined. This

  15. Nonlinear heart rate variability measures under electromagnetic fields produced by GSM cellular phones.

    Science.gov (United States)

    Parazzini, Marta; Ravazzani, Paolo; Thuroczy, György; Molnar, Ferenc B; Ardesi, Gianluca; Sacchettini, Alessio; Mainardi, Luca Tommaso

    2013-06-01

    This study was designed to assess the nonlinear dynamics of heart rate variability (HRV) during exposure to low-intensity EMFs. Twenty-six healthy young volunteers were subjected to a rest-to-stand protocol to evaluate autonomic nervous system in quiet condition (rest, vagal prevalence) and after a sympathetic activation (stand). The procedure was conducted twice in a double-blind design: once with a genuine EMFs exposure (GSM cellular phone at 900 MHz, 2 W) and once with a sham exposure (at least 24 h apart). During each session, three-lead electrocardiograms were recorded and RR series extracted off-line. The RR series were analyzed by nonlinear deterministic techniques in every phase of the protocol and during the different exposures. The analysis of the data shows there was no statistically significant effect due to GSM exposure on the nonlinear dynamics of HRV.

  16. Nonlinear Structure Formation with the Environmentally Dependent Dilaton

    CERN Document Server

    Brax, Phil; Davis, Anne-C; Li, Baojiu; Shaw, Douglas J

    2011-01-01

    We have studied the nonlinear structure formation of the environmentally dependent dilaton model using $N$-body simulations. We find that the mechanism of suppressing the scalar fifth force in high-density regions works very well. Within the parameter space allowed by the solar system tests, the dilaton model predicts small deviations of the matter power spectrum and the mass function from their $\\Lambda$CDM counterparts. The importance of taking full account of the nonlinearity of the model is also emphasized.

  17. Power systems and electromagnetic safety in of powerful utility buildings and structures

    Directory of Open Access Journals (Sweden)

    О.І. Запорожець

    2008-01-01

    Full Text Available  Researching of origin terms of electromagnetic contaminations from the unbalanced currents and leak currents in the industrial networks of electric supply of structures and buildings saturated energy.

  18. Application of electromagnetic waves in damage detection of concrete structures

    Science.gov (United States)

    Feng, Maria Q.; De Flaviis, Franco; Kim, Yoo J.; Diaz, Rodolfo E.

    2000-04-01

    Jacketing technology using fiber reinforced polymer (FRP) composites is being applied for seismic retrofit of reinforced concrete (RC) columns designed and constructed under older specifications. In this study, the authors develop an electromagnetic (EM) imaging technology for detecting voids and debonding between the jacket and the column, which may significantly weaken the structural performance of the column otherwise attainable by jacketing. This technology is based on the reflection analysis of a continuous EM wave sent toward and reflected from layered FRP-adhesive-concrete medium: Poor bonding conditions including voids and debonding will generate air gaps which produce additional reflections of the EM wave. In this study, dielectric properties of various materials involved in the FRP-jacketed RC column were first measured. Second, the measured properties were used for a computer simulation of the proposed EM imaging technology. The simulation demonstrated the difficulty in detecting imperfect bonding conditions by using plane waves, as the scattering contribution from the voids and debonding is very small compared to that from the jacketed column. Third, in order to alleviate this difficulty, a special dielectric lens was designed and fabricated to focus the EM wave on the bonding interface. Furthermore, the time gating technique is used in order to reduce the noise resulting from various uncertainties associated with the jacketed columns. Finally, three concrete columns were constructed and wrapped with glass-FRP jackets with various voids and debonding condition artificially introduced in the bonding interface. Using the proposed EM imaging technology with the lens especially designed and installed, these voids and debonding condition were successfully detected.

  19. Global stabilization of high-energy response of a nonlinear wideband electromagnetic energy harvester

    Science.gov (United States)

    Sato, T.; Kato, S.; Masuda, A.

    2016-09-01

    This paper presents a resonance-type vibration energy harvester with a Duffing-type nonlinear oscillator which is designed to perform effectively in a wide frequency band. For the conventional linear vibration energy harvester, the maximum performance of the power generation and its bandwidth are in a relation of trade-off. Introducing a Duffing-type nonlinearity can expand the resonance frequency band and enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator may have coexisting multiple steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to give global stability to the high-energy orbit by destabilizing other unexpected low-energy orbits by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. In this paper, an improved control law that switches the load resistance according to a frequency-dependent threshold is proposed to ensure the oscillator to respond in the high-energy orbit without ineffective power consumption. Numerical study shows that the steady-state responses of the harvester with the proposed control low are successfully kept on the high-energy orbit without repeating activation of the excitationmode.

  20. Global stabilization of high-energy resonance for a nonlinear wideband electromagnetic vibration energy harvester

    Science.gov (United States)

    Masuda, Arata; Sato, Takeru

    2016-04-01

    This paper presents an experimental verification of a wideband nonlinear vibration energy harvester which has a globally stabilized high-energy resonating response. For the conventional linear vibration energy harvester, the maximum performance of the power generation and its bandwidth are in a relation of trade-off. The resonance frequency band can be expanded by introducing a Duffing-type nonlinear resonator in order to enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear resonators often have multiple stable steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to provide the global stability to the highest-energy solution by destabilizing other unexpected lower-energy solutions by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. In this study, an experimental verification of this concept are carried out. An experimental prototype harvester is designed and fabricated and the performance of the proposed harvester is experimentally verified. It has been shown that the numerical and experimental results agreed very well, and the highest-energy solutions above the threshold value were successfully stabilized globally.

  1. Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas

    Science.gov (United States)

    Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1997-01-01

    We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.

  2. Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures

    Science.gov (United States)

    2015-11-17

    microbiology, surveillance, energy harvesting , defense technology as well as sensing platforms to name a few [85, 86]. The structure of materials...AFRL-RW-EG-TP-2015-002 Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures Jeffery W. Allen Monica S. Allen Brett...11-17-2015 Interim Report Feb. 2012 – Dec. 2015 4. TITLE AND SUBTITLE Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic

  3. Frequency sweep rates of rising tone electromagnetic ion cyclotron waves: Comparison between nonlinear theory and Cluster observation

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhaoguo [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zong, Qiugang, E-mail: qgzong@gmail.com; Wang, Yongfu [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Liu, Siqing; Lin, Ruilin; Shi, Liqin [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-12-15

    Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.

  4. Frequency sweep rates of rising tone electromagnetic ion cyclotron waves: Comparison between nonlinear theory and Cluster observation

    Science.gov (United States)

    He, Zhaoguo; Zong, Qiugang; Liu, Siqing; Wang, Yongfu; Lin, Ruilin; Shi, Liqin

    2014-12-01

    Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = -9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.

  5. Wideband vibrational electromagnetic energy harvesters with nonlinear polyimide springs based on rigid-flex printed circuit boards technology

    Science.gov (United States)

    Chiu, Yi; Hong, Hao-Chiao; Hsu, Wei-Hung

    2016-12-01

    A wideband vibrational electromagnetic energy harvester employing nonlinear spring effects is proposed and demonstrated. The harvesters were designed and fabricated by commercial rigid-flex printed circuit boards technology. Rigid FR-4 boards were used for mechanical support and coil winding, whereas flexible polyimide films were patterned for mechanical springs and mass platforms. Two sets of coils were patterned and fabricated in the harvester with an internal coil resistance of about 16 Ω each. Two rare-earth magnets were attached to the central platform as shuttle mass. The total dimension of the harvester was 20 × 20 × 4 mm3. In vibration tests, nonlinearity could be observed even at 0.1 grms vibration level due to the spring hardening effect. The frequency for peak induced voltage increased from 187 Hz at low vibration to 382 Hz at 5 grms vibration. The effective half-power bandwidth increased from 8 Hz at 0.1 grms to 32 Hz at 1 grms and 52 Hz at 5 grms due to the hysteresis in frequency response. For a matched load and 1 grms vibration at 250 Hz, the maximum output power was 160 nW, corresponding to a power density of 100 nW cm-3.

  6. Dissipative nonlinear structures in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    K. A. Razumova

    2001-01-01

    Full Text Available A lot of different kinds of instabilities may be developed in high temperature plasma located in a strong toroidal magnetic field (tokamak plasma. Nonlinear effects in the instability development result in plasma self-organization. Such plasma has a geometrically complicated configuration, consisting of the magnetic surfaces imbedded into each other and split into islands with various characteristic numbers of helical twisting. The self-consistency of the processes means that the transport coefficients in plasma do not depend just on the local parameters, being a function of the whole plasma configuration and of the forces affecting it. By disrupting the bonds between separate magnetic surfaces filled with islands, one can produce zones of reduced transport in the plasma, i.e. “internal thermal barriers”, allowing one essentially to increase the plasma temperature and density.

  7. Stored electromagnetic energy and quality factor of radiating structures

    Science.gov (United States)

    Capek, Miloslav; Jelinek, Lukas; Vandenbosch, Guy A. E.

    2016-04-01

    This paper deals with the old yet unsolved problem of defining and evaluating the stored electromagnetic energy-a quantity essential for calculating the quality factor, which reflects the intrinsic bandwidth of the considered electromagnetic system. A novel paradigm is proposed to determine the stored energy in the time domain leading to the method, which exhibits positive semi-definiteness and coordinate independence, i.e. two key properties actually not met by the contemporary approaches. The proposed technique is compared with an up-to-date frequency domain method that is extensively used in practice. Both concepts are discussed and compared on the basis of examples of varying complexity.

  8. Applications of nonlinear system identification to structural health monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C. R. (Charles R.); Sohn, H. (Hoon); Robertson, A. N. (Amy N.)

    2004-01-01

    The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). In many cases damage causes a structure that initially behaves in a predominantly linear manner to exhibit nonlinear response when subject to its operating environment. The formation of cracks that subsequently open and close under operating loads is an example of such damage. The damage detection process can be significantly enhanced if one takes advantage of these nonlinear effects when extracting damage-sensitive features from measured data. This paper will provide an overview of nonlinear system identification techniques that are used for the feature extraction process. Specifically, three general approaches that apply nonlinear system identification techniques to the damage detection process are discussed. The first two approaches attempt to quantify the deviation of the system from its initial linear characteristics that is a direct result of damage. The third approach is to extract features from the data that are directly related to the specific nonlinearity associated with the damaged condition. To conclude this discussion, a summary of outstanding issues associated with the application of nonlinear system identification techniques to the SHM problem is presented.

  9. On the Connection Between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts

    Science.gov (United States)

    Osmane, Adnane; Wilson, Lynn B., III; Blum, Lauren; Pulkkinen, Tuija I.

    2016-01-01

    Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave-particle interactions. We show that wave parameters, consistent with large amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (greater than 1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles Theta (sub k)B greater than 50 degrees and phase-speeds v(sub phi) greater than or equal to c/9. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales (of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons (E greater than or equal to 100 keV) on kinetic timescales, which is much faster than previously inferred.

  10. Nonlinear Aerodynamic ROM-Structural ROM Methodology for Inflatable Aeroelasticity in Hypersonic Atmospheric Entry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an innovative nonlinear structural reduced order model (ROM) - nonlinear aerodynamic ROM methodology for the inflatable...

  11. Nonlinear Kalman Filtering in Affine Term Structure Models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris;

    When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze...... Monte Carlo experiment demonstrates that the unscented Kalman fi…lter is much more accurate than its extended counterpart in fi…ltering the states and forecasting swap rates and caps. Our fi…ndings suggest that the unscented Kalman fi…lter may prove to be a good approach for a number of other problems...... in fi…xed income pricing with nonlinear relationships between the state vector and the observations, such as the estimation of term structure models using coupon bonds and the estimation of quadratic term structure models....

  12. Variable structure control of nonlinear systems through simplified uncertain models

    Science.gov (United States)

    Sira-Ramirez, Hebertt

    1986-01-01

    A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.

  13. A new topology optimization scheme for nonlinear structures

    Energy Technology Data Exchange (ETDEWEB)

    Eim, Young Sup; Han, Seog Young [Hanyang University, Seoul (Korea, Republic of)

    2014-07-15

    A new topology optimization algorithm based on artificial bee colony algorithm (ABCA) was developed and applied to geometrically nonlinear structures. A finite element method and the Newton-Raphson technique were adopted for the nonlinear topology optimization. The distribution of material is expressed by the density of each element and a filter scheme was implemented to prevent a checkerboard pattern in the optimized layouts. In the application of ABCA for long structures or structures with small volume constraints, optimized topologies may be obtained differently for the same problem at each trial. The calculation speed is also very slow since topology optimization based on the roulette-wheel method requires many finite element analyses. To improve the calculation speed and stability of ABCA, a rank-based method was used. By optimizing several examples, it was verified that the developed topology scheme based on ABCA is very effective and applicable in geometrically nonlinear topology optimization problems.

  14. Third order Lovelock black branes in the presence of a nonlinear electromagnetic field

    CERN Document Server

    Hendi, S H; Mohammadpour, H

    2015-01-01

    We consider third order Lovelock gravity coupled to an U(1) gauge field for which its Lagrangian is given by a power of Maxwell invariant. In this paper, we present a class of horizon flat rotating black branes and investigate their geometrical properties and the effect of nonlinearity on the solutions. We use some known formulas and methods to calculate thermodynamic and conserved quantities. Finally, we check the satisfaction of the first law of thermodynamics.

  15. Third order Lovelock black branes in the presence of a nonlinear electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Panahiyan, S.; Mohammadpour, H. [Shiraz University, Physics Department and Biruni Observatory, Shiraz (Iran, Islamic Republic of)

    2012-10-15

    We consider third order Lovelock gravity coupled to an U(1) gauge field for which its Lagrangian is given by a power of Maxwell invariant. In this paper, we present a class of horizon flat rotating black branes and investigate their geometrical properties and the effect of nonlinearity on the solutions. We use some known formulas and methods to calculate thermodynamic and conserved quantities. Finally, we check the satisfaction of the first law of thermodynamics. (orig.)

  16. Electromagnetic effects on dynamics of high-beta filamentary structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Umansky, Maxim V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2015-01-15

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner scrape-off layer (SOL) region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and BOUT++ simulations, it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave instability when resistivity drops below a certain value. The blobs temperature decreases in the course of its motion through the SOL and so the blob can switch from the electromagnetic to the electrostatic regime where resistive drift waves become important again.

  17. Nonlinear analysis and dynamic structure in the energy market

    Science.gov (United States)

    Aghababa, Hajar

    This research assesses the dynamic structure of the energy sector of the aggregate economy in the context of nonlinear mechanisms. Earlier studies have focused mainly on the price of the energy products when detecting nonlinearities in time series data of the energy market, and there is little mention of the production side of the market. Moreover, there is a lack of exploration about the implication of high dimensionality and time aggregation when analyzing the market's fundamentals. This research will address these gaps by including the quantity side of the market in addition to the price and by systematically incorporating various frequencies for sample sizes in three essays. The goal of this research is to provide an inclusive and exhaustive examination of the dynamics in the energy markets. The first essay begins with the application of statistical techniques, and it incorporates the most well-known univariate tests for nonlinearity with distinct power functions over alternatives and tests different null hypotheses. It utilizes the daily spot price observations on five major products in the energy market. The results suggest that the time series daily spot prices of the energy products are highly nonlinear in their nature. They demonstrate apparent evidence of general nonlinear serial dependence in each individual series, as well as nonlinearity in the first, second, and third moments of the series. The second essay examines the underlying mechanism of crude oil production and identifies the nonlinear structure of the production market by utilizing various monthly time series observations of crude oil production: the U.S. field, Organization of the Petroleum Exporting Countries (OPEC), non-OPEC, and the world production of crude oil. The finding implies that the time series data of the U.S. field, OPEC, and the world production of crude oil exhibit deep nonlinearity in their structure and are generated by nonlinear mechanisms. However, the dynamics of the non

  18. Study on relationships of electromagnetic band structures and left/right handed structures

    Institute of Scientific and Technical Information of China (English)

    GAO Chu; CHEN ZhiNing; WANG YunYi; YANG Ning

    2007-01-01

    Two types of dual periodic circuits are introduced. The distributions of passbands and stopbands are generated from their dispersion relationships. Based on the study, Brillouin diagrams of three representative special cases are drawn; S parameters of these three cases are simulated by Aglient ADS; the S parameters of one of the three cases are verified by an experiment. The phase characteristics are compared with those generated from the dispersion relationship. The theoretical analysis and the experimental verification show that both types of the periodic structures can behave as electromagnetic band gap (EBG) structures, right-handed structures (RHS), and left-handed structures (LHS), when they operate at different frequency ranges. Thus, the possibility of a physical structure showing these three different characteristics at different frequency ranges is proven.

  19. OPTIMAL CONTROL OF A NONLINEAR COUPLED ELECTROMAGNETIC INDUCTION HEATING SYSTEM WITH POINTWISE STATE CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Irwin Yousept

    2010-07-01

    Full Text Available An optimal control problem arising in the context of 3D electromagnetic induction heating is investigated. The state equation is given by a quasilinear stationary heat equation coupled with a semilinear time harmonic eddy current equation. The temperature-dependent electrical conductivity and the presence of pointwise inequality state-constraints represent the main challenge of the paper. In the first part of the paper, the existence and regularity of the state are addressed. The second part of the paper deals with the analysis of the corresponding linearized equation. Some suffcient conditions are presented which guarantee thesolvability of the linearized system. The final part of the paper is concerned with the optimal control. The aim of the optimization is to find the optimal voltage such that a desired temperature can be achieved optimally. The corresponding first-order necessary optimality condition is presented.

  20. Broadband electromagnetic analysis of dispersive, periodic structures for radiometer calibration

    Science.gov (United States)

    Sandeep, S.

    This thesis primarily focusses on the full wave electromagnetic analysis of radiometer calibration targets using doubly dispersive 3D Finite Difference Time Domain (FDTD) formulation. The boundary conditions are set up to solve for doubly periodic structures. The thesis contains very detailed derivation and equations regarding this formulation. One of the novelty in this formulation is the handling of magnetically and electrically dispersive media (usually it is just the electrical dispersion which is incorporated). Using a custom developed code which can be run on a distributed computing system, the reflectivity spectrum of calibration targets of different geometries, coating thicknesses and aspect ratios are analyzed. The results are well validated using commercial simulation softwares and custom Geometric Optics (GO) code. The geometries analyzed include square pyramids, conical pyramids, truncated square pyramids and truncated conical pyramids with spherical top. The coating thicknesses used are 1 mm, 2 mm and 3 mm. The aspect ratios (ratio of base to height) used include 1 : 1, 1 : 2 and 1 : 4. The nominal target structure has 1 : 4 aspect ratio and 2mm coating thickness. The material used for simulation is ECCOSORB MF112. The material properties of other materials such as MF110 and MF114 are listed. It should be remarked that measured material properties are available only in the frequency range [8, 26] GHz and a Debye series extrapolation was used for simulation at frequencies outside this range. Throughout this work 0.5 inch base was used. Some significant conclusions include the following: (1) 1:4 aspect ratio or better is required to achieve a -50 dB reflectivity or lower. (2) Low frequency reflectivity is independent of the target geometry. (3) At high frequencies, the conical target results in better performance when compared to square pyramids (by about 10 dB). (4) The reflectivity spectrum exhibits a general trend of high reflectivity at low

  1. Nonlinear Aerodynamic and Nonlinear Structures Interations (NANSI) Methodology for Ballute/Inflatable Aeroelasticity in Hypersonic Atmospheric Entry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA proposes a phase II effort to fully develop a comprehensive methodology for aeroelastic predictions of the nonlinear aerodynamic/aerothermodynamic - structure...

  2. Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism

    Science.gov (United States)

    Gupta, Rahul Kumar; Shi, Qiongfeng; Dhakar, Lokesh; Wang, Tao; Heng, Chun Huat; Lee, Chengkuo

    2017-01-01

    Over the years, several approaches have been devised to widen the operating bandwidth, but most of them can only be triggered at high accelerations. In this work, we investigate a broadband energy harvester based on combination of non-linear stiffening effect and multimodal energy harvesting to obtain high bandwidth over wide range of accelerations (0.1 g–2.0 g). In order to achieve broadband behavior, a polymer based spring exhibiting multimodal energy harvesting is used. Besides, non-linear stiffening effect is introduced by using mechanical stoppers. At low accelerations (energy-harvesting, the obtained bandwidth increases from 23 Hz to 68 Hz with percentage increment of 295% at 1.8 g. Further, we have demonstrated the triboelectric output measured as acceleration sensing signals in terms of voltage and current sensitivity of 4.7 Vg−1 and 19.7 nAg−1, respectively. PMID:28120924

  3. Structural Analysis of a Cannon-Caliber Electromagnetic Projectile

    Science.gov (United States)

    1993-09-01

    Plasma Armature Railgun." IEEE Transactions on Magnetics, vol. 25, no. 1, pp. 256-261, January 1989. Mongeau, P. P. " Inductively Commutated Coilguns ...of the Army position, unless so designated by other authorized documents. The use of trade names or manufacturers’ names in this report does not...electromagnetic (EM) projectile design is evaluated by adopting finite element procedures similar to those employed in the analysis of kinetic energy

  4. Control Lyapunov Stabilization of Nonlinear Systems with Structural Uncertainty

    Institute of Scientific and Technical Information of China (English)

    CAI Xiu-shan; HAN Zheng-zhi; TANG Hou-jun

    2005-01-01

    This paper deals with global stabilization problem for the nonlinear systems with structural uncertainty.Based on control Lyapunov function, a sufficient and necessary condition for the globally and asymptotically stabilizing the equailibrium of the closed system is given. Moreovery, an almost smooth state feedback control law is constructed. The simulation shows the effectiveness of the method.

  5. Stable Solution of Nonlinear Age-structuredForest Evolution System

    Institute of Scientific and Technical Information of China (English)

    WANGDing-jiang; ZHAOTing-fang

    2004-01-01

    This paper studies the dynamical behavior of a class of total area dependent nonlinear age-structured forest evolution model. We give the problem of equal value for the forest system, and discuss the stable solution of system. We obtained the necessary and sufficient conditions for there exists the stable solution.

  6. Maximum Likelihood Estimation of Nonlinear Structural Equation Models.

    Science.gov (United States)

    Lee, Sik-Yum; Zhu, Hong-Tu

    2002-01-01

    Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)

  7. Case-Deletion Diagnostics for Nonlinear Structural Equation Models

    Science.gov (United States)

    Lee, Sik-Yum; Lu, Bin

    2003-01-01

    In this article, a case-deletion procedure is proposed to detect influential observations in a nonlinear structural equation model. The key idea is to develop the diagnostic measures based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. An one-step pseudo approximation is proposed to reduce the…

  8. Local Influence Analysis of Nonlinear Structural Equation Models

    Science.gov (United States)

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  9. Structure of Dirac matrices and invariants for nonlinear Dirac equations

    OpenAIRE

    2004-01-01

    We present invariants for nonlinear Dirac equations in space-time ${\\mathbb R}^{n+1}$, by which we prove that a special choice of the Cauchy data yields free solutions. Our argument works for Klein-Gordon-Dirac equations with Yukawa coupling as well. Related problems on the structure of Dirac matrices are studied.

  10. The Effect of Nonlinearities on Flexible Structures.

    Science.gov (United States)

    1987-04-30

    No. 87- 0777-CP, 1987. 4. Nayfeh, A. H. and Sanchez, N. E., ’Global Bifurcations Including Escape for a Softening Duffing Oscillator ", submitted for...biock number FIELD GROUP SUB. GR. _ ?onlinear Oscillations , Flexible structures, Resonances, Attractors, Bifurcations 19. 4 TACT jnt nue on r,.erse it...Excitation of Two Internally Resonant Oscillators ", Journal of Sound and Vibration, Vol. 119, No. 2, 1987. 3 4 2. Zavodney, L D. and Nayfeh, A. H., NThe

  11. Nonlinear feature identification of impedance-based structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, A. C. (Amanda C.); Park, G. H. (Gyu Hae); Sohn, H. (Hoon); Farrar, C. R. (Charles R.)

    2004-01-01

    The impedance-based structural health monitoring technique, which utilizes electromechanical coupling properties of piezoelectric materials, has shown feasibility for use in a variety of structural health monitoring applications. Relying on high frequency local excitations (typically > 30 kHz), this technique is very sensitive to minor changes in structural integrity in the near field of piezoelectric sensors. Several damage sensitive features have been identified and used coupled with the impedance methods. Most of these methods are, however, limited to linearity assumptions of a structure. This paper presents the use of experimentally identified nonlinear features, combined with impedance methods, for structural health monitoring. Their applicability to damage detection in various frequency ranges is demonstrated using actual impedance signals measured from a portal frame structure. The performance of the nonlinear feature is compared with those of conventional impedance methods. This paper reinforces the utility of nonlinear features in structural health monitoring and suggests that their varying sensitivity in different frequency ranges may be leveraged for certain applications.

  12. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region

    Science.gov (United States)

    Khazanov, G. V.

    2004-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  13. Practical Soil-Shallow Foundation Model for Nonlinear Structural Analysis

    Directory of Open Access Journals (Sweden)

    Moussa Leblouba

    2016-01-01

    Full Text Available Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.

  14. Autler-Townes triplet absorption spectroscopy, controllable electromagnetically induced transparency and nonlinear coherence Kerr effect

    CERN Document Server

    Bacha, Bakht Amin; Nazmidinov, Rashid G

    2014-01-01

    A Field Generated Coherence (FGC)' based 3-field cyclically-driven 4-level atomic system, which is an extended version of $\\Lambda$ type schemes, is investigated for Autler-Townes triplet absorption (ATT) spectroscopy. Two dark lines which appear in the ATT spectrum, are the essence of the generated multiple controllable EIT windows for a superluminal Gaussian light pulse. We also investigate enhancement in the group velocity for the Gaussian light pulse, using a nonlinear coherence Kerr effect. Consequently, the superluminal probing pulse leaves a steep anomalous region of the medium by $28 \\mu s$ sooner than the light pulse of the Kerr-free system. A co-linear propagation of the driving fields is suggested to minimize our explored Doppler broadening incoherence effect on the probe pulse. Indeed, the analytically observed undistorted retrieved light pulse, which is a necessary and useful requirement for realization of the results in laboratory, is also shown and analyzed explicitly.

  15. Nonlinear longitudinal current in degenerate plasma, arising under the influence of the transversal electromagnetic field

    CERN Document Server

    Latyshev, A V

    2015-01-01

    Kinetic Vlasov-Boltzmann equation for degenerate collisional plasmas with integral of collisions of relaxation type BGK (Bhatnagar, Gross and Krook) is used. Square-law expansion on size of intensity of electric field for kinetic equation, Lorentz's force and integral of collisions is considered. It is shown, that nonlinearity leads to generation of the longitudinal electric current directed along a wave vector. Longitudinal current is perpendicular to the known transversal classical current received at the linear analysis. The case of small values of wave number is considered. When frequency of collisions tends to the zero, all received results for collisional pass plasmas in corresponding results for collisionless plasmas. Graphic research of the real and imaginary part current density is carried out.

  16. A Nonlinear Theory for Smart Composite Structures

    Science.gov (United States)

    Chattopadhyay, Aditi

    2002-01-01

    The paper discusses the following: (1) Development of a completely coupled thermo-piezoelectric-mechanical theory for the analysis of composite shells with segmented and distributed piezoelectric sensor/actuators and shape memory alloys. The higher order displacement theory will be used to capture the transverse shear effects in anisotropic composites. The original theory will be modified to satisfy the stress continuity at ply interfaces. (2) Development of a finite element technique to implement the mathematical model. (3) Investigation of the coupled structures/controls interaction problem to study the complex trade-offs associated with the coupled problem.

  17. Do horizontal propulsive forces influence the nonlinear structure of locomotion?

    Directory of Open Access Journals (Sweden)

    Stergiou Nicholas

    2007-08-01

    Full Text Available Abstract Background Several investigations have suggested that changes in the nonlinear gait dynamics are related to the neural control of locomotion. However, no investigations have provided insight on how neural control of the locomotive pattern may be directly reflected in changes in the nonlinear gait dynamics. Our simulations with a passive dynamic walking model predicted that toe-off impulses that assist the forward motion of the center of mass influence the nonlinear gait dynamics. Here we tested this prediction in humans as they walked on the treadmill while the forward progression of the center of mass was assisted by a custom built mechanical horizontal actuator. Methods Nineteen participants walked for two minutes on a motorized treadmill as a horizontal actuator assisted the forward translation of the center of mass during the stance phase. All subjects walked at a self-select speed that had a medium-high velocity. The actuator provided assistive forces equal to 0, 3, 6 and 9 percent of the participant's body weight. The largest Lyapunov exponent, which measures the nonlinear structure, was calculated for the hip, knee and ankle joint time series. A repeated measures one-way analysis of variance with a t-test post hoc was used to determine significant differences in the nonlinear gait dynamics. Results The magnitude of the largest Lyapunov exponent systematically increased as the percent assistance provided by the mechanical actuator was increased. Conclusion These results support our model's prediction that control of the forward progression of the center of mass influences the nonlinear gait dynamics. The inability to control the forward progression of the center of mass during the stance phase may be the reason the nonlinear gait dynamics are altered in pathological populations. However, these conclusions need to be further explored at a range of walking speeds.

  18. Mathematical models for suspension bridges nonlinear structural instability

    CERN Document Server

    Gazzola, Filippo

    2015-01-01

    This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.

  19. EFFECTS OF LINEAR ELECTROMAGNETIC STIRRING ON THE SOLIDIFICATION STRUCTURE OF BILLET

    Institute of Scientific and Technical Information of China (English)

    H.L. Zhang; E.G. Wang; G.L. Jia; J.C. He

    2001-01-01

    The effects of linear electromagnetic stirring (EMS) on the solidification steacture of billet were investigated by experiments, and the electromagnetic fields and flow fields during the stirring process were analyzed by numerical simulation. The results show that the billet of almost 100% equiaxed grains can be obtained by applying linear EMS at the maximum intensity of 1414A.Hz1/2, while the maximum electromagnetic force and the maximum velocity in the molten steel are 6386N-m-3 and 0.22m.s-1,respectively. It is presented that the pulsating electromagnetic force perpendicular to the movement of the molten steel, is an important factor of increasing the equiaxed zone ratio in the solidification structure, which further prevents the appearance of white band and internal defects.

  20. Recent seismic activity at Cephalonia island (Greece): a study through candidate electromagnetic precursors in terms of nonlinear dynamics

    Science.gov (United States)

    Potirakis, S. M.; Contoyiannis, Y.; Melis, N. S.; Kopanas, J.; Antonopoulos, G.; Balasis, G.; Kontoes, C.; Nomicos, C.; Eftaxias, K.

    2015-12-01

    The preparation process of two recent earthquakes (EQs) occurred in Cephalonia (Kefalonia) island, Greece, (38.22° N, 20.53° E), 26 January 2014, Mw =6.0, depth =21 km, and (38.25° N, 20.39° E), 3 February 2014, Mw =5.9, depth =10 km, respectively, is studied in terms of the critical dynamics revealed in observables of the involved non-linear processes. Specifically, we show, by means of the method of critical fluctuations (MCF), that signatures of critical, as well as tricritical, dynamics were embedded in the fracture-induced electromagnetic emissions (EME) recorded by two stations in locations near the epicenters of these two EQs. It is worth noting that both, the MHz EME recorded by the telemetric stations on the island of Cephalonia and the neighboring island of Zante (Zakynthos), reached simultaneously critical condition a few days before the occurrence of each earthquake. The critical characteristics embedded in the EME signals were further verified using the natural time (NT) method. Moreover, we show, in terms of the NT method, that the foreshock seismic activity also presented critical characteristics before each one of these events. Importantly, the revealed critical process seems to be focused on the area corresponding to the west Cephalonia zone, following the seismotectonic and hazard zoning of the Ionian Islands area near Cephalonia.

  1. Recent seismic activity at Cephalonia (Greece): a study through candidate electromagnetic precursors in terms of non-linear dynamics

    Science.gov (United States)

    Potirakis, Stelios M.; Contoyiannis, Yiannis; Melis, Nikolaos S.; Kopanas, John; Antonopoulos, George; Balasis, Georgios; Kontoes, Charalampos; Nomicos, Constantinos; Eftaxias, Konstantinos

    2016-08-01

    The preparation process of two recent earthquakes (EQs) that occurred in Cephalonia (Kefalonia), Greece, ((38.22° N, 20.53° E), 26 January 2014, Mw = 6.0, depth ˜ 20 km) and ((38.25° N, 20.39° E), 3 February 2014, Mw = 5.9, depth ˜ 10 km), respectively, is studied in terms of the critical dynamics revealed in observables of the involved non-linear processes. Specifically, we show, by means of the method of critical fluctuations (MCF), that signatures of critical, as well as tricritical, dynamics were embedded in the fracture-induced electromagnetic emissions (EMEs) recorded by two stations in locations near the epicentres of these two EQs. It is worth noting that both the MHz EMEs recorded by the telemetric stations on the island of Cephalonia and the neighbouring island of Zante (Zakynthos) reached a simultaneously critical condition a few days before the occurrence of each earthquake. The critical characteristics embedded in the EME signals were further verified using the natural time (NT) method. Moreover, we show, in terms of the NT method, that the foreshock seismic activity also presented critical characteristics before each event. Importantly, the revealed critical process seems to be focused on the area corresponding to the western Cephalonia zone, following the seismotectonic and hazard zoning of the Ionian Islands area near Cephalonia.

  2. Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction.

    Science.gov (United States)

    Soares Dos Santos, Marco P; Ferreira, Jorge A F; Simões, José A O; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P

    2016-01-04

    Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters.

  3. Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction

    Science.gov (United States)

    Soares Dos Santos, Marco P.; Ferreira, Jorge A. F.; Simões, José A. O.; Pascoal, Ricardo; Torrão, João; Xue, Xiaozheng; Furlani, Edward P.

    2016-01-01

    Magnetic levitation has been used to implement low-cost and maintenance-free electromagnetic energy harvesting. The ability of levitation-based harvesting systems to operate autonomously for long periods of time makes them well-suited for self-powering a broad range of technologies. In this paper, a combined theoretical and experimental study is presented of a harvester configuration that utilizes the motion of a levitated hard-magnetic element to generate electrical power. A semi-analytical, non-linear model is introduced that enables accurate and efficient analysis of energy transduction. The model predicts the transient and steady-state response of the harvester a function of its motion (amplitude and frequency) and load impedance. Very good agreement is obtained between simulation and experiment with energy errors lower than 14.15% (mean absolute percentage error of 6.02%) and cross-correlations higher than 86%. The model provides unique insight into fundamental mechanisms of energy transduction and enables the geometric optimization of harvesters prior to fabrication and the rational design of intelligent energy harvesters.

  4. Recent seismic activity at Cephalonia island (Greece: a study through candidate electromagnetic precursors in terms of nonlinear dynamics

    Directory of Open Access Journals (Sweden)

    S. M. Potirakis

    2015-12-01

    Full Text Available The preparation process of two recent earthquakes (EQs occurred in Cephalonia (Kefalonia island, Greece, (38.22° N, 20.53° E, 26 January 2014, Mw =6.0, depth =21 km, and (38.25° N, 20.39° E, 3 February 2014, Mw =5.9, depth =10 km, respectively, is studied in terms of the critical dynamics revealed in observables of the involved non-linear processes. Specifically, we show, by means of the method of critical fluctuations (MCF, that signatures of critical, as well as tricritical, dynamics were embedded in the fracture-induced electromagnetic emissions (EME recorded by two stations in locations near the epicenters of these two EQs. It is worth noting that both, the MHz EME recorded by the telemetric stations on the island of Cephalonia and the neighboring island of Zante (Zakynthos, reached simultaneously critical condition a few days before the occurrence of each earthquake. The critical characteristics embedded in the EME signals were further verified using the natural time (NT method. Moreover, we show, in terms of the NT method, that the foreshock seismic activity also presented critical characteristics before each one of these events. Importantly, the revealed critical process seems to be focused on the area corresponding to the west Cephalonia zone, following the seismotectonic and hazard zoning of the Ionian Islands area near Cephalonia.

  5. Dynamic structural correlation via nonlinear programming techniques

    Science.gov (United States)

    Ting, T.; Ojalvo, I. U.

    1988-01-01

    A solution to the correlation between structural dynamic test results and finite element analyses of the same components is presented in this paper. Basically, the method can be categorized as a Levenberg-Marquardt type Gauss-Newton method which requires only the differences between FE modal analyses and test results and their first derivatives with respect to preassigned design variables. With proper variable normalization and equation scaling, the method has been made numerically better-conditioned and the inclusion of the Levenberg-Marquardt technique overcomes any remaining difficulty encountered in inverting singular or near-singular matrices. An important feature is that each iteration requires only one function evaluation along with the associated design sensitivity analysis and so the procedure is computationally efficient.

  6. Nonlinear dynamic analysis of quasi-symmetric anisotropic structures

    Science.gov (United States)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.

  7. A non-asymptotic homogenization theory for periodic electromagnetic structures.

    Science.gov (United States)

    Tsukerman, Igor; Markel, Vadim A

    2014-08-08

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.

  8. A nonlinear cointegration approach with applications to structural health monitoring

    Science.gov (United States)

    Shi, H.; Worden, K.; Cross, E. J.

    2016-09-01

    One major obstacle to the implementation of structural health monitoring (SHM) is the effect of operational and environmental variabilities, which may corrupt the signal of structural degradation. Recently, an approach inspired from the community of econometrics, called cointegration, has been employed to eliminate the adverse influence from operational and environmental changes and still maintain sensitivity to structural damage. However, the linear nature of cointegration may limit its application when confronting nonlinear relations between system responses. This paper proposes a nonlinear cointegration method based on Gaussian process regression (GPR); the method is constructed under the Engle-Granger framework, and tests for unit root processes are conducted both before and after the GPR is applied. The proposed approach is examined with real engineering data from the monitoring of the Z24 Bridge.

  9. Vibration isolation by exploring bio-inspired structural nonlinearity.

    Science.gov (United States)

    Wu, Zhijing; Jing, Xingjian; Bian, Jing; Li, Fengming; Allen, Robert

    2015-10-08

    Inspired by the limb structures of animals/insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and/or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.

  10. Bayesian Methods for Nonlinear System Identification of Civil Structures

    Directory of Open Access Journals (Sweden)

    Conte Joel P.

    2015-01-01

    Full Text Available This paper presents a new framework for the identification of mechanics-based nonlinear finite element (FE models of civil structures using Bayesian methods. In this approach, recursive Bayesian estimation methods are utilized to update an advanced nonlinear FE model of the structure using the input-output dynamic data recorded during an earthquake event. Capable of capturing the complex damage mechanisms and failure modes of the structural system, the updated nonlinear FE model can be used to evaluate the state of health of the structure after a damage-inducing event. To update the unknown time-invariant parameters of the FE model, three alternative stochastic filtering methods are used: the extended Kalman filter (EKF, the unscented Kalman filter (UKF, and the iterated extended Kalman filter (IEKF. For those estimation methods that require the computation of structural FE response sensitivities with respect to the unknown modeling parameters (EKF and IEKF, the accurate and computationally efficient direct differentiation method (DDM is used. A three-dimensional five-story two-by-one bay reinforced concrete (RC frame is used to illustrate the performance of the framework and compare the performance of the different filters in terms of convergence, accuracy, and robustness. Excellent estimation results are obtained with the UKF, EKF, and IEKF. Because of the analytical linearization used in the EKF and IEKF, abrupt and large jumps in the estimates of the modeling parameters are observed when using these filters. The UKF slightly outperforms the EKF and IEKF.

  11. A non-linear induced polarization effect on transient electromagnetic soundings

    Science.gov (United States)

    Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel

    2016-10-01

    In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.

  12. Effect of nonlinear radiofrequency electromagnetic fields on the emittance of bunched beams

    Science.gov (United States)

    Phadte, D. S.; Patidar, C. B.

    2013-07-01

    Gap transformations are frequently used in ion Linac codes, to efficiently describe the particle dynamics. Using similar approach, we analyze the uniformly bunched beam passing through an axis-symmetric radiofrequency (RF) cavity. The method can be used for other distributions as well using a similar six dimensional analysis. The effect of non-linear RF field in radial and axial directions in an RF cavity and the finite phase width of the bunch, on the transverse and longitudinal emittance growth have been studied. The expressions obtained have been verified for the two types of cavity cells namely the zero mode DTL and pi mode CCL type used frequently in ion linacs. The results are seen to be valid for the entire maximum phase acceptance up to 360 degrees. Simulations with the equivalent beams of non-uniform distributions namely Waterbag and Gaussian show that at synchronous phases closer to the wave crest, the results give a good approximation of emittance growth in both planes for non-uniform beams.

  13. Chiral Huygens metasurfaces for nonlinear structuring of linearly polarized light

    CERN Document Server

    Lesina, A Calà; Ramunno, L

    2016-01-01

    We report on a chiral nanostructure, which we term a "butterfly nanoantenna," that, when used in a metasurface, allows the direct conversion of a linearly polarized beam into a nonlinear optical far-field of arbitrary complexity. The butterfly nanoantenna exhibits field enhancement in its gap for every incident linear polarization, which can be exploited to drive nonlinear optical emitters within the gap, for the structuring of light within a frequency range not accessible by linear plasmonics. As the polarization, phase and amplitude of the field in the gap are highly controlled, nonlinear emitters within the gap behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged on a surface to produce a highly structured far-field nonlinear optical beam with high purity. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance comp...

  14. Role of structural electromagnetic resonances in a steerable left-handed antenna.

    Science.gov (United States)

    Sakoda, Kazuaki; Zhou, Haifeng

    2010-12-20

    We reformulate the problem of a steerable left-handed antenna reported by Matsuzawa et al. [IEICE Trans. Electron. E89-C, 1337 (2006)] from the view point of structural electromagnetic resonance of the unit structure. We show that there are two such resonances with different spatial symmetries in the relevant frequency range, which result in the formation of two electromagnetic bands with opposite signs of curvature at the Γ point of the Brillouin zone. We derive an expression of dispersion curves based on the tight-binding picture and show that the dispersion of the two bands is linear in the vicinity of the Γ point in the case of accidental degeneracy only if the symmetry of the two resonance states satisfies certain conditions. We also show that the refraction angle can be designed by changing the lattice constant of the arrayed unit structures, since the band width is modified due to the change in the electromagnetic transfer integral.

  15. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Directory of Open Access Journals (Sweden)

    ZHOU Shu-cai

    2007-08-01

    Full Text Available An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.

  16. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT ) in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer

  17. An Integral Equation Method for Electromagnetic Scattering by a Periodic Chiral Structure

    Institute of Scientific and Technical Information of China (English)

    张德悦; 马富明

    2005-01-01

    In this paper, we consider the electromagnetic scattering by a periodic chiral structure. The media is homogeneous and the structure is periodic in one direction and invariant in another direction. The electromagnetic fields inside the chiral medium are governed by Maxwell equations together with the Drude-BornFedorov equations. We simplify the problem to a two-dimensional scattering problem and discuss the existence and the uniqueness of solutions by an integral equation approach. We show that for all but possibly a discrete set of wave numbers, the integral equation has a unique solution.

  18. On the dimension of complex responses in nonlinear structural vibrations

    Science.gov (United States)

    Wiebe, R.; Spottswood, S. M.

    2016-07-01

    The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to

  19. Structure-based control of complex networks with nonlinear dynamics

    CERN Document Server

    Zañudo, Jorge G T; Albert, Réka

    2016-01-01

    Given the network of interactions underlying a complex system, what can we learn about controlling such a system solely from its structure? Over a century of research in control theory has given us tools to answer this question, which were widely applied in science and engineering. Yet the current tools do not always consider the inherently nonlinear dynamics of real systems and the naturally occurring system states in their definition of "control", a term whose interpretation varies across disciplines. Here we use a new mathematical framework for structure-based control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors and which are guaranteed to be effective regardless of the dynamic details and parameters of the underlying system. We use this framework on several real networks, compar...

  20. Electromagnetic Structure of Few-Nucleon Ground States

    CERN Document Server

    Marcucci, L E; Pena, M T; Piarulli, M; Schiavilla, R; Sick, I; Stadler, A; Van Orden, J W; Viviani, M

    2015-01-01

    Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled $\\chi$EFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). For momentum transfers below $Q \\lesssim 5$ fm$^{-1}$ there is satisfactory agreement between experimental data and theoretical results in all three approaches. However, at $Q \\gtrsim 5$ fm$^{-1}$, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary....

  1. Nonlinear Thermo-mechanical Finite Element Analysis of Polymer Foam Cored Sandwich Structures including Geometrical and Material Nonlinearity

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi;

    In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations ar...... are included in the analysis. The full nonlinear stress-strain curves up to failure will be considered for the polymer foams at different temperatures to study the effect of material nonlinearity in detail....

  2. Nonlinear analysis of the forced response of structural elements

    Science.gov (United States)

    Nayfeh, A. H.; Mook, D. T.; Sridhar, S.

    1974-01-01

    A general procedure is presented for the nonlinear analysis of the forced response of structural elements to harmonic excitations. Internal resonances (i.e., modal interactions) are taken into account. All excitations are considered, with special consideration given to resonant excitations. The general procedure is applied to clamped-hinged beams. The results reveal that exciting a higher mode may lead to a larger response in a lower interacting mode, contrary to the results of linear analyses.

  3. Global stabilization of nonlinear systems with uncertain structure

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The global stabilization problem of nonlinear systems with uncertain structure is dealt with. Based on control Lyapunov function (CLF), a sufficient and necessary condition for Lyapunov stabilization is given. From the condition,several simply sufficient conditions for the globally asymptotical stability are deduced. A state feedback control law is designed to globally asymptotically stabilize the equilibrium of the closed system. Last, a simulation shows the effectiveness of the method.

  4. Weakly nonlinear analysis and localised structures in nonlinear cavities with metamaterials

    Science.gov (United States)

    Slimani, N.; Makhoute, A.; Tlidi, M.

    2016-04-01

    We consider an optical ring cavity filled with a metamaterial and with a Kerr medium. The cavity is driven by a coherent radiation beam. The modelling of this device leads to the well known Lugiato-Lefever equation with high order diffraction term. We assume that both left-handed and right-handed materials possess a Kerr focusing type of nonlinearity. We show that close to the zero-diffraction regime, high-order diffraction effect allows us to stabilise dark localised structures in this device. These structures consist of dips or holes in the transverse profile of the intracavity field and do not exist without high-order diffraction effects. We show that high order diffraction effects alter in depth the space-time dynamics of this device. A weakly nonlinear analysis in the vicinity of the first threshold associated with the Turing instability is performed. This analysis allows us to determine the parameter regime where the transition from super- to sub-critical bifurcation occurs. When the modulational instability appears subcritically, we show that bright localised structures of light may be generated in two-dimensional setting. Close to the second threshold associated with the Turing instability, dark localised structures are generated.

  5. Evaluation of model fit in nonlinear multilevel structural equation modeling

    Directory of Open Access Journals (Sweden)

    Karin eSchermelleh-Engel

    2014-03-01

    Full Text Available Evaluating model fit in nonlinear multilevel structural equation models (MSEM presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are nonnormally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of nonnormality, they were not yet investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated.

  6. Evaluation of model fit in nonlinear multilevel structural equation modeling.

    Science.gov (United States)

    Schermelleh-Engel, Karin; Kerwer, Martin; Klein, Andreas G

    2014-01-01

    Evaluating model fit in nonlinear multilevel structural equation models (MSEM) presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are non-normally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of non-normality, they have not yet been investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated.

  7. Investigation of Non-Linear Dynamics of the Rock Massive,Using Seismological Catalogue data and Induction Electromagnetic Monitoring Data in a Rock Burst Mine.

    Science.gov (United States)

    Hachay, O. A.; Khachay, O. Y.; Klimko, V. K.; Shipeev, O. V.

    2012-04-01

    Geological medium is an open dynamical system, which is influenced on different scales by natural and man-made impacts, which change the medium state and lead as a result to a complicated many ranked hierarchic evolution. That is the subject of geo synergetics. Paradigm of physical mesomechanics, which was advanced by academician Panin V.E. and his scientific school, which includes the synergetic approach is a constructive method for research and changing the state of heterogenic materials [1]. That result had been obtained on specimens of different materials. In our results of research of no stationary geological medium in a frame of natural experiments in real rock massifs, which are under high man-made influence it was shown, that the state dynamics can be revealed with use synergetics in hierarchic medium. Active and passive geophysical monitoring plays a very important role for research of the state of dynamical geological systems. It can be achieved by use electromagnetic and seismic fields. Our experience of that research showed the changing of the system state reveals on the space scales and times in the parameters, which are linked with the peculiarities of the medium of the second or higher ranks [2-5]. Results of seismological and electromagnetic information showed the mutual additional information on different space-time levels of rock massive state, which are energetic influenced by explosions, used in mining technology. It is revealed a change of nonlinearity degree in time of the massive state by active influence on it. The description of massive movement in a frame of linear dynamical system does not satisfy the practical situation. The received results are of great significance because for the first time we could find the coincidences with the mathematical theory of open systems and experimental natural results with very complicated structure. On that base we developed a new processing method for the seismological information which can be used in

  8. A perturbation approach for geometrically nonlinear structural analysis using a general purpose finite element code

    NARCIS (Netherlands)

    Rahman, T.

    2009-01-01

    In this thesis, a finite element based perturbation approach is presented for geometrically nonlinear analysis of thin-walled structures. Geometrically nonlinear static and dynamic analyses are essential for this class of structures. Nowadays nonlinear analysis of thin-walled shell structures is oft

  9. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ren-Hao [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Huang, Xian-Rong [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Mu [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  10. The Behavior of Indonesian Stock Market: Structural Breaks and Nonlinearity

    Directory of Open Access Journals (Sweden)

    Rahmat Heru Setianto

    2011-09-01

    Full Text Available This study empirically examines the behaviour of Indonesian stock market under the efficient market hypothesis framework by emphasizing on the random walk behaviour and nonlinearity over the period of April 1983 - December 2010. In the first step, the standard linear unit root test, namely the augmented Dickey-Fuller (ADF test, Phillip-Perron (PP test and Kwiatkowski-Philllips-Schmidt-Shin (KPSS test identify the random walk behaviour in the indices. In order to take account the possible breaks in the index series Zivot and Adrews (1992 one break and Lumsdaine and Papell (1997 two breaks unit root test are employed to observe whether the presence of breaks in the data series will prevent the stocks from randomly pricing or vice versa. In the third step, we employ Harvey et al. (2008 test to examine the presence of nonlinear behaviour in Indonesian stock indices. The evidence of nonlinear behaviour in the indices, motivate us to use nonlinear unit root test procedure recently developed by Kapetanios et al. (2003 and Kruse (2010. In general, the results from standard linear unit root test, Zivot and Adrews (ZA test and Lumsdaine and Papell (LP test provide evidence that Jakarta Composite Index characterized by a unit root. In addition, structural breaks identified by ZA and LP test are corresponded to the events of financial market liberalization and financial crisis. The nonlinear unit root test procedure fail to rejects the null hypothesis of unit root for all indices, suggesting that Jakarta Composite Index characterized by random walk process supporting the theory of efficient market hypothesis.

  11. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  12. Nonlinear dynamic behaviors of a floating structure in focused waves

    Science.gov (United States)

    Cao, Fei-feng; Zhao, Xi-zeng

    2015-12-01

    Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional (2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile (CIP)-based Cartesian grid model, in which a more accurate VOF (Volume of Fluid) method, the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.

  13. Structural Health Monitoring under Nonlinear Environmental or Operational Influences

    Directory of Open Access Journals (Sweden)

    Jyrki Kullaa

    2014-01-01

    Full Text Available Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is well known that environmental or operational variations can also have an influence on the vibration properties. If these effects are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause nonlinear effects, they can be compensated using a Gaussian mixture model (GMM without the measurement of the underlying variables. The number of Gaussian components can also be estimated. For the local linear components, minimum mean square error (MMSE estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after applying principal component analysis (PCA. Control charts are used for novelty detection. The proposed approach is validated using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinear models are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-dimensional data.

  14. Manifestation of Symmetry Properties of Nucleon Structure in Strong and Electromagnetic Processes

    Science.gov (United States)

    Tomasi-Gustafsson, Egle; Rekalo, Michail P.

    2004-04-01

    In this contribution we present a specific application of a result obtained by Franco Iachello (in collaboration with R. Bijker and A. Leviatan), which concerns the inelastic electromagnetic form factors on the nucleons. In particular we show examples where symmetries inherent to the structure of the nucleon resonances can manifest in complicated processes of the strong interaction.

  15. Structure and asymptotic theory for nonlinear models with GARCH errors

    Directory of Open Access Journals (Sweden)

    Felix Chan

    2015-01-01

    Full Text Available Nonlinear time series models, especially those with regime-switching and/or conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical analysis associated with the structure of the processes or the associated asymptotic theory. In this paper, we derive sufficient conditions for strict stationarity and ergodicity of three different specifications of the first-order smooth transition autoregressions with heteroskedastic errors. This is essential, among other reasons, to establish the conditions under which the traditional LM linearity tests based on Taylor expansions are valid. We also provide sufficient conditions for consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator for a general nonlinear conditional mean model with first-order GARCH errors.

  16. Nonlinear Helicons ---an analytical solution elucidating multi-scale structure

    CERN Document Server

    Abdelhamid, Hamdi M

    2016-01-01

    The helicon waves exhibit varying characters depending on plasma parameters, geometry, and wave numbers. Here we elucidate an intrinsic multi-scale property embodied by the combination of dispersive effect and nonlinearity. The extended magnetohydrodynamics model (exMHD) is capable of describing wide range of parameter space. By using the underlying Hamiltonian structure of exMHD, we construct an exact nonlinear solution which turns out to be a combination of two distinct modes, the helicon and Trivelpiece-Gould (TG) waves. In the regime of relatively low frequency or high density, however, the combination is made of the TG mode and an ion cyclotron wave (slow wave). The energy partition between these modes is determined by the helicities carried by the wave fields.

  17. Fluid transport due to nonlinear fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard Jensen, J.

    1996-08-01

    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating uni-directional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness of the pipe. The behavior of the system in response to lateral resonant base excitation is analyzed numerically mode of vibration seems to be most effective for high mean fluid speed, whereas higher modes of vibration can be used to transport fluid with the same fluid speed but with smaller magnitude of pipe vibrations. The effect of the nonlinear geometrical terms is analyzed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement with theoretical predictions. (au) 16 refs.

  18. Fluid transport due to nonlinear fluid-structure interaction

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1997-01-01

    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...

  19. Research on full space transient electromagnetism technique for detecting aqueous structures in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Jing-cun Yu; Zhi-xin Liu; Jin-yun Tang [China University of Mining and Technology, Jiangsu (China). School of Mineral Resources and Earth Science

    2007-03-15

    Based on the transmitting theory of 'smoke ring effect', the transient electromagnetism technique was used in coal mines to detect abnormal areas of aquiferous structures in both roofs and floors of coal seams and in front of excavated roadways. The TerraTEM transient electromagnetic equipment, newly developed in Australia, was used. Survey devices, working methods and techniques as well as data processing and interpretation are discussed systematically. In addition, the direction of mini-wireframe emission electromagnetic wave of the full space transient electromagnetism technique was verified by an underground borehole for water detection and drainage. The result indicates that this technique can detect both horizontal and vertical development rules of abnormal water bodies to a certain depth below the floor of coal seams and can also detect the abnormal, low resistance water bodies within a certain distance of roofs. Furthermore, it can detect such abnormal bodies in ahead of the excavated roadway front. Limited by the underground environment, the full space transient electromagnetism technique can detect to a depth of only 120 m or so. 7 refs., 7 figs.

  20. All-dielectric structure development for electromagnetic wave shielding using a systematic design approach

    Science.gov (United States)

    Shin, H.; Heo, N.; Park, J.; Seo, I.; Yoo, J.

    2017-01-01

    Common dielectric metamaterials for electromagnetic (EM) interference shielding, stealth applications, and EM cloaking generally require larger thicknesses than the wavelength of incidence light. We propose an all-dielectric metamaterial inspired structure using a systematic approach based on the phase field design method. The structure is composed of periodically arranged unit structures that have a 2D configuration, which is sub-wavelength thick over its entire structure. The proposed structure provides anomalous reflections to prevent reflections back toward the wave source and is anti-penetrative over the microwave band with no conductive materials. We digitally fabricated the designed structure using 3D printing and verified the design specifications by experiments.

  1. NONLINEAR BUCKLING CHARACTERISTIC OF GRADED MULTIWEB STRUCTURE OF HETEROGENEOUS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    LI Yong; ZHANG Zhi-min

    2005-01-01

    The graded multiweb structure of heterogeneous anisotropic materials, which makes full use of the continuous, gradual and changing physical mechanical performance of material properties, has a widespread application in aeroplane aerofoil structure and automobile lightweight structure. On the basis of laminate buckling theory,the equivalent rigidity method is adopted to establish the corresponding constitutive relation and the non-linear buckling governing equation for the graded multiweb structure. In finding the solution, the critical load of buckling under different complicated boundary conditions together with combined loads were obtained and testification of the experimental analysis shows that the calculation results can satisfy the requirements of engineering design in a satisfactory way. Results obtained from the research say that: graded materials can reduce the concentrated stress on the interface in an effective way and weaken the effect of initial defect in materials and thereby improve the strength and toughness of materials.

  2. Non-linear effects in performance of 2+2x1/2DOF electro-magnetic dampeners

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey V.

    2015-01-01

    The idea to use electromagnetic devices to reduce vibration levels of mechanical systems has been discussed in variety of publications. Some authors use a linearized problem formulation, however, due to the action of an electromagnetic force, the electro-magneto-mechanical system is inherently no...

  3. Optimization of nonlinear structural resonance using the incremental harmonic balance method

    DEFF Research Database (Denmark)

    Dou, Suguang; Jensen, Jakob Søndergaard

    2015-01-01

    We present an optimization procedure for tailoring the nonlinear structural resonant response with time-harmonic loads. A nonlinear finite element method is used for modeling beam structures with a geometric nonlinearity and the incremental harmonic balance method is applied for accurate nonlinea...

  4. The mildly nonlinear imprint of structure on the CMB

    CERN Document Server

    Gebbie, T

    1999-01-01

    I outline some nonperturbative relativistic effects that arise from gravitational corrections to the Boltzmann equations. These may be important for the study of CMB temperature anisotropies, particularly their interpretation. These terms are not included in the canonical treatment as they arise from the exact equations. Here a weakly nonlinear investigation of these effects is defined and investigated with an emphasis on a Rees-Sciama sourced effect -- the imprint of structure evolution on the CMB. It is shown that gravitational nonlinearity in the weakly nonlinear extension of almost-FLRW temperature anisotropies leads to cancellation on small-scales when threading in the Newtonian frame. In the general frame this cancellation does not occur. In the context of a flat almost-FLRW CDM model I provide a heuristic argument for a nonperturbative small scale correction, due to the Rees-Sciama effect, of not more than $\\Delta T/T \\sim 10^{-6}-10^{-5}$ near $\\ell \\sim 100 - 300$. The effect of mild gravitational no...

  5. Analysis of Nonlinear Structural Dynamics and Resonance in Trees

    Directory of Open Access Journals (Sweden)

    H. Doumiri Ganji

    2012-01-01

    Full Text Available Wind and gravity both impact trees in storms, but wind loads greatly exceed gravity loads in most situations. Complex behavior of trees in windstorms is gradually turning into a controversial concern among ecological engineers. To better understand the effects of nonlinear behavior of trees, the dynamic forces on tree structures during periods of high winds have been examined as a mass-spring system. In fact, the simulated dynamic forces created by strong winds are studied in order to determine the responses of the trees to such dynamic loads. Many of such nonlinear differential equations are complicated to solve. Therefore, this paper focuses on an accurate and simple solution, Differential Transformation Method (DTM, to solve the derived equation. In this regard, the concept of differential transformation is briefly introduced. The approximate solution to this equation is calculated in the form of a series with easily computable terms. Then, the method has been employed to achieve an acceptable solution to the presented nonlinear differential equation. To verify the accuracy of the proposed method, the obtained results from DTM are compared with those from the numerical solution. The results reveal that this method gives successive approximations of high accuracy solution.

  6. Electromagnetic simulation study of dielectric wall accelerator structures

    Institute of Scientific and Technical Information of China (English)

    ZHAO Quan-Tang; ZHANG Zi-Min; YUAN Ping; CAO Shu-Chun; SHEN Xiao-Kang; JING Yi; LIU Ming; ZHAO Hong-Wei

    2012-01-01

    Two types of dielectric wall accelerator (DWA) structures,a bi-polar Blumlein line and zero integral pulse line (ZIP) structures were investigated.The high gradient insulator simulated by the particle in cell code confirms that it has little influence on the axial electric field.The results of simulations using CST microwave studio indicate how the axial electric field is formed,and the electric field waveforms agree with the theoretical one very well.The influence of layer-to-layer coupling in a ZIP structure is much smaller and the electric field waveform is much better.The axial of the Blumlein structure's electric field has better axial stability.From both of the above,it found that for a shorter pulse width,the axial electric field is much higher and the pulse stability and fidelity are much better.The CST simulation is very helpful for designing DWA structures.

  7. Nonlinear Aerodynamics-Structure Time Simulation for HALE Aircraft Design/Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Time simulation of a nonlinear aerodynamics model (NA) developed at Virginia Tech coupled with a nonlinear structure model (NS) is proposed as a design/analysis...

  8. Nonlinear phononics and structural control of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Mankowsky, Roman

    2016-01-20

    Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal

  9. Power-transfer effects in monomode optical nonlinear waveguiding structures.

    Science.gov (United States)

    Jakubczyk, Z; Jerominek, H; Patela, S; Tremblay, R; Delisle, C

    1987-09-01

    We describe power-transfer effects, over a certain threshold, among constituents of planar waveguiding structures consisting of an optical linear layer deposited onto a nonlinear substrate (CdS(x)Se(1-x)-doped glass). Proper selection of the thickness of the linear waveguiding film and the refractive index of the linear cladding allows one to obtain optical transistor action and to construct all-optical AND, OR, NOT, and XOR logic gates. The effects appear for the TE(0) guided mode.

  10. Structural Optimization for Reliability Using Nonlinear Goal Programming

    Science.gov (United States)

    El-Sayed, Mohamed E.

    1999-01-01

    This report details the development of a reliability based multi-objective design tool for solving structural optimization problems. Based on two different optimization techniques, namely sequential unconstrained minimization and nonlinear goal programming, the developed design method has the capability to take into account the effects of variability on the proposed design through a user specified reliability design criterion. In its sequential unconstrained minimization mode, the developed design tool uses a composite objective function, in conjunction with weight ordered design objectives, in order to take into account conflicting and multiple design criteria. Multiple design criteria of interest including structural weight, load induced stress and deflection, and mechanical reliability. The nonlinear goal programming mode, on the other hand, provides for a design method that eliminates the difficulty of having to define an objective function and constraints, while at the same time has the capability of handling rank ordered design objectives or goals. For simulation purposes the design of a pressure vessel cover plate was undertaken as a test bed for the newly developed design tool. The formulation of this structural optimization problem into sequential unconstrained minimization and goal programming form is presented. The resulting optimization problem was solved using: (i) the linear extended interior penalty function method algorithm; and (ii) Powell's conjugate directions method. Both single and multi-objective numerical test cases are included demonstrating the design tool's capabilities as it applies to this design problem.

  11. Computational Characterization of Electromagnetic Field Propagation in Complex Structures

    Science.gov (United States)

    2007-11-02

    publication in the 1 August 1996 issue of Physical Review E. A patent disclosure baring the same title has also been filed jointly by MICOM and UAH...Surfaces: Applications to Photonic Band Gap Structures andSuperluminal Tunneling Times, Physical Review A 52, 726 (1995). (2) M. Tocci, M.J. Bloemer, M...dimensional photonic band gap structure. Physical Review A 53, 2799, (1996). (4) J. Bendickson, J.P. Dowling, and M. Scalora, Analytic Expression for Mode

  12. Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures

    Science.gov (United States)

    Scalora, M.; Bloemer, M. J.; Manka, A. S.; Dowling, J. P.; Bowden, C. M.; Viswanathan, R.; Haus, J. W.

    1997-10-01

    We present a numerical study of second-harmonic (SH) generation in a one-dimensional, generic, photonic band-gap material that is doped with a nonlinear χ(2) medium. We show that a 20-period, 12-μm structure can generate short SH pulses (similar in duration to pump pulses) whose energy and power levels may be 2-3 orders of magnitude larger than the energy and power levels produced by an equivalent length of a phase-matched, bulk medium. This phenomenon comes about as a result of the combination of high electromagnetic mode density of states, low group velocity, and spatial phase locking of the fields near the photonic band edge. The structure is designed so that the pump pulse is tuned near the first-order photonic band edge, and the SH signal is generated near the band edge of the second-order gap. This maximizes the density of available field modes for both the pump and SH field. Our results show that the χ(2) response is effectively enhanced by several orders of magnitude. Therefore, mm- or cm-long, quasi-phase-matched devices could be replaced by these simple layered structures of only a few micrometers in length. This has important applications to high-energy lasers, Raman-type sources, and frequency up- and down-conversion schemes.

  13. One-dimensional electromagnetic band gap plasma structure formed by atmospheric pressure plasma inhomogeneities

    Science.gov (United States)

    Babitski, V. S.; Callegari, Th.; Simonchik, L. V.; Sokoloff, J.; Usachonak, M. S.

    2017-08-01

    The ability to use plasma columns of pulse discharges in argon at atmospheric pressure to form a one-dimensional electromagnetic band gap structure (or electromagnetic crystal) in the X-band waveguide is demonstrated. We show that a plasma electromagnetic crystal attenuates a microwave propagation in the stopband more than by 4 orders of magnitude. In order to obtain an effective control of the transmission spectrum comparable with a metallic regular structure, the electron concentration in plasma inhomogeneities should vary within the range from 1014 cm-3 to 1016 cm-3, while gas temperature and mean electron energy must be in the range of 2000 K and 0.5 eV, respectively, to lower electron collision frequency around 1010 s-1. We analyze in detail the time evolution response of the electromagnetic crystal according to the plasma parameters for the duration of the discharge. The interest of using atmospheric pressure discharges is to increase the microwave breakdown threshold in discharge volumes, whereby it becomes possible to perform dynamic control of high power microwaves.

  14. Influence analysis of structural parameters on electromagnetic properties of HTS linear induction motor

    Science.gov (United States)

    Zhao, J.; Zheng, T. Q.; Zhang, W.; Fang, J.; Liu, Y. M.

    2011-11-01

    A new type high temperature superconductor linear induction motor is designed and analyzed as a prototype to ensure applicability aimed at industrial motors. Made of Bi-2223/Ag, primary windings are distributed with the double-layer concentrated structure. The motor is analyzed by 2D electromagnetic Finite Element Method to get magnetic field distribution, thrust force, vertical force and so on. The critical current of motor and the electromagnetic force are mostly decided by the leakage flux density of primary slot and by the main magnetic flux and eddy current respectively. The structural parameters of motor have a great influence on the distribution of magnetic field. Under constant currents, the properties of motor are analyzed with different slot widths, slot heights and winding turns. The properties of motor, such as the maximum slot leakage flux density, motor thrust and motor vertical force, are analyzed with different structural parameters.

  15. Electromagnetic and structural analyses of the vacuum vessel and plasma facing components for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiwei, E-mail: wwxu@ipp.ac.cn; Liu, Xufeng; Song, Yuntao; Li, Jun; Lu, Mingxuan

    2013-10-15

    Highlights: • The electromagnetic and structural responses of VV and PFCs for EAST are analyzed. • A detailed finite element model of the VV including PFCs is established. • The two most dangerous scenarios, major disruptions and downward VDEs are considered. • The distribution patterns of eddy currents, EMFs and torques on PFCs are analyzed. -- Abstract: During plasma disruptions, time-varying eddy currents are induced in the vacuum vessel (VV) and Plasma Facing Components (PFCs) of EAST. Additionally, halo currents flow partly through these structures during the vertical displacement events (VDEs). Under the high magnetic field circumstances, the resulting electromagnetic forces (EMFs) and torques are large. In this paper, eddy currents and EMFs on EAST VV, PFCs and their supports are calculated by analytical and numerical methods. ANSYS software is employed to evaluate eddy currents on VV, PFCs and their structural responses. To learn the electromagnetic and structural response of the whole structure more accurately, a detailed finite element model is established. The two most dangerous scenarios, major disruptions and downward VDEs, are examined. It is found that distribution patterns of eddy currents for various PFCs differ greatly, therefore resulting in different EMFs and torques. It can be seen that for certain PFCs the transient reaction force are severe. Results obtained here may set up a preliminary foundation for the future dynamic response research of EAST VV and PFCs which will provide a theoretical basis for the future engineering design of tokamak devices.

  16. Theory of interpenetrating electromagnetic structural continuua. I. Basic thermomechanical equations

    Energy Technology Data Exchange (ETDEWEB)

    Suyazov, V.M.

    1977-01-01

    Laws of thermodynamics and the mechanics of a multi-phase and multi-temperature mixture of charged conductor paramagnetic dielectric structural media are formulated in a non-relativistic approach which accounts for phase transformations. The limiting cases of the theory's basic equations for a mixture of micropolar media and mixtures of dipolar continuua are examined. 35 references.

  17. Thioborates: potential nonlinear optical materials with rich structural chemistry.

    Science.gov (United States)

    Lian, Yu-Kun; Wu, Li-Ming; Chen, Ling

    2017-03-27

    Nonlinear optical (NLO) crystal materials with good performance are urgently needed. Various compounds have been explored to date. Metal chalcogenides and borates are common sources of potential NLO materials with desirable properties, particularly in the IR and UV regions, respectively. However, these two types of crystals have their specific drawbacks. Thioborates, as an emerging system, have unique advantages by combining the merits of borates and sulfides, i.e., the high laser damage thresholds and rich structural diversity of borates with large optical nonlinearity and the favorable transparency range of sulfides. However, only a limited number of thioborates are known. This paper summarizes the known thioborates according to structural motifs that range from zero-dimension to three-dimension, most of which are formed by sharing corners of the basic building units (BS3)(3-) and (BS4)(5-). Although nearly one-third of the known thioborates are noncentrosymmetric, most of their properties, especially their NLO behaviors, are unexplored. Further attempts and additional investigations are required with respect to design syntheses, property improvements and micro-mechanism studies.

  18. Current-mode analog nonlinear function synthesizer structures

    CERN Document Server

    Popa, Cosmin Radu

    2013-01-01

    This book is dedicated to the analysis and design of analog CMOS nonlinear function synthesizer structures, based on original superior-order approximation functions. A variety of analog function synthesizer structures are discussed, based on accurate approximation functions.  Readers will be enabled to implement numerous circuit functions with applications in analog signal processing, including exponential, Gaussian or hyperbolic functions. Generalizing the methods for obtaining these particular functions, the author analyzes superior-order approximation functions, which represent the core for developing CMOS analog nonlinear function synthesizers.   ·         Describes novel methods for generating a multitude of circuit functions, based on superior-order improved accuracy approximation functions; ·         Presents techniques for analog function synthesizers that can be applied easily to a wide variety of analog signal processing circuits; ·         Enables the design of analog s...

  19. Role of nonlinear localized structures and turbulence in magnetized plasma

    Science.gov (United States)

    Pathak, Neha; Yadav, Nitin; Uma, R.; Sharma, R. P.

    2016-09-01

    In the present study, we have analyzed the field localization of kinetic Alfvén wave (KAW) due to the presence of background density perturbation, which are assumed to be originated by the three dimensionally propagating low frequency KAW. These localized structures play an important role for energy transportation at smaller scales in the dispersion range of magnetic power spectrum. For the present model, governing dynamic equations of high frequency pump KAW and low frequency KAW has been derived by considering ponderomotive nonlinearity. Further, these coupled equations have been numerically solved to analyze the resulting localized structures of pump KAW and magnetic power spectrum in the magnetopause regime. Numerically calculated spectrum exhibits inertial range having spectral index of -3/2 followed by steeper scaling; this steepening in the turbulent spectrum is a signature of energy transportation from larger to smaller scales. In this way, the proposed mechanism, which is based on nonlinear wave-wave interaction, may be useful for understanding the particle acceleration and turbulence in magnetopause.

  20. Electromagnetic Modeling and Measurement of Adaptive Metamaterial Structural Elements

    Science.gov (United States)

    2011-03-01

    group at Sonnet Software for their help with CST Microwave Studio R©. Finally, I would like to thank my classmates for their support, insight, and...from the larger AFIT metamaterial structure with capacitor layout A . . . . . . . . . . . . . . 105 73 Simulation results from the larger AFIT...of the resonance areas are dispersively the same for C1 through C5 73 Figure 50. Model of a 4-Cell column of the AFIT metamaterial in the waveguide

  1. Nonlinear thermoelectric efficiency of superlattice-structured nanowires

    Science.gov (United States)

    Karbaschi, Hossein; Lovén, John; Courteaut, Klara; Wacker, Andreas; Leijnse, Martin

    2016-09-01

    We theoretically investigate nonlinear ballistic thermoelectric transport in a superlattice-structured nanowire. By a special choice of nonuniform widths of the superlattice barriers—analogous to antireflection coating in optical systems—it is possible to achieve a transmission which comes close to a square profile as a function of energy. We calculate the low-temperature output power and power-conversion efficiency of a thermoelectric generator based on such a structure and show that the efficiency remains high also when operating at a significant power. To provide guidelines for experiments, we study how the results depend on the nanowire radius, the number of barriers, and on random imperfections in barrier width and separation. Our results indicate that high efficiencies can indeed be achieved with today's capabilities in epitaxial nanowire growth.

  2. Structurally-Tailorable, Nonlinear, Snap-Through Spring

    Science.gov (United States)

    Starnes, James H., Jr.; Farley, Gary L.; Mantay, Wayne R.

    1989-01-01

    Abrupt change in load/deflection response controllable and predictable. Structurally-tailorable, nonlinear, snap-through spring (STNSTS) exhibits controllable and predictable abrupt change in load/deflection response and based upon known phenomenon of snap-through structural response. Composed of pin-connected two-bar linkage which depicts combined tension/compression springs. As load applied to STNSTS, stiffness is function of internal spring and bending stiffness of pin-connected bars. As load increases, bars deform laterally until they collapse and snap through. Has application in passively-tailored rotor-blade flap, pitch, and lag response, to improve aerodynamic performance and stability characteristics of rotors; in aerodynamically- and aeroelastically-tailored wing spars and ribs, to produce tailored deformation state for improved effectiveness in maneuvering, aerodynamic performance, and stability characteristics; and in energy absorbers for automobile bumpers and aircraft land

  3. Research on Full Space Transient Electromagnetism Technique for Detecting Aqueous Structures in Coal Mines

    Institute of Scientific and Technical Information of China (English)

    YU Jing-cun; LIU Zhi-xin; TANG Jin-yun

    2007-01-01

    Based on the transmitting theory of "smoke ring effect", the transient electromagnetism technique was used in coal mines to detect abnormal areas of aquiferous structures in both roofs and floors of coal seams and in front of excavated roadways. Survey devices, working methods and techniques as well as data processing and interpretation are discussed systematically. In addition, the direction of mini-wireframe emission electromagnetic wave of the full space transient electromagnetism technique was verified by an underground borehole for water detection and drainage. The result indicates that this technique can detect both horizontal and vertical development rules of abnormal water bodies to a certain depth below the floor of coal seams and can also detect the abnormal, low resistance water bodies within a certain distance of roofs. Furthermore, it can detect such abnormal bodies in ahead of the excavated roadway front.Limited by the underground environment, the full space transient electromagnetism technique can detect to a depth of only 120 m or so.

  4. The structure of the nucleon: Elastic electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, V. [Norfolk State University, Norfolk, VA (United States); Perdrisat, C.F.; Carlson, C.E. [The College of William and Mary, Williamsburg, VA (United States); Jones, M.K. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Brash, E.J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Christopher Newport University, Newport News, VA (United States)

    2015-07-15

    Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discuss the outlook for the future. (orig.)

  5. The Optimization of Electromagnetic Field in Microwave Structures

    Directory of Open Access Journals (Sweden)

    PALADE Paula Alexandra

    2010-10-01

    Full Text Available The paper presents a study ofelectromagnetic field in microwave structures. Thestudied applicator can be used for processing dielectricwith losses. The microwave oven is a metallic boxconnected to a 1 kW, 2.45 GHz microwave source via arectangular waveguide operating in the TE10 mode.Near the bottom of the oven there is a cylindrical glassplate with a rectangular dielectric placed on top of it.Processing technique in microwave field in contrast toRF processing is more complex and therefore the usedapplicators presents a more varied range.

  6. The Two-dimensional ElectromagneticScattering from Periodic Chiral Structures and Its Finite Element Approximation

    Institute of Scientific and Technical Information of China (English)

    张德悦; 马富明

    2004-01-01

    In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.

  7. Prediction Technology of Buried Water-Bearing Structures in Coal Mines Using Transient Electromagnetic Method

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-hai; YUE Jian-hua; LIU Shu-cai

    2007-01-01

    Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore, it is very important for the safety of production to make an accurate and timely forecast about water bursts. Based on the smoke ring effect of transient electromagnetic fields, the principle of transient electromagnetic method used in detecting buried water-bearing structures in coal mines in advance, is discussed. Small multi-turn loop configurations used in coal mines are proposed and a field procedure of semicircular sector scanning is presented. The application of this method in one coal mine indicates that the technology has many advantages compared with others. The method is inexpensive, highly accurate and efficient. Suggestions are presented for future solutions to some remaining problems.

  8. Global Evolutionary Algorithms in the Design of Electromagnetic Band Gap Structures with Suppressed Surface Waves Propagation

    Directory of Open Access Journals (Sweden)

    P. Kovacs

    2010-04-01

    Full Text Available The paper is focused on the automated design and optimization of electromagnetic band gap structures suppressing the propagation of surface waves. For the optimization, we use different global evolutionary algorithms like the genetic algorithm with the single-point crossover (GAs and the multi-point (GAm one, the differential evolution (DE and particle swarm optimization (PSO. The algorithms are mutually compared in terms of convergence velocity and accuracy. The developed technique is universal (applicable for any unit cell geometry. The method is based on the dispersion diagram calculation in CST Microwave Studio (CST MWS and optimization in Matlab. A design example of a mushroom structure with simultaneous electromagnetic band gap properties (EBG and the artificial magnetic conductor ones (AMC in the required frequency band is presented.

  9. Integrated Thermal-structural-electromagnetic Design Optimization of Large Space Antenna Reflectors

    Science.gov (United States)

    Adelman, H. M.; Padula, S. L.

    1986-01-01

    The requirements for low mass and high electromagnetic (EM) performance in large, flexible space antenna structures is motivating the development of a systematic procedure for antenna design. In contrast to previous work which concentrated on reducing rms distortions of the reflector surface, thereby indirectly increasing antenna performance, the current work involves a direct approach to increasing electromagnetic performance using mathematical optimization. The thermal, structural, and EM analyses are fully integrated in the context of an optimization procedure, and consequently, the interaction of the various responses is accounted for directly and automatically. Preliminary results are presented for sizing cross-sectional areas of a tetrahedral truss reflector. The results indicate potential for this integrated procedure from the standpoint of mass reduction, performance increase, and efficiency of the design process.

  10. Pulse Structure of Hot Electromagnetic Outflows with Embedded Baryons

    CERN Document Server

    Thompson, Christopher

    2014-01-01

    Gamma-ray bursts (GRBs) show a dramatic pulse structure that requires bulk relativistic motion, but whose physical origin has remained murky. We focus on a hot, magnetized jet that is emitted by a black hole and interacts with a confining medium. Strongly relativistic expansion of the magnetic field, as limited by a corrugation instability, may commence only after it forms a thin shell. Then the observed $T_{90}$ burst duration is dominated by the curvature delay, and null periods arise from angular inhomogeneities, not the duty cycle of the engine. We associate the $O(1)$ s timescale observed in the pulse width distribution of long GRBs with the collapse of the central 2.5-3$M_\\odot$ of a massive stellar core. A fraction of the baryons are shown to be embedded in the magnetized outflow by the hyper-Eddington radiation flux; they strongly disturb the magnetic field after the compactness drops below $\\sim 4\\times 10^3(Y_e/0.5)^{-1}$. The high-energy photons so created have a compressed pulse structure. Delayed...

  11. Design of Nonlinear Decoupling Controller for Double-electromagnet Suspension System%双电磁铁悬浮系统的非线性解耦控制器设计

    Institute of Scientific and Technical Information of China (English)

    刘德生; 李杰; 张锟

    2006-01-01

    Aiming at the coupling characteristic between the two groups of electromagnets embedded in the module of the maglev train, a nonlinear decoupling controller is designed. The module is modeled as a double-electromagnet system, and based on some reasonable assumptions its nonlinear mathematical model, a MIMO coupling system, is derived. To realize the linearization and decoupling from the input to the output, the model is linearized exactly by means of feedback linearization, and an equivalent linear decoupling model is obtained. Based on the linear model, a nonlinear suspension controller is designed using state feedback. Simulations and experiments show that the controller can effectually solve the coupling problem in double-electromagnet suspension system.

  12. An Enhanced Asymptotic Expansion for the Stability of Nonlinear Elastic Structures

    DEFF Research Database (Denmark)

    Christensen, Claus Dencker; Byskov, Esben

    2010-01-01

    A new, enhanced asymptotic expansion applicable to stability of structures made of nonlinear elastic materials is established. The method utilizes “hyperbolic” terms instead of the conventional polynomial terms, covers full kinematic nonlinearity and is applied to nonlinear elastic Euler columns ...

  13. Nonlinear dynamics and control of SDI structural components. Final report, September 1987-February 1990

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, A.H.; Burns, J.A.; Cliff, E.M.

    1990-05-18

    The report summarizes results of experimental and theoretical investigations into the nonlinear response and control of structural elements. Methods for the analysis and design of control procedures applicable to certain nonlinear distributed parameter systems were investigated. Analytical and computational techniques were developed for evaluating the nonlinear effects on control designs. Bench-type experiments were conducted for validating some of the theoretical results.

  14. Residual stress and electromagnetic characteristics in loop type frequency selective surface embedded hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Mi; Seo, Yun Seok; Chun, Heoung Jae [Yonsei University, Seoul (Korea, Republic of); Hong, Ik Pyo [Kongju National University, Cheonan (Korea, Republic of); Park, Yong Bae [Ajoo University, Suwon (Korea, Republic of); Kim, Yoon Jae [Agency for defense development, Daejeon (Korea, Republic of)

    2015-01-15

    Residual stresses occur in frequency-selective surface (FSS)-embedded composite structures after co-curing due to differences between the coefficients of thermal expansion between composite skins and FSSs. Furthermore, the electromagnetic characteristics may be affected by the deformation of the FSS pattern by residual stresses. Therefore, we studied the changes in electromagnetic characteristics due to the deformation of FSS, using residual stresses to deform loop-type FSS-embedded hybrid composites. We considered the effects of loop-type FSS patterns of equal dimension as well as the stacking sequences of composite laminates on the electromagnetic characteristics of FSSs: Square loop, triangular loop and circular loop. The stacking sequences of composite laminates considered in this study were [0]{sub 8}, [0/90]{sub 4}, [+-45]{sub 4} and [0/+-45/90]{sub 2}. The FSS was located between composite laminates in the middle plane. To determine the residual stresses and deformations in the FSS embedded laminate structures, the thermal loading condition in the finite element analysis was induced by cooling the hybrid structures from 125 .deg. C to 20 .deg. C based on the cure cycle of the composite. Also, the electromagnetic reflection characteristics of the hybrid structures were predicted using deformed models by residual stresses, considering the effects of stacking sequence of composite laminates. The results showed that the maximum residual stresses and deformations were produced in the [0]{sub 8} composites with all three loop-types of FSS pattern. However, the maximum resonance frequency shifts occurred in the square and triangle loop-types with stacking sequence of [0]{sub 8} , while the maximum resonance frequency shift occurred in the circular loop-type with stacking sequence of [0/+-45/90]{sub 2}.

  15. The group theory for solving electromagnetic scattering problems with geometric symmetric structure

    Institute of Scientific and Technical Information of China (English)

    朱峰; 杨海川; 任朗

    1997-01-01

    It is a very important issue to reduce computer storage and calculation time for matrix in solving scattering field by making use of geometric and physical symmetric features of a scattering body. A general definition for the symmetric and anti-symmetric structure is given by applying the group theory in mathematics and a general method for treating the electromagnetic scattering problems with symmetry is proposed. An example for applying the theory mentioned above is also given.

  16. A novel two-layer compact electromagnetic bandgap (EBG) structure and its applications in microwave circuits

    Institute of Scientific and Technical Information of China (English)

    YANG; Ning(杨宁); CHEN; Zhining; (陈志宁); WANG; Yunyi; (王蕴仪); Chia; M.; Y.; W.

    2003-01-01

    This paper presents a novel two-layer electromagnetic bandgap (EBG) structure. The studies on the characteristics of the cell are carried out numerically and experimentally. A lumped-LC equivalent circuit extracted from the numerical simulation is used to model the bandgap characteristics of the proposed EBG structure. The influences of geometric parameters on the operation frequency and equivalent LC parameters are discussed. A meander line high performance bandstop filter and a notch type duplexer are designed and measured. These EBG structures are shown to have potential applications in microwave and RF systems.

  17. Nonlinear structure formation in the Cubic Galileon gravity model

    CERN Document Server

    Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia

    2013-01-01

    We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model, by running a suite of N-body cosmological simulations using the {\\tt ECOSMOG} code. Our simulations include the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the linear regime, the amplitude of the matter power spectrum increases by $\\sim 25%$ with respect to the standard $\\Lambda$CDM model today. The modified expansion rate accounts for $\\sim 20%$ of this enhancement, while the fifth force is responsible for only $\\sim 5%$. This is because the effective unscreened gravitational strength deviates from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime ($k \\gtrsim 0.1 h\\rm{Mpc}^{-1}$), the fifth force leads to only a modest increase ($\\lesssim 8%$) in the clustering power on all scales due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in other...

  18. Multiaxial nonlinear viscoelastic characterization and modeling of a structural adhesive

    Energy Technology Data Exchange (ETDEWEB)

    Popelar, C.F.; Liechti, K.M. [Univ. of Texas, Austin, TX (United States)

    1997-07-01

    Many polymeric materials, including structural adhesives, exhibit a nonlinear viscoelastic response. The nonlinear free volume approach is based on the Doolittle concept that the free volume controls the mobility of polymer molecules and, thus, the inherent time scale of the material. It then follows that factors such as temperature and moisture, which change the free volume, will influence the time scale. Furthermore, stress-induced dilatation will also affect the free volume and, hence, the time scale. However, during this investigation dilatational effects alone were found to be insufficient in describing the response of near pure shear tests performed on a bisphenol A epoxy with an amido amine hardener. Thus, the free volume approach presented here has been modified to include distortional effects in the inherent time scale of the material. In addition to predicting the global response under a variety of multiaxial stress states, the modified free volume theory also accurately predicts the local displacement fields, including those associated with a localized region, as determined from geometric moire measurements at various stages of deformation.

  19. Finsler geometry of nonlinear elastic solids with internal structure

    Science.gov (United States)

    Clayton, J. D.

    2017-02-01

    Concepts from Finsler differential geometry are applied towards a theory of deformable continua with internal structure. The general theory accounts for finite deformation, nonlinear elasticity, and various kinds of structural features in a solid body. The general kinematic structure of the theory includes macroscopic and microscopic displacement fields-i.e., a multiscale representation-whereby the latter are represented mathematically by the director vector of pseudo-Finsler space, not necessarily of unit magnitude. A physically appropriate fundamental (metric) tensor is introduced, leading to affine and nonlinear connections. A deformation gradient tensor is defined via differentiation of the macroscopic motion field, and another metric indicative of strain in the body is a function of this gradient. A total energy functional of strain, referential microscopic coordinates, and horizontal covariant derivatives of the latter is introduced. Variational methods are applied to derive Euler-Lagrange equations and Neumann boundary conditions. The theory is shown to encompass existing continuum physics models such as micromorphic, micropolar, strain gradient, phase field, and conventional nonlinear elasticity models, and it can reduce to such models when certain assumptions on geometry, kinematics, and energy functionals are imposed. The theory is applied to analyze two physical problems in crystalline solids: shear localization/fracture in a two-dimensional body and cavitation in a spherical body. In these examples, a conformal or Weyl-type transformation of the fundamental tensor enables a description of dilatation associated, respectively, with cleavage surface roughness and nucleation of voids or vacancies. For the shear localization problem, the Finsler theory is able to accurately reproduce the surface energy of Griffith's fracture mechanics, and it predicts dilatation-induced toughening as observed in experiments on brittle crystals. For the cavitation problem

  20. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    Science.gov (United States)

    Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru; Mazelle, Christian X.

    2017-09-01

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  1. Investigating the fracture non-linear dynamics through multi-spectral time series analysis of fracture-induced electromagnetic emissions

    Science.gov (United States)

    Kalimeris, Anastasios; Potirakis, Stelios M.; Eftaxias, Konstantinos; Antonopoulos, George; Kopanas, John; Nomicos, Constantinos

    2013-04-01

    Electromagnetic (EM) emissions (EME) in a wide frequency spectrum ranging from kHz to MHz are produced by cracks' opening, considered as fracture precursors. Thus, their study constitutes a nondestructive method for the monitoring of the evolution of damage process at the laboratory scale. Earthquakes (EQs) are large-scale fracture phenomena in the Earth's heterogeneous crust. Accordingly, it has been suggested that fracture induced MHz-kHz EME, emerging from a few days up to a few hours before the main seismic shock permit a monitoring of the damage process during the last stages of EQ preparation. The use of spectral decomposition techniques, namely Singular Spectral Analysis (SSA), Wavelets Analysis (WA) and their Monte Carlo counterparts (MC SSA and MC WA), as well as the revised Multi-Taper Method (MTM) for a reliable discrimination of fracto-EM emissions from the natural geo-EM field is proposed here; the well documented fracture-induced kHz EME time-series associated with the Athens' EQ (M=5.9, 7 September 1999) is employed as a test case. An adequately long time period (> month) prior to the occurrence of the EQ is considered in order to include all different phases of a large-scale fracture, from the "quite" period where only the geo-EM field and its modulation by the ionospheric variations is observed, to the final stages of the EQ preparation process where fracto-EM emissions occur. The examined time series, recorded at the 10 kHz band and at a high temporal resolution (sampling frequency 1 Hz), is first split into three characteristic excerpts (a) the quiet period well (35 to 25 days) before the event, (b) the first epoch of the candidate pre-seismically active time period (8 to 4 days before the event), and (c) the final epoch of the candidate pre-seismically active time period (~3 days before the event until short after the event). The Maximum Entropy and Blackman-Tukey FFT methods are initially used for the preliminary evaluation of the time

  2. Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models

    Institute of Scientific and Technical Information of China (English)

    Jochen Aβfalg; Frank Allg(o)wer

    2007-01-01

    This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.

  3. Nonlinear Electrodynamics Analysis Of The Fine Structure Constant

    Science.gov (United States)

    Mbelek, Jean Paul

    2010-10-01

    It has been claimed that during the late time history of our universe, the fine structure constant, α, has been increasing [1],[2]. However, other teams has claimed a discordant result [3],[4]. Also, the current precision of laboratory tests is not sufficient to either comfort or reject any of these astronomical observations. Here we suggest that a nonlinear electrodynamics (NLED) interaction of photons with the weak local background magnetic fields of a gas cloud absorber can reconcile the null result of refs.[3] and [4] with the negative variation found by refs. [2] and [1] and also to find a bridge with the positive variation found later by Levshakov et al.. [5]-[7]. Moreover, NLED photon propagation in a vacuum permeated by a background magnetic field is actually in full agreement with constraints from Oklo natural reactor data.

  4. Least-Squares, Continuous Sensitivity Analysis for Nonlinear Fluid-Structure Interaction

    Science.gov (United States)

    2009-08-20

    Lecture notes in mathematics ; 606, Springer-Verlag, Berlin ; New York, 1977, pp. 362. [56] Gel’fand, I.M., Fomin, S.V., and Silverman, R.A...computational fluid dynamics and electromagnetics, Scientific computation, Springer, Berlin ; New York, 1998. [70] Karniadakis, G., and Sherwin, S.J...Aeroelasticity,” Journal of Aircraft, Vol. 40, No. 6, 2003, pp. 1066-1092. [78] Lucia , D.J., “The SensorCraft Configurations: A Non-Linear

  5. Optical electromagnetic vector-field modeling for the accurate analysis of finite diffractive structures of high complexity

    DEFF Research Database (Denmark)

    Dridi, Kim; Bjarklev, Anders Overgaard

    1999-01-01

    An electromagnetic vector-field modle for design of optical components based on the finite-difference-time-domain method and radiation integrals in presented. Its ability to predict the optical electromagnetic dynamics in structures with complex material distribution is demonstrated. Theoretical...... and numerical investigations of finite-length surface-relief structures embedded in polymer dielectric waveguiding materials are presented. The importance of several geometric parameter dependencies is indicated as far-field power distributions are rearranged between diffraction orders. The influences...

  6. Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures.

    Science.gov (United States)

    Zhao, Yan; Argyropoulos, Christos; Hao, Yang

    2008-04-28

    This paper proposes a radial dependent dispersive finite-difference time-domain method for the modeling of electromagnetic cloaking structures. The permittivity and permeability of the cloak are mapped to the Drude dispersion model and taken into account in dispersive FDTD simulations. Numerical simulations demonstrate that under ideal conditions, objects placed inside the cloak are 'invisible' to external electromagnetic fields. However for the simplified cloak based on linear transformations, the back scattering has a similar level to the case of a PEC cylinder without any cloak, rendering the object still being 'visible'. It is also demonstrated numerically that the simplified cloak based on high-order transformations can indeed improve the cloaking performance.

  7. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)

    2013-12-15

    Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.

  8. Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources.

    Science.gov (United States)

    Reale, D V; Parson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2016-03-01

    A stripline gyromagnetic nonlinear transmission line (NLTL) was constructed out of yttrium iron garnet ferrite and tested at charge voltages of 35 kV-55 kV with bias fields ranging from 10 kA/m to 20 kA/m. Typically, high power gyromagnetic NLTLs are constructed in a coaxial geometry. While this approach has many advantages, including a uniform transverse electromagnetic (TEM) mode, simple interconnection between components, and the ability to use oil or pressurized gas as an insulator, the coaxial implementation suffers from complexity of construction, especially when using a solid insulator. By moving to a simpler transmission line geometry, NLTLs can be constructed more easily and arrayed on a single substrate. This work represents a first step in exploring the suitability of various transmission line structures, such as microstrips and coplanar waveguides. The resulting high power microwave (HPM) source operates in ultra high frequency (UHF) band with an average bandwidth of 40.1% and peak rf power from 2 MW to 12.7 MW.

  9. Non-linear electrodynamics and the variation of the fine structure constant

    Science.gov (United States)

    Mbelek, Jean Paul; Mosquera Cuesta, Herman J.

    2008-09-01

    It has been claimed that during the late-time history of our Universe, the fine structure constant of electromagnetism, α, has been increasing. The conclusion is achieved after looking at the separation between lines of ions like CIV, MgII, SiII, FeII, among others in the absorption spectra of very distant quasars, and comparing them with their counterparts obtained in the laboratory. However, in the meantime, other teams have claimed either a null result or a decreasing α with respect to the cosmic time. Also, the current precision of laboratory tests does not allow one to either comfort or reject any of these astronomical observations. Here, we suggest that as photons are the sidereal messengers, a non-linear electrodynamics (NLED) description of the interaction of photons with the weak local background magnetic fields of a gas cloud absorber around the emitting quasar can reconcile the Chand et al. and Levshakov et al. findings with the negative variation found by Murphy et al. and Webb et al., and also to find a bridge with the positive variation argued more recently by Levshakov et al. We also show that NLED photon propagation in a vacuum permeated by a background magnetic field presents a full agreement with constraints from Oklo natural reactor data. Finally, we show that NLED may render a null result only in a narrow range of the local background magnetic field which should be the case of both the claims by Chand et al. and by Srianand et al.

  10. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Aboul-Magd Mohammed O

    2009-07-01

    Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input

  11. Formation mechanism and modulation of electromagnetically induced transparency-like transmission in side-coupled structures

    Institute of Scientific and Technical Information of China (English)

    杨辉; 李宏建; 许秀科; 何智慧; 王云; 徐国均

    2015-01-01

    Based on Fabry model and finite-different time-domain (FDTD) method, the plasmonic structure composed of a metal-insulator-metal (MIM) bus waveguide and a side-coupled resonator was investigated. It is found that the transmission features can be regulated by the cavity width and coupling distance. Electromagnetically induced transparency (EIT)-like transmission can be excited by adding anidentical resonator on the pre-existing structure. Combining the foregoing theoretical analysis with coupled mode theory (CMT), the formation process of the EIT-like transmission was detailedly analyzed. EIT-like transmission can also be excited in plasmonic structure with two detuned resonators. By altering the structure parameters, the transparency window can be purposefully modulated. With themeritsof compact structure and simplicity in fabrication, the proposed structures may have a broad prospect of applications in highly integrated optical circuits.

  12. Modeling of Electromagnetic Fields in Parallel-Plane Structures: A Unified Contour-Integral Approach

    Directory of Open Access Journals (Sweden)

    M. Stumpf

    2017-04-01

    Full Text Available A unified reciprocity-based modeling approach for analyzing electromagnetic fields in dispersive parallel-plane structures of arbitrary shape is described. It is shown that the use of the reciprocity theorem of the time-convolution type leads to a global contour-integral interaction quantity from which novel both time- and frequency-domain numerical schemes can be arrived at. Applications of the numerical method concerning the time-domain radiated interference and susceptibility of parallel-plane structures are discussed and illustrated on numerical examples.

  13. Applied Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Applied Electromagnetism and Materials picks up where the author's Basic Electromagnetism and Materials left off by presenting practical and relevant technological information about electromagnetic material properties and their applications. This book is aimed at senior undergraduate and graduate students as well as researchers in materials science and is the product of many years of teaching basic and applied electromagnetism. Topics range from the spectroscopy and characterization of dielectrics and semiconductors, to non-linear effects and electromagnetic cavities, to ion-beam applications in materials science.

  14. A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures

    Science.gov (United States)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2012-01-01

    A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.

  15. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    Science.gov (United States)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  16. A COMPUTER PROGRAMME FOR THE NON-LINEAR ANALYSIS OF COMPLETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Turgay ÇOŞGUN

    2003-02-01

    Full Text Available The progress made on the analysis of the structures by using non-linear theory and the significant findings on both theorical and empirical works, enable better understanding of the behaviours of structures under external loads. Determination of the failure load and designing the structures accordingly requires developments of analysis methods, which take both the non-linear behaviour of structural elements and the non-linear effects of geometric changes into consideration. Therefore, in this study, a FORTRAN code, which analyses structures and calculates the failure loads by considering the non-linear behaviour of materials under increasing loads (due to the non-linear relationship of stress-strain and moment-curvature and second-order theory of structural systems is developed.

  17. Some Problems in Nonlinear Dynamic Instability and Bifurcation Theory for Engineering Structures

    Institute of Scientific and Technical Information of China (English)

    彭妙娟; 程玉民

    2005-01-01

    In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on.

  18. Predictive Dynamic Stimulation of Structures with Non-Smooth Nonlinearities

    Science.gov (United States)

    2005-06-30

    bang- bang, dead band, and Duffing type nonlinearity. Nonlinear damping has been considered in the form of Coulomb damping, velocity-squared damping...or 2,000 DOF reduced to 5 or 10 DOF) of simple oscillator systems capture the free oscillation decay and the steady state response to harmonic...smooth or non-smooth), the linear based reduced model tends to overestimate the change in oscillation frequency due to the nonlinearity. Specifically

  19. Extreme value distribution and reliability of nonlinear stochastic structures

    Institute of Scientific and Technical Information of China (English)

    Chen Jianbing; Li Jie

    2005-01-01

    A new approach to evaluate the extreme value distribution (EVD) of the response and reliability of general multi-DOF nonlinear stochastic structures is proposed. The approach is based on the recently developed probability density evolution method, which enables the instantaneous probability density functions of the stochastic responses to be captured.In the proposed method, a virtual stochastic process is first constructed to satisfy the condition that the extreme value of the response equals the value of the constructed process at a certain instant of time. The probability density evolution method is then applied to evaluate the instantaneous probability density function of the response, yielding the EVD. The reliability is therefore available through a simple integration over the safe domain. A numerical algorithm is developed using the Number Theoretical Method to select the discretized representative points. Further, a hyper-ball is imposed to sieve the points from the preceding point set in the hypercube. In the numerical examples, the EVD of random variables is evaluated and compared with the analytical solution. A frame structure is analyzed to capture the EVD of the response and the dynamic reliability. The investigations indicate that the proposed approach provides reasonable accuracy and efficiency.

  20. Time-domain seismic reliability of nonlinear structures

    Indian Academy of Sciences (India)

    Achintya Haldar; Jungwon Huh; Ali Mehrabian

    2006-08-01

    A novel reliability analysis technique is presented to estimate the reliability of real structural systems. Its unique feature is that the dynamic loadings can be applied in time domain. It is a nonlinear stochastic finite element logarithm combined with the response surface method (RSM). It generates the response surface around the most probable failure point and incorporates information of the distribution of the random variables in the RSM formulation. It is verified using the Monte Carlo simulation technique, and is found to be very efficient and accurate. Most sources of nonlinearlity and uncertainty can be explicitly incorporated in the formulation. The flexibility of connections, represented by moment-relative rotation $(M–\\theta )$ curves, is addressed. After the Northridge earthquake of 1994, several improved steel connections were proposed. Structural Sesimic Design Associates (SSDA) tested several full-scale proprietory slotted web beam–column connections. The authors suggested $(M–\\theta )$ curves for this connection using actual test data. Behaviours of steel frames, assuming the connections are fully restrained, partially restrained, consisting of pre- and post-Northridge connections are evaluated and compared. Desirable features of the post-Northridge connections observed during testing are analytically confirmed. Laterally weak steel frame is then strengthened with concrete shear walls. Capabilities and the advanced nature of the method are demonstrated with the help of realistic examples.

  1. Composite structures for the enhancement of nonlinear optical materials.

    Science.gov (United States)

    Neeves, A E; Birnboim, M H

    1988-12-01

    Calculations of the nonlinear optical behavior are developed for model composites consisting of nanospheres with a metallic core and a nonlinear shell suspended in a nonlinear medium. The concept for the enhancement of optical phase conjugation from all these nonlinear regions is that the optical field can be concentrated both inside and in the neighborhood of the metallic core, aided by surface-mediated plasmon resonance. Calculations for gold cores and aluminum cores indicate that phase-conjugate reflectivity enhancements of 10(8) may be possible.

  2. Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

    Science.gov (United States)

    Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.

    2017-09-01

    A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.

  3. BMFO-PVDF electrospun fiber based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region

    Science.gov (United States)

    Revathi, Venkatachalam; Dinesh Kumar, Sakthivel; Subramanian, Venkatachalam; Chellamuthu, Muthamizhchelvan

    2015-11-01

    Metamaterial structures are artificial structures that are useful in controlling the flow of electromagnetic radiation. In this paper, composite fibers of sub-micron thickness of barium substituted magnesium ferrite (Ba0.2Mg0.8Fe2O4) - polyvinylidene fluoride obtained by electrospinning is used as a substrate to design electromagnetic interference shielding structures. While electrospinning improves the ferroelectric properties of the polyvinylidene fluoride, the presence of barium magnesium ferrite modifies the magnetic property of the composite fiber. The dielectric and magnetic properties at microwave frequency measured using microwave cavity perturbation technique are used to design the reflection as well as absorption based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region. For one of the structures, the simulation indicates that single negative metamaterial structure becomes a double negative metamaterial under the external magnetic field.

  4. Asymmetric bistable reflection and polarization switching in a magnetic nonlinear multilayer structure

    DEFF Research Database (Denmark)

    Tuz, Vladimir R.; Novitsky, Denis V.; Prosvirnin, Sergey L.

    2014-01-01

    Optical properties of one-dimensional photonic structures consisting of Kerr-type nonlinear and magnetic layers under the action of an external static magnetic field in the Faraday geometry are investigated. The structure is a periodic arrangement of alternating nonlinear and magnetic layers (a one...

  5. A Novel Rational Design Method for Laminated Composite Structures Exhibiting Complex Geometrically Nonlinear Buckling Behaviour

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Lund, Erik

    2012-01-01

    This paper presents a novel FEM-based approach for fiber angle optimal design of laminated composite structures exhibiting complicated nonlinear buckling behavior, thus enabling design of lighter and more cost-effective structures. The approach accounts for the geometrically nonlinear behavior...

  6. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    Science.gov (United States)

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  7. Estimating Nonlinear Structural Models: EMM and the Kenny-Judd Model

    Science.gov (United States)

    Lyhagen, Johan

    2007-01-01

    The estimation of nonlinear structural models is not trivial. One reason for this is that a closed form solution of the likelihood may not be feasible or does not exist. We propose to estimate nonlinear structural models using the efficient method of moments, as generating data according to the models is often very easy. A simulation study of the…

  8. Novel Compact Mushroom-Type EBG Structure for Electromagnetic Coupling Reduction of Microstrip Antenna array

    Science.gov (United States)

    Hu, Lizhong; Wang, Guangming; Liang, Jiangang; Zhang, Chenxin

    2015-03-01

    A novel compact electromagnetic bandgap (EBG) structure consisting of two turns complementary spiral resonator (CSR) and conventional mushroom EBG (CM-EBG) structure is introduced to suppress the mutual coupling in antenna arrays for multiple-input and multiple-output (MIMO) applications. Eigenmode calculation is used to investigate the proposed CSR-loaded mushroom-type EBG (MT-EBG), which proved to exhibit bandgap property and a miniaturization of 48.9% is realized compared with the CM-EBG. By inserting the proposed EBG structure between two E-plane coupled microstrip antennas, a mutual coupling reduction of 8.13 dB has been achieved numerically and experimentally. Moreover, the EBG-loaded antenna has better far-field radiation patterns compared with the reference antenna. Thus, this novel EBG structure with advantages of compactness and high decoupling efficiency opens an avenue to new types of antennas with super performances.

  9. Nonlinear Control Structure of Grid Connected Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; Norum, Lars; Ahadpour Shal, Alireza

    2017-01-01

    in the prediction step in order to preserve the stochastic characteristics of a nonlinear system. In order to design adaptive robust control strategy and nonlinear observer, mathematical model of MMC using rotating d-q theory has been used. Digital time-domain simulation studies are carried out in the Matlab/Simulink...

  10. Nonlinear Control Structure of Grid Connected Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; Norum, Lars; Ahadpour Shal, Alireza

    2017-01-01

    in the prediction step in order to preserve the stochastic characteristics of a nonlinear system. In order to design adaptive robust control strategy and nonlinear observer, mathematical model of MMC using rotating d-q theory has been used. Digital time-domain simulation studies are carried out in the Matlab...

  11. Nonlinear evolution of large-scale structure in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Frenk, C.S.; White, S.D.M.; Davis, M.

    1983-08-15

    Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r/sub 0/ = 5.1; its expected value in a neutrino dominated universe is 4(..cap omega..h)/sup -1/ (H/sub 0/ = 100h km s/sup -1/ Mpc/sup -1/). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Ly..cap alpha.. absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with ..cap omega..<1.

  12. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides

    Science.gov (United States)

    Todorova, Nevena; Bentvelzen, Alan; English, Niall J.; Yarovsky, Irene

    2016-02-01

    Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.

  13. Electromagnetic fields generated by constrained rotation of structural blocks in the Earth’s crust

    Science.gov (United States)

    Losseva, T. V.; Kuzmicheva, M. Y.; Spivak, A. A.

    2009-12-01

    Specific features of low frequency electromagnetic impulses in the subsurface Earth’s crust with a low moisture content are defined by the tectonic activity of the region and its structure as well as the stressed-strained state. Electromagnetic effects related to seismic and deformation processes in rocks are very diverse and their physical nature is different. The electric polarization of rocks deserves special attention, since this mechanism is implied in an explosive loading of rocks or relaxation processes in any hierarchic block geophysical medium [1]. The amplitudes of electromagnetic pulses generated by electric currents in a relaxing block-structured stress-strained medium have been obtained by 3D numerical modeling. The source of currents is formed by electric polarization of solids filled inter-block gaps on the active face of a block which, in turn, rotates constrainedly under relaxation. The electric current impulse is defined by the shape of the seismic impulse of the block under relaxation. The block is embedded in the crust. The full system of Maxwell equations in a conductive medium has been solved. The numerical method used has been developed to describe properly the geometry of strain as well as impressed current and conductivity profiles at every time. The figure below presents the maximal amplitudes of electric fields Emax for different active block sizes L (curves 1, 2, 3) versus the relative distances from the source epicenter x/L. Here circles denote the experimental data obtained for the Kurai tectonic structure [1]. We see that the results of numerical simulations are in good agreement with the results of measurements. This proves the validity of our model for the estimation of electric effects in the low moisture rock medium. References: [1] S.P. Soloviev and A.A. Spivak, Doklady Earth Sciences, 2007, Vol. 417A, No. 9, pp. 1449-1453.

  14. Numerical analysis of the superconducting magnet outer vessel of a Maglev train by a structural and electromagnetic coupling method

    Science.gov (United States)

    Matsue, H.; Demachi, K.; Miya, K.

    2001-09-01

    The harmonic magnetic field generated by the ground coils can cause vibration of the superconducting magnet, which must be reduced as it generates heat in the liquid helium temperature range. Therefore, it is important for the design of lighter magnets to exactly estimate the electromagnetic force on the superconducting magnet. Some causes of the vibration were analyzed by the structural and electromagnetic coupling FEM-BEM method.

  15. Electromagnetic and muonic structure of showers initiated by gamma-rays and by hadrons

    Science.gov (United States)

    Hillas, A. M.

    1985-01-01

    If photon cascades develop by the usual mechanisms, there should indeed be notable differences between the structure of showers due to photon and hadron primaries, as regards muon densities and lateral distributions of some detector signals. The muon content of showers from Cygnus X-3, observed at Kiel, cannot be understood in this way. One remedy is to postulate arbitrarily a strong hadronic interaction of photons in the TeV region. This would utterly change the nature of electromagnetic cascades, but surprisingly does not at first sight seem to be in conflict with air shower observations.

  16. Structure and properties of gray iron casted in the electromagnetic field

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2009-07-01

    Full Text Available In the national [1] and foreign [2] literature the methods of improving the homogeneity of the structure of castings using forced convection of the solidifying metal in the casting mould or the crystallizer are presented. This article presents the influence of chosen parameters of the rotating electromagnetic filed that is forcing the movement of melted metal in the mould on the morphology of graphite and the abrasive wear of the grey cast iron. The effect of this examination is the obtained modification of the flake graphite divisions morphology and a alteration of the abrasive wear resistance of the castings manufactured this way.

  17. Coupling of electromagnetic and structural dynamics for a wind turbine generator

    Science.gov (United States)

    Matzke, D.; Rick, S.; Hollas, S.; Schelenz, R.; Jacobs, G.; Hameyer, K.

    2016-09-01

    This contribution presents a model interface of a wind turbine generator to represent the reciprocal effects between the mechanical and the electromagnetic system. Therefore, a multi-body-simulation (MBS) model in Simpack is set up and coupled with a quasi-static electromagnetic (EM) model of the generator in Matlab/Simulink via co-simulation. Due to lack of data regarding the structural properties of the generator the modal properties of the MBS model are fitted with respect to results of an experimental modal analysis (EMA) on the reference generator. The used method and the results of this approach are presented in this paper. The MB S model and the interface are set up in such a way that the EM forces can be applied to the structure and the response of the structure can be fed back to the EM model. The results of this cosimulation clearly show an influence of the feedback of the mechanical response which is mainly damping in the torsional degree of freedom and effects due to eccentricity in radial direction. The accuracy of these results will be validated via test bench measurements and presented in future work. Furthermore it is suggested that the EM model should be adjusted in future works so that transient effects are represented.

  18. Nonlinear density fluctuation field theory for large scale structure

    Institute of Scientific and Technical Information of China (English)

    Yang Zhang; Hai-Xing Miao

    2009-01-01

    We develop an effective field theory of density fluctuations for a Newtonian self-gravitating N-body system in quasi-equilibrium and apply it to a homogeneous uni-verse with small density fluctuations. Keeping the density fluctuations up to second or-der, we obtain the nonlinear field equation of 2-pt correlation ξ(r), which contains 3-pt correlation and formal ultra-violet divergences. By the Groth-Peebles hierarchical ansatz and mass renormalization, the equation becomes closed with two new terms beyond the Gaussian approximation, and their coefficients are taken as parameters. The analytic solu-tion is obtained in terms of the hypergeometric functions, which is checked numerically.With one single set of two fixed parameters, the correlation ξ(r) and the corresponding power spectrum P(k) simultaneously match the results from all the major surveys, such as APM, SDSS, 2dfGRS, and REFLEX. The model gives a unifying understanding of several seemingly unrelated features of large scale structure from a field-theoretical per-spective. The theory is worth extending to study the evolution effects in an expanding universe.

  19. Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics

    CERN Document Server

    2016-01-01

    This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...

  20. Analysis of electromagnetic scattering by nearly periodic structures: an LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William Arthur; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wilton, Donald R. (University of Houston, Houston, TX); Basilio, Lorena I.; Peters, David William; Capolino, F. (University of Houston, Houston, TX)

    2006-10-01

    In this LDRD we examine techniques to analyze the electromagnetic scattering from structures that are nearly periodic. Nearly periodic could mean that one of the structure's unit cells is different from all the others--a defect. It could also mean that the structure is truncated, or butted up against another periodic structure to form a seam. Straightforward electromagnetic analysis of these nearly periodic structures requires us to grid the entire structure, which would overwhelm today's computers and the computers in the foreseeable future. In this report we will examine various approximations that allow us to continue to exploit some aspects of the structure's periodicity and thereby reduce the number of unknowns required for analysis. We will use the Green's Function Interpolation with a Fast Fourier Transform (GIFFT) to examine isolated defects both in the form of a source dipole over a meta-material slab and as a rotated dipole in a finite array of dipoles. We will look at the numerically exact solution of a one-dimensional seam. In order to solve a two-dimensional seam, we formulate an efficient way to calculate the Green's function of a 1d array of point sources. We next formulate ways of calculating the far-field due to a seam and due to array truncation based on both array theory and high-frequency asymptotic methods. We compare the high-frequency and GIFFT results. Finally, we use GIFFT to solve a simple, two-dimensional seam problem.

  1. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, Randall L.; Pacini, Benjamin Robert; Roettgen, Dan

    2016-01-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.

  2. Multipolar nonlinear nanophotonics

    CERN Document Server

    Smirnova, Daria

    2016-01-01

    Nonlinear nanophotonics is a rapidly developing field with many useful applications for a design of nonlinear nanoantennas, light sources, nanolasers, sensors, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. Thus, both modal and multipolar analyses are widely exploited for engineering nonlinear scattering from resonant nanoscale elements, in particular for enhancing the near-field interaction, tailoring the far-field multipolar interference, and optimization of the radiation directionality. Here, we review the recent advances in this recently emerged research field ranging from metallic structures exhibiting localized plasmonic resonances to hybrid metal-dielectric and all-dielectric...

  3. The emergence of a coherent structure for coherent structures: localized states in nonlinear systems

    OpenAIRE

    Dawes, Jonathan

    2010-01-01

    Coherent structures emerge from the dynamics of many kinds of dissipative, externally driven, nonlinear systems, and continue to provoke new questions that challenge our physical and mathematical understanding. In one specific sub-class of such problems, where a pattern-forming, or `Turing', instability occurs, rapid progress has been made recently in our understanding of the formation of localized states: patches of regular pattern surrounded by the unpatterned homogeneous background state. ...

  4. Nonlinear Kalman Filtering in Affine Term Structure Models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris;

    2014-01-01

    The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... with that of the particle filter. We analyze the cross section of swap rates, which are mildly nonlinear in the states, and cap prices, which are highly nonlinear. When caps are used to filter the states, the unscented Kalman filter significantly outperforms its extended counterpart. The unscented Kalman filter also...

  5. Advanced Seismic Fragility Modeling using Nonlinear Soil-Structure Interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talaat, Mohamed [Simpson-Gupertz & Heger, Waltham, MA (United States); Hashimoto, Philip [Simpson-Gupertz & Heger, Waltham, MA (United States)

    2015-09-01

    The goal of this effort is to compare the seismic fragilities of a nuclear power plant system obtained by a traditional seismic probabilistic risk assessment (SPRA) and an advanced SPRA that utilizes Nonlinear Soil-Structure Interaction (NLSSI) analysis. Soil-structure interaction (SSI) response analysis for a traditional SPRA involves the linear analysis, which ignores geometric nonlinearities (i.e., soil and structure are glued together and the soil material undergoes tension when the structure uplifts). The NLSSI analysis will consider geometric nonlinearities.

  6. Structural Identification of Nonlinear Static System on Basis of Analysis Sector Sets

    Directory of Open Access Journals (Sweden)

    Nikolay Karabutov

    2013-12-01

    Full Text Available Methods of structural identification of static systems with a vector input and several nonlinearities in the conditions of uncertainty are considered. We consider inputs irregular. The concept of structural space is introduced. In this space special structures (virtual portraits are analyzed. The Holder condition is applied to construction of sector set, to which belongs a virtual portrait of system of identification. Criteria of decision-making on a class of nonlinear functions on the basis of the analysis of proximity of sector sets are described. Procedures of an estimation of structural parameters of two classes of nonlinearities are stated: power and a hysteresis.

  7. Spirulina-Templated Metal Microcoils with Controlled Helical Structures for THz Electromagnetic Responses

    Science.gov (United States)

    Kamata, Kaori; Piao, Zhenzi; Suzuki, Soichiro; Fujimori, Takahiro; Tajiri, Wataru; Nagai, Keiji; Iyoda, Tomokazu; Yamada, Atsushi; Hayakawa, Toshiaki; Ishiwara, Mitsuteru; Horaguchi, Satoshi; Belay, Amha; Tanaka, Takuo; Takano, Keisuke; Hangyo, Masanori

    2014-05-01

    Microstructures in nature are ultrafine and ordered in biological roles, which have attracted material scientists. Spirulina forms three-dimensional helical microstructure, one of remarkable features in nature beyond our current processing technology such as lithography in terms of mass-productivity and structural multiplicity. Spirulina varies its diameter, helical pitch, and/or length against growing environment. This unique helix is suggestive of a tiny electromagnetic coil, if composed of electro-conductive metal, which brought us main concept of this work. Here, we describe the biotemplating process onto Spirulina surface to fabricate metal microcoils. Structural parameters of the microcoil can be controlled by the cultivation conditions of Spirulina template and also purely one-handed microcoil can be fabricated. A microcoil dispersion sheet exhibited optically active response attributed to structural resonance in terahertz-wave region.

  8. Model structural uncertainty quantification and hydrogeophysical data integration using airborne electromagnetic data (Invited)

    DEFF Research Database (Denmark)

    Minsley, Burke; Christensen, Nikolaj Kruse; Christensen, Steen

    Detailed estimates of physical property distributions- such as electrical resistivity- are common end products of geophysical surveys, but are often of limited use for the geologist, hydrologist, or resource manager who is tasked with making decisions based on these data. Here, we focus on the use...... of airborne electromagnetic (AEM) data to estimate large-scale model structural geometry, i.e. the spatial distribution of different lithological units based on assumed or estimated resistivity-lithology relationships, and the uncertainty in those structures given imperfect measurements. Geophysically derived...... that illustrate the complete workflow from geophysical parameter uncertainty analysis to the impact of model structural uncertainty on hydrologic parameter estimates. We also discuss some of the computational challenges associated with application to large AEM surveys with many thousands of data locations....

  9. Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Lund, Erik

    2011-01-01

    , benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems...... solved using gradient based techniques. The developed local criterion is formulated such it captures nonlinear effects upon loading and proves useful for both analysis purposes and as a criterion for use in nonlinear buckling optimization. © 2010 Springer-Verlag....

  10. Nonlinear reshaping of terahertz pulses with graphene metamaterials

    Science.gov (United States)

    Rapoport, Yu.; Grimalsky, V.; Iorsh, I.; Kalinich, N.; Koshevaya, S.; Castrejon-Martinez, Ch.; Kivshar, Yu. S.

    2013-12-01

    We study the propagation of electromagnetic waves through a slab of graphene metamaterial composed of the layers of graphene separated by dielectric slabs. Starting from the kinetic expression for two-dimensional electric current in graphene, we derive a novel equation describing the nonlinear propagation of terahertz electromagnetic pulses through the layered graphene-dielectric structure in the presence of losses and non-linearities. We demonstrate strong nonlinearity-induced reshaping of transmitted and reflected terahertz pulses through the interaction with the thin multilayer graphene metamaterial structure.

  11. Tailor-Made Distribution of Nanoparticles in Blend Structure toward Outstanding Electromagnetic Interference Shielding.

    Science.gov (United States)

    Biswas, Sourav; Kar, Goutam Prasanna; Bose, Suryasarathi

    2015-11-18

    Engineering blend structure with tailor-made distribution of nanoparticles is the prime requisite to obtain materials with extraordinary properties. Herein, a unique strategy of distributing nanoparticles in different phases of a blend structure has resulted in >99% blocking of incoming electromagnetic (EM) radiation. This is accomplished by designing a ternary polymer blend structure using polycarbonate (PC), poly(vinylidene fluoride) (PVDF), and poly(methyl methacrylate) (PMMA) to simultaneously improve the structural, electrical, and electromagnetic interference shielding (EMI). The blend structure was made conducting by preferentially localizing the multi-wall nanotubes (MWNTs) in the PVDF phase. By taking advantage of "π-π stacking" MWNTs was noncovalently modified with an imidazolium based ionic liquid (IL). Interestingly, the enhanced dispersion of IL-MWNTs in PVDF improved the electrical conductivity of the blends significantly. While one key requisite to attenuate EM radiation (i.e., electrical conductivity) was achieved using MWNTs, the magnetic properties of the blend structure was tuned by introducing barium ferrite (BaFe) nanoparticles, which can interact with the incoming EM radiation. By suitably modifying the surface of BaFe nanoparticles, we can tailor their localization under the macroscopic processing condition. The precise localization of BaFe nanoparticles in the PC phase, due to nucleophilic substitution reaction, and the MWNTs in the PVDF phase not only improved the conductivity but also facilitated in absorption of the incoming microwave radiation due to synergetic effect from MWNT and BaFe. The shielding effectiveness (SE) was measured in X and Ku band, and an enhanced SE of -37 dB was noted at 18 GHz frequency. PMMA, which acted as an interfacial modifier in PC/PVDF blends further, resulting in a significant enhancement in the mechanical properties besides retaining high SE. This study opens a new avenue in designing mechanically strong

  12. Analysis of Dynamic Model of a Structure with Nonlinear Damped Behavior

    Directory of Open Access Journals (Sweden)

    G. Domairry

    2010-04-01

    Full Text Available In this work, it has been attempted to analytically treat the nonlinear behavior of structures. Since analysing nonlinear problems is of great difficulty, different numerical methods and software are advised to treat such problems. Despite the increasing expenses of building structures to maintain their linear behavior, nonlinearity has been inevitable, and therefore, nonlinear analysis has beenof great importance to the scientists in the field. As structures confront lateral forces and intense earthquakes especially near fault regions, a part of the structure remains linear, but some part of itbehaves nonlinearly for example dampers, columns and beams. This is simulated by a damped in nonlinear oscillator. In this paper, the nonlinear equation of oscillator with damping which has nonlinear behavior is representative of the dynamic behavior of a structure has been solved analytically. In the end, the obtained results are compared with numerical ones and shown in graphs and in tables;analytical solutions are in good agreement with those of the numerical method.

  13. Damage detection in structures through nonlinear excitation and system identification

    Science.gov (United States)

    Hajj, Muhammad R.; Bordonaro, Giancarlo G.; Nayfeh, Ali H.; Duke, John C., Jr.

    2008-03-01

    Variations in parameters representing natural frequency, damping and effective nonlinearities before and after damage initiation in a beam carrying a lumped mass are assessed. The identification of these parameters is performed by exploiting and modeling nonlinear behavior of the beam-mass system and matching an approximate solution of the representative model with quantities obtained from spectral analysis of measured vibrations. The representative model and identified coefficients are validated through comparison of measured and predicted responses. Percentage variations of the identified parameters before and after damage initiation are determined to establish their sensitivities to the state of damage of the beam. The results show that damping and effective nonlinearity parameters are more sensitive to damage initiation than the system's natural frequency. Moreover, the sensitivity of nonlinear parameters to damage is better established using a physically-derived parameter rather than spectral amplitudes of harmonic components.

  14. Indications of nonlinear structures in brain electrical activity

    Science.gov (United States)

    Gautama, Temujin; Mandic, Danilo P.; van Hulle, Marc M.

    2003-04-01

    The dynamical properties of electroencephalogram (EEG) segments have recently been analyzed by Andrzejak and co-workers for different recording regions and for different brain states, using the nonlinear prediction error and an estimate of the correlation dimension. In this paper, we further investigate the nonlinear properties of the EEG signals using two established nonlinear analysis methods, and introduce a “delay vector variance” (DVV) method for better characterizing a time series. The proposed DVV method is shown to enable a comprehensive characterization of the time series, allowing for a much improved classification of signal modes. This way, the analysis of Andrzejak and co-workers can be extended toward classification of different brain states. The obtained results comply with those described by Andrzejak et al., and provide complementary indications of nonlinearity in the signals.

  15. Nonlinear characterization of a bolted, industrial structure using a modal framework

    Science.gov (United States)

    Roettgen, Daniel R.; Allen, Matthew S.

    2017-02-01

    This article presents measurements from a sub assembly of an off-the-shelf automotive exhaust system containing a bolted-flange connection and uses a recently proposed modal framework to develop a nonlinear dynamic model for the structure. The nonlinear identification and characterization methods used are reviewed to highlight the strengths of the current approach and the areas where further development is needed. This marks the first use of these new testing and nonlinear identification tools, and the associated modal framework, on production hardware with a realistic joint and realistic torque levels. To screen the measurements for nonlinearities, we make use of a time frequency analysis routine designed for transient responses called the zeroed early-time fast Fourier transform (ZEFFT). This tool typically reveals the small frequency shifts and distortions that tend to occur near each mode that is affected by the nonlinearity. The damping in this structure is found to be significantly nonlinear and a Hilbert transform is used to characterize the damping versus amplitude behavior. A model is presented that captures these effects for each mode individually (e.g. assuming negligible nonlinear coupling between modes), treating each mode as a single degree-of-freedom oscillator with a spring and viscous damping element in parallel with a four parameter Iwan model. The parameters of this model are identified for each of the structure's modes that exhibited nonlinearity and the resulting nonlinear model is shown to capture the stiffness and damping accurately over a large range of response amplitudes.

  16. Influence analysis of structural parameters and operating parameters on electromagnetic properties of HTS linear induction motor

    Science.gov (United States)

    Fang, J.; Sheng, L.; Li, D.; Zhao, J.; Li, Sh.; Qin, W.; Fan, Y.; Zheng, Q. L.; Zhang, W.

    A novel High Temperature Superconductor Linear Induction Motor (HTS LIM) is researched in this paper. Since the critical current and the electromagnetic force of the motor are determined mainly by the primary slot leakage flux, the main magnetic flux and eddy current respectively, in order to research the influence of structural parameters and operating parameters on electromagnetic properties of HTS LIM, the motor was analyzed by 2D transient Finite Element Method (FEM). The properties of the motor, such as the maximum slot leakage flux density, motor thrust, motor vertical force and critical current are analyzed with different structural parameters and operating parameters. In addition, an experimental investigation was carried out on prototype HTS motor. Electrical parameters were deduced from these tests and also compared with the analysis results from FEM. AC losses of one HTS coil in the motor were measured and AC losses of all HTS coils in HTS LIM were estimated. The results in this paper could provide reference for the design and research on the HTS LIM.

  17. Bound state structure and electromagnetic form factor beyond the ladder approximation

    CERN Document Server

    Gigante, V; Ydrefors, E; Gutierrez, C; Karmanov, V A; Frederico, T

    2016-01-01

    We investigate the response of the bound state structure of a two-boson system, within a Yukawa model with a scalar boson exchange, to the inclusion of the cross-ladder contribution to the ladder kernel of the Bethe-Salpeter equation. The equation is solved by means of the Nakanishi integral representation and light-front projection. The valence light-front wave function and the elastic electromagnetic form factor beyond the impulse approximation, with the inclusion of the two-body current, generated by the cross-ladder kernel, are computed. The valence wave function and electromagnetic form factor, considering both ladder and ladder plus cross-ladder kernels, are studied in detail. Their asymptotic forms are found to be quite independent of the inclusion of the cross-ladder kernel, for a given binding energy. The asymptotic decrease of form factor agrees with the counting rules. This analysis can be generalized to fermionic systems, with a wide application in the study of the meson structure.

  18. Electromagnetic wave control of ceramic/resin photonic crystals with diamond structure

    Directory of Open Access Journals (Sweden)

    Soshu Kirihara, Mitsuo Takeda, Kazuaki Sakoda and Yoshinari Miyamoto

    2004-01-01

    Full Text Available Millimeter-order photonic crystals with the periodic arrangement of the dielectric constant were fabricated by infiltrating the mixed slurry of ceramics and polyester into the epoxy molds with an inverse form of a diamond structure. The epoxy molds are designed and processed by using a CAD/CAM process of stereolithography. The photonic crystals were prepared to have the diamond structure of the ceramic/polyester composite lattice, which is embedded in the epoxy matrix. The ceramic powders mixed with polyester are TiO2, SrTiO3, and BaTiO3 with high dielectric constant. It is possible to control more freely and widely the dielectric constant of the photonic crystals by this method. These ceramic/resin photonic crystals formed the complete photonic band gaps in the microwave band of 7–11 GHz, which can totally reflect the electromagnetic wave for all crystal directions. Attenuation profiles of the transmission amplitude in the band gaps were controlled with the dielectric constant of the composite lattice. The obtained results fairly agreed with the theoretical simulation of the electromagnetic wave propagation through photonic crystals.

  19. Structural analysis of composite wind turbine blades nonlinear mechanics and finite element models with material damping

    CERN Document Server

    Chortis, Dimitris I

    2013-01-01

    This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...

  20. A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm

    Science.gov (United States)

    Chen, G.; Chacón, L.

    2015-12-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. Here, we explore a fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space-time-centered, employing particle sub-cycling and orbit-averaging. The algorithm conserves total energy, local charge, canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D-3V.

  1. Experimental Detection and Quantification of Structural Nonlinearity Using Homogeneity and Hilbert Transform Methods

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Thomsen, Jon Juel; Tcherniak, Dmitri

    2010-01-01

    exists. The present study suggests a framework for the detection of structural nonlinearities. Two methods for detection are compared, the homogeneity method and a Hilbert transform based method. Based on these two methods, a nonlinearity index is suggested. Through simulations and laboratory experiments...

  2. Nonlinear Super Integrable Couplings of Super Dirac Hierarchy and Its Super Hamiltonian Structures

    Institute of Scientific and Technical Information of China (English)

    尤福财

    2012-01-01

    We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra. Then its super Hamiltonian structure is furnished by super trace identity. As its reduction, we gain the nonlinear integrable couplings of the classical integrable Dirac hierarchy.

  3. The influence of and the identification of nonlinearity in flexible structures

    Science.gov (United States)

    Zavodney, Lawrence D.

    1988-01-01

    Several models were built at NASA Langley and used to demonstrate the following nonlinear behavior: internal resonance in a free response, principal parametric resonance and subcritical instability in a cantilever beam-lumped mass structure, combination resonance in a parametrically excited flexible beam, autoparametric interaction in a two-degree-of-freedom system, instability of the linear solution, saturation of the excited mode, subharmonic bifurcation, and chaotic responses. A video tape documenting these phenomena was made. An attempt to identify a simple structure consisting of two light-weight beams and two lumped masses using the Eigensystem Realization Algorithm showed the inherent difficulty of using a linear based theory to identify a particular nonlinearity. Preliminary results show the technique requires novel interpretation, and hence may not be useful for structural modes that are coupled by a guadratic nonlinearity. A literature survey was also completed on recent work in parametrically excited nonlinear system. In summary, nonlinear systems may possess unique behaviors that require nonlinear identification techniques based on an understanding of how nonlinearity affects the dynamic response of structures. In this was, the unique behaviors of nonlinear systems may be properly identified. Moreover, more accutate quantifiable estimates can be made once the qualitative model has been determined.

  4. Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes

    DEFF Research Database (Denmark)

    Dou, Suguang; Jensen, Jakob Søndergaard

    2016-01-01

    /softening behavior of nonlinear mechanical systems. The iterative optimization procedure consists of calculation of nonlinear normal modes, solving an adjoint equation system for sensitivity analysis and an update of design variables using a mathematical programming tool. We demonstrate the method with examples......Devices that exploit essential nonlinear behavior such as hardening/softening and inter-modal coupling effects are increasingly used in engineering and fundamental studies. Based on nonlinear normal modes, we present a gradient-based structural optimization method for tailoring the hardening...

  5. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    Science.gov (United States)

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively.

  6. Weakly nonlinear dispersion and stop-band effects for periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    Continua and structures composed of periodically repeated elements (cells) are used in many fields of science and technology. Examples of continua are composite materials, consisting of alternating volumes of substances with different properties, mechanical filters and wave guides. Examples of en...... suggested. The work is carried out with financial support from the Danish Council for Independent Research and COFUND: DFF – 1337-00026...... of these methods for studying nonlinear problems isimpossible or cumbersome, since Floquet theory is applicable only for linear systems. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applications may demand effects of nonlinearity on structural response...

  7. A spiral passive electromagnetic sensor (SPES) for wireless and wired structural health monitoring

    Science.gov (United States)

    Iervolino, Onorio; Meo, Michele

    2016-04-01

    A major goal of structural health monitoring (SHM) in the past decade has been to improve crack detection and monitoring while reducing maintenance and installation costs. This would normally require placing many sensors over a large area, powering and interrogating them. On the other hand, operational aspects such as the temperature effects, battery life, and weight penalties have fundamental roles in the sensor design. In addition, small dimension of the sensors, low cost, and non-contact measurement system for data retrieval are very often required. We present a non-destructive evaluation/structural health monitoring (NDE/SHM) sensor that can be remotely interrogated without any wiring for data transmission or power supply. A spiral passive electromagnetic sensor (SPES) was designed and fabricated. The sensor is a planar 2D inductor circuit of scalable size that resonates at a characteristic frequency when exposed to an electromagnetic field. The specific frequency is dependent on the inductance of the inductor, its parasitic capacitance and resistance, and the electrical properties of the surrounding area. A change in a material’s permittivity or permeability due to damage can be sensed through the SPES device. The sensor was tested by using a passive wireless resonant telemetry scheme and a wired interrogation method. Both conductive (i.e. carbon fiber) and non-conductive (i.e. fiber glass) structures were monitored showing very promising capabilities and accuracy in detecting defects/damage in composite structures. The use of the proposed sensor eliminates the need for on-board power and exposed interconnects, reduces the instrumentation mass and volume, increases the reliability due to the continuous operation even in case of a damaged sensor, and increases the life of the device.

  8. Nonlinear system identification in structural dynamics: 10 more years of progress

    Science.gov (United States)

    Noël, J. P.; Kerschen, G.

    2017-01-01

    Nonlinear system identification is a vast research field, today attracting a great deal of attention in the structural dynamics community. Ten years ago, an MSSP paper reviewing the progress achieved until then [1] concluded that the identification of simple continuous structures with localised nonlinearities was within reach. The past decade witnessed a shift in emphasis, accommodating the growing industrial need for a first generation of tools capable of addressing complex nonlinearities in larger-scale structures. The objective of the present paper is to survey the key developments which arose in the field since 2006, and to illustrate state-of-the-art techniques using a real-world satellite structure. Finally, a broader perspective to nonlinear system identification is provided by discussing the central role played by experimental models in the design cycle of engineering structures.

  9. A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm

    CERN Document Server

    Chen, Guangye

    2015-01-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. Here, we explore a fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space-time-centered, employing particle sub-cycling and orbit-averaging. The algorithm conserves total energy, local charge, canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large time steps and cell sizes, which are determined by accuracy consid...

  10. Structural and ultrastructural study of rat liver influenced by electromagnetic radiation.

    Science.gov (United States)

    Holovská, K; Almášiová, V; Cigánková, V; Beňová, K; Račeková, E; Martončíková, M

    2015-01-01

    Mobile communication systems are undoubtedly an environmental source of electromagnetic radiation (EMR). There is an increasing concern regarding the interactions of EMR with the humans. The aim of this study was to examine the effects of EMR on Wistar rat liver. Mature rats were exposed to electromagnetic field of frequency 2.45 GHz and mean power density of 2.8 mW/cm2 for 3 h/d for 3 wk. Samples of the liver were obtained 3 h after the last irradiation and processed histologically for light and transmission electron microscopy. Data demonstrated the presence of moderate hyperemia, dilatation of liver sinusoids, and small inflammatory foci in the center of liver lobules. Structure of hepatocytes was not altered and all described changes were classified as moderate. Electron microscopy of hepatocytes revealed vesicles of different sizes and shapes, lipid droplets, and proliferation of smooth endoplasmic reticulum. Occasionally necrotizing hepatocytes were observed. Our observations demonstrate that EMR exposure produced adverse effects on rat liver.

  11. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    Science.gov (United States)

    Paddubskaya, A.; Valynets, N.; Kuzhir, P.; Batrakov, K.; Maksimenko, S.; Kotsilkova, R.; Velichkova, H.; Petrova, I.; Biró, I.; Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P.

    2016-04-01

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8-15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  12. A NUMERICAL METHOD FOR SIMULATING NONLINEAR FLUID-RIGID STRUCTURE INTERACTION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    XingJ.T; PriceW.G; ChenY.G

    2005-01-01

    A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-Lagrangian-Eulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.

  13. Investigations of the structure and electromagnetic interactions of few-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.

    1992-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the George Washington University (GWU) theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions axe the issue, numerically accurate calculations axe always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art fewbody calculations that wig serve as a means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics.

  14. BACKGROUNDS OF EXPERIMENTAL INVESTIGATION OF ELECTROMAGNETIC COMPATIBILITY OF TRACTION ASYNCHRONOUS ELECTRIC DRIVES IN THE STRUCTURE OF DC TRACTION POWER SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    YU. S. Bondarenko

    2014-04-01

    Full Text Available Purpose. Application of physical modeling as a tool for research of any events or systems is becoming more widespread, including the field of railway transport. At the same time the adequacy of results that can be obtained, depends largely on the similarity degree of the physical model to real system. From the standpoint of the traction asynchronous electric drive (TAED research together with the traction power supply system research, the similarity can not be determined by the direct proportion of the parameters, because the processes nature accompanying the operation of these systems is non-linear. These features should be taken into account in the experimental setup, the basis for constructing of which is establishing of the system similarity that defines the purpose of this paper. Methodology. At the heart of the experimental setup creation laid reproduction of processes of energy transformation in the system of the DC traction power supply. Determination of the similarity degree of the proposed facility to the real system was carried out using the basic theorems of the similarity theory, their additional provisions on the complexity and nonlinear systems, as well as elements of mathematical analysis. Findings. According to the results of work: 1 The block diagram, the energy conversion mechanism of which is similar to the real system was received. This scheme is the basis of experimental setup, built in the future for the study of electromagnetic compatibility of TAED in the structure of DC traction electric power supply system. 2 Similarity of obtained structural scheme with the real system with the mechanism definition of calculating the scaling relations was established. Originality. In the process of establishing the similarity a simplified method for determining the scaling relations for nonlinear systems was suggested. They are identical in their structure components, but have different capacities. Practical value. Experimental

  15. Generation of higher order nonclassical states via interaction of intense electromagnetic field with third order nonlinear medium

    CERN Document Server

    Pathak, A

    2006-01-01

    Interaction of intense laser beam with an inversion symmetric third order nonlinear medium is modeled as a quartic anharmonic oscillator. A first order operator solution of the model Hamiltonian is used to study the possibilities of generation of higher order nonclassical states. It is found that the higher order squeezed and higher order antibunched states can be produced by this interaction. It is also shown that the higher order nonclassical states may appear separately, i.e. a higher order antibunched state is not essentially higher order squeezed state and vice versa.

  16. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field

    Science.gov (United States)

    Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.

    2017-03-01

    In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.

  17. Generalized Dromion Structures of New (2 + 1)-Dimensional Nonlinear EvolutionEquation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie-Fang

    2001-01-01

    We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this system are released.

  18. PATH INTEGRAL SOLUTION OF NONLINEAR DYNAMIC BEHAVIOR OF STRUCTURE UNDER WIND EXCITATION

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wind load was modeled as the Ito' s stochastic differential equation. The state vector associated with such a model is a diffusion process. A continuous linearization strategy in the time-domain was adopted.Based on the solution series of its stochastic linearization equations, the formal probabilistic density of the structure response was developed by the path integral technique. It is shown by the numerical example of a guyed mast that compared with the frequency-domain method and the time-domain nonlinear analysis, the proposed approach is highlighted by high accuracy and effectiveness. The influence of the structure non-linearity on the dynamic reliability assessment is also analyzed in the example.

  19. Nonlinear variable structure excitation and steam valving controllers for power system stability

    Institute of Scientific and Technical Information of China (English)

    Ben WANG; Zongyuan MAO

    2009-01-01

    A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper.On the basis of the classical dynamic equations of a generator,excitation control and steam valving control are si-multaneously considered.Design of these controllers combines the differential geometry theory with the variable structure controlling theory.The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant.The dynamic performance of the nonlinear variable structure controllers proposed for a single ma-chine connected to an infinite bus power system is simulated.Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.

  20. Longtime dynamics of the quasi-linear wave equations with structural damping and supercritical nonlinearities

    Science.gov (United States)

    Yang, Zhijian; Liu, Zhiming

    2017-03-01

    The paper investigates the well-posedness and the longtime dynamics of the quasilinear wave equations with structural damping and supercritical nonlinearities: {{u}tt}- Δ u+{{≤ft(- Δ \\right)}α}{{u}t}-\

  1. Bifurcation of Positive Equilibria in Nonlinear Structured Population Models with Varying Mortality Rates

    CERN Document Server

    Walker, Christoph

    2010-01-01

    A parameter-dependent model involving nonlinear diffusion for an age-structured population is studied. The parameter measures the intensity of the mortality. A bifurcation approach is used to establish existence of positive equilibrium solutions.

  2. As-cast structure of DC casting 7075 aluminum alloy obtained under dual-frequency electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    Zhi-hao Zhao; Zhen Xu; Gao-song Wang; Qing-feng Zhu; Jian-zhong Cui

    2014-01-01

    We have experimentally determined the as-cast structures of semi-continuous casting 7075 aluminum alloy obtained in the pres-ence of dual-frequency electromagnetic field. Results suggest that the use of dual-frequency electromagnetic field during the semi-continuous casting process of 7075 aluminum alloy ingots reduces the thickness of the surface segregation layer, increases the height of the melt menis-cus, enhances the surface quality of the ingot, and changes the surface morphology of the melt pool. Moreover, low-frequency electromag-netic field was found to show the most obvious influence on improving the as-cast structure because of its high permeability in conductors.

  3. Long term structural dynamics of mechanical systems with local nonlinearities

    NARCIS (Netherlands)

    Fey, R.H.B.; Campen, D.H. van; Kraker, A. de

    1996-01-01

    This paper deals with the long term behavior of periodically excited mechanical systems consisting of linear components and local nonlinearities. The number of degrees of freedom of the linear components is reduced by applying a component mode synthesis technique. Lyapunov exponents are used to iden

  4. Resonances in nonlinear structure vibrations under multifrequency excitations

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassiouny, A F [Faculty of Science, Mathematics Department, Benha University, Benha 1358 (Egypt); El-Latif, G M Abd [Faculty of Science, Mathematics Department, Sohag University, Sohag (Egypt)

    2006-10-15

    The response of a single-degree-of-freedom system with quadratic, cubic and quartic nonlinearities subjected to a sinusoidal excitation that involves multiple frequencies is considered. The method of multiple scales is used to construct a first order uniform expansion yielding two first-order nonlinear ordinary differential equations that are derived for the evolution of the amplitude and phase. These oscillations involve a subharmonic oscillation of order one-fourth and superharmonic oscillation of order two. Steady state responses and their stability are computed for selected values of the system parameters. The effects of these (quadratic, cubic, and quartic) nonlinearities on these oscillations are specifically investigated. With this study, it has been verified that the qualitative effects of these nonlinearities are different. Regions of hardening (softening) behaviour of the system exist for the case of subharmonic resonance. The response curve is not affected by decreasing the damping factor for the case of superharmonic resonance. It is shown that the response curve contracts or expands as the parameters vary. The multivalued region increases or decreases when some parameters vary.

  5. Note About Hamiltonian Structure of Non-Linear Massive Gravity

    CERN Document Server

    Kluson, J

    2011-01-01

    We perform the Hamiltonian analysis of non-linear massive gravity action studied recently in arXiv:1106.3344 [hep-th]. We show that the Hamiltonian constraint is the second class constraint. As a result the theory possesses an odd number of the second class constraints and hence all non physical degrees of freedom cannot be eliminated.

  6. Structure and Asymptotic theory for Nonlinear Models with GARCH Errors

    NARCIS (Netherlands)

    F. Chan (Felix); M.J. McAleer (Michael); M.C. Medeiros (Marcelo)

    2011-01-01

    textabstractNonlinear time series models, especially those with regime-switching and conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with li

  7. Nonlinear analysis of a structure loaded by a stochastic excitation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    For a non-linear system excited by a stochastic load which is expressed as a time series, a recursive method based on the Z-transform is presented. To identify the obtained response time series, a discrete wavelet transform (DWT) technique is proposed.

  8. Control strategies and experimental verifications of the electromagnetic mass damper system for structural vibration control

    Institute of Scientific and Technical Information of China (English)

    Zhang Chunwei; Ou Jinping

    2008-01-01

    The electromagnetic mass damper (EMD) control system, as an innovative active control system to reducestructural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems. In this paper,studies of several EMD control strategies and bench-scale shaking table tests of a two-story model structure are described.First, two structural models corresponding to uncontrolled and Zeroed cases are developed, and parameters of these modelsare validated through sinusoidal sweep tests to provide a basis for establishing an accurate mathematical model for furtherstudies. Then, a simplified control strategy for the EMD system based on the pole assignment control algorithm is proposed.Moreover, ideal pole locations are derived and validated through a series of shaking table tests. Finally, three benchmarkearthquake ground motions and sinusoidal sweep waves are imposed onto the structure to investigate the effectiveness andfeasibility of using this type of innovative active control system for structural vibration control. In addition, the robustnessof the EMD system is examined. The test results show that the EMD system is an effective and robust system for the controlof structural vibrations.

  9. Solidification Structure of Continuous Casting Large Round Billets under Mold Electromagnetic Stirring

    Institute of Scientific and Technical Information of China (English)

    Tao SUN; Feng YUE; Hua-jie WU; Chun GUO; Ying LI; Zhong-cun MA

    2016-01-01

    The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software.The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS)conditions (current of 300 A and frequency of 3 Hz).There-after,the solidification structures of the large round billet were investigated under different superheats,casting speeds,and secondary cooling intensities.Finally,the effect of the MEMS current on the solidification structures was obtained under fixed superheat,casting speed,secondary cooling intensity,and MEMS frequency.The model accurately simulated the actual solidification structures of any steel,regardless of its size and the parameters used in the continuous casting process.The ratio of the central equiaxed grain zone was found to increase with decreasing su-perheat,increasing casting speed,decreasing secondary cooling intensity,and increasing MEMS current.The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.

  10. Localization and identification of structural nonlinearities using cascaded optimization and neural networks

    Science.gov (United States)

    Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.

    2017-10-01

    In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.

  11. High-order finite difference solution for 3D nonlinear wave-structure interaction

    DEFF Research Database (Denmark)

    Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;

    2010-01-01

    This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...

  12. Electromagnetic structures at auroral latitudes from luterkosmos-bolgariya-1300 satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Dubinin, E.M.; Bankov, N.; Izraelevich, P.L.; Nikolaeva, N.S.; Podgornyi, I.M.; Todorieva, L.

    1986-11-01

    Strong electromagnetic disturbances in the auroral region at altitudes of about 900 km, which were recorded by the Interkosmos-Bolgariya-1300 satellite, are analyzed. An attempt is undertaken to determine general regularities in their structures. A specific class of events in which the disturbances of the electric and magnetic fields have the same form are distinguished. The events are a result of the propagation of oblique Alfven waves with lambda /sub z/ about 3.10 /sub s/ km, lambda /sub x/ less than or equal to 10 km, and f about 1 Hz. The lack of an apparent correlation between the mutually perpendicular components of the electric and magnetic fields is due to a significant phase shift between the disturbances of the electric and magnetic fields, which indicates the interference of the waves incident and reflected at the ionosphere.

  13. Making structured metals transparency for broadband and wide-incidence-angle electromagnetic waves

    Science.gov (United States)

    Fan, Renhao; Peng, Ruwen; Huang, Xianrong; Wang, Mu

    2014-03-01

    Very recently, we have demonstrated that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic (EM) waves under oblique incidence. However, the oblique-incidence geometry, is inconvenient for the technological applications. To overcome this drawback, here we instead use oblique metal gratings with optimal tilt angles to achieve normal-incidence broadband transparence for EM waves. Further we use two-dimensional periodic metallic cuboids to achieve broadband and broad-angle high transmission and antireflection. By introducing such metallic cuboids arrays into silicon solar cells, we find that high performance of light trapping in the cells can be obtained with a significant enhancement of the ultimate quantum efficiency. The structured metals, which achieve broadband and broad-angle high transmission for EM waves, may have many other potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.

  14. Multiband frequency-reconfigurable antenna using metamaterial structure of electromagnetic band gap

    Science.gov (United States)

    Dewan, Raimi; Rahim, M. K. A.; Himdi, Mohamed; Hamid, M. R.; Majid, H. A.; Jalil, M. E.

    2017-01-01

    A metamaterial of electromagnetic band gap (EBG) is incorporated to an antenna for frequency reconfigurability is proposed. The EBG consists of two identical unit cells that provide multiple band gaps at 1.88-1.94, 2.25-2.44, 2.67-2.94, 3.52-3.54, and 5.04-5.70 GHz with different EBG configurations. Subsequently, the antenna is incorporated with EBG. The corresponding incorporated structure successfully achieves various reconfigurable frequencies at 1.60, 1.91, 2.41, 3.26, 2.87, 5.21, and 5.54 GHz. The antenna has the potential to be implemented for Bluetooth, Wi-Fi, WiMAX, LTE, and cognitive radio applications.

  15. Investigation of the electromagnetic structure of. eta. and. eta. prime mesons by two-photon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, H.; Alston-Garnjost, M.; Avery, R.E.; Barbaro-Galtieri, A.; Barker, A.R.; Barnett, B.A.; Bauer, D.A.; Bay, A.; Bobbink, G.J.; Buchanan, C.D.; Buijs, A.; Caldwell, D.O.; Chao, H.; Chun, S.; Clark, A.R.; Cowan, G.D.; Crane, D.A.; Dahl, O.I.; Daoudi, M.; Derby, K.A.; Eastman, J.J.; Eberhard, P.H.; Edberg, T.K.; Eisner, A.M.; Erne, F.C.; Fairfield, K.H.; Hauptman, J.M.; Hofmann, W.; Hylen, J.; Kamae, T.; Kaye, H.S.; Kenney, R.W.; Khacheryan, S.; Kofler, R.R.; Langeveld, W.G.J.; Layter, J.G.; Lin, W.T.; Linde, F.L.; Loken, S.C.; Lu, A.; Lynch, G.R.; Madaras, R.J.; Magnuson, B.D.; Masek, G.E.; Mathis, L.G.; Matthews, J.A.J.; Maxfield, S.J.; Miller, E.S.; Moses, W.; Nygren, D.R.; Oddone, P.J.; Paar, H.P.; Park, S.K.; Pellett, D.E.; Pripstein, M.; Ronan, M.T.; Ross, R.R.; Rouse, F.R.; Schwitkis, K.A.; Sens, J.C.; Shapiro, G.; Shen, B.C.; Smith, J.R.; Steinman, J.S.; Stephens, R.W.; Stevenson, M.L.; Stork, D.H.; Strauss, M.G.; Sullivan, M.K.; Takahashi, T.; Toutounchi, S.; van Tyen, R.; TPC/Two-Gamma Collaboration

    1990-01-08

    The TPC/Two-Gamma facility at the SLAC {ital e}{sup +}{ital e}{sup {minus}} storage ring PEP was used to study the reactions {gamma}{gamma}{sup *}{r arrow}{eta} and {gamma}{gamma}{sup *}{r arrow}{eta}{prime}. The {eta}{gamma}{sup *}{gamma} and {eta}{prime}{gamma}{sup *}{gamma} transition form factors were measured as functions of {ital Q}{sup 2}, the negative of the invariant mass squared of the tagged photon, in the range 0.1{lt}{ital Q}{sup 2}{lt}7 GeV{sup 2}. These determinations of the electromagnetic structure of the {eta} and {eta}{prime} mesons are consistent with both vector-meson dominance and QCD. They also provide new measurements of the pseudoscalar mixing angle and decay constants.

  16. Electromagnetic drift modes in an inhomogeneous electron gas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    A pair of nonlinear equations is derived which describes the dynamics of the electromagnetic drift oscillations in a nonuniform magnetized electron gas. It is shown that the nonlinear electromagnetic drift modes can propagate in the form of dipole vortices......A pair of nonlinear equations is derived which describes the dynamics of the electromagnetic drift oscillations in a nonuniform magnetized electron gas. It is shown that the nonlinear electromagnetic drift modes can propagate in the form of dipole vortices...

  17. Effect of low-intensity electromagnetic radiation on structurization properties of bacterial lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Grigory E. Brill

    2014-09-01

    Full Text Available Purpose — to investigate the effects of low-intensity electromagnetic radiation on the process of dehydration selforganization of bacterial lipopolysaccharide (LPS. Material and Methods — The method of wedge dehydration has been used to study the structure formation of bacterial LPS. Image-phases analysis included their qualitative characteristics, as well as the calculation of quantitative indicators, followed by statistical analysis. Results — Low-intensity ultra high frequency (UHF radiation (1 GHz, 0.1 μW/cm2, 10 min has led to the changes in the suspension system of the LPS-saline reflected in the kinetics of structure formation. Conclusion — 1 GHz corresponds to the natural frequency of oscillation of water clusters and, presumably, the effect of UHF on structure of LPS mediates through the changes in water-salt environment. Under these conditions, properties of water molecules of hydration and possibly the properties of hydrophobic and hydrophilic regions in the molecule of LPS, which can affect the ability of toxin molecules to form aggregates change. Therefore the LPS structure modification may result in the change of its toxic properties.

  18. Effect of low-intensity electromagnetic radiation on structurization properties of bacterial lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Brill G.E.

    2013-12-01

    Full Text Available Purpose: to investigate the effects of low-intensity electromagnetic radiation on the process of dehydration self-organization of bacterial lipopolysaccharide. Materials and Methods. The method of wedge dehydration has been used to study the structure formation of bacterial lipopolysaccharide. Image-phases analysis included their qualitative characteristics, as well as the calculation of quantitative indicators, followed by statistical analysis. Results. UHF-Radiation (1GHz, 0,1 uW/cm2, 10 min has led to the changes in the suspension system of the LPS-saline reflected in the kinetics of structure formation. Conclusion. 1 GHz corresponds to the natural frequency of oscillation of water clusters and, presumably, the effect of UHF on structure of LPS mediates through the changes in water-salt environment. Under these conditions, properties of water molecules of hydration and possibly the properties of hydrophobic and hydrophilic regions in the molecule of LPS, which can affect the ability of toxin molecules to form aggregates change. Therefore the lipopolysaccharide structure modification may result in the change of its toxic properties.

  19. Active FEL-Klystrons as Formers of Femto-Second Clusters of Electromagnetic Field. Nonlinear Physics of the Transit Section

    Directory of Open Access Journals (Sweden)

    V.V. Kulish

    2012-06-01

    Full Text Available The classification and the kinematic analysis of parametrical resonant interactions in the transit section of two-stream superheterodyne free electron laser are carried out. It is found out that realization of four types of parametrical resonant interactions is possible. A number of the investigated variants of interactions have plural character – hundreds and more harmonics connected with each other simultaneously participate in a three-wave parametrical resonance. A cubically nonlinear multiharmonic theory of plural parametrical resonant interactions is constructed. It is established that such interactions can substantially influence the development of physical processes in the investigated system. It is offered to use the plural parametrical resonant interactions for the formation of a wide multiharmonic spectrum of waves in cluster two-stream superheterodyne free electron lasers.

  20. Investigation of planar barrier discharges for coherent nonlinear structures

    Science.gov (United States)

    Uzun-Kaymak, I. U.

    2017-02-01

    Nonlinear pattern formations are ubiquitous in nature. One of the analogous configurations in laboratory experiments to such nonlinear systems is the current filament formations observed in glow plasmas. These filaments can generate oscillatory fluctuations in glow, which are also observed in voltage and current measurements. Specifically, semiconductor-gas discharges are known to breed these types of current filaments naturally. The plasma discharge is initiated by applying a DC high voltage to electrodes while they are immersed in nitrogen gas at partial atmospheric pressure. Observed discharge behaves oscillatory in time. Harmonic frequency generation and coherency levels among these modes are investigated. Parametric scans are performed to study the transition to chaotic behavior. Observed results are discussed in detail.

  1. Numerical Analysis of the Dynamics of Nonlinear Solids and Structures

    Science.gov (United States)

    2008-08-01

    of the conservation/ dissipation properties in time for the elastoplastic case 64 11.6. Concluding remarks 70 References 71 li...development of stable time-stepping algorithms for nonlinear dynamics. The focus was on inelastic solids, including finite strain elastoplastic and...set of plas- tic/ damage evolution equations (usually of a unilaterally constrained character due to the presence of the so-called yield/ damage

  2. Structure of the quasi-steady electromagnetic field of a high frequency industrial discharge at atmospheric pressure

    Science.gov (United States)

    Kirpichnikov, A. P.

    1994-02-01

    An approximate analytical solution of the Maxwell equations is obtained; this solution satisfactorily describes the structure of the quasi-steady electromagnetic field of a high-frequency atmospheric-pressure inductional discharge close to the axis of the plasma bunch.

  3. Travelling and standing envelope solitons in discrete non-linear cyclic structures

    Science.gov (United States)

    Grolet, Aurelien; Hoffmann, Norbert; Thouverez, Fabrice; Schwingshackl, Christoph

    2016-12-01

    Envelope solitons are demonstrated to exist in non-linear discrete structures with cyclic symmetry. The analysis is based on the Non-Linear Schrodinger Equation for the weakly non-linear limit, and on numerical simulation of the fully non-linear equations for larger amplitudes. Envelope solitons exist for parameters in which the wave equation is focussing and they have the form of shape-conserving wave packages propagating roughly with group velocity. For the limit of maximum wave number, where the group velocity vanishes, standing wave packages result and can be linked via a bifurcation to the non-localised non-linear normal modes. Numerical applications are carried out on a simple discrete system with cyclic symmetry which can be seen as a reduced model of a bladed disk as found in turbo-machinery.

  4. A Taylor-Galerkin finite element algorithm for transient nonlinear thermal-structural analysis

    Science.gov (United States)

    Thornton, E. A.; Dechaumphai, P.

    1986-01-01

    A Taylor-Galerkin finite element method for solving large, nonlinear thermal-structural problems is presented. The algorithm is formulated for coupled transient and uncoupled quasistatic thermal-structural problems. Vectorizing strategies ensure computational efficiency. Two applications demonstrate the validity of the approach for analyzing transient and quasistatic thermal-structural problems.

  5. An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm

    CERN Document Server

    Chen, Guangye

    2013-01-01

    A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension (Chen, Chacon, Barnes, J. Comput. Phys. 230 (2011) 7018). The algorithm employs a kinetically enslaved Jacobian-free Newton-Krylov (JFNK) method, and conserves energy and charge to numerical round-off. In this study, we generalize the method to electromagnetic simulations in 1D using the Darwin approximation of Maxwell's equations, which avoids radiative aliasing noise issues by ordering out the light wave. An implicit, orbit-averaged time-space-centered finite difference scheme is applied to both the 1D Darwin field equations (in potential form) and the 1D-3V particle orbit equations to produce a discrete system that remains exactly charge- and energy-conserving. Furthermore, enabled by the implicit Darwin equations, exact conservation of the canonical momentum per particle in any ignorable direction is enforced via a suitable scattering rule for the magnetic field. Several 1D numer...

  6. Spatial-temporal structure of seismicity of the North Tien Shan and its changeunder effect of high energy electromagnetic pulses

    Directory of Open Access Journals (Sweden)

    N. V. Tarasova

    2004-06-01

    Full Text Available The effect of high-energy electromagnetic pulses emitted by a magnetohydrodynamic generator used as a source for deep electrical sounding of the crust on spatial-temporal structure of seismicity of the North Tien Shan is explored. Five-six years periodicity of changes in spatial distribution of seismicity was revealed. The effect of electromagnetic pulses increases the stability of the spatial distribution of seismicity over time and simultaneously speeds up cycles of its transformations, which develop on stabilization background. Increasing of seismic energy release after electromagnetic impacts is observed basically in most active zones. Periodic variation of efficiency of earthquakes triggering on the distance to the MHD-generator was detected. It was shown that electromagnetic pulses give rise to an appreciable increase in the rate of local earthquakes, occurring around 2-6 days after the pulses. Total earthquakes energy released after start-ups was by 2.03·1015 J greater than the energy released before them. At the same time, the total energy transmitted by the MHD-generator was 1.1·109 J, i.e. six orders of magnitude smaller. Consequently, the electromagnetic pulses initiated the release of the energy that had been stored in the crust due to activity of natural tectonic processes in the form of comparatively small earthquakes, which leads to an additional release of tectonic stresses.

  7. A numerical-perturbation method for the nonlinear analysis of structural vibrations

    Science.gov (United States)

    Nayfeh, A. H.; Mook, D. T.; Lobitz, D. W.

    1974-01-01

    A numerical-perturbation method is proposed for the determination of the nonlinear forced response of structural elements. Purely analytical techniques are capable of determining the response of structural elements having simple geometries and simple variations in thickness and properties, but they are not applicable to elements with complicated structure and boundaries. Numerical techniques are effective in determining the linear response of complicated structures, but they are not optimal for determining the nonlinear response of even simple elements when modal interactions take place due to the complicated nature of the response. Therefore, the optimum is a combined numerical and perturbation technique. The present technique is applied to beams with varying cross sections.

  8. On the Suppression Band and Bandgap of Planar Electromagnetic Bandgap Structures

    Directory of Open Access Journals (Sweden)

    Baharak Mohajer-Iravani

    2014-01-01

    Full Text Available Electromagnetic bandgap structures are considered a viable solution for the problem of switching noise in printed circuit boards and packages. Less attention, however, has been given to whether or not the introduction of EBGs affects the EMI potential of the circuit to couple unwanted energy to neighboring layers or interconnects. In this paper, we show that the bandgap of EBG structures, as generated using the Brillouin diagram, does not necessarily correspond to the suppression bandwidth typically generated using S-parameters. We show that the reactive near fields radiating from openings within the EBG layers can be substantial and are present in the entire frequency band including propagating and nonpropagating mode regions. These fields decay fast with distance; however, they can couple significant energy to adjacent layers and to signal lines. The findings are validated using full-wave three-dimensional numerical simulation. Based on this work, design guidelines for EBG structures can be drawn to insure not only suppression of switching noise but also minimization of EMI and insuring signal integrity.

  9. Broadband superior electromagnetic absorption of a discrete-structure microwave coating

    Science.gov (United States)

    Duan, Yuping; Xi, Qun; Liu, Wei; Wang, Tongmin

    2016-10-01

    A method of improving the electromagnetic (EM) absorption property of conventional microwave absorber (CMA) is proposed here. The structural design process was mainly concerned with systematic analysis and research into the impedance matching characteristic and induced current. By processing a CMA-carbonyl-iron powder (CIP) coating into many isolated regions, the discrete-structure microwave absorber (DMA) had a much better absorption property than the corresponding CMA. When the thickness was only 2.0 mm and the component content was 33 wt%, the loss of reflection was less than -10 dB shifted from 6-7 GHz to 7-13 GHz and the loss of minimum reflection decreased from 12.5 dB lost to 32 dB lost through a discrete-structure process. The microwave absorption properties of coatings with different component contents and thicknesses were investigated. The minimum reflection peaks tended to shift towards the lower frequency region as CIP content or coating thickness increased. By adjusting these three factors, a high-performance broadband absorber was produced.

  10. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model.

    Science.gov (United States)

    Guerin, Heather Lynch; Elliott, Dawn M

    2007-04-01

    The annulus fibrosus of the intervertebral disc is comprised of concentric lamella of oriented collagen fibers embedded in a hydrated proteoglycan matrix with smaller amounts of minor collagens, elastin, and small proteoglycans. Its structure and composition enable the disc to withstand complex loads and result in inhomogeneous, anisotropic, and nonlinear mechanical behaviors. The specific contributions of the annulus fibrosus constituent structures to mechanical function remain unclear. Therefore, the objective of this study was to use a structurally motivated, anisotropic, nonlinear strain energy model of annulus fibrosus to determine the relative contributions of its structural components to tissue mechanical behavior. A nonlinear, orthotropic hyperelastic model was developed for the annulus fibrosus. Terms to describe fibers, matrix, and interactions between annulus fibrosus structures (shear and normal to the fiber directions) were explicitly included. The contributions of these structures were analyzed by including or removing terms and determining the effect on the fit to multidimensional experimental data. Correlation between experimental and model-predicted stress, a Bland-Altman analysis of bias and standard deviation of residuals, and the contribution of structural terms to overall tissue stress were calculated. Both shear and normal interaction terms were necessary to accurately model multidimensional behavior. Inclusion of shear interactions more accurately described annulus fibrosus nonlinearity. Fiber stretch and shear interactions dominated contributions to circumferential direction stress, while normal and shear interactions dominated axial stress. The results suggest that interactions between fibers and matrix, perhaps facilitated by crosslinks, elastin, or minor collagens, augment traditional (i.e., fiber-uncrimping) models of nonlinearity.

  11. Electromagnetic imaging of the deep Campi Flegrei caldera structure (Southern Italy)

    Science.gov (United States)

    Giulia Di Giuseppe, Maria; Isaia, Roberto; Patella, Domenico; Piochi, Monica; Troiano, Antonio

    2017-04-01

    The Campi Flegrei caldera (CFc) is the most hazardous volcano in Europe. Enormous investigative efforts have been done aimed to share its inner structure and to understand its unrest dynamics, making the CFc one of the main subjects of interest of modern volcanology. Due to the destructive potential and the active geothermal system, the CFc geological structures have been investigated through many different methodologies. A key role belongs to the applied geophysics that allows to gain knowledge about the volcanic setting and consequently to understand the dynamics of this active caldera system. So far, the main CFc structures have been not yet clearly defined. The strong heterogeneity of the territory associated to the composite coastal morphology and the extreme urbanization represent a major obstacle to apply the geophysical techniques. Therefore the geometry and configuration of the CFc plumbing system are still largely undefined, although seismic surveys nowadays detected findings of melt-bearing rocks, at least locally. Here a deep electromagnetic (EM) imaging the CFc is presented. A Magnetotelluric (MT) profile has been carried out across a 12 km-long transect, ideally intersecting the main recent volcano-tectonic structures. The peculiar sensitivity to subsurface fluids and melts, associated with huge electric conductivity contrasts, make the MT particularly well suited to be applied in active volcanic settings. The obtained results highlight the buried structures down to 10 km of depth providing an interpretative key into the overall caldera dynamics. In particular, the deep magmatic source is revealed, as well as the main ascent pathway of magmatic fluids and the related structures which critically contributing to the shallower-level of deformation at CFc.

  12. Formation of super-resolution spot through nonlinear Fabry-Perot cavity structures: theory and simulation.

    Science.gov (United States)

    Wei, Jingsong; Wang, Rui; Yan, Hui; Fan, Yongtao

    2014-04-07

    This study explores how interference manipulation breaks through the diffraction limit and induces super-resolution nano-optical hot spots through the nonlinear Fabry-Perot cavity structure. The theoretical analytical model is established, and the numerical simulation results show that when the thickness of the nonlinear thin film inside the nonlinear Fabry-Perot cavity structure is adjusted to centain value, the constructive interference effect can be formed in the central point of the spot, which causes the nanoscale optical hot spot in the central region to be produced. The simulation results also tell us that the hot spot size is sensitive to nonlinear thin film thickness, and the accuracy is required to be up to nanometer or even subnanometer scale, which is very large challenging for thin film deposition technique, however, slightly changing the incident laser power can compensate for drawbacks of low thickness accuracy of nonlinear thin films. Taking As(2)S(3) as the nonlinear thin film, the central hot spot with a size of 40nm is obtained at suitable nonlinear thin film thickness and incident laser power. The central hot spot size is only about λ/16, which is very useful in super-high density optical recording, nanolithography, and high-resolving optical surface imaging.

  13. A generalized hybrid transfinite element computational approach for nonlinear/linear unified thermal/structural analysis

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1987-01-01

    The present paper describes the development of a new hybrid computational approach for applicability for nonlinear/linear thermal structural analysis. The proposed transfinite element approach is a hybrid scheme as it combines the modeling versatility of contemporary finite elements in conjunction with transform methods and the classical Bubnov-Galerkin schemes. Applicability of the proposed formulations for nonlinear analysis is also developed. Several test cases are presented to include nonlinear/linear unified thermal-stress and thermal-stress wave propagations. Comparative results validate the fundamental capablities of the proposed hybrid transfinite element methodology.

  14. Using nonlinearity and spatiotemporal property modulation to control effective structural properties: dynamic rods

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Blekhman, Iliya I.

    2007-01-01

    , and to call these dynamic materials or spatiotemporal composites. Also, according to theoretical predictions, structural nonlinearity enhances the possibilities of achieving specific effective properties. For example, with an elastic rod having cubical elastic nonlinearities, it seems possible to control......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...

  15. Nonlinear Structured Illumination Using a Fluorescent Protein Activating at the Readout Wavelength

    Science.gov (United States)

    Hou, Wenya; Kielhorn, Martin; Arai, Yoshiyuki; Nagai, Takeharu; Kessels, Michael M.; Qualmann, Britta; Heintzmann, Rainer

    2016-01-01

    Structured illumination microscopy (SIM) is a wide-field technique in fluorescence microscopy that provides fast data acquisition and two-fold resolution improvement beyond the Abbe limit. We observed a further resolution improvement using the nonlinear emission response of a fluorescent protein. We demonstrated a two-beam nonlinear structured illumination microscope by introducing only a minor change into the system used for linear SIM (LSIM). To achieve the required nonlinear dependence in nonlinear SIM (NL-SIM) we exploited the photoswitching of the recently introduced fluorophore Kohinoor. It is particularly suitable due to its positive contrast photoswitching characteristics. Contrary to other reversibly photoswitchable fluorescent proteins which only have high photostability in living cells, Kohinoor additionally showed little degradation in fixed cells over many switching cycles. PMID:27783656

  16. Nonlinear dynamics of phase space zonal structures and energetic particle physics in fusion plasmas

    CERN Document Server

    Zonca, Fulvio; Briguglio, Sergio; Fogaccia, Giuliana; Vlad, Gregorio; Wang, Xin

    2014-01-01

    A general theoretical framework for investigating nonlinear dynamics of phase space zonal structures is presented in this work. It is then, more specifically, applied to the limit where the nonlinear evolution time scale is smaller or comparable to the wave-particle trapping period. In this limit, both theoretical and numerical simulation studies show that non-adiabatic frequency chirping and phase locking could lead to secular resonant particle transport on meso- or macro-scales. The interplay between mode structures and resonant particles then provides the crucial ingredient to properly understand and analyze the nonlinear dynamics of Alfv\\'en wave instabilities excited by non-perturbative energetic particles in burning fusion plasmas. Analogies with autoresonance in nonlinear dynamics and with superradiance in free electron lasers are also briefly discussed.

  17. Stabilization of nonlinear systems with parametric uncertainty using variable structure techniques

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, D.A. [Oak Ridge National Lab., TN (United States); Oezguener, Ue. [Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering

    1995-07-01

    The authors present a result on the robust stabilization of a class of nonlinear systems exhibiting parametric uncertainty. They consider feedback linearizable nonlinear systems with a vector of unknown constant parameters perturbed about a known value. A Taylor series of the system about the nominal parameter vector coupled with a feedback linearizing control law yields a linear system plus nonlinear perturbations. Via a structure matching condition, a variable structure control law is shown to exponentially stabilize the full system. The novelty of the result is that the linearizing coordinates are completely known since they are defined about the nominal parameter vector, and fewer restrictions are imposed on the nonlinear perturbations than elsewhere in the literature.

  18. Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity

    Science.gov (United States)

    2015-08-13

    conditions. 15.  SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION...associated Laplacian. We use the general theory for approximation of Hilbert complexes and the finite element exterior calculus and introduce some stable mixed...Ωk(B)→ Ωk+1(B) be the standard exterior derivative given by (dβ)I0⋯Ik = k ∑ i=0 (−1)iβI0⋯Îi⋯Ik, Ii , where the hat over an index implies the

  19. Thermal rectification in non-linear structures with bulk losses

    Science.gov (United States)

    Schmidt, Martin; Kottos, Tsampikos

    2013-03-01

    A mechanism for thermal rectification based on the interplay between non-uniform bulk losses with nonlinearity is presented. We theoretically analyze the phenomenon using an anharmonic array of coupled oscillators coupled to the left and right with two Langevin reservoirs. A third probe thermostat (with temperature TB) is placed in an asymmetric position in the bulk of the lattice thus breaking the translational symmetry and leading to rectification of heat flow. We note that for TB = 0 this Langevin term is equivalent to a simple friction. We find that an increase of the friction strength can increase both the asymmetry and heat flux. Visiting Student from Germany

  20. Fluid transport due to nonlinear fluid-structure interaction

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1997-01-01

    of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...

  1. Microscopic structures from reduction of continuum nonlinear problems

    CERN Document Server

    Lovison, Alberto

    2011-01-01

    We present an application of the Amann-Zehnder exact finite reduction to a class of nonlinear perturbations of elliptic elasto-static problems. We propose the existence of minmax solutions by applying Ljusternik-Schnirelmann theory to a finite dimensional variational formulation of the problem, based on a suitable spectral cut-off. As a by-product, with a choice of fit variables, we establish a variational equivalence between the above spectral finite description and a discrete mechanical model. By doing so, we decrypt the abstract information encoded in the AZ reduction and give rise to a concrete and finite description of the continuous problem.

  2. Continuous Dynamic Simulation of Nonlinear Aerodynamics/Nonlinear Structure Interaction (NANSI) for Morphing Vehicles

    Science.gov (United States)

    2010-03-31

    comprised linear structural dynamics (e.g. [7.2]), vibro-acoustics, aeroelasticity (e.g. [7.1]), rotordynamics [7.7] (including the joint simulation...2006. [7.7] Murthy, R., Mignolet, M.P., and El-Shafei, A., "Nonparametric Stochastic Modeling of Structural Uncertainty in Rotordynamic

  3. STUDY OF ELECTROMAGNETIC STIRRING REFINING MICRO- STRUCTURES OF PIPE-LINE STEEL SAW DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    Y. Zhang; B.N. Qian; X.M. Guo

    2002-01-01

    The effects of electromagnetic stirring on the microstructures of pipe-line steel SAWdeposited metal were investigated. The results showed that electromagnetic stirringincreased the number density of inclusions with 0.2-0.6μm in diameter and promotedthe formation and refining of acicular ferrite within austenite grains. The low tem-perature toughness of deposited metal was improved.

  4. Adhesive nonlinearity in Lamb-wave-based structural health monitoring systems

    Science.gov (United States)

    Shan, Shengbo; Cheng, Li; Li, Peng

    2017-02-01

    Structural health monitoring (SHM) techniques with nonlinear Lamb waves have gained wide popularity due to their high sensitivity to microstructural changes for the detection of damage precursors. Despite the significant progress made, various unavoidable nonlinear sources in a practical SHM system, as well as their impact on the detection, have not been fully assessed and understood. For the real-time and online monitoring, transducers are usually permanently bonded on the structure under inspection. In this case, the inherent material nonlinear properties of the bonding layer, referred to as adhesive nonlinearity (AN), may create undesired interference to the SHM system, or even jeopardize the damage diagnosis if they become serious. In this paper, a nonlinear theoretical framework is developed, covering the process of wave generation, propagation and sensing, with the aim of investigating the mechanism and characteristics of AN-induced Lamb waves in plates, which potentially allows for further system optimization to minimize the influence of AN. The model shows that an equivalent nonlinear normal stress is generated in the bonding layer due to its nonlinear material behavior, which, through its coupling with the system, is responsible for the generation of second harmonic Lamb waves in the plate, subsequently resulting in the nonlinear responses in the captured signals. With the aid of the finite element (FE) modeling and a superposition method for nonlinear feature extraction, the theoretical model is validated in terms of generation mechanism of the AN-induced wave components as well as their propagating characteristics. Meanwhile, the influence of the AN is evaluated by comparing the AN-induced nonlinear responses with those caused by the material nonlinearity of the plate, showing that AN should be considered as a non-negligible nonlinear source in a typical nonlinear Lamb-wave-based SHM system. In addition, the theoretical model is also experimentally

  5. Characterizing the structure of nonlinear systems using gradual wavelet reconstruction

    Directory of Open Access Journals (Sweden)

    C. J. Keylock

    2010-11-01

    Full Text Available In this paper, classical surrogate data methods for testing hypotheses concerning nonlinearity in time-series data are extended using a wavelet-based scheme. This gives a method for systematically exploring the properties of a signal relative to some metric or set of metrics. A signal continuum is defined from a linear variant of the original signal (same histogram and approximately the same Fourier spectrum to the exact replication of the original signal. Surrogate data are generated along this continuum with the wavelet transform fixing in place an increasing proportion of the properties of the original signal. Eventually, chaotic or nonlinear behaviour will be preserved in the surrogates. The technique permits various research questions to be answered and examples covered in the paper include identifying a threshold level at which signals or models for those signals may be considered similar on some metric, analysing the complexity of the Lorenz attractor, characterising the differential sensitivity of metrics to the presence of multifractality for a turbulence time-series, and determining the amplitude of variability of the Hölder exponents in a multifractional Brownian motion that is detectable by a calculation method. Thus, a wide class of analyses of relevance to geophysics can be undertaken within this framework.

  6. Nonlinear diffraction effects around a surface-piercing structure

    Energy Technology Data Exchange (ETDEWEB)

    Lalli, F.; Mascio, A. Di; Landrini, M. [Istituto Nazionale per Studi ed Esperienze di Architettura Navale, Rome (Italy)

    1995-12-31

    In the present paper the interaction of a wave system with a submerged or surface piercing body is studied. The wave diffraction caused by a cylinder in finite depth water and by a shoal is been computed and the results are compared with analytical solutions and experimental data. The problem is analyzed numerically in the frame of irrotational incompressible flow hypothesis. Both the linearized and the fully nonlinear mathematical models are studied. The numerical solution is gained by means of a mixed panel-desingularized formulation. An explicit time-marching algorithm updates the wave elevation and the potential at the free surface. In all cases, the numerical simulation mirrors the experimental data. In the case of the diffraction around a cylinder, the simulation confirms and extends the theoretical results of the second order analysis (Kriebel 1990, 1992): the linear model yields a very good estimation of the force amplitude acting on the body, while the wave profiles are poorly predicted when compared with the fully nonlinear simulation and the experimental data.

  7. Electromagnetic fields as structure-function zeitgebers in biological systems: environmental orchestrations of morphogenesis and consciousness.

    Science.gov (United States)

    Rouleau, Nicolas; Dotta, Blake T

    2014-01-01

    Within a cell system structure dictates function. Any interaction between cells, or a cell and its environment, has the potential to have long term implications on the function of a given cell and emerging cell aggregates. The structure and function of cells are continuously subjected to modification by electrical and chemical stimuli. However, biological systems are also subjected to an ever-present influence: the electromagnetic (EM) environment. Biological systems have the potential to be influenced by subtle energies which are exchanged at atomic and subatomic scales as EM phenomena. These energy exchanges have the potential to manifest at higher orders of discourse and affect the output (behavior) of a biological system. Here we describe theoretical and experimental evidence of EM influence on cells and the integration of whole systems. Even weak interactions between EM energies and biological systems display the potential to affect a developing system. We suggest the growing literature of EM effects on biological systems has significant implications to the cell and its functional aggregates.

  8. Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas

    Science.gov (United States)

    Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun

    2017-10-01

    As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.

  9. Polarization independent and tunable plasmonic structure for mimicking electromagnetically induced transparency in the reflectance spectrum

    Science.gov (United States)

    Guo, B. S.; Loo, Y. L.; Ong, C. K.

    2017-10-01

    This paper proposes a plasmonic metamaterial that is able to mimic electromagnetically induced transparency in the reflectance spectrum within the GHz frequency range. Each meta-atom consists of a cross-slot structure as the bright resonator positioned on one side of the FR-4 substrate, and four spiral structures as the dark resonator located on the opposite side. Free space experimental results demonstrate that at normal incidence of plane wave, the metamaterial possesses the properties of tunability and polarization independence. In addition, based on simulation results the metamaterial also possesses slow wave property, with group refractive index of 56; and refractive-index-based sensing capability, with figure of merit of 6.1. In the strong coupling configuration, the plasma frequency and coupling constant of the metamaterial were calculated to be approximately 5.4 × 1010 rad s-1 and 9.8 × 109 rad s-1 respectively. While the respective damping constants of the bright resonator and dark resonator were calculated to be approximately 4.6 × 1010 rad s-1 and 1.9 × 1010 rad s-1.

  10. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2013-01-01

    Full Text Available A modified electromagnetic-bandgap (M-EBG structure and its application to planar monopole ultra-wideband (UWB antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX and the wireless local area network (WLAN at 3.5 GHz and 5.5 GHz, respectively.

  11. Framing the structural role of mathematics in physics lectures: A case study on electromagnetism

    Science.gov (United States)

    Karam, Ricardo

    2014-06-01

    Physics education research has shown that students tend to struggle when trying to use mathematics in a meaningful way in physics (e.g., mathematizing a physical situation or making sense of equations). Concerning the possible reasons for these difficulties, little attention has been paid to the way mathematics is treated in physics instruction. Starting from an overall distinction between a technical approach, which involves an instrumental (tool-like) use of mathematics, and a structural one, focused on reasoning about the physical world mathematically, the goal of this study is to characterize the development of the latter in didactic contexts. For this purpose, a case study was conducted on the electromagnetism course given by a distinguished physics professor. The analysis of selected teaching episodes with the software Videograph led to the identification of a set of categories that describe different strategies used by the professor to emphasize the structural role of mathematics in his lectures. As a consequence of this research, an analytic tool to enable future comparative studies between didactic approaches regarding the way mathematics is treated in physics teaching is provided.

  12. Experimental Investigation on Electromagnetic Attenuation by Low Pressure Radio-Frequency Plasma for Cavity Structure

    Science.gov (United States)

    He, Xiang; Zhang, Yachun; Chen, Jianping; Chen, Yudong; Zeng, Xiaojun; Yao, Hong; Tang, Chunmei

    2016-01-01

    This paper reports on an experiment designed to test electromagnetic (EM) attenuation by radio-frequency (RF) plasma for cavity structures. A plasma reactor, in the shape of a hollow cylinder, filled with argon gas at low pressure, driven by a RF power source, was produced by wave-transmitting material. The detailed attenuations of EM waves were investigated under different conditions: the incident frequency is 1-4 GHz, the RF power supply is 13.56 MHz and 1.6-3 kW, and the argon pressure is 75-200 Pa. The experimental results indicate that 5-15 dB return loss can be obtained. From a first estimation, the electron density in the experiment is approximately (1.5-2.2) × 1016 m-3 and the collision frequency is about 11-30 GHz. The return loss of EM waves was calculated using a finite-difference time-domain (FDTD) method and it was found that it has a similar development with measurement. It can be confirmed that RF plasma is useful in the stealth of cavity structures such as jet-engine inlet. supported by National Natural Science Foundation of China (No. 51107033) and the Fundamental Research Funds for the Central Universities of China (No. 2013B33614)

  13. Effect of cooling rate on structural and electromagnetic properties of high-carbon ferrochrome powders

    Science.gov (United States)

    Yang, Jian-ping; Chen, Jin; Hao, Jiu-jiu; Guo, Li-na; Liu, Jin-ying

    2016-03-01

    The structural and electromagnetic properties of high-carbon ferrochrome powders (HCFCP) obtained at different cooling rates were respectively investigated by means of optical microscope, X-ray diffractometer, electron probe as well as the vector network analyzer in the frequency range of 1-18 GHz. The results show that the cell structure of main phase, (Cr,Fe)7C3, transforms from hexagonal to orthogonal with the improvement of cooling rate. Meanwhile the mass ratio of Cr to Fe in (Cr,Fe)7C3 gradually declines, while that for CrFe goes up. Both the real part and the imaginary part of relative complex permittivity of HCFCP are in an increasing order with cooling rate rising in most frequencies. For comparison, the relative complex permeability presents an opposite changing tendency. The peaks of the imaginary part of relative complex permeability appearing in low and high frequencies are attributed to nature resonance. The reflection loss of HCFCP gradually decreases as cooling rate reduces and frequency enhances. At 2.45 GHz, the algebraic sum of dielectric loss factor and magnetic loss factor increases first and then decreases in the temperature extent from 298 K to 1273 K.

  14. Computational modeling of the electromagnetic characteristics of carbon fiber-reinforced polymer composites with different weave structures

    Science.gov (United States)

    Hassan, A. M.; Douglas, J. F.; Garboczi, E. J.

    2014-02-01

    Carbon fiber reinforced polymer composites (CFRPC) are of great interest in the aerospace and automotive industries due to their exceptional mechanical properties. Carbon fibers are typically woven and inter-laced perpendicularly in warps and wefts to form a carbon fabric that can be embedded in a binding matrix. The warps and wefts can be interlaced in different patterns called weaving structures. The primary weaving structures are the plain, twill, and satin weaves, which give different mechanical composite properties. The goal of this work is to computationally investigate the dependence of CFRPC microwave and terahertz electromagnetic characteristics on weave structure. These bands are good candidates for the Nondestructive Evaluation (NDE) of CFRPC since their wavelengths are comparable to the main weave features. 3D full wave electromagnetic simulations of several different weave models have been performed using a finite element (FEM) simulator, which is able to accurately model the complex weave structure. The computational experiments demonstrate that the reflection of electromagnetic waves from CFRPC depend sensitively on weave structure. The reflection spectra calculated in this work can be used to identify the optimal frequencies for the NDE of each weave structure.

  15. NONLINEAR FINITE ELEMENT MODEL UPDATING FOR NONLINEAR SYSTEM AND DAMAGE IDENTIFICATION OF CIVIL STRUCTURES

    OpenAIRE

    Ebrahimian, Hamed

    2015-01-01

    Structural health monitoring (SHM) is defined as the capability to monitor the performance behavior of civil infrastructure systems as well as to detect, localize, and quantify damage in these systems. SHM technologies contribute to enhance the resilience of civil infrastructures, which are vulnerable to structural aging, degradation, and deterioration and to extreme events due to natural and man-made hazards. Given the limited financial resources available to renovate or replace them, it is ...

  16. GEOMETRICALLY NONLINEAR FE FORMULATIONS FOR THE MACRO-ELEMENT UNIPLET OF FOLDABLE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    陈务军; 付功义; 何艳丽; 董石麟

    2002-01-01

    Geometrically nonlinear stiffness matrix due to large displacement-small strain was firstly formulated ex-plicitly for the basic components of pantographic foldable structures,namely, the uniplet, derived from a three-node beam element. The formulation of the uniplet stiffness matrix is based on the precise nonlinear finite elementtheory and the displacement-harmonized and internal force constraints are applied directly to the deformationmodes of the three-node beam element. The formulations were derived in general form, and can be simplified forparticular foldable structures, such as flat, cylindrical and spherical structures. Finally, two examples were pre-sented to illustrate the applications of the stiffness matrix evolved.

  17. Self-consistent photonic band structure of dielectric superlattices containing nonlinear optical materials.

    Science.gov (United States)

    Lousse, V; Vigneron, J P

    2001-02-01

    The theory of photonic crystals is extended to include the optical Kerr effect taking place in weak third-order, nonlinear materials present in the unit cell. The influence on the dispersion relations of the illumination caused by a single Bloch mode transiting through the crystal structure is examined. Special attention is given to the modification of the photonic gap width and position. Assuming an instantaneous change of refractive index with illumination, the nonlinear band structure problem is solved as a sequence of ordinary, linear band structure calculations, carried out in a plane-wave field representation.

  18. Verification of nonlinear dynamic structural test results by combined image processing and acoustic analysis

    Science.gov (United States)

    Tene, Yair; Tene, Noam; Tene, G.

    1993-08-01

    An interactive data fusion methodology of video, audio, and nonlinear structural dynamic analysis for potential application in forensic engineering is presented. The methodology was developed and successfully demonstrated in the analysis of heavy transportable bridge collapse during preparation for testing. Multiple bridge elements failures were identified after the collapse, including fracture, cracks and rupture of high performance structural materials. Videotape recording by hand held camcorder was the only source of information about the collapse sequence. The interactive data fusion methodology resulted in extracting relevant information form the videotape and from dynamic nonlinear structural analysis, leading to full account of the sequence of events during the bridge collapse.

  19. Spiral Passive Electromagnetic Sensor (SPES) for composite structural changes in aircraft structures

    Science.gov (United States)

    Iervolino, Onorio; Meo, Michele

    2016-04-01

    A major goal of structural health monitoring (SHM) is to provide accurate and responsive detection and monitoring of flaws. This research work reports an investigation of SPES sensors for damage detection, investigating different sensor sizes and how they affect the sensor's signal. A sensor able to monitor structural change that can be remotely interrogated and does not need a power supply is presented in this work. The SPES-sensor presents the great advantage of monitoring conductive and non-conductive structures such as fiberglass-reinforced composites (FRC) and carbon fiber-reinforced polymers (CFRP). Any phenomena that affect the magnetic field of the SPES can be detected and monitored. A study was conducted to investigate the capability of sensor to give information on structural changes, simulated by the presence of an external mass placed in the proximity of sensor. Effect of different positions of the SPES within the sample, and how to extend the area of inspection using multiple sensors was investigated. The sensor was tested embedded in the samples, simulating the structural change on both sides of the sample. In both configurations the sensor described herein demonstrated a great potential to monitor structural changes.

  20. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    Science.gov (United States)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously

  1. Experimental demonstration of non-reciprocal transmission in a nonlinear photonic-crystal Fano structure

    DEFF Research Database (Denmark)

    Yu, Yi; Chen, Yaohui; Hu, Hao;

    2015-01-01

    We suggest and experimentally demonstrate a photonic-crystal structure with more than 30 dB difference between forward and backward transmission levels. The non-reciprocity relies on the combination of ultrafast carrier nonlinearities and spatial symmetry breaking in a Fano structure employing...

  2. Expanded porphyrins as third order non-linear optical materials: Some structure-function correlations

    Indian Academy of Sciences (India)

    Sabapathi Gokulnath; Tavarekere K Chandrashekar

    2008-01-01

    In this paper, the non-linear optical properties of representative core-modified expanded porphyrins have been investigated with an emphasis on the structure-property relationship between the aromaticity and conformational behaviour. It has been shown that the measured two-photon absorption cross section (2) values depend on the structure of macrocycle, its aromaticity and the number of -electrons in conjugation.

  3. Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure

    Science.gov (United States)

    Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris

    2017-02-01

    Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.

  4. Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates

    Science.gov (United States)

    Lee, Sik-Yum; Song, Xin-Yuan

    2005-01-01

    In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…

  5. Axisymmetric nonlinear waves and structures in Hall plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Tanim [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551-0808 (United States)

    2012-06-15

    In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature-whistler drift modes that propagate along the electron drift as a Burger's shock and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral-are analyzed. We derive analytical and numerical solutions in a classical electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to the following low-ionized astrophysical plasmas: in protostellar disks, in which the ions may be coupled to the motion of gases; and in molecular clouds and protostellar jets, in which the much heavier charged dust in a dusty Hall plasma may be collisionally coupled to the gas.

  6. Anisotropies in the microwave sky due to nonlinear structures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, E.; Sanz, J.L.; Silk, J. (California Univ., Berkeley (USA))

    1990-05-01

    The propagation of light in a nonstatic linear gravitational potential associated with nonlinear density fluctuations is studied. A potential approximation to Einstein's field equations makes it possible to derive simple expressions for the anisotropies induced in the temperature of the microwave background radiation, associated in particular with angular distortions induced by the time-varying gravitational potential along the line of sight to the surface of last scattering. These results are applied to two examples of interest: a compensated void in the thin-shell approximation and a compensated lump in the Swiss cheese approach, obtaining the same results, with regard to temperature profiles, as those obtained using a general-relativistic treatment. 20 refs.

  7. Axisymmetric Nonlinear Waves And Structures in Hall Plasmas

    CERN Document Server

    Islam, Tanim

    2011-01-01

    A Hall plasma consists of a plasma with not all species frozen into the magnetic field. In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature -- whistler drift modes that propagate along the electron drift as a Burger's shock, and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral -- are analyzed. We derive analytical and numerical solutions in an electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to electron-ion-gas Hall plasmas, in which the ions are coupled to the motion of gases in low ionized plasmas (lower ionosphere and protostellar disks), and to dusty Hall plasmas (such as molecular clouds), in which the much heavier charged dust may be collisionally coupled to the gas.

  8. Nonlinear interface optical switch structure for dual mode switching revisited

    Science.gov (United States)

    Bussjager, Rebecca J.; Osman, Joseph M.; Chaiken, Joseph

    1998-07-01

    There is a need for devices which will allow integration of photonic/optical computing subsystems into electronic computing architectures. This presentation reviews the nonlinear interface optical switch (NIOS) concept and then describes a new effect, the erasable optical memory (EOM) effect. We evaluate an extension of the NIOS device to allow simultaneous optical/electronic, i.e. dual mode, switching of light utilizing the EOM effect. Specific devices involve the fabrication of thin film tungsten (VI) oxide (WO3) and tungsten (V) oxide (W2O5) on the hypotenuse of glass (BK-7), fused silica (SiO2) and zinc selenide (ZnSe) right angle prisms. Chemical reactions and temporal response tests were performed and are discussed.

  9. Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure

    Science.gov (United States)

    Xu, Yu-Lin

    2016-01-01

    Scattered electromagnetic waves from material bodies of different forms contain, in an intricate way, precise information on the intrinsic, geometrical and physical properties of the objects. Scattering theories, ever deepening, aim to provide dependable interpretation and prediction to the complicated interaction of electromagnetic radiation with matter. There are well-established multiple-scattering formulations based on classical electromagnetic theories. An example is the Generalized Multi-particle Mie-solution (GMM), which has recently been extended to a special version ? the GMM-PA approach, applicable to finite periodic arrays consisting of a huge number (e.g., >>106) of identical scattering centers [1]. The framework of the GMM-PA is nearly complete. When the size of the constituent unit scatterers becomes considerably small in comparison with incident wavelength, an appropriate array of such small element volumes may well be a satisfactory representation of a material entity having an arbitrary structure. X-ray diffraction is a powerful characterization tool used in a variety of scientific and technical fields, including material science. A diffraction pattern is nothing more than the spatial distribution of scattered intensity, determined by the distribution of scattering matter by way of its Fourier transform [1]. Since all linear dimensions entered into Maxwell's equations are normalized by wavelength, an analogy exists between optical and X-ray diffraction patterns. A large set of optical diffraction patterns experimentally obtained can be found in the literature [e.g., 2,3]. Theoretical results from the GMM-PA have been scrutinized using a large collection of publically accessible, experimentally obtained Fraunhofer diffraction patterns. As far as characteristic structures of the patterns are concerned, theoretical and experimental results are in uniform agreement; no exception has been found so far. Closely connected with the spatial distribution of

  10. Nonlinear dynamics of breathers in the spiral structures of magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, V. V., E-mail: kiselev@imp.uran.ru; Raskovalov, A. A. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-06-15

    The structure and properties of pulsating solitons (breathers) in the spiral structures of magnets are analyzed within the sine-Gordon model. The breather core pulsations are shown to be accompanied by local shifts and oscillations of the spiral structure with the formation of “precursors” and “tails” in the moving soliton. The possibilities for the observation and excitation of breathers in the spiral structures of magnets and multiferroics are discussed.

  11. Robust identification method for nonlinear model structures and its application to high-performance aircraft

    Science.gov (United States)

    Shi, Zhong-Ke; Wu, Fang-Xiang

    2013-06-01

    A common assumption is that the model structure is known for modelling high performance aircraft. In practice, this is not the case. Actually, structure identification plays the most important role in the processing of nonlinear system modelling. The integration of mode structure identification and parameter estimation is an efficient method to construct the model for high performance aircraft, which is nonlinear and also contains uncertainties. This article presents an efficient method for identifying nonlinear model structure and estimating parameters for high-performance aircraft model, which contains uncertainties. The parameters associated with nonlinear terms are considered one after the other if they should be included in the nonlinear model until a stopping criterion is met, which is based on Akaike's information criterion. A numerically efficient U-D factorisation is presented to avoid complex computation of high-order matrices. The proposed method is applied to flight test data of a high-performance aircraft. The results demonstrate that the proposed method could obtain the good aircraft model with a reasonably good fidelity based on the comparison with flight test data.

  12. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  13. LINEAR AND NONLINEAR AERODYNAMIC THEORY OF INTERACTION BETWEEN FLEXIBLE LONG STRUCTURE AND WIND

    Institute of Scientific and Technical Information of China (English)

    徐旭; 曹志远

    2001-01-01

    In light of the characteristics of the interactions between flexible structure and wind in three directions, and based on the rational mechanical section-model of structure, a new aerodynamic force model is accepted, i. e. the coefficients of three component forces are the functions of the instantaneous attack angle and rotational speed Ci = Ci(β(t),θ),(i = D, L, M). So, a new method to formulate the linear and nonlinear aerodynamic items of wind and structure interacting has been put forward in accordance with "strip theory"and modified "quasi-static theory ", and then the linear and nonlinear coupled theory of super-slender structure for civil engineering analyzing are converged in one model. For the linear aerodynamic-force parts, the semi-analytical expressions of the items so-called "flutter derivatives" corresponding to the one in the classic equations have been given here,and so have the nonlinear parts. The study of the stability of nonlinear aerodynamic-coupled torsional vibration of the old Tacoma bridge shows that the form and results of the nonlinear control equation in rotational direction are in agreement with that of V. F. Bohm's.

  14. Estimations of non-linearities in structural vibrations of string musical instruments

    CERN Document Server

    Ege, Kerem; Boutillon, Xavier

    2012-01-01

    Under the excitation of strings, the wooden structure of string instruments is generally assumed to undergo linear vibrations. As an alternative to the direct measurement of the distortion rate at several vibration levels and frequencies, we characterise weak non-linearities by a signal-model approach based on cascade of Hammerstein models. In this approach, in a chain of two non-linear systems, two measurements are sufficient to estimate the non-linear contribution of the second (sub-)system which cannot be directly linearly driven, as a function of the exciting frequency. The experiment consists in exciting the instrument acoustically. The linear and non-linear contributions to the response of (a) the loudspeaker coupled to the room, (b) the instrument can be separated. Some methodological issues will be discussed. Findings pertaining to several instruments - one piano, two guitars, one violin - will be presented.

  15. Molecular structure-property correlations from optical nonlinearity and thermal-relaxation dynamics.

    Science.gov (United States)

    Bhattacharyya, Indrajit; Priyadarshi, Shekhar; Goswami, Debabrata

    2009-02-01

    We apply ultrafast single beam Z-scan technique to measure saturation absorption coefficients and nonlinear-refraction coefficients of primary alcohols at 1560 nm. The nonlinear effects result from vibronic transitions and cubic nonlinear-refraction. To measure the pure total third-order nonlinear susceptibility, we removed thermal effects with a frequency optimized optical-chopper. Our measurements of thermal-relaxation dynamics of alcohols, from 1560 nm thermal lens pump and 780 nm probe experiments revealed faster and slower thermal-relaxation timescales, respectively, from conduction and convection. The faster timescale accurately predicts thermal-diffusivity, which decreases linearly with alcohol chain-lengths since thermal-relaxation is slower in heavier molecules. The relation between thermal-diffusivity and alcohol chain-length confirms structure-property relationship.

  16. Structure Detection of Nonlinear Aeroelastic Systems with Application to Aeroelastic Flight Test Data. Part 2

    Science.gov (United States)

    Kukreja, Sunil L.; Brenner, martin J.

    2006-01-01

    This viewgraph presentation reviews the 1. Motivation for the study 2. Nonlinear Model Form 3. Structure Detection 4. Least Absolute Shrinkage and Selection Operator (LASSO) 5. Objectives 6. Results 7. Assess LASSO as a Structure Detection Tool: Simulated Nonlinear Models 8. Applicability to Complex Systems: F/A-18 Active Aeroelastic Wing Flight Test Data. The authors conclude that 1. this is a novel approach for detecting the structure of highly over-parameterised nonlinear models in situations where other methods may be inadequate 2. that it is a practical significance in the analysis of aircraft dynamics during envelope expansion and could lead to more efficient control strategies and 3. this could allow greater insight into the functionality of various systems dynamics, by providing a quantitative model which is easily interpretable

  17. Cosmology emerging as the gauge structure of a nonlinear quantum system

    CERN Document Server

    Kam, Chon-Fai

    2016-01-01

    Berry phases and gauge structures in parameter spaces of quantum systems are the foundation of a broad range of quantum effects such as quantum Hall effects and topological insulators. The gauge structures of interacting many-body systems, which often present exotic features, are particularly interesting. While quantum systems are intrinsically linear due to the superposition principle, nonlinear quantum mechanics can arise as an effective theory for interacting systems (such as condensates of interacting bosons). Here we show that gauge structures similar to curved spacetime can arise in nonlinear quantum systems where the superposition principle breaks down. In the canonical formalism of the nonlinear quantum mechanics, the geometric phases of quantum evolutions can be formulated as the classical geometric phases of a harmonic oscillator that represents the Bogoliubov excitations. We find that the classical geometric phase can be described by a de Sitter universe. The fundamental frequency of the harmonic o...

  18. Output-only identification of civil structures using nonlinear finite element model updating

    Science.gov (United States)

    Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.

    2015-03-01

    This paper presents a novel approach for output-only nonlinear system identification of structures using data recorded during earthquake events. In this approach, state-of-the-art nonlinear structural FE modeling and analysis techniques are combined with Bayesian Inference method to estimate (i) time-invariant parameters governing the nonlinear hysteretic material constitutive models used in the FE model of the structure, and (ii) the time history of the earthquake ground motion. To validate the performance of the proposed framework, the simulated responses of a bridge pier to an earthquake ground motion is polluted with artificial output measurement noise and used to jointly estimate the unknown material parameters and the time history of the earthquake ground motion. This proof-of-concept example illustrates the successful performance of the proposed approach even in the presence of high measurement noise.

  19. Electromagnetic potential in pre-metric electrodynamics: Causal structure, propagators and quantization

    Science.gov (United States)

    Pfeifer, Christian; Siemssen, Daniel

    2016-05-01

    An axiomatic approach to electrodynamics reveals that Maxwell electrodynamics is just one instance of a variety of theories for which the name electrodynamics is justified. They all have in common that their fundamental input are Maxwell's equations d F =0 (or F =d A ) and d H =J and a constitutive law H =#F which relates the field strength two-form F and the excitation two-form H . A local and linear constitutive law defines what is called local and linear pre-metric electrodynamics whose best known application is the effective description of electrodynamics inside media including, e.g., birefringence. We analyze the classical theory of the electromagnetic potential A before we use methods familiar from mathematical quantum field theory in curved spacetimes to quantize it in a locally covariant way. Our analysis of the classical theory contains the derivation of retarded and advanced propagators, the analysis of the causal structure on the basis of the constitutive law (instead of a metric) and a discussion of the classical phase space. This classical analysis sets the stage for the construction of the quantum field algebra and quantum states. Here one sees, among other things, that a microlocal spectrum condition can be formulated in this more general setting.

  20. A theoretical model for electromagnetic characterization of a spherical dust molecular cloud equilibrium structure

    CERN Document Server

    Borah, B

    2014-01-01

    A theoretical model is developed to study the equilibrium electromagnetic properties of a spherically symmetric dust molecular cloud (DMC) structure on the Jeans scale. It applies a technique based on the modified Lane-Emden equation (m-LEE). It considers an inhomogeneous distribution of dust grains in field-free hydrodynamic equilibrium configuration within the framework of exact gravito-electrostatic pressure balancing condition. Although weak relative to the massive grains, but finite, the efficacious inertial roles of the thermal species (electrons and ions) are included. A full portrayal of the lowest-order cloud surface boundary (CSB) and associated parameter signatures on the Jeans scale is made numerically for the first time. The multi-order extremization of the m-LEE solutions specifies the CSB at a radial point m relative to the centre. It gets biased negatively due to the interplay of plasma-boundary wall interaction (global) and plasma sheath-sheath coupling (local) processes. The CSB acts as an i...

  1. Automated System of Study Nonlinear Processes in Electro-vacuum Devices with Open Resonant Periodic Structures

    Directory of Open Access Journals (Sweden)

    G.S. Vorobyov

    2014-04-01

    Full Text Available The article describes the experimental equipment and the results of investigations of nonlinear processes occurring during the excitation of electromagnetic oscillations in the resonant electron beam devices such as an orotron-generator of diffraction radiation. These devices are finding wide application in physics and microwave technology, now. A technique for experimental research, which bases on the using of the universal electro vacuum equipment diffraction radiation analyzer and the microprocessor system for collecting and processing data. The experimental investigations results of the energy and frequency characteristics for the most common modes of the excitation oscillations in the open resonant systems such as an orotron. The implementations on the optimum modes for the oscillations excitation in such devices were recommended.

  2. Evaluation on Stability of Stope Structure Based on Nonlinear Dynamics of Coupling Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-computing is a practical and advanced tool for solving large-scale underground rock engineering problems.

  3. Structural and nonlinear optical properties of as-grown and annealed metallophthalocyanine thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, A., E-mail: azawa@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Płóciennik, P.; Strzelecki, J. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Pranaitis, M.; Dabos-Seignon, S.; Sahraoui, B. [LUNAM Université, Université d' Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers cedex (France)

    2013-10-31

    The paper presents the Third Harmonic Generation investigation of four metallophtalocyanine (MPc, M = Cu, Co, Mg and Zn) thin films. The investigated films were fabricated by Physical Vapor Deposition in high vacuum onto quartz substrates. MPc thin films were annealed after fabrication in ambient atmosphere for 12 h at the temperature equal to 150 °C or 250 °C. The Third Harmonic Generation spectra were measured to investigate the nonlinear optical properties and their dependence on the structure of the thin film after the annealing process. This approach allowed us to determine the electronic contribution of the third-order nonlinear optical susceptibility χ{sup <3>}{sub elec} of these MPc films and to investigate two theoretical models for explanation of the observed results. We find that the annealing process significantly changes the optical and structural properties of MPc thin films. - Highlights: • Metallophtalocyanine thin films were grown by Physical Vapor Deposition technique. • MPcs thin films were undergone an annealing process in ambient atmosphere. • Third Harmonic spectra were measured to investigate nonlinear optical properties. • The third order nonlinear optical susceptibility χ{sup <3>}{sub elec} was determined. • We report changing both nonlinear optical and structural properties of thin films.

  4. Electron vortex magnetic holes: a nonlinear coherent plasma structure

    CERN Document Server

    Haynes, Christopher T; Camporeale, Enrico; Sundberg, Torbjorn

    2014-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional PIC simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is ...

  5. Simulating Nonlinear Dynamics of Deployable Space Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To support NASA's vital interest in developing much larger solar array structures over the next 20 years, MotionPort LLC's Phase I SBIR project will strengthen...

  6. Probabilistic Nonlinear Analysis of Reinforced Concrete Bubbler Tower Structure Failure

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2014-06-01

    Full Text Available This paper describes the reliability analysis of concrete bubbler tower structure of nuclear power plant with the reactor WWER 440 under high internal overpressure. There is showed summary of calculation models and calculation methods for the probability analysis of the structural integrity considering degradation effects and high internal overpressure. The uncertainties of the resistance and the calculation model were taking in the account in the RSM method.

  7. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...

  8. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Science.gov (United States)

    Haynes, Christopher T.; Burgess, David; Camporeale, Enrico; Sundberg, Torbjorn

    2015-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  9. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  10. Effect of Structure Parameters on Power and Magnetic Field in Electromagnetic Soft-Contact Continuous Casting System

    Institute of Scientific and Technical Information of China (English)

    DENG An-yuan; WANG En-gang; HE Ji-cheng

    2008-01-01

    To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure parameters on system power and magnetic flux density distribution was calculated using finite element method. The results show that as for electromagnetic soft-contact continuous casting system with partial-segment type mold, the power consumption is much more than that with a full-segment type mold; about 62% of electric power is dissipated in the mold, and the effective acting range of magnetic field is relatively narrow. Optimizing mold structure is a crucial measure of remarkably reducing mold power consumption and saving electric energy. Increasing slit number, width, and length can remarkably increase the magnetic flux density in the mold and can reduce the electric energy consumption. Among structure parameters, slit number and slit width are relatively more effective to reduce energy consumption. For a round billet electromagnetic continuous casting system with diameter of 178 mm, the reasonable slit number, width, and length are about 24-32, 0.5-1.0 mm, and 160 mm, respectively.

  11. A hybrid-stress solid-shell element for non-linear analysis of piezoelectric structures

    Institute of Scientific and Technical Information of China (English)

    SZE; K; Y

    2009-01-01

    This paper presents eight-node solid-shell elements for geometric non-linear analyze of piezoelectric structures. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger-Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid ele- ment, a hybrid-stress solid-shell element is formulated. The presented finite shell element is able to model arbitrary curved shell structures. Non-linear numerical examples demonstrate the ability of the proposed model to analyze nonlinear piezoelectric devices.

  12. All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials.

    Science.gov (United States)

    Min, Changjun; Wang, Pei; Chen, Chunchong; Deng, Yan; Lu, Yonghua; Ming, Hai; Ning, Tingyin; Zhou, Yueliang; Yang, Guozhen

    2008-04-15

    All-optical switching based on a subwavelength metallic grating structure containing nonlinear optical materials has been proposed and numerically investigated. Metal-dielectric composite material is used in the switching for its larger third-order nonlinear susceptibility (approximately 10(-7)esu) and ultrafast response properties. The calculated dependence of the signal light intensity on the pump light intensity shows a bistable behavior, which results in a significant switch effect. It rests on a surface plasmon's enhanced intensity-dependent change of the effective dielectric constant of Kerr nonlinear media, corresponding to a transition of the far-field transmission from a low- to high-transmission state. The study of this switching structure shows great advantages of smaller size, lower requirement of pump light intensity, and shorter switching time at approximately the picosecond level.

  13. Material and Geometric Nonlinear Analysis of Functionally Graded Plate-Shell Type Structures

    Science.gov (United States)

    Moita, J. S.; Araújo, A. L.; Mota Soares, C. M.; Mota Soares, C. A.; Herskovits, J.

    2016-08-01

    A nonlinear formulation for general Functionally Graded Material plate-shell type structures is presented. The formulation accounts for geometric and material nonlinear behaviour of these structures. Using the Newton-Raphson incremental-iterative method, the incremental equilibrium path is obtained, and in case of snap-through occurrence the automatic arc-length method is used. This simple and fast element model is a non-conforming triangular flat plate/shell element with 24 degrees of freedom for the generalized displacements. It is benchmarked in the solution of some illustrative plate- shell examples and the results are presented and discussed with numerical alternative models. Benchmark tests with material and geometrically nonlinear behaviour are also proposed.

  14. NONLINEAR FLUID DAMPING IN STRUCTURE-WAKE OSCILLATORS IN MODELING VORTEX-INDUCED VIBRATIONS

    Institute of Scientific and Technical Information of China (English)

    LIN Li-ming; LING Guo-can; WU Ying-xiang; ZENG Xiao-hui

    2009-01-01

    A Nonlinear Fluid Damping(NFD)in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations(VIV).Its nonlinear hydrodynamic effects on the coupled wake and structure oscillators are investigated.A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics,such as the amplification of body displacement at lock-in and frequency lock-in,both at high and low mass ratios.Particularly,the predicted peak amplitude of the body in the Griffin plot is in good agreement with experimental data and empirical equation,indicating the significant effect of the NFD on the structure motion.

  15. Self-Guiding of Electromagnetic Beams in Degenerate Relativistic Electron-Positron Plasma

    CERN Document Server

    Berezhiani, V I

    2016-01-01

    The possibility of self-trapped propagation of electromagnetic beams in the fully degenerate relativistic electron-positron plasma has been studied applying Fluid-Maxwell model; it is shown that dynamics of such beams can be described by the generalized Nonlinear Schr\\"odinger equation with specific type of saturating nonlinearity. Existence of radially symmetric localized solitary structures is demonstrated. It is found that stable solitary structures exist for the arbitrary level of degeneracy.

  16. Application of propagating beam methods to electromagnetic and acoustic wave propagation problems - a review

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, P.E.; Baets, R.

    1987-12-01

    The advantages and disadvantages of various propagating beam methods (BPMs) used in the solution of electromagnetic and acoustical problems are considered. The basic assumptions and approximations which are necessary for the derivation of the BPM algorithm are discussed with respect to applications to acoustics and optics and linear and nonlinear materials. Particular attention is given to the case of passive waveguiding structures and the role that BPM can play in the analysis of nonlinear structures such as semiconductor lasers. 28 references.

  17. Application of propagating beam methods to electromagnetic and acoustic wave propagation problems - A review

    Science.gov (United States)

    Lagasse, P. E.; Baets, R.

    1987-12-01

    The advantages and disadvantages of various propagating beam methods (BPMs) used in the solution of electromagnetic and acoustical problems are considered. The basic assumptions and approximations which are necessary for the derivation of the BPM algorithm are discussed with respect to applications to acoustics and optics and linear and nonlinear materials. Particular attention is given to the case of passive waveguiding structures and the role that BPM can play in the analysis of nonlinear structures such as semiconductor lasers.

  18. Spatial properties of entangled photon pairs generated in nonlinear layered structures

    CERN Document Server

    Perina, Jan

    2011-01-01

    A spatial quantum model of spontaneous parametric down-conversion in nonlinear layered structures is developed expanding the interacting vectorial fields into monochromatic plane waves. A two-photon spectral amplitude depending on the signal- and idler-field frequencies and propagation directions is used to derive transverse profiles of the emitted fields as well as their spatial correlations. Intensity spatial profiles and their spatial correlations are mainly determined by the positions of transmission peaks formed in these structures with photonic bands. A method for geometry optimization of the structures with respect to efficiency of the nonlinear process is suggested. Several structures composed of GaN/AlN layers are analyzed as typical examples. They allow the generation of photon pairs correlated in several emission directions. Photon-pair generation rates increasing better than the second power of the number of layers can be reached. Also structures efficiently generated photon pairs showing anti-bun...

  19. Necessary Conditions for Nonlinear Ultrasonic Modulation Generation Given a Localized Fatigue Crack in a Plate-Like Structure

    Directory of Open Access Journals (Sweden)

    Hyung Jin Lim

    2017-02-01

    Full Text Available It has been shown that nonlinear ultrasonics can be more sensitive to local incipient defects, such as a fatigue crack, than conventional linear ultrasonics. Therefore, there is an increasing interest in utilizing nonlinear ultrasonics for structural health monitoring and nondestructive testing applications. While the conditions, which are the necessary conditions that should be satisfied for the generation of nonlinear harmonic components, are extensively studied for distributed material nonlinearity, little work has been done to understand the necessary conditions at the presence of a localized nonlinear source such as a fatigue crack. In this paper, the necessary conditions of nonlinear ultrasonic modulation generation in a plate-like structure are formulated specifically for a localized nonlinear source. Then, the correctness of the formulated necessary conditions is experimentally verified using ultrasounds obtained from aluminum plates.

  20. Coherent structures and the saturation of a nonlinear dynamo

    CERN Document Server

    Rempel, Erico L; Brandenburg, Axel; Muñoz, Pablo R

    2012-01-01

    Eulerian and Lagrangian tools are used to detect coherent structures in the velocity and magnetic fields of a mean--field dynamo, produced by direct numerical simulations of the three--dimensional compressible magnetohydrodynamic equations with an isotropic helical forcing and moderate Reynolds number. Two distinct stages of the dynamo are studied, the kinematic stage, where a seed magnetic field undergoes exponential growth, and the saturated regime. It is shown that the Lagrangian analysis detects structures with greater detail, besides providing information on the chaotic mixing properties of the flow and the magnetic fields. The traditional way of detecting Lagrangian coherent structures using finite--time Lyapunov exponents is compared with a recently developed method called function M. The latter is shown to produce clearer pictures which readily permit the identification of hyperbolic regions in the magnetic field, where chaotic transport/dispersion of magnetic field lines is highly enhanced.