WorldWideScience

Sample records for nonlinear electric susceptibility

  1. Second-order nonlinear susceptibility in quantum dot structure under applied electric field

    Science.gov (United States)

    Abdullah, M.; Noori, Farah T. Mohammed; Al-Khursan, Amin H.

    2015-06-01

    A model for quantum dot (QD) subbands, when the dots are in the form of quantum disks, under applied electric field was stated. Then, subbands of dots with different disk radii and heights were calculated under applied field. The competition between the shift due to confinement by field and the size was shown for subbands. Second-order nonlinear susceptibility in quantum dots (QDs) was derived using density matrix theory which is, then, simulated using the calculated subbands. Both interband (IB) and intersubband (ISB) transitions were discussed. High second-order susceptibility in QDs was predicted. The results show a reduction in the susceptibility with the applied field while the peak wavelength was mainly relates to energy difference between subbands. A good match between theory and laboratory experiments was observed. Laboratory experiments at terahertz region might be possible using valence intersubband which is important in many device applications.

  2. Electric field effect on the third-order nonlinear optical susceptibility in inverted core–shell nanodots with dielectric confinement

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, M.; Radu, A., E-mail: radu@physics.pub.ro; Niculescu, E.C.

    2013-11-15

    Third-order nonlinear optical processes associated with the interlevel transitions in ZnS/CdSe core–shell quantum dots under electric fields are theoretically investigated. Taking into account the dielectric mismatch with the surrounding matrix, the electronic structure of the dots is obtained within the effective mass and parabolic band approximations. It is shown that large applied electric fields break the symmetry of the confinement potential and lead to a significant blue-shift of the peak positions in the nonlinear optical spectrum. The size effect is also discussed and it is proved that large nonlinear susceptibility can be obtained by increasing the thickness of the nanocrystal shell. Our results suggest that external factors such as the applied electric field and orientation of the incident light polarization can be used – in addition to spatial confinement – to improve the performances of the optical devices. -- Highlights: • Nonlinear optical processes in ZnS/CdSe QDs under electric field were studied. • The effective mass and parabolic band approximations were used. • The dielectric mismatch of the QDs with the surrounding matrix was considered. • Increasing the thickness of the shell could lead to large nonlinear susceptibility. • Incident light polarization with respect to the electric field was discussed.

  3. Second-order nonlinear optical susceptibilities induced by built-in electric field in wurtzite nitride double quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L. [State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing 100871 (China) and Department of Mechanism and Electron, Panyu Polytechnic, Panyu 511483 (China)]. E-mail: zhangli-gz@263.net; Chi Yuemeng [State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing 100871 (China); Shi, J.-J. [State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing 100871 (China)

    2007-06-25

    Based on the density matrix method and the iterative treatment, the second-harmonic generation (SHG) susceptibility of a wurtzite nitride coupling quantum well (CQW) with strong built-in electric fields have been theoretically investigated. The effect of the band non-parabolicity effect has been taken into account. A typical wurtzite GaN/In{sub x}Ga{sub 1-x}N CQW are chosen to perform numerical calculations. The localized properties of the electronic ground state and the low-excited states in the system are analyzed in detail. The calculated SHG coefficients reach the order of magnitude of 10{sup -7}m/V, which is two-order larger than the corresponding values in wurtzite single quantum wells. Moreover, it is confirmed that the SHG coefficients are not monotonic functions of the well width, barrier width and the doped concentration of the CQW systems, but have complicated dependent relations on them. The reasons resulting in these characteristics can be attributed to the intense competition between the strong built-in electric field effect and the quantum size effect for the electronic confined situation in the wurtzite CQWs. The calculated results also show that a strong SHG effect can be realized in the nitride CQW by choosing a group of optimized structural parameters and doped fraction.

  4. Nonlinear susceptibility magnitude imaging of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ficko, Bradley W., E-mail: Bradley.W.Ficko@Dartmouth.edu; Giacometti, Paolo; Diamond, Solomon G.

    2015-03-15

    This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R{sup 2}=0.99, CNR=84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R{sup 2}>0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI. - Highlights: • Development of a nonlinear susceptibility magnitude imaging model • Demonstration of nonlinear SMI with primary and harmonic frequencies • Demonstration of nonlinear SMI with primary and intermodulation

  5. Nonlinear susceptibility magnitude imaging of magnetic nanoparticles

    Science.gov (United States)

    Ficko, Bradley W.; Giacometti, Paolo; Diamond, Solomon G.

    2015-03-01

    This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R2=0.99, CNR=84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R2>0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI.

  6. Extended arrays for nonlinear susceptibility magnitude imaging

    Science.gov (United States)

    Ficko, Bradley W.; Giacometti, Paolo; Diamond, Solomon G.

    2016-01-01

    This study implements nonlinear susceptibility magnitude imaging (SMI) with multifrequency intermodulation and phase encoding. An imaging grid was constructed of cylindrical wells of 3.5-mm diameter and 4.2-mm height on a hexagonal two-dimensional 61-voxel pattern with 5-mm spacing. Patterns of sample wells were filled with 40-μl volumes of Fe3O4 starch-coated magnetic nanoparticles (mNPs) with a hydrodynamic diameter of 100 nm and a concentration of 25 mg/ml. The imaging hardware was configured with three excitation coils and three detection coils in anticipation that a larger imaging system will have arrays of excitation and detection coils. Hexagonal and bar patterns of mNP were successfully imaged (R2 > 0.9) at several orientations. This SMI demonstration extends our prior work to feature a larger coil array, enlarged field-of-view, effective phase encoding scheme, reduced mNP sample size, and more complex imaging patterns to test the feasibility of extending the method beyond the pilot scale. The results presented in this study show that nonlinear SMI holds promise for further development into a practical imaging system for medical applications. PMID:26124044

  7. Transistor-based metamaterials with dynamically tunable nonlinear susceptibility

    Science.gov (United States)

    Barrett, John P.; Katko, Alexander R.; Cummer, Steven A.

    2016-08-01

    We present the design, analysis, and experimental demonstration of an electromagnetic metamaterial with a dynamically tunable effective nonlinear susceptibility. Split-ring resonators loaded with transistors are shown theoretically and experimentally to act as metamaterials with a second-order nonlinear susceptibility that can be adjusted through the use of a bias voltage. Measurements confirm that this allows for the design of a nonlinear metamaterial with adjustable mixing efficiency.

  8. Cascaded second-order contribution to the third-order nonlinear susceptibility

    Science.gov (United States)

    Kolleck, Christian

    2004-05-01

    Cascading of second-order nonlinear effects leads to an effective third-order nonlinearity. In addition to the macroscopic electric field at the intermediate frequencies another term has to be taken into account which is due to the locality of the intermediate polarization sources. Combining the correction terms at the three intermediate frequencies gives rise to a third-order susceptibility tensor, which exhibits the same symmetry properties as an intrinsic susceptibility. This particularly applies to the contributions from the rectified and the second-harmonic fields to the degenerate susceptibility.

  9. Ethernet susceptibility to electric fast transients

    NARCIS (Netherlands)

    van Leersum, B.J.A.M.; Buesink, Frederik Johannes Karel; Bergsma, J.G.; Leferink, Frank Bernardus Johannes

    2013-01-01

    The effect of Electric Fast Transients (EFT) phenomena in an Ethernet interface set-up is investigated in order to get more insight in coupling and interference mechanisms, robustness and susceptibility levels of a typical Ethernet installation on board of a naval vessel. It is shown that already a

  10. Third-Order Nonlinear Optical Susceptibility of Indium Phosphide Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Li; WANG Dong; CHEN Guang-De; LIU Hui

    2007-01-01

    InP nanocrystals synthesized by refluxing and annealing of organic solvent are determined from XRD measurements to have an average granularity of 25 nm. The nonlinear optical properties of the InP nanocrystals studied by using laser Z-scan technique with 50ps pulses at 532nm are found to reveal strong nonlinear optical properties and two-photon absorption phenomenon. Also, the nonlinear absorption coefficient, the nonlinear refractive index and the third-order nonlinear optical susceptibility are determined by experiments, in which the nonlinear refractive index is three orders of magnitude larger than that of bulk InP.

  11. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  12. Enhanced nonlinear susceptibility via double-double electromagnetically induced transparency

    Science.gov (United States)

    Alotaibi, Hessa M. M.; Sanders, Barry C.

    2016-11-01

    We investigate the nonlinear optical susceptibility of an alkali-metal atom with tripod electronic configuration responsible for generating cross-phase modulation and self-phase modulation under the condition of double-double electromagnetically induced transparency. Our investigation demonstrates an enhancement in the nonlinear optical susceptibility of an alkali-metal atom by a factor of 1000 in the region of the second transparency window. This enhancement is in comparison with the atom's susceptibility in the first transparency window for the same parameters under the same conditions. Nonlinear-absorption enhancement arises by canceling Raman-gain generation, which arises when the probe and signal fields have equal intensities. At the center of the second transparency window, we obtain the condition required to attain a nonvanishing nonlinear optical susceptibility. In the bare-state picture, the coupling field must be off resonant from a bare-to-bare-state transition, while working in the semiclassical dressed picture required the signal field to be tuned off resonantly with a bare-to-dressed-state transition. The relation that governs the values of coupling- and signal-field detuning are also obtained. Our scheme exhibits the fact that the second transparency window has advantages over the first transparency window with respect to obtaining an enhanced Kerr effect, and our calculation includes simulation of both low-temperature and Doppler-broadened regimes.

  13. The electricity sector susceptibility of European countries to climate change

    Science.gov (United States)

    Klein, Daniel R.; Olonscheck, Mady; Walther, Carsten; Kropp, Jürgen P.

    2014-05-01

    Due to the close relationship between electricity consumption, production and temperature, the electricity systems of countries are particularly susceptible to climate change. Based on a number of quantitative influencing factors, we provide a relative index for 21 European countries. This allows relevant stakeholders to identify the main influencing factors that determine the electricity system susceptibility of their country. The index was determined using 14 influencing factors that include those that increase or decrease susceptibility. This includes information on monthly mean temperature, electricity consumption, import, export and production by energy source for the period 2000-2011. Moreover, we consider the results of nine global climate models regarding future temperature changes as well as data on air conditioner prevalence by country. A quantitative relative ranked index describing the susceptibility of each country's electricity system is provided. In both Luxembourg and Greece, which top the list, the inability to meet electricity demand with inland production as well as a heavy reliance on combustible fuel electricity production explain part of the high relative susceptibility. Summer electricity consumption (another influencing factor) is expected to increase in Greece where current relatively warm temperatures, in the context of the countries included in this study, are expected to increase in the future. Comparatively, Norway was the least susceptible country based on our index. Norway is expected to benefit from rising projected temperatures, which will decrease winter electricity consumption and limit susceptibility. Furthermore, Norway's current electricity production exceeds consumption demand and is largely based on hydro, which also decreases susceptibility. The findings of this study enable policy makers, scientists and energy managers to examine the most important influencing factors that increase susceptibility and focus their adaptation

  14. Nonlinear terahertz metamaterials with active electrical control

    Science.gov (United States)

    Keiser, G. R.; Karl, N.; Liu, P. Q.; Tulloss, C.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Reno, J. L.; Mittleman, D. M.

    2017-09-01

    We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.

  15. Ageing of the nonlinear optical susceptibility in soft matter

    Energy Technology Data Exchange (ETDEWEB)

    Ghofraniha, N [SMC-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Conti, C [Research Centre ' Enrico Fermi' , Via Panisperna 89/A, 00184 Rome (Italy); Leonardo, R Di [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruzicka, B [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruocco, G [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy)

    2007-05-23

    We investigate the nonlinear optics response of a colloidal dispersion undergoing dynamics slowing down with age, by using Z-scan and dynamic light scattering measurements. We study the high optical nonlinearity of an organic dye (rhodamine B) dispersed in a water-clay (laponite) suspension. We consider different clay concentrations (2.0-2.6 wt%) experiencing dynamics arrest. We find that (i) the concentration dependent exponential growth of both mean relaxation time and nonlinear absorption coefficient can be individually scaled to a master curve and (ii) the scaling times are the same for the two physical quantities. These findings indicate that the optical nonlinear susceptibility exhibits the same ageing universal scaling behaviour, typical of disordered out of equilibrium systems.

  16. Calculation of nonlinear magnetic susceptibility tensors for a uniaxial antiferromagnet

    Science.gov (United States)

    Lim, Siew-Choo; Osman, Junaidah; Tilley, D. R.

    2000-11-01

    In this paper, we present a derivation of the nonlinear susceptibility tensors for a two-sublattice uniaxial antiferromagnet up to the third-order effects within the standard definition by which the rf magnetization m is defined as a power series expansion in the rf fields h with the susceptibility tensors χ(q) as the coefficients. The starting point is the standard set of torque equations of motion for this problem. A complete set of tensor elements is derived for the case of a single-frequency input wave. Within a circular polarization frame (pnz) expressions are given for the first-order susceptibility, second-harmonic generation, optical rectification, third-harmonic generation and intensity-dependent susceptibility. Some of the coefficients with representative resonance features in the far infrared are illustrated graphically and we conclude with a brief discussion of the implications of the resonance features arising from the calculations and their potential applications.

  17. Compensation for electrical converter nonlinearities

    Science.gov (United States)

    Perisic, Milun; Ransom, Ray M; Kajouke, Lateef A

    2013-11-19

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module between the input interface and the output interface, an inductive element between the input interface and the energy conversion module, and a control module. The control module determines a compensated duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface and operates the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value. The compensated duty cycle control value is influenced by the current through the inductive element and accounts for voltage across the switching elements of the energy conversion module.

  18. Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic nanoparticles

    Science.gov (United States)

    Kalmykov, Yuri P.; Ouari, Bachir; Titov, Serguey V.

    2016-08-01

    The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac and dc fields of arbitrary strength and orientation is investigated using Brown's continuous diffusion model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the specific magnetic power loss in the nanoparticles.

  19. Hybrid quantum systems for enhanced nonlinear optical susceptibilities

    CERN Document Server

    Sullivan, Dennis; Kuzyk, Mark G

    2016-01-01

    Significant effort has been expended in the search for materials with ultra-fast nonlinear-optical susceptibilities, but most fall far below the fundamental limits. This work applies a theoretical materials development program that has identified a promising new hybrid made of a nanorod and a molecule. This system uses the electrostatic dipole moment of the molecule to break the symmetry of the metallic nanostructure that shifts the energy spectrum to make it optimal for a nonlinear-optical response near the fundamental limit. The structural parameters are varied to determine the ideal configuration, providing guidelines for making the best structures.

  20. Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells

    Science.gov (United States)

    Yuan, Jian-Hui; Chen, Ni; Zhang, Yan; Mo, Hua; Zhang, Zhi-Hai

    2016-03-01

    Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells are studied theoretically. Both the second-harmonic generation susceptibility and nonlinear optical rectification depend dramatically on the direction and the strength of the electric field. Numerical results show that both the second-harmonic generation susceptibility and nonlinear optical rectification are always weakened as the electric field increases where the direction of the electric field is along the growth direction of the quantum wells, which is in contrast to the conventional case. However, the second-harmonic generation susceptibility is weakened, but the nonlinear optical rectification is strengthened as the electric field increases where the direction of the electric field is against the growth direction of the quantum wells. Also it is the blue (or red) shift of the resonance that is induced by increasing of the electric field when the direction of the electric field is along (or against) the growth direction of the quantum wells. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.

  1. Nonlinear dynamic susceptibilities of interacting and noninteracting magnetic nanoparticles

    CERN Document Server

    Joensson, P; García-Palacios, J L; Svedlindh, P

    2000-01-01

    The linear and cubic dynamic susceptibilities of solid dispersions of nanosized maghemite gamma-Fe sub 2 O sub 3 particles have been measured for three samples with a volume concentration of magnetic particles ranging from 0.3% to 17%, in order to study the effect of dipole-dipole interactions. Significant differences between the dynamic response of the samples are observed. While the linear and cubic dynamic susceptibilities of the most dilute sample compare reasonably well with the corresponding expressions proposed by Raikher and Stepanov for noninteracting particles, the nonlinear dynamic response of the most concentrated sample exhibits at low temperatures similar features as observed in a Ag(11 at% Mn) spin glass.

  2. Electric characterization of a nonlinear dispersive transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, E.S.; Ricotta, R.M. [Faculdade de Tecnologia de Sao Paulo (FATEC-SP), SP (Brazil)], Emails: ferreira@fatecsp.br, regina@fatecsp.br

    2009-07-01

    A preliminary study of electrical soliton propagation in a nonlinear dispersion electrical line is presented. This is probably the simplest system that allows the observation of such waves whose main characteristic is the perfect balance of nonlinear and dispersive aspects. (author)

  3. Nonlinear optimization in electrical engineering with applications in Matlab

    CERN Document Server

    Bakr, Mohamed

    2013-01-01

    Nonlinear Optimization in Electrical Engineering with Applications in MATLAB® provides an introductory course on nonlinear optimization in electrical engineering, with a focus on applications such as the design of electric, microwave, and photonic circuits, wireless communications, and digital filter design. Basic concepts are introduced using a step-by-step approach and illustrated with MATLAB® codes that the reader can use and adapt. Topics covered include: classical optimization methods; one dimensional optimization; unconstrained and constrained optimization; global optimization; space map

  4. Nonlinear wave mixing and susceptibility properties of negative refractive index materials.

    Science.gov (United States)

    Chowdhury, Aref; Tataronis, John A

    2007-01-01

    We present an analysis of second-order and third-order nonlinear susceptibilities and wave-mixing properties of negative refractive index materials. We show that the nonlinear susceptibilities for noncentrosymmetric and centrosymmetric media may be positive or negative and away from resonance depending on the frequency of interest relative to the resonant frequencies of the material. Manipulation of the signs of the nonlinear susceptibilities is important in the field of optics, particularly for solitons and compensation of nonlinear effects. We also show that three- and four-wave mixing can be naturally phase matched in the material.

  5. Nonlinear optical susceptibility of multicomponent tellurite thin film glasses

    Science.gov (United States)

    Munoz-Martin, D.; Fernandez, H.; Fernandez-Navarro, J. M.; Gonzalo, J.; Solis, J.; Fierro, J. L. G.; Domingo, C.; Garcia-Ramos, J. V.

    2008-12-01

    Tellurite (TeO2-TiO2-Nb2O5) thin film glasses have been produced by pulsed laser deposition. The dispersion of the real and imaginary parts of the linear refractive index has been measured in the range from 300 to 1700 nm. Films present high refractive index (n =2.01) and reduced absorption (k nm. The nonlinear third order optical susceptibility (|χ(3)|) has been determined at four different wavelengths (600, 800, 1200, and 1500 nm). The out-of-resonance |χ(3)| values (˜10-12 esu) are found to be ten times higher than those of the bulk glass and 102 times higher than that of silica. Compositional and structural analysis reveals an increase of both the Ti atomic content and the fraction of nonbridging oxygen bonds in the deposited films. Both factors lead to a higher hyperpolarizability of the film constituents that is proposed to be responsible for the high |χ(3)| value of the films.

  6. Nonlinear electrical properties of Si three-terminal junction devices

    DEFF Research Database (Denmark)

    Fantao, Meng; Jie, Sun; Graczyk, Mariusz

    2010-01-01

    This letter reports on the realization and characterization of silicon three-terminal junction devices made in a silicon-on-insulator wafer. Room temperature electrical measurements show that the fabricated devices exhibit pronounced nonlinear electrical properties inherent to ballistic electron ...

  7. Measurement of electric fields and estimation of dielectric susceptibility

    Science.gov (United States)

    Nogi, Yasuyuki; Suzuki, Kiyomitsu; Ohkuma, Yasunori

    2013-05-01

    We describe a method of measuring the spatial structures of electric fields produced by charge distributions such as those on strip electrodes, small disk electrodes, and long double-plate electrodes. An electric-field sensor with high sensitivity to ac fields is fabricated for the measurement using a thin copper sheet. The reliability of the sensor is confirmed using a parallel-plate capacitor. The electric fields are oscillated at a frequency of 300 kHz to operate the electric-field sensor successfully. The structures of the measured fields coincide well with those of theoretical fields derived from Coulomb's law. When a dielectric is inserted in an electric field, polarization charges appear on the surface of the dielectric and modify the electric field in empty space. We measure the modified field and confirm the well-known linear relation between the polarization of a dielectric and the electric field. Dielectric susceptibilities are estimated from the linear relation for four types of dielectric.

  8. Polarized dependence of nonlinear susceptibility in a single layer graphene system in infrared region

    Science.gov (United States)

    Solookinejad, G.

    2016-09-01

    In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.

  9. Polarized dependence of nonlinear susceptibility in a single layer graphene system in infrared region

    Energy Technology Data Exchange (ETDEWEB)

    Solookinejad, G., E-mail: ghsolooki@gmail.com

    2016-09-15

    In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.

  10. Scaling of ac susceptibility and the nonlinear response function of high-temperature superconductors

    Institute of Scientific and Technical Information of China (English)

    CHEN; Kaixuan; NING; Zhenhua; XU; Hengyi; QI; Zhi; LU; Guo

    2005-01-01

    The amplitude-dependent ac susceptibility of high-temperature superconductors is shown to obey some empirical scaling relations. We try to analyze this behavior by extending a dc nonlinear response function of mixed state to the ac cases. The derived equations for critical current and ac susceptibility x(T) agree with the scaling relations of experimental data.

  11. Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios, E-mail: bask@upatras.gr

    2014-07-18

    Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system have been theoretically studied. In general, we find that the structure parameters of the coupled system significantly affect the optical susceptibilities. The enhancement of the coupling effects between the dot and ring is found to increase considerably the optical susceptibilities and redshift drastically the transition energies. Comparing to the linear susceptibility, the nonlinear optical susceptibility is found to be more sensitive to the variation of the structure parameters. A comprehensive analysis of the electron probability density movement with respect to the modification of the structure parameters is provided, which offers a unique perspective of the ground-state localization. - Highlights: • Optical susceptibilities in a quantum-dot–quantum-ring system are studied. • The structure parameters significantly affect the optical susceptibilities. • The enhancement of the coupling effects increases the optical susceptibilities. • The nonlinear susceptibility is more sensitive to the change in structure parameters. • A comprehensive analysis of the electron probability density movement is provided.

  12. Research progress in nonlinear analysis of heart electric activities

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Nonlinear science research is a hot point in the world. It has deepened our cognition of determinism and randomicity, simplicity and complexity, noise and order and it will profoundly influence the progress of the study of natural science, including life science.Life is the most complex nonlinear system and heart is the core of lifecycle system. In the late more than 20 years, nonlinear research on heart electric activities has made much headway. The commonly used parameters are based on chaos and fractal theory, such as correlation dimension, Lyapunov exponent, Kolmogorov entropy and multifractal singularity spectrum. This paper summarizes the commonly used methods in the nonlinear study of heart electric signal. Then, considering the shortages of the above traditional nonlinear parameters, we mainly introduce the results on short-term heart rate variability (HRV) signal (500 R-R intervals) and HFECG signal (1-2s). Finally, we point out it is worthwhile to put emphasis on the study of the sensitive nonlinearity parameters of short-term heart electric signal and their dynamic character and clinical effectivity.

  13. Nonlinear Optical Response of Conjugated Polymer to Electric Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-fang; ZHUANG De-xin; CUI Bin

    2005-01-01

    The organic π-conjugated polymers are of major interest materials for the use in electro-optical and nonlinear optical devices. In this work, for a selected polyacetylene chain, the optical absorption spectra in UV/Vis regime as well as the linear polarizabilitiy and nonlinear hyperpolarizability are calculated by using quantum chemical ab initio and semiempirical methods. The relationship of its optical property to electric field is obtained. Some physical mechanism of electric field effect on molecular optical property is discussed by means of electron distribution and intramolecular charge transfer.

  14. Calculation of the microscopic and macroscopic linear and nonlinear optical properties of liquid acetonitrile. II. Local fields and linear and nonlinear susceptibilities in quadrupolar approximation.

    Science.gov (United States)

    Avramopoulos, A; Papadopoulos, M G; Reis, H

    2007-03-15

    A discrete model based on the multipolar expansion including terms up to hexadecapoles was employed to describe the electrostatic interactions in liquid acetonitrile. Liquid structures obtained form molecular dynamics simulations with different classical, nonpolarizable potentials were used to analyze the electrostatic interactions. The computed average local field was employed for the determination of the environmental effects on the linear and nonlinear electrical molecular properties. Dipole-dipole interactions yield the dominant contribution to the local field, whereas higher multipolar contributions are small but not negligible. Using the effective in-phase properties, macroscopic linear and nonlinear susceptibilities of the liquid were computed. Depending on the partial charges describing the Coulomb interactions of the force field employed, either the linear properties (refractive index and dielectric constant) were reproduced in good agreement with experiment or the nonlinear properties [third-harmonic generation (THG) and electric field induced second-harmonic (EFISH) generation] and the bulk density but never both sets of properties together. It is concluded that the partial charges of the force fields investigated are not suitable for reliable dielectric properties. New methods are probably necessary for the determination of partial charges, which should take into account the collective and long-range nature of electrostatic interactions more precisely.

  15. Quantum Size- Dependent Third- Order Nonlinear Optical Susceptibility in Semiconductor Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    SUN Ting; XIONG Gui-guang

    2005-01-01

    The density matrix approach has been employed to investigate the optical nonlinear polarization in a single semiconductor quantum dot(QD). Electron states are considered to be confined within a quantum dot with infinite potential barriers. It is shown, by numerical calculation, that the third-order nonlinear optical susceptibilities for a typical Si quantum dot is dependent on the quantum size of the quantum dot and the frequency of incident light.

  16. Method for Measuring Small Nonlinearities of Electric Characteristics

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Meyer, Niels I; Schjær-Jacobsen, Jørgen

    1965-01-01

    A method is described for measuring very small deviations from linearity in electric characteristics. The measurement is based on the harmonics generated by the nonlinear element when subjected to a sine wave signal. A special bridge circuit is used to balance out the undesired harmonics...... of the signal generator together with the first harmonic frequency. The set-up measures the small-signal value and the first and second derivative with respect to voltage. The detailed circuits are given for measuring nonlinearities in Ohmic and capacitive components. In the Ohmic case, a sensitivity...

  17. Intermolecular interactions in linear and nonlinear susceptibilities : beyond the local-field approximation

    NARCIS (Netherlands)

    Knoester, Jasper; Mukamel, Shaul

    1989-01-01

    Reduced equations of motion for material and radiation field variables in a molecular crystal are presented that allow us to calculate linear- and nonlinear-optical susceptibilities, accounting in a systematic way for intermolecular interactions. These equations are derived starting from the multipo

  18. Selected topics in nonlinear dynamics and theoretical electrical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kyamakya, Kyandoghere; Chedjou, Jean Camberlain [Kalgenfurt Univ. (Austria); Halang, Wolfgang A.; Li, Zhong [Hagen Fernuniv. (Germany); Mathis, Wolfgang (eds.) [Leibniz Univ. Hannover (Germany). Inst. fuer Theoretische Elektrotechnik

    2013-02-01

    Post proceedings of Joint Conference INDS 2011 and ISTET 2011. Recent advances in nonlinear Dynamics and Synchronization as well as in Theoretical Electrical Engineering. Written by leading experts in the field. This book contains a collection of recent advanced contributions in the field of nonlinear dynamics and synchronization, including selected applications in the area of theoretical electrical engineering. The present book is divided into twenty-one chapters grouped in five parts. The first part focuses on theoretical issues related to chaos and synchronization and their potential applications in mechanics, transportation, communication and security. The second part handles dynamic systems modelling and simulation with special applications to real physical systems and phenomena. The third part discusses some fundamentals of electromagnetics (EM) and addresses the modelling and simulation in some real physical electromagnetic scenarios. The fourth part mainly addresses stability concerns. Finally, the last part assembles some sample applications in the area of optimization, data mining, pattern recognition and image processing.

  19. Nonlinear electrical properties of Si three-terminal junction devices

    DEFF Research Database (Denmark)

    Fantao, Meng; Jie, Sun; Graczyk, Mariusz

    2010-01-01

    This letter reports on the realization and characterization of silicon three-terminal junction devices made in a silicon-on-insulator wafer. Room temperature electrical measurements show that the fabricated devices exhibit pronounced nonlinear electrical properties inherent to ballistic electron...... transport in a three-terminal ballistic junction (TBJ) device. The results show that room temperature functional TBJ devices can be realized in a semiconductor material other than high-mobility III-V semiconductor heterostructures and provide a simple design principle for compact silicon devices...

  20. Study of third-order nonlinear susceptibility of polySchiff base containing triphenylamine

    Institute of Scientific and Technical Information of China (English)

    NIU HaiJun; WANG Wen; HUANG YuDong; ZHANG YunDong; ZHANG YunJun; BAI XuDuo; LIU Yuan

    2007-01-01

    PolySchiff base containing triphenylamine has been synthesized by polycondensation and characterized by FT-IR, NMR, UV-visible spectrometer. Measurements of the third-order optical nonlinear susceptibility x(3)by Z-scan technique have shown that the large nonlinearity is dominated by the two-photon absorption in PSB. The sign and size of real part Rex(3), nonlinear refractive index n2 have been measured with the condition of 532 nm, 8 ns-duration pulses to be -1.23x10-10esu, -3.06x10-12esu;nonlinear absorption index β and size of image part Imx(3) to be 3.63x10-10 m/W, 1.15x10-11 esu, respectively, so the third-order nonlinear susceptibility x(3) is 1.19x10-11 esu. The value is larger than other polymers reported. PSB is self-focusing material and has potential application in nonlinear optic field.

  1. Study of third-order nonlinear susceptibility of polySchiff base containing triphenylamine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    PolySchiff base containing triphenylamine has been synthesized by polycondensation and character-ized by FT-IR,NMR,UV-visible spectrometer. Measurements of the third-order optical nonlinear sus-ceptibility χ(3) by Z-scan technique have shown that the large nonlinearity is dominated by the two-photon absorption in PSB. The sign and size of real part Reχ(3) ,nonlinear refractive index n2 have been measured with the condition of 532 nm,8 ns-duration pulses to be -1.23×10-10 esu,-3.06×10-12 esu;nonlinear absorption index β and size of image part Imχ(3) to be 3.63×10-10 m/W,1.15×10-11 esu,respec-tively,so the third-order nonlinear susceptibility χ(3) is 1.19×10-11 esu. The value is larger than other polymers reported. PSB is self-focusing material and has potential application in nonlinear optic field.

  2. Characterization of electrosynthesized conjugated polymer-carbon nanotube composite: optical nonlinearity and electrical property.

    Science.gov (United States)

    Bahrami, Afarin; Talib, Zainal Abidin; Shahriari, Esmaeil; Yunus, Wan Mahmood Mat; Kasim, Anuar; Behzad, Kasra

    2012-01-01

    The effects of multi-walled carbon nanotube (MWNT) concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS) as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM) indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n(2)) and the nonlinear absorption (β) of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW) laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n(2) and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.

  3. Characterization of Electrosynthesized Conjugated Polymer-Carbon Nanotube Composite: Optical Nonlinearity and Electrical Property

    Directory of Open Access Journals (Sweden)

    Afarin Bahrami

    2012-01-01

    Full Text Available The effects of multi-walled carbon nanotube (MWNT concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n2 and the nonlinear absorption (β of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n2 and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.

  4. Frequency Response and Gap Tuning for Nonlinear Electrical Oscillator Networks

    Science.gov (United States)

    Bhat, Harish S.; Vaz, Garnet J.

    2013-01-01

    We study nonlinear electrical oscillator networks, the smallest example of which consists of a voltage-dependent capacitor, an inductor, and a resistor driven by a pure tone source. By allowing the network topology to be that of any connected graph, such circuits generalize spatially discrete nonlinear transmission lines/lattices that have proven useful in high-frequency analog devices. For such networks, we develop two algorithms to compute the steady-state response when a subset of nodes are driven at the same fixed frequency. The algorithms we devise are orders of magnitude more accurate and efficient than stepping towards the steady-state using a standard numerical integrator. We seek to enhance a given network's nonlinear behavior by altering the eigenvalues of the graph Laplacian, i.e., the resonances of the linearized system. We develop a Newton-type method that solves for the network inductances such that the graph Laplacian achieves a desired set of eigenvalues; this method enables one to move the eigenvalues while keeping the network topology fixed. Running numerical experiments using three different random graph models, we show that shrinking the gap between the graph Laplacian's first two eigenvalues dramatically improves a network's ability to (i) transfer energy to higher harmonics, and (ii) generate large-amplitude signals. Our results shed light on the relationship between a network's structure, encoded by the graph Laplacian, and its function, defined in this case by the presence of strongly nonlinear effects in the frequency response. PMID:24223751

  5. Control of terahertz nonlinear transmission with electrically gated graphene metadevices

    Science.gov (United States)

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. K.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-02-01

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.

  6. Control of terahertz nonlinear transmission with electrically gated graphene metadevices

    Science.gov (United States)

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. k.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-01-01

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms. PMID:28216677

  7. Nonlinear relaxation field in charged systems under high electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, K

    2000-07-01

    The influence of an external electric field on the current in charged systems is investigated. The results from the classical hierarchy of density matrices are compared with the results from the quantum kinetic theory. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated analytically and the nonlinear relaxation field is calculated. The classical linear response result known as Debye - On-Sager relaxation effect is only obtained if asymmetric screening is assumed. Considering the kinetic equation of one specie the other species have to be screened dynamically while the screening with the same specie itself has to be performed statically. Different other approximations are discussed and compared. (author)

  8. Nonlinear Conductivity of a Holographic Superconductor Under Constant Electric Field

    CERN Document Server

    Zeng, Hua-Bi; Fan, Zheyong; Chen, Chiang-Mei

    2016-01-01

    The dynamics of a two-dimensional superconductor under a constant electric field $E$ is studied by using the gauge/gravity correspondence. The pair breaking current induced by $E$ first increases to a peak value and then decreases to a constant value at late time, where the superconducting gap goes to zero, corresponding to a normal conducting phase. The peak value of the current is found to increase linearly with respect to the electric field. Moreover, the nonlinear conductivity, defined as an average of the conductivity in the superconducting phase, scales as $\\sim E^{-2/3}$ for large $E$ when the system is close to the critical temperature, which agrees with predictions from solving the time dependent Ginzburg-Landau equation.

  9. Time-Dependent Nonlinear Optical Susceptibility of an Out-of-Equilibrium Soft Material

    Science.gov (United States)

    Ghofraniha, Neda; Conti, Claudio; Ruocco, Giancarlo; Zamponi, Francesco

    2009-01-01

    We investigate the time-dependent nonlinear optical absorption of a clay dispersion (Laponite) in an organic dye (rhodamine B) water solution displaying liquid-arrested state transition. Specifically, we determine the characteristic time τD of the nonlinear susceptibility buildup due to the Soret effect. By comparing τD with the relaxation time provided by standard dynamic light scattering measurements we report on the decoupling of the two collective diffusion times at the two very different length scales during the aging of the out-of-equilibrium system. With this demonstration experiment we also show the potentiality of nonlinear optics measurements in the study of the late stage of arrest in soft materials.

  10. Cross-evidence for hypnotic susceptibility through nonlinear measures on EEGs of non-hypnotized subjects

    Science.gov (United States)

    Chiarucci, Riccardo; Madeo, Dario; Loffredo, Maria I.; Castellani, Eleonora; Santarcangelo, Enrica L.; Mocenni, Chiara

    2014-07-01

    Assessment of hypnotic susceptibility is usually obtained through the application of psychological instruments. A satisfying classification obtained through quantitative measures is still missing, although it would be very useful for both diagnostic and clinical purposes. Aiming at investigating the relationship between the cortical brain activity and the hypnotic susceptibility level, we propose the combined use of two methodologies - Recurrence Quantification Analysis and Detrended Fluctuation Analysis - both inherited from nonlinear dynamics. Indicators obtained through the application of these techniques to EEG signals of individuals in their ordinary state of consciousness allowed us to obtain a clear discrimination between subjects with high and low susceptibility to hypnosis. Finally a neural network approach was used to perform classification analysis.

  11. Second order nonlinearity in Si by inhomogeneous strain and electric fields

    Science.gov (United States)

    Schilling, Jörg; Schriever, Clemens; Bianco, Federica; Cazzanelli, Massimo; Pavesi, Lorenzo

    2015-08-01

    The lack of a dipolar second order susceptibility (χ(2)) in silicon due to its centro-symmetric diamond lattice usually inhibits efficient second order nonlinear optical processes in the silicon bulk. Depositing stressed silicon nitride layers or growing a thermal oxide layer introduces an inhomogeneous strain into the silicon lattice and breaks the centro-symmetry of its crystal structure thereby creating a χ(2). This causes enhanced second harmonic generation and was observed in reflection and transmission measurements for wavelengths in the infrared. However strain is not the only means to break the structures symmetry. Fixed charges at the silicon nitride/silicon interface cause a high electric field close to the silicon interface which causes electric-field-induced-second-harmonic (EFISH) contributions too. The combination of both effects leads to χ(2) values which are estimated to be of the order as classic χ(2) materials like KDP or LiNiO3. This paves the way for the exploitation of other second order nonlinear processes in the area of silicon photonics and is an example how fundamental optical properties of materials can be altered by strain.

  12. Non-linear response of infinite periodic solids to homogenous electric fields and collective atomic displacements

    Science.gov (United States)

    Ghosez, Philippe

    2006-03-01

    The non-linear response of infinite periodic solids to homogenous electric fields and cooperative atomic displacements will be discussed in the framework of density functional perturbation theory. The approach is based on the “2n + 1” theorem applied to an electric field dependent energy functional. We will focus on the non-linear optical susceptibilities, Raman scattering efficiencies and electrooptic coefficients. Different formulations of third-order energy derivatives will be examined and their convergence with respect to the k-point sampling will be discussed. The method will be applied to conventional semiconductors and to ferroelectric oxides. In the latter case, we will also describe how the first- principles results can be combined to an effective Hamiltonian approach in order to provide access to the temperature dependence of the optical properties. This work was done in collabration with M. Veithen and X. Gonze and was supported by the VolkwagenStiftung, FNRS-Belgium and the FAME-NoE.

  13. Approximating electrical distribution networks via mixed-integer nonlinear programming

    Energy Technology Data Exchange (ETDEWEB)

    Lakhera, Sanyogita [Citibank, New York City, NY (United States); Shanbhag, Uday V. [Department of Industrial and Enterprise Systems Engineering at the University of Illinois at Urbana-Champaign, 117 Transportation Building, 104 S. Mathews Ave., Urbana, IL 61801 (United States); McInerney, Michael K. [Construction Engineering Research Laboratory (CERL) (United States)

    2011-02-15

    Given urban data derived from a geographical information system (GIS), we consider the problem of constructing an estimate of the electrical distribution system of an urban area. We employ the image data to obtain an approximate electrical load distribution over a network of a prespecificed discretization. Together with partial information about existing substations, we determine the optimal placement of electrical substations to sustain such a load that minimizes the cost of capital and losses. This requires solving large-scale quadratic programs with discrete variables for which we present a novel penalization-smoothing scheme. The choice of locations allows one to determine the optimal flows in this network, as required by physical requirements which provide us with an approximation of the distribution network. Furthermore, the scheme allows for approximating systems in the presence of no-go areas, such as lakes and fields. We examine the performance of our algorithm on the solution of a set of location problems and observe that the scheme is capable of solving large-scale instances, well beyond the realm of existing mixed-integer nonlinear programming solvers. We conclude with a case study in which a stage-wise extension of this scheme is developed to reflect the temporal evolution of load. (author)

  14. Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering

    CERN Document Server

    Halang, Wolfgang; Mathis, Wolfgang; Chedjou, Jean; Li, Zhong

    2013-01-01

    This book contains a collection of recent advanced contributions in the field of nonlinear dynamics and synchronization, including selected applications in the area of theoretical electrical engineering. The present book is divided into twenty-one chapters grouped in five parts. The first part focuses on theoretical issues related to chaos and synchronization and their potential applications in mechanics, transportation, communication and security. The second part handles dynamic systems modelling and simulation with special applications to real physical systems and phenomena. The third part discusses some fundamentals of electromagnetics (EM) and addresses the modelling and simulation in some real physical electromagnetic scenarios. The fourth part mainly addresses stability concerns. Finally, the last part assembles some sample applications in the area of optimization, data mining, pattern recognition and image processing.

  15. Selected topics in nonlinear dynamics and theoretical electrical engineering

    CERN Document Server

    Halang, Wolfgang; Mathis, Wolfgang; Chedjou, Jean; Li, Zhong

    2013-01-01

    This book contains a collection of recent advanced contributions in the field of nonlinear dynamics and synchronization, including selected applications in the area of theoretical electrical engineering. The present book is divided into twenty-one chapters grouped in five parts. The first part focuses on theoretical issues related to chaos and synchronization and their potential applications in mechanics, transportation, communication and security. The second part handles dynamic systems modelling and simulation with special applications to real physical systems and phenomena. The third part discusses some fundamentals of electromagnetics (EM) and addresses the modelling and simulation in some real physical electromagnetic scenarios. The fourth part mainly addresses stability concerns. Finally, the last part assembles some sample applications in the area of optimization, data mining, pattern recognition and image processing.

  16. Quantized amplitudes in a nonlinear resonant electrical circuit

    CERN Document Server

    Cretin, B

    2008-01-01

    We present a simple nonlinear resonant analog circuit which demonstrates quantization of resonating amplitudes, for a given excitation level. The system is a simple RLC resonator where C is an active capacitor whose value is related to the current in the circuit. This variation is energetically equivalent to a variation of the potential energy and the circuit acts as a pendulum in the gravitational field. The excitation voltage, synchronously switched at the current frequency, enables electrical supply and keeping the oscillation of the system. The excitation frequency has been set to high harmonic of the fundamental oscillation so that anisochronicity can keep constant the amplitude of the circuit voltage and current. The behavior of the circuit is unusual: different stable amplitudes have been measured depending on initial conditions and excitation frequency, for the same amplitude of the excitation. The excitation frequency is naturally divided by the circuit and the ratio is kept constant without external...

  17. Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle.

    Science.gov (United States)

    El Majdoub, K; Giri, F; Ouadi, H; Chaoui, F Z

    2014-01-01

    The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope.

  18. Enhancement of third-order nonlinear optical susceptibility of Alqsub>3sub> in polar aprotic solvents.

    Science.gov (United States)

    Derkowska-Zielinska, Beata

    2017-02-01

    The influence of solvent polarity on nonlinear optical properties of tris-(8-hydroxyquinoline)-aluminum (Alqsub>3sub>) was investigated by the degenerate four-wave mixing method at the 532 nm. It was obtained that the effective values of the third-order nonlinear optical susceptibility (χeff⟨3⟩) and the second-order hyperpolarizability (γsub>effsub>) of Alqsub>3sub> depend on the solvent polarity. Additionally, it was found that Alqsub>3sub> dissolved in dimethyl sulfoxide has the highest values of χeff⟨3⟩ and γsub>effsub>. Furthermore, two Stegeman's figures of merit were also calculated. The obtained results suggest that Alqsub>3sub> is also promising material for application in all-optical signal processing devices.

  19. Modified elliptically polarized light Z-scan method for studying third-order nonlinear susceptibility components.

    Science.gov (United States)

    Yan, Xiao-Qing; Liu, Zhi-Bo; Zhang, Xiao-Liang; Zang, Wei-Ping; Tian, Jian-Guo

    2010-05-10

    The normal elliptically polarized light Z-scan method is modified by adding a quarter-wave plate and an analyzer before the detector. The normalized transmittance formulas of modified elliptically polarized light Z-scan are obtained for media with negligible nonlinear absorption. Compared with normal linearly and elliptically polarized light Z-scan methods, an increase of sensitivity by a factor of larger than 4 is achieved for the real part of third-order susceptibility component's measurements using this modified elliptically polarized light Z-scan method. The analytical results are verified by studying the real part of independent susceptibility components of CS(2) liquid. Moreover, the potential application for cross-polarized wave generation is discussed. (c) 2010 Optical Society of America.

  20. Static electric and magnetic multipole susceptibilities for Dirac one-electron atoms in the ground state

    Science.gov (United States)

    Szmytkowski, Radosław; Łukasik, Grzegorz

    2016-09-01

    We present tabulated data for several families of static electric and magnetic multipole susceptibilities for hydrogenic atoms with nuclear charge numbers from the range 1 ⩽ Z ⩽ 137. Atomic nuclei are assumed to be point-like and spinless. The susceptibilities considered include the multipole electric polarizabilities α E L → E L and magnetizabilities (magnetic susceptibilities) χ M L → M L with 1 ⩽ L ⩽ 4 (i.e., the dipole, quadrupole, octupole and hexadecapole ones), the electric-to-magnetic cross-susceptibilities α E L → M(L - 1) with 2 ⩽ L ⩽ 5 and α E L → M(L + 1) with 1 ⩽ L ⩽ 4, the magnetic-to-electric cross-susceptibilities χ M L → E(L - 1) with 2 ⩽ L ⩽ 5 and χ M L → E(L + 1) with 1 ⩽ L ⩽ 4 (it holds that χ M L → E(L ∓ 1) =α E(L ∓ 1) → M L), and the electric-to-toroidal-magnetic cross-susceptibilities α E L → T L with 1 ⩽ L ⩽ 4. Numerical values are computed from general exact analytical formulas, derived by us elsewhere within the framework of the Dirac relativistic quantum mechanics, and involving generalized hypergeometric functions 3F2 of the unit argument.

  1. Enhancement of Second- and Third-Order Nonlinear Optical Susceptibilities in Magnetized Semiconductors

    Institute of Scientific and Technical Information of China (English)

    M. Singh; P. Aghamkar; S. Duhan

    2008-01-01

    Using electromagnetic treatment, an expression of effective nonlinear optical susceptibility Xe[= Xe(2) + Xe(3) E] is obtained for Ⅲ-Ⅴ semiconducting crystals in an applied transverse dc magnetic field under off-resonant transition regime. The origin of nonlinear interaction lies in nonlinear polarization arising from the crystal properties such as piezoelectricity and electrostriction. Numerical estimates have been made by a representative n-InSb crystal at 77K duly irradiated by a pulsed lO.6-μm CO2 laser under off-resonant transition regime. Efforts are dedicated to optimizing doping level and externally applied dc magnetic field to achieve maximum Xe(2) and Xe(3). The results are found to be in good agreement with the available literature. The analysis shows that Xe(2) and Xe(3)can be significantly enhanced in doped Ⅲ-Ⅴ semiconductors by the proper selection of doping concentration and dc magnetic field, which confirms its potential as a candidate material for the fabrication of nonlinear optical devices.

  2. Second-order nonlinear optical susceptibilities of AIIBVI and AIIIBV semiconductors

    Science.gov (United States)

    Kumar, V.; Sinha, Anita; Singh, B. P.; Chandra, S.

    2016-10-01

    The second-order nonlinear optical (NLO) susceptibilities χ123(2) of AIIBVI and AIIIBV groups of semiconductors with zincblende (ZB) structure have been studied. Two relations have been proposed for the calculation of χ123(2) (0) at zero frequency. One is based on bond charge model of Levine and the other is based on plasma oscillations theory of solids. Calculated values of χ123(2) (0) for all compounds are in fair agreement with the available experimental and reported values.

  3. Fabricating third-order nonlinear optical susceptibility of impurity doped quantum dots in the presence of Gaussian white noise

    Science.gov (United States)

    Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas

    2016-03-01

    We perform a meticulous analysis of profiles of third-order nonlinear optical susceptibility (TONOS) of impurity doped quantum dots (QDs) in the presence and absence of noise. We have invoked Gaussian white noise in the present study and noise has been introduced to the system additively and multiplicatively. The QD is doped with a Gaussian impurity. A magnetic field applied perpendicularly serves as a confinement source and the doped system has been exposed to a static external electric field. The TONOS profiles have been monitored against a continuous variation of incident photon energy when several important parameters such as electric field strength, magnetic field strength, confinement energy, dopant location, Al concentration, dopant potential, relaxation time, anisotropy, and noise strength assume different values. Moreover, the influence of mode of introduction of noise (additive/multiplicative) on the TONOS profiles has also been addressed. The said profiles are found to be consisting of interesting observations such as shift of TONOS peak position and maximization/minimization of TONOS peak intensity. The presence of noise alters the features of TONOS profiles and sometimes enhances the TONOS peak intensity from that of noise-free state. Furthermore, the mode of application of noise also often tailors the TONOS profiles in diverse fashions. The observations accentuate the possibility of tuning the TONOS of doped QD systems in the presence of noise.

  4. The second-harmonic generation susceptibility in semiparabolic quantum wells with applied electric field

    Science.gov (United States)

    Yuan, Jian-Hui; Zhang, Yan; Mo, Hua; Chen, Ni; Zhang, Zhihai

    2015-12-01

    The second-harmonic generation susceptibility in semiparabolic quantum wells with applied electric field is investigated theoretically. For the same topic studied by Zhang and Xie [Phys. Rev. B 68 (2003) 235315] [1], some new and reliable results are obtained by us. It is easily observed that the second harmonic generation susceptibility decreases and the blue shift of the resonance is induced with increasing of the frequencies of the confined potential. Moreover, a transition from a two-photon resonance to two single-photon resonances will appear adjusted by the frequencies of the confined potential. Similar results can also be obtained by controlling the applied electric field. Surprisingly, the second harmonic generation susceptibility is weakened in the presence of the electric field, which is in contrast to the conventional case. Finally, the resonant peak and its corresponding resonant energy are also taken into account.

  5. A Heuristic Approach for Treating Pathologies of Truncated Sum Rules in Limit Theory of Nonlinear Susceptibilities

    CERN Document Server

    Kuzyk, Mark G

    2014-01-01

    The Thomas Kuhn Reich sum rules and the sum-over-states (SOS) expression for the hyperpolarizabilities are truncated when calculating the fundamental limits of nonlinear susceptibilities. Truncation of the SOS expression can lead to an accurate approximation of the first and second hyperpolarizabilities due to energy denominators, which can make the truncated series converge to within 10% of the full series after only a few excited states are included in the sum. The terms in the sum rule series, however, are weighted by the state energies, so convergence of the series requires that the position matrix elements scale at most in inverse proportion to the square root of the energy. Even if the convergence condition is met, serious pathologies arise, including self inconsistent sum rules and equations that contradict reality. As a result, using the truncated sum rules alone leads to pathologies that make any rigorous calculations impossible, let alone yielding even good approximations. This paper discusses condi...

  6. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy

    Science.gov (United States)

    Woodward, R. I.; Murray, R. T.; Phelan, C. F.; de Oliveira, R. E. P.; Runcorn, T. H.; Kelleher, E. J. R.; Li, S.; de Oliveira, E. C.; Fechine, G. J. M.; Eda, G.; de Matos, C. J. S.

    2017-03-01

    We report second- and third-harmonic generation in monolayer MoS2 as a tool for imaging and accurately characterizing the material’s nonlinear optical properties under 1560 nm excitation. Using a surface nonlinear optics treatment, we derive expressions relating experimental measurements to second- and third-order nonlinear sheet susceptibility magnitudes, obtaining values of | {χ }{{s}}(2)| =2.0× {10}-20 m2 V-1 and, for the first time for monolayer MoS2, | {χ }{{s}}(3)| =1.7× {10}-28 m3 V-2. These sheet susceptibilities correspond to effective bulk nonlinear susceptibility values of | {χ }{{b}}(2)| =2.9 × {10}-11 m V-1 and | {χ }{{b}}(3)| =2.4× {10}-19 m2 V-2, accounting for the sheet thickness. Experimental comparisons between MoS2 and graphene are also performed, demonstrating ˜3.4 times stronger third-order sheet nonlinearity in monolayer MoS2, highlighting the material’s potential for nonlinear photonics in the telecommunications C band.

  7. Comparative Assessment of Three Nonlinear Approaches for Landslide Susceptibility Mapping in a Coal Mine Area

    Directory of Open Access Journals (Sweden)

    Qiaomei Su

    2017-07-01

    Full Text Available Landslide susceptibility mapping is the first and most important step involved in landslide hazard assessment. The purpose of the present study is to compare three nonlinear approaches for landslide susceptibility mapping and test whether coal mining has a significant impact on landslide occurrence in coal mine areas. Landslide data collected by the Bureau of Land and Resources are represented by the X, Y coordinates of its central point; causative factors were calculated from topographic and geologic maps, as well as satellite imagery. The five-fold cross-validation method was adopted and the landslide/non-landslide datasets were randomly split into a ratio of 80:20. From this, five subsets for 20 times were acquired for training and validating models by GIS Geostatistical analysis methods, and all of the subsets were employed in a spatially balanced sample design. Three landslide models were built using support vector machine (SVM, logistic regression (LR, and artificial neural network (ANN models by selecting the median of the performance measures. Then, the three fitted models were compared using the area under the receiver operating characteristics (ROC curves (AUC and the performance measures. The results show that the prediction accuracies are between 73.43% and 87.45% in the training stage, and 67.16% to 73.13% in the validating stage for the three models. AUCs vary from 0.807 to 0.906 and 0.753 to 0.944 in the two stages, respectively. Additionally, three landslide susceptibility maps were obtained by classifying the range of landslide probabilities into four classes representing low (0–0.02, medium (0.02–0.1, high (0.1–0.85, and very high (0.85–1 probabilities of landslides. For the distributions of landslide and area percentages under different susceptibility standards, the SVM model has more relative balance in the four classes compared to the LR and the ANN models. The result reveals that the SVM model possesses better

  8. Effective Response of Nonlinear Composite under External AC and DC Electric Field

    Institute of Scientific and Technical Information of China (English)

    LIU Ye; LIANG Fang-Chu; SHEN Hong-Liang

    2005-01-01

    A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα = εαE + xα|E|2E. Under the external AC and DC electric field Eapp = Eα(1 + sinwt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute limit.

  9. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS$_2$ using multiphoton microscopy

    CERN Document Server

    Woodward, R I; Phelan, C F; de Oliveira, R E P; Runcorn, T H; Kelleher, E J R; Li, S; de Oliveira, E C; Fechine, G J M; Eda, G; de Matos, C J S

    2016-01-01

    We report second- and third-harmonic generation in monolayer MoS$_2$ as a tool for imaging and accurately characterizing the material's nonlinear optical properties under 1560 nm excitation. Using a surface nonlinear optics treatment, we derive expressions relating experimental measurements to second- and third-order nonlinear sheet susceptibility magnitudes, obtaining values of $|\\chi_s^{(2)}|=2\\times10^{-20}$ m$^2$ V$^{-1}$ and for the first time for monolayer MoS$_2$, $|\\chi_s^{(3)}|=2\\times10^{-28}$ m$^3$ V$^{-2}$. Experimental comparisons between MoS$_2$ and graphene are also performed, demonstrating $\\sim$4 times stronger third-order nonlinearity in monolayer MoS$_2$, highlighting the material's potential for nonlinear photonics in the telecommunications C band.

  10. Nonlinear phenomena of generation of longitudinal electric current by transversal electromagnetic field in plasmas

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with collisionless plasma is carried out. Formulas for calculation electric current in collisionless plasma with arbitrary degree of degeneration of electronic gas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis.

  11. Homogeneous solutions for elliptically polarized light in a cavity containing materials with electric and magnetic nonlinearities

    CERN Document Server

    Martin, D A

    2015-01-01

    We study evolution equations and stationary homogeneous solutions for electric and magnetic field amplitudes in a ring cavity with flat mirrors. The cavity is filled with a positive or negative refraction index material with third order Kerr-like electric nonlinearities and also magnetic nonlinearities, which can be relevant in metamaterials. We consider the degree of freedom of polarization in the incident beam. It is found that considering a magnetic nonlinearity increases the variety of possible qualitatively different solutions. A classification of solutions is proposed in terms of the number of bifurcations. The analysis can be useful for the implementation of optical switching or memory storage using ring cavities with non linear materials.

  12. D.C. electrical conductivity and magnetic susceptibility of polythiophene doped with iodine

    Science.gov (United States)

    Chourasia, Ashish B.; Kelkar, Deepali S.

    2013-06-01

    Polythiophene was chemically synthesized, undoped and then re-doped with iodine. FTIR spectra confirm iodine doping. XRD analysis is used to calculate crystallinity of the samples. Electrical conductivity measurements were carried out using two probe technique in the temperature range from 300 K to 373 K. Undoped and doped samples show semi conducting nature. After doping the conductivity increases by eight orders of magnitude at 318 K. Magnetic susceptibility measurements were carried out using Guoy's method, both samples show diamagnetic nature. Conductivity and magnetic susceptibility measurements indicate that predominant charge carriers, in the iodine doped polythiophene, are bipolarons.

  13. Indications of nonlinear structures in brain electrical activity

    Science.gov (United States)

    Gautama, Temujin; Mandic, Danilo P.; van Hulle, Marc M.

    2003-04-01

    The dynamical properties of electroencephalogram (EEG) segments have recently been analyzed by Andrzejak and co-workers for different recording regions and for different brain states, using the nonlinear prediction error and an estimate of the correlation dimension. In this paper, we further investigate the nonlinear properties of the EEG signals using two established nonlinear analysis methods, and introduce a “delay vector variance” (DVV) method for better characterizing a time series. The proposed DVV method is shown to enable a comprehensive characterization of the time series, allowing for a much improved classification of signal modes. This way, the analysis of Andrzejak and co-workers can be extended toward classification of different brain states. The obtained results comply with those described by Andrzejak et al., and provide complementary indications of nonlinearity in the signals.

  14. Cavity equations for a positive- or negative-refraction-index material with electric and magnetic nonlinearities

    Science.gov (United States)

    Mártin, Daniel A.; Hoyuelos, Miguel

    2009-11-01

    We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative-refraction-index material with third-order effective electric and magnetic nonlinearities. Two coupled nonlinear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato-Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

  15. The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach

    Energy Technology Data Exchange (ETDEWEB)

    Bessec, Marie [CGEMP, Universite Paris-Dauphine, Place du Marechal de Lattre de Tassigny Paris (France); Fouquau, Julien [LEO, Universite d' Orleans, Faculte de Droit, d' Economie et de Gestion, Rue de Blois, BP 6739, 45067 Orleans Cedex 2 (France)

    2008-09-15

    This paper investigates the relationship between electricity demand and temperature in the European Union. We address this issue by means of a panel threshold regression model on 15 European countries over the last two decades. Our results confirm the non-linearity of the link between electricity consumption and temperature found in more limited geographical areas in previous studies. By distinguishing between North and South countries, we also find that this non-linear pattern is more pronounced in the warm countries. Finally, rolling regressions show that the sensitivity of electricity consumption to temperature in summer has increased in the recent period. (author)

  16. Magnetic field dependent polarizability and electric field dependent diamagnetic susceptibility of a donor in Si

    Science.gov (United States)

    Muthukrishnaveni, M.; Srinivasan, N.

    2016-09-01

    The polarizability and diamagnetic susceptibility values of a shallow donor in Si are computed. These values are obtained for the cases bar{E}allel bar{B} and bar{E} bot bar{B}. The anisotropy introduced by these perturbations are properly taken care of in the expressions derived for polarizability and magnetic susceptibility. Our results show that the numerical value of the contribution from electric field to diamagnetic susceptibility is several orders smaller than that of the magnetic field effect. Polarizability values are obtained in a magnetic field by two different methods. The polarizability values decrease as the intensity of magnetic field increases. Using the Clausius-Mossotti relation, the anisotropic values of the refractive indices for different magnetic fields are estimated.

  17. Ab-initio and DFT methodologies for computing hyperpolarizabilities and susceptibilities of highly conjugated organic compounds for nonlinear optical applications

    Science.gov (United States)

    Karakas, A.; Karakaya, M.; Ceylan, Y.; El Kouari, Y.; Taboukhat, S.; Boughaleb, Y.; Sofiani, Z.

    2016-06-01

    In this talk, after a short introduction on the methodologies used for computing dipole polarizability (α), second and third-order hyperpolarizability and susceptibility; the results of theoretical studies performed on density functional theory (DFT) and ab-initio quantum mechanical calculations of nonlinear optical (NLO) properties for a few selected organic compounds and polymers will be explained. The electric dipole moments (μ) and dispersion-free first hyperpolarizabilities (β) for a family of azo-azulenes and a styrylquinolinium dye have been determined by DFT at B3LYP level. To reveal the frequency-dependent NLO behavior, the dynamic α, second hyperpolarizabilities (γ), second (χ(2)) and third-order (χ(3)) susceptibilites have been evaluated using time-dependent HartreeFock (TDHF) procedure. To provide an insight into the third-order NLO phenomena of a series of pyrrolo-tetrathiafulvalene-based molecules and pushpull azobenzene polymers, two-photon absorption (TPA) characterizations have been also investigated by means of TDHF. All computed results of the examined compounds are compared with their previous experimental findings and the measured data for similar structures in the literature. The one-photon absorption (OPA) characterizations of the title molecules have been theoretically obtained by configuration interaction (CI) method. The highest occupied molecular orbitals (HOMO), the lowest unoccupied molecular orbitals (LUMO) and the HOMO-LUMO band gaps have been revealed by DFT at B3LYP level for azo-azulenes, styrylquinolinium dye, push-pull azobenzene polymers and by parametrization method 6 (PM6) for pyrrolo-tetrathiafulvalene-based molecules.

  18. Measurement of the second-order nonlinear susceptibility of collagen using polarization modulation and phase-sensitive detection

    Science.gov (United States)

    Stoller, Patrick C.; Kim, Beop-Min; Rubenchik, Alexander M.; Reiser, Karen M.; Da Silva, Luiz B.

    2001-05-01

    The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in a rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter (gamma) related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.

  19. Measurement of the Second Order Non-linear Susceptibility of Collagen using Polarization Modulation and Phase-sensitive Detection

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, P; Kim, B-M; Rubenchik, A M; Reiser, K M; Da Silva, L B

    2001-03-03

    The measurement of the second order nonlinear susceptibility of collagen in various biological tissues has potential applications in the detection of structural changes which are related to different pathological conditions. We investigate second harmonic generation in rat-tail tendon, a highly organized collagen structure consisting of parallel fibers. Using an electro-optic modulator and a quarter-wave plate, we modulate the linear polarization of an ultra-short pulse laser beam that is used to measure second harmonic generation (SHG) in a confocal microscopy setup. Phase-sensitive detection of the generated signal, coupled with a simple model of the collagen protein structures, allows us to measure a parameter {gamma} related to nonlinear susceptibility and to determine the relative orientation of the structures. Our preliminary results indicate that it may be possible to use this parameter to characterize the structure.

  20. Electrically controlled nonlinear optical generation and signal processing in plasmonic metamaterials (Conference Presentation)

    Science.gov (United States)

    Cai, Wenshan

    2016-09-01

    Metamaterials have offered not only the unprecedented opportunity to generate unconventional electromagnetic properties that are not found in nature, but also the exciting potential to create customized nonlinear media with tailored high-order effects. Two particularly compelling directions of current interests are active metamaterials, where the optical properties can be purposely manipulated by external stimuli, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light. By exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically-controlled nonlinear processes from photonic metamaterials. We show that a variety of nonlinear optical phenomena, including the wave mixing and the optical rectification, can be purposely modulated by applied voltage signals. In addition, electrically-induced and voltage-controlled nonlinear effects facilitate us to demonstrate the backward phase matching in a negative index material, a long standing prediction in nonlinear metamaterials. Other results to be covered in this talk include photon-drag effect in plasmonic metamaterials and ion-assisted nonlinear effects from metamaterials in electrolytes. Our results reveal a grand opportunity to exploit optical metamaterials as self-contained, dynamic electrooptic systems with intrinsically embedded electrical functions and optical nonlinearities. Reference: L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, Nature Communications, 5, 4680 (2014). S. P. Rodrigues and W.Cai, Nature Nanotechnology, 10, 387 (2015). S. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. Cui, M. L. Brongersma, and W. Cai, Nature Materials, 14, 807 (2015).

  1. Nonlinear waves on the free surface of a dielectric liquid in an oblique electric field

    Energy Technology Data Exchange (ETDEWEB)

    Gashkov, M. A.; Zubarev, N. M., E-mail: nick@iep.uran.ru; Kochurin, E. A., E-mail: kochurin@iep.uran.ru [Ural Branch, Russian Academy of Sciences, Institute of Electrophysics (Russian Federation)

    2015-09-15

    The nonlinear dynamics of the free surface of an ideal dielectric liquid that is exposed to an external oblique electric field has been studied theoretically. In the framework of the Hamiltonian formalism, a system of nonlinear integro-differential equations has been derived that describes the dynamics of nonlinear waves in the small-angle approximation. It is established that for a liquid with high dielectric permittivity, these equations have a solution in the form of plane waves of arbitrary shape that propagate without distortion in the direction of the horizontal component of the external field.

  2. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Correa, J. D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M. E., E-mail: memora@uaem.mx [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C. A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  3. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    Science.gov (United States)

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-01

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  4. Nonlinear dynamic response of an electrically actuated imperfect microbeam resonator

    KAUST Repository

    Ruzziconi, Laura

    2013-08-04

    We present a study of the dynamic behavior of a MEMS device constituted of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. The nonlinear behavior is highlighted, which includes ranges of multistability, where the non-resonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is capable also to capture the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. Copyright © 2013 by ASME.

  5. Nonlinear Optical Susceptibility of a Model Guest/Host Polymeric System as Investigated by Electro-Optics and Second Harmonic Generation

    Science.gov (United States)

    1994-06-15

    with the second order nonlinear susceptibility measured by ON SHG. The temperature dependance of the decay time constant of the SHG signal is found to...increasing with increasing chromophore :oncentration. This concentraton dependance is interpreted as due to orientational pair I:orrelation between...Pockels coefficient is compared with the second order nonlinear susceptibility measured by SHG. The temperature dependance of the decay time constant of

  6. Some Nonlinear Reconstruction Algorithms for Electrical Impedance Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J G

    2001-03-09

    An impedance camera [Henderson and Webster, 1978; Dines and Lytle, 1981]--or what is now more commonly called electrical impedance tomography--attempts to image the electrical impedance (or just the conductivity) distribution inside a body using electrical measurements on its boundary. The method has been used successfully in both biomedical [Brown, 1983; Barber and Brown, 1986; J. C. Newell, D. G. Gisser, and D. Isaacson, 1988; Webster, 1990] and geophysical applications [Wexler, Fry, and Neurnan, 1985; Daily, Lin, and Buscheck, 1987], but the analysis of optimal reconstruction algorithms is still progressing [Murai and Kagawa, 1985; Wexler, Fry, and Neurnan, 1985; Kohn and Vogelius, 1987; Yorkey and Webster, 1987; Yorkey, Webster, and Tompkins, 1987; Berryman and Kohn, 1990; Kohn and McKenney, 1990; Santosa and Vogelius, 1990; Yorkey, 1990]. The most common application is monitoring the influx or efflux of a highly conducting fluid (such as brine in a porous rock or blood in the human body) through the volume being imaged. For biomedical applications, this met hod does not have the resolution of radiological methods, but it is comparatively safe and inexpensive and therefore provides a valuable alternative when continuous monitoring of a patient or process is desired. The following discussion is intended first t o summarize the physics of electrical impedance tomography, then to provide a few details of the data analysis and forward modeling requirements, and finally to outline some of the reconstruction algorithms that have proven to be most useful in practice. Pointers to the literature are provided throughout this brief narrative and the reader is encouraged to explore the references for more complete discussions of the various issues raised here.

  7. Modulational Instability in a Pair of Non-identical Coupled Nonlinear Electrical Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    Eric Tala-Tebue; Aurelien Kenfack-Jiotsa; Marius Hervé Tatchou-Ntemfack; Timoléon Crépin Kofané

    2013-01-01

    In this work,we investigate the dynamics of modulated waves non-identical coupled nonlinear transmission lines.Traditional methods for avoiding mode mixing in identical coupled nonlinear electrical lines consist of adding the same number of linear inductors in each branch.Adding linear inductors in a single line leads to asymmetric coupled nonlinear electrical transmission lines which propagate the signal and the mode mixing.On one hand,the difference between the two lines induced the fission for only one mode of propagation.This fission is influenced by the amplitude of the signal and the amount of the input energy as well; it also narrows the width of the input pulse soliton,leading to a possible increasing of the bit rate.On the other hand,the dissymmetry of the two lines converts the network into a good amplifier for the w_ mode which corresponds to the regime admitting low frequencies.

  8. Interplay between electrical and mechanical domains in a high performance nonlinear energy harvester

    Science.gov (United States)

    Mallick, Dhiman; Amann, Andreas; Roy, Saibal

    2015-12-01

    This paper reports a comprehensive experimental characterization and modeling of a compact nonlinear energy harvester for low frequency applications. By exploiting the interaction between the electrical circuitry and the mechanical motion of the device, we are able to improve the power output over a large frequency range. This improvement is quantified using a new figure of merit based on a suitably defined ‘power integral (P f)’ for nonlinear vibrational energy harvesters. The developed device consists of beams with fixed-guided configuration which produce cubic monostable nonlinearity due to stretching strain. Using a high efficiency magnetic circuit a maximum output power of 488.47 μW across a resistive load of 4000 Ω under 0.5g input acceleration at 77 Hz frequency with 9.55 Hz of bandwidth is obtained. The dynamical characteristics of the device are theoretically reproduced and explained by a modified nonlinear Duffing oscillator model.

  9. Linear and nonlinear causality between sectoral electricity consumption and economic growth. Evidence from Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Cheng-Lang, Yang; Chang, Chih-Heng [Department of Managerial Economics, Nanhua University, Chiayi 62102 (China); Lin, Hung-Pin [Department of International Business and Trade, Shu-Te University, Kaohsiung 82445 (China)

    2010-11-15

    This study investigates the linear and nonlinear causality between the total electricity consumption (TEC) and real gross domestic production (RGDP). Unlike previous literature, we solve the undetermined relation between RGDP and electricity consumption by classifying TEC into industrial sector consumption (ISC) and residential sector consumption (RSC) as well as investigating how TEC, ISC, and RSC influence Taiwan's RGDP. By using the Granger's linear causality test, it is shown that (1) there is a bidirectional causality among TEC, ISC, and RGDP, but a neutrality between RSC and RGDP with regard to the linear causality and (2) there is still a bidirectional causality between TEC and RGDP, but a unidirectional causality between RSC and RGDP with regard to the nonlinear causality. On the basis of (1) and (2), we suggest that the electricity policy formulators loosen the restriction on ISC and limit RSC in order to achieve the goal of economic growth. (author)

  10. Linear and nonlinear causality between sectoral electricity consumption and economic growth: Evidence from Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cheng-Lang [Department of Managerial Economics, Nanhua University, Chiayi 62102, Taiwan (China); Lin, Hung-Pin, E-mail: lhp0606@stu.edu.t [Department of International Business and Trade, Shu-Te University, Kaohsiung 82445, Taiwan (China); Chang, Chih-Heng [Department of Managerial Economics, Nanhua University, Chiayi 62102, Taiwan (China)

    2010-11-15

    This study investigates the linear and nonlinear causality between the total electricity consumption (TEC) and real gross domestic production (RGDP). Unlike previous literature, we solve the undetermined relation between RGDP and electricity consumption by classifying TEC into industrial sector consumption (ISC) and residential sector consumption (RSC) as well as investigating how TEC, ISC, and RSC influence Taiwan's RGDP. By using the Granger's linear causality test, it is shown that (i) there is a bidirectional causality among TEC, ISC, and RGDP, but a neutrality between RSC and RGDP with regard to the linear causality and (ii) there is still a bidirectional causality between TEC and RGDP, but a unidirectional causality between RSC and RGDP with regard to the nonlinear causality. On the basis of (i) and (ii), we suggest that the electricity policy formulators loosen the restriction on ISC and limit RSC in order to achieve the goal of economic growth.

  11. Lyapunov based nonlinear control of electrical and mechanical systems

    Science.gov (United States)

    Behal, Aman

    This Ph.D. dissertation describes the design and implementation of various control strategies centered around the following applications: (i) an improved indirect field oriented controller for the induction motor, (ii) partial state feedback control of an induction motor with saturation effects, (iii) tracking control of an underactuated surface vessel, and (iv) an attitude tracking controller for an underactuated spacecraft. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these four primary chapters can be found in chapter one. In the second chapter, the previously published tracking control of [16] 1 is presented in the indirect field oriented control (IFOC) notation to achieve exponential rotor velocity/rotor flux tracking. Specifically, it is illustrated how the proposed IFOC controller can be rewritten in the manner of [16] to allow for a direct Lyapunov stability proof. Experimental results (implemented with the IFOC algorithm) are provided to corroborate the efficacy of the algorithm. In the third chapter, a singularity-free, rotor position tracking controller is presented for the full order, nonlinear dynamic model of the induction motor that includes the effects of magnetic saturation. Specifically, by utilizing the pi-equivalent saturation model, an observer/controller strategy is designed that achieves semi-global exponential rotor position tracking and only requires stator current, rotor velocity, and rotor position measurements. Simulation and experimental results are included to demonstrate the efficacy of the proposed algorithm. In the fourth chapter, a continuous, time-varying tracking controller is designed that globally exponentially forces the position/orientation tracking error of an under-actuated surface vessel to a neighborhood about zero that can be made arbitrarily small (i.e., global uniformly ultimately boundedness (GUUB)). The result is facilitated by

  12. Using sum rules to guide experiential and theoretical studies of the intrinsic nonlinear-optical susceptibility of organic molecules

    Science.gov (United States)

    Zhou, Juefei

    This dissertation combines theoretical and experimental studies of organic molecules to understand light-matter interactions with the goal of making more efficient nonlinear-optical molecules. We use a finite element method to numerically calculate and optimize the nonlinear-optical susceptibilities of 1-dimensional molecules, which resulted in a new paradigm for fabricating molecules with better nonlinear properties. This approach was used as a guide by researchers to identify and characterize a record-high intrinsic hyperpolarizability. Using the results of a sum rule analysis, we propose a new method for modeling the nonlinear-optical spectra of molecules. We apply our theory to the two-photon absorption cross section of the Air Force dye called AF455, and find that it is consistent with our measurements. The properties of the first two excited states of AF455 determined with a combination of linear absorption spectroscopy and hyper-Rayleigh scattering measurements are sufficient to predict, within experimental uncertainty, the full two-photon absorption spectrum.

  13. Nonlinear Snell law for grazing incidence along interfaces with discontinuous second-order susceptibilities

    Science.gov (United States)

    Zhao, Xiaohui; Zheng, Yuanlin; Ren, Huaijin; An, Ning; Deng, Xuewei; Chen, Xianfeng

    2017-04-01

    In this article, we demonstrate that the angles at which second-harmonic (SH) waves are generated at ferroelectric domain walls satisfy the Snell law for nonlinear media. Nonlinear reflection and refraction are observed experimentally and the relation is found to be in good agreement with theoretical predictions. The ratio of the intensities of refracted and reflected waves has been measured. Under an anomalous-dispersion-like condition, the forbidden nonlinear reflection and refraction is analyzed and found to have a behavior similar to that of the total internal reflection in linear optics. In the periodic domain structure, the coherent superposition of SH waves has been observed, on the basis of which we have proposed a comprehensive theory to explain nonlinear effects in multilayered structures.

  14. An ICPSO-RBFNN nonlinear inversion for electrical resistivity imaging

    Institute of Scientific and Technical Information of China (English)

    江沸菠; 戴前伟; 董莉

    2016-01-01

    To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network (RBFNN) based on information criterion (IC) and particle swarm optimization (PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE’s information criterion (AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks (BPNNs) and traditional least square(LS) inversion.

  15. Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects

    Science.gov (United States)

    Cheng, J. L.; Vermeulen, N.; Sipe, J. E.

    2017-01-01

    We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response. PMID:28262762

  16. ELECTRICALLY FORCED THICKNESS-SHEAR VIBRATIONS OF QUARTZ PLATE WITH NONLINEAR COUPLING TO EXTENSION

    Institute of Scientific and Technical Information of China (English)

    Rongxing Wu; Jiashi Yang; Jianke Du; Ji Wang

    2008-01-01

    We study electrically forced nonlinear thickness-shear vibrations of a quartz plate resonator with relatively large amplitude. It is shown that thickness-shear is nonlinearly coupled to extension due to the well-known Poynting effect in nonlinear elasticity. This coupling is relatively strong when the resonant frequency of the extensional mode is about twice the resonant frequency of the thickness-shear mode. This happens when the plate length/thickness ratio assumes certain values. With this nonlinear coupling, the thickness-shear motion is no longer sinusoidal. Coupling to extension also affects energy trapping which is related to device mounting. When damping is 0.01, nonlinear coupling causes a frequency shift of the order of 10-e which is not insignificant,and an amplitude change of the order of 10-8. The effects are expected to be stronger under real damping of 10-5 or larger. To avoid nonlinear coupling to extension, certain values of the aspect ratio of the plate should be avoided.

  17. Nonlinear magneto-electric response of a giant magnetostrictive/piezoelectric composite cylinder

    Institute of Scientific and Technical Information of China (English)

    Yuan-Wen Gao; Juan-Juan Zhang

    2012-01-01

    In this study,we investigate the nonlinear coupling magneto-electric (ME) effect of a giant magnetostrictive/piezoelectric composite cylinder.The nonlinear constitutive relations of the ME material are taken into account,and the influences of the nonlinear material properties on the ME effect are investigated for the static and dynamic cases,respectively.The influences of different constraint conditions on the ME effect are discussed.In the dynamic case considering nonlinear material properties,the double frequency ME response (The response frequency is twice the applied magnetic frequency) is obtained and discussed,which can be used to explain the experiment phenomenon in which the input signal with frequency f is converted to the output signal with 2f in ME laminated structures.Some calculations on nonlinear ME effect are conducted.The obtained results indicate that the nonlinear material properties affect not only the magnitude of the ME effect in the static case but also the ME response frequency in the dynamic case.

  18. Electrically actuated MEMS resonators: Effects of fringing field and nonlinear viscoelasticity

    Science.gov (United States)

    Farokhi, Hamed; Ghayesh, Mergen H.

    2017-10-01

    This paper studies the nonlinear electromechanical response of a MEMS resonator numerically. A nonlinear continuous multi-physics model of the MEMS resonator is developed taking into account the effects of fringing field, size, residual axial load, and viscoelasticity. Moreover, both longitudinal and transverse motions are accounted for in the system modelling and simulations. The equations of motion of the MEMS resonator are obtained employing Hamilton's principle together with the modified version of the couple stress based theory (to account for size effects) and the Kelvin-Voigt model (to account for nonlinear energy dissipation). The Meijs-Fokkema electrostatic load formula is used to reliably model the fringing field effects. The continuous multi-physics model, consisting of geometrical, electrical, and viscos nonlinearities is discretised via a weighted-residual method, yielding a set of nonlinearly coupled ordinary differential equations (ODEs). The resultant set of ODEs is solved numerically when the microresonator is actuated by a biased DC voltage and an AC voltage. The results of the numerical simulations are presented in the form of DC voltage-deflection, DC voltage-natural frequency, and AC frequency-displacement diagrams. The effects of fringing field, residual axial load, small-scale, and nonlinear energy dissipation are highlighted. It is shown that fringing field effects are significant on both static and dynamic electromechanical responses of the MEMS resonator.

  19. Spin–orbit interaction effect on nonlinear optical rectification of quantum wire in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Lahon, Siddhartha, E-mail: sid.lahon@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Jha, Pradip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, DDU College, University of Delhi, Delhi 110007 (India); Gumber, Sukirti; Mohan, Man [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-04-01

    Here we have investigated the influence of external electric field and magnetic field on the nonlinear optical rectification of a parabolic confinement wire in the presence of Rashba spin–orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum wire radius, electric field, magnetic field, Rashba spin–orbit interaction strength and photon energy. Our results indicate an increase of electric field gives the red-shift of the peak positions of nonlinear optical rectification. The role of confinement strength and spin–orbit interaction strength as control parameters on this nonlinear property have been demonstrated.

  20. Identifying the nonlinear mechanical behaviour of micro-speakers from their quasi-linear electrical response

    Science.gov (United States)

    Zilletti, Michele; Marker, Arthur; Elliott, Stephen John; Holland, Keith

    2017-05-01

    In this study model identification of the nonlinear dynamics of a micro-speaker is carried out by purely electrical measurements, avoiding any explicit vibration measurements. It is shown that a dynamic model of the micro-speaker, which takes into account the nonlinear damping characteristic of the device, can be identified by measuring the response between the voltage input and the current flowing into the coil. An analytical formulation of the quasi-linear model of the micro-speaker is first derived and an optimisation method is then used to identify a polynomial function which describes the mechanical damping behaviour of the micro-speaker. The analytical results of the quasi-linear model are compared with numerical results. This study potentially opens up the possibility of efficiently implementing nonlinear echo cancellers.

  1. Nonlinear Electrical Circuit Oscillator Control Based on Backstepping Method: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Mahsa Khoeiniha

    2012-01-01

    Full Text Available This paper investigated study of dynamics of nonlinear electrical circuit by means of modern nonlinear techniques and the control of a class of chaotic system by using backstepping method based on Lyapunov function. The behavior of such nonlinear system when they are under the influence of external sinusoidal disturbances with unknown amplitudes has been considered. The objective is to analyze the performance of this system at different amplitudes of disturbances. We illustrate the proposed approach for controlling duffing oscillator problem to stabilize this system at the equilibrium point. Also Genetic Algorithm method (GA for computing the parameters of controller has been used. GA can be successfully applied to achieve a better controller. Simulation results have shown the effectiveness of the proposed method.

  2. Nonlinear mixed-effects modelling of in vitro drug susceptibility and molecular correlates of multidrug resistant Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Julie A Simpson

    Full Text Available The analysis of in vitro anti-malarial drug susceptibility testing is vulnerable to the effects of different statistical approaches and selection biases. These confounding factors were assessed with respect to pfmdr1 gene mutation and amplification in 490 clinical isolates. Two statistical approaches for estimating the drug concentration associated with 50% effect (EC50 were compared: the commonly used standard two-stage (STS method, and nonlinear mixed-effects modelling. The in vitro concentration-effect relationships for, chloroquine, mefloquine, lumefantrine and artesunate, were derived from clinical isolates obtained from patients on the western border of Thailand. All isolates were genotyped for polymorphisms in the pfmdr1 gene. The EC50 estimates were similar for the two statistical approaches but 15-28% of isolates in the STS method had a high coefficient of variation (>15% for individual estimates of EC50 and these isolates had EC50 values that were 32 to 66% higher than isolates derived with more precision. In total 41% (202/490 of isolates had amplification of pfmdr1 and single nucleotide polymorphisms were found in 50 (10%. Pfmdr1 amplification was associated with an increase in EC50 for mefloquine (139% relative increase in EC50 for 2 copies, 188% for 3+ copies, lumefantrine (82% and 75% for 2 and 3+ copies respectively and artesunate (63% and 127% for 2 and 3+ copies respectively. In contrast pfmdr1 mutation at codons 86 or 1042 were associated with an increase in chloroquine EC50 (44-48%. Sample size calculations showed that to demonstrate an EC50 shift of 50% or more with 80% power if the prevalence was 10% would require 430 isolates and 245 isolates if the prevalence was 20%. In conclusion, although nonlinear mixed-effects modelling did not demonstrate any major advantage for determining estimates of anti-malarial drug susceptibility, the method includes all isolates, thereby, potentially improving confirmation of candidate

  3. A Field Method for Integrating Equations of Motion of Nonlinear Mechanico-Electrical Coupling Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    FU Jing-Li; FU Hao

    2008-01-01

    We deai with the generalization of the field method to weakly non-linear mechanico-electricai coupling systems.The field co-ordinates and field momenta approaches are combined with the method of multiple time scales in order to obtain the amplitudes and phase of oscillations in the frst approximation. An example in mechanico-electrical coupling systems is given to illustrate this method.

  4. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.;

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...... based approach is used to control the DC/DC power converters associated with the DC sources, the backstepping technique combined with the field oriented control strategy are invoked in order to control the induction motor. It is formally shown, using a theoretical analysis and simulation results...

  5. Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI

    Science.gov (United States)

    Wang, Sijia; Peterson, Daniel J.; Gatenby, J. C.; Li, Wenbin; Grabowski, Thomas J.; Madhyastha, Tara M.

    2017-01-01

    Correction of echo planar imaging (EPI)-induced distortions (called “unwarping”) improves anatomical fidelity for diffusion magnetic resonance imaging (MRI) and functional imaging investigations. Commonly used unwarping methods require the acquisition of supplementary images during the scanning session. Alternatively, distortions can be corrected by nonlinear registration to a non-EPI acquired structural image. In this study, we compared reliability using two methods of unwarping: (1) nonlinear registration to a structural image using symmetric normalization (SyN) implemented in Advanced Normalization Tools (ANTs); and (2) unwarping using an acquired field map. We performed this comparison in two different test-retest data sets acquired at differing sites (N = 39 and N = 32). In both data sets, nonlinear registration provided higher test-retest reliability of the output fractional anisotropy (FA) maps than field map-based unwarping, even when accounting for the effect of interpolation on the smoothness of the images. In general, field map-based unwarping was preferable if and only if the field maps were acquired optimally.

  6. Near-resonant second-order nonlinear susceptibility in c-axis oriented ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weiwei; Wang, Kai; Long, Hua; Wang, Bing, E-mail: wangbing@hust.edu.cn; Lu, Peixiang, E-mail: lupeixiang@hust.edu.cn [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Chu, Sheng [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2014-08-18

    Near-resonant second-harmonic generation (SHG) in c-axis oriented ZnO nanorods is studied under the femtosecond laser with wavelength from 780 nm to 810 nm. A highly efficient SHG is obtained, which is attributed to the d{sub 131} component of the second-order nonlinear susceptibility. The largest d{sub 131} value is estimated to be 10.2 pm/V at the pumping wavelength of 800 nm, which indicates a large SHG response of the c-axis oriented ZnO nanorods in the near-resonant region. Theoretical calculation based on finite-difference time-domain simulation suggests a four-fold local-field enhancement of the SHG.

  7. Nonlinear Marangoni instability of a liquid jet in the presence of electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Kadry; Sirwah, Magdy A.; Assaf, Achmed [Tanta Univ. (Egypt). Dept. of Mathematics

    2009-11-15

    The work discusses the linear and nonlinear stability of cylindrical surface deformations between two incompressible fluids. The interface is carrying a uniform surface charge. The inner fluid is assumed to be a liquid jet. Both fluids are modeled as a special type of a Newtonian viscous fluid. Furthermore, the effect of surface adsorption is taken into account. Both fluids are assumed to be dielectric and the stability is discussed in the presence of a constant electric field in axial direction. The analysis is performed along the lines of a multiple scale perturbation expansion with additional slow time and space variables. The various stability criteria are discussed both analytically and numerically. The results are displayed in many plots showing the stability criteria in various parameter planes. The results show the dual role of the electric field and the negative rate of change of surface tension with the concentration of surfactant on the system stability, in both the linear and nonlinear steps. The nonlinear theory, when used to investigate the stability of liquid jet, appears accurately to predict new unstable regions. (orig.)

  8. Enhancement and electric charge-assisted tuning of nonlinear light generation in bipolar plasmonics.

    Science.gov (United States)

    Ding, Wei; Zhou, Liangcheng; Chou, Stephen Y

    2014-05-14

    We propose and experimentally demonstrate a new plasmonic nonlinear light generation (NLG) structure, termed plasmonic-enhanced, charge-assisted second-harmonic generator (p-CASH), that not only achieves high second-harmonic generation (SHG) enhancement (76-fold), large SHG tunability by bias (8%/V), wide tuning range (280%), 7.8 × 10(-9) conversion efficiency, and high stability but also exhibits a SHG tuning, that is bipolar rather than unipolar, not due to the third-order nonlinear polarization term, hence fundamentally different from the classic electric field induced SHG-tuning (EFISH). We propose a new SHG tuning mechanism: the second-order nonlinear polarization term enhanced by plasmonic effects, changed by charge injection and negative oxygen vacancies movement, and is nearly 3 orders of magnitude larger than EFISH. p-CASH is a bipolar parallel-plate capacitor with thin layers of plasmonic nanostructures, a TiOx (semiconductor and nonlinear) and a SiO2 (insulator) sandwiched between two electrodes. Fabrication of p-CASH used nanoimprint on 4″ wafer and is scalable to wallpaper-sized areas. The new structure, new properties, and new understanding should open up various new designs and applications of NLG in various fields.

  9. Inductive intrinsic localized modes in a one-dimensional nonlinear electric transmission line

    Science.gov (United States)

    Sato, M.; Mukaide, T.; Nakaguchi, T.; Sievers, A. J.

    2016-07-01

    The experimental properties of intrinsic localized modes (ILMs) have long been compared with theoretical dynamical lattice models that make use of nonlinear onsite and/or nearest-neighbor intersite potentials. Here it is shown for a one-dimensional lumped electrical transmission line that a nonlinear inductive component in an otherwise linear parallel capacitor lattice makes possible a new kind of ILM outside the plane wave spectrum. To simplify the analysis, the nonlinear inductive current equations are transformed to flux transmission line equations with analog onsite hard potential nonlinearities. Approximate analytic results compare favorably with those obtained from a driven damped lattice model and with eigenvalue simulations. For this mono-element lattice, ILMs above the top of the plane wave spectrum are the result. We find that the current ILM is spatially compressed relative to the corresponding flux ILM. Finally, this study makes the connection between the dynamics of mass and force constant defects in the harmonic lattice and ILMs in a strongly anharmonic lattice.

  10. Fundamental electric circuit elements based on the linear and nonlinear magnetoelectric effects (Presentation Recording)

    Science.gov (United States)

    Sun, Young; Shang, Dashan; Chai, Yisheng; Cao, Zexian; Lu, Jun

    2015-09-01

    From the viewpoint of electric circuit theory, the three fundamental two-terminal passive circuit elements, resistor R , capacitor C, and inductor L, are defined in terms of a relationship between two of the four basic circuit variables, charge q, current i, voltage v, and magnetic flux φ. From a symmetry concern, there should be a fourth fundamental element defined from the relationship between charge q and magnetic flux φ. Here we present both theoretical analysis and experimental evidences to demonstrate that a two-terminal passive device employing the magnetoelectric (ME) effects can exhibit a direct relationship between charge q and magnetic flux φ, and thus is able to act as the fourth fundamental circuit element. The ME effects refer to the induction of electric polarization by a magnetic field or magnetization by an electric field, and have attracted enormous interests due to their promise in many applications. However, no one has linked the ME effects with fundamental circuit theory. Both the linear and nonlinear-memory devices, termed transtor and memtranstor, respectively, have been experimentally realized using multiferroic materials showing strong ME effects. Based on our work, a full map of fundamental two-terminal circuit elements is constructed, which consists of four linear and four nonlinear-memory elements. This full map provides an invaluable guide to developing novel circuit functionalities in the future.

  11. Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam

    Institute of Scientific and Technical Information of China (English)

    Y. M. Fu; J. Zhang

    2009-01-01

    On the basis of the Euler-Bernoulli hypothesis,nonlinear static and dynamic responses of a viscoelastic microbeam under two kinds of electric forces [a purely direct current (DC) and a combined current composed of a DC and an alternating current] are studied. By using Taylor series expansion, a governing equation of nonlinear integro-differential type is derived, and numerical analyses are performed.When a purely DC is applied, there exist an instantaneous pull-in voltage and a durable pull-in voltage of which the physical meanings are also given, whereas under an applied combined current, the effect of the element relaxation coefficient on the dynamic pull-in phenomenon is observed where the largest Lyapunov exponent is taken as a criterion for the dynamic pull-in instability of viscoelastic microbeams.

  12. Rapid Real-Time Antimicrobial Susceptibility Testing with Electrical Sensing on Plastic Microchips with Printed Electrodes.

    Science.gov (United States)

    Safavieh, Mohammadali; Pandya, Hardik J; Venkataraman, Maanasa; Thirumalaraju, Prudhvi; Kanakasabapathy, Manoj Kumar; Singh, Anupriya; Prabhakar, Devbalaji; Chug, Manjyot Kaur; Shafiee, Hadi

    2017-03-30

    Rapid antimicrobial susceptibility testing is important for efficient and timely therapeutic decision making. Due to globally spread bacterial resistance, the efficacy of antibiotics is increasingly being impeded. Conventional antibiotic tests rely on bacterial culture, which is time-consuming and can lead to potentially inappropriate antibiotic prescription and up-front broad range of antibiotic use. There is an urgent need to develop point-of-care platform technologies to rapidly detect pathogens, identify the right antibiotics, and monitor mutations to help adjust therapy. Here, we report a biosensor for rapid (microchips with printed electrodes using antibodies (30 min), and its electrical response is monitored in the presence and absence of antibiotics over an hour of incubation time. We evaluated the microchip with Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) as clinical models with ampicillin, ciprofloxacin, erythromycin, daptomycin, gentamicin, and methicillin antibiotics. The results are compared with the current standard methods, i.e. bacteria viability and conventional antibiogram assays. The technology presented here has the potential to provide precise and rapid bacteria screening and guidance in clinical therapies by identifying the correct antibiotics for pathogens.

  13. Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types.

    Science.gov (United States)

    Gianulis, Elena C; Labib, Chantelle; Saulis, Gintautas; Novickij, Vitalij; Pakhomova, Olga N; Pakhomov, Andrei G

    2017-05-01

    Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0-2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.

  14. Refractive index and third-order nonlinear susceptibility of C-60 in the condensed phase calculated with the discrete solvent reaction field model

    NARCIS (Netherlands)

    Jensen, L; van Duijnen, PT

    2005-01-01

    We have calculated the frequency-dependent refractive index and the third-order nonlinear susceptibility for C-60 in the condensed phase, which is related to third-harmonic generation (THG) and degenerate four-wave mixing (DFWM) experiments. This was done using the recently developed discrete solven

  15. Cavity equations for a positive or negative refraction index material with electric and magnetic non-linearities

    CERN Document Server

    Mártin, Daniel A; 10.1103/PhysRevE.80.056601

    2012-01-01

    We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative refraction index material with third order effective electric and magnetic non-linearities. Two coupled non-linear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

  16. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: rrestre@gmail.com [Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Morales, A.L. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Martínez-Orozco, J.C. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, CP 98060, Zacatecas (Mexico); Baghramyan, H.M.; Barseghyan, M.G. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-11-15

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p{sub z}-like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum.

  17. Regular rotating electrically charged black holes and solitons in nonlinear electrodynamics minimally coupled to gravity

    CERN Document Server

    Dymnikova, Irina

    2015-01-01

    In nonlinear electrodynamics coupled to gravity, regular spherically symmetric electrically charged solutions satisfy the weak energy condition and have obligatory de Sitter centre. By the G\\"urses-G\\"ursey algorithm they are transformed to spinning electrically charged solutions asymptotically Kerr-Newman for a distant observer. Rotation transforms de Sitter center into de Sitter vacuum surface which contains equatorial disk $r=0$ as a bridge. We present general analysis of the horizons, ergoregions and de Sitter surfaces, as well as the conditions of the existence of regular solutions to the field equations. We find asymptotic solutions and show that de Sitter vacuum surfaces have properties of a perfect conductor and ideal diamagnetic, violation of the weak energy condition is prevented by the basic requirement of electrodynamics of continued media, and the Kerr ring singularity is replaced with the superconducting current.

  18. Nanoscale influence on photoluminescence and third order nonlinear susceptibility exhibited by ion-implanted Pt nanoparticles in silica.

    Science.gov (United States)

    Bornacelli, Jhovani; Torres-Torres, Carlos; Silva-Pereyra, Héctor Gabriel; Rodríguez-Fernández, Luis; Avalos-Borja, Miguel; Cheang-Wong, Juan Carlos; Oliver, Alicia

    2017-05-09

    -diffraction decay time is less than 25 ps, regardless of the average size of the nanoparticles studied. The evolution of the self-diffracted intensities derived from temperature was also linked to the mean size of the nanoparticles in the samples. Comparative two-wave mixing evaluations also validated a modification in third order nonlinear susceptibility exhibited by annealed samples. An important role of the localized surface plasmon resonance phenomena associated with the platinum nanoparticles for photoluminescence and optical nonlinearities was identified. A proposed hypothetical electronic mechanism that may explain the exceptional optical transitions related to low-dimensional platinum systems is discussed.

  19. Nanoscale influence on photoluminescence and third order nonlinear susceptibility exhibited by ion-implanted Pt nanoparticles in silica

    Science.gov (United States)

    Bornacelli, Jhovani; Torres-Torres, Carlos; Silva-Pereyra, Héctor Gabriel; Rodríguez-Fernández, Luis; Avalos-Borja, Miguel; Cheang-Wong, Juan Carlos; Oliver, Alicia

    2017-06-01

    -diffraction decay time is less than 25 ps, regardless of the average size of the nanoparticles studied. The evolution of the self-diffracted intensities derived from temperature was also linked to the mean size of the nanoparticles in the samples. Comparative two-wave mixing evaluations also validated a modification in third order nonlinear susceptibility exhibited by annealed samples. An important role of the localized surface plasmon resonance phenomena associated with the platinum nanoparticles for photoluminescence and optical nonlinearities was identified. A proposed hypothetical electronic mechanism that may explain the exceptional optical transitions related to low-dimensional platinum systems is discussed.

  20. Nonlinear optical rectification in laterally-coupled quantum well wires with applied electric field

    Science.gov (United States)

    Liu, Guanghui; Guo, Kangxian; Zhang, Zhongmin; Hassanbadi, Hassan; Lu, Liangliang

    2017-03-01

    Nonlinear optical rectification coefficient χ0(2) in laterally-coupled AlxGa1-xAs/GaAs quantum well wires with an applied electric field is theoretically investigated using the effective mass approximation as well as the numerical energy levels and wavefunctions of electrons. We find that χ0(2) is greatly influenced by the electric field as well as both the distance and the radius of the coupled system. A blue shift of χ0(2) with increasing electric field is exhibited while a red shift followed by a blue shift with increasing distance or radius is exhibited. A nonmonotonic behavior can be found in the resonant peak values of χ0(2) along with the increase of the electric field, the distance or the radius. One or two of the following physical mechanisms: the increased localization of the ground and first-excited states, the reduced coupling and the reduced quantum confinement effect are applied to elucidate the results above. Our results play a potential role in infrared photodetectors based on the coupled system.

  1. Modelling the non-linear response of Spanish electricity demand to temperature variations

    Energy Technology Data Exchange (ETDEWEB)

    Moral-Carcedo, J. [Universidad Autonoma de Madrid (Spain). Dpto. Analisis Economico; Vicens-Otero, J. [Universidad de Madrid (Spain). Dpto. Economia Aplicada

    2005-05-01

    The demand for electricity is a key variable because its links to economic activity and development; however, the electricity consumption also depends on other non-economic variables, notably the weather. The aim of this study is to analyse the effect of temperatures on the variability of the Spanish daily electricity demand, and especially to characterise the non-linearity of the response of demand to variations in temperature. In this article, we explore the ability of Smooth Transition (STR), Threshold Regression (TR), and Switching Regressions (SR) models, to handle both aspects. As we conclude, the use of LSTR approach offers two main advantages. First, it captures adequately the smooth response of electricity demand to temperature variations in intermediate ranges of temperatures. Second, it provides a method to analyse the validity of temperature thresholds used to build the ''cooling degree days'' (CDD) and ''heating degree days'' (HDD) variables traditionally employed in the literature. (author)

  2. Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation.

    Science.gov (United States)

    Noury, Nima; Hipp, Joerg F; Siegel, Markus

    2016-10-15

    Transcranial electric stimulation (tES) is a promising tool to non-invasively manipulate neuronal activity in the human brain. Several studies have shown behavioral effects of tES, but stimulation artifacts complicate the simultaneous investigation of neural activity with EEG or MEG. Here, we first show for EEG and MEG, that contrary to previous assumptions, artifacts do not simply reflect stimulation currents, but that heartbeat and respiration non-linearly modulate stimulation artifacts. These modulations occur irrespective of the stimulation frequency, i.e. during both transcranial alternating and direct current stimulations (tACS and tDCS). Second, we show that, although at first sight previously employed artifact rejection methods may seem to remove artifacts, data are still contaminated by non-linear stimulation artifacts. Because of their complex nature and dependence on the subjects' physiological state, these artifacts are prone to be mistaken as neural entrainment. In sum, our results uncover non-linear tES artifacts, show that current techniques fail to fully remove them, and pave the way for new artifact rejection methods.

  3. Spin-glass phase transition and behavior of nonlinear susceptibility in the Sherrington-Kirkpatrick model with random fields

    Science.gov (United States)

    Morais, C. V.; Zimmer, F. M.; Lazo, M. J.; Magalhães, S. G.; Nobre, F. D.

    2016-06-01

    The behavior of the nonlinear susceptibility χ3 and its relation to the spin-glass transition temperature Tf in the presence of random fields are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue λAT (replicon) on the random fields is analyzed. Particularly, in the absence of random fields, the temperature Tf can be traced by a divergence in the spin-glass susceptibility χSG, which presents a term inversely proportional to the replicon λAT. As a result of a relation between χSG and χ3, the latter also presents a divergence at Tf, which comes as a direct consequence of λAT=0 at Tf. However, our results show that, in the presence of random fields, χ3 presents a rounded maximum at a temperature T* which does not coincide with the spin-glass transition temperature Tf (i.e., T*>Tf for a given applied random field). Thus, the maximum value of χ3 at T* reflects the effects of the random fields in the paramagnetic phase instead of the nontrivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that χ3 still maintains a dependence on the replicon λAT, although in a more complicated way as compared with the case without random fields. These results are discussed in view of recent observations in the LiHoxY1 -xF4 compound.

  4. Electric Field-Induced Second Order Nonlinear Optical Effects in Silicon Waveguides

    CERN Document Server

    Timurdogan, E; Watts, M R

    2016-01-01

    The demand for nonlinear effects within a silicon platform to support photonic circuits requiring phase-only modulation, frequency doubling, and/or difference frequency generation, is becoming increasingly clear. However, the symmetry of the silicon crystal inhibits second order optical nonlinear susceptibility, $\\chi^{(2)}$. Here, we show that the crystalline symmetry is broken when a DC field is present, inducing a $\\chi^{(2)}$ in a silicon waveguide that is proportional to the large $\\chi^{(3)}$ of silicon. First, Mach-Zehnder interferometers using the DC Kerr effect optical phase shifters in silicon ridge waveguides with p-i-n junctions are demonstrated with a $V_{\\pi}L$ of $2.4Vcm$ in telecom bands $({\\lambda}_{\\omega}=1.58{\\mu}m)$ without requiring to dope the silicon core. Second, the pump and second harmonic modes in silicon ridge waveguides are quasi-phase matched when the magnitude, spatial distribution of the DC field and $\\chi^{(2)}$ are controlled with p-i-n junctions. Using these waveguides, sec...

  5. Effect of Enhanced Air Temperature (extreme heat, and Load of Non-Linear Against the Use of Electric Power

    Directory of Open Access Journals (Sweden)

    I Ketut Wijaya

    2015-12-01

    Full Text Available Usage Electric power is very easy to do, because the infrastructure for connecting  already available and widely sold. Consumption electric power is not accompanied by the ability to recognize electric power. The average increase of electricity power in Bali in extreme weather reaches 10% in years 2014, so that Bali suffered power shortages and PLN as the manager of electric power to perform scheduling on of electric power usage. Scheduling is done because many people use electric power as the load  of fan and Air Conditioner exceeding the previous time. Load of fan, air conditioning, and computers including non-linear loads which can add heat on the conductor of electricity. Non-linear load and hot weather can lead to heat on conductor so  insulation damaged  and cause electrical short circuit. Data of electric power obtained through questionnaires, surveys, measurement and retrieve data from various parties. Fires that occurred in 2014, namely 109 events, 44 is  event caused by an electric short circuit (approximately 40%. Decrease power factors can cause losses of electricity and hot. Heat can cause and adds heat on the  conductor electric. The analysis showed  understanding electric power of the average  is 27,700 with value between 20 to 40. So an understanding of the electrical power away from the understand so that many errors because of the act own. Installation tool ELCB very necessary but very necessary provide counseling   of electricity to the community.

  6. A New Energy-Based Method for 3-D Finite-Element Nonlinear Flux Linkage computation of Electrical Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    This paper presents a new method for computation of the nonlinear flux linkage in 3-D finite-element models (FEMs) of electrical machines. Accurate computation of the nonlinear flux linkage in 3-D FEM is not an easy task. Compared to the existing energy-perturbation method, the new technique......-perturbation method. The new method proposed is validated using experimental results on two different permanent magnet machines....

  7. Effects of barium on the nonlinear electrical characteristics and dielectric properties of SnO2-based varistors

    Institute of Scientific and Technical Information of China (English)

    Wang Chun-Ming; Wang Jin-Feng; Wang Chun-Lei; Chen Hong-Cun; Su Wen-Bin; Zang Guo-Zhong; Qi Peng; Zhao Ming-Lei; Ming Bao-Quan

    2004-01-01

    The effects of barium on electrical and dielectric properties of the SnO2·Co2Oa.Ta2O5 varistor system sintered at 1250℃ for 60min were investigated. It is found that barium significantly improves the nonlinear properties. The breakdown electrical field increases from 378.0 to 2834.5V/mm, relative dielectric constant (at 1kHz) falls from 1206 to 161 and the resistivity (at 1kHz) rises from 60.3 to 1146.5kΩ·cm with an increase of BaCO3 concentration from 0mol%to 1.00mol%. The sample with 1.00mol% barium has the best nonlinear electrical property and the highest nonlinear coefficient (α=29.2). A modified defect barrier model is introduced to illustrate the grain-boundary barrier formation of barium-doped SnO2-based varistors.

  8. Non-Linear Compton Scattering in a Strong Rotating Electric Field

    CERN Document Server

    Raicher, Erez; Zigler, Arie

    2016-01-01

    The non-linear Compton scattering rate in a rotating electric field is explicitly calculated for the first time. For this purpose, a novel solution to the Klein-Gordon equation in the presence of a rotating electric field is applied. An analytical expression for the emission rate is obtained, as well as a simplified approximation adequate for emplementation in kinetic codes. The spectrum is numerically calculated for nowadays optical and X-ray laser parameters. The results are compared to the standard Volkov-Ritus rate for a particle in a plane wave, which is commonly assumed to be valid for a rotating electric field under certain conditions. Subsequent deviations between the two models, both in the radiated power and the spectral shape, are demonstrated. First, the typical number of photons participating in the scattering process is much smaller compared to the Volkov-Ritus rate, resulting in up to an order of magnitude lower emitted power. Furthermore, our model predicts a discrete harmonics spectrum for el...

  9. NONLINEAR J-E CHARACTERISTICS IN THE ELECTRIC-THERMAL EQUILIBRIUM STATE FOR HIGH DENSITY POLYETHYLENE CONDUCTIVE COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Qiang Zheng; Yi-hu Song; Xiao-su Yi

    2001-01-01

    The nonlinear J-E characteristics under self-heating equilibrium for conductive composites based on high density polyethylene were studied. The results show that there are identical conduction mechanisms under self-heating equilibrium for the composites with various initial resistivities determined by filler content or ambient temperature. The nonlinear conduction behavior was involved in the limited microstructure transformations of the conducting network induced by electrical field applied and the corresponding self-heating effect. A reversible thermal fuse (RTF) model was suggested to interpret the physical origin of the nonlinear J-E characteristics.

  10. Third-order non-linear optical susceptibilities in diffusion modified AlxGa1-xN/GaN single quantum well

    Science.gov (United States)

    Das, T.; Panda, M.; Panda, S.; Panda, B. K.

    2017-05-01

    In this work, the variation of optical properties in the AlGaN/GaN quantum well after thermal annealing is studied. The potential profile change of the quantum well resulting from the interdiffusion of Ga and Al atoms across the interface of the well and the barrier during the thermal treatments is assumed to follow Fick's law. The results show that the thermal annealing can induce an increase of the optical susceptibilities in the AlGaN/GaN quantum well. However the third-order nonlinear optical susceptibilities are red shifted with increasing in diffusion lengths.

  11. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    Science.gov (United States)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  12. On a regular charged black hole with a nonlinear electric source

    CERN Document Server

    Culetu, Hristu

    2014-01-01

    A modified version of the Reissner-Nordstrom metric is proposed on the grounds of the nonlinear electrodynamics model. The source of curvature is an anisotropic fluid with $p_{r} = -\\rho$ which resembles the Maxwell stress tensor at $r >> q^{2}/2m$, where $q$ and $m$ are the mass and charge of the particle, respectively. We found the black hole horizon entropy obeys the relation $S = |W|/2T = A_{H}/4$, with $W$ the Komar energy and $A_{H}$ the horizon area. The electric field around the source depends not only on its charge but also on its mass. The corresponding electrostatic potential $\\Phi(r)$ is finite everywhere, vanishes at the origin and at $r = q^{2}/6m$ and is nonzero asymptotically, with $\\Phi_{\\infty} = 3m/2q$.

  13. Linear and Nonlinear Electrical Models of Neurons for Hopfield Neural Network

    Science.gov (United States)

    Sarwar, Farah; Iqbal, Shaukat; Hussain, Muhammad Waqar

    2016-11-01

    A novel electrical model of neuron is proposed in this presentation. The suggested neural network model has linear/nonlinear input-output characteristics. This new deterministic model has joint biological properties in excellent agreement with the earlier deterministic neuron model of Hopfield and Tank and to the stochastic neuron model of McCulloch and Pitts. It is an accurate portrayal of differential equation presented by Hopfield and Tank to mimic neurons. Operational amplifiers, resistances, capacitor, and diodes are used to design this system. The presented biological model of neurons remains to be advantageous for simulations. Impulse response is studied and conferred to certify the stability and strength of this innovative model. A simple illustration is mapped to demonstrate the exactness of the intended system. Precisely mapped illustration exhibits 100 % accurate results.

  14. Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine

    Science.gov (United States)

    Sheng, Hanmin; Xiao, Jian

    2015-05-01

    The aim of this study is to estimate the state of charge (SOC) of the lithium iron phosphate (LiFePO4) battery pack by applying machine learning strategy. To reduce the noise sensitive issue of common machine learning strategies, a kind of SOC estimation method based on fuzzy least square support vector machine is proposed. By applying fuzzy inference and nonlinear correlation measurement, the effects of the samples with low confidence can be reduced. Further, a new approach for determining the error interval of regression results is proposed to avoid the control system malfunction. Tests are carried out on modified COMS electric vehicles, with two battery packs each consists of 24 50 Ah LiFePO4 batteries. The effectiveness of the method is proven by the test and the comparison with other popular methods.

  15. A nonlinear fuzzy assisted image reconstruction algorithm for electrical capacitance tomography.

    Science.gov (United States)

    Deabes, W A; Abdelrahman, M A

    2010-01-01

    A nonlinear method based on a Fuzzy Inference System (FIS) to improve the images obtained from Electrical Capacitance Tomography (ECT) is proposed. Estimation of the molten metal characteristic in the Lost Foam Casting (LFC) process is a novel application in the area of the tomography process. The convergence rate of iterative image reconstruction techniques is dependent on the accuracy of the first image. The possibility of the existence of metal in the first image is computed by the proposed fuzzy system. This first image is passed to an iterative image reconstruction technique to get more precise images and to speed up the convergence rate. The proposed technique is able to detect the position of the metal on the periphery of the imaging area by using just eight capacitive sensors. The final results demonstrate the advantage of using the FIS compared to the performance of the iterative back projection image reconstruction technique.

  16. Electrical nonlinear response of a photomixer for applications in ultrafast measurements

    Science.gov (United States)

    Constantin, Florin L.

    2014-05-01

    Electrical nonlinear response of a low-temperature-grown GaAs photomixer is exploited for THz-wave modulation, detection and waveform sampling. Current-voltage response at low bias field is modelled by electron drift velocity saturation. THz-wave rectification is discussed in a small-signal approximation and experimentally addressed in connection with the curvature of IV plot. The optical heterodyne signal from two lasers down-converted with the photomixer is modulated by applying an alternative bias field. Conversely, heterodyne detection of a continuous-wave THz source is demonstrated with the photomixer using the optical beat between the lasers as local oscillator. Alternatively, THz-waves with tunable carrier and pulse repetition rate are generated with a THz frequency multiplier driven by a pulsed microwave synthesizer. Asynchronous optical sampling with a pulsed optical beat is demonstrated with the heterodyne detection scheme.

  17. Non-linear analysis of body responses to functional electrical stimulation on hemiplegic subjects.

    Science.gov (United States)

    Yu, W W; Acharya, U R; Lim, T C; Low, H W

    2009-08-01

    Functional electrical stimulation (FES) is a method of applying low-level electrical currents to restore or improve body functions lost through nervous system impairment. FES is applied to peripheral nerves that control specific muscles or muscle groups. Application of advanced signal computing techniques to the medical field has helped to achieve practical solutions to the health care problems accurately. The physiological signals are essentially non-stationary and may contain indicators of current disease, or even warnings about impending diseases. These indicators may be present at all times or may occur at random on the timescale. However, to study and pinpoint these subtle changes in the voluminous data collected over several hours is tedious. These signals, e.g. walking-related accelerometer signals, are not simply linear and involve non-linear contributions. Hence, non-linear signal-processing methods may be useful to extract the hidden complexities of the signal and to aid physicians in their diagnosis. In this work, a young female subject with major neuromuscular dysfunction of the left lower limb, which resulted in an asymmetric hemiplegic gait, participated in a series of FES-assisted walking experiments. Two three-axis accelerometers were attached to her left and right ankles and their corresponding signals were recorded during FES-assisted walking. The accelerometer signals were studied in three directions using the Hurst exponent H, the fractal dimension (FD), the phase space plot, and recurrence plots (RPs). The results showed that the H and FD values increase with increasing FES, indicating more synchronized variability due to FES for the left leg (paralysed leg). However, the variation in the normal right leg is more chaotic on FES.

  18. Nonlinear Control Synthesis for Electrical Power Systems Using Controllable Series Capacitors

    CERN Document Server

    Manjarekar, N S

    2012-01-01

    In this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesis techniques. For this transient stabilization problem the actuator considered is a power electronic device, a controllable series capacitor (CSC). The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model. To start with, the CSC is modeled by the injection model which is based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes a complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC) methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system. Further, IDA-PBC is used to derive stab...

  19. Nonlinear dynamic behaviors of permanent magnet synchronous motors in electric vehicles caused by unbalanced magnetic pull

    Science.gov (United States)

    Xiang, Changle; Liu, Feng; Liu, Hui; Han, Lijin; Zhang, Xun

    2016-06-01

    Unbalanced magnetic pull (UMP) plays a key role in nonlinear dynamic behaviors of permanent magnet synchronous motors (PMSM) in electric vehicles. Based on Jeffcott rotor model, the stiffness characteristics of the rotor system of the PMSM are analyzed and the nonlinear dynamic behaviors influenced by UMP are investigated. In free vibration study, eigenvalue-based stability analysis for multiple equilibrium points is performed which offers an insight in system stiffness. Amplitude modulation effects are discovered of which the mechanism is explained and the period of modulating signal is carried out by phase analysis and averaging method. The analysis indicates that the effects are caused by the interaction of the initial phases of forward and backward whirling motions. In forced vibration study, considering dynamic eccentricity, frequency characteristics revealing softening type are obtained by harmonic balance method, and the stability of periodic solution is investigated by Routh-Hurwitz criterion. The frequency characteristics analysis indicates that the response amplitude is limited in the range between the amplitudes of the two kinds of equilibrium points. In the vicinity of the continuum of equilibrium points, the system hardly provides resistance to bending, and hence external disturbances easily cause loss of stability. It is useful for the design of the PMSM with high stability and low vibration and acoustic noise.

  20. Effects of deposition temperature on the surface roughness and the nonlinear optical susceptibility of sprayed deposited ZnO:Zr thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bahedi, K., E-mail: bahedikhadija@yahoo.fr [Laboratoire Optoelectronique et Physico-chimie des Materiaux, associe au CNRST, Universite Ibn Tofail, Faculte des Sciences BP 133, Kenitra 14000 (Morocco); Addou, M.; El Jouad, M.; Bayoud, S.; Sofiani, Z. [Laboratoire Optoelectronique et Physico-chimie des Materiaux, associe au CNRST, Universite Ibn Tofail, Faculte des Sciences BP 133, Kenitra 14000 (Morocco)

    2009-08-30

    Zirconium doped zinc oxide thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 400 deg. C, 450 deg. C and 500 deg. C using zinc and zirconium chlorides as precursors. The effect of zirconium dopant and surface roughness on the nonlinear optical properties was investigated using atomic force microscopy (AFM) and third harmonic generation (THG). The best value of susceptibility {chi}{sup (3)} was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility {chi}{sup (3)} = 20.49 x 10{sup -12} (esu) of the studied films was found for the 5% doped sample at 450 deg. C.

  1. Calculation of the dielectric constant ɛ and first nonlinear susceptibility χ(2) of crystalline potassium dihydrogen phosphate by the coupled perturbed Hartree-Fock and coupled perturbed Kohn-Sham schemes as implemented in the CRYSTAL code

    Science.gov (United States)

    Lacivita, Valentina; Rérat, Michel; Kirtman, Bernard; Ferrero, Mauro; Orlando, Roberto; Dovesi, Roberto

    2009-11-01

    The high-frequency dielectric ɛ and the first nonlinear electric susceptibility χ(2) tensors of crystalline potassium dihydrogen phosphate (KH2PO4) are calculated by using the coupled perturbed Hartree-Fock and Kohn-Sham methods as implemented in the CRYSTAL code. The effect of basis sets of increasing size on ɛ and χ(2) is explored. Five different levels of theory, namely, local-density approximation, generalized gradient approximation (PBE), hybrids (B3LYP and PBE0), and HF are compared using the experimental and theoretical structures corresponding not only to the tetragonal geometry I4d2 at room temperature but also to the orthorhombic phase Fdd2 at low temperature. Comparison between the two phases and their optical behavior is made. The calculated results for the tetragonal phase are in good agreement with the experimental data.

  2. Nonlinear physics of electrical wave propagation in the heart: a review

    Science.gov (United States)

    Alonso, Sergio; Bär, Markus; Echebarria, Blas

    2016-09-01

    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.

  3. Electric-field-induced fabrication of covalently linked second-order nonlinear optical multilayer films on nonconductive substrates.

    Science.gov (United States)

    Wang, Shiwei; Zhao, Lisha; Cui, Zhanchen

    2012-01-15

    A highly stable second-order nonlinear optical multilayer film was constructed on insulating substrates using the electric-field-induced layer-by-layer assembly technique. The substrates used in this method could be arbitrary. In another, the substrates could be modified with polyanion solution by spin coating as cladding layer. Then, the nonlinear optical multilayer films were assembled on the cladding layer directly by the electric-field-induced layer-by-layer assembly technique. The resulting cross-linked multilayer films fabricated by this method displayed high optical transparency, good thermal stability, and excellent nonlinear optical properties which can be made into waveguide devices directly. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. All-electrical nonlinear fano resonance in coupled quantum point contacts

    Science.gov (United States)

    Xiao, Shiran

    This thesis is motivated by recent interest in the Fano resonance (FR). As a wave-interference phenomenon, this resonance is of increasing importance in optics, plasmon-ics, and metamaterials, where its ability to cause rapid signal modulations under variation of some suitable parameter makes it desirable for a variety of applications. In this thesis, I focus on a novel manifestation of this resonance in systems of coupled quantum point contacts (QPCs). The major finding of this work is that the FR in this system may be ma-nipulated by applying a nonlinear DC bias to the system. Under such conditions, we are able to induce significant distortions of resonance lineshape, providing a pathway to all-electrical manipulation of the FR. To interpret this behavior we apply a recently-developed model for a three-path FR, involving an additional "intruder" continuum. We have previously used this model to account for the magnetic-field induced distortions of the FR observed in coupled QPCs, and show here that this model also provides a frame-work for understanding the observed nonlinear behavior. Our work therefore reveals a new manifestation of the FR that can be sensitively tailored by external control, a finding that may eventually allow the application of this feature to nanoelectronics. Since the in-terference scheme involves in this thesis is a completely general one, it should be broadly applicable across a variety of different wave-based systems, including those in both pho-tonics and electronics and opening up the possibility of new applications in areas such as chemical and biological sensing and secure communications.

  5. Nonlinear control synthesis for electrical power systems using controllable series capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Manjarekar, N.S.; Banavar, Ravi N. [Indian Institute of Technology Bombay, Mumbai (India). Systems and Control Engineering

    2012-07-01

    In this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesis techniques. For this transient stabilization problem the actuator considered is a power electronic device, a controllable series capacitor (CSC). The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model. To start with, the CSC is modeled by the injection model which is based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector g(x) in the open loop system takes a complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC) methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system. Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system. Next, we consider a different control methodology, immersion and invariance (I and I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I and I, we incorporate the power balance algebraic constraints in the load bus to the SMIB swing equation, and extend the design philosophy to a class of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machine system with two load buses and a CSC. The controller performances are validated through simulations for all cases.

  6. Nonlinear imaging techniques for the observation of cell membrane perturbation due to pulsed electric field exposure

    Science.gov (United States)

    Moen, Erick K.; Beier, Hope T.; Thompson, Gary L.; Roth, Caleb C.; Ibey, Bennett L.

    2014-03-01

    Nonlinear optical probes, especially those involving second harmonic generation (SHG), have proven useful as sensors for near-instantaneous detection of alterations to orientation or energetics within a substance. This has been exploited to some success for observing conformational changes in proteins. SHG probes, therefore, hold promise for reporting rapid and minute changes in lipid membranes. In this report, one of these probes is employed in this regard, using nanosecond electric pulses (nsEPs) as a vehicle for instigating subtle membrane perturbations. The result provides a useful tool and methodology for the observation of minute membrane perturbation, while also providing meaningful information on the phenomenon of electropermeabilization due to nsEP. The SHG probe Di- 4-ANEPPDHQ is used in conjunction with a tuned optical setup to demonstrate nanoporation preferential to one hemisphere, or pole, of the cell given a single square shaped pulse. The results also confirm a correlation of pulse width to the amount of poration. Furthermore, the polarity of this event and the membrane physics of both hemispheres, the poles facing either electrode, were tested using bipolar pulses consisting of two pulses of opposite polarity. The experiment corroborates findings by other researchers that these types of pulses are less effective in causing repairable damage to the lipid membrane of cells.

  7. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks

    Science.gov (United States)

    Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li

    2016-06-01

    Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.

  8. Static electric multipole susceptibilities of the relativistic hydrogen-like atom in the ground state: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    CERN Document Server

    Szmytkowski, Radosław

    2016-01-01

    The ground state of the Dirac one-electron atom, placed in a weak, static electric field of definite $2^{L}$-polarity, is studied within the framework of the first-order perturbation theory. The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30 (1997) 825, erratum: 30 (1997) 2747] is used to derive closed-form analytical expressions for various far-field and near-nucleus static electric multipole susceptibilities of the atom. The far-field multipole susceptibilities --- the polarizabilities $\\alpha_{L}$, electric-to-magnetic cross-susceptibilities $\\alpha_{\\mathrm{E}L\\to\\mathrm{M}(L\\mp1)}$ and electric-to-toroidal-magnetic cross-susceptibilities $\\alpha_{\\mathrm{E}L\\to\\mathrm{T}L}$ --- are found to be expressible in terms of one or two non-terminating generalized hypergeometric functions ${}_{3}F_{2}$ with the unit argument. Counterpart formulas for the near-nucleus multipole susceptibilities --- the electric nuclear shielding constants $\\sigma_{\\mathrm{E}L\\to\\m...

  9. Remodeling of cardiac passive electrical properties and susceptibility to ventricular and atrial arrhythmias

    Directory of Open Access Journals (Sweden)

    Stefan eDhein

    2014-11-01

    Full Text Available Coordinated electrical activation of the heart is essential for the maintenance of a regular cardiac rhythm and effective contractions. Action potentials spread from one cell to the next via gap junction channels. Because of the elongated shape of cardiomyocytes, longitudinal resistivity is lower than transverse resistivity causing electrical anisotropy. Moreover, non-uniformity is created by clustering of gap junction channels at cell poles and by non-excitable structures such as collagenous strands, vessels or fibroblasts. Structural changes in cardiac disease often affect passive electrical properties by increasing non-uniformity and altering anisotropy. This disturbs normal electrical impulse propagation and is, consequently, a substrate for arrhythmia. However, to investigate how these structural changes lead to arrhythmias remains a challenge. One important mechanism, which may both cause and prevent arrhythmia, is the mismatch between current sources and sinks. Propagation of the electrical impulse requires a sufficient source of depolarizing current. In the case of a mismatch, the activated tissue (source is not able to deliver enough depolarizing current to trigger an action potential in the non-activated tissue (sink. This eventually leads to conduction block. It has been suggested that in this situation a balanced geometrical distribution of gap junctions and reduced gap junction conductance may allow successful propagation. In contrast, source-sink mismatch can prevent spontaneous arrhythmogenic activity in a small number of cells from spreading over the ventricle, especially if gap junction conductance is enhanced. Beside gap junctions, cell geometry and non-cellular structures strongly modulate arrhythmogenic mechanisms. The present review elucidates these and other implications of passive electrical properties for cardiac rhythm and arrhythmogenesis.

  10. Remodeling of cardiac passive electrical properties and susceptibility to ventricular and atrial arrhythmias.

    Science.gov (United States)

    Dhein, Stefan; Seidel, Thomas; Salameh, Aida; Jozwiak, Joanna; Hagen, Anja; Kostelka, Martin; Hindricks, Gerd; Mohr, Friedrich-Wilhelm

    2014-01-01

    Coordinated electrical activation of the heart is essential for the maintenance of a regular cardiac rhythm and effective contractions. Action potentials spread from one cell to the next via gap junction channels. Because of the elongated shape of cardiomyocytes, longitudinal resistivity is lower than transverse resistivity causing electrical anisotropy. Moreover, non-uniformity is created by clustering of gap junction channels at cell poles and by non-excitable structures such as collagenous strands, vessels or fibroblasts. Structural changes in cardiac disease often affect passive electrical properties by increasing non-uniformity and altering anisotropy. This disturbs normal electrical impulse propagation and is, consequently, a substrate for arrhythmia. However, to investigate how these structural changes lead to arrhythmias remains a challenge. One important mechanism, which may both cause and prevent arrhythmia, is the mismatch between current sources and sinks. Propagation of the electrical impulse requires a sufficient source of depolarizing current. In the case of a mismatch, the activated tissue (source) is not able to deliver enough depolarizing current to trigger an action potential in the non-activated tissue (sink). This eventually leads to conduction block. It has been suggested that in this situation a balanced geometrical distribution of gap junctions and reduced gap junction conductance may allow successful propagation. In contrast, source-sink mismatch can prevent spontaneous arrhythmogenic activity in a small number of cells from spreading over the ventricle, especially if gap junction conductance is enhanced. Beside gap junctions, cell geometry and non-cellular structures strongly modulate arrhythmogenic mechanisms. The present review elucidates these and other implications of passive electrical properties for cardiac rhythm and arrhythmogenesis.

  11. Theoretical prediction of electrocaloric effect based on non-linear behaviors of dielectric permittivity under temperature and electric fields

    Directory of Open Access Journals (Sweden)

    Hongbo Liu

    2015-11-01

    Full Text Available The electrocaloric (EC effect has been paid great attentions recently for applications on cooling or electricity generation. However, the directly commercial measurement equipment for the effect is still unavailable. Here we report a novel method to predict EC effect by non-linear behaviors of dielectric permittivity under temperature and electric fields. According to the method, the analytical equations of EC temperature change ΔT are directly given for normal ferroelectrics and relaxor. The calculations have been performed on several materials and it is shown that the method is suitable for both inorganic and organic ferroelectrics, and relaxor.

  12. Trigonal Planar [HgSe3](4-) Unit: A New Kind of Basic Functional Group in IR Nonlinear Optical Materials with Large Susceptibility and Physicochemical Stability.

    Science.gov (United States)

    Li, Chao; Yin, Wenlong; Gong, Pifu; Li, Xiaoshuang; Zhou, Molin; Mar, Arthur; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng; Chen, Chuangtian

    2016-05-18

    A new mercury selenide BaHgSe2 was synthesized. This air-stable compound displays a large nonlinear optical (NLO) response and melts congruently. The structure contains chains of corner-sharing [HgSe3](4-) anions in the form of trigonal planar units, which may serve as a new kind of basic functional group in IR NLO materials to confer large NLO susceptibilities and physicochemical stability. Such trigonal planar units may inspire a path to finding new classes of IR NLO materials of practical utility that are totally different from traditional chalcopyrite materials.

  13. Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential

    Science.gov (United States)

    Gizzi, A.; Loppini, A.; Ruiz-Baier, R.; Ippolito, A.; Camassa, A.; La Camera, A.; Emmi, E.; Di Perna, L.; Garofalo, V.; Cherubini, C.; Filippi, S.

    2017-09-01

    This work reports the results of the theoretical investigation of nonlinear dynamics and spiral wave breakup in a generalized two-variable model of cardiac action potential accounting for thermo-electric coupling and diffusion nonlinearities. As customary in excitable media, the common Q10 and Moore factors are used to describe thermo-electric feedback in a 10° range. Motivated by the porous nature of the cardiac tissue, in this study we also propose a nonlinear Fickian flux formulated by Taylor expanding the voltage dependent diffusion coefficient up to quadratic terms. A fine tuning of the diffusive parameters is performed a priori to match the conduction velocity of the equivalent cable model. The resulting combined effects are then studied by numerically simulating different stimulation protocols on a one-dimensional cable. Model features are compared in terms of action potential morphology, restitution curves, frequency spectra, and spatio-temporal phase differences. Two-dimensional long-run simulations are finally performed to characterize spiral breakup during sustained fibrillation at different thermal states. Temperature and nonlinear diffusion effects are found to impact the repolarization phase of the action potential wave with non-monotone patterns and to increase the propensity of arrhythmogenesis.

  14. Enhanced ordering reduces electric susceptibility of liquids confined to graphene slit pores

    Science.gov (United States)

    Terrones, Jeronimo; Kiley, Patrick J.; Elliott, James A.

    2016-06-01

    The behaviours of a range of polar and non-polar organic liquids (acetone, ethanol, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride and water) confined to 2D graphene nanochannels with thicknesses in the range of 4.5 Å to 40 Å were studied using classical molecular dynamics and hybrid density functional theory. All liquids were found to organise spontaneously into ordered layers parallel to the confining surfaces, with those containing polar molecules having their electric dipoles aligned parallel to such surfaces. In particular, monolayers of NMP showed remarkable in-plane ordering and low molecular mobility, suggesting the existence of a previously unknown 2D solid-like phase. Calculations for polar liquids showed dramatically reduced static permittivities normal to the confining surfaces; these changes are expected to improve electron tunnelling across the liquid films, modifying the DC electrical properties of immersed assemblies of carbon nanomaterials.

  15. Enhanced ordering reduces electric susceptibility of liquids confined to graphene slit pores

    Science.gov (United States)

    Terrones, Jeronimo; Kiley, Patrick J.; Elliott, James A.

    2016-01-01

    The behaviours of a range of polar and non-polar organic liquids (acetone, ethanol, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride and water) confined to 2D graphene nanochannels with thicknesses in the range of 4.5 Å to 40 Å were studied using classical molecular dynamics and hybrid density functional theory. All liquids were found to organise spontaneously into ordered layers parallel to the confining surfaces, with those containing polar molecules having their electric dipoles aligned parallel to such surfaces. In particular, monolayers of NMP showed remarkable in-plane ordering and low molecular mobility, suggesting the existence of a previously unknown 2D solid-like phase. Calculations for polar liquids showed dramatically reduced static permittivities normal to the confining surfaces; these changes are expected to improve electron tunnelling across the liquid films, modifying the DC electrical properties of immersed assemblies of carbon nanomaterials. PMID:27265098

  16. Nonlinear dynamics of an electrically actuated mems device: Experimental and theoretical investigation

    KAUST Repository

    Ruzziconi, Laura

    2013-11-15

    This study deals with an experimental and theoretical investigation of an electrically actuated micro-electromechanical system (MEMS). The experimental nonlinear dynamics are explored via frequency sweeps in a neighborhood of the first symmetric natural frequency, at increasing values of electrodynamic excitation. Both the non-resonant branch, the resonant one, the jump between them, and the presence of a range of inevitable escape (dynamic pull-in) are observed. To simulate the experimental behavior, a single degree-offreedom spring mass model is derived, which is based on the information coming from the experimentation. Despite the apparent simplicity, the model is able to catch all the most relevant aspects of the device response. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Nevertheless, the theoretical predictions are not completely fulfilled in some aspects. In particular, the range of existence of each attractor is smaller in practice than in the simulations. This is because, under realistic conditions, disturbances are inevitably encountered (e.g. discontinuous steps when performing the sweeping, approximations in the modeling, etc.) and give uncertainties to the operating initial conditions. A reliable prediction of the actual (and not only theoretical) response is essential in applications. To take disturbances into account, we develop a dynamical integrity analysis. Integrity profiles and integrity charts are performed. They are able to detect the parameter range where each branch can be reliably observed in practice and where, instead, becomes vulnerable. Moreover, depending on the magnitude of the expected disturbances, the integrity charts can serve as a design guideline, in order to effectively operate the device in safe condition, according to the desired outcome. Copyright © 2013 by ASME.

  17. Analysis of third harmonic generation and four wave mixing in gold nanostructures by nonlinear finite difference time domain.

    Science.gov (United States)

    Sasanpour, Pezhman; Shahmansouri, Afsaneh; Rashidian, Bizhan

    2010-11-01

    Third order nonlinear effects and its enhancement in gold nanostructures has been numerically studied. Analysis method is based on computationally solving nonlinear Maxwell's equations, considering dispersion behavior of permittivity described by Drude model and third order nonlinear susceptibility. Simulation is done by method of nonlinear finite difference time domain method, in which nonlinear equations of electric field are solved by Newton-Raphshon method. As the main outcomes of third order nonlinear susceptibility, four wave mixing and third harmonic generation terms are produced around gold nanostructures. Results of analysis on different geometries and structures show that third order nonlinearity products are more enhanced in places where electric field enhancement is occurred due to surface plasmons. Results indicates that enhancement of nonlinearities is strongly occurred in structures whose interface is dielectric. According to analysis results, nonlinear effects are highly concentrated in the vicinity of nanostructures. Hence this approach can be used in applications where localized ultraviolet light is required.

  18. The effect of non-linear capacitances in the localization properties of aperiodic dual electric transmission lines

    Science.gov (United States)

    Lazo, Edmundo; Garrido, Alejandro; Neira, Félix

    2016-11-01

    This study investigates the localization properties of dual electric transmission lines with non-linear capacitances. The VC,n voltage across each capacitor is selected as a non-linear function of the electric charge qn, i.e., VC,n = qn(1/Cn -ɛn|qn|2) where Cn is the linear part of the capacitance and ɛn the amplitude of the non-linear term. We follow a binary distribution of values of ɛn, according to the Thue-Morse m-tupling sequence. The localization behavior of this non-linear case indicates that the case m = 2 does not belong to the m ≥ 3, family because when m changes from m = 2 to m = 3, the number of extended states diminishes dramatically. This proves the topological difference of the m = 2 and m = 3 families. However, by increasing m values, localization behavior of the m-tupling family resembles that of the m = 2, case because the system begins to regain its extended states. The exact same result was obtained recently in the study of linear direct transmission lines with m-tupling distribution of inductances. Consequently, we state that the localization behavior of the m-tupling family as a function of the m value is independent of both the linear and the non-linear system under study, but independent of the kind of transmission line (dual or direct). This is curious behavior of the m-tupling family and thus deserves more scholarly attention.

  19. Effects of radial electric field on suppression of electron-temperature-gradient mode through multiscale nonlinear interactions

    Science.gov (United States)

    Moon, Chanho; Kaneko, Toshiro; Itoh, Kimitaka; Ida, Katsumi; Kobayashi, Tatsuya; Inagaki, Shigeru; Itoh, Sanae-I.; Hatakeyama, Rikizo

    2016-11-01

    Turbulence in fluids and plasmas is ubiquitous in Nature and in the laboratory. Contrary to the importance of the ‘scale-free’ nature of cascade in neutral fluid turbulence, the turbulence in plasma is characterised by dynamics of distinct length scales. The cross-scale interactions can be highly non-symmetric so as to generate the plasma turbulence structures. Here we report that the system of hyper-fine electron-temperature-gradient (ETG) fluctuations and microscopic drift-wave (DW) fluctuations is strongly influenced by the sign of the gradient of the radial electric field through multiscale nonlinear interactions. The selective suppression effects by radial electric field inhomogeneity on DW mode induce a new route to modify ETG mode. This suppression mechanism shows disparity with respect to the sign of the radial electric field inhomogeneity, which can be driven by turbulence, so that it could be a new source for symmetry breaking in the turbulence structure formation in plasmas.

  20. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  1. A heuristic nonlinear constructive method for electric power distribution system reconfiguration

    Science.gov (United States)

    McDermott, Thomas E.

    1998-12-01

    The electric power distribution system usually operates in a radial configuration, with tie switches between circuits to provide alternate feeds. The losses would be minimized if all switches were closed, but this is not done because it complicates the system's protection against overcurrents. Whenever a component fails, some of the switches must be operated to restore power to as many customers as possible. As loads vary with time, switch operations may reduce losses in the system. Both of these are applications for reconfiguration. The problem is combinatorial, which precludes algorithms that guarantee a global optimum. Most existing reconfiguration algorithms fall into two categories. In the first, branch exchange, the system operates in a feasible radial configuration and the algorithm opens and closes candidate switches in pairs. In the second, loop cutting, the system is completely meshed and the algorithm opens candidate switches to reach a feasible radial configuration. Reconfiguration algorithms based on linearized transshipment, neural networks, heuristics, genetic algorithms, and simulated annealing have also been reported, but not widely used. These existing reconfiguration algorithms work with a simplified model of the power system, and they handle voltage and current constraints approximately, if at all. The algorithm described here is a constructive method, using a full nonlinear power system model that accurately handles constraints. The system starts with all switches open and all failed components isolated. An optional network power flow provides a lower bound on the losses. Then the algorithm closes one switch at a time to minimize the increase in a merit figure, which is the real loss divided by the apparent load served. The merit figure increases with each switch closing. This principle, called discrete ascent optimal programming (DAOP), has been applied to other power system problems, including economic dispatch and phase balancing. For

  2. Nonlinear analysis of electromyogram following gait training with myoelectrically triggered neuromuscular electrical stimulation in stroke survivors

    Science.gov (United States)

    Dutta, Anirban; Khattar, Bhawna; Banerjee, Alakananda

    2012-12-01

    Neuromuscular electrical stimulation (NMES) facilitates ambulatory function after paralysis by activating the muscles of the lower extremities. The NMES-assisted stepping can either be triggered by a heel-switch (switch-trigger), or by an electromyogram (EMG)-based gait event detector (EMG-trigger). The command sources—switch-trigger or EMG-trigger—were presented to each group of six chronic (>6 months post-stroke) hemiplegic stroke survivors. The switch-trigger group underwent transcutaneous NMES-assisted gait training for 1 h, five times a week for 2 weeks, where the stimulation of the tibialis anterior muscle of the paretic limb was triggered with a heel-switch detecting heel-rise of the same limb. The EMG-trigger group underwent transcutaneous NMES-assisted gait training of the same duration and frequency where the stimulation was triggered with surface EMG from medial gastrocnemius (MG) of the paretic limb in conjunction with a heel-switch detecting heel-rise of the same limb. During the baseline and post-intervention surface EMG assessment, a total of 10 s of surface EMG was recorded from bilateral MG muscle while the subjects tried to stand steady on their toes. A nonlinear tool—recurrence quantification analysis (RQA)—was used to analyze the surface EMG. The objective of this study was to find the effect of NMES-assisted gait training with switch-trigger or EMG-trigger on two RQA parameters—the percentage of recurrence (%Rec) and determinism (%Det), which were extracted from surface EMG during fatiguing contractions of the paretic muscle. The experimental results showed that during fatiguing contractions, (1) %Rec and %Det have a higher initial value for paretic muscle than the non-paretic muscle, (2) the rate of change in %Rec and %Det was negative for the paretic muscle but positive for the non-paretic muscle, (3) the rate of change in %Rec and %Det significantly increased from baseline for the paretic muscle after EMG-triggered NMES

  3. Preparation of AgCl Nano-Crystal Embedded Tellurite Nonlinear Optical Glasses under Electric Field Accompanied Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Jian LIN; Wenhai HUANG; Bofang LI; Chong JIN; Changcheng LIU; Shuhua LEI; Zhenrong SUN

    2008-01-01

    The quantum effect of nano-crystals is an important factor to improve nonlinear optical performance of nano-crystal embedded glasses,while controlling the size distribution and content of nano-crystals in the glass accurately is a key to obtain good quality.The auxiliary direct current electric field,accompanied with heat treatment,was applied on AgCl containing niobic tellurite glass sheet.The nucleation and crystallization of the glass were well controlled under auxiliary electric field.It was found that the average size of AgCl nano-crystal particles in the glass is smaller than that under single heat treatment,and the content of nano-crystals is higher.Therefore the third-order nonlinear optical performance of the glass was increased a lot.The local-area distributed AgCl nano-crystal particles can also be embedded into a glass sheet by using locally applied electric field.

  4. Studies on the Second-Order Nonlinear Optical Properties of Parabolic and Semi-parabolic Quantum Wells with Applied Electric Fields

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; XIE Hong-Jing

    2004-01-01

    Within the framework of compact density matrix approach and iterative procedure, a detailed procedure for the calculation of the second-harmonic generation (SHG)susceptibility tensor is given in the electric-field-biased parabolic and semi-parabolic quantum wells (QWs). The simple analytical formula for the SHG susceptibility in the systems is also deduced. Numerical results on typical AlGaAs/GaAs materials show that, for the same effective width,the SHG susceptibility in semi-parabolic QW is larger than that in parabolic QW due to the self-asymmetry of the semiparabolic QW, and the applied electric field can make the SHG susceptibilities in both systems enhance remarkably.Moreover, the SHG susceptibility is also related to the parabolic confinement frequency and the relaxation rate of the systems.

  5. The Nonlinear Ohm's Law: Plasma Heating by Strong Electric Fields and its Effects on the Ionization Balance in Protoplanetary Disks

    CERN Document Server

    Okuzumi, Satoshi

    2014-01-01

    The MHD of protoplanetary disks crucially depends on the ionization state of the disks. Recent simulations suggest that MHD turbulence in the disks can generate a strong electric field in the local rest frame. Such a strong field can heat up plasmas and thereby change the ionization balance. To study this effect, we construct a charge reaction model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as plasma accretion by dust grains. The resulting Ohm's law is nonlinear in the electric field strength. We find that the gas-phase electron abundance decreases with increasing the electric field strength when plasma accretion onto grains dominates over gas-phase recombination, because electron heating accelerates electron--grain collisions. This leads to an increase in the magnetic resistivity, and possibly to a self-regulation of the MHD turbulence. In some cases, even the electric current decreases with increasing the field strength in a certain field range. The N...

  6. Dispersion of the linear and nonlinear optical susceptibilities of the CuAl(S{sub 1–x}Se{sub x})₂ mixed chaclcopyrite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A. H., E-mail: maalidph@yahoo.com [New Technologies - Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Brik, M. G. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Auluck, S. [Council of Scientific and Industrial Research—National Physical Laboratory Dr. K S Krishnan Marg, New Delhi 110012 (India)

    2014-09-14

    Based on the electronic band structure, we have calculated the dispersion of the linear and nonlinear optical susceptibilities for the mixed CuAl(S{sub 1–x}Se{sub x})₂ chaclcopyrite compounds with x=0.0, 0.25, 0.5, 0.75, and 1.0. Calculations are performed within the Perdew-Becke-Ernzerhof general gradient approximation. The investigated compounds possess a direct band gap of about 2.2 eV (CuAlS₂), 1.9 eV (CuAl(S₀.₇₅Se₀.₂₅)₂), 1.7 eV (CuAl(S₀.₅Se₀.₅)₂), 1.5 eV (CuAl(S₀.₂₅Se₀.₇₅)₂), and 1.4 eV (CuAlSe₂) which tuned to make them optically active for the optoelectronics and photovoltaic applications. These results confirm that substituting S by Se causes significant band gaps' reduction. The optical function's dispersion ε₂{sup xx}(ω) and ε₂{sup zz}(ω)/ε₂{sup xx}(ω), ε₂{sup yy}(ω), and ε₂{sup zz}(ω) was calculated and discussed in detail. To demonstrate the effect of substituting S by Se on the complex second-order nonlinear optical susceptibility tensors, we performed detailed calculations for the complex second-order nonlinear optical susceptibility tensors, which show that the neat parents compounds CuAlS₂ and CuAlSe₂ exhibit | χ₁₂₂²}(-2ω;ω;ω) | as the dominant component, while the mixed alloys exhibit | χ₁₁₁²(-2ω;ω;ω) | as the dominant component. The features of | χ₁₂₃²}(-2ω;ω;ω) | and | χ{sub 111}²}(-2ω;ω;ω) | spectra were analyzed on the basis of the absorptive part of the corresponding dielectric function ε₂(ω) as a function of both ω/2 and ω.

  7. Nonlinear Effects in Piezoelectric Transformers Explained by Thermal-Electric Model Based on a Hypothesis of Self-Heating

    DEFF Research Database (Denmark)

    Andersen, Thomas; Andersen, Michael A. E.; Thomsen, Ole Cornelius;

    2012-01-01

    As the trend within power electronic still goes in the direction of higher power density and higher efficiency, it is necessary to develop new topologies and push the limit for the existing technology. Piezoelectric transformers are a fast developing technology to improve efficiency and increase...... power density of power converters. Nonlinearities in piezoelectric transformers occur when the power density is increased enough. The simple linear equations are not valid at this point and more complex theory of electro elasticity must be applied. In This work a simplified thermo-electric model...

  8. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.

    2013-10-25

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  9. Second-Order Nonlinear Optical Susceptibilities of POLY[(HEXA-2,4-DIYNYLENE-1,6-DIOXY)DIBENZOATES] Containing Azo Chromophore Disperse Red 19 BY Electroabsorption Spectroscopy

    Science.gov (United States)

    Gómez-Sosa, Gustavo; Ogawa, Takeshi; Isoshima, Takashi; Hara, Masahiko

    The second-order nonlinear optical susceptibilities χ(2) of two isomeric polymers containing an azo dye, Disperse Red 19, were determined by the first-order electroabsorption spectroscopy (EAS), and compared with values previously obtained by SHG measurements. The para-polymer was found to have higher susceptibility than the corresponding meta-polymer. χ(2) were found to be 5-6 × 10-8 esu, which are comparable to those obtained by the Maker Fringe method.

  10. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity.

    Science.gov (United States)

    Webb, Alexander J; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-04-26

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.

  11. Determination of Magnetic Parameters of Maghemite (γ-Fe2O3) Core-Shell Nanoparticles from Nonlinear Magnetic Susceptibility Measurements

    Science.gov (United States)

    Syvorotka, Ihor I.; Pavlyk, Lyubomyr P.; Ubizskii, Sergii B.; Buryy, Oleg A.; Savytskyy, Hrygoriy V.; Mitina, Nataliya Y.; Zaichenko, Oleksandr S.

    2017-04-01

    Method of determining of magnetic moment and size from measurements of dependence of the nonlinear magnetic susceptibility upon magnetic field is proposed, substantiated and tested for superparamagnetic nanoparticles (SPNP) of the "magnetic core-polymer shell" type which are widely used in biomedical technologies. The model of the induction response of the SPNP ensemble on the combined action of the magnetic harmonic excitation field and permanent bias field is built, and the analysis of possible ways to determine the magnetic moment and size of the nanoparticles as well as the parameters of the distribution of these variables is performed. Experimental verification of the proposed method was implemented on samples of SPNP with maghemite core in dry form as well as in colloidal systems. The results have been compared with the data obtained by other methods. Advantages of the proposed method are analyzed and discussed, particularly in terms of its suitability for routine express testing of SPNP for biomedical technology.

  12. Leakage current and induced electrical energy dissipation in nonlinear oscillation of dielectric elastomer actuators

    Science.gov (United States)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-09-01

    Subject to a high voltage, leakage current and induced electrical energy dissipation inevitably occur during the actuation of dielectric elastomers (DEs). In this article, a theoretical model is developed to investigate the dissipative performance of DEs in dynamic actuation. Effects of three different actuation conditions, including DE materials’ viscoelasticity intensity, amplitude of applied voltage, and mechanical tensile force, are considered. Numerical calculations are employed to detect the dynamic dissipative performance of DEs including leakage current, electrical power density, and electrical energy density in certain vibrational periods. Leakage current and induced electrical energy dissipation are enhanced with the enlargement of amplitude of applied voltage and mechanical force, and are suppressed as the intensity of DEs’ viscoelastic creep increases. The electrical energy for dissipation and actuation is also analyzed and compared.

  13. Exploring electro-optic effect and third-order nonlinear optical susceptibility of impurity doped quantum dots: Interplay between hydrostatic pressure, temperature and noise

    Science.gov (United States)

    Ganguly, Jayanta; Saha, Surajit; Bera, Aindrila; Ghosh, Manas

    2017-03-01

    We study the profiles of electro-optic effect (EOE) and third-order nonlinear optical susceptibility (TONOS) of impurity doped GaAs quantum dots (QDs) under the combined influence of hydrostatic pressure (HP) and temperature (T) taking into account the presence of Gaussian white noise. Noise has been introduced to the system additively and multiplicatively. The doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is elegantly reflected through prominent change of peak shift (blue/red) and variation of peak height (increase/ıdecrease) of above nonlinear optical (NLO) properties as temperature and pressure are varied over a range. Interestingly, all such changes subtly depend on mode of application (additive/multiplicative) of noise. The noteworthy influence of the interplay between noise strength and its mode of application on the said NLO properties has also been critically scrutinized. The findings highlight remarkable role played by noise in tuning above NLO properties of doped QD system under the prominent presence of both hydrostatic pressure and temperature.

  14. Dispersion of linear and nonlinear optical susceptibilities in calcium neodymium oxyborate Ca4NdO(BO3)3-LDA versus GGA.

    Science.gov (United States)

    Reshak, Ali H; Auluck, S; Kityk, I V

    2009-02-26

    We have performed ab inito theoretical calculations of the electronic structure and the linear and nonlinear optical susceptibilities for calcium neodymium oxyborate Ca4NdO(BO3)3 using two approximations for the exchange correlation (XC) potentials, the local density approximation (LDA) and the generalized gradient approximation (GGA). Our calculations show that this compound is metallic-like, with density of states at the Fermi energy E(F), N(E(F)), of 5.95 and 10.33 states/Ry-cell or bare electronic specific heat coefficients of 1.03 and 1.79 mJ/mol-K2 for LDA and GGA, respectively. The overlap between the valence and conduction bands is strong, resulting in metallic behavior. We found that Nd-s/p/d, Ca-s/p, B-p, and O-s/p states controlled the overlapping around E(F). The effect of LDA and GGA on the band structure, density of states, and linear optical properties is very small, while for the nonlinear optical properties, it is very pronounced. Our calculations show that χ(111)(2)(ω) is the dominant component for both LDA and GGA. We find opposite signs of the contributions of the 2ω and 1ω inter/intraband to the real and imaginary parts for the dominant component throughout the wide optical frequency range.

  15. Investigation on the crystal growth, molecular structure and nonlinear optical susceptibilities of 2-[2-(4-Ethoxy-phenyl)-vinyl]-1-ethyl-stilbazolium iodide (EESI) by Z-scan technique using He-Ne laser for third-order nonlinear optical applications

    Science.gov (United States)

    Senthil, K.; Kalainathan, S.; Kondo, Y.; Hamada, F.; Yamada, M.

    2017-05-01

    Organic 2-[2-(4-Ethoxy-phenyl)-vinyl]-1-ethyl-stilbazolium iodide (EESI), a derivative of the stilbazolium family single crystal was synthesized by condensation method. Nearly perfect as-gown single crystals of EESI structure was confirmed by single-crystal X-ray diffraction studies. The crystal has a triclinic system with the space group P-1, the molecule consists of one pyridinium cation, one iodide anion, and 0·5H2O molecules. The nature of charge transfer, molecular properties, electrostatic potential map, and HOMO-LUMO energy gap of EESI have been theoretically investigated by Sparton'10 V1.0.1 program. The optical transparency of EESI was studied by Uv-Visible spectral analysis. The growth features were observed during the etching studies using a Carl Zeiss optical microscope (50X magnification). The mechanical behavior of the crystal was estimated by Vickers microhardness test, which shows reverse indentation size effect (RISE) with good mechanical stability. Both the dielectric constant and dielectric loss increases with the increasing temperature and attain almost constant at higher frequencies, which justify the crystal quality and essential parameter for electro-optic device applications. The complex impedance analysis explains the electrical property of EESI. TGA and DTA measurements determined the thermal stability of the grown crystal. Laser-induced damage threshold energy measurements exhibit that the excellent resistance with good threshold energy up to 2.08 GW/cm2 that was found to be more than that of some known organic and inorganic NLO crystals. Photoconductivity of EESI crystal confirms that the positive photoconductivity nature. Also, the third-order nonlinear optical (NLO) properties of EESI were investigated by using the single beam Z-scan technique under the Visible light (632.8 nm) region. The results show that EESI has effective third-order nonlinear optical property with the nonlinear refractive index n2 =1.787×10-11m2/W, third

  16. Investigations on the electrical, thermal and optical properties of the nonlinear optical allylthiourea mercury chloride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sreekanth, G. [Department of Physics, St. Thomas College Pala, Kottayam 686574, Kerala (India); Chandralingam, S. [Department of Physics, Jawaharlal Nehru Technological University, Hyderabad 500085 (India); Philip, Jacob; Jayalakshmy, M.S. [Department of instrumentation, Cochin University of Science and Technology, Cochin, Kerala (India); Philip, Reji; Sridharan, Kishore [Raman research institute, Bangalore, Karnataka 560080 (India); Santhosh Kumar, R. [Department of Physics, St. George' s College Aruvithura, Kottayam 686122, Kerala (India); Joseph, Ginson P., E-mail: ginsonpj@gmail.com [Department of Physics, St. Thomas College Pala, Kottayam 686574, Kerala (India)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► The single crystals of dimension 10 × 5 × 5 mm{sup 3} of allylthiourea mercury chloride are synthesized using slow evaporation technique. ► The bandgap of allylthiourea mercury chloride crystal is found to be about 3.18 eV. ► The optical nonlinearity of the crystal sample are studied using the open aperture Z-scan technique employing a nanosecond laser at 532 nm, and three photon absorption effect has been found. ► An improved photo pyroelectric is used to find the thermal parameters of the crystal. ► The piezoelectric charge coefficient is determined. -- Abstract: Single crystals of dimension 10 × 5 × 5 mm{sup 3} of allylthiourea mercury chloride were synthesized from aqueous solution using slow evaporation technique at ambient temperature. The grown crystals are confirmed by elemental analysis. The band gap of Allylthiourea mercury chloride crystal was found to be about 3.18 eV. The optical nonlinearity of the crystal sample was studied using the open aperture Z-scan technique employing a nanosecond laser at 532 nm, and a three-photon absorption effect has been found. The electrical properties such as dielectric constant, dielectric loss and ac conductivity of the sample were carried out by Agillent E 4980 A LCR meter at different temperatures. An improved photopyroelectric technique was used to find the thermal parameters of the crystal. The piezo electric charge coefficient is also determined.

  17. Electric field-induced nonlinearity enhancement in strained semi-spheroid-shaped quantum dots coupled to wetting layer

    Directory of Open Access Journals (Sweden)

    Mohammad Sabaeian

    2014-12-01

    Full Text Available In this work, the effects of vertical electric field on the electronic and optical properties of strained semi-spheroid-shaped InAs/GaAs quantum dot (QD coupled to its wetting layer (WL aimed to enhance the nonlinear optical properties were investigated. The dependence of energy eigenvalues of S- and P- states and intersubband P-to-S transition energy on applied electric field was studied. A ∼∓ߙ10 meV Stark shift in the intersubband P-to-S transition energy was calculated for a semi-spheroid-shaped QD with height of 5 nm and base-length of 20 nm when bias voltage was varied from 0 V to ±0.8V. The dependence of transition dipole moment and linear and nonlinear optical properties of the system on bias voltage was also studied. It was concluded that increasing the bias voltage from -0.8V to +0.8V leads to increase in figure of merit of the system from ∼0.153 to ∼0.198.

  18. Electronic dynamics under effect of a nonlinear Morse interaction and a static electric field

    Science.gov (United States)

    Ranciaro Neto, A.; de Moura, F. A. B. F.

    2016-11-01

    Considering non-interacting electrons in a one-dimension alloy in which atoms are coupled by a Morse potential, we study the system dynamics in the presence of a static electric field. Calculations are performed assuming a quantum mechanical treatment for the electronic transport and a classical Hamiltonian model for the lattice vibrations. We report numerical evidence of the existence of a soliton-electron pair, even when the electric field is turned on, and we offer a description of how the existence of such a phase depends on the magnitude of the electric field and the electron-phonon interaction.

  19. Nonresonant third-order nonlinear optical susceptibility of CdS clusters encapsulated in zeolite A and X

    Science.gov (United States)

    Sugimoto, Noriaki; Koiwai, Akihiko; Hyodo, Shi-aki; Hioki, Tatsumi; Noda, Shoji

    1995-02-01

    Nonresonant third-order harmonic generation from CdS clusters encapsulated in zeolite A and X was observed at a fundamental wavelength of 1900 nm. To avoid scattering from the surfaces of the small zeolite crystals, the powder samples were dispersed in a liquid with nearly the same refractive index as that of the samples. The third-order optical susceptibilities of CdS-encapsulated zeolite A and X estimated from the intensity of their Maker fringe patterns were 4.1×10-12 and 1.1×10-11 esu, respectively. These values were slightly smaller than those reported for the 1.5 nm surface-capped CdS cluster. The hyperpolarizabilities of CdS clusters encapsulated in zeolite A and X were estimated by assuming the Lorentz local field to be in the range of 380-480×10-36 and 270-390×10-36 esu, respectively.

  20. Nonlinear absorption due to linear loss and magnetic permeability in metamaterials.

    Science.gov (United States)

    Xiang, Yuanjiang; Dai, Xiaoyu; Wen, Shuangchun; Guo, Jun

    2012-06-01

    We predict theoretically that linear magnetic permeability induces nonlinear absorption (NA) of an electric field in lossy metamaterials (MMs) with Kerr-type nonlinear polarization even when the imaginary part of the nonlinear polarization is absent. The nonlinear magnetic susceptibility, if it exists and although it may be real, enhances or reduces the NA of the electric field, depending on the relative values of the electric and magnetic losses. In particular, it is shown that the NA effect can be tuned by the figure of merit (FOM) of the MM: generally, MMs with a better FOM have a weaker NA effect. Moreover, the nonlinear coefficient can also be enhanced greatly due to the combined effect of the linear losses and the nonlinear magnetization of MMs. The control of the tunable NA and nonlinear coefficients by the structural parameters of MMs is also discussed.

  1. Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs

    Directory of Open Access Journals (Sweden)

    Jaime Buitrago

    2017-01-01

    Full Text Available Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN with exogenous multi-variable input (NARX. The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input. Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. The New England electrical load data are used to train and validate the forecast prediction.

  2. Nonlinear optical response induced by a second-harmonic electric-field component concomitant with optical near-field excitation

    Science.gov (United States)

    Yamaguchi, Maiku; Nobusada, Katsuyuki; Yatsui, Takashi

    2015-10-01

    Electron dynamics excited by an optical near field (ONF) in a two-dimensional quantum dot model was investigated by solving a time-dependent Schrödinger equation. It was found that the ONF excitation of the electron caused two characteristic phenomena: a two-photon absorption and an induction of a magnetic dipole moment with a strong third-harmonic component. By analyzing the interaction dynamics of the ONF and the electron, we explained that the physical mechanism underlying these phenomena was the second-harmonic electric-field component concomitant with the near-field excitation originating from the nonuniformity of the ONF. Despite a y -polarized ONF source, the second-harmonic component of an x -polarized electric field was inherently generated. The effect of the second-harmonic electric-field component is not due to usual second-order nonlinear response but appears only when we explicitly consider the electron dynamics interacting with the ONF beyond the conventional optical response assuming the dipole approximation.

  3. Nonlinear H-infinity feedback control for asynchronous motors of electric trains

    Science.gov (United States)

    Rigatos, Gerasimos; Siano, Pierluigi; Wira, Patrice

    2015-12-01

    A new method for feedback control of asynchronous electrical machines is introduced, with application example the problem of the traction system of electric trains. The control method consists of a repetitive solution of an H-infinity control problem for the asynchronous motor, that makes use of a locally linearized model of the motor and takes place at each iteration of the control algorithm. The asynchronous motor's model is locally linearized round its current operating point through the computation of the associated Jacobian matrices. Using the linearized model of the electrical machine an H-infinity feedback control law is computed. The known robustness features of H-infinity control enable to compensate for the errors of the approximative linearization, as well as to eliminate the effects of external perturbations. The efficiency of the proposed control scheme is shown analytically and is confirmed through simulation experiments.

  4. Nonlinear Effects of the Magnetotail Particle Motion in Time—dependent Electric Field

    Institute of Scientific and Technical Information of China (English)

    QiugangZONG; SuiyanFU; 等

    1996-01-01

    The Motion of charged particle in magnetotail-like reversal field with time dependent electric field is studied analytically and numerically using a test particle approach.Variations in the solar wind magnetic and/or velocity can induce a time-dependent electric field in the magnetotail.Interaction of the magnetotail particles with this electric field can give rise to stochasticity.Energy coupling from the field to the plasma is due to stochastic motion of the particles and is termed “Stochastic heating” or “stochastic acceleration”,The stochasticity can lead to heating of the plasma and to strong particle acceleration.The process can provide an explanation to the difference between ion and electron temperatures in the plasma sheet.

  5. The electric vehicle routing problem with non-linear charging functions

    OpenAIRE

    2015-01-01

    International audience; The use of electric vehicles (EVs) in freight and passenger transportation gives birth to a new family of vehicle routing problems (VRPs), the so-called electric VRPs (e-VRPs). As their name suggests, e-VRPs extend classical VRPs to account (mainly) for two constraining EV features: the short driving range and the long battery charging time. As a matter of fact, routes performed by EVs usually need to include time-consuming detours to charging stations. Most of the exi...

  6. Nonlinear Conductivity and Collective Charge Excitations in the Lowest Landau Level

    Science.gov (United States)

    Auerbach, Assa; Arovas, Daniel P.

    2017-07-01

    For weakly disordered fractional quantum Hall phases, the nonlinear photoconductivity is related to the charge susceptibility of the clean system by a Floquet boost. Thus, it may be possible to probe collective charge modes at finite wave vectors by electrical transport. Incompressible phases, irradiated at slightly above the magnetoroton gap, are predicted to exhibit negative photoconductivity and zero resistance states with spontaneous internal electric fields. Nonlinear conductivity can probe composite fermions' charge excitations in compressible filling factors.

  7. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling

    KAUST Repository

    Ruzziconi, Laura

    2013-06-10

    We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. © 2013 IOP Publishing Ltd.

  8. Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es; Fernandez, E. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, J.J. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fuentes, R.; Pascual, I. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2009-02-16

    The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed.

  9. Electrical Transfer Function and Poling Mechanisms for Nonlinear Optical Polymer Modulators

    Science.gov (United States)

    Watson, Michael Dale

    2004-01-01

    Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.

  10. Modeling and Nonlinear Control of Fuel Cell / Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    DEFF Research Database (Denmark)

    El Fadil, Hassan; Giri, Fouad; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of controlling hybrid energy storage system (HESS) for electric vehicle. The storage system consists of a fuel cell (FC), serving as the main power source, and a supercapacitor (SC), serving as an auxiliary power source. It also contains a power block for energy...

  11. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    Science.gov (United States)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  12. High pressure electrical resistivity study on nonlinear bis thiourea cadmium chloride (BTCC) single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ariponnammal, S.; Radhika, S. [Department of Physics, Gandhigram Rural Institute, Deemed University, Gandhigram - 624 302, Dindigul District, Tamil Nadu (India); Selva Vennila, R. [Department of Physics, Anna University, Chennai - 600 025 (India); Arumugam, S. [Department of Physics, Bharathidasan University, Trichy (India)

    2005-09-01

    The Bis Thiourea Cadmium Chloride (BTCC) crystals have been crystallized by slow evaporation technique. The lattice parameters of the grown crystals have been determined by the Energy dispersive x-ray diffraction technique (EDXRD) and the structure has been confirmed. The high pressure electrical resistivity study have been carried out on this crystal and the results have been reported here. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Electric-field-driven magnetization switching and nonlinear magnetoelasticity in Au/FeCo/MgO heterostructures

    Science.gov (United States)

    Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.

    2016-07-01

    Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V‑1m‑1) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices.

  14. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    Science.gov (United States)

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  15. Electric-field-driven magnetization switching and nonlinear magnetoelasticity in Au/FeCo/MgO heterostructures

    Science.gov (United States)

    Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.

    2016-01-01

    Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V−1m−1) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices. PMID:27424885

  16. Nonlinear imaging of lipid membrane alterations elicited by nanosecond pulsed electric fields

    Science.gov (United States)

    Moen, Erick K.; Beier, Hope T.; Thompson, Gary L.; Armani, Andrea M.; Ibey, Bennett L.

    2015-03-01

    Second Harmonic Generation (SHG) imaging is a useful tool for examining the structure of interfaces between bulk materials. Recently, this technique was applied to detecting subtle perturbations in the structure of cellular membranes following nanosecond pulsed electric field (nsPEF) exposure. Monitoring the cell's outer membrane as it is exposed to nsPEF via SHG has demonstrated that nanoporation is likely the root cause for size-specific, increased cytoplasmic membrane permeabilization. It is theorized that the area of the membrane covered by these pores is tied to pulse intensity or duration. The extent of this effect along the cell's surface, however, has never been measured due to its temporal brevity and minute pore size. By enhancing the SHG technique developed and elucidated previously, we are able to obtain this information. Further, we vary the pulse width and amplitude of the applied stimulus to explore the mechanical changes of the membrane at various sites around the cell. By using this unique SHG imaging technique to directly visualize the change in order of phospholipids within the membrane, we are able to better understand the complex response of living cells to electric pulses.

  17. Stability of nonlinear load electric arc furnaces in the presence of reactive power sources

    Directory of Open Access Journals (Sweden)

    Pegah Sagha

    2014-04-01

    Full Text Available This paper first discusses about Electric arc.the model used in this paper is a dynamic model shown with a differential equation. Then, this model is placed with power system model which is considered as a thevenin equivalent model,and whole dynamical system is derived. With linearization around the work places, Jacobian Matrix of the system was extracted and the stability of equilibrium points specificed. Infollow, restricted equation to the central manifold for system intended is achieved and using that, possible events in the system the critical values of the bifurcation parameter is investigated. At the end, the analytical result is compared with the simulation results obtained with the help of Auto software. Finally, we will conclude that, using one type of the analytical method, one split of power system is characterized, but with using Auto software, all bifurcation are identified in the power system.

  18. AC and DC Electrical Conductivity Measurements on Glycine Family of Nonlinear Optical (NLO Single Crystals

    Directory of Open Access Journals (Sweden)

    Suresh Sagadevan

    2014-04-01

    Full Text Available In the present work, the AC/DC conductivity studies were carried out on Glycine family of NLO single crystals such as Trisglycine Zinc Chloride (TGZC, Triglycine Acetate (TGAc and Glycine Lithium Sulphate (GLS. The AC conductivity measurements were carried out using HIOKI 3532-50 LCR HITESTER in the frequency range of 50 Hz to 5 MHz for the grown NLO single crystals. The DC electrical conductivity measurements were also carried out for the crystals using the conventional two – probe technique in the temperature range of 313 – 423 K. The present study indicates that both the AC and DC conductivity of the samples increase with the increase in temperature. The activation energies were also calculated from AC/DC conductivity studies.

  19. Influence of formic acid on electrical, linear and nonlinear optical properties of potassium dihydrogen phosphate (KDP) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anis, Mohd [Crystal Growth Laboratory, Department of Physics, Milliya Arts, Science and Management Science College, Beed 431122, Maharashtra (India); Shirsat, M.D. [Intelligent Material Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431005,Maharashtra (India); Muley, Gajanan [Department of Physics, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra (India); Hussaini, S.S., E-mail: Shuakionline@yahoo.co.in [Crystal Growth Laboratory, Department of Physics, Milliya Arts, Science and Management Science College, Beed 431122, Maharashtra (India)

    2014-09-15

    In present investigation 0.5 and 1 mol% formic acid (FA) added potassium dihydrogen phosphate (KDP) crystals have been grown by a slow evaporation technique. The cell parameters of the grown crystals were determined using single crystal X-ray diffraction analysis. The presence of different functional groups has been qualitatively analyzed by the FT-IR spectral analysis. The optical transparency and optical constants were assessed employing UV–visible studies in the range of 200–900 nm. The wide optical band gap of 1 mol% FA added KDP has been found to be 5 eV. The frequency dependent dielectric measurements were studied for pure and KDP added FA crystals. The enhanced second harmonic generation (SHG) efficiency of grown crystals was determined by a classical Kurtz–Perry powder technique. The encouraging third order nonlinear properties were examined employing a Z-scan technique using He–Ne laser, at 632.8 nm. The effective negative index of refraction and high figure of merit (FOM) essential for laser stabilization were determined for grown crystals. - Highlights: • Study on electrical and optical properties of formic acid (FA) added KDP was reported for the first time. • Optical properties were found to be enhanced with increasing concentration of FA. • The SHG efficiency of 1 mol% FA added KDP was 1.13 times that of KDP. • The high concentration of FA contributed lower dielectric properties to KDP suitable for microelectronics applications. • The improved third order nonlinear parameters were ascertained with addition of FA in KDP crystal.

  20. Comment on "Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line" [Phys. Lett. A 373 (2009) 3801-3809

    Science.gov (United States)

    Yamgoué, Serge Bruno; Pelap, François Beceau

    2016-05-01

    We revisit the derivation of the equation modeling envelope waves in a discrete nonlinear electrical transmission line (NLTL) considered a few years back in Physics Letters A 373 (2009) 3801-3809. Using a combination of rotating wave approximation and the Gardner-Morikawa transformation, we show that the modulated waves are described by a new type of extended nonlinear Schrödinger equation. In addition the expressions of several coefficients of this equation are found to be strongly different from those given earlier. As a consequence, key relationships between these coefficients that sustained the previous analysis are broken.

  1. Spin–orbit interaction effect on the linear and nonlinear properties of quantum wire in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lahon, Siddhartha [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Kumar, Manoj, E-mail: manojmalikdu@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jha, Pradip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, DDU College, University of Delhi, Delhi 110007 (India); Mohan, Man [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2013-12-15

    Here we have investigated the influence of external electric field and magnetic field on the optical absorption and refractive index changes of a parabolically confinement wire in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum wire radius, electric field, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate an increase of electric field redshifts the peak positions of absorption coefficient and refractive index changes. The role of confinement strength and spin orbit interaction strength as control parameters on the linear and nonlinear properties have been demonstrated. -- Highlights: • We study nonlinear properties in a quantum wire. • We have solved the effect of external electric and magnetic field with Rashba spin orbit interaction on linear and nonlinear properties in quantum wire. • We have used density matrix theory approach. • We find that the absorption coefficients and changes in refractive index are shifted.

  2. Soil bulk electrical resistivity and forage ground cover: nonlinear models in an alfalfa (Medicago sativa L. case study

    Directory of Open Access Journals (Sweden)

    Roberta Rossi

    2015-12-01

    Full Text Available Alfalfa is a highly productive and fertility-building forage crop; its performance, can be highly variable as influenced by within-field soil spatial variability. Characterising the relations between soil and forage- variation is important for optimal management. The aim of this work was to model the relationship between soil electrical resistivity (ER and plant productivity in an alfalfa (Medicago sativa L. field in Southern Italy. ER mapping was accomplished by a multi-depth automatic resistivity profiler. Plant productivity was assessed through normalised difference vegetation index (NDVI at 2 dates. A non-linear relationship between NDVI and deep soil ER was modelled within the framework of generalised additive models. The best model explained 70% of the total variability. Soil profiles at six locations selected along a gradient of ER showed differences related to texture (ranging from clay to sandy-clay loam, gravel content (0 to 55% and to the presence of a petrocalcic horizon. Our results prove that multi-depth ER can be used to localise permanent soil features that drive plant productivity.

  3. Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yin Hua

    2015-04-01

    Full Text Available Estimation of state of charge (SOC is of great importance for lithium-ion (Li-ion batteries used in electric vehicles. This paper presents a state of charge estimation method using nonlinear predictive filter (NPF and evaluates the proposed method on the lithium-ion batteries with different chemistries. Contrary to most conventional filters which usually assume a zero mean white Gaussian process noise, the advantage of NPF is that the process noise in NPF is treated as an unknown model error and determined as a part of the solution without any prior assumption, and it can take any statistical distribution form, which improves the estimation accuracy. In consideration of the model accuracy and computational complexity, a first-order equivalent circuit model is applied to characterize the battery behavior. The experimental test is conducted on the LiCoO2 and LiFePO4 battery cells to validate the proposed method. The results show that the NPF method is able to accurately estimate the battery SOC and has good robust performance to the different initial states for both cells. Furthermore, the comparison study between NPF and well-established extended Kalman filter for battery SOC estimation indicates that the proposed NPF method has better estimation accuracy and converges faster.

  4. A New Strategy for Accurately Predicting I-V Electrical Characteristics of PV Modules Using a Nonlinear Five-Point Model

    Directory of Open Access Journals (Sweden)

    Sakaros Bogning Dongue

    2013-01-01

    Full Text Available This paper presents the modelling of electrical I-V response of illuminated photovoltaic crystalline modules. As an alternative method to the linear five-parameter model, our strategy uses advantages of a nonlinear analytical five-point model to take into account the effects of nonlinear variations of current with respect to solar irradiance and of voltage with respect to cells temperature. We succeeded in this work to predict with great accuracy the I-V characteristics of monocrystalline shell SP75 and polycrystalline GESOLAR GE-P70 photovoltaic modules. The good comparison of our calculated results to experimental data provided by the modules manufacturers makes it possible to appreciate the contribution of taking into account the nonlinear effect of operating conditions data on I-V characteristics of photovoltaic modules.

  5. Studies on the growth, spectral, structural, electrical, optical and mechanical properties of Uronium 3-carboxy-4-hydroxybenzenesulfonate single crystal for third-order nonlinear optical applications

    Science.gov (United States)

    Silambarasan, A.; Krishna Kumar, M.; Thirunavukkarasu, A.; Md Zahid, I.; Mohan Kumar, R.; Umarani, P. R.

    2015-05-01

    Organic Uronium 3-carboxy-4-hydroxybenzenesulfonate (UCHBS) nonlinear optical single crystal was grown by solution growth technique. The solubility and nucleation studies were performed for UCHBS at different temperatures 30, 35, 40, 45, 50 and 55 °C. The crystal structure of UCHBS was elucidated from single crystal X-ray diffraction study. High resolution X-ray diffraction technique was employed to study the perfection and internal defects of UCHBS crystal. Infrared and Raman spectra were recorded to analyze the vibrational behavior of chemical bonds and its functional groups. The physico-chemical changes, stability and decomposition stages of the UCHBS compound were established by TG-DTA studies. The dielectric phenomenon of UCHBS crystal was studied at different temperatures with respect to frequency. Linear optical properties of transmittance, cut-off wavelength, band gap of UCHBS were found from UV-visible spectral studies. Third-order nonlinear optical susceptibility, nonlinear refractive index, nonlinear optical absorption coefficient values were measured by Z-scan technique. The mechanical properties of UCHBS crystal was studied by using Vicker's microhardness test. The growth features of UCHBS crystal were analyzed from etching studies.

  6. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  7. The synergistic effect between effective mass and built-in electric field for the transfer of carriers in nonlinear optical materials.

    Science.gov (United States)

    Li, Mengmeng; Dai, Ying; Ma, Xiangchao; Li, Zhujie; Huang, Baibiao

    2015-07-21

    Recent experiments have demonstrated that the typical nonlinear optical material K3B6O10Br can be an excellent photocatalyst under ultraviolet (UV) light irradiation. To understand the origin of the photocatalytic activity and further improve its photocatalytic efficiency to develop alternative photocatalysts, the built-in electric field and the electron effective mass and their synergistic effect on transfer and the separation of carriers in K3B6O10X (X = Br, Cl) were investigated by means of first-principles calculations. Our results show that the built-in electric field and the smallest effective mass of holes in K3B6O10Br are both along the [001] direction. In contrast, the effective masses of electrons are isotropic because of the spherically symmetric s orbitals at the conduction band minimum (CBM). Therefore, the electric field can promote efficient transfer and separation of the photogenerated carriers along the [001] direction. As a consequence, the synergistic effect of built-in electric field and the isotropy of the electron effective mass results in the {001} surface, to which most of the carriers will accumulate, showing the highest photocatalytic activity. Similar results can also be obtained for a K3B6O10Cl crystal considering the analogous structure with that of K3B6O10Br. The present study may provide theoretical insight to develop the photocatalytic performance of nonlinear optical materials.

  8. Spatial solitons in nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  9. Magnetic-dipole-to-electric-quadrupole cross-susceptibilities for relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates

    CERN Document Server

    Stefańska, Patrycja

    2016-01-01

    In this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities ($\\chi_{\\textrm{M}1 \\to \\textrm{E}2}$) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge $Ze$. Numerical values of this susceptibility for the hydrogen atom ($Z=1$) and for hydrogenic ions with $2 \\leqslant Z \\leqslant 137$ are computed from the general analytical formula, recently derived by us [P. Stefa{\\'n}ska, Phys. Rev. A 93 (2016) 022504], valid for an arbitrary discrete energy eigenstate. In this work we provide 30 tables with the values of $\\chi_{\\textrm{M}1 \\to \\textrm{E}2}$ for the ground state, and also for the first, the second and the third set of excited states (i.e.: 2s$_{1/2}$, 2p$_{1/2}$, 2p$_{3/2}$, 3s$_{1/2}$, 3p$_{1/2}$, 3p$_{3/2}$, 3d$_{3/2}$, 3d$_{5/2}$, 4s$_{1/2}$, 4p$_{1/2}$, 4p$_{3/2}$, 4d$_{3/2}$, 4d$_{5/2}$, 4f$_{5/2}$ and 4f$_{7/2}$) of the relativistic hydrogenlike atoms. The value of the inverse of the fine-structure constant used in the...

  10. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    Science.gov (United States)

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-09-28

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum.

  11. Effects of applied electric and magnetic fields on the nonlinear optical rectification and second-harmonic generation in a graded quantum well under intense laser field

    Science.gov (United States)

    Ungan, Fatih

    2017-01-01

    In this present study, the effects of electric and magnetic fields on the nonlinear optical rectification and second-harmonic generation in a graded quantum well under intense laser field have been investigated theoretically. The energy eigenvalues and their corresponding eigenfunctions are obtained by solving Schrödinger equation within the framework of effective mass approximation. The analytic expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. The numerical results are presented for a typical GaAs/Ga1- x Al x As quantum well. The results show that the nonlinear optical rectification and second-harmonic generation coefficients are considerably affected by the electromagnetic fields and intense laser field.

  12. Topological nature of nonlinear optical effects in solids.

    Science.gov (United States)

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-05-01

    There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.

  13. Continuum limit of susceptibility from strong coupling expansion: Two dimensional non-linear O(N) sigma model at N>= 3

    CERN Document Server

    Yamada, Hirofumi

    2012-01-01

    Based on the strong coupling expansion, we reinvestigate the scaling behavior of the susceptibility chi of two-dimensional O(N) sigma model on the square lattice by the use of Pade-Borel approximants. To exploit the Borel transform, we express the bare coupling g in series expansion in chi. At large N, Pade-Borel approximants exhibit the scaling behavior at the four-loop level. Then, the estimation of the non-perturbative constant associated with the susceptibility is performed for N>=3 and the results are compared with the available theoretical results and Monte Carlo data.

  14. Negative longitudinal electrostriction in polycrystalline ferroelectrics: a nonlinear approach

    Energy Technology Data Exchange (ETDEWEB)

    Turik, A V [Department of Physics, Rostov State University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Yesis, A A [Institute of Physics, Rostov State University, Stachki 194, 344090 Rostov-on-Don (Russian Federation); Reznitchenko, L A [Institute of Physics, Rostov State University, Stachki 194, 344090 Rostov-on-Don (Russian Federation)

    2006-05-24

    The longitudinal strains {xi}{sub 3} of initially unpoled polycrystalline (ceramic) ferroelectrics having different composition were measured as a function of the electric field strength E. The electric field dependences of the longitudinal piezoelectric coefficients d{sub 33}(E) and longitudinal electrostriction coefficients M{sub 33}(E) were calculated from the virgin {xi}{sub 3}(E) curves and analysed. It was shown that taking into account the polarization nonlinearity (that is, the dependence of dielectric susceptibility on E) leads to nonmonotonic field dependences d{sub 33}(E) and M{sub 33}(E). In a nonlinear system, the electrostrictive effect is due not only to polarization but also to the dependence of dielectric susceptibility on the electric field strength. The large magnitude of the dielectric susceptibility of soft and relaxor ferroelectric ceramics is responsible for the giant electrostriction being positive in low electric fields and negative in strong ones. The possibility of giant negative electrostriction existing has been found for the first time. In strong electric fields, the strain gain has a limitation because of the competition between the positive contribution of the piezoelectric effect and the negative contribution of electrostriction to the strain.

  15. Nonlocal homogenization for nonlinear metamaterials

    CERN Document Server

    Gorlach, Maxim A; Lapine, Mikhail; Kivshar, Yuri S; Belov, Pavel A

    2016-01-01

    We present a consistent theoretical approach for calculating effective nonlinear susceptibilities of metamaterials taking into account both frequency and spatial dispersion. Employing the discrete dipole model, we demonstrate that effects of spatial dispersion become especially pronounced in the vicinity of effective permittivity resonance where nonlinear susceptibilities reach their maxima. In that case spatial dispersion may enable simultaneous generation of two harmonic signals with the same frequency and polarization but different wave vectors. We also prove that the derived expressions for nonlinear susceptibilities transform into the known form when spatial dispersion effects are negligible. In addition to revealing new physical phenomena, our results provide useful theoretical tools for analysing resonant nonlinear metamaterials.

  16. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  17. Intrinsic nonlinear response of surface plasmon polaritons

    CERN Document Server

    Im, Song-Jin; Kim, Gum-Hyok

    2015-01-01

    We offer a model to describe the intrinsic nonlinear response of surface plasmon polaritons (SPPs). Relation of the complex nonlinear coefficient of SPPs to the third-order nonlinear susceptibility of the metal is provided. As reported in a recent study, gold is highly lossy and simultaneously highly nonlinear due to interband absorption and interband thermo-modulation at a wavelength shorter than 700 nm. The effect of the high loss of the metal on the SPP nonlinear propagation is taken into account in our model. With the model we show difference in sign of real and imaginary parts between the nonlinear propagation coefficient and the nonlinear susceptibility of component material for the first time to our knowledge. Our model could have practical importance in studying plasmonic devices utilizing the nonlinear phase modulation and the nonlinear absorption of SPPs. For example, it allows one to extract the complex nonlinear susceptibility of gold through a measurement of SPP nonlinear propagation at the visib...

  18. Analysis of the reactive power consumption and the harmonics in the network by the non-linear electrical loads

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The non linear electrical loads can give rise to a number of disturbances in electrical power networks. Among them, the high consumption of relative power is to be noted and so is the several harmonic components which may be injected in the industry system and very often in the utility system. So, by using appropriate technical considerations, as well as measurements in typical special electrical loads, such negative effects are analyzed and ways of minimizing them are suggested. (author) 3 refs., 11 figs., 6 tabs.

  19. Dependence of third-order nonlinear susceptibility on strain induced piezoelectric field in InxGa1-xN/GaN quantum well

    Institute of Scientific and Technical Information of China (English)

    Yaochen Bai(白瑶晨); Jingliang Liu(刘景良); Duanzheng Yao(姚端正)

    2004-01-01

    The third-order susceptibility of InxGa1-xN/GaN quantum well (QW) has been investigated by taking into account the strain-induced piezoelectric (PZ) field, and the effective-mass SchrSdinger equation is solved numerically. It is shovn that the third-order susceptibility for third harmonic generation (THG)of InxGa1-x,N/GaN QW is related to indium content in QW and the intensity of the PZ field. The characteristics ofX(3)THG(-3ω,(3) ω, ω,ω) as the function of the wavelength of incident beam, well width and indium content, have been analyzed.

  20. Numerical studies of the nonlinear properties of composites

    Science.gov (United States)

    Zhang, X.; Stroud, D.

    1994-01-01

    Using both numerical and analytical techniques, we investigate various ways to enhance the cubic nonlinear susceptibility χe of a composite material. We start from the exact relation χe =tsumipiχii,lin/ E40, where χi and pi are the cubic nonlinear susceptibility and volume fraction of the ith component, E0 is the applied electric field, and i,lin is the expectation value of the electric field in the ith component, calculated in the linear limit where χi=0. In our numerical work, we represent the composite by a random resistor or impedance network, calculating the electric-field distributions by a generalized transfer-matrix algorithm. Under certain conditions, we find that χe is greatly enhanced near the percolation threshold. We also find a large enhancement for a linear fractal in a nonlinear host. In a random Drude metal-insulator composite χe is hugely enhanced especially near frequencies which correspond to the surface-plasmon resonance spectrum of the composite. At zero frequency, the random composite results are reasonably well described by a nonlinear effective-medium approximation. The finite-frequency enhancement shows very strong reproducible structure which is nearly undetectable in the linear response of the composite, and which may possibly be described by a generalized nonlinear effective-medium approximation. The fractal results agree qualitatively with a nonlinear differential effective-medium approximation. Finally, we consider a suspension of coated spheres embedded in a host. If the coating is nonlinear, we show that χe/χcoat>>1 near the surface-plasmon resonance frequency of the core particle.

  1. Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Restrepo, R.L. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Ungan, F.; Yesilgul, U.; Sari, H. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-03-15

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two lower-lying electronic levels in the step-like GaAs/Ga{sub 1−x}Al{sub x}As quantum well under external electric and magnetic fields are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass and parabolic band approximations. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the well dimensions and the effects of external fields. By changing the intensities of the electric, magnetic and non-resonant intense laser fields together with the well dimensions, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • Augmentation of laser-field results in red shift in total AC spectra. • Magnetic field induces a blue-shift in the resonant peak. • Resonant peak position shifts to red with effect of electric field. • Resonant peak of total AC shifts to the higher photon energies with increasing well width.

  2. Propagation of electric field of the few-cycle femtosecond pulse in nonlinear Kerr medium%周期量级飞秒脉冲电场在非线性克尔介质中的传输∗

    Institute of Scientific and Technical Information of China (English)

    刘丹; 洪伟毅; 郭旗

    2016-01-01

    In this paper, the propagation of a few-cycle femtosecond pulse in a nonlinear Kerr medium is studied by the method of time-transformation. The time-transformation approach can greatly improve the computational efficiency. Because the width of electric field of the few-cycle femtosecond pulse is less than the characteristic time of Raman response in a nonlinear medium, it is observed that the electric field of the pulse experiences a significant deformation and breaks into a Raman soliton and the dispersion waves during the propagation, which can be attributed to strongly nonlocal nonlinearity. A deeper investigation of the time-frequency distributions for both the Raman soliton and the dispersion waves is also included. Since the pulse contains only few cycles, the carrier-envelope phase (CEP) of the pulse plays an important role in the process of nonlinear propagation. The numerical results show the CEP-dependence in the process of nonlinear propagation: the phase changes for both the Raman soliton and the dispersive waves are just equal to the CEP change of the initial pulse, which indicates that the CEP of the pulse is linearly transmitted in the process of nonlinear propagation. This phenomenon can be attributed to the fact that the phase change due to the nonlinearity is only dependent on the intensities of the fields of both the Raman soliton and the dispersion wave, which are unchanged for all the CEPs.

  3. Single-station seismic noise measures, microgravity, and 3D electrical tomographies to assess the sinkhole susceptibility: the "Il Piano" area (Elba Island - Italy) case study

    Science.gov (United States)

    Pazzi, Veronica; Di Filippo, Michele; Di Nezza, Maria; Carlà, Tommaso; Bardi, Federica; Marini, Federico; Fontanelli, Katia; Intrieri, Emanuele; Fanti, Riccardo

    2017-04-01

    Sudden subsurface collapse, cavities, and surface depressions, regardless of shape and origin, as well as doline are currently indicate by means of the term "sinkhole". This phenomenon can be classified according to a large variety of different schemes, depending on the dominant formation processes (soluble rocks karstic processes, acidic groundwater circulation, anthropogenic caves, bedrock poor geomechanical properties), and on the geological scenario behind the development of the phenomenon. Considering that generally sinkholes are densely clustered in "sinkhole prone areas", detection, forecasting, early warning, and effective monitoring are key aspects in sinkhole susceptibility assessment and risk mitigation. Nevertheless, techniques developed specifically for sinkhole detection, forecasting and monitoring are missing, probably because of a general lack of sinkhole risk awareness, and an intrinsic difficulties involved in detecting precursory sinkhole deformations before collapse. In this framework, integration of different indirect/non-invasive geophysical methods is the best practice approach. In this paper we present the results of an integrated geophysical survey at "Il Piano" (Elba Island - Italy), where at least nine sinkholes occurred between 2008 and 2014. 120 single-station seismic noise measures, 17 3D electrical tomographies (min area 140.3 m2, max area 10,188.9 m2; min electrode spacing 2 m, max electrode spacing 5 m), 964 measurement of microgravity spaced in a grid of 6 m to 8 m were carried out at the study area. The most likely origin for these sinkholes was considered related to sediment net erosion from the alluvium, caused by downward water circulation between aquifers. Therefore, the goals of the study were: i) obtaining a suitable geological and hydrogeological model of the area; ii) detecting possible cavities which could evolve in sinkholes, and finally iii) assess the sinkhole susceptibility of the area. Among the results of the

  4. Gamma-ray spectrometry, electrical resistivity, and magnetic susceptibility of agricultural soils in the Northwest region of the Parana State, Brazil; Gamaespectrometria, resistividade eletrica e susceptibilidade magnetica de solos agricolas no noroeste do estado do Parana

    Energy Technology Data Exchange (ETDEWEB)

    Becegato, Valter Antonio [Universidade do Estado de Santa Catarina-UDESC, Centro de Ciencias Agroveterinarias, Lages, SC (Brazil); Ferreira, Francisco Jose Fonseca, E-mail: becegato@cav.udesc.br, E-mail: francisco.ferreira@ufpr.br [Universidade Federal do Parana (LPGA/UFPR), Curitiba, PR (Brazil). Dept. de Geologia. Lab. de Pesquisas em Geofisica Aplicada

    2005-10-15

    Gamma-ray spectrometry, electrical resistivity, and magnetic susceptibility measurements were taken from agricultural areas near the City of Maringa, in the Northwest region of the Parana state, south Brazil, in order to characterize the spatial distribution of radionuclides (K, eU, and eTh), the apparent resistivity, and the magnetic susceptibility determined for soils. Three different types of soils are present in this agricultural area: Alfisoil, clayey texture Oxisoil, both deriving from Lower Cretaceous basalts of the Serra Geral Formation; and medium texture Oxisoil from reworked Serra Geral and Goio-Ere formations, the latter deriving from sandstones of the Upper Cretaceous Caiua Group. It could be observed that in more clayey soils both concentration of radionuclides and susceptibility values are higher than in more sandy soils, especially due to the higher adsorption in the former and to the higher availability of magnetic minerals in the latter. The average ppm and Bq Kg{sup -1} grades for K, eU, and eTh in the areas under anthropic activity are of 1766-54.75, 0.83-10.22, and 1.78-7.27, respectively. These grades are significantly higher than those of non-occupied or non-fertilized areas (1101-34.15 K, 0.14-1.69 eU, and 1.31-5.36 eTh in ppm and Bq Kg-1, respectively.) Correlations were observed between uranium and clay, uranium and magnetic susceptibility, uranium and organic matter, and between electric resistivity and clay grades. Varied concentrations of radionuclides were also observed in different fertilizer formulations applied to soy and wheat cultures. Apparent electric resistivity values between 25 and 647 Ohm.m and magnetic susceptibility values between 0.28 e 1.10 x 10-3 SI due to clay and magnetic minerals represented important soil discrimination factors in the study area that can be incorporated as easy, low-cost soil mapping tools. (author)

  5. Nonlinear optical rectification and second-harmonic generation in a semi-parabolic quantum well under intense laser field: Effects of electric and magnetic fields

    Science.gov (United States)

    Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Kasapoglu, E.; Duque, C. A.

    2015-05-01

    The effects of electric and magnetic fields on the nonlinear optical rectification and second harmonic generation coefficients related with intersubband transitions in a semi-parabolic quantum well under intense laser field are theoretically studied. The energy levels and corresponding wave functions are obtained by solving the conduction band Schrödinger-like equation in the parabolic approximation and the envelope function approach. Numerical calculations are presented for a typical GaAs/Ga1-xAlxAs quantum well. The results show that both the non-resonant intense laser field and the static external fields have significant influences on the magnitude and resonant peak energy positions of the coefficients under study.

  6. Considerations on 'Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring'

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A., E-mail: a.belendez@ua.e [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)] [Instituto Universitario de Fisica Aplicada a las Ciencias y las Tecnologias, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, J.J. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fuentes, R.; Pascual, I. [Instituto Universitario de Fisica Aplicada a las Ciencias y las Tecnologias, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)] [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2009-11-09

    In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.

  7. Estimation of Joule heating and its role in nonlinear electrical response of Tb0.5Sr0.5MnO3 single crystal

    Science.gov (United States)

    Nhalil, Hariharan; Elizabeth, Suja

    2016-12-01

    Highly non-linear I-V characteristics and apparent colossal electro-resistance were observed in non-charge ordered manganite Tb0.5Sr0.5MnO3 single crystal in low temperature transport measurements. Significant changes were noticed in top surface temperature of the sample as compared to its base while passing current at low temperature. By analyzing these variations, we realize that the change in surface temperature (ΔTsur) is too small to have caused by the strong negative differential resistance. A more accurate estimation of change in the sample temperature was made by back-calculating the sample temperature from the temperature variation of resistance (R-T) data (ΔTcal), which was found to be higher than ΔTsur. This result indicates that there are large thermal gradients across the sample. The experimentally derived ΔTcal is validated with the help of a simple theoretical model and estimation of Joule heating. Pulse measurements realize substantial reduction in Joule heating. With decrease in sample thickness, Joule heating effect is found to be reduced. Our studies reveal that Joule heating plays a major role in the nonlinear electrical response of Tb0.5Sr0.5MnO3. By careful management of the duty cycle and pulse current I-V measurements, Joule heating can be mitigated to a large extent.

  8. Synthesis, growth, and structural, optical, mechanical, electrical properties of a new inorganic nonlinear optical crystal: Sodium manganese tetrachloride (SMTC

    Directory of Open Access Journals (Sweden)

    M. Packiya raj

    2017-01-01

    Full Text Available A new inorganic nonlinear optical single crystal of sodium manganese tetrachloride (SMTC has been successfully grown from aqueous solution using the slow evaporation technique at room temperature. The crystals obtained using the aforementioned method were characterized using different techniques. The crystalline nature of the as-grown crystal of SMTC was analyzed using powder X-ray diffraction. Single-crystal X-ray diffraction revealed that the crystal belongs to an orthorhombic system with non-centrosymmetric space group Pbam. The optical transmission study of the SMTC crystal revealed high transmittance in the entire UV–vis region, and the lower cut-off wavelength was determined to be 240 nm. The mechanical strength of the as-grown crystal was estimated using the Vickers microhardness test. The second harmonic generation (SHG efficiency of the crystal was measured using Kurtz's powder technique, which indicated that the crystal has a nonlinear optical (NLO efficiency that is 1.32 times greater than that of KDP. The dielectric constant and dielectric loss of the compound were measured at different temperatures with varying frequencies. The photoconductivity study confirmed that the title compound possesses a negative photoconducting nature. The growth mechanism and surface features of the as-grown crystals were investigated using chemical etching analysis.

  9. Size-, electric-field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters

    Science.gov (United States)

    Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng

    2016-06-01

    We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light.

  10. Size-, electric-field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters.

    Science.gov (United States)

    Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng

    2016-06-16

    We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light.

  11. Size-, electric-field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters

    Science.gov (United States)

    Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng

    2016-01-01

    We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light. PMID:27305957

  12. Iodine release and recovery, influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal-organic framework.

    Science.gov (United States)

    Yin, Zheng; Wang, Qiang-Xin; Zeng, Ming-Hua

    2012-03-14

    {[Cu6(pybz)8(OH)2]·I5(–)·I7(–)}n (1), obtained hydrothermally by using iodine molecules as a versatile precursor template, consists of a cationic framework with two types of zigzag channels, which segregate I5(–) and I7(–) anions. The framework exhibits the first observed bipillared-bilayer structure featuring both interdigitation and interpenetration. 1 displays high framework stability in both acidic (HCl) and alkaline (NaOH) solutions. 1 slowly releases iodine in dry methanol to give [Cu6(pybz)8(OH)2](I–)2·3.5CH3OH (1′) and partially recovers iodine from cyclohexane to form [Cu6(pybz)8(OH)2](I–)2·xI2 (1″). Differences of up to 100 times in electrical conductivity and of 4 times in nonlinear optical activity (NLO) have been measured between 1 and 1′. This compound is one of few displaying multifunctionality, electrical conductivity, NLO, and crystal–crystal stability upon release and recovery of iodine. It is also unique in the iodine release from polyiodide anions in a metal–organic framework.

  13. Nonlinear and Nonparametric Stochastic Model to Represent Uncertainty of Renewable Generation in Operation and Expansion Planning Studies of Electrical Energy Systems

    Science.gov (United States)

    Martins, T. M.; Alberto, J.

    2015-12-01

    The uncertainties of wind and solar generation patterns tends to be a critical factor in operation and expansion planning studies of electrical energy systems, as these generations are highly dependent on atmospheric variables which are difficult to predict. Traditionally, the uncertainty of renewable generation has been represented through scenarios generated by autoregressive parametric models (ARMA, PAR(p), SARIMA, etc.), that have been widely used for simulating the uncertainty of inflows and electrical demand. These methods have 3 disadvantages: (i) it is assumed that the random variables can be modelled through a known probability distribution, usually Weibull, log-normal, or normal, which are not always adequate; (ii) the temporal and spatial coupling of the represented variables are generally constructed from the Pearson Correlation, strictly requiring the hypothesis of data normality, that in the case of wind and solar generation is not met; (iii) there is an exponential increase in the model complexity due to its dimensionality. This work proposes the use of a stochastic model built from the combination of a non-parametric approach of a probability density function (the kernel density estimation method) with a dynamic Bayesian network framework. The kernel density estimation method is used to obtain the probability density function of the random variables directly from historical records, eliminating the need of choosing prior distributions. The Bayesian network allows the representation of nonlinearities in the temporal coupling of the time series, since they allow reproducing a compact probability distribution of a variable, subject to preceding stages. The proposed model was used to the generate wind power scenarios in long-term operation studies of the Brazilian Electric System, in which inflows of major rivers were also represented. The results show a considerable quality gain when compared to scenarios generated by traditional approaches.

  14. Nonlinear optical and magneto-optical effects in non-spherical magnetic granular composite

    Institute of Scientific and Technical Information of China (English)

    Ping Xu(须萍); Zhenya Li(李振亚)

    2004-01-01

    The magnetization-induced nonlinear optical and nonlinear magneto-optical properties in a magnetic metal-insulator composite are studied based on a tensor effective medium approximation with shape factor and Taylcr-expansion method. There is a weakly nonlinear relation between electric displacement D and elcctric field E in the composite. The results of our studies on the effective dielectric tensor and the nonlinear susceptibility tensor in a magnetic nanocomposite are surveyed. It is shown that such a metal-insulator composite exhibits the enhancements of optical and magneto-optical nonlinearity. The frequencies at which the enhancements occur, and the amplitude of the enhancement factors depend on the concentration and shape of the magnetic grains.

  15. Superparamagnetic state by linear and non-linear AC magnetic susceptibility in Mn0.5Zn0.5Fe2O4 ferrites nanoparticles.

    Science.gov (United States)

    Suneetha, T; Kundu, S; Kashyap, Subhash C; Gupta, H C; Nath, T K

    2013-01-01

    The Mn0.5Zn0.5Fe2O4 nanoparticles has been synthesized using citrate-gel-precursor method. The direct mixing of nitrates and acetates yields homogeneous nanoparticles. Phase formation and crystal structure of the synthesized powder were examined through the X-ray diffraction (XRD). Fourier transform infrared (FTIR) spectra of the sample confirm the spinel structure. The average particle size was determined by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The average particle size is found to be about 13 nm. Superparamagnetic-like nature of the nanoparticles of Mn0.5Zn0.5Fe2O4 has been revealed through various dc and linear and non-linear ac magnetization measurements. However, the nanoparticles do not behave like ideal non-interacting superparamagnets. The magnetic particle size is found to be about 8 nm with saturation magnetization about 18.1 emu/g. The blocking temperature (T(B)) of the nanoparticle assembly is found to be about 150 K as observed from dc and ac magnetization measurements. The frequency dependence of the blocking temperature (T(B)) is found to follow Vogel-Fulcher law. The associated characteristic time tau0 is found to be 10(-5) s. This value is different from that generally found for non-interacting superparamagnetic (SPM) systems (tau0 = 10(-9)-10(-10) s).

  16. Characterization of nonOhmic electrical transport in double perovskite compounds through bias scale and nonlinearity exponent

    Science.gov (United States)

    Chakraborty, D.; Nandi, U. N.; Jana, D.; Dasgupta, P.; Poddar, A.

    2017-01-01

    Scaling analysis of nonOhmic electrical transport in double perovskite (DP) compounds like La2NiMnO6 and Sr2Fe0.3Mn0.7MoO6 is presented over a wide range of electric bias and temperatures. It is shown that the voltage V0(T) at which conductance deviates from its Ohmic value Σ0(T) scales with Σ0(T) as V0(T) ∼Σ0(T) xT , xT being the onset exponent characterizing the onset of nonOhmic conduction. Interestingly, it was found that xT is negative and insensitive to the nature of conduction mechanism in DPs but is related to the characteristic temperature T0 and the mean hopping length Hm. We provide a scaling formalism in terms of the parameters V0(T) and xT in DPs for deeper understanding of the spintronic application and the electrode functioning in solid oxide fuel cells (SOFC). Inelastic multi-step tunneling is found to be the suitable mechanism of electronic transport characterized completely by these two parameters.

  17. Non-linear behaviour of electrical parameters in porous, water-saturated rocks: a model to predict pore size distribution

    Science.gov (United States)

    Hallbauer-Zadorozhnaya, Valeriya; Santarato, Giovanni; Abu Zeid, Nasser

    2015-08-01

    In this paper, two separate but related goals are tackled. The first one is to demonstrate that in some saturated rock textures the non-linear behaviour of induced polarization (IP) and the violation of Ohm's law not only are real phenomena, but they can also be satisfactorily predicted by a suitable physical-mathematical model, which is our second goal. This model is based on Fick's second law. As the model links the specific dependence of resistivity and chargeability of a laboratory sample to the injected current and this in turn to its pore size distribution, it is able to predict pore size distribution from laboratory measurements, in good agreement with mercury injection capillary pressure test results. This fact opens up the possibility for hydrogeophysical applications on a macro scale. Mathematical modelling shows that the chargeability acquired in the field under normal conditions, that is at low current, will always be very small and approximately proportional to the applied current. A suitable field test site for demonstrating the possible reliance of both resistivity and chargeability on current was selected and a specific measuring strategy was established. Two data sets were acquired using different injected current strengths, while keeping the charging time constant. Observed variations of resistivity and chargeability are in agreement with those predicted by the mathematical model. These field test data should however be considered preliminary. If confirmed by further evidence, these facts may lead to changing the procedure of acquiring field measurements in future, and perhaps may encourage the design and building of a new specific geo-resistivity meter. This paper also shows that the well-known Marshall and Madden's equations based on Fick's law cannot be solved without specific boundary conditions.

  18. Testing of Uninterruptible Power Supplies with nonlinear loads

    Science.gov (United States)

    Heydt, Gerald; Briggs, Steve; Holcomb, Franklin; Edgar, Daiva

    1994-09-01

    Uninterruptible power supplies (UPS's) are used to provide power to sensitive and critical loads when the commercial supply has been interrupted. These loads may be nonlinear, which in the military often includes communications equipment, adjustable speed drives, fluorescent lighting, and mainframe and small computers. Most electrical characteristics of UPS's are not currently subject to codes and standards, and there are no military specifications for UPS's. Existing standards assume that UPS's will be operated with linear loads. Since most UPS systems are operated with nonlinear loads, there is concern that UPSs will suffer degraded performance or failure when operated with these loads. This work developed a test methodology by which UPS systems can be tested and their susceptibility to nonlinear loads quantified. The tests measure load transfer, efficiency, heating, load support, voltage regulation, and isolation. Several commercially available UPS systems are recommended for testing.

  19. Electric-field-induced second harmonic generation in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Lafrentz, Marco; Brunne, David; Kaminski, Benjamin; Bayer, Manfred [Experimentelle Physik 2, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Yakovlev, Dmitri R. [Experimentelle Physik 2, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Pavlov, Victor V.; Pisarev, Roman V. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2011-07-01

    We report on electric-field-induced second-harmonic generation (SHG) in the GaAs semiconductor in the vicinity of the band gap. The light has been send along 001-crystallographic direction. In this geometry SHG is forbidden in electric-dipole approximation. In applied electric field the SHG signal arises due to field-induced symmetry breaking causing new optical nonlinearities. Electric-field and temperature investigations assign the strong signal at E(2{omega})=1.517 eV for T=2 K to excitonic resonance. This phenomenon is a supplementary tool for detailed investigation of complex susceptibilities we have reported on in the past.

  20. The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga{sub 1−x}Al{sub x}As/GaAs quantum dot under applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autóonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-10-01

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change (the linear and third-order nonlinear) for transitions between different intersubbands in the Ga{sub 1−x}Al{sub x}As/GaAs cylindrical quantum dot under external electric field are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass approximation. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the electric and intense laser fields. By changing the intensities of the electric and laser fields, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • The effects of the non-resonant intense laser field and electric field on the nonlinear optical properties of cylindrical quantum dot are investigated. • The both total absorption coefficient and refractive index change are sensitive to dot dimensions and the effects of external fields. • By changing the external fields together with dot dimensions a blue or red shift can be obtained.

  1. Decentralized adaptive robust control based on sliding mode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of agonist-antagonist muscles

    Science.gov (United States)

    Kobravi, Hamid-Reza; Erfanian, Abbas

    2009-08-01

    A decentralized control methodology is designed for the control of ankle dorsiflexion and plantarflexion in paraplegic subjects with electrical stimulation of tibialis anterior and calf muscles. Each muscle joint is considered as a subsystem and individual controllers are designed for each subsystem. Each controller operates solely on its associated subsystem, with no exchange of information between the subsystems. The interactions between the subsystems are taken as external disturbances for each isolated subsystem. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed which is based on the synergistic combination of an adaptive nonlinear compensator with a sliding mode control and is referred to as an adaptive robust control. Extensive simulations and experiments on healthy and paraplegic subjects were performed to demonstrate the robustness against the time-varying properties of muscle-joint dynamics, day-to-day variations, subject-to-subject variations, fast convergence, stability and tracking accuracy of the proposed method. The results indicate that the decentralized robust control provides excellent tracking control for different reference trajectories and can generate control signals to compensate the muscle fatigue and reject the external disturbance. Moreover, the controller is able to automatically regulate the interaction between agonist and antagonist muscles under different conditions of operating without any preprogrammed antagonist activities.

  2. Influence of crossed electric and quantizing magnetic fields on the Einstein relation in nonlinear optical, optoelectronic and related materials: Simplified theory, relative comparison and suggestion for experimental determination

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, S. [Administration Department, Jadavpur University, Kolkata 700 032 (India); Bhattacharya, S. [Nano Scale Device Research Laboratory, Centre for Electronics Design and Technology, Indian Institute of Science, Bangalore 560 012 (India); De, D. [Department of Computer Science and Engineering, West Bengal University of Technology, BF 142, Sector I, Kolkata 700 064, West Bengal (India); Adhikari, S.M.; Niyogi, A. [Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 70009 (India); Dey, A. [Department of Electronics, Kalyani Government of Engineering College, Kalyani, Nadia (India); Paitya, N. [Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 70009 (India); Saha, S.C. [Department of Electronics, Mallabhum Institute of Technology, Brajaradhanagar, Gosanipur, Bankura (India); Ghatak, K.P., E-mail: kamakhyaghatak@yahoo.co.i [Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 70009 (India); Bose, P.K. [National Institute of Technology, Agartala, Jirania, Tripura (West) 799055 (India)

    2010-09-15

    An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs{sub 2}, n-Hg{sub 1-x}Cd{sub x}Te, n-In{sub 1-x}Ga{sub x}As{sub y}P{sub 1-y} lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested.

  3. The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code

    Science.gov (United States)

    Kirtman, Bernard; Springborg, Michael; Rérat, Michel; Ferrero, Mauro; Lacivita, Valentina; Orlando, Roberto; Dovesi, Roberto

    2015-01-01

    An implementation of the vector potential approach (VPA) for treating the response of infinite periodic systems to static and dynamic electric fields has been initiated within the CRYSTAL code. The VPA method is based on the solution of a time-dependent Hartree-Fock or Kohn-Sham equation for the crystal orbitals wherein the usual scalar potential, that describes interaction with the field, is replaced by the vector potential. This equation may be solved either by perturbation theory or by finite field methods. With some modification all the computational procedures of molecular ab initio quantum chemistry can be adapted for periodic systems. Accessible properties include the linear and nonlinear responses of both the nuclei and the electrons. The programming of static field pure electronic (hyper)polarizabilities has been successfully tested. Dynamic electronic (hyper)polarizabilities, as well as infrared and Raman intensities, are in progress while the addition of finite fields for calculation of vibrational (hyper)polarizabilities, through nuclear relaxation procedures, will begin shortly.

  4. Specific heat, differential susceptibility and electrical resistivity of PrX2 (X = Ir, Pt, Rh and Ru) laves phase compounds at temperatures 1.4 K < T < 40 K

    Science.gov (United States)

    van Dongen, J. C. M.; van der Linden, H. W. M.; Greidanus, F. J. A. M.; Nieuwenhuys, G. J.; Mydosh, J. A.; Buschow, K. H. J.

    1980-01-01

    Specific heat and differential susceptibility data of PrX 2 (X = Ir, Pt, Rh, and Ru) compounds reveal phase transitions at Tc = (11.2 ± 0.5) K, (7.7 ± 0.5) K, (7.9 ± 0.5) K and (33.9 ± 0.5) K for X = Ir, Pt, RhandRu, resp. The electrical resistivity drops markedly below Tc, and the dϱ/d T versus T curve is similar to that of the specific heat.

  5. Nonlinear optical properties of ultrathin metal layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg

    2016-01-01

    . The optical characterization of the plasmonic waveguides is performed using femtosecond and picosecond optical pulses. Two nonlinear optical effects in the strip plasmonic waveguides are experimentally observed and reported. The first effect is the nonlinear power transmission of the plasmonic mode......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...... duration dependence of the third-order nonlinear susceptibility of gold is calculated in the broad range from tens of femtoseconds to tens of picoseconds using the two-temperature model of the free-electron temporal dynamics of gold, and shows the saturation of the thirdorder nonlinear susceptibility...

  6. Electric field dependence of nonlinearity parameters and third order elastic constants of 0.70Pb(Mg(13)Nb(23))O(3)-0.30PbTiO(3) single crystal.

    Science.gov (United States)

    Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R; Cao, Wenwu

    2010-02-01

    Through second harmonic measurements, the ultrasonic nonlinearity parameters of [001](c) and [111](c) polarized 0.70Pb(Mg(13)Nb(23))O(3)-0.30PbTiO(3)(PMN-0.3PT) single crystals have been measured as a function of bias electric field. It was found that the nonlinearity parameter increases almost linearly with field at low field but shows a drastic increase near the coercive field. The [111](c) polarized single domain crystal has much smaller nonlinearity parameter than that of the [001](c) polarized multidomain crystal. Based on effective symmetries of these crystals, we were able to derive the field dependence of several third order elastic constants, which are important parameters for high field applications.

  7. Electric field dependence of nonlinearity parameters and third order elastic constants of 0.70Pb(Mg1∕3Nb2∕3)O3–0.30PbTiO3 single crystal

    Science.gov (United States)

    Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R.; Cao, Wenwu

    2010-01-01

    Through second harmonic measurements, the ultrasonic nonlinearity parameters of [001]c and [111]c polarized 0.70Pb(Mg1∕3Nb2∕3)O3–0.30PbTiO3(PMN–0.3PT) single crystals have been measured as a function of bias electric field. It was found that the nonlinearity parameter increases almost linearly with field at low field but shows a drastic increase near the coercive field. The [111]c polarized single domain crystal has much smaller nonlinearity parameter than that of the [001]c polarized multidomain crystal. Based on effective symmetries of these crystals, we were able to derive the field dependence of several third order elastic constants, which are important parameters for high field applications. PMID:20198132

  8. Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene.

    Science.gov (United States)

    Wu, Sanfeng; Mao, Li; Jones, Aaron M; Yao, Wang; Zhang, Chuanwei; Xu, Xiaodong

    2012-04-11

    Second order optical nonlinear processes involve the coherent mixing of two electromagnetic waves to generate a new optical frequency, which plays a central role in a variety of applications, such as ultrafast laser systems, rectifiers, modulators, and optical imaging. However, progress is limited in the mid-infrared (MIR) region due to the lack of suitable nonlinear materials. It is desirable to develop a robust system with a strong, electrically tunable second order optical nonlinearity. Here, we demonstrate theoretically that AB-stacked bilayer graphene (BLG) can exhibit a giant and tunable second order nonlinear susceptibility χ((2)) once an in-plane electric field is applied. χ((2)) can be electrically tuned from 0 to ~10(5) pm/V, 3 orders of magnitude larger than the widely used nonlinear crystal AgGaSe(2). We show that the unusually large χ((2)) arise from two different quantum enhanced two-photon processes thanks to the unique electronic spectrum of BLG. The tunable electronic bandgap of BLG adds additional tunability on the resonance of χ((2)), which corresponds to a tunable wavelength ranging from ~2.6 to ~3.1 μm for the up-converted photon. Combined with the high electron mobility and optical transparency of the atomically thin BLG, our scheme suggests a new regime of nonlinear photonics based on BLG. © 2012 American Chemical Society

  9. Off-Resonant Third-Order Optical Nonlinearity of an Ag:TiO2 Composite Film

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-Feng; YOU Guan-Jun; DONG Zhi-Wei; LIU Ye; MA Guo-Hong; QIAN Shi-Xiong

    2005-01-01

    @@ Using the femtosecond time-resolved optical Kerr effect technique, we investigate the off-resonant nonlinear optical response of an Ag:TiO2 composite film prepared by a vacuum magnetron sputtering method. The third-order nonlinear optical susceptibility of the composite film with silver nanoparticle size of about 30 nm is estimated to be 1.9×10-10 esu at the incident laser wavelength of 800nm. When the photon energy of the incident beam is lower than that for surface plasmon or the interband transition of silver nanoparticles, the observed third-order optical nonlinearity is attributed to the intraband transition of the free electrons. Based on the linear limit of the electric field within micro-spherical model, we assign this large optical nonlinearity to the local field enhancement of the third-order nonlinearity.

  10. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families...

  11. Non-linear Electrical Characteristics of ZnO Modified by Trioxides Sb2O3, Bi2O3, Fe2O3, Al2O3 and La2O3

    Science.gov (United States)

    Mekap, Anita; Das, Piyush R.; Choudhary, R. N. P.

    2016-08-01

    The non-linear behavior of polycrystalline-ZnO-based voltage-dependent resistors is considered in the present study. A high-temperature solid-state reaction route was used to synthesize polycrystalline samples of ZnO modified by small amounts of the trioxides Sb2O3, Bi2O3, Fe2O3, etc. in various proportions. X-ray diffraction and scanning electron microscopy techniques were used to study the structural and microstructural characteristics of modified ZnO. Detailed studies of non-linear phenomena of the I-V characteristics, dielectric permittivity ( ɛ r), impedance ( Z), etc. of the samples have provided many interesting results. All the samples exhibited dielectric anomaly. Non-linear variation in polarization with electric field for all the samples was observed. Moreover, significant non-linearity in the I-V characteristics was observed in the breakdown region of all the samples at room temperature. The non-linear coefficient ( α) in different cases, i.e. for I- V, ɛ r- f, ɛ r- T, and ɛ r- Z, was calculated and found to be appreciable. The frequency dependence of ac conductivity suggests that the material obeys Jonscher's universal power law.

  12. Nonlinear susceptibilities of finite conjugated organic polymers

    Science.gov (United States)

    Beratan, David N.; Onuchic, Jose Nelson; Perry, Joseph W.

    1987-01-01

    Tight-binding calculations of the length dependence of the third-order molecular hyperpolarizability for polyenes and polyynes are reported. The pi-electron wave functions were determined by exploiting the limited translational symmetry of the molecules. Perturbation theory was used to calculate the longitudinal component of the electronic nonresonant hyperpolarizability. This is the first two-'band' calculation of third-order hyperpolarizabilities on finite pi-electron systems of varying length. In contrast to the results of the one-'band' models, the hyperpolarizability densities increase rapidly and then, after about 10-15 repeating units, approach an asymptotic value.

  13. Spare nonlinear systems resolution; its applicability in the resolution of the problem related power flow in electric power networks; Resolucao de sistemas nao-lineares esparsos; sua aplicacao na resolucao do problema de fluxo de carga em redes de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Ana Cecilia

    1990-03-01

    This thesis aims to find a better way to solve large scale nonlinear sparse system problems giving special emphasis to load flow in electric power networks. The suggested algorithms are presented 63 refs., 28 figs., 16 tabs.

  14. Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory.

    Science.gov (United States)

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2013-09-21

    In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.

  15. Analysis of Nonlinear Electromagnetic Metamaterials

    CERN Document Server

    Poutrina, Ekaterina; Smith, David R

    2010-01-01

    We analyze the properties of a nonlinear metamaterial formed by integrating nonlinear components or materials into the capacitive regions of metamaterial elements. A straightforward homogenization procedure leads to general expressions for the nonlinear susceptibilities of the composite metamaterial medium. The expressions are convenient, as they enable inhomogeneous system of scattering elements to be described as a continuous medium using the standard notation of nonlinear optics. We illustrate the validity and accuracy of our theoretical framework by performing measurements on a fabricated metamaterial sample composed of an array of split ring resonators (SRRs) with packaged varactors embedded in the capacitive gaps in a manner similar to that of Wang et al. [Opt. Express 16, 16058 (2008)]. Because the SRRs exhibit a predominant magnetic response to electromagnetic fields, the varactor-loaded SRR composite can be described as a magnetic material with nonlinear terms in its effective magnetic susceptibility...

  16. Electrically-controlled nonlinear terahertz optical properties of graphene%掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究

    Institute of Scientific and Technical Information of China (English)

    董海明

    2013-01-01

    In this paper, we present a detailed theoretical study of nonlinear terahertz optical properties of graphene in the presence of electric field and terahertz radiation field. The optical current is computed and investigated on the basis of quantum theory and semi-classical Boltzmann equations. It shows a large nonlinear terahertz response and the nonlinearity becomes larger with increasing electric field or decreasing terahertz frequencies. Moreover, it is found that the optical nonlinearity can be modified and controlled by electric fields.%石墨烯是单原子厚的二维狄拉克相对论费米子系统,其优秀的光电学性质得到了广泛的关注和研究。本论文利用量子理论研究掺杂石墨烯系统外电场和光场共同作用下的非平衡载流子的非线性太赫兹光学性质。研究发现,掺杂石墨烯带内光吸收表现出强的非线性太赫兹光学特性。随着外加偏压电场的增大,石墨烯非线性光学响应增强;随着外界太赫兹光频率的减小,非线特性增强。研究表明通过改变电场强度,可以有效调节石墨烯系统太赫兹非线性光学特性。研究结果为探索和发展以石墨烯为基础的新型纳米太赫兹光电器件的研究和实际应用提供了理论依据。

  17. Nonlinear Stokes Mueller Polarimetry

    CERN Document Server

    Samim, Masood; Barzda, Virginijus

    2015-01-01

    The Stokes Mueller polarimetry is generalized to include nonlinear optical processes such as second- and third-harmonic generation, sum- and difference-frequency generations. The overall algebraic form of the polarimetry is preserved, where the incoming and outgoing radiations are represented by column vectors and the intervening medium is represented by a matrix. Expressions for the generalized nonlinear Stokes vector and the Mueller matrix are provided in terms of coherency and correlation matrices, expanded by higher-dimensional analogues of Pauli matrices. In all cases, the outgoing radiation is represented by the conventional $4\\times 1$ Stokes vector, while dimensions of the incoming radiation Stokes vector and Mueller matrix depend on the order of the process being examined. In addition, relation between nonlinear susceptibilities and the measured Mueller matrices are explicitly provided. Finally, the approach of combining linear and nonlinear optical elements is discussed within the context of polarim...

  18. Topology optimization of nonlinear optical devices

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2011-01-01

    This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation and an incremen......This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation...

  19. Nonlinear Evolutions of Stimulated Raman and Brillouin Scattering Processes in Partially Stripped-Ion Plasmas

    Institute of Scientific and Technical Information of China (English)

    胡业民; 胡希伟

    2001-01-01

    Numerical analyses for the nonlinear evolutions of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) processes are given. Various effects of the second- and third-order nonlinear susceptibilities on the SRS and SBS processes are studied. The nonlinear evolutions of SRS and SBS processes are atfected more efficiently than their linear growth rates by the nonlinear susceptibility.

  20. Modulational stability and dark solitons in periodic quadratic nonlinear media

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We show that stable dark solitons exist in quadratic nonlinear media with periodic linear and nonlinear susceptibilities. We investigate the modulational stability of plane waves in such systems, a necessary condition for stable dark solitons....

  1. Field history dependence of nonlinear dielectric properties of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} ceramics under bias electric field: Polarization behavior of polar nano-regions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaofei [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Xu Qing, E-mail: xuqing@whut.edu.c [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Liu Hanxing; Chen Wen [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen Min; Kim, Bok-Hee [Faculty of Advanced Materials Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-04-01

    Nonlinear dielectric properties of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} ceramics prepared by citrate method were investigated under bias electric field with respect to field history. X-ray diffraction analysis and temperature dependence of the dielectric constant ({epsilon}{sub r}) confirmed a macroscopically paraelectric state for the specimen at room temperature. A slim polarization versus electric field (P-E) hysteresis loop of the specimen at room temperature indicated the existence of polar nano-regions (PNRs) superimposed on the paraelectric background. The nonlinear dielectric properties in continuous cycles of bias field sweep displayed a strong sensitivity to the field history. This phenomenon was qualitatively explained in terms of an irreversible polarization evolution of the PNRs under the bias fields. A considerable decline of the tunability with the cycle number suggests an appreciable contribution of the PNRs to the dielectric nonlinearity. The polarization and size of the PNRs were determined by fitting the dielectric constants to a multipolarization mechanism model.

  2. Predicting nonlinear properties of metamaterials from the linear response.

    Science.gov (United States)

    O'Brien, Kevin; Suchowski, Haim; Rho, Junsuk; Salandrino, Alessandro; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang

    2015-04-01

    The discovery of optical second harmonic generation in 1961 started modern nonlinear optics. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller's Rule, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation, new quasi-phase matching capabilities and large nonlinear susceptibilities. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.

  3. The nonlinear optical rectification of a confined exciton in a quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Xie Wenfang, E-mail: xiewf@gzhu.edu.c [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China)

    2011-05-15

    An exciton in a disc-like quantum dot (QD) with the parabolic confinement, under applied electric field, is studied within the framework of the effective-mass approximation. The nonlinear optical rectification between the ground and the first-excited states has been examined through the computed energies and wave functions in details for the excitons. The results show that the optical rectification susceptibility obtained in a disc-like QD reach the magnitude of 10{sup -2} m/V, which is 3-4 orders of magnitude higher than in one-dimensional QDs. It is found that the second-order nonlinear optical properties of exciton states in a QD are strongly affected by the confinement strength and the electric field. - Research highlights: {yields} The magnitude of the nonlinear optical rectification of the excitons confined in a disc-like quantum dot may reach 10{sup -2} m/V. It is much higher than that of the other low-dimensional semiconductors, e.g., quantum wells, and one-dimensional semiparabolic quantum dots. {yields} The nonlinear optical rectification of the excitons confined in a disc-like quantum dot is strongly dependent on the confinement frequency. In order to obtain the larger optical rectification coefficients in quantum dots, we can change the confinement frequency. {yields} The calculated results also reveal that an applied electric field has a great influence on the nonlinear optical rectification susceptibility. In order to obtain the larger optical rectification coefficients in quantum dots we can induce the electric field.

  4. Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: Effects of an applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Magdaleno, K.A.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calz. Solidaridad Esq. Paseo a La Bufa S/N. C.P. 98060 Zacatecas (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516 Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-03-15

    In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N{sub 2d}) of each single δ-doped quantum well are taken to vary within the range of 1.0×10{sup 12} to 7.0×10{sup 12} cm{sup −2}, consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system.

  5. Second order optical nonlinearity in silicon by symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Cazzanelli, Massimo, E-mail: massimo.cazzanelli@unitn.it [Laboratorio IdEA, Dipartimento di Fisica, Università di Trento, via Sommarive, 14 Povo (Trento) (Italy); Schilling, Joerg, E-mail: joerg.schilling@physik.uni-halle.de [Centre for Innovation Competence SiLi-nano, Martin-Luther-University Halle-Wittenberg, Karl-Freiherr-von-Fritsch Str. 3, 06120 Halle (Germany)

    2016-03-15

    Although silicon does not possess a dipolar bulk second order nonlinear susceptibility due to its centro-symmetric crystal structure, in recent years several attempts were undertaken to create such a property in silicon. This review presents the different sources of a second order susceptibility (χ{sup (2)}) in silicon and the connected second order nonlinear effects which were investigated up to now. After an introduction, a theoretical overview discusses the second order nonlinearity in general and distinguishes between the dipolar contribution—which is usually dominating in non-centrosymmetric structures—and the quadrupolar contribution, which even exists in centro-symmetric materials. Afterwards, the classic work on second harmonic generation from silicon surfaces in reflection measurements is reviewed. Due to the abrupt symmetry breaking at surfaces and interfaces locally a dipolar second order susceptibility appears, resulting in, e.g., second harmonic generation. Since the bulk contribution is usually small, the study of this second harmonic signal allows a sensitive observation of the surface/interface conditions. The impact of covering films, strain, electric fields, and defect states at the interfaces was already investigated in this way. With the advent of silicon photonics and the search for ever faster electrooptic modulators, the interest turned to the creation of a dipolar bulk χ{sup (2)} in silicon. These efforts have been focussing on several experiments applying an inhomogeneous strain to the silicon lattice to break its centro-symmetry. Recent results suggesting the impact of electric fields which are exerted from fixed charges in adjacent covering layers are also included. After a subsequent summary on “competing” concepts using not Si but Si-related materials, the paper will end with some final conclusions, suggesting possible future research direction in this dynamically developing field.

  6. 3D linear inversion of magnetic susceptibility data acquired by frequency domain EMI

    Science.gov (United States)

    Thiesson, J.; Tabbagh, A.; Simon, F.-X.; Dabas, M.

    2017-01-01

    Low induction number EMI instruments are able to simultaneously measure a soil's apparent magnetic susceptibility and electrical conductivity. This family of dual measurement instruments is highly useful for the analysis of soils and archeological sites. However, the electromagnetic properties of soils are found to vary over considerably different ranges: whereas their electrical conductivity varies from ≤ 0.1 to ≥ 100 mS/m, their relative magnetic permeability remains within a very small range, between 1.0001 and 1.01 SI. Consequently, although apparent conductivity measurements need to be inverted using non-linear processes, the variations of the apparent magnetic susceptibility can be approximated through the use of linear processes, as in the case of the magnetic prospection technique. Our proposed 3D inversion algorithm starts from apparent susceptibility data sets, acquired using different instruments over a given area. A reference vertical profile is defined by considering the mode of the vertical distributions of both the electrical resistivity and of the magnetic susceptibility. At each point of the mapped area, the reference vertical profile response is subtracted to obtain the apparent susceptibility variation dataset. A 2D horizontal Fourier transform is applied to these variation datasets and to the dipole (impulse) response of each instrument, a (vertical) 1D inversion is performed at each point in the spectral domain, and finally the resulting dataset is inverse transformed to restore the apparent 3D susceptibility variations. It has been shown that when applied to synthetic results, this method is able to correct the apparent deformations of a buried object resulting from the geometry of the instrument, and to restore reliable quantitative susceptibility contrasts. It also allows the thin layer solution, similar to that used in magnetic prospection, to be implemented. When applied to field data it initially delivers a level of contrast

  7. Nonlinear fractional relaxation

    Indian Academy of Sciences (India)

    A Tofighi

    2012-04-01

    We define a nonlinear model for fractional relaxation phenomena. We use -expansion method to analyse this model. By studying the fundamental solutions of this model we find that when → 0 the model exhibits a fast decay rate and when → ∞ the model exhibits a power-law decay. By analysing the frequency response we find a logarithmic enhancement for the relative ratio of susceptibility.

  8. Trirefringence in nonlinear metamaterials

    CERN Document Server

    De Lorenci, Vitorio A

    2012-01-01

    We study the propagation of electromagnetic waves in the limit of geometrical optics for a class of nearly transparent nonlinear uniaxial metamaterials for which their permittivity tensors present a negative principal component. Their permeability are assumed positive and dependent on the electric field. We show that light waves experience triple refraction -- trirefringence. Additionally to the ordinary wave, two extraordinary waves propagate in such media.

  9. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...

  10. Efficient split field FDTD analysis of third-order nonlinear materials in two-dimensionally periodic media

    Science.gov (United States)

    Francés, Jorge; Bleda, Sergio; Bej, Subhajit; Tervo, Jani; Navarro-Fuster, Víctor; Fenoll, Sandra; Martínez-Gaurdiola, Francisco J.; Neipp, Cristian

    2016-04-01

    In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.

  11. Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission

    National Research Council Canada - National Science Library

    Wilder, F. D; Ergun, R. E; Goodrich, K. A; Goldman, M. V; Newman, D. L; Malaspina, D. M; Jaynes, A. N; Schwartz, S. J; Trattner, K. J; Burch, J. L; Argall, M. R; Torbert, R. B; Lindqvist, P.‐A; Marklund, G; Le Contel, O; Mirioni, L; Khotyaintsev, Yu. V; Strangeway, R. J; Russell, C. T; Pollock, C. J; Giles, B. L; Plaschke, F; Magnes, W; Eriksson, S; Stawarz, J. E; Sturner, A. P; Holmes, J. C

    2016-01-01

    .... Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations...

  12. Synthesis and electrical, spectroscopic and nonlinear optical properties of cobalt molecular materials obtained from PcCo(CN)L (L = ethylenediamine, 1,4-diaminebutane, 1,12-diaminododecane and 2,6-diamineanthraquinone)

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Saavedra, O.G., E-mail: omar.morales@ccadet.unam.mx [Lab. of Nonlinear Optics, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, CCADET-UNAM, Apdo, Postal 70-186, C.P. 04510 Coyoacan, Cd. Universitaria, Mexico D. F. (Mexico); Sanchez-Vergara, M.E. [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac del Norte, Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786 Huixquilucan, Estado de Mexico (Mexico); Rodriguez-Rosales, A.A.; Ortega-Martinez, R. [Lab. of Nonlinear Optics, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, CCADET-UNAM, Apdo, Postal 70-186, C.P. 04510 Coyoacan, Cd. Universitaria, Mexico D. F. (Mexico); Ortiz-Rebollo, A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, IIM-UNAM, A.P. 70-360 Coyoacan, 04510 Mexico D. F. (Mexico); Frontana-Uribe, B.A. [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM Km. 14.5, Carretera Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de Mexico (Mexico); Garcia-Montalvo, V. [Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico D. F. 04510 (Mexico)

    2010-10-01

    Novel PcCo(CN)L monomeric complexes were synthesized from [PcCoCN]{sub n} compounds and bidentate axial ligands (L) such as ethylenediamine, 1,4-diaminebutane, 1,12-diaminedodecane and 2,6-diamineanthraquinone. These complexes were implemented to fabricate pellets and thin films by the vacuum thermal evaporation technique. The obtained compounds and deposited thin films were characterized by different spectroscopic techniques. Measurements of the electrical conductivity and the electrical current as a function of temperature were also carried out. IR-spectroscopy studies showed that the ligand attaches to the [PcCoCN]{sub n} unit. The C=N vibrational band is found in the PcCo(et)CN and PcCo(bu)CN molecular solids, although it is displaced with respect to other reported values. Compounds PcCo(do){sub 2} and PcCo(an){sub 2} do not show C=N vibrational bands. This fact suggests a double bond between the ligand and the macrocycle and a coordination at the fifth and sixth position on the Co(III) atom. UV-vis spectra of the thin films exhibited higher conjugation degree for the CN-based samples. Electrical conductivity for the PcCo(an){sub 2} complex was consistently low for all temperature ranges under measurement, whereas the other synthesized compounds showed a semiconductor-like dependence of electric current with temperature. Additionally, cubic nonlinear optical (NLO) characterizations of the film samples were performed with the Z-Scan and third harmonic generation (THG) techniques, all samples exhibit outstandingly high nonlinear activity.

  13. Nonlinear characteristics of the rotating exciter system of power plant generators in case of electricity accidents; Transientes Verhalten des rotierenden Erregersystems von Kraftwerksgeneratoren bei elektrischen Stoerfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Ataei, Nader

    2006-05-09

    Different types of exciter are used for voltage supply to the synchronous generators of power stations depending on the required power and design. The exciter system of the generator, which as a rule consists syncronous motors and commutators, is commonly modeled in conventional models by control units with nonlinear characteristics which do not give an accurate picture of the dynamic processes inside the exciter motor. It was not possible to assess the component loads of the exciter components and the physical characteristics within the exciter system. In this study, a brushless exciter for the grid-connected synchronous generator was investigated which consists of two synchronous motors as primary and secondary exciter and two commutator bridges. A dynamic simulation model was developed for calculating the interactions between the grid, generator and exciter unit in consideration of electromagnetic and galvanic coupling. For this, the normal control units were replaced by physical components of the exciter system, i.e. electric exciter motors and commutators. The study was carried out using an enhanced version of the Siemens NETOMAC software, which provided information on the loads on the exciter components in case of internal and external failures. In particular, loads in coils and commutators were calculated that could not be measured before. The findings enable more accurate dimensioning of the exciter unit making it more fail-safe, and the protective systems can be adjusted more accurately. One important result of the investigation was the identification of all dynamic processes going on between the exciter motors, commutators, generator and grid induced by external and internal failures. (orig.) [German] Zur Spannungsversorgung der Synchrongeneratoren in Kraftwerken werden je nach Leistungsanforderung und Baukonzept unterschiedliche Erregereinrichtungen verwendet. Das Erregersystem des Generators, das in der Regel aus Erregersynchronmaschinen und

  14. Topological Susceptibility from Slabs

    CERN Document Server

    Bietenholz, Wolfgang; Gerber, Urs

    2015-01-01

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility chi_t. In principle it seems straightforward to measure chi_t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure chi_t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models.

  15. Nonlinear electrical properties and aging characteristics of (NiO, MgO, Cr2O3)-doped Zn–Pr–Co–R (R = Y, Er) oxide-based varistors

    Indian Academy of Sciences (India)

    Choon-W Nahm

    2008-12-01

    The electrical properties and stability of the varistors, which composed of (NiO, MgO, Cr2O3)- doped Zn–Pr–Co–R (Y, Er) oxide-based ceramics, were investigated for different additives. The breakdown voltage of the varistors increased in order of NiO$\\rightarrow$undoped$\\rightarrow$MgO$\\rightarrow$Cr2O3: 1200$\\rightarrow$1551$\\rightarrow$1691$\\rightarrow$1959 V/cm for ZPCY system and undoped$\\rightarrow$NiO$\\rightarrow$MgO$\\rightarrow$Cr2O3: 1024$\\rightarrow$1041$\\rightarrow$1500$\\rightarrow$1668 V/cm for ZPCE system, respectively. The nonlinear coefficient value increased in order of undoped$\\rightarrow$NiO$\\rightarrow$MgO$\\rightarrow$Cr2O3: 21$\\rightarrow$25$\\rightarrow$38$\\rightarrow$50 in ZPCY system and NiO$\\rightarrow$undoped$\\rightarrow$MgO$\\rightarrow$Cr2O3: 27$\\rightarrow$32$\\rightarrow$35$\\rightarrow$38 in ZPCE system, respectively. In ZPCY and ZPCE systems, the Cr2O3-additives most greatly improved the nonlinear properties. In Cr2O3-doped system, ZPCY system exhibited higher nonlinear properties than that of ZPCE system. The stability against d.c. accelerated aging stress was higher in Cr2O3-additives than in NiO- and MgO-additives for ZPCY system and was higher in NiO-additives than in MgO- and Cr2O3-additives for ZPCE system.

  16. Mode matching in second order susceptibility metamaterials

    CERN Document Server

    Héron, Sébastien; Haïdar, Riad

    2016-01-01

    We present an effective model for a subwavelength periodically patterned metallic layer, its cavities being filled with a nonlinear dielectric material, which accounts for both the linear and second order behavior. The effective non linear susceptibility for the homogenized layer is driven by the nonlinearity of the dielectric material and by the geometrical parameters, thus leading to much higher susceptibility than existing materials. This leads to a huge enhancement of non linear processes when used together with resonances. Furthermore, multiple resonances are taking place in the metallic cavities, and we investigate the mode matching situations for frequency conversion processes and show how it enhances further their efficiency.

  17. 碳湿敏膜的非线性感湿特性和导电机理%The nonlinear sensing property and electric mechanism of carbon humidity-sensitive membranes

    Institute of Scientific and Technical Information of China (English)

    陈环; 彭振康; 傅刚

    2009-01-01

    采用羟乙基纤维素(HEC)和导电炭黑并添加山梨醇增湿剂制备碳湿敏膜,研究了膜在偏离结露区的非线性感湿特性和导电机理.扫描电镜脱测到,膜中炭黑粒子形成网链状的空问导电结构;2%炭黑含量使膜的导电通路处于渗流区,膜电阻在80%RH附近对湿度有较强的非线性特件.分析I-V曲线认为,是导电网链中炭黑粒子的间距使膜电阻对湿度变化和测量电压的变化都非常敏感,非线性感湿特性与导电机理密切相关.复阻抗谱表明,碳湿敏样品在33%RH时只出现与炭黑体电阻有关的半圆弧,在80%RH时出现与炭黑粒界电阻有关的第二个半圆弧,92%RH时的复阻抗谱是以上两个半圆弧外加接近45°角的拖尾,拖尾部分对应膜与电极之间水分子引起的极化作用.%The nonlinear sensing property and electric mechanism of carbon humidity-sensitive membranes under investigation were manufactured by using hydroxyethyl cellulose (HEC), carbon black (CB) and humidizer sorbitol. Microstructures examined by scanning electronic microscopy (SEM) show that, an effective carbon black electric network in humidity-sensing membrane would make the membrane' s resistance to have strong nonlinear property near 80% RH; so that the amount of 2wt% carbon black is in the proximity of the electric percolation threshold. The voltage-current characteristic suggested that the nonlinear sensing property and electric mechanism of the carbon humidity membranes are closely related. Particularly, impedance spectroscopy of sample at 92% RH was made up by two semi-circular arcs and a straight tail near 45° angle. The membrane's equivalent circuit was three RC circuits in series that corresponds to the contributions of the carbon bulk resistance, CB-grain-boundary resistance and electrode contact resistance, respectively.

  18. The Effective AC Response of Nonlinear Composites

    Institute of Scientific and Technical Information of China (English)

    WEI En-Bo; GU Guo-Qing

    2001-01-01

    A perturbative approach is used to study the AC response of nonlinear composite media, which obey a current-field relation of the form J = σ E + χ|E|2 E with components having nonlinear response at finite frequencies. For a sinusoidal applied field, we extend the local potential in terms of sinusoidal components at fundamental frequency and high-order harmonic frequencies to treat the nonlinear composites. For nonlinear composite media vith a low concentrations of spherical inclusions, we give the formulae of the nonlinear effective AC susceptibility χ*3ω at the third harmonic frequency.

  19. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  20. Enhancement in nonlinear transport in percolating superconductor nonlinear resistor networks. A universality phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.M. [China Center of Advanced Science and Technology (CCAST), Beijing, BJ (China)]|[Suzhou Univ. (China). Dept. of Physics

    1996-04-01

    In this note we consider the geometrical effects of a percolating system on the nonlinear transport properties in a superconductor-normal conductor nonlinear resistor network. For realistic composites, the nonlinearity may play an important role in the electrical transport phenomena. A typical example consists of studying a nonlinear composite medium in which an inclusion with nonlinear current-field (J-E) characteristics is randomly embedded in a host with either linear or nonlinear J-E response. For such a system, substantial progress in studies of the effective nonlinear response has been made in the past few years. 24 refs.

  1. Nonlinear supratransmission

    Energy Technology Data Exchange (ETDEWEB)

    Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)

    2003-05-07

    A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.

  2. Nonlinear Optics of Hexaphenyl Nanofibers

    DEFF Research Database (Denmark)

    Balzer, Frank; Al-Shamery, Katharina; Neuendorf, Rolf

    2003-01-01

    measurements reveal that the nonlinear optical transition dipole moment is oriented with an angle of 75° with respect to the needles long axes. The absolute value of the macroscopic second-order susceptibility, averaged over a size distribution of p-6P nanoaggregates, is estimated to be of the order of 6...

  3. Investigation of magnetic spin glass property in La{sub 0.5}Bi{sub 0.5}MnO{sub 3} sample using non-linear AC susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Punith V., E-mail: drvldayal@gmail.com; Manju, M. R., E-mail: drvldayal@gmail.com; Dayal, Vijaylakshmi, E-mail: drvldayal@gmail.com [Department of Physics, Maharaja Institute of Technology, Mysore-571438, Karnataka (India)

    2014-04-24

    We present a comprehensive study on origin of Spin Glass (SG) property in polycrystalline La{sub 0.5}Bi{sub 0.5}MnO{sub 3} perovskite oxide using linear and higher order ac susceptibility (χ) measurements. The third order harmonic susceptibility (χ{sub 3}) vs. temperature (K) with varying magnetic fields from 0.95 to 9.45 Oe and the divergence in their χ{sub 3} (max) allows us to infer the SG behavior occurring in the sample possibly due to co-operative freezing of the spins.

  4. Electoral Susceptibility

    CERN Document Server

    Levine, G C; Cerise, J E

    2012-01-01

    In the United States electoral system, a candidate is elected indirectly by winning a majority of electoral votes cast by individual states, the election usually being decided by the votes cast by a small number of "swing states" where the two candidates historically have roughly equal probabilities of winning. The effective value of a swing state in deciding the election is determined not only by the number of its electoral votes but by the frequency of its appearance in the set of winning partitions of the electoral college. Since the electoral vote values of swing states are not identical, the presence or absence of a state in a winning partition is generally correlated with the frequency of appearance of other states and, hence, their effective values. We quantify the effective value of states by an {\\sl electoral susceptibility}, $\\chi_j$, the variation of the winning probability with the "cost" of changing the probability of winning state $j$. We study $\\chi_j$ for realistic data accumulated for the 201...

  5. 单电磁铁悬浮系统的非线性鲁棒控制%Single electric magnetic levitation system nonlinear robust control

    Institute of Scientific and Technical Information of China (English)

    林志雄; 李全国

    2014-01-01

    Based on the state feedback precise linearization and Linear robust control theory,one methord of designing Nonlinear robust controller is proposed,which contributes to the research of nonlin-ear robust control of single electromagnet levitation system.With wide application's needs,it characters conciseness and practical applicability.Firstly,we build an corresponding linear system robust control strategy by using feedback precise linearization.And then,we can figure out the original nonlinear system control law with preliminary feedback and have deduced that the control law possesses robustness in single electromagnet levitation system at last.%结合状态反馈精确线性化和线性鲁棒控制理论研究单电磁铁悬浮系统的非线性鲁棒控制问题,给出一种简洁实用的非线性鲁棒控制器设计方法,先用反馈精确线性化构造相应的线性系统的鲁棒控制策略,然后再用预反馈求出原非线性系统的控制律,最后证明该控制律对于单电磁铁悬浮系统具有鲁棒性。

  6. Economic impacts of current harmonic from nonlinear loads on residential electricity distribution networks; Impactos economicos dos harmonicos de corrente das cargas nao lineares em redes eletricas de distribuicao residenciais

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Carlos Henrique

    2010-04-15

    To achieve more efficient energy use, power electronics systems (PES) may be employed. However, this introduce nonlinear loads into the system by generating undesired frequencies that are harmonic in relation to (multiples of) the fundamental frequency (60 Hz in Brazil). Consequently, devices using PES (power electronics systems) are more efficient but also contribute significantly to degradation of power quality. Besides this, both the conventional rules on design and operation of power systems and the usual premises followed in energy efficiency programs (without mentioning the electricity consumed by the devices themselves) consider the sinusoidal voltage and current waveforms at the fixed fundamental frequency (60 Hz in Brazil) of the power grid. Thus, analysis of electricity consumption reductions in energy efficiency programs that include the use of PES considers the reduction of kWh to the final consumer but not the additional losses caused by the increase in harmonic distortion. This dissertation investigates this problem by exploring a case study of the ownership and use of television sets (TV sets) to estimate the economic impacts of residential PES on a mainly residential electricity distribution system. (author)

  7. Non-linear optics and local-field factors in liquid chloroform: A time-dependent density-functional theory study

    Science.gov (United States)

    Strubbe, David A.; Andrade, Xavier; Rubio, Angel; Louie, Steven G.

    2010-03-01

    Chloroform is often used as a solvent when measuring non-linear optical properties of organic molecules. We assess the influence of the solution environment on the molecular properties by calculating directly the non-linear susceptibilities of liquid chloroform at optical frequencies. We use the Sternheimer equation in time-dependent density-functional theory [J. Chem. Phys. 126, 184106 (2007)], on snapshots from ab initio molecular dynamics. We compare the results to those in the gas and solid phases, and to experimental values. We also calculate ab initio local-field factors, used to analyze electric-field-induced second-harmonic generation (EFISH) and hyper-Rayleigh scattering (HRS) experiments.

  8. Optical nonlinearity enhancement of a periodic array of semiconductor elliptical cylinders

    Science.gov (United States)

    Yang, Baifeng; Zhang, Chengxiang; Tian, Decheng

    2002-11-01

    We investigate the effect of geometric anisotropy on optical nonlinearity enhancement for composites with semiconductor elliptical cylinders in an insulating host in a square lattice. The frequency dependences of the effective nonlinear susceptibility are calculated, and the optical nonlinearity of the composites near the percolation threshold are studied. The calculations are based on the Stroud-Hui relation and a series expression of the space-dependent electric field in periodic composites. The results show that, analogous to metal-insulator composites, a local minimum appears in the nonlinear optical responses near the percolation threshold for two-dimensional percolating semiconductor-insulator composites with geometric anisotropy when the ratio of the bound-electron number density to the effective mass of the electron is large. The results also show that the nonlinearity enhancement increases almost to its maximum when a structure with layers of fluctuating thicknesses forms, and there are no further obvious increases of the enhancement when the thickness fluctuation of the layers decreases. We compare the results of our calculation with those calculated by use of the Boyd-Sipe relation in layered composites, and we conclude that the nonlinearity enhancement reaches its maximum when composites with elliptic cylinders are transformed into Boyd-Sipe-type layered composites.

  9. Effect of geometric anisotropy on optical nonlinearity enhancement for periodic composites

    Science.gov (United States)

    Yang, Baifeng; Zhang, Chengxiang; Tian, Decheng

    2003-01-01

    The effect of geometric anisotropy on the optical nonlinearity enhancement for the composites with metal or semiconductor spheriodal-shaped particles periodically in an insulating host is investigated. The frequency dependences of effective nonlinear susceptibility are calculated with the Stroud-Hui relation and a series expression of space-dependent electric field in periodic composites. The results show that for both metal-insulator (MI) and semiconductor-insulator (SI) composites, nonlinearity enhancement increases almost to its maximum when the percolation networks of the inclusion phase form. The nonlinearity enhancement increases to its maximum when the composites are transformed into the Boyd-Sipe layered composites. The behavior of the nonlinearity enhancement near the percolation threshold is also investigated. A local minimum appears in the nonlinear optical responses at the percolation threshold for the MI composites. For the SI composites the local minimum appears when the ratio of the bound-electron number density to the effective mass of the electron is large.

  10. Hydrogenic impurity, external electric and magnetic fields effects on the nonlinear optical properties of a multi-layer spherical quantum dot

    Science.gov (United States)

    Tanhaei, M. H.; Rezaei, G.

    2016-10-01

    In this work, effects of an on-center hydrogenic impurity, external electric and magnetic fields on the optical rectification coefficient (ORC), second and third harmonic generations (SHG and THG) of a multi-layer spherical quantum dot (MLSQD) are studied. Energy eigenvalues and eigenvectors are calculated using the direct matrix diagonalization method and optical properties are obtained using the compact density matrix approach. Our results reveal that the hydrogenic impurity and external fields have a great influence on these optical quantities. Hydrogenic impurity reduces the magnitude of the resonant peaks and shifts them to the higher energies. An increase in the magnetic (electric) field, leads to increase (decrease) the interval energies and the dipole moment matrix elements. Therefore, resonant peaks of these optical quantities find an obvious blue (red) shift and their magnitudes enhance (diminish) with increasing the external magnetic (electric) field.

  11. Finite temperature Casimir effect in the presence of nonlinear dielectrics

    CERN Document Server

    Kheirandish, Fardin; Soltani, Morteza

    2010-01-01

    Starting from a Lagrangian, electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained and their relation to coupling functions are determined. Finally, the Casimir energy and force in the presence of a nonlinear medium at finite temperature is calculated.

  12. Practical Nonlinearities

    Science.gov (United States)

    2016-07-01

    Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9

  13. The Dynamical Topological Models of Lagrange’s and Hamiltonian Equations for Complex Nonlinear Electrical Circuit System%复杂非线性电路系统的动力学方程模型

    Institute of Scientific and Technical Information of China (English)

    欧松

    2012-01-01

    Lagrange和Hamilton运动方程是分析力学的基本原理之一和方法论.应用Lagrange和Hamilton原理建立复杂非线性电路保守动力学方程模型是一种形式化可行的方法.对非保守的动力学系统,定义描述电路系统的荷控支路和链控支路的微观结构概念,应用Hamilton结构的方法,可以得到与Lagrange结构等价的方程组;考虑大规模电路系统的复杂性,依据电路系统荷控支路和链控支路微观结构的概念,给出具有控制参量的Lagrange和Hamilton函数,以及具有相应关联矩阵和联接矩阵形式的Lagrange和Hamilton的动态方程;分析了保守和非保守复杂系统拓扑结构关系的描述和其动力学系统的建模,其建模过程具有规范性和方程具有对称性.虽然数学推导过程繁琐,但适合于计算机辅助形式化分析;基于Hamilton方法建立的电路模型为一阶微分动态方程组,特别适合进行理论分析和数值仿真计算.%The Lagrange's and Hamiltonian movement equation are one of the basic principles of analytical mechanics and methodology. The application of Lagrange's and Hamiltonian theory approach to modeling complex nonlinear conservation electrical circuits dynamics system is a practicable in formulation methodology. But for the non conservation electrical circuits dynamics system, a new micro structure conception of electric charge quantitative control branch and magnetic chain control branch in electrical circuit system has been put forward that have equality with the Lagrange's equations; Consideration of the topological complexity of large electrical circuit system, based on the micro structure conception of electric charge quantitative control branch and magnetic chain control branch in electrical circuit, and the Lagrange's and Hamiltonian function that have control parameters are given. ; as well as the Lagrange's and Hamiltonian equations that have incidence matrix and linked matrix; So the

  14. Nonlinear electronic transport behavior in Indium Nitride

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Cloves G., E-mail: cloves@pucgoias.edu.br [Departamento de Fisica, Pontificia Universidade Catolica de Goias, CP 86, 74605-010 Goiania, Goias (Brazil)

    2012-11-15

    A theoretical study on the nonlinear transport of electrons and of the nonequilibrium temperature in n-doped Indium Nitride under influence of moderate to high electric fields (in this nonlinear domain) is presented. It is based on a nonlinear quantum kinetic theory which provides a description of the dissipative phenomena developing in the system. The electric current and the mobility in the steady state are obtained, and their dependence on the electric field strength and on the concentration (that is, a mobility dependent nonlinearly on field and concentration) is obtained and analyzed. -- Highlights: Black-Right-Pointing-Pointer We have reported on the topic of nonlinear transport (electron mobility) in n-doped InN. Black-Right-Pointing-Pointer The results evidence the presence of two distinctive regimes. Black-Right-Pointing-Pointer The dependence of the mobility on the electric field is manifested through of the relaxation times.

  15. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  16. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  17. Nonlinear analysis

    CERN Document Server

    Nanda, Sudarsan

    2013-01-01

    "Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.

  18. Quark Number Susceptibilities with Domain-Wall Fermions

    CERN Document Server

    Hegde, Prasad; Schmidt, Christian

    2008-01-01

    We present results from calculations of different quark number and hadronic susceptibilities on 2+1-flavor dynamical domain wall ensembles. We find that the iso-spin and electric charge susceptibilities are especially well suited to determine the transition temperature, as these quantities show only small statistical errors. Moreover, the transition values of the coupling obtained from iso-spin and electrical charge susceptibilities are in good agreement with the one obtained from the chiral condensate.

  19. The effect of 100 MeV oxygen ion on electrical and optical properties of nonlinear optical l-alanine sodium nitrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahlam, M. A.; Prakash, A. P. Gnana [Department of Studies in Physics, University of Mysore, Mysore-570 006, Karnataka (India)

    2012-06-05

    Single crystals of nonlinear optical (NLO) L-alanine Sodium Nitrate (LASN) were grown by slow evaporation method. The grown crystals were irradiated by 100 MeV oxygen ions with the cumulative doses of 1Mrad, 6 Mrad and 10 Mrad. The dielectric properties, differential scanning calorimetry (DSC) and second harmonic generation (SHG) of the crystals were studied before and after irradiation. The dielectric constant was found to increase after irradiation. The DSC reveals that the melting point remains unaffected due to irradiation. The SHG efficiency of LASN was found to decrease with increase in radiation dose.

  20. The effect of 100 MeV oxygen ion on electrical and optical properties of nonlinear optical l-alanine sodium nitrate single crystals

    Science.gov (United States)

    Ahlam, M. A.; Prakash, A. P. Gnana

    2012-06-01

    Single crystals of nonlinear optical (NLO) L-alanine Sodium Nitrate (LASN) were grown by slow evaporation method. The grown crystals were irradiated by 100 MeV oxygen ions with the cumulative doses of 1Mrad, 6 Mrad and 10 Mrad. The dielectric properties, differential scanning calorimetry (DSC) and second harmonic generation (SHG) of the crystals were studied before and after irradiation. The dielectric constant was found to increase after irradiation. The DSC reveals that the melting point remains unaffected due to irradiation. The SHG efficiency of LASN was found to decrease with increase in radiation dose.

  1. Third-order susceptibility of gold for ultrathin layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This Letter presents an experimental study of nonlinear plasmonic effects in gold-stripe waveguides. The optical characterization is performed by a picosecond laser and reveals two nonlinear effects related to propagation of long-range surface plasmon polaritons: nonlinear power transmission...... of plasmonic modes and spectral broadening of plasmonic modes. The experimental values of the third-order susceptibility of the gold layers are extracted. They exhibit a clear dependence on layer thickness. (C) 2016 Optical Society of America...

  2. Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission

    Science.gov (United States)

    Wilder, F. D.; Ergun, R. E.; Goodrich, K. A.; Goldman, M. V.; Newman, D. L.; Malaspina, D. M.; Jaynes, A. N.; Schwartz, S. J.; Trattner, K. J.; Burch, J. L.; Argall, M. R.; Torbert, R. B.; Lindqvist, P.-A.; Marklund, G.; Le Contel, O.; Mirioni, L.; Khotyaintsev, Yu. V.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Plaschke, F.; Magnes, W.; Eriksson, S.; Stawarz, J. E.; Sturner, A. P.; Holmes, J. C.

    2016-06-01

    We show observations from the Magnetospheric Multiscale (MMS) mission of whistler mode waves in the Earth's low-latitude boundary layer (LLBL) during a magnetic reconnection event. The waves propagated obliquely to the magnetic field toward the X line and were confined to the edge of a southward jet in the LLBL. Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations. The polarity of the ESWs suggests that if they propagate with the waves, they are electron enhancements as opposed to electron holes. The reduced electron distribution shows a shoulder in the distribution for parallel velocities between 17,000 and 22,000 km/s, which persisted during the interval when ESWs were observed, and is near the phase velocity of the whistlers. This shoulder can drive Langmuir waves, which were observed in the high-frequency parallel electric field data.

  3. The nonlinear piezoelectric tuned vibration absorber

    Science.gov (United States)

    Soltani, P.; Kerschen, G.

    2015-07-01

    This paper proposes a piezoelectric vibration absorber, termed the nonlinear piezoelectric tuned vibration absorber (NPTVA), for the mitigation of nonlinear resonances of mechanical systems. The new feature of the NPTVA is that its nonlinear restoring force is designed according to a principle of similarity, i.e., the NPTVA should be an electrical analog of the nonlinear host system. Analytical formulas for the NPTVA parameters are derived using the homotopy perturbation method. Doing so, a nonlinear generalization of Den Hartog’s equal-peak tuning rule is developed for piezoelectric vibration absorbers.

  4. Linear and nonlinear piezoelectric shunting strategies for vibration mitigation

    Directory of Open Access Journals (Sweden)

    Soltani P.

    2014-01-01

    Full Text Available This paper studies linear and nonlinear piezoelectric vibration absorbers that are designed based on the equal-peak method. A comparison between the performance of linear mechanical and electrical tuned vibration absorbers coupled to a linear oscillator is first performed. Nonlinearity is then introduced in the primary oscillator to which a new nonlinear electrical tuned vibration absorber is attached. Despite the frequency-energy dependence of nonlinear oscillations, we show that the nonlinear absorber is capable of effectively mitigating the vibrations of the nonlinear primary system in a large range of forcing amplitudes.

  5. Model of anisotropic nonlinearity in self-defocusing photorefractive media.

    Science.gov (United States)

    Barsi, C; Fleischer, J W

    2015-09-21

    We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.

  6. Nonlinear Reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran

    2016-01-01

    We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.

  7. Topological nature of nonlinear optical effects in solids

    OpenAIRE

    Morimoto, Takahiro; Nagaosa, Naoto

    2015-01-01

    There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by the strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by the nonlinear suscepti...

  8. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t

  9. Discrete-time nonlinear sliding mode controller

    African Journals Online (AJOL)

    user

    : Discrete-time delay system, Sliding mode control, nonlinear sliding ... The concept of the sliding mode control in recent years has drawn the ...... His area of interest is dc-dc converters, electrical vehicle and distributed generation application.

  10. Relaxation behavior and nonlinear properties of thermally stable polymers based on glycidyl derivatives of quercetin

    Science.gov (United States)

    Mishurov, Dmytro; Voronkin, Andrii; Roshal, Alexander; Brovko, Oleksandr

    2016-07-01

    Cross-linked polymers on the basis of di-, tri and tetraglycidyl ethers of quercetin (3,3‧,4‧,5,7-pentahydroxyflavone) were synthesized, and then, poled in electrical field of corona discharge. Investigations of structural, thermal and optical parameters of the polymer films were carried out. It was found that the polymers obtained from di- and triglycidyl quercetin ethers had high values of macroscopic quadratic susceptibilities and substantial stability of nonlinear optical (NLO) properties after the poling. Tetraglycidyl ether of quercetin forms the polymer of lower quadratic susceptibility, which demonstrates noticeable relaxation process resulting in decrease of the NLO effect. It is supposed that the difference of the NLO properties is due to peculiarities of physical network of the polymers, namely to the ratio between numbers of hydrogen bonds formed by hydroxyl groups of chromophore fragments and by the ones of interfragmental parts of the polymeric chains.

  11. Metodología de Diseño Optimo en Tiempo para Circuitos Electrónicos no Lineales Time-Optimal Design Methodology for Nonlinear Electronic Circuits

    Directory of Open Access Journals (Sweden)

    E. Ríos

    2005-01-01

    Full Text Available Se presenta una metodología para el diseño de sistemas no lineales en tiempo óptimo. Se emplea la teoría de control óptimo y un conjunto de funciones de control especiales para generalizar la metodología y producir varias estrategias de diseño dentro del mismo procedimiento de optimización. La combinación de algunas estrategias define la trayectoria de diseño óptima o cuasi-óptima en tiempo de computación. Para generar los resultados numéricos en un computador personal se escribió un programa en lenguaje C++. El diseño de algunos circuitos electrónicos no lineales muestra que esta metodología puede reducir sustancialmente el número total de operaciones y acelerar el proceso de diseño. Se concluye que la ganancia en tiempo de esta metodología de diseño aumenta con respecto a la metodología tradicional a medida que el tamaño y la complejidad del sistema crecen.A methodology is presented for the time-optimal design of non-linear systems. Optimal control theory and a set of special control functions are introduced in order to generalize the design methodology and to produce various different design strategies within the same optimization procedure. The combination of some of these strategies defines the optimal or quasi-optimal design trajectory based on computation time. The numerical results were obtained by personal computer using a C++ language program. The design of some nonlinear electronic circuits showed that this methodology can substantially reduce the total number of operations and accelerate the design process. It is concluded that the gain in time using this design methodology increases, in comparison with traditional methodology, as the complexity of the system grows.

  12. Optically nonlinear materials

    CERN Document Server

    Whittam, A J

    2001-01-01

    susceptibility from 26 pm/V (same film without octadecanoic acid) to 40 pm/V. This increase in the second-order susceptibility occurred even though the amount of NLO-active dye was effectively diluted by the addition of the inactive octadecanoic acid. The wavelength of the absorption maximum ranged from 346-440 nm and there was direct correlation between the susceptibilities and the transparency of the films at the harmonic wavelength. Hemicyanine dyes were synthesised, with the general formulae: - (a) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH-C sub 6 H sub 4] sub x -N(CH sub 3) sub 2 I (b) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH] sub y -C sub 6 H sub 4 -N(CH sub 3) sub 2 I where A sup + is a pyridinium or isoquinolinium acceptor, and x = 1 or 2, and y = 1 or 2. The optically nonlinear dyes were investigated via the Langmuir-Blodgett (LB) technique. The dyes all produced isotherm data, with molecular areas of 22-60 A sup 2 per molecule, which are consistent with the cross-sectional areas of the chromo...

  13. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...

  14. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  15. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  16. Nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)

    1989-01-01

    Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.

  17. Nonlinear optics principles and applications

    CERN Document Server

    Li, Chunfei

    2017-01-01

    This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...

  18. Nonlinear Optical Rectennas

    CERN Document Server

    Stolz, A; Markey, L; Francs, G Colas des; Bouhelier, A

    2013-01-01

    We introduce strongly-coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion and demonstrate that a two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.

  19. The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Liu Bing-Can; Yu Li; Lu Zhi-Xin

    2011-01-01

    The analytic surface plasmon polaritons (SPPs) dispersion relation is studied in a system consisting of a thin metallic film bounded by two sides media of nonlinear dielectric of arbitrary nonlinearity is studied by applying a generalised first integral approach. We consider both asymmetric and symmetric structures. Especially, in the symmetric system, two possible modes can exist: the odd mode and the even mode. The dispersion relations of the two modes are obtained. Due to the nonlinear dielectric, the magnitude of the electric field at the interface appears and alters the dispersion relations. The changes in SPPs dispersion relations depending on film thicknesses and nonlinearity are studied.

  20. Nonlinear Systems.

    Science.gov (United States)

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  1. Z-scan: A simple technique for determination of third-order optical nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijender, E-mail: chahal-gju@rediffmail.com [Department of Applied Science, N.C. College of Engineering, Israna, Panipat-132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in [Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Haryana (India)

    2015-08-28

    Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.

  2. Simulación de sistemas eléctricos con cargas no lineales y variantes en el tiempo Simulation of electric systems with non-linear and time-variant loads

    Directory of Open Access Journals (Sweden)

    William Carvajal Carreño

    2011-06-01

    of them and it permits to analyze linear and non linear systems in the time domain, linear systems in the frequency domain and mixed systems using the proposed hybrid method. The tool is intended to be a versatile and comprehensive computation instrument. Besides, it can be used in a straightforward way to analyze harmonic propagation in electrical networks. Examples from the literature used in electrical circuits, power systems, and power electronics courses are shown. Likewise, in order to analyze non-linear or time-varying loads, test systems were created as a benchmark for testing simulators of harmonics in electrical systems. Simulation results are analyzed and observations about the convergence features and algorithm stability of the proposed method are given. Due to the complexity and computational burden of hybrid analysis, we have selected element models, system models and suitable algorithms to guarantee that the solution is reasonable in terms of simulation time and computer resources.

  3. Electrifying photonic metamaterials for tunable nonlinear optics.

    Science.gov (United States)

    Kang, Lei; Cui, Yonghao; Lan, Shoufeng; Rodrigues, Sean P; Brongersma, Mark L; Cai, Wenshan

    2014-08-11

    Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.

  4. Optical nonlinearities in semiconductor-doped glasses near and below the band edge

    Science.gov (United States)

    Bindra, K. S.; Oak, S. M.; Rustagi, K. C.

    1998-03-01

    We present a brief review of our recent experimental results on optical nonlinearities in semiconductor-doped glasses. It is shown that even below the absorption edge the nonlinearities are determined by nonlinear absorption. The optical Kerr effect is found to have a susceptibility which is comparable to that for nonlinear refraction. We also find that in degenerate four-wave mixing the observed intensity dependence can be strongly influenced by nonlinear absorption.

  5. Quantum well nonlinear microcavities

    Science.gov (United States)

    Oudar, J. L.; Kuszelewicz, R.; Sfez, B.; Pellat, D.; Azoulay, R.

    We report on recent progress in reducing the power threshold of all-optical bistable quantum well vertical microcavities. Significant improvements are achieved through an increase of the cavity finesse, together with a reduction of the device active layer thickness. A critical intensity of 5 μW/μm 2 has been observed on a microcavity of finesse 250, with a nonlinear medium of only 18 GaAs quantum wells of 10 nm thickness. Further improvements of the Bragg mirror quality resulted in a finesse of 700 and a power-lifetime product of 15 fJ/μm 2. Microresonator pixellation allows to obtain 2-dimensional arrays. A thermally-induced alloy-mixing technique is described, which produced a 110 meV carrier confinement energy, together with a refractive index change of -.012, averaged over the 2.6 μm nonlinear medium thickness. The resulting electrical and optical confinement is shown to improve the nonlinear characteristics, by limiting lateral carrier diffusion and light diffraction.

  6. Nonlinear PDEs

    OpenAIRE

    2015-01-01

    From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...

  7. Growth, spectral, linear and nonlinear optical characteristics of an efficient semiorganic acentric crystal: L-valinium L-valine chloride

    Energy Technology Data Exchange (ETDEWEB)

    Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)

    2017-04-15

    An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.

  8. Purely nonlinear disorder-induced localizations and their parametric amplification

    CERN Document Server

    Folli, Viola; Conti, Claudio

    2013-01-01

    We investigate spatial localization in a quadratic nonlinear medium in the presence of randomness. By means of numerical simulations and theoretical analyses we show that, in the down conversion regime, the transverse random modulation of the nonlinear susceptibility generates localizations of the fundamental wave that grow exponentially in propagation. The localization length is optically controlled by the pump intensity which determines the amplification rate. The results also apply to cubic nonlinearities.

  9. Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity

    CERN Document Server

    Reyna, Albert S

    2014-01-01

    We present a procedure for nonlinearity management of metal-dielectric composites. Varying the volume fraction occupied by silver nanoparticles suspended in acetone we could cancel the refractive index related to the third-order susceptibility, $\\chi_{eff}^{(3)}$, and the nonlinear refraction behavior was due to the fifth-order susceptibility, $\\chi_{eff}^{(5)}$. Hence, in a cross-phase modulation experiment, we demonstrated for the first time the effect of spatial-modulation- instability due to $\\chi_{eff}^{(5)}$. The results are corroborated with numerical calculations based on a generalized Maxwell-Garnet model.

  10. Transmission Measurement of the Third-Order Susceptibility of Gold

    Science.gov (United States)

    Smith, David D.; Yoon, Youngkwon; Boyd, Robert W.; Crooks, Richard M.; George, Michael

    1999-01-01

    Gold nanoparticle composites are known to display large optical nonlinearities. In order to assess the validity of generalized effective medium theories (EMT's) for describing the linear and nonlinear optical properties of metal nanoparticle composites, knowledge of the linear and nonlinear susceptibilities of the constituent materials is a prerequisite. In this study the inherent nonlinearity of the metal is measured directly (rather than deduced from a suitable EMT) using a very thin gold film. Specifically, we have used the z-scan technique at a wavelength near the transmission window of bulk gold to measure the third-order susceptibility of a continuous thin gold film deposited on a quartz substrate surface-modified with a self-assembled monolayer to promote adhesion and uniformity without affecting the optical properties. We compare our results with predictions which ascribe the nonlinear response to a Fermi-smearing mechanism. Further, we note that the sign of the nonlinear susceptibility is reversed from that of gold nanoparticle composites.

  11. Study on third-order nonlinear optical properties of 4-methylsulfanyl chalcone derivatives using picosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    D' silva, E.D., E-mail: deepak.dsilva@gmail.com [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199 (India); Podagatlapalli, G. Krishna [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046 (India); Venugopal Rao, S., E-mail: soma_venu@yahoo.com [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046 (India); Dharmaprakash, S.M. [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199 (India)

    2012-11-15

    Graphical abstract: Photograph and schematic representation of Z-scan experimental setup used to investigate third order nonlinear properties of the chalcone materials. Highlights: ► Br and NO{sub 2} substituted chalcone derivatives were exposed to picosecond laser pulses. ► Third-order nonlinear optical (NLO) properties were investigated. ► Compounds show promising third-order and optical limiting properties. ► These materials found suitable for electrical and optical applications. -- Abstract: In this paper we present results from the experimental study of third-order nonlinear optical (NLO) properties of three molecules of Br and NO{sub 2} substituted chalcone derivatives namely (2E)-1-(4-bromophenyl)-3-[4(methylsulfanyl)phenyl]prop-2-en-1-one (4Br4MSP), (2E)-1-(3-bromophenyl)-3-[4-(methylsulfanyl) phenyl]prop-2-en-1-one (3Br4MSP) and (2E)-3[4(methylsulfanyl) phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (4N4MSP). The NLO properties have been investigated by Z-scan technique using 2 ps laser pulses at 800 nm. The nonlinear refractive indices, nonlinear absorption coefficient, and the magnitude of third-order susceptibility have been determined. The values obtained are of the order of 10{sup −7} cm{sup 2}/GW, 10{sup −3} cm/GW and 10{sup −14} esu respectively. The molecular second hyperpolarizability for the chalcone derivatives is of the order of 10{sup −32} esu. The coupling factor, excited state cross section, ground state cross section etc. were determined. The optical limiting (OL) property was studied. The results suggest that the nonlinear properties investigated for present chalcones are comparable with some of the reported chalcone derivatives and can be desirable for NLO applications.

  12. Electrically controlled magnetism

    Science.gov (United States)

    Binek, Ch.; He, Xi; Wang, Yi; Sahoo, S.

    2008-08-01

    Manipulation of magnetically ordered states by electrical means is a promising approach towards novel spintronics devices. We report on the electric control of surface magnetism in Cr2O3 thin films and uniaxial anisotropy in ferroelectric/ferromagnetic heterostructures, respectively. Artificial magnetoelectricity is realized in a BaTiO3/Fe heterostructure. Here, thermally induced coercivity changes of the Fe hysteresis loop are used to derive the stress imposed by the ferroelectric BaTiO3 substrate on the adjacent Fe film. Electrically induced coercivity changes give rise to a giant magnetoelectric susceptibility in the vicinity of the magnetic coercive field.

  13. Nonlinear Effects in High Electric Fields

    Science.gov (United States)

    1993-04-06

    Physical Review Letters (submitted...Kreuzer’ and X. Ye 2 Submitted to Physical Review Letters ’Fitz-Haber Institut der Max-Planck- Gesellschaft Fradayweg 4-6, 1000 Berlin 33, Germany and...Room 318 Columbus, OHk 43,22-1194 11. SUPPLEMENTARY NOTES Submitted to Physical Review Letters 12a. DISTR:9UTION AVAILA-I;LTY STATEMENT 12b.

  14. Dynamics of glass-forming liquids. XX. Third harmonic experiments of non-linear dielectric effects versus a phenomenological model

    Science.gov (United States)

    Kim, Pyeongeun; Young-Gonzales, Amanda R.; Richert, Ranko

    2016-08-01

    We have re-measured the third harmonic non-linear dielectric response of supercooled glycerol using zero-bias sinusoidal electric fields, with the aim of comparing the resulting susceptibilities with a phenomenological model of non-linear dielectric responses. In the absence of known chemical effects in this liquid, the present model accounts for three sources of non-linear behavior: dielectric saturation, field induced entropy reduction, and energy absorption from the time dependent field. Using parameters obtained from static high field results, the present model reproduces the characteristic features observed in the third harmonic susceptibility spectra: a low frequency plateau originating from dielectric saturation and a peak positioned below the loss peak frequency whose amplitude increases with decreasing temperature. Semi-quantitative agreement is achieved between experiment and the present model, which does not involve spatial scales or dynamical correlations explicitly. By calculating the three contributions separately, the model reveals that the entropy effect is the main source of the "hump" feature of this third harmonic response.

  15. Nonlinear Acoustic Characterization of Targets

    Science.gov (United States)

    2008-01-01

    matching so as to transmit as much energy as possible into the test object. In addition to this limitation, ultrasound is only able to measure range by...metric arrays for standoff analysis of targets. In 1982, Yoneyama[4] discussed the nonlinear interaction of ultrasound with air as the “scattering of... cavitation effect. This produces a rectification at higher frequencies just as a diode does in an electrical circuit. This natural rectification allows

  16. Influence of Bi doping on the electrical and optical properties of ZnO thin films

    Science.gov (United States)

    Abed, S.; Bougharraf, H.; Bouchouit, K.; Sofiani, Z.; Derkowska-Zielinska, B.; Aida, M. S.; Sahraoui, B.

    2015-09-01

    Transparent conducting ZnO doped Bi thin films were prepared on glass substrates by ultrasonic spray method. The influence of Bi doping concentration on the structural, optical and nonlinear optical properties of ZnO thin films was studied. The X-ray diffraction (XRD) analysis show that all studied films have a hexagonal wurtzite structure and are preferentially oriented along the c-axis from substrate surface. Optical transmittance measurements show that all samples have average 80% transparency in the visible light. Optical band gap values range between 3.14 and 3.28 eV. ZnO film with 3 wt% of Bi showed the highest electrical conductivity. In addition, the second and third order nonlinear susceptibilities were determined and their values have been calculated.

  17. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  18. Nonlinear Dynamics

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    3.1 A Unified Nonlinear Feedback Functional Method for Study Both Control and Synchronization of Spatiotemporal Chaos Fang Jinqing Ali M. K. (Department of Physics, The University of Lethbridge,Lethbridge, Alberta T1K 3M4,Canada) Two fundamental questions dominate future chaos control theories.The first is the problem of controlling hyperchaos in higher dimensional systems.The second question has yet to be addressed:the problem of controlling spatiotemporal chaos in a spatiotemporal system.In recent years, control and synchronization of spatiotemporal chaos and hyperchaos have became a much more important and challenging subject. The reason for this is the control and synchronism of such behaviours have extensive and great potential of interdisciplinary applications, such as security communication, information processing, medicine and so on. However, this subject is not much known and remains an outstanding open.

  19. Nonlinear graphene plasmonics (Conference Presentation)

    Science.gov (United States)

    Cox, Joel D.; Marini, Andrea; Garcia de Abajo, Javier F.

    2016-09-01

    The combination of graphene's intrinsically-high nonlinear optical response with its ability to support long-lived, electrically tunable plasmons that couple strongly with light has generated great expectations for application of the atomically-thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Based on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation, we show that finite-size effects produce large contributions that increase the nonlinear response associated with plasmons in nanostructured graphene to significantly higher levels than previously thought, particularly in the case of Kerr-type optical nonlinearities. Motivated by this finding, we discuss and compare saturable absorption in extended and nanostructured graphene, with or without plasmonic enhancement, within the context of passive mode-locking for ultrafast lasers. We also explore the possibility of high-harmonic generation in doped graphene nanoribbons and nanoislands, where illumination by an infrared pulse of moderate intensity, tuned to a plasmon resonance, is predicted to generate light at harmonics of order 13 or higher, extending over the visible and UV regimes. Our atomistic description of graphene's nonlinear optical response reveals its complex nature in both extended and nanostructured systems, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.

  20. 具有多分界面的非线性电路中的非光滑分岔%Non-smooth bifurcation in nonlinear electrical circuits with multiple switching boundaries

    Institute of Scientific and Technical Information of China (English)

    张银; 毕勤胜

    2011-01-01

    本文分析了具有多分界面的非线性电路在不同时间尺度下的快慢动力学行为.在一定的参数条件下,系统的周期解为簇发解,表现出明显的快慢效应.根据状态变量变化的快慢,把全系统划分为快子系统和慢子系统两组.根据快慢分析法将慢变量看作快子系统的控制参数,分析了快子系统的平衡点在向量场不同区域内的稳定性.非光滑系统的分岔与向量场的分界面密切相关,对于具有快慢效应的两时间尺度非光滑系统,快子系统的分岔则取决于分界面两侧平衡点的性质.通过在临界面引入广义Jacobi矩阵,讨论了快子系统非光滑分岔的类型,即多次穿越分岔(mul%The fast-slow dynamics of a nonlinear electrical circuit with muhiple switching boundaries is investigated in this paper. For suitable parameters, periodic bursting phenomenon can be observed. The full system can be divided into slow and fast subsystems because of the difference between variational speeds of state variables. According to the slow-fast analysis, the slow variable, which modulates the behavior of the system, can be treated as a quasi-static bifurcation parameter for the fast subsystem to analyze the stabilities of equilibrium points in different areas of vector field. The bifurcation is dependent on the switching boundary in the vector field. In particular, for the two-time scale non-smooth system with fast-slow effect, the bifurcation of fast subsystem is determined by the characteristics of equilibrium points on both sides of the switching boundary. Furthermore, the generalized Jacobian matrix at the non-smooth boundary is introduced to explore the type of non-smooth bifurcation (i. e. , multiple crossing bifurcation) in the fast subsystem, which can also be used to explain the mechanism for symmetric bursting phenomenon of the full system.

  1. When electric charge becomes also magnetic

    CERN Document Server

    Adorno, Tiago C; Shabad, Anatoly E

    2015-01-01

    In nonlinear electrodynamics, QED included, we find a static solution to the field equations with an electric charge as its source, which is comprised of homogeneous parallel magnetic and electric fields, and a radial spherically-nonsymmetric long-range magnetic field, whose magnetic charge is proportional to the electric charge and also depends on the homogeneous component of the solution.

  2. Photorefractive surface nonlinearly chirped waveguide arrays

    Science.gov (United States)

    Qi, Pengfei; Feng, Tianrun; Wang, Sainan; Han, Rong; Hu, Zhijian; Zhang, Tianhao; Tian, Jianguo; Xu, Jingjun

    2016-05-01

    We report an alternate type of nonlinear waveguides, photorefractive surface nonlinearly chirped waveguide arrays, which can be directly induced by photorefractive surface waves in virtue of diffusion and drift nonlinearities. The amplitude of such nonlinearly chirped waveguide arrays has an apodized envelope owing to the diffusion nonlinearity. The refractive-index change of the apodized tails converges to a nonzero value which can be handily adjusted by an external electric field. Moreover, the chirp parameters such as amplitude, sign (positive or negative), and initial position can be conveniently adjusted by an external electric field, background illumination, incident beam, etc. Then the guided-wave properties of this type of waveguide arrays are analyzed by using the transfer matrix method. Owing to the flexible tail and the nonlinear chirp, the dispersion curves of the index-guided modes can be tailored by an external electric field and the dispersion curves of ordinary and extraordinary Bragg guided modes couple, intertwine, and anticross with each other. Meanwhile, there is a clear "competition" in the coupling hybrid mode near anticrossing.

  3. MR susceptibility imaging

    Science.gov (United States)

    Duyn, Jeff

    2013-04-01

    This work reviews recent developments in the use of magnetic susceptibility contrast for human MRI, with a focus on the study of brain anatomy. The increase in susceptibility contrast with modern high field scanners has led to novel applications and insights into the sources and mechanism contributing to this contrast in brain tissues. Dedicated experiments have demonstrated that in most of healthy brain, iron and myelin dominate tissue susceptibility variations, although their relative contribution varies substantially. Local variations in these compounds can affect both amplitude and frequency of the MRI signal. In white matter, the myelin sheath introduces an anisotropic susceptibility that has distinct effects on the water compartments inside the axons, between the myelin sheath, and the axonal space, and renders their signals dependent on the angle between the axon and the magnetic field. This offers opportunities to derive tissue properties specific to these cellular compartments.

  4. Retrieval of high-order susceptibilities of nonlinear metamaterials

    Science.gov (United States)

    Wang, Zhi-Yu; Qiu, Jin-Peng; Chen, Hua; Mo, Jiong-Jiong; Yu, Fa-Xin

    2017-08-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61401395 and 61604128), the Scientific Research Fund of Zhejiang Provincial Education Department, China (Grant No. Y201533913), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2016QNA4025 and 2016QN81002).

  5. An Automated Ac Susceptibility Set up Fabricated Using a Closed-Cycle Helium Refrigerator

    CERN Document Server

    Kundu, S

    2011-01-01

    We have described here the design and operation of an automated ac susceptibility set up using a closed cycle helium refrigerator. This set up is useful for measuring linear and nonlinear magnetic susceptibilities of various magnetic materials. The working temperature range is 2 K to 300 K. The overall sensitivity of the set up is found to be 10-3 emu.

  6. Nonlinear Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...

  7. Third Conference on nonlinear science and complexity (NSC)

    CERN Document Server

    Machado, José; Baleanu, Dumitru; Dynamical Systems and Methods

    2012-01-01

    Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles,analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers:\\ Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics. Mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies. Nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial l...

  8. Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India); Department of Applied Sciences (Physics), UIET, Panjab University, Chandigarh-160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India)

    2015-06-24

    CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n{sub 2}) and nonlinear susceptibility (χ{sup 3}) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n{sub 2} and β and is found to be of the order of 10{sup −7} – 10{sup −8} m{sup 2}/V{sup 2}. The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect.

  9. Third-Order Nonlinear Optical Behavior of Novel Polythiophene Derivatives Functionalized with Disperse Red 19 Chromophore

    Directory of Open Access Journals (Sweden)

    Marilú Chávez-Castillo

    2015-01-01

    Full Text Available Two copolymers of 3-alkylthiophene (alkyl = hexyl, octyl and a thiophene functionalized with disperse red 19 (TDR19 as chromophore side chain were synthesized by oxidative polymerization. The synthetic procedure was easy to perform, cost-effective, and highly versatile. The molecular structure, molecular weight distribution, film morphology, and optical and thermal properties of these polythiophene derivatives were determined by NMR, FT-IR, UV-Vis GPC, DSC-TGA, and AFM. The third-order nonlinear optical response of these materials was performed with nanosecond and femtosecond laser pulses by using the third-harmonic generation (THG and Z-scan techniques at infrared wavelengths of 1300 and 800 nm, respectively. From these experiments it was observed that although the TRD19 incorporation into the side chain of the copolymers was lower than 5%, it was sufficient to increase their nonlinear response in solid state. For instance, the third-order nonlinear electric susceptibility (χ3 of solid thin films made of these copolymers exhibited an increment of nearly 60% when TDR19 incorporation increased from 3% to 5%. In solution, the copolymers exhibited similar two-photon absorption cross sections σ2PA with a maximum value of 8545 GM and 233 GM (1 GM = 10−50 cm4 s per repeated monomeric unit.

  10. Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity

    Science.gov (United States)

    Bache, Morten; Lavrinenko, Andrei V.

    2017-09-01

    Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still under investigation. We consider the propagation of pulses in ultrathin gold strip waveguides, modeled by the nonlinear Schrödinger equation. The nonlinear response of gold is accounted for by the two-temperature model, revealing it as a delayed nonlinearity intrinsic in gold. The consequence is that the measured nonlinearities are strongly dependent on pulse duration. This issue has so far only been addressed phenomenologically, but we provide an accurate estimate of the quantitative connection as well as a phenomenological theory to understand the enhanced nonlinear response as the gold thickness is reduced. In comparison with previous works, the analytical model for the power-loss equation has been improved, and can be applied now to cases with a high laser peak power. We show new fits to experimental data from the literature and provide updated values for the real and imaginary parts of the nonlinear susceptibility of gold for various pulse durations and gold layer thicknesses. Our simulations show that the nonlinear loss is inhibiting efficient nonlinear interaction with low-power laser pulses. We therefore propose to design waveguides suitable for the mid-IR, where the ponderomotive instantaneous nonlinearity can dominate over the delayed hot-electron nonlinearity and provide a suitable plasmonics platform for efficient ultrafast nonlinear optics.

  11. Nonlinear singular vectors and nonlinear singular values

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel concept of nonlinear singular vector and nonlinear singular value is introduced, which is a natural generalization of the classical linear singular vector and linear singular value to the nonlinear category. The optimization problem related to the determination of nonlinear singular vectors and singular values is formulated. The general idea of this approach is demonstrated by a simple two-dimensional quasigeostrophic model in the atmospheric and oceanic sciences. The advantage and its applications of the new method to the predictability, ensemble forecast and finite-time nonlinear instability are discussed. This paper makes a necessary preparation for further theoretical and numerical investigations.

  12. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  13. Nonlinear conductivity and the ringdown of currents in metallic holography

    CERN Document Server

    Withers, Benjamin

    2016-01-01

    We study the electric and heat current response resulting from an electric field quench in a holographic model of momentum relaxation at nonzero charge density. After turning the electric field off, currents return to equilibrium as governed by the vector quasi-normal modes of the dual black brane, whose spectrum depends qualitatively on a parameter controlling the strength of inhomogeneity. We explore the dynamical phase diagram as a function of this parameter, showing that signatures of incoherent transport become identifiable as an oscillatory ringdown of the heat current. We also study nonlinear conductivity by holding the electric field constant. For small electric fields a balance is reached between the driving electric field and the momentum sink -- a steady state described by DC linear response. For large electric fields Joule heating becomes important and the black branes exhibit significant time dependence. In a regime where the rate of temperature increase is small, the nonlinear electrical conduct...

  14. Nonlinear optical characterization of colloidal solutions containing dye and Ag2S quantum dot associates

    Science.gov (United States)

    Boltaev, G. S.; Sobirov, B.; Reyimbaev, S.; Sherniyozov, H.; Usmanov, T.; Smirnov, M. S.; Ovchinnikov, O. V.; Grevtseva, I. G.; Kondratenko, T. S.; Shihaliev, H. S.; Ganeev, R. A.

    2016-12-01

    We analyzed the nonlinear absorption and refraction in the dyes and silver sulfide quantum dot (QD) associates. The nonlinear refractive indices, nonlinear absorption coefficients, and third-order nonlinear susceptibilities of the Ag2S QDs associated with various dyes (xanthenes, thiazines, carbocyanines, quinolines) were measured. The influence of dyes nonlinearities on the whole pattern of the z-scans of colloidal QD solutions, as well as the application of different molar fractions of dyes and intensities of probe radiation (40 ps, 1064 nm and 532 nm), were analyzed and discussed in the contest of the influence of various nonlinear absorption processes.

  15. Discrete dissipative localized modes in nonlinear magnetic metamaterials.

    Science.gov (United States)

    Rosanov, Nikolay N; Vysotina, Nina V; Shatsev, Anatoly N; Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S

    2011-12-19

    We analyze the existence, stability, and propagation of dissipative discrete localized modes in one- and two-dimensional nonlinear lattices composed of weakly coupled split-ring resonators (SRRs) excited by an external electromagnetic field. We employ the near-field interaction approach for describing quasi-static electric and magnetic interaction between the resonators, and demonstrate the crucial importance of the electric coupling, which can completely reverse the sign of the overall interaction between the resonators. We derive the effective nonlinear model and analyze the properties of nonlinear localized modes excited in one-and two-dimensional lattices. In particular, we study nonlinear magnetic domain walls (the so-called switching waves) separating two different states of nonlinear magnetization, and reveal the bistable dependence of the domain wall velocity on the external field. Then, we study two-dimensional localized modes in nonlinear lattices of SRRs and demonstrate that larger domains may experience modulational instability and splitting.

  16. Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of L-methionine admixtured D-mandelic acid single crystal: A promising material for nonlinear optical applications

    Science.gov (United States)

    Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia

    2017-08-01

    A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.

  17. Theoretical and experimental investigations on the nonlinear optical properties of gold(III) dithiolene complexes

    Science.gov (United States)

    Guezguez, I.; Karakas, A.; Iliopoulos, K.; Derkowska-Zielinska, B.; El-Ghayoury, A.; Ranganathan, A.; Batail, P.; Migalska-Zalas, A.; Sahraoui, B.; Karakaya, M.

    2013-11-01

    Degenerate four-wave mixing (DFWM) experiments have been performed to determine the third-order nonlinear optical (NLO) susceptibilities (χ(3)) of gold(III) maleimide dithiolate tetraphenylphosphonium, (PPh4)[Au(midt)2], (Au-P) and gold(III) maleimide dithiolate melamine melaminium hybrid solvate, (C3N6H6)(CNH7+)[Au(midt)2]-·2DMF·2H2O, (Au-Mel). Ab-initio quantum mechanical calculations (time-dependent Hartree-Fock (TDHF) method) of Au-P and Au-Mel have been carried out to compute the electric dipole moment (μ), the dispersion-free and frequency-dependent dipole polarizability (α) and the second hyperpolarizability (γ) values. These theoretical calculations are in good agreement with the experimentally obtained results by the DFWM technique. All the investigations show clearly the effect played by the counter ion on the resulting NLO properties of the two gold complexes.

  18. Trends in Susceptibility to Smoking by Race and Ethnicity.

    Science.gov (United States)

    El-Toukhy, Sherine; Sabado, Melanie; Choi, Kelvin

    2016-11-01

    Examine racial/ethnic differences in smoking susceptibility among US youth nonsmokers over time and age. We used nationally representative samples of youths who never tried cigarettes (N = 143 917; age, 9-21, mean, 14.01 years) from National Youth Tobacco Survey, 1999 to 2014. We used time-varying effect modeling to examine nonlinear trends in smoking susceptibility adjusted for demographics, living with smokers, and exposure to tobacco advertising. Compared with non-Hispanic whites (NHWs), Hispanics were more susceptible to smoking from 1999 to 2014 (highest adjusted odds ratio [aOR], 1.67 in 2012). Non-Hispanic blacks were less susceptible to smoking than NHWs from 2000 to 2009 (lowest aOR, 0.80 in 2003-2005). Non-Hispanic Asian Americans were less susceptible to smoking from 2000 to 2009 (aOR, 0.83), after which they did not differ from NHWs. Other non-Hispanics were more susceptible to smoking than NHWs from 2012 to 2014 (highest aOR, 1.40 in 2014). Compared with NHWs, non-Hispanic blacks and other non-Hispanics were more susceptible to smoking at ages 11 to 13 (highest aOR, 1.22 at age 11.5 ) and 12 to 14 (highest aOR, 1.27 at age 12 ), respectively. Hispanics were more susceptible to smoking throughout adolescence peaking at age 12 (aOR, 1.60) and age 16.5 (aOR, 1.46). Non-Hispanic Asian Americans were less susceptible to smoking at ages 11 to 15 (lowest aOR, 0.76 at ages 11-13 ). Racial/ethnic disparities in smoking susceptibility persisted over time among US youth nonsmokers, especially at ages 11 to 13 . Interventions to combat smoking susceptibility are needed. Copyright © 2016 by the American Academy of Pediatrics.

  19. A Photonic Basis for Deriving Nonlinear Optical Response

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2009-01-01

    Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…

  20. Freezing of nonlinear Bloch oscillations in the generalized discrete nonlinear Schrödinger equation.

    Science.gov (United States)

    Cao, F J

    2004-09-01

    The dynamics in a nonlinear Schrödinger chain in a homogeneous electric field is studied. We show that discrete translational invariant integrability-breaking terms can freeze the Bloch nonlinear oscillations and introduce new faster frequencies in their dynamics. These phenomena are studied by direct numerical integration and through an adiabatic approximation. The adiabatic approximation allows a description in terms of an effective potential that greatly clarifies the phenomena.

  1. Intensity-dependent change in polarization state of light in normal incidence on an isotropic nonlinear Kerr medium

    Indian Academy of Sciences (India)

    Hari Prakash; Devendra K Singh

    2010-03-01

    It is shown that all optical polarization states of light except plane and circular polarization states undergo an intensity-dependent change in normal incidence of light in an isotropic nonlinear Kerr medium. This effect should be detectable and we propose an experiment for detecting nonlinear susceptibility involved in that part of nonlinear polarization, which depends on the polarization state of light also.

  2. Single-cycle nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.

    2008-11-05

    Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).

  3. NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS

    Institute of Scientific and Technical Information of China (English)

    PENG SHIGE

    2005-01-01

    This paper deals with nonlinear expectations. The author obtains a nonlinear generalization of the well-known Kolmogorov's consistent theorem and then use it to construct filtration-consistent nonlinear expectations via nonlinear Markov chains. Compared to the author's previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probability measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations.The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures.

  4. Structure and second-order nonlinearity of GeS2-Ga2S3-X2S3 (X=P,As,Sb) chalcogenide glasses

    Institute of Scientific and Technical Information of China (English)

    GONG Yue-qiu; GUO Hai-tao; ZHAO Xiu-jian

    2006-01-01

    To find new chalcogenide glass possessing larger second-order non-linearity,glasses with compositions Ge-Ga-X-S (X=P,As,Sb) were prepared via melt quenching technique. The amorphous nature of all the compositions of the as-quenched glasses was confirmed by X-ray diffraction(XRD). The glassy thermal properties of the as-quenched glasses were established by differential thermal analyses(DTA). The glass structure was studied by RAMAN spectra and the second order nonlinearity was studied by the Maker Fringe method after the electron beam poling(EBP) and electric/temperature field poling(ETFP) respectively. Additions of various pnicogen atoms into the Ge-Ga-S glasses lead to the difference in the second order nonlinearity of the glass. It's found that glasses with different structures result in different SHG intensities,and even more,a large second order nonlinear susceptibility c(2) of about 9 pm/V was obtained for all the glasses and the reasons for such a large susceptibility were analyzed.

  5. Genetic susceptibility of periodontitis

    NARCIS (Netherlands)

    Laine, M.L.; Crielaard, W.; Loos, B.G.

    2012-01-01

    In this systematic review, we explore and summarize the peer-reviewed literature on putative genetic risk factors for susceptibility to aggressive and chronic periodontitis. A comprehensive literature search on the PubMed database was performed using the keywords ‘periodontitis’ or ‘periodontal dise

  6. Nonlinear transport in a two dimensional holographic superconductor

    Science.gov (United States)

    Zeng, Hua Bi; Tian, Yu; Fan, Zhe Yong; Chen, Chiang-Mei

    2016-06-01

    The problem of nonlinear transport in a two-dimensional superconductor with an applied oscillating electric field is solved by the holographic method. The complex conductivity can be computed from the dynamics of the current for both the near- and nonequilibrium regimes. The limit of weak electric field corresponds to the near-equilibrium superconducting regime, where the charge response is linear and the conductivity develops a gap determined by the condensate. A larger electric field drives the system into a superconducting nonequilibrium steady state, where the nonlinear conductivity is quadratic with respect to the electric field. Increasing the amplitude of the applied electric field results in a far-from-equilibrium nonsuperconducting steady state with a universal linear conductivity of one. In the lower temperature regime we also find chaotic behavior of the superconducting gap, which results in a nonmonotonic field-dependent nonlinear conductivity.

  7. Nonlinear Transport in a Two Dimensional Holographic Superconductor

    CERN Document Server

    Zeng, Hua Bi; Fan, Zhe Yong; Chen, Chiang-Mei

    2016-01-01

    The problem of nonlinear transport in a two dimensional superconductor with an applied oscillating electric field is solved by the holographic method. The complex conductivity can be computed from the dynamics of the current for both near- and non-equilibrium regimes. The limit of weak electric field corresponds to the near equilibrium superconducting regime, where the charge response is linear and the conductivity develops a gap determined by the condensate. A larger electric field drives the system into a superconducting non-equilibrium steady state, where the nonlinear conductivity is quadratic with respect to the electric field. Keeping increasing the amplitude of applied electric field results in a far-from-equilibrium non-superconducting steady state with a universal linear conductivity of one. In lower temperature regime we also find chaotic behavior of superconducting gap, which results in a non-monotonic field dependent nonlinear conductivity.

  8. Enhanced Kerr electro-optic nonlinearity through cascaded Pockels effects

    CERN Document Server

    Li, Guang-Zhen; Jiang, Hao-Wei; Chen, Xian-Feng

    2015-01-01

    We demonstrated a large enhancement of Kerr electro-optic nonlinearity through cascaded Pockels effects in a domain inversion ferroelectric crystal. We designed a structure that can implement the cascaded Pockels effects and second-harmonic generation simultaneously. The energy coupling between the fundamental lights of different polarizations led to a large nonlinear phase shift, and thus an effective electro-optic nonlinear refractive index. The effective nonlinearity can be either positive or negative, causing the second-harmonic spectra to move towards the coupling center, which in turn, offered us a way to measure the effective electro-optic nonlinear refractive index. The corresponding enhanced Kerr electro-optic nonlinearity is more than three orders of magnitude higher than the intrinsic value. These results open a door to manipulate the nonlinear phase by applying external electric field instead of light intensity in noncentrosymmetric crystals.

  9. Silicon Nanoridge Array Waveguides for Nonlinear and Sensing Applications

    CERN Document Server

    Puckett, Matthew W; Vallini, Felipe; Shahin, Shiva; Monifi, Faraz; Barrina, Peter N; Mehravar, Soroush; Kieu, Khanh; Fainman, Yeshaiahu

    2015-01-01

    We fabricate and characterize waveguides composed of closely spaced and longitudinally oriented silicon ridges etched into silicon-on-insulator wafers. Through both guided mode and bulk measurements, we demonstrate that the patterning of silicon waveguides on such a deeply subwavelength scale is desirable for nonlinear and sensing applications alike. The proposed waveguide geometry simultaneously exhibits comparable propagation loss to similar schemes proposed in literature, an enhanced effective third-order nonlinear susceptibility, and high sensitivity to perturbations in its environment.

  10. Molecular and crystal design of nonlinear optical organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Suponitsky, Kirill Yu; Antipin, Mikhail Yu [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation); Timofeeva, Tatiana V [Department of Chemistry, New Mexico Highlands University (United States)

    2006-06-30

    The results of theoretical and experimental studies on the second-order molecular and crystal nonlinear optical susceptibilities of organic and several classes of organoelement compounds are summarised. Modern methods used in these studies are briefly characterised, their advantages and drawbacks are outlined as regards their application to the systematic search for efficient nonlinear optical materials. Recent achievements and the main challenges in the field are thoroughly discussed and an optimum algorithm of the design of such materials is proposed.

  11. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  12. Effective ac response in weakly nonlinear composites

    Energy Technology Data Exchange (ETDEWEB)

    Wei Enbo [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Yang Zidong [College of Power Engineering, University of Shanghai Science and Technology, Shanghai 200093 (China); Gu Guoqing [Information College of Science and Technology, East China Normal University, Shanghai 200062 (China)

    2004-01-07

    The perturbation method is developed to deal with the problem of determining the effective nonlinear conductivity of Kerr-like nonlinear media under an external ac electric field. As an example, we have considered the cylindrical inclusion embedded in a host under the sinusoidal external field E{sub 1} sin (<{omega}t) + E{sub 3} sin (3<{omega}t) with frequencies{omega} and 3{omega}. The potentials of composites at higher harmonics are derived in both local inclusion particle and host regions. The effective responses of bulk nonlinear composites at basic frequency and harmonics are given for cylindrical composites in the dilute limit. Moreover, the relationships between the nonlinear effective responses at the basic frequency and the third harmonics are derived.

  13. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials

    CERN Document Server

    Seren, Huseyin R; Keiser, George R; Maddox, Scott J; Zhao, Xiaoguang; Fan, Kebin; Bank, Seth R; Zhang, Xin; Averitt, Richard D

    2015-01-01

    The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector, and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field induced intervalley scattering resulting in a reduced carrier mobility thereby damping the plasmonic response. We demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide f...

  14. Modeling and compensation of transmitter nonlinearity in coherent optical OFDM.

    Science.gov (United States)

    Amiralizadeh, Siamak; Nguyen, An T; Rusch, Leslie A

    2015-10-05

    We present a comprehensive study of nonlinear distortions from an optical OFDM transmitter. Nonlinearities are introduced by the combination of effects from the digital-to-analog converter (DAC), electrical power amplifier (PA) and optical modulator in the presence of high peak-to-average power ratio (PAPR). We introduce parameters to quantify the transmitter nonlinearity. High input backoff avoids OFDM signal compression from the PA, but incurs high penalties in power efficiency. At low input backoff, common PAPR reduction techniques are not effective in suppressing the PA nonlinear distortion. A bit error distribution investigation shows a technique combining nonlinear predistortion with PAPR mitigation could achieve good power efficiency by allowing low input backoff. We use training symbols to extract the transmitter nonlinear function. We show that piecewise linear interpolation (PLI) leads to an accurate transmitter nonlinearity characterization. We derive a semi-analytical solution for bit error rate (BER) that validates the PLI approximation accurately captures transmitter nonlinearity. The inverse of the PLI estimate of the nonlinear function is used as a predistorter to suppress transmitter nonlinearity. We investigate performance of the proposed scheme by Monte Carlo simulations. Our simulations show that when DAC resolution is more than 4 bits, BER below forward error correction limit of 3.8 × 10(-3) can be achieved by using predistortion with very low input power backoff for electrical PA and optical modulator.

  15. Nonlinear I-V characteristics of nanoparticle compacts and nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Herth, Simone [Rensselaer Polytechnic Institute, Troy, NY (United States); Bielefeld University, Bielefeld (Germany); Wang, Xiaoping; Hugener, Teresa; Schadler, Linda; Siegel, Richard [Rensselaer Polytechnic Institute, Troy, NY (United States); Hillborg, Henrik; Auletta, Tommaso [ABB AB, Corporate Research, Schweden (Sweden)

    2007-07-01

    Materials with nonlinear I-V characteristics are commonly used as field grading materials. In many cases, the non-linearity is achieved through the addition of equiaxed fillers to a polymer matrix. These composite field grading materials are optimized in terms of nonlinearity, conductivity, and breakdown strength. One limitation in designing new field grading materials is a robust understanding of the relationship between powder morphology, composition and electrical characteristics of the powder, as well as a robust understanding of the relationship between powder conductivity and non-linearity and composite non-linearity. In this work, treatment of ZnO powder with a SnF{sub 2} solution resulted in a powder that yielded highly non-linear behavior. The highest non-linearity was achieved for powders with at least two different phases and a rough surface, as indicated by transmission electron micrographs. In contrast, the non-linearity of the nanocomposite conductivity is mainly determined by the conductivity of the nanofiller. The electrical behavior of the non-linear powder can be understood by a polarization of the nanoparticles at the interfaces, whereas the nonlinearity of the nanocomposites can be explained by a tunnelling mechanism between two particles.

  16. Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, C.N.; Feldman, L.C.; Gonella, F.; Haglund, R.F.; Luepke, G.; Magruder, R.H.; Mazzoldi, P.; Osborne, D.H.; Solis, J.; Zuhr, R.A.

    1999-11-01

    Complex nonlinear optical materials comprising elemental, compound or alloy quantum dots embedded in appropriate dielectric or semiconducting hosts may be suitable for deployment in photonic devices. Ion implantation, ion exchange followed by ion implantation, and pulsed laser deposition have ail been used to synthesize these materials. However, the correlation between the parameters of energetic-beam synthesis and the nonlinear optical properties is still very rudimentary when one starts to ask what is happening at nanoscale dimensions. Systems integration of complex nonlinear optical materials requires that the mesoscale materials science be well understood within the context of device structures. We discuss the effects of beam energy and energy density on quantum-dot size and spatial distribution, thermal conductivity, quantum-dot composition, crystallinity and defects - and, in turn, on the third-order optical susceptibility of the composite material. Examples from recent work in our laboratories are used to illustrate these effects.

  17. Theory and design of nonlinear metamaterials

    Science.gov (United States)

    Rose, Alec Daniel

    If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers

  18. Geometrically nonlinear behavior of piezoelectric laminated plates

    Science.gov (United States)

    Rabinovitch, Oded

    2005-08-01

    The geometrically nonlinear behavior of piezo-laminated plates actuated with isotropic or anisotropic piezoelectric layers is analytically investigated. The analytical model is derived using the variational principle of virtual work along with the lamination and plate theories, the von Karman large displacement and moderate rotation kinematic relations, and the anisotropic piezoelectric constitutive laws. A solution strategy that combines the approach of the method of lines, the advantages of the finite element concept, and the variational formulation is developed. This approach yields a set of nonlinear ordinary differential equations with nonlinear boundary conditions, which are solved using the multiple-shooting method. Convergence and verification of the model are examined through comparison with linear and nonlinear results of other approximation methods. The nonlinear response of two active plate structures is investigated numerically. The first plate is actuated in bending using monolithic piezoceramic layers and the second one is actuated in twist using macro-fiber composites. The results quantitatively reveal the complicated in-plane stress state associated with the piezoelectric actuation and the geometrically nonlinear coupling of the in-plane and out-of-plane responses of the plate. The influence of the nonlinear effects ranges from significant stiffening in certain combinations of electrical loads and boundary conditions to amplifications of the induced deflections in others. The paper closes with a summary and conclusions.

  19. Kramers-Kronig relations and sum rules in nonlinear optical spectroscopy.

    Science.gov (United States)

    Peiponen, Kai-Erik; Lucarini, Valerio; Saarinen, Jarkko J; Vartiainen, Erik

    2004-05-01

    The full potential of the Kramers-Kronig relations and sum rules for nonlinear susceptibilities has unfortunately drawn relatively little attention in nonlinear optical spectra analysis. In this feature article a simple treatment of an anharmonic oscillator model in description of the nonlinear susceptibility of media and holomorphic properties of the nonlinear susceptibility were utilized. Using such concepts, conventional Kramers-Kronig, multiply-subtractive Kramers-Kronig, and generalized Kramers-Kronig dispersion relations can be derived. We demonstrate how in practice the variety of different Kramers-Kronig relations mentioned above, as well as various sum rules, can be applied in nonlinear optical spectra analysis. As an example we treat the third-harmonic wave generation spectrum from a polymer.

  20. Electricity Customers

    Science.gov (United States)

    This page discusses key sectors and how they use electricity. Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity.

  1. The 3rd-order nonlinearity of bacteriorhodopsin by four-wave mixing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 3rd-order nonlinear optical susceptibility X(3) and the response time of the light-transducing biomolecule bacteriorhodopsin were measured with the four-wave mixing technique and a picosecond frequency-doubled Nd:YAG laser(532nm).The X(3) and the response time measured are 10-9 esu and 20 ps,respectively.The possible mechanism for generating the 3rd-order nonlinear optical susceptibility X(3) and response time were discussed.

  2. Nonequilibrium charge susceptibility and dynamical conductance: identification of scattering processes in quantum transport.

    Science.gov (United States)

    Ness, H; Dash, L K

    2012-03-23

    We calculate the nonequilibrium charge transport properties of nanoscale junctions in the steady state and extend the concept of charge susceptibility to the nonequilibrium conditions. We show that the nonequilibrium charge susceptibility is related to the nonlinear dynamical conductance. In spectroscopic terms, both contain the same features versus applied bias when charge fluctuation occurs in the corresponding electronic resonances. However, we show that, while the conductance exhibits features at biases corresponding to inelastic scattering with no charge fluctuations, the nonequilibrium charge susceptibility does not. We suggest that measuring both the nonequilibrium conductance and charge susceptibility in the same experiment will permit us to differentiate between different scattering processes in quantum transport.

  3. Electrical solitons theory, design, and applications

    CERN Document Server

    Ricketts, David S

    2010-01-01

    The dominant medium for soliton propagation in electronics, nonlinear transmission line (NLTL) has found wide application as a testbed for nonlinear dynamics and KdV phenomena as well as for practical applications in ultra-sharp pulse/edge generation and novel nonlinear communication schemes in electronics. While many texts exist covering solitons in general, there is as yet no source that provides a comprehensive treatment of the soliton in the electrical domain.Drawing on the award winning research of Carnegie Mellon's David S. Ricketts, Electrical Solitons Theory, Design, and Applications i

  4. Genetic Susceptibility to Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sanja Kovacic

    2012-01-01

    Full Text Available Atherosclerosis is a complex multifocal arterial disease involving interactions of multiple genetic and environmental factors. Advances in techniques of molecular genetics have revealed that genetic ground significantly influences susceptibility to atherosclerotic vascular diseases. Besides further investigations of monogenetic diseases, candidate genes, genetic polymorphisms, and susceptibility loci associated with atherosclerotic diseases have been identified in recent years, and their number is rapidly increasing. This paper discusses main genetic investigations fields associated with human atherosclerotic vascular diseases. The paper concludes with a discussion of the directions and implications of future genetic research in arteriosclerosis with an emphasis on prospective prediction from an early age of individuals who are predisposed to develop premature atherosclerosis as well as to facilitate the discovery of novel drug targets.

  5. Analysis of nonlinear transient responses of piezoelectric resonators.

    Science.gov (United States)

    Hagiwara, Manabu; Takahashi, Seita; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki

    2011-09-01

    The electric transient response method is an effective technique to evaluate material constants of piezoelectric ceramics under high-power driving. In this study, we tried to incorporate nonlinear piezoelectric behaviors in the analysis of transient responses. As a base for handling the nonlinear piezoelectric responses, we proposed an assumption that the electric displacement is proportional to the strain without phase lag, which could be described by a real and constant piezoelectric e-coefficient. Piezoelectric constitutive equations including nonlinear responses were proposed to calculate transient responses of a piezoelectric resonator. The envelopes and waveforms of current and vibration velocity in transient responses observed in some piezoelectric ceramics could be fitted with the calculation including nonlinear responses. The procedure for calculation of mechanical quality factor Q(m) for piezoelectric resonators with nonlinear behaviors was also proposed.

  6. Multipolar interference for non-reciprocal nonlinear generation

    CERN Document Server

    Poutrina, Ekaterina

    2015-01-01

    We show that nonlinear multipolar interference allows achieving not only unidirectional, but also non-reciprocal nonlinear generation from a nanoelement, with the direction of the nonlinearly produced light decoupled from that of at least one or several of the excitation beams. Alternatively, it may allow inhibiting the specified nonlinear response in a nanoelement or in its periodic arrangement by reversing the direction of one of the pumps. The described phenomena exploit the fact that, contrary to the linear response case, nonlinear magneto-electric interference stems from a combination of additive and multiplicative processes and includes an interference between various terms within the electric and magnetic partial waves themselves. We demonstrate the introduced concept numerically using an example of a plasmonic dimer geometry with realistic material parameters.

  7. Plasmon resonance enhancement of nonlinear properties of amino acids

    Science.gov (United States)

    de Araujo, Renato E.; Rativa, Diego; Gomes, Anderson S. L.

    2007-02-01

    Here we analyze the influence of 9 nm (mean diameter) silver particles on the nonlinear properties of intrinsic cell molecules. A novel high sensitivity thermal managed eclipse Z-scan technique with a femtosecond laser system was used to analyze the nonlinear susceptibility of water solution of fluorescent and non-fluorescent amino acids (Tryptophan, Tyrosine, Phenylalanine, Proline and Histidine) with different concentration of silver nanoparticles. The generalized Maxwell Garnett model is used to explain the behavior of the measured nonlinear refractive index with the change of the nanoparticles concentration in the sample.

  8. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  9. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...

  10. Noncommutative Nonlinear Supersymmetry

    CERN Document Server

    Nishino, H; Nishino, Hitoshi; Rajpoot, Subhash

    2002-01-01

    We present noncommutative nonlinear supersymmetric theories. The first example is a non-polynomial Akulov-Volkov-type lagrangian with noncommutative nonlinear global supersymmetry in arbitrary space-time dimensions. The second example is the generalization of this lagrangian to Dirac-Born-Infeld lagrangian with nonlinear supersymmetry realized in dimensions D=2,3,4 and 6 (mod 8).

  11. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind P. Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..

  12. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind; P.; Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..

  13. Nonlinear optical properties of semiconductor nanocrystals

    Science.gov (United States)

    Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel

    1998-05-01

    This review is devoted to the description of recent experimental results concerning the nonlinear optical properties of semiconductor-doped glasses SDGs with particular emphasis on the regime in which the energy of the incident photon is smaller than the energy gap. A considerable theoretical and experimental effort has been devoted in the last 10years to the fundamental aspects of quantumconfined structures, which have properties somewhat intermediate between the bulk crystals and atoms or molecules. From this point of view, SDGs represent an easily available test system, and optical techniques have been a major diagnostic tool. Luminescence and absorption spectroscopy were extensively used to characterize the electronic states. The experiments aimed at the measurement of the real and imaginary parts of the third-order optical susceptibility of SDGs below the bandgap are described in some detail, and the results obtained with different techniques are compared. Besides the intrinsic fast nonlinearity due to bound electrons, SDGs may present a larger but much slower nonlinearity due to the free carriers generated by two-photon absorption. This implies that experiments have to be properly designed for separation of the two effects. In this article we stress the importance of a detailed structural characterization of the samples. Knowledge of the volume fraction occupied by the nanocrystals is necessary in order to derive from the experimental data the intrinsic nonlinearity and to compare it with the bulk nonlinearity. We discuss recent experiments in which the dependence of the intrinsic nonlinearity on the crystal size is derived by performing, on the samples, measurements of the real part and imaginary part of the nonlinear optical susceptibility and measurements of crystal size and volume fraction. Structural characterization is of interest also for a better understanding of the physical processes underlying the growth of crystallites in SDGs. The average size of

  14. 板带轧机机电传动系统参激非线性扭振鲁棒控制研究%Study on robust control for parametric excitation nonlinear torsional vibration of a strip-rolling mill's mechanical and electrical drive system

    Institute of Scientific and Technical Information of China (English)

    韩东颖; 时培明; 赵东伟

    2016-01-01

    While considering parametric excitation nonlinearity,uncertainty and load torque,the nonlinear torsional vibration dynamic model of a mechanical and electrical transmission system in a strip-rolling mill is built.The problem of the strip-rolling mill's motor-speed robust tracking and non-fragile control of the DC motor is studied.As the nonlinearity of the strip-rolling mill's mechanical and electrical drive system is translated into parameter uncertainty,the sufficient condition that lets the system attain quadratic stability and outside-disturbance attenuation is obtained using H∞theory,Lyapunov stability theory and the LMI method.In order to achieve the given speed-signal tracking and non-fragile control,a feedforward and compensatory controller is designed.The results of the real strip-rolling mill's simulation example verify the effectiveness of the proposed method,and the non-fragility of the controller is reflected as the controller's parameter robustness.This means that the effect of the torsional vibration non-fragile control of the strip-rolling mill's mechanical and electrical drive system can be fulfilled by choosing the parameters of the controller directly.%建立了含参激非线性、不确定性、负载转矩的轧机机电传动系统扭振动力学模型,研究了板带轧机电机速度鲁棒跟踪非脆弱控制问题。将板带轧机机电传动系统的非线性按参数不确定性处理,通过 H∞理论、Lyapunov 稳定性理论和线性矩阵不等式(LMI)方法得到了通过状态反馈使得系统满足二次稳定、抑制外界干扰的充分条件;为了实现给定速度信号跟踪非脆弱控制,设计了前馈补偿器。轧机实例仿真结果验证了方法的有效性,并发现控制器的非脆弱性表现为控制器参数的鲁棒性,即可以通过控制器参数的直接选取达到板带轧机机电传动系统扭振非脆弱控制效果。

  15. PBH tests for nonlinear systems

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2017-01-01

    Recently, concepts of nonlinear eigenvalues and eigenvectors are introduced. In this paper, we establish connections between the nonlinear eigenvalues and nonlinear accessibility/observability. In particular, we provide a generalization of Popov- Belevitch-Hautus (PBH) test to nonlinear accessibilit

  16. Study of plasmonic slot waveguides with a nonlinear metamaterial core: semi-analytical and numerical methods

    CERN Document Server

    Elsawy, Mahmoud M R

    2016-01-01

    Two distinct models are developed to investigate the transverse magnetic stationary solutions propagating in one-dimensional anisotropic nonlinear plasmonic structures made from a nonlinear metamaterial core of Kerr-type embedded between two semi-infinite metal claddings. The first model is semi-analytical, in which we assumed that the anisotropic nonlinearity depends only on the transverse component of the electric field and that the nonlinear refractive index modification is small compared to the linear one. This method allows us to derive analytically the field profiles and the nonlinear dispersion relations in terms of the Jacobi elliptical functions. The second model is fully numerical, it is based on the finite-element method in which all the components of the electric field are considered in the Kerr-type nonlinearity with no presumptions on the nonlinear refractive index change. Our finite-element based model is valid beyond weak nonlinearity regime and generalize the well-known single-component fixed...

  17. Nonlinear Pricing in Energy and Environmental Markets

    Science.gov (United States)

    Ito, Koichiro

    This dissertation consists of three empirical studies on nonlinear pricing in energy and environmental markets. The first investigates how consumers respond to multi-tier nonlinear price schedules for residential electricity. Chapter 2 asks a similar research question for residential water pricing. Finally, I examine the effect of nonlinear financial rewards for energy conservation by applying a regression discontinuity design to a large-scale electricity rebate program that was implemented in California. Economic theory generally assumes that consumers respond to marginal prices when making economic decisions, but this assumption may not hold for complex price schedules. The chapter "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing" provides empirical evidence that consumers respond to average price rather than marginal price when faced with nonlinear electricity price schedules. Nonlinear price schedules, such as progressive income tax rates and multi-tier electricity prices, complicate economic decisions by creating multiple marginal prices for the same good. Evidence from laboratory experiments suggests that consumers facing such price schedules may respond to average price as a heuristic. I empirically test this prediction using field data by exploiting price variation across a spatial discontinuity in electric utility service areas. The territory border of two electric utilities lies within several city boundaries in southern California. As a result, nearly identical households experience substantially different nonlinear electricity price schedules. Using monthly household-level panel data from 1999 to 2008, I find strong evidence that consumers respond to average price rather than marginal or expected marginal price. I show that even though this sub-optimizing behavior has a minimal impact on individual welfare, it can critically alter the policy implications of nonlinear pricing. The second chapter " How Do

  18. Nonlinear interaction of electromagnetic field with quantum plasma

    CERN Document Server

    Latyshev, A V

    2014-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures.

  19. Double-dark-resonance-enhanced Kerr nonlinearity in a single layer of graphene nanostructure

    Science.gov (United States)

    Solookinejad, Gh.; Panahi, M.; Ahmadi Sangachin, E.; Hossein Asadpour, Seyyed

    2016-08-01

    In this paper, a novel scheme is proposed for the giant enhanced Kerr nonlinearity in a single layer of graphene nanostructure based on quantum optics and nonlinear optical sciences. The linear and the nonlinear susceptibility of the monolayer graphene system are presented in details by using the density matrix method and perturbation theory. After deriving the equations of motion in the steady-state regime, we analytically solve the linear and nonlinear susceptibility of the system. Our numerical results show that the giant enhanced Kerr nonlinearity can be obtained in the double-dark-resonance condition with zero linear and nonlinear absorption. Our results may have potential applications in quantum information science in infrared and terahertz regimes.

  20. Nonlinear Dynamics of Ultrashort Long-Range Surface Plasmon Polariton Pulses in Gold Strip Waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Olivier, Nicolas

    2016-01-01

    We study experimentally and theoretically nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The nonlinear absorption of the plasmonic modes in the waveguides is measured with femtosecond pulses revealing a strong dependence of the third......-order nonlinear susceptibility of the gold core on the pulse duration and layer thickness. A comprehensive model for the pulse duration dependence of the third-order nonlinear susceptibility is developed on the basis of the nonlinear Schrödinger equation for plasmonic mode propagation in the waveguides....... The model accounts for the intrinsic delayed (noninstantaneous) nonlinearity of free electrons of gold as well as the thickness of the gold film and is experimentally verified. The obtained results are important for the development of active plasmonic and nanophotonic components....

  1. Nonlinear Optical Properties of Azo Dye Monolayers : The Effect of Tilt Angle on the Local Field

    NARCIS (Netherlands)

    Cnossen, Gerard; Drabe, Karel E.; Wiersma, Douwe A.; Schoondorp, Monique A.; Schouten, Arend Jan; Hulshof, Johannes; Feringa, Ben L.

    1993-01-01

    We report on the second-order nonlinear optical susceptibility chi(2)(2omega,omega,omega) of dye-doped Langmuir-Blodgett monolayers. Chi(2) is found to exhibit a nonlinear dependence on surface density, which is attributed to microscopic local-fields. In order to calculate the microscopic local-fiel

  2. The Synthesis of Third-order Optical Nonlinear Organic Polyheterocyclic Materials

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Synthesis of the third-order nonlinear materials: bis (l,4-dihydroxynaphthalene)tetrathiafulvalene and bis (1,4-dialkoxylnaphthalene) tetrathiafulvalene has been achieved in four steps, starting from 2,3-dichloro-l,4-naphthaquinone. The matcrials exhibit larger third-order nonlinear optical susceptibilities X(3).

  3. The Synthesis of Third—order Optical Nonlinear Organic Polyheterocyclic Materials

    Institute of Scientific and Technical Information of China (English)

    JianRongGAO; LuBaiCHENG; 等

    2002-01-01

    Synthesis of the third-order nonlinear materials:bis (1,4-dihydroxynaphthalene) tetrathiafulvalene and bis (1,4-dialkoxylnaphthalene) tetrathiafulvalene has been achieved in four steps, starting from 2,3-dichloro-1,4-naphthaquinone. The materials exhibit larger third-order nonlinear optical susceptibilities χ.

  4. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu

    2016-01-01

    thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrodinger equation is solved. The dispersion length is much larger than the waveguides length...

  5. Finite-temperature Casimir effect in the presence of nonlinear dielectrics

    DEFF Research Database (Denmark)

    Kheirandish, Fardin; Amooghorban, Ehsan; Soltani, Morteza

    2011-01-01

    Starting from a Lagrangian, the electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques, and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained, and their relations to coupl...

  6. Exact solutions of optical pulse propagation in nonlinear meta-materials

    Science.gov (United States)

    Nanda, Lipsa

    2017-01-01

    An analytical and simulation based method has been used to exactly solve the nonlinear wave propagation in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability. The method has been further extended to investigate the intensity distribution in a nonlinear meta-material with negative refractive index where both ɛ and μ are dispersive and negative in nature.

  7. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  8. Nonlinear terahertz spectroscopy of semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, C. [Department of Electrophysics, National Chiao Tung University, Hsinchu (Taiwan); Reimann, K.; Woerner, M.; Elsaesser, T. [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2A, 12489, Berlin (Germany)

    2004-03-01

    Nonlinear frequency conversion and electro-optic sampling allow for the generation and phase-resolved characterization of few-cycle pulses in the frequency range up to 50 THz. Electric field transients with amplitudes of up to several MV/cm are applied to study coherent nonlinear excitations of low-dimensional semiconductors. We report the first observation of Rabi oscillations on intersubband transitions of electrons in GaAs/AlGaAs quantum wells. Frequency and phase of such oscillations are controlled in the 0.3- to 2.5-THz range via the strength and shape of the mid-infrared driving pulse. (orig.)

  9. Forbidden second order optical nonlinearity of graphene

    CERN Document Server

    Cheng, J L; Sipe, J E

    2016-01-01

    We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllablity of these responses by tuning the chemical potential, where the interband optical transitions play a dominant role.

  10. Performance of the tariffs of a single-phase electric energy meter, type electronic, operating with non-linear loads; Desempenho tarifario do medidor monofasico de energia eletrica do tipo eletronico operando com cargas nao-lineares

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.B.; Pinheiro Neto, D.; Lisita, L.R.; Machado, P.C.M.; Oliveira, J.V.M. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Escola de Engenharia Eletrica e de Computacao], Emails: guilhermebsantos@gmail.com, daywes@gmail.com, lrlisi-ta@gmail.com, pcesar@eee.ufg.br, joao.eee@gmail.com

    2009-07-01

    This paper analyzes the behavior of a electronic meter of single-phase in the laboratory when it is subjected to a environment with linear loads and nonlinear loads kind residential and commercial. It differs from correlated studies mainly for making use of real loads encountered in day-to-day, rather than as sources of electronic loads how has been observed in the state of the art. The comparison of results is made based on high precision energy pattern developed by virtual instrumentation means.

  11. Long wave-short wave resonance in nonlinear negative refractive index media.

    Science.gov (United States)

    Chowdhury, Aref; Tataronis, John A

    2008-04-18

    We show that long wave-short wave resonance can be achieved in a second-order nonlinear negative refractive index medium when the short wave lies on the negative index branch. With the medium exhibiting a second-order nonlinear susceptibility, a number of nonlinear phenomena such as solitary waves, paired solitons, and periodic wave trains are possible or enhanced through the cascaded second-order effect. Potential applications include the generation of terahertz waves from optical pulses.

  12. Electric fields and quantum wormholes

    CERN Document Server

    Engelhardt, Dalit; Iqbal, Nabil

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole". We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a non-perturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U(1) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  13. Electric fields and quantum wormholes

    Science.gov (United States)

    Engelhardt, Dalit; Freivogel, Ben; Iqbal, Nabil

    2015-09-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole." We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a nonperturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U (1 ) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  14. Nonlinear electrophoresis of ideally polarizable particles

    Science.gov (United States)

    Figliuzzi, B.; Chan, W. H. R.; Moran, J. L.; Buie, C. R.

    2014-10-01

    We focus in this paper on the nonlinear electrophoresis of ideally polarizable particles. At high applied voltages, significant ionic exchange occurs between the electric double layer, which surrounds the particle, and the bulk solution. In addition, steric effects due to the finite size of ions drastically modify the electric potential distribution in the electric double layer. In this situation, the velocity field, the electric potential, and the ionic concentration in the immediate vicinity of the particle are described by a complicated set of coupled nonlinear partial differential equations. In the general case, these equations must be solved numerically. In this study, we rely on a numerical approach to determine the electric potential, the ionic concentration, and the velocity field in the bulk solution surrounding the particle. The numerical simulations rely on a pseudo-spectral method which was used successfully by Chu and Bazant [J. Colloid Interface Sci. 315(1), 319-329 (2007)] to determine the electric potential and the ionic concentration around an ideally polarizable metallic sphere. Our numerical simulations also incorporate the steric model developed by Kilic et al. [Phys. Rev. E 75, 021502 (2007)] to account for crowding effects in the electric double layer, advective transport, and for the presence of a body force in the bulk electrolyte. The simulations demonstrate that surface conduction significantly decreases the electrophoretic mobility of polarizable particles at high zeta potential and at high applied electric field. Advective transport in the electric double layer and in the bulk solution is also shown to significantly impact surface conduction.

  15. Linear and cubic dynamic susceptibilities in quantum spin glass

    CERN Document Server

    Busiello, G; Sushkova, V G

    2001-01-01

    The low temperature behaviour of the dynamic nonlinear (cubic) susceptibility chi sub 3 sup ' (omega, T) in quantum d-dimensional Ising spin glass with short-range interactions between spins is investigated in terms of the quantum droplet model and the quantum-mechanical nonlinear response theory is employed. We have revealed a glassy like behaviour of droplet dynamics. The frequency dependence of chi sub 3 sup ' (omega, T) is very remarkable, the temperature dependence is found at very low temperatures (quantum regime). The nonlinear response depends on the tunneling rate for a droplet which regulates the strength of quantum fluctuations. This response has a strong dependence on the distribution of droplet free energies and on the droplet length scale average. Implications for experiments in quantum spin glasses like disordered dipolar quantum Ising magnet LiHo sub x Y sub 1 sub - sub x F sub 4 and pseudospin are noted.

  16. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    Antonella Fiacca; Nikolaos Matzakos; Nikolaos S Papageorgiou; Raffaella Servadei

    2001-11-01

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all $\\mathbb{R}$. Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of $\\mathbb{R}$. This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem).

  17. Design and Optimize Electric Throttle Performance Based on the Non-linear Modeling%基于非线性模型的发动机非稳态工况控制

    Institute of Scientific and Technical Information of China (English)

    李岳林; 王立标; 曾志伟; 汤彬; 杜宝杰

    2009-01-01

    针对发动机非稳态工况,建立了非线性模型.设计了滑模控制器和PID控制器分别对节气门开度和点火时刻进行自适应调节.对发动机怠速工况进行仿真的结果表明,发动机转速波动幅值低于6 r/min,表明所建的非线性模型适合于发动机非稳态工况控制.%A non-linear model is set up for engine transient operating conditions. Both sliding mode control-ler and PID controller are designed to realize adaptive regulation of throttle opening and ignition timing respectively.The results of simulation on engine idling show that the amplitude of engine speed fluctuation is less than 6 r/min,indicating that the non-linear model built is appropriate for the control over the transient operating conditions of en-gine.

  18. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, Jaime H. [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Correa, J.D., E-mail: jcorrea@udem.edu.co [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2016-03-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  19. Nonlinear spectroscopic studies of interfacial molecular ordering

    Energy Technology Data Exchange (ETDEWEB)

    Superfine, R.

    1991-07-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs.

  20. 静电驱动的亚微米悬臂梁谐振器非线性特性%Nonlinear characteristics of sub-micron cantilever beam resonators actuated by statical electricity

    Institute of Scientific and Technical Information of China (English)

    岳东旭; 于虹; 袁卫民

    2011-01-01

    理论分析了亚微米尺寸的悬臂梁结构的非线性力学模型,研究了非线性产生的物理机制.采用外部静电激励机制,使悬臂梁谐振器产生谐振,借助Polytec激光多普勒测振系统检测了悬臂梁的频率响应曲线.测试结果表明,悬臂梁具有显著的非线性效应(即"弹簧变软"效应).实验证实了这种非线性效应几乎和交流电压无关,却随着直流电压的增大而显著增大,最大峰值偏移达到0.5 MHz.提取出3组-阶机械弹性系数分别为79.62,31.75和14.92 N/m,实验结果符合理论规律.对实验中的偏差做了进-步的分析和讨论,利用软件ANSYS对过腐蚀对结构刚度和频率响应的影响做了相应的模拟,结果和实验测量数据相吻合.%A nonlinear mechanical model for sub-micron cantilevers was analyzed in detail and its physical mechanism was researched to provide a theoretical basis for experiments. The electrostatical force was used to achieve the resonance state cantilever beams and a Polytec laser Doppler vibration measurement system was taken to observe the frequency response curve. Experimental results show that the beams have significant nonlinear effects (the spring softening effect) and the nonlinearity is relatively independent on the AC voltage, but it is markedly enhanced with increasing the DC voltage.The obtained maximum peak shift is 0. 5 MHz and extracted first-order mechanical elasticity coefficients are 79.62, 31.75, and 14.92 N/m, respectively. Furthermore,the deviation of the experiment was also disccussed and analyzed. The effects of overetching by wet chemical etching on the stiffness and frequency response were stimulated by ANSYS software. In conclusion, the corresponding simulation results are well coincident with the experimental data.

  1. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  2. Nonlinear optical thin films

    Science.gov (United States)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  3. Network susceptibilities: Theory and applications

    Science.gov (United States)

    Manik, Debsankha; Rohden, Martin; Ronellenfitsch, Henrik; Zhang, Xiaozhu; Hallerberg, Sarah; Witthaut, Dirk; Timme, Marc

    2017-01-01

    We introduce the concept of network susceptibilities quantifying the response of the collective dynamics of a network to small parameter changes. We distinguish two types of susceptibilities: vertex susceptibilities and edge susceptibilities, measuring the responses due to changes in the properties of units and their interactions, respectively. We derive explicit forms of network susceptibilities for oscillator networks close to steady states and offer example applications for Kuramoto-type phase-oscillator models, power grid models, and generic flow models. Focusing on the role of the network topology implies that these ideas can be easily generalized to other types of networks, in particular those characterizing flow, transport, or spreading phenomena. The concept of network susceptibilities is broadly applicable and may straightforwardly be transferred to all settings where networks responses of the collective dynamics to topological changes are essential.

  4. Nonlinear nonequilibrium quasiparticle relaxation in Josephson junctions.

    Science.gov (United States)

    Krasnov, V M

    2009-11-27

    I solve numerically a full set of nonlinear kinetic balance equations for stacked Josephson junctions, which allows analysis of strongly nonequilibrium phenomena. It is shown that nonlinearity becomes significant already at very small disequilibrium. The following new, nonlinear effects are obtained: (i) At even-gap voltages V = 2nDelta/e (n = 2, 3, ...) nonequilibrium bosonic bands overlap. This leads to enhanced emission of Omega = 2Delta bosons and to the appearance of dips in tunnel conductance. (ii) A new type of radiative solution is found at strong disequilibrium. It is characterized by the fast stimulated relaxation of quasiparticles. A stack in this state behaves as a light emitting diode and directly converts electric power to boson emission, without utilization of the ac-Josephson effect. The phenomenon can be used for realization of a new type of superconducting cascade laser in the THz frequency range.

  5. Susceptibility to anchoring effects

    Directory of Open Access Journals (Sweden)

    Todd McElroy

    2007-02-01

    Full Text Available Previous research on anchoring has shown this heuristic to be a very robust psychological phenomenon ubiquitous across many domains of human judgment and decision-making. Despite the prevalence of anchoring effects, researchers have only recently begun to investigate the underlying factors responsible for how and in what ways a person is susceptible to them. This paper examines how one such factor, the Big-Five personality trait of openness-to-experience, influences the effect of previously presented anchors on participants' judgments. Our findings indicate that participants high in openness-to-experience were significantly more influenced by anchoring cues relative to participants low in this trait. These findings were consistent across two different types of anchoring tasks providing convergent evidence for our hypothesis.

  6. Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays.

    Science.gov (United States)

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2009-08-17

    The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite chi((3))(omega) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.

  7. Nonlinear Cross Gramians

    Science.gov (United States)

    Ionescu, Tudor C.; Scherpen, Jacquelien M. A.

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Hankel operator are studied and yield promising results.

  8. Nonlinear functional analysis

    Directory of Open Access Journals (Sweden)

    W. L. Fouché

    1983-03-01

    Full Text Available In this article we discuss some aspects of nonlinear functional analysis. It included reviews of Banach’s contraction theorem, Schauder’s fixed point theorem, globalising techniques and applications of homotopy theory to nonlinear functional analysis. The author emphasises that fundamentally new ideas are required in order to achieve a better understanding of phenomena which contain both nonlinear and definite infinite dimensional features.

  9. Nonlinear Electrodynamics and QED

    OpenAIRE

    2003-01-01

    The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...

  10. Electric Power

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China Council for the Promotion of International Trade Electric Power Industry Office (CCPIT Electric Power), one of the pro-fessional industrial branches of China Council for the Promotion of International Trade (CCPIT), was established in 2006.

  11. Electricity economics

    CERN Document Server

    Hu, Zhaoguang

    2013-01-01

    Systematically analyzing for the first time the production output from electricity consumption for enterprises, sectors, and industries, this study uses the function of EAI (electricity as input), and includes national E-GDP figures for more than 20 countries.

  12. A Simple Holographic Model of Nonlinear Conductivity

    CERN Document Server

    Horowitz, Gary T; Santos, Jorge E

    2013-01-01

    We present a simple analytic gravitational solution which describes the holographic dual of a 2+1-dimensional conductor which goes beyond the usual linear response. In particular it includes Joule heating. We find that the nonlinear frequency-dependent conductivity is a constant. Surprisingly, the pressure remains isotropic. We also apply an electric field to a holographic insulator and show that there is a maximum electric field below which it can remain an insulator. Above this critical value, we argue that it becomes a conductor due to pair creation of charged particles. Finally, we study 1+1 and 3+1 dimensional conductors at the nonlinear level; here exact solutions are not available and a perturbative analysis shows that the current becomes time dependent, but in a way that is captured by a time-dependent effective temperature.

  13. Modified Nonlinear Model of Arcsin-Electrodynamics

    Science.gov (United States)

    Kruglov, S. I.

    2016-07-01

    A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter γ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested. We have investigated the gauge covariant quantization of the nonlinear electrodynamics fields as well as the gauge fixing approach based on Dirac's brackets.

  14. Third Order Nonlinear Optical Effects in Conjugated Polymers

    Science.gov (United States)

    Halvorson, Craig Steven

    Third order nonlinear optical effects in conjugated materials were studied using two different spectroscopic methods, third harmonic generation and two photon absorption. The third harmonic generation spectra of cis-polyacetylene, trans-polyacetylene, oriented trans-polyacetylene, three isomers of polyaniline, cis and trans-polyacetylene in polyvinyl butyral, polyheptdadiester, polyheptadiketone, and MEH-PPV/polyethylene blends were measured. The nonlinear optical susceptibility increases with structural order, and is enhanced by the presence of a degenerate ground state. The magnitude of the susceptibility reaches as high as 10^{-7} esu, which is sufficient for the creation of all-optical nonlinear devices. The two photon absorption spectrum of oriented transpolyacetylene was measured using nonlinear photothermal deflection. The spectrum reveals directly the Ag state at 1.1 eV in trans-polyacetylene, and reveals another Ag state at higher energy. The magnitude of the two photon absorption is large enough to rule out using trans-polyacetylene in serial all-optical nonlinear devices; all-optical devices made from conjugated polymers must be parallel, not serial. A new figure of merit for nonlinear devices was proposed.

  15. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  16. Nonlinear magnetic metamaterials.

    Science.gov (United States)

    Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S

    2008-12-08

    We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America

  17. Organic nonlinear optical materials

    Science.gov (United States)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  18. Nonlinearity-reduced interferometer

    Science.gov (United States)

    Wu, Chien-ming

    2007-12-01

    Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.

  19. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    Science.gov (United States)

    Driscoll, Jeffrey B.

    are shown to contribute no time-averaged momentum. Furthermore, the vectoral modal components, in conjunction with the tensoral nature of the third-order susceptibility of Si, lead to nonlinear properties which are dependent on waveguide orientation with respect to the Si parent crystal and the construction of the modal electric field components. This consideration is used to maximize effective nonlinearity and realize nonlinear Kerr gratings along specific waveguide trajectories. Tight optical confinement leads to a natural enhancement of the intrinsically large effective nonlinearty of Si waveguides, and in fact, the effective nonlinearty can be made to be almost 106 times greater in Si waveguides than that of standard single-mode fiber. Such a large nonlinearity motivates chip-scale all-optical signal processing techniques. Wavelength conversion by both four-wave-mixing (FWM) and cross-phase-modulation (XPM) will be discussed, including a technique that allows for enhanced broadband discrete FWM over arbitrary spectral spans by modulating both the linear and nonlinear waveguide properties through periodic changes in waveguide geometry. This quasi-phase-matching approach has very real applications towards connecting mature telecom sources detectors and components to other spectral regimes, including the mid-IR. Other signal processing techniques such as all-optical modulation format conversion via XPM will also be discussed. This thesis will conclude by looking at ways to extend the bandwidth capacity of Si waveguide interconnects on chip. As the number of processing cores continues to scale as a means for computational performance gains, on-chip link capacity will become an increasingly important issue. Metallic traces have severe limitations and are envisioned to eventually bow to integrated photonic links. The aggregate bandwidth supported by a single waveguide link will therefore become a crucial consideration as integrated photonics approaches the CPU. One way

  20. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    Science.gov (United States)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu; Lavrinenko, Andrei

    2016-04-01

    This paper is devoted to experimental and theoretical studies of nonlinear propagation of a long-range surface plasmon polariton (LRSPP) in gold strip waveguides. The plasmonic waveguides are fabricated in house, and contain a gold layer, tantalum pentoxide adhesion layers, and silicon dioxide cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrödinger equation is solved. The dispersion length is much larger than the waveguides length, and the chromatic dispersion does not affect the propagation of the plasmonic mode. We find that the third-order susceptibility of the gold layer has a dominant contribution to the effective third-order susceptibility of the LRSPP mode. The real part of the effective third-order susceptibility leads to the observed spectral broadening through the self-phase modulation effect, and its imaginary part determines the nonlinear absorption parameter and leads to the observed nonlinear power transmission. The experimental values of the third-order susceptibility of the gold layers are obtained. They indicate an effective enhancement of the third-order susceptibility for the gold layers, comparing to the bulk gold values. This enhancement is explained in terms of the change of the electrons motion.

  1. Nonlinear scattering of radio waves by metal objects

    Science.gov (United States)

    Shteynshleyger, V. B.

    1984-07-01

    Nonlinear scattering of radio waves by metal structures with resulting harmonic and intermodulation interference is analyzed from both theoretical and empirical standpoints, disregarding nonlinear effects associated with the nonlinear dependence of the electric or magnetic polarization vector on respectively the electric or magnetic field intensity in the wave propagating medium. Nonlinear characteristics of metal-oxide-metal contacts where the thin oxide film separation two metal surfaces has properties approximately those of a dielectric or a high-resistivity semiconductor are discussed. Tunneling was found to be the principal mechanism of charge carrier transfer through such a contact with a sufficiently thin film, the contact having usually a cubic or sometimes an integral sign current-voltage characteristic at 300 K and usually S-form or sometimes a cubic current-voltage characteristic at 77 K.

  2. Electric drives

    CERN Document Server

    Boldea, Ion

    2005-01-01

    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  3. Electrical contracting

    CERN Document Server

    Neidle, Michael

    2013-01-01

    Electrical Contracting, Second Edition is a nine-chapter text guide for the greater efficiency in planning and completing installations for the design, installation and control of electrical contracts. This book starts with a general overview of the efficient cabling and techniques that must be employed for safe wiring design, as well as the cost estimation of the complete electrical contract. The subsequent chapters are devoted to other electrical contracting requirements, including electronic motor control, lighting, and electricity tariffs. A chapter focuses on the IEE Wiring Regulations an

  4. Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response

    CERN Document Server

    Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C

    2011-01-01

    We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.

  5. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  6. The light filament as a new nonlinear polarization state

    CERN Document Server

    Kovachev, Lubomir M

    2015-01-01

    We present an analytical approach to the theory of nonlinear propagation in gases of femtosecond optical pulses with broad-band spectrum . The vector character of the nonlinear third-order polarization of the electrical field in air is investigated in details. A new polarization state is presented by using left-hand and right-hand circular components of the electrical field . The corresponding system of vector amplitude equations is derived in the rotating basis. We found that this system of nonlinear equations has $3D+1$ vector soliton solutions with Lorentz shape. The solution presents a relatively stable propagation and rotation with GHz frequency of the vector of the electrical field in a plane orthogonal to the direction of propagation. The evolution of the intensity profile demonstrates a weak self-compression and a week spherical wave in the first milliseconds of propagation.

  7. Lasers for nonlinear microscopy.

    Science.gov (United States)

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  8. Nonlinear optical materials.

    Science.gov (United States)

    Eaton, D F

    1991-07-19

    The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.

  9. Estimating nonlinear models

    Science.gov (United States)

    Billings, S. A.

    1988-03-01

    Time and frequency domain identification methods for nonlinear systems are reviewed. Parametric methods, prediction error methods, structure detection, model validation, and experiment design are discussed. Identification of a liquid level system, a heat exchanger, and a turbocharge automotive diesel engine are illustrated. Rational models are introduced. Spectral analysis for nonlinear systems is treated. Recursive estimation is mentioned.

  10. Nonlinear Cross Gramians

    NARCIS (Netherlands)

    Ionescu, T. C.; Scherpen, J. M. A.; Korytowski, A; Malanowski, K; Mitkowski, W; Szymkat, M

    2009-01-01

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain

  11. Engineered nonlinear lattices

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.

    1999-01-01

    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...

  12. Controllability in nonlinear systems

    Science.gov (United States)

    Hirschorn, R. M.

    1975-01-01

    An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.

  13. Nonlinear Maneuver Autopilot

    Science.gov (United States)

    Menon, P. K. A.; Badgett, M. E.; Walker, R. A.

    1992-01-01

    Trajectory-control laws based on singular-perturbation theory and nonlinear dynamical modeling. Nonlinear maneuver autopilot commands flight-test trajectories of F-15 airplane. Underlying theory of controller enables separation of variables processed in fast and slow control loops, reducing amount of computation required.

  14. Laser Induced Nonlinear Optical Properties of Zinc Oxide Thin Film Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Vinay Kumari

    2011-01-01

    Full Text Available Optical nonlinearities of spin coated ZnO thin film have been investigated by using single beam Z-Scan technique in the visible region. X- ray diffraction shows that all films are oriented along the c-axis direction of the hexagonal crystal structure. The average optical transmittance of all films is higher than 80 %. The nonlinear optical parameters viz. nonlinear absorption coefficient (β, nonlinear index of refraction (η2, nonlinear susceptibility (χ3, have been estimated using nanosecond laser pulses of second harmonic of Nd:YAG Laser. The value of nonlinear absorption coefficient β is estimated to be greater than the already reported value. The films clearly exhibit a-ve value of nonlinear refraction at 532 nm which is attributed to the two photon absorption and free carrier absorption. The presence of RSA in ZnO thin films inferes that ZnO is a potential material for the development of optical limiter.

  15. Non-Linear Electrohydrodynamics in Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Jun Zeng

    2011-03-01

    Full Text Available Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications.

  16. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S

    2015-01-01

    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  17. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  18. Growth and characterization of Bis(L-threonine) copper (II) monohydrate single crystals: A semiorganic second order nonlinear optical material

    Science.gov (United States)

    Subhashini, R.; Sathya, D.; Sivashankar, V.; Latha Mageshwari, P. S.; Arjunan, S.

    2016-12-01

    Highly transparent solitary nonlinear semiorganic optical material Bis(L-threonine) copper (II) monohydrate [BLTCM], was synthesized by a conventional slow evaporation solution growth technique. The grown crystals were subjected to structural, optical, electrical, thermal, mechanical, SHG and Laser damage threshold studies. Single crystal XRD shows that the material crystallizes in monoclinic system with noncentrosymmetric space group P21. FT-IR and FT-RAMAN analyses confirm the various functional groups present in the grown crystal. The transparency range of BLTCM was determined by UV-vis-NIR studies and various optical constants such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data which have applications in optoelectronic devices. Dielectric studies of the crystal were carried out at different frequencies and temperatures to analyze the electrical properties. TGA and DSC analyses were performed to study the thermal behaviour of the sample. The hardness stability of the grown specimen was investigated by Vickers microhardness test. The output intensity of second harmonic generation was confirmed using the Kurtz and Perry powder method. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser.

  19. Dissipation-induced optical nonlinearity at low light levels

    CERN Document Server

    Greenberg, Joel A

    2011-01-01

    We observe a dissipation-induced nonlinear optical process in a gas of cold atoms that gives rise to large nonlinear coupling strengths with high transparency. The nonlinearity results from the simultaneous cooling and crystallization of the gas, and can give rise to efficient Bragg scattering in the form of a six-wave-mixing process at low-light-levels with an extremely large effective fifth-order nonlinear susceptibility of \\chi^(5)= 7.6 x 10-15 (m/V)^4. For large optical gains, collective scattering due to the strong light-matter coupling leads to slow group velocities (~c/105) and long atomic coherence times (~100 {\\mu}s).

  20. Nonlinear charge transport in bipolar semiconductors due to electron heating

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Valdovinos, S., E-mail: sergiom@fisica.uaz.edu.mx [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, CP 98060, Zacatecas, Zac, México (Mexico); Gurevich, Yu.G. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, México D.F., CP 07360, México (Mexico)

    2016-05-27

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  1. Nonlinear constitutive behavior of ferroelectric materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The ferroelectric specimen is considered as an aggregation of many randomly oriented domains. According to this mechanism,a multi-domain mechanical model is developed in this paper. Each domain is represented by one element. The applied stress and electric field are taken to be the stress and electric field in the formula of the driving force of domain switching for each element in the specimen. It means that the macroscopic switching criterion is used for calculating the volume fraction of domain switching for each element. By using the hardening relation between the driving force of domain switching and the volume fraction of domain switching calibrated,the volume fraction of domain switching for each element is calculated. Substituting the stress and electric field and the volume fraction of domain switching into the constitutive equation of ferroelectric material,one can easily get the strain and electric displacement for each element. The macroscopic behavior of the ferroelectric specimen is then directly calculated by volume averaging. Mean-while,the nonlinear finite element analysis for the ferroelectric specimen is carried out. In the finite element simulation,the volume fraction of domain switching for each element is calculated by using the same method mentioned above. The in-teraction between different elements is taken into account in the finite element simulation and the local stress and electric field for each element is obtained. The macroscopic behavior of the specimen is then calculated by volume averaging. The computation results involve the electric butterfly shaped curves of axial strain versus the axial electric field and the hysteresis loops of electric displacement versus the electric field for ferroelectric specimens under the uniaxial coupled stress and electric field loading. The present theoretical prediction agrees reasonably with the experimental results.

  2. Nonlinear reshaping of terahertz pulses with graphene metamaterials

    Science.gov (United States)

    Rapoport, Yu.; Grimalsky, V.; Iorsh, I.; Kalinich, N.; Koshevaya, S.; Castrejon-Martinez, Ch.; Kivshar, Yu. S.

    2013-12-01

    We study the propagation of electromagnetic waves through a slab of graphene metamaterial composed of the layers of graphene separated by dielectric slabs. Starting from the kinetic expression for two-dimensional electric current in graphene, we derive a novel equation describing the nonlinear propagation of terahertz electromagnetic pulses through the layered graphene-dielectric structure in the presence of losses and non-linearities. We demonstrate strong nonlinearity-induced reshaping of transmitted and reflected terahertz pulses through the interaction with the thin multilayer graphene metamaterial structure.

  3. Reproducing Kernel Particle Method for Non-Linear Fracture Analysis

    Institute of Scientific and Technical Information of China (English)

    Cao Zhongqing; Zhou Benkuan; Chen Dapeng

    2006-01-01

    To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.

  4. Identification of the nonlinear vibration system of power transformers

    Science.gov (United States)

    Jing, Zheng; Hai, Huang; Pan, Jie; Yanni, Zhang

    2017-01-01

    This paper focuses on the identification of the nonlinear vibration system of power transformers. A Hammerstein model is used to identify the system with electrical inputs and the vibration of the transformer tank as the output. The nonlinear property of the system is modelled using a Fourier neural network consisting of a nonlinear element and a linear dynamic block. The order and weights of the network are determined based on the Lipschitz criterion and the back-propagation algorithm. This system identification method is tested on several power transformers. Promising results for predicting the transformer vibration and extracting system parameters are presented and discussed.

  5. Shear dependent nonlinear vibration in a high quality factor single crystal silicon micromechanical resonator

    Science.gov (United States)

    Zhu, H.; Shan, G. C.; Shek, C. H.; Lee, J. E.-Y.

    2012-07-01

    The frequency response of a single crystal silicon resonator under nonlinear vibration is investigated and related to the shear property of the material. The shear stress-strain relation of bulk silicon is studied using a first-principles approach. By incorporating the calculated shear property into a device-level model, our simulation closely predicts the frequency response of the device obtained by experiments and further captures the nonlinear features. These results indicate that the observed nonlinearity stems from the material's mechanical property. Given the high quality factor (Q) of the device reported here (˜2 × 106), this makes it highly susceptible to such mechanical nonlinear effects.

  6. Third-order nonlinear optical response of push-pull azobenzene polymers

    Science.gov (United States)

    Papagiannouli, I.; Iliopoulos, K.; Gindre, D.; Sahraoui, B.; Krupka, O.; Smokal, V.; Kolendo, A.; Couris, S.

    2012-12-01

    The nonlinear optical response of a series of azo-containing side-chain polymers is investigated using Z-scan technique, employing 35 ps and 4 ns laser pulses, at 532 nm. The systems were found to exhibit strong nonlinear optical response, dominated by nonlinear refraction. In all cases, the nonlinear absorption and refraction have been determined and are compared with those of disperse red 1 considered as reference. The corresponding third-order susceptibilities χ(3) were determined to be as large as 10-7 and 10-5 esu under ps and ns laser excitation, respectively. Finally, the results are discussed and compared with other reported data.

  7. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides.

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Daniel Beom Soo

    2017-09-01

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS 2 ), particularly for those linear and nonlinear tran- sition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matri- ces that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibil- ities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  8. MECHANISM OF OPTICAL NONLINEARITY IN “LYOTROPIC LIQUID CRYSTAL — VIOLOGEN” SYSTEM

    Directory of Open Access Journals (Sweden)

    Hanna Bordyuh

    2014-06-01

    Full Text Available In the present work we analyze the characteristics of holographic grating recording and consider a mechanism of optical nonlinearity in the lyotropic liquid crystal (LLC — viologen samples. Taking into account structural and electrooptical properties of the admixture molecules it is possible to suggest that the recording is realized due to the change of polarizability of π-electron system of coloured viologen derivatives under the action of laser radiation. The main nonlinear optical parameters such as nonlinear refraction coefficient n2, cubic nonlinear susceptibility χ(3, and hyperpolarizability γ were calculated.

  9. Pyrene-Based Small Molecular Nonlinear Optical Materials Modified by ``Click-Reaction''

    Science.gov (United States)

    Liang, Pengxia; Li, Zhengqiang; Mi, Yongsheng; Yang, Zhou; Wang, Dong; Cao, Hui; He, Wanli; Yang, Huai

    2015-08-01

    Two pyrene derivatives were successfully synthesized via an efficient copper(I)-catalyzed azide alkyne 1,3-dipolar cycloaddition. The photophysical and electrochemical properties were characterized using ultraviolet-visible absorption spectra, fluorescence spectra, cyclic voltammograms and density functional theory modulations. These results showed that the symmetry structure of these derivatives formed an electron-delocalized organic system, which have larger effects in achieving a third-order nonlinear optical (NLO) response. The third-order nonlinear properties including the nonlinear absorption and the nonlinear susceptibilities investigated by Z-scan technique indicate that the title compounds can serve as a promising candidate for third-order NLO applications.

  10. Surfing the High Energy Output Branch of Nonlinear Energy Harvesters

    Science.gov (United States)

    Mallick, D.; Amann, A.; Roy, S.

    2016-11-01

    Hysteresis and multistability are fundamental phenomena of driven nonlinear oscillators, which, however, restrict many applications such as mechanical energy harvesting. We introduce an electrical control mechanism to switch from the low to the high energy output branch of a nonlinear energy harvester by exploiting the strong interplay between its electrical and mechanical degrees of freedom. This method improves the energy conversion efficiency over a wide bandwidth in a frequency-amplitude-varying environment using only a small energy budget. The underlying effect is independent of the device scale and the transduction method and is explained using a modified Duffing oscillator model.

  11. Rigorous theory of molecular orientational nonlinear optics

    Directory of Open Access Journals (Sweden)

    Chong Hoon Kwak

    2015-01-01

    Full Text Available Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1 the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2 the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect, optical Kerr effect (OKE, dc electric field induced second harmonic generation (EFISH, degenerate four wave mixing (DFWM and third harmonic generation (THG. We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR, Pockels effect and difference frequency generation (DFG are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR, dc electric field induced difference frequency generation (EFIDFG and pump-probe transmission are presented.

  12. DFT(B3LYP/LanL2DZ), non-linear optical and electrical studies of a new hybrid compound: [C6H10(NH3)2]CoCl4·H2O

    Science.gov (United States)

    Tounsi, Amal; Hamdi, Besma; Zouari, Ridha; Ben Salah, Abdelhamid

    2016-10-01

    A new organic-inorganic material [C6H10(NH3)2]CoCl4·H2O was reported. The title compound was synthesized at room temperature by slow evaporation and then characterized by a single X-ray diffraction, spectroscopic measurements, thermal analysis and dielectric technique. It crystallizes in the non-centrosymmetric space group Pna21 with the following unit cell parameters: a=12.5328(1) Å, b=9.0908(1) Å, c=11.7440(1) and α=β=γ=90°. The structure can be described by the alternation of two different cationic-anionic layers. It consists of isolated H2O, isolated [CoCl4]2- tetrahedral anions and diammoniumcyclohexane [C6H10(NH3)2]2+ cations, which are connected via N-H…Cl, N-H…O and O-H…N hydrogen bonds. The Hirshfeld surface analysis was conducted to investigate intermolecular interactions and associated 2D fingerprint plots, revealing the relative contribution of these interactions in the crystal structure quantitatively. Theoretical calculations were performed using DFT/B3LYP/LanL2DZ method for studying the molecular structure and vibrational spectra and especially to examine the non-linear optical behavior of the compound. Solid state 13C NMR spectrum shows three signals correspond to three different carbon environments. Thermal analysis discloses a phase transition at the temperature 315 K and the evaporation of water molecule at 327 K. A detailed dielectric study was reported and shows a good agreement with thermal measurements.

  13. Nonlinear cochlear mechanics.

    Science.gov (United States)

    Zweig, George

    2016-05-01

    An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.

  14. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  15. Electrical stator

    Science.gov (United States)

    Fanning, Alan W.; Olich, Eugene E.

    1994-01-01

    An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.

  16. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind P

    2001-01-01

    The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical

  17. Will Nonlinear Backcalculation Help?

    DEFF Research Database (Denmark)

    Ullidtz, Per

    2000-01-01

    demonstrates, that treating the subgrade as a nonlinear elastic material, can result in more realistic moduli and a much better agreement between measured and calculated stresses and strains.The response of nonlinear elastic materials can be calculated using the Finite Element Method (FEM). A much simpler...... approach is to use the Method of Equivalent Thicknesses (MET), modified for a nonlinear subgrade. The paper includes an example where moduli backcalculated using FEM, linear elastic theory and MET are compared. Stresses and strains predicted by the three methods are also compared to measured values...

  18. Nonlinear graphene metamaterial

    CERN Document Server

    Nikolaenko, Andrey E; Atmatzakis, Evangelos; Luo, Zhiqiang; Shen, Ze Xiang; De Angelis, Francesco; Boden, Stuart A; Di Fabrizio, Enzo; Zheludev, Nikolay I

    2012-01-01

    We demonstrate that the broadband nonlinear optical response of graphene can be resonantly enhanced by more than an order of magnitude through hybridization with a plasmonic metamaterial,while retaining an ultrafast nonlinear response time of ~1 ps. Transmission modulation close to ~1% is seen at a pump uence of ~0.03 mJ/cm^2 at the wavelength of ~1600 nm. This approach allows to engineer and enhance graphene's nonlinearity within a broad wavelength range enabling applications in optical switching, mode-locking and pulse shaping.

  19. [Antimicrobial susceptibility in Chile 2012].

    Science.gov (United States)

    Cifuentes-D, Marcela; Silva, Francisco; García, Patricia; Bello, Helia; Briceño, Isabel; Calvo-A, Mario; Labarca, Jaime

    2014-04-01

    Bacteria antimicrobial resistance is an uncontrolled public health problem that progressively increases its magnitude and complexity. The Grupo Colaborativo de Resistencia, formed by a join of experts that represent 39 Chilean health institutions has been concerned with bacteria antimicrobial susceptibility in our country since 2008. In this document we present in vitro bacterial susceptibility accumulated during year 2012 belonging to 28 national health institutions that represent about 36% of hospital discharges in Chile. We consider of major importance to report periodically bacteria susceptibility so to keep the medical community updated to achieve target the empirical antimicrobial therapies and the control measures and prevention of the dissemination of multiresistant strains.

  20. Second-order nonlinear optical metamaterials: ABC-type nanolaminates

    Energy Technology Data Exchange (ETDEWEB)

    Alloatti, L., E-mail: alloatti@mit.edu; Kieninger, C.; Lauermann, M.; Köhnle, K. [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Froelich, A.; Wegener, M. [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Frenzel, T. [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Freude, W. [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute for Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Leuthold, J.; Koos, C., E-mail: christian.koos@kit.edu [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute for Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany)

    2015-09-21

    We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al{sub 2}O{sub 3}, B = TiO{sub 2}, and C = HfO{sub 2}. The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths.

  1. NONLINEAR-OPTICAL PROPERTIES OF AZO-DYE MONOLAYERS - THE EFFECT OF TILT ANGLE ON THE LOCAL-FIELD

    NARCIS (Netherlands)

    CNOSSEN, G; DRABE, KE; WIERSMA, DA; SCHOONDORP, MA; SCHOUTEN, AJ; HULSHOF, JBE; FERINGA, BL

    1993-01-01

    We report on the second-order nonlinear optical susceptibility chi(2)(2omega,omega,omega) of dye-doped Langmuir-Blodgett monolayers. Chi(2) is found to exhibit a nonlinear dependence on surface density, which is attributed to microscopic local-fields. In order to calculate the microscopic local-fiel

  2. On the Electrical and Magnetic Properties of some Indian Spices

    CERN Document Server

    Baby, Samson K

    2010-01-01

    We have made experimental measurements of electrical conductivity, pH and relative magnetic susceptibility of the aqueous solutions of 24 indian spices. The measured values of electrical conductance of these spices are found to be linearly related to their ash content and bulk calorific values reported in literature. The physiological relevance of the pH and diamagnetic susceptibility of spices when consumed as food or medicine will be also discussed.

  3. Magnetic and Electrical Properties of Leachate

    Directory of Open Access Journals (Sweden)

    Kartika Kirana

    2011-11-01

    Full Text Available Heavy metals content as well as magnetic and electrical properties of leachate from Sarimukti, West Java were studied in an attempt to seek correlation between heavy metals content and magnetic/electrical properties. Such correlation is expected to open the way for the use of magnetic/electrical properties as proxy indicators for the concentration of heavy metals in the leachate. The number of leachate samples studied is 21; 15 were taken spatially at depth of 1 m while the remaining 6 samples were taken vertically at a particular point. Measurement results showed that the heavy metals content in the leachate has a smaller concentration, except for Fe. The correlation between magnetic susceptibility and heavy metals content was found to be not so significant. The best correlation coefficient between magnetic susceptibility with heavy metals in leachate was found in Zn. Correlation between electrical conductivity and heavy metal is also not so significant, except for Zn and Cd. The use of magnetic properties as proxy indicator for heavy metals content in leachate is plausible provided that the magnetic susceptibility exceeds certain threshold value. Correlation between magnetic susceptibility, electrical conductivity and heavy metal content would be good if each quantity has a large value.

  4. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  5. Multipolar nonlinear nanophotonics

    CERN Document Server

    Smirnova, Daria

    2016-01-01

    Nonlinear nanophotonics is a rapidly developing field with many useful applications for a design of nonlinear nanoantennas, light sources, nanolasers, sensors, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. Thus, both modal and multipolar analyses are widely exploited for engineering nonlinear scattering from resonant nanoscale elements, in particular for enhancing the near-field interaction, tailoring the far-field multipolar interference, and optimization of the radiation directionality. Here, we review the recent advances in this recently emerged research field ranging from metallic structures exhibiting localized plasmonic resonances to hybrid metal-dielectric and all-dielectric...

  6. Solitons in nonlinear lattices

    CERN Document Server

    Kartashov, Yaroslav V; Torner, Lluis

    2010-01-01

    This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...

  7. Nonlinear plasmonic antennas

    Directory of Open Access Journals (Sweden)

    Shakeeb Bin Hasan

    2014-12-01

    Full Text Available Contrary to traditional optical elements, plasmonic antennas made from nanostructured metals permit the localization of electromagnetic fields on length scales much smaller than the wavelength of light. This results in huge amplitudes for the electromagnetic field close to the antenna being conducive for the observation of nonlinear effects already at moderate pump powers. Thus, these antennas exhibit a promising potential to achieve optical frequency conversion and all-optical control of light at the nano-scale. This opens unprecedented opportunities for ultrafast nonlinear spectroscopy, sensing devices, on-chip optical frequency conversion, nonlinear optical metamaterials, and novel photon sources. Here, we review some of the recent advances in exploiting the potential of plasmonic antennas to realize robust nonlinear applications.

  8. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  9. Nonlinear Source Emulator

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem

    and remains the prime source of energy in non-terrestrial applications such as those in sky-explorers. However, a renewable energy source is expensive, bulky, and its performance is weather dependent, which make testing of downstream converters very difficult. As a result, a nonlinear source emulator (NSE......) is a good solution to solve the problems associated with the use of real nonlinear sources in testing phases. However, a recent technical survey conducted during this work shows that most existing NSEs have only been concerned with simulating nonlinear systems in terrestrial applications. Furthermore......, their dynamic performance were not fast enough in order to imitate how a real nonlinear energy source would react under extreme conditions and operation modes. Particularly, a system in the sky can experience a step change of sunlight irradiation. Moreover, operation modes may include load step between nominal...

  10. Introduction to nonlinear science

    CERN Document Server

    Nicolis, G

    1995-01-01

    One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...

  11. Nonlinear magnetoinductive transmission lines

    CERN Document Server

    Lazarides, Nikos; Tsironis, G P

    2011-01-01

    Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent cap...

  12. Optimization under Nonlinear Constraints

    OpenAIRE

    1982-01-01

    In this paper a timesaving method is proposed for maximizing likelihood functions when the parameter space is subject to nonlinear constraints, expressible as second order polynomials. The suggested approach is especially attractive when dealing with systems with many parameters.

  13. Nonlinearity in nanomechanical cantilevers

    DEFF Research Database (Denmark)

    Villanueva Torrijo, Luis Guillermo; Karabalin, R. B.; Matheny, M. H.

    2013-01-01

    Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro-and nanocantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite its use in nanoelectromechanical systems development....... These findings underscore the delicate balance between inertial and geometric nonlinear effects in the fundamental mode, and strongly motivate further work to develop theories beyond the Euler-Bernoulli approximation. DOI: 10.1103/PhysRevB.87.024304....... In this article, we report the first highly controlled measurements of the nonlinear response of nanomechanical cantilevers using an ultralinear detection system. This is performed for an extensive range of devices to probe the validity of Euler-Bernoulli theory in the nonlinear regime. We find that its...

  14. Serological Characterization and Antimicrobial Susceptibility ...

    African Journals Online (AJOL)

    300L Coordinator

    identified and antibiotic susceptibility test was performed using standard procedures. The total .... serotypes and their antimicrobial resistivity patterns from patients ..... the best of our knowledge). ... Testing of Bacterial Pathogens of Public.

  15. Adaptive and Nonlinear Control

    Science.gov (United States)

    1992-02-29

    in [22], we also applied the concept of zero dynamics to the problem of exact linearization of a nonlinear control system by dynamic feedback. Exact ...nonlinear systems, although it was well-known that the conditions for exact linearization are very stringent and consequently do not apply to a broad...29th IEEE Conference n Decision and Control, Invited Paper delivered by Dr. Gilliam. Exact Linearization of Zero Dynamics, 29th IEEE Conference on

  16. Nonlinear Optics and Turbulence

    Science.gov (United States)

    1992-10-01

    currently at Queen Mary College, London Patrick Dunne, (Ph.D., 1987, M.I.T., Hydrodynamic Stability, Nonlinear Waves), 1987-1988. Alecsander Dyachenko...U I I I U I I 3 9 3 V. BIOGRAPHIES A. FACULTY BRUCE BAYLY, 31, Ph.D. 1986, Princeton University. Postdoctoral visiting member 1986-88 at Courant...Caputo, A. C. Newell, and M. Shelley , "Nonlinear Wave Propagation Through a Random Medium and Soliton Tunneling", Integrable Systems and

  17. Genetic diversity and disease susceptibility.

    OpenAIRE

    Bodmer, W F

    1997-01-01

    The range of genetic diversity within human populations is enormous. Genetic susceptibility to common chronic disease is a significant part of this genetic diversity, which also includes a variety of rare clear-cut inherited diseases. Modern DNA-based genomic analysis can now routinely lead to the identification of genes involved in disease susceptibility, provides the basis for genetic counselling in affected families, and more widely for a genetically targeted approach to disease prevention...

  18. Study of plasmonic slot waveguides with a nonlinear metamaterial core: semi-analytical and numerical methods

    Science.gov (United States)

    Elsawy, Mahmoud M. R.; Renversez, Gilles

    2017-07-01

    Two distinct models are developed to investigate the transverse magnetic stationary solutions propagating in one-dimensional anisotropic nonlinear plasmonic structures made from a Kerr-type nonlinear metamaterial core embedded between two semi-infinite metal claddings. The first model is semi-analytical, in which we assume that the anisotropic nonlinearity depends only on the transverse component of the electric field and that the nonlinear refractive index modification is small compared to the linear one. This method allows us to derive analytically the field profiles and nonlinear dispersion relations in terms of the Jacobi elliptical functions. The second model is fully numerical and is based on the finite element method in which all the components of the electric field are considered in the Kerr-type nonlinearity, with no presumptions as to the nonlinear refractive index change. Our finite-element-based model is valid beyond the weak nonlinearity regime and generalizes the well-known single-component fixed power algorithm that is usually used. Examples of the main cases are investigated, including those with strong spatial nonlinear effects at low power. Loss issues are reduced through the use of a gain medium in the nonlinear metamaterial core. Using anisotropic nonlinear FDTD simulations, we provide some results for the properties of the main solution.

  19. Robust Nonlinear Neural Codes

    Science.gov (United States)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  20. Nonlinear Multiantenna Detection Methods

    Directory of Open Access Journals (Sweden)

    Chen Sheng

    2004-01-01

    Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.