WorldWideScience

Sample records for nonlinear electric fields

  1. Nonlinear relaxation field in charged systems under high electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, K

    2000-07-01

    The influence of an external electric field on the current in charged systems is investigated. The results from the classical hierarchy of density matrices are compared with the results from the quantum kinetic theory. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated analytically and the nonlinear relaxation field is calculated. The classical linear response result known as Debye - On-Sager relaxation effect is only obtained if asymmetric screening is assumed. Considering the kinetic equation of one specie the other species have to be screened dynamically while the screening with the same specie itself has to be performed statically. Different other approximations are discussed and compared. (author)

  2. Nonlinear Optical Response of Conjugated Polymer to Electric Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-fang; ZHUANG De-xin; CUI Bin

    2005-01-01

    The organic π-conjugated polymers are of major interest materials for the use in electro-optical and nonlinear optical devices. In this work, for a selected polyacetylene chain, the optical absorption spectra in UV/Vis regime as well as the linear polarizabilitiy and nonlinear hyperpolarizability are calculated by using quantum chemical ab initio and semiempirical methods. The relationship of its optical property to electric field is obtained. Some physical mechanism of electric field effect on molecular optical property is discussed by means of electron distribution and intramolecular charge transfer.

  3. Nonlinear Conductivity of a Holographic Superconductor Under Constant Electric Field

    CERN Document Server

    Zeng, Hua-Bi; Fan, Zheyong; Chen, Chiang-Mei

    2016-01-01

    The dynamics of a two-dimensional superconductor under a constant electric field $E$ is studied by using the gauge/gravity correspondence. The pair breaking current induced by $E$ first increases to a peak value and then decreases to a constant value at late time, where the superconducting gap goes to zero, corresponding to a normal conducting phase. The peak value of the current is found to increase linearly with respect to the electric field. Moreover, the nonlinear conductivity, defined as an average of the conductivity in the superconducting phase, scales as $\\sim E^{-2/3}$ for large $E$ when the system is close to the critical temperature, which agrees with predictions from solving the time dependent Ginzburg-Landau equation.

  4. Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells

    Science.gov (United States)

    Yuan, Jian-Hui; Chen, Ni; Zhang, Yan; Mo, Hua; Zhang, Zhi-Hai

    2016-03-01

    Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells are studied theoretically. Both the second-harmonic generation susceptibility and nonlinear optical rectification depend dramatically on the direction and the strength of the electric field. Numerical results show that both the second-harmonic generation susceptibility and nonlinear optical rectification are always weakened as the electric field increases where the direction of the electric field is along the growth direction of the quantum wells, which is in contrast to the conventional case. However, the second-harmonic generation susceptibility is weakened, but the nonlinear optical rectification is strengthened as the electric field increases where the direction of the electric field is against the growth direction of the quantum wells. Also it is the blue (or red) shift of the resonance that is induced by increasing of the electric field when the direction of the electric field is along (or against) the growth direction of the quantum wells. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.

  5. Effective Response of Nonlinear Composite under External AC and DC Electric Field

    Institute of Scientific and Technical Information of China (English)

    LIU Ye; LIANG Fang-Chu; SHEN Hong-Liang

    2005-01-01

    A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα = εαE + xα|E|2E. Under the external AC and DC electric field Eapp = Eα(1 + sinwt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute limit.

  6. Nonlinear phenomena of generation of longitudinal electric current by transversal electromagnetic field in plasmas

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with collisionless plasma is carried out. Formulas for calculation electric current in collisionless plasma with arbitrary degree of degeneration of electronic gas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis.

  7. Nonlinear waves on the free surface of a dielectric liquid in an oblique electric field

    Energy Technology Data Exchange (ETDEWEB)

    Gashkov, M. A.; Zubarev, N. M., E-mail: nick@iep.uran.ru; Kochurin, E. A., E-mail: kochurin@iep.uran.ru [Ural Branch, Russian Academy of Sciences, Institute of Electrophysics (Russian Federation)

    2015-09-15

    The nonlinear dynamics of the free surface of an ideal dielectric liquid that is exposed to an external oblique electric field has been studied theoretically. In the framework of the Hamiltonian formalism, a system of nonlinear integro-differential equations has been derived that describes the dynamics of nonlinear waves in the small-angle approximation. It is established that for a liquid with high dielectric permittivity, these equations have a solution in the form of plane waves of arbitrary shape that propagate without distortion in the direction of the horizontal component of the external field.

  8. A Field Method for Integrating Equations of Motion of Nonlinear Mechanico-Electrical Coupling Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    FU Jing-Li; FU Hao

    2008-01-01

    We deai with the generalization of the field method to weakly non-linear mechanico-electricai coupling systems.The field co-ordinates and field momenta approaches are combined with the method of multiple time scales in order to obtain the amplitudes and phase of oscillations in the frst approximation. An example in mechanico-electrical coupling systems is given to illustrate this method.

  9. Electrically actuated MEMS resonators: Effects of fringing field and nonlinear viscoelasticity

    Science.gov (United States)

    Farokhi, Hamed; Ghayesh, Mergen H.

    2017-10-01

    This paper studies the nonlinear electromechanical response of a MEMS resonator numerically. A nonlinear continuous multi-physics model of the MEMS resonator is developed taking into account the effects of fringing field, size, residual axial load, and viscoelasticity. Moreover, both longitudinal and transverse motions are accounted for in the system modelling and simulations. The equations of motion of the MEMS resonator are obtained employing Hamilton's principle together with the modified version of the couple stress based theory (to account for size effects) and the Kelvin-Voigt model (to account for nonlinear energy dissipation). The Meijs-Fokkema electrostatic load formula is used to reliably model the fringing field effects. The continuous multi-physics model, consisting of geometrical, electrical, and viscos nonlinearities is discretised via a weighted-residual method, yielding a set of nonlinearly coupled ordinary differential equations (ODEs). The resultant set of ODEs is solved numerically when the microresonator is actuated by a biased DC voltage and an AC voltage. The results of the numerical simulations are presented in the form of DC voltage-deflection, DC voltage-natural frequency, and AC frequency-displacement diagrams. The effects of fringing field, residual axial load, small-scale, and nonlinear energy dissipation are highlighted. It is shown that fringing field effects are significant on both static and dynamic electromechanical responses of the MEMS resonator.

  10. Spin–orbit interaction effect on nonlinear optical rectification of quantum wire in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Lahon, Siddhartha, E-mail: sid.lahon@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Jha, Pradip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, DDU College, University of Delhi, Delhi 110007 (India); Gumber, Sukirti; Mohan, Man [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-04-01

    Here we have investigated the influence of external electric field and magnetic field on the nonlinear optical rectification of a parabolic confinement wire in the presence of Rashba spin–orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum wire radius, electric field, magnetic field, Rashba spin–orbit interaction strength and photon energy. Our results indicate an increase of electric field gives the red-shift of the peak positions of nonlinear optical rectification. The role of confinement strength and spin–orbit interaction strength as control parameters on this nonlinear property have been demonstrated.

  11. Nonlinear Marangoni instability of a liquid jet in the presence of electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Kadry; Sirwah, Magdy A.; Assaf, Achmed [Tanta Univ. (Egypt). Dept. of Mathematics

    2009-11-15

    The work discusses the linear and nonlinear stability of cylindrical surface deformations between two incompressible fluids. The interface is carrying a uniform surface charge. The inner fluid is assumed to be a liquid jet. Both fluids are modeled as a special type of a Newtonian viscous fluid. Furthermore, the effect of surface adsorption is taken into account. Both fluids are assumed to be dielectric and the stability is discussed in the presence of a constant electric field in axial direction. The analysis is performed along the lines of a multiple scale perturbation expansion with additional slow time and space variables. The various stability criteria are discussed both analytically and numerically. The results are displayed in many plots showing the stability criteria in various parameter planes. The results show the dual role of the electric field and the negative rate of change of surface tension with the concentration of surfactant on the system stability, in both the linear and nonlinear steps. The nonlinear theory, when used to investigate the stability of liquid jet, appears accurately to predict new unstable regions. (orig.)

  12. Nonlinear optical rectification in laterally-coupled quantum well wires with applied electric field

    Science.gov (United States)

    Liu, Guanghui; Guo, Kangxian; Zhang, Zhongmin; Hassanbadi, Hassan; Lu, Liangliang

    2017-03-01

    Nonlinear optical rectification coefficient χ0(2) in laterally-coupled AlxGa1-xAs/GaAs quantum well wires with an applied electric field is theoretically investigated using the effective mass approximation as well as the numerical energy levels and wavefunctions of electrons. We find that χ0(2) is greatly influenced by the electric field as well as both the distance and the radius of the coupled system. A blue shift of χ0(2) with increasing electric field is exhibited while a red shift followed by a blue shift with increasing distance or radius is exhibited. A nonmonotonic behavior can be found in the resonant peak values of χ0(2) along with the increase of the electric field, the distance or the radius. One or two of the following physical mechanisms: the increased localization of the ground and first-excited states, the reduced coupling and the reduced quantum confinement effect are applied to elucidate the results above. Our results play a potential role in infrared photodetectors based on the coupled system.

  13. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: rrestre@gmail.com [Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Morales, A.L. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Martínez-Orozco, J.C. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, CP 98060, Zacatecas (Mexico); Baghramyan, H.M.; Barseghyan, M.G. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-11-15

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p{sub z}-like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum.

  14. Second-order nonlinear susceptibility in quantum dot structure under applied electric field

    Science.gov (United States)

    Abdullah, M.; Noori, Farah T. Mohammed; Al-Khursan, Amin H.

    2015-06-01

    A model for quantum dot (QD) subbands, when the dots are in the form of quantum disks, under applied electric field was stated. Then, subbands of dots with different disk radii and heights were calculated under applied field. The competition between the shift due to confinement by field and the size was shown for subbands. Second-order nonlinear susceptibility in quantum dots (QDs) was derived using density matrix theory which is, then, simulated using the calculated subbands. Both interband (IB) and intersubband (ISB) transitions were discussed. High second-order susceptibility in QDs was predicted. The results show a reduction in the susceptibility with the applied field while the peak wavelength was mainly relates to energy difference between subbands. A good match between theory and laboratory experiments was observed. Laboratory experiments at terahertz region might be possible using valence intersubband which is important in many device applications.

  15. Second order nonlinearity in Si by inhomogeneous strain and electric fields

    Science.gov (United States)

    Schilling, Jörg; Schriever, Clemens; Bianco, Federica; Cazzanelli, Massimo; Pavesi, Lorenzo

    2015-08-01

    The lack of a dipolar second order susceptibility (χ(2)) in silicon due to its centro-symmetric diamond lattice usually inhibits efficient second order nonlinear optical processes in the silicon bulk. Depositing stressed silicon nitride layers or growing a thermal oxide layer introduces an inhomogeneous strain into the silicon lattice and breaks the centro-symmetry of its crystal structure thereby creating a χ(2). This causes enhanced second harmonic generation and was observed in reflection and transmission measurements for wavelengths in the infrared. However strain is not the only means to break the structures symmetry. Fixed charges at the silicon nitride/silicon interface cause a high electric field close to the silicon interface which causes electric-field-induced-second-harmonic (EFISH) contributions too. The combination of both effects leads to χ(2) values which are estimated to be of the order as classic χ(2) materials like KDP or LiNiO3. This paves the way for the exploitation of other second order nonlinear processes in the area of silicon photonics and is an example how fundamental optical properties of materials can be altered by strain.

  16. Non-linear response of infinite periodic solids to homogenous electric fields and collective atomic displacements

    Science.gov (United States)

    Ghosez, Philippe

    2006-03-01

    The non-linear response of infinite periodic solids to homogenous electric fields and cooperative atomic displacements will be discussed in the framework of density functional perturbation theory. The approach is based on the “2n + 1” theorem applied to an electric field dependent energy functional. We will focus on the non-linear optical susceptibilities, Raman scattering efficiencies and electrooptic coefficients. Different formulations of third-order energy derivatives will be examined and their convergence with respect to the k-point sampling will be discussed. The method will be applied to conventional semiconductors and to ferroelectric oxides. In the latter case, we will also describe how the first- principles results can be combined to an effective Hamiltonian approach in order to provide access to the temperature dependence of the optical properties. This work was done in collabration with M. Veithen and X. Gonze and was supported by the VolkwagenStiftung, FNRS-Belgium and the FAME-NoE.

  17. Non-Linear Compton Scattering in a Strong Rotating Electric Field

    CERN Document Server

    Raicher, Erez; Zigler, Arie

    2016-01-01

    The non-linear Compton scattering rate in a rotating electric field is explicitly calculated for the first time. For this purpose, a novel solution to the Klein-Gordon equation in the presence of a rotating electric field is applied. An analytical expression for the emission rate is obtained, as well as a simplified approximation adequate for emplementation in kinetic codes. The spectrum is numerically calculated for nowadays optical and X-ray laser parameters. The results are compared to the standard Volkov-Ritus rate for a particle in a plane wave, which is commonly assumed to be valid for a rotating electric field under certain conditions. Subsequent deviations between the two models, both in the radiated power and the spectral shape, are demonstrated. First, the typical number of photons participating in the scattering process is much smaller compared to the Volkov-Ritus rate, resulting in up to an order of magnitude lower emitted power. Furthermore, our model predicts a discrete harmonics spectrum for el...

  18. Electric field effect on the third-order nonlinear optical susceptibility in inverted core–shell nanodots with dielectric confinement

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, M.; Radu, A., E-mail: radu@physics.pub.ro; Niculescu, E.C.

    2013-11-15

    Third-order nonlinear optical processes associated with the interlevel transitions in ZnS/CdSe core–shell quantum dots under electric fields are theoretically investigated. Taking into account the dielectric mismatch with the surrounding matrix, the electronic structure of the dots is obtained within the effective mass and parabolic band approximations. It is shown that large applied electric fields break the symmetry of the confinement potential and lead to a significant blue-shift of the peak positions in the nonlinear optical spectrum. The size effect is also discussed and it is proved that large nonlinear susceptibility can be obtained by increasing the thickness of the nanocrystal shell. Our results suggest that external factors such as the applied electric field and orientation of the incident light polarization can be used – in addition to spatial confinement – to improve the performances of the optical devices. -- Highlights: • Nonlinear optical processes in ZnS/CdSe QDs under electric field were studied. • The effective mass and parabolic band approximations were used. • The dielectric mismatch of the QDs with the surrounding matrix was considered. • Increasing the thickness of the shell could lead to large nonlinear susceptibility. • Incident light polarization with respect to the electric field was discussed.

  19. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    Science.gov (United States)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  20. Nonlinear optical response induced by a second-harmonic electric-field component concomitant with optical near-field excitation

    Science.gov (United States)

    Yamaguchi, Maiku; Nobusada, Katsuyuki; Yatsui, Takashi

    2015-10-01

    Electron dynamics excited by an optical near field (ONF) in a two-dimensional quantum dot model was investigated by solving a time-dependent Schrödinger equation. It was found that the ONF excitation of the electron caused two characteristic phenomena: a two-photon absorption and an induction of a magnetic dipole moment with a strong third-harmonic component. By analyzing the interaction dynamics of the ONF and the electron, we explained that the physical mechanism underlying these phenomena was the second-harmonic electric-field component concomitant with the near-field excitation originating from the nonuniformity of the ONF. Despite a y -polarized ONF source, the second-harmonic component of an x -polarized electric field was inherently generated. The effect of the second-harmonic electric-field component is not due to usual second-order nonlinear response but appears only when we explicitly consider the electron dynamics interacting with the ONF beyond the conventional optical response assuming the dipole approximation.

  1. Electric-field-induced fabrication of covalently linked second-order nonlinear optical multilayer films on nonconductive substrates.

    Science.gov (United States)

    Wang, Shiwei; Zhao, Lisha; Cui, Zhanchen

    2012-01-15

    A highly stable second-order nonlinear optical multilayer film was constructed on insulating substrates using the electric-field-induced layer-by-layer assembly technique. The substrates used in this method could be arbitrary. In another, the substrates could be modified with polyanion solution by spin coating as cladding layer. Then, the nonlinear optical multilayer films were assembled on the cladding layer directly by the electric-field-induced layer-by-layer assembly technique. The resulting cross-linked multilayer films fabricated by this method displayed high optical transparency, good thermal stability, and excellent nonlinear optical properties which can be made into waveguide devices directly. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Electronic dynamics under effect of a nonlinear Morse interaction and a static electric field

    Science.gov (United States)

    Ranciaro Neto, A.; de Moura, F. A. B. F.

    2016-11-01

    Considering non-interacting electrons in a one-dimension alloy in which atoms are coupled by a Morse potential, we study the system dynamics in the presence of a static electric field. Calculations are performed assuming a quantum mechanical treatment for the electronic transport and a classical Hamiltonian model for the lattice vibrations. We report numerical evidence of the existence of a soliton-electron pair, even when the electric field is turned on, and we offer a description of how the existence of such a phase depends on the magnitude of the electric field and the electron-phonon interaction.

  3. Nonlinear Effects of the Magnetotail Particle Motion in Time—dependent Electric Field

    Institute of Scientific and Technical Information of China (English)

    QiugangZONG; SuiyanFU; 等

    1996-01-01

    The Motion of charged particle in magnetotail-like reversal field with time dependent electric field is studied analytically and numerically using a test particle approach.Variations in the solar wind magnetic and/or velocity can induce a time-dependent electric field in the magnetotail.Interaction of the magnetotail particles with this electric field can give rise to stochasticity.Energy coupling from the field to the plasma is due to stochastic motion of the particles and is termed “Stochastic heating” or “stochastic acceleration”,The stochasticity can lead to heating of the plasma and to strong particle acceleration.The process can provide an explanation to the difference between ion and electron temperatures in the plasma sheet.

  4. The Nonlinear Ohm's Law: Plasma Heating by Strong Electric Fields and its Effects on the Ionization Balance in Protoplanetary Disks

    CERN Document Server

    Okuzumi, Satoshi

    2014-01-01

    The MHD of protoplanetary disks crucially depends on the ionization state of the disks. Recent simulations suggest that MHD turbulence in the disks can generate a strong electric field in the local rest frame. Such a strong field can heat up plasmas and thereby change the ionization balance. To study this effect, we construct a charge reaction model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as plasma accretion by dust grains. The resulting Ohm's law is nonlinear in the electric field strength. We find that the gas-phase electron abundance decreases with increasing the electric field strength when plasma accretion onto grains dominates over gas-phase recombination, because electron heating accelerates electron--grain collisions. This leads to an increase in the magnetic resistivity, and possibly to a self-regulation of the MHD turbulence. In some cases, even the electric current decreases with increasing the field strength in a certain field range. The N...

  5. Effects of radial electric field on suppression of electron-temperature-gradient mode through multiscale nonlinear interactions

    Science.gov (United States)

    Moon, Chanho; Kaneko, Toshiro; Itoh, Kimitaka; Ida, Katsumi; Kobayashi, Tatsuya; Inagaki, Shigeru; Itoh, Sanae-I.; Hatakeyama, Rikizo

    2016-11-01

    Turbulence in fluids and plasmas is ubiquitous in Nature and in the laboratory. Contrary to the importance of the ‘scale-free’ nature of cascade in neutral fluid turbulence, the turbulence in plasma is characterised by dynamics of distinct length scales. The cross-scale interactions can be highly non-symmetric so as to generate the plasma turbulence structures. Here we report that the system of hyper-fine electron-temperature-gradient (ETG) fluctuations and microscopic drift-wave (DW) fluctuations is strongly influenced by the sign of the gradient of the radial electric field through multiscale nonlinear interactions. The selective suppression effects by radial electric field inhomogeneity on DW mode induce a new route to modify ETG mode. This suppression mechanism shows disparity with respect to the sign of the radial electric field inhomogeneity, which can be driven by turbulence, so that it could be a new source for symmetry breaking in the turbulence structure formation in plasmas.

  6. Theoretical prediction of electrocaloric effect based on non-linear behaviors of dielectric permittivity under temperature and electric fields

    Directory of Open Access Journals (Sweden)

    Hongbo Liu

    2015-11-01

    Full Text Available The electrocaloric (EC effect has been paid great attentions recently for applications on cooling or electricity generation. However, the directly commercial measurement equipment for the effect is still unavailable. Here we report a novel method to predict EC effect by non-linear behaviors of dielectric permittivity under temperature and electric fields. According to the method, the analytical equations of EC temperature change ΔT are directly given for normal ferroelectrics and relaxor. The calculations have been performed on several materials and it is shown that the method is suitable for both inorganic and organic ferroelectrics, and relaxor.

  7. Preparation of AgCl Nano-Crystal Embedded Tellurite Nonlinear Optical Glasses under Electric Field Accompanied Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Jian LIN; Wenhai HUANG; Bofang LI; Chong JIN; Changcheng LIU; Shuhua LEI; Zhenrong SUN

    2008-01-01

    The quantum effect of nano-crystals is an important factor to improve nonlinear optical performance of nano-crystal embedded glasses,while controlling the size distribution and content of nano-crystals in the glass accurately is a key to obtain good quality.The auxiliary direct current electric field,accompanied with heat treatment,was applied on AgCl containing niobic tellurite glass sheet.The nucleation and crystallization of the glass were well controlled under auxiliary electric field.It was found that the average size of AgCl nano-crystal particles in the glass is smaller than that under single heat treatment,and the content of nano-crystals is higher.Therefore the third-order nonlinear optical performance of the glass was increased a lot.The local-area distributed AgCl nano-crystal particles can also be embedded into a glass sheet by using locally applied electric field.

  8. Electric Field-Induced Second Order Nonlinear Optical Effects in Silicon Waveguides

    CERN Document Server

    Timurdogan, E; Watts, M R

    2016-01-01

    The demand for nonlinear effects within a silicon platform to support photonic circuits requiring phase-only modulation, frequency doubling, and/or difference frequency generation, is becoming increasingly clear. However, the symmetry of the silicon crystal inhibits second order optical nonlinear susceptibility, $\\chi^{(2)}$. Here, we show that the crystalline symmetry is broken when a DC field is present, inducing a $\\chi^{(2)}$ in a silicon waveguide that is proportional to the large $\\chi^{(3)}$ of silicon. First, Mach-Zehnder interferometers using the DC Kerr effect optical phase shifters in silicon ridge waveguides with p-i-n junctions are demonstrated with a $V_{\\pi}L$ of $2.4Vcm$ in telecom bands $({\\lambda}_{\\omega}=1.58{\\mu}m)$ without requiring to dope the silicon core. Second, the pump and second harmonic modes in silicon ridge waveguides are quasi-phase matched when the magnitude, spatial distribution of the DC field and $\\chi^{(2)}$ are controlled with p-i-n junctions. Using these waveguides, sec...

  9. Effects of applied electric and magnetic fields on the nonlinear optical rectification and second-harmonic generation in a graded quantum well under intense laser field

    Science.gov (United States)

    Ungan, Fatih

    2017-01-01

    In this present study, the effects of electric and magnetic fields on the nonlinear optical rectification and second-harmonic generation in a graded quantum well under intense laser field have been investigated theoretically. The energy eigenvalues and their corresponding eigenfunctions are obtained by solving Schrödinger equation within the framework of effective mass approximation. The analytic expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. The numerical results are presented for a typical GaAs/Ga1- x Al x As quantum well. The results show that the nonlinear optical rectification and second-harmonic generation coefficients are considerably affected by the electromagnetic fields and intense laser field.

  10. Nonlinear imaging techniques for the observation of cell membrane perturbation due to pulsed electric field exposure

    Science.gov (United States)

    Moen, Erick K.; Beier, Hope T.; Thompson, Gary L.; Roth, Caleb C.; Ibey, Bennett L.

    2014-03-01

    Nonlinear optical probes, especially those involving second harmonic generation (SHG), have proven useful as sensors for near-instantaneous detection of alterations to orientation or energetics within a substance. This has been exploited to some success for observing conformational changes in proteins. SHG probes, therefore, hold promise for reporting rapid and minute changes in lipid membranes. In this report, one of these probes is employed in this regard, using nanosecond electric pulses (nsEPs) as a vehicle for instigating subtle membrane perturbations. The result provides a useful tool and methodology for the observation of minute membrane perturbation, while also providing meaningful information on the phenomenon of electropermeabilization due to nsEP. The SHG probe Di- 4-ANEPPDHQ is used in conjunction with a tuned optical setup to demonstrate nanoporation preferential to one hemisphere, or pole, of the cell given a single square shaped pulse. The results also confirm a correlation of pulse width to the amount of poration. Furthermore, the polarity of this event and the membrane physics of both hemispheres, the poles facing either electrode, were tested using bipolar pulses consisting of two pulses of opposite polarity. The experiment corroborates findings by other researchers that these types of pulses are less effective in causing repairable damage to the lipid membrane of cells.

  11. Electric field-induced nonlinearity enhancement in strained semi-spheroid-shaped quantum dots coupled to wetting layer

    Directory of Open Access Journals (Sweden)

    Mohammad Sabaeian

    2014-12-01

    Full Text Available In this work, the effects of vertical electric field on the electronic and optical properties of strained semi-spheroid-shaped InAs/GaAs quantum dot (QD coupled to its wetting layer (WL aimed to enhance the nonlinear optical properties were investigated. The dependence of energy eigenvalues of S- and P- states and intersubband P-to-S transition energy on applied electric field was studied. A ∼∓ߙ10 meV Stark shift in the intersubband P-to-S transition energy was calculated for a semi-spheroid-shaped QD with height of 5 nm and base-length of 20 nm when bias voltage was varied from 0 V to ±0.8V. The dependence of transition dipole moment and linear and nonlinear optical properties of the system on bias voltage was also studied. It was concluded that increasing the bias voltage from -0.8V to +0.8V leads to increase in figure of merit of the system from ∼0.153 to ∼0.198.

  12. Nonlinear imaging of lipid membrane alterations elicited by nanosecond pulsed electric fields

    Science.gov (United States)

    Moen, Erick K.; Beier, Hope T.; Thompson, Gary L.; Armani, Andrea M.; Ibey, Bennett L.

    2015-03-01

    Second Harmonic Generation (SHG) imaging is a useful tool for examining the structure of interfaces between bulk materials. Recently, this technique was applied to detecting subtle perturbations in the structure of cellular membranes following nanosecond pulsed electric field (nsPEF) exposure. Monitoring the cell's outer membrane as it is exposed to nsPEF via SHG has demonstrated that nanoporation is likely the root cause for size-specific, increased cytoplasmic membrane permeabilization. It is theorized that the area of the membrane covered by these pores is tied to pulse intensity or duration. The extent of this effect along the cell's surface, however, has never been measured due to its temporal brevity and minute pore size. By enhancing the SHG technique developed and elucidated previously, we are able to obtain this information. Further, we vary the pulse width and amplitude of the applied stimulus to explore the mechanical changes of the membrane at various sites around the cell. By using this unique SHG imaging technique to directly visualize the change in order of phospholipids within the membrane, we are able to better understand the complex response of living cells to electric pulses.

  13. Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Restrepo, R.L. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Ungan, F.; Yesilgul, U.; Sari, H. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-03-15

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two lower-lying electronic levels in the step-like GaAs/Ga{sub 1−x}Al{sub x}As quantum well under external electric and magnetic fields are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass and parabolic band approximations. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the well dimensions and the effects of external fields. By changing the intensities of the electric, magnetic and non-resonant intense laser fields together with the well dimensions, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • Augmentation of laser-field results in red shift in total AC spectra. • Magnetic field induces a blue-shift in the resonant peak. • Resonant peak position shifts to red with effect of electric field. • Resonant peak of total AC shifts to the higher photon energies with increasing well width.

  14. Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es; Fernandez, E. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, J.J. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fuentes, R.; Pascual, I. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2009-02-16

    The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed.

  15. Electric-field-driven magnetization switching and nonlinear magnetoelasticity in Au/FeCo/MgO heterostructures

    Science.gov (United States)

    Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.

    2016-07-01

    Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V‑1m‑1) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices.

  16. Electric-field-driven magnetization switching and nonlinear magnetoelasticity in Au/FeCo/MgO heterostructures

    Science.gov (United States)

    Ong, P. V.; Kioussis, Nicholas; Amiri, P. Khalili; Wang, K. L.

    2016-01-01

    Voltage-induced switching of magnetization, as opposed to current-driven spin transfer torque switching, can lead to a new paradigm enabling ultralow-power and high density instant-on nonvolatile magnetoelectric random access memory (MeRAM). To date, however, a major bottleneck in optimizing the performance of MeRAM devices is the low voltage-controlled magnetic anisotropy (VCMA) efficiency (change of interfacial magnetic anisotropy energy per unit electric field) leading in turn to high switching energy and write voltage. In this work, employing ab initio electronic structure calculations, we show that epitaxial strain, which is ubiquitous in MeRAM heterostructures, gives rise to a rich variety of VCMA behavior with giant VCMA coefficient (~1800 fJ V−1m−1) in Au/FeCo/MgO junction. The heterostructure also exhibits a strain-induced spin-reorientation induced by a nonlinear magnetoelastic coupling. The results demonstrate that the VCMA behavior is universal and robust in magnetic junctions with heavy metal caps across the 5d transition metals and that an electric-field-driven magnetic switching at low voltage is achievable by design. These findings open interesting prospects for exploiting strain engineering to harvest higher efficiency VCMA for the next generation MeRAM devices. PMID:27424885

  17. Nonlinear optical rectification and second-harmonic generation in a semi-parabolic quantum well under intense laser field: Effects of electric and magnetic fields

    Science.gov (United States)

    Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Kasapoglu, E.; Duque, C. A.

    2015-05-01

    The effects of electric and magnetic fields on the nonlinear optical rectification and second harmonic generation coefficients related with intersubband transitions in a semi-parabolic quantum well under intense laser field are theoretically studied. The energy levels and corresponding wave functions are obtained by solving the conduction band Schrödinger-like equation in the parabolic approximation and the envelope function approach. Numerical calculations are presented for a typical GaAs/Ga1-xAlxAs quantum well. The results show that both the non-resonant intense laser field and the static external fields have significant influences on the magnitude and resonant peak energy positions of the coefficients under study.

  18. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  19. Nonlinear terahertz metamaterials with active electrical control

    Science.gov (United States)

    Keiser, G. R.; Karl, N.; Liu, P. Q.; Tulloss, C.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Reno, J. L.; Mittleman, D. M.

    2017-09-01

    We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.

  20. Spin–orbit interaction effect on the linear and nonlinear properties of quantum wire in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lahon, Siddhartha [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, Kirori Mal College, University of Delhi, Delhi 110007 (India); Kumar, Manoj, E-mail: manojmalikdu@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jha, Pradip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Department of Physics, DDU College, University of Delhi, Delhi 110007 (India); Mohan, Man [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2013-12-15

    Here we have investigated the influence of external electric field and magnetic field on the optical absorption and refractive index changes of a parabolically confinement wire in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of quantum wire radius, electric field, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate an increase of electric field redshifts the peak positions of absorption coefficient and refractive index changes. The role of confinement strength and spin orbit interaction strength as control parameters on the linear and nonlinear properties have been demonstrated. -- Highlights: • We study nonlinear properties in a quantum wire. • We have solved the effect of external electric and magnetic field with Rashba spin orbit interaction on linear and nonlinear properties in quantum wire. • We have used density matrix theory approach. • We find that the absorption coefficients and changes in refractive index are shifted.

  1. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Correa, J. D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M. E., E-mail: memora@uaem.mx [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C. A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  2. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    Science.gov (United States)

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-01

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  3. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  4. The synergistic effect between effective mass and built-in electric field for the transfer of carriers in nonlinear optical materials.

    Science.gov (United States)

    Li, Mengmeng; Dai, Ying; Ma, Xiangchao; Li, Zhujie; Huang, Baibiao

    2015-07-21

    Recent experiments have demonstrated that the typical nonlinear optical material K3B6O10Br can be an excellent photocatalyst under ultraviolet (UV) light irradiation. To understand the origin of the photocatalytic activity and further improve its photocatalytic efficiency to develop alternative photocatalysts, the built-in electric field and the electron effective mass and their synergistic effect on transfer and the separation of carriers in K3B6O10X (X = Br, Cl) were investigated by means of first-principles calculations. Our results show that the built-in electric field and the smallest effective mass of holes in K3B6O10Br are both along the [001] direction. In contrast, the effective masses of electrons are isotropic because of the spherically symmetric s orbitals at the conduction band minimum (CBM). Therefore, the electric field can promote efficient transfer and separation of the photogenerated carriers along the [001] direction. As a consequence, the synergistic effect of built-in electric field and the isotropy of the electron effective mass results in the {001} surface, to which most of the carriers will accumulate, showing the highest photocatalytic activity. Similar results can also be obtained for a K3B6O10Cl crystal considering the analogous structure with that of K3B6O10Br. The present study may provide theoretical insight to develop the photocatalytic performance of nonlinear optical materials.

  5. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  6. Nonlinear field space cosmology

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2017-08-01

    We consider the FRW cosmological model in which the matter content of the Universe (playing the role of an inflaton or quintessence) is given by a novel generalization of the massive scalar field. The latter is a scalar version of the recently introduced nonlinear field space theory, where the physical phase space of a given field is assumed to be compactified at large energies. For our analysis, we choose the simple case of a field with the spherical phase space and endow it with the generalized Hamiltonian analogous to the XXZ Heisenberg model, normally describing a system of spins in condensed matter physics. Subsequently, we study both the homogenous cosmological sector and linear perturbations of such a test field. In the homogenous sector, we find that nonlinearity of the field phase space is becoming relevant for large volumes of the Universe and can lead to a recollapse, and possibly also at very high energies, leading to the phase of a bounce. Quantization of the field is performed in the limit where the nontrivial nature of its phase space can be neglected, while there is a nonvanishing contribution from the Lorentz symmetry breaking term of the Hamiltonian. As a result, in the leading order of the XXZ anisotropy parameter, we find that the inflationary spectral index remains unmodified with respect to the standard case but the total amplitude of perturbations is subject to a correction. The Bunch-Davies vacuum state also becomes appropriately corrected. The proposed new approach is bringing cosmology and condensed matter physics closer together, which may turn out to be beneficial for both disciplines.

  7. The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga{sub 1−x}Al{sub x}As/GaAs quantum dot under applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autóonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-10-01

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change (the linear and third-order nonlinear) for transitions between different intersubbands in the Ga{sub 1−x}Al{sub x}As/GaAs cylindrical quantum dot under external electric field are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass approximation. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the electric and intense laser fields. By changing the intensities of the electric and laser fields, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • The effects of the non-resonant intense laser field and electric field on the nonlinear optical properties of cylindrical quantum dot are investigated. • The both total absorption coefficient and refractive index change are sensitive to dot dimensions and the effects of external fields. • By changing the external fields together with dot dimensions a blue or red shift can be obtained.

  8. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    Science.gov (United States)

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-09-28

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum.

  9. Electric Field Imaging Project

    Science.gov (United States)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.

  10. Size-, electric-field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters

    Science.gov (United States)

    Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng

    2016-06-01

    We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light.

  11. Size-, electric-field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters.

    Science.gov (United States)

    Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng

    2016-06-16

    We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light.

  12. Size-, electric-field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters

    Science.gov (United States)

    Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng

    2016-01-01

    We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light. PMID:27305957

  13. Electric field analysis

    CERN Document Server

    Chakravorti, Sivaji

    2015-01-01

    This book prepares newcomers to dive into the realm of electric field analysis. The book details why one should perform electric field analysis and what are its practical implications. It emphasizes both the fundamentals and modern computational methods of electric machines. The book covers practical applications of the numerical methods in high voltage equipment, including transmission lines, power transformers, cables, and gas insulated systems.

  14. Second-order nonlinear optical susceptibilities induced by built-in electric field in wurtzite nitride double quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L. [State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing 100871 (China) and Department of Mechanism and Electron, Panyu Polytechnic, Panyu 511483 (China)]. E-mail: zhangli-gz@263.net; Chi Yuemeng [State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing 100871 (China); Shi, J.-J. [State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing 100871 (China)

    2007-06-25

    Based on the density matrix method and the iterative treatment, the second-harmonic generation (SHG) susceptibility of a wurtzite nitride coupling quantum well (CQW) with strong built-in electric fields have been theoretically investigated. The effect of the band non-parabolicity effect has been taken into account. A typical wurtzite GaN/In{sub x}Ga{sub 1-x}N CQW are chosen to perform numerical calculations. The localized properties of the electronic ground state and the low-excited states in the system are analyzed in detail. The calculated SHG coefficients reach the order of magnitude of 10{sup -7}m/V, which is two-order larger than the corresponding values in wurtzite single quantum wells. Moreover, it is confirmed that the SHG coefficients are not monotonic functions of the well width, barrier width and the doped concentration of the CQW systems, but have complicated dependent relations on them. The reasons resulting in these characteristics can be attributed to the intense competition between the strong built-in electric field effect and the quantum size effect for the electronic confined situation in the wurtzite CQWs. The calculated results also show that a strong SHG effect can be realized in the nitride CQW by choosing a group of optimized structural parameters and doped fraction.

  15. Field history dependence of nonlinear dielectric properties of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} ceramics under bias electric field: Polarization behavior of polar nano-regions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaofei [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Xu Qing, E-mail: xuqing@whut.edu.c [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Liu Hanxing; Chen Wen [School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen Min; Kim, Bok-Hee [Faculty of Advanced Materials Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-04-01

    Nonlinear dielectric properties of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} ceramics prepared by citrate method were investigated under bias electric field with respect to field history. X-ray diffraction analysis and temperature dependence of the dielectric constant ({epsilon}{sub r}) confirmed a macroscopically paraelectric state for the specimen at room temperature. A slim polarization versus electric field (P-E) hysteresis loop of the specimen at room temperature indicated the existence of polar nano-regions (PNRs) superimposed on the paraelectric background. The nonlinear dielectric properties in continuous cycles of bias field sweep displayed a strong sensitivity to the field history. This phenomenon was qualitatively explained in terms of an irreversible polarization evolution of the PNRs under the bias fields. A considerable decline of the tunability with the cycle number suggests an appreciable contribution of the PNRs to the dielectric nonlinearity. The polarization and size of the PNRs were determined by fitting the dielectric constants to a multipolarization mechanism model.

  16. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  17. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  18. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  19. Considerations on 'Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring'

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A., E-mail: a.belendez@ua.e [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)] [Instituto Universitario de Fisica Aplicada a las Ciencias y las Tecnologias, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, J.J. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fuentes, R.; Pascual, I. [Instituto Universitario de Fisica Aplicada a las Ciencias y las Tecnologias, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)] [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2009-11-09

    In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.

  20. The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code

    Science.gov (United States)

    Kirtman, Bernard; Springborg, Michael; Rérat, Michel; Ferrero, Mauro; Lacivita, Valentina; Orlando, Roberto; Dovesi, Roberto

    2015-01-01

    An implementation of the vector potential approach (VPA) for treating the response of infinite periodic systems to static and dynamic electric fields has been initiated within the CRYSTAL code. The VPA method is based on the solution of a time-dependent Hartree-Fock or Kohn-Sham equation for the crystal orbitals wherein the usual scalar potential, that describes interaction with the field, is replaced by the vector potential. This equation may be solved either by perturbation theory or by finite field methods. With some modification all the computational procedures of molecular ab initio quantum chemistry can be adapted for periodic systems. Accessible properties include the linear and nonlinear responses of both the nuclei and the electrons. The programming of static field pure electronic (hyper)polarizabilities has been successfully tested. Dynamic electronic (hyper)polarizabilities, as well as infrared and Raman intensities, are in progress while the addition of finite fields for calculation of vibrational (hyper)polarizabilities, through nuclear relaxation procedures, will begin shortly.

  1. Influence of crossed electric and quantizing magnetic fields on the Einstein relation in nonlinear optical, optoelectronic and related materials: Simplified theory, relative comparison and suggestion for experimental determination

    Energy Technology Data Exchange (ETDEWEB)

    Pahari, S. [Administration Department, Jadavpur University, Kolkata 700 032 (India); Bhattacharya, S. [Nano Scale Device Research Laboratory, Centre for Electronics Design and Technology, Indian Institute of Science, Bangalore 560 012 (India); De, D. [Department of Computer Science and Engineering, West Bengal University of Technology, BF 142, Sector I, Kolkata 700 064, West Bengal (India); Adhikari, S.M.; Niyogi, A. [Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 70009 (India); Dey, A. [Department of Electronics, Kalyani Government of Engineering College, Kalyani, Nadia (India); Paitya, N. [Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 70009 (India); Saha, S.C. [Department of Electronics, Mallabhum Institute of Technology, Brajaradhanagar, Gosanipur, Bankura (India); Ghatak, K.P., E-mail: kamakhyaghatak@yahoo.co.i [Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 70009 (India); Bose, P.K. [National Institute of Technology, Agartala, Jirania, Tripura (West) 799055 (India)

    2010-09-15

    An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs{sub 2}, n-Hg{sub 1-x}Cd{sub x}Te, n-In{sub 1-x}Ga{sub x}As{sub y}P{sub 1-y} lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested.

  2. Field guide to nonlinear optics

    CERN Document Server

    Powers, Peter E

    2013-01-01

    Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics

  3. Propagation of electric field of the few-cycle femtosecond pulse in nonlinear Kerr medium%周期量级飞秒脉冲电场在非线性克尔介质中的传输∗

    Institute of Scientific and Technical Information of China (English)

    刘丹; 洪伟毅; 郭旗

    2016-01-01

    In this paper, the propagation of a few-cycle femtosecond pulse in a nonlinear Kerr medium is studied by the method of time-transformation. The time-transformation approach can greatly improve the computational efficiency. Because the width of electric field of the few-cycle femtosecond pulse is less than the characteristic time of Raman response in a nonlinear medium, it is observed that the electric field of the pulse experiences a significant deformation and breaks into a Raman soliton and the dispersion waves during the propagation, which can be attributed to strongly nonlocal nonlinearity. A deeper investigation of the time-frequency distributions for both the Raman soliton and the dispersion waves is also included. Since the pulse contains only few cycles, the carrier-envelope phase (CEP) of the pulse plays an important role in the process of nonlinear propagation. The numerical results show the CEP-dependence in the process of nonlinear propagation: the phase changes for both the Raman soliton and the dispersive waves are just equal to the CEP change of the initial pulse, which indicates that the CEP of the pulse is linearly transmitted in the process of nonlinear propagation. This phenomenon can be attributed to the fact that the phase change due to the nonlinearity is only dependent on the intensities of the fields of both the Raman soliton and the dispersion wave, which are unchanged for all the CEPs.

  4. Electric field dependence of nonlinearity parameters and third order elastic constants of 0.70Pb(Mg(13)Nb(23))O(3)-0.30PbTiO(3) single crystal.

    Science.gov (United States)

    Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R; Cao, Wenwu

    2010-02-01

    Through second harmonic measurements, the ultrasonic nonlinearity parameters of [001](c) and [111](c) polarized 0.70Pb(Mg(13)Nb(23))O(3)-0.30PbTiO(3)(PMN-0.3PT) single crystals have been measured as a function of bias electric field. It was found that the nonlinearity parameter increases almost linearly with field at low field but shows a drastic increase near the coercive field. The [111](c) polarized single domain crystal has much smaller nonlinearity parameter than that of the [001](c) polarized multidomain crystal. Based on effective symmetries of these crystals, we were able to derive the field dependence of several third order elastic constants, which are important parameters for high field applications.

  5. Electric field dependence of nonlinearity parameters and third order elastic constants of 0.70Pb(Mg1∕3Nb2∕3)O3–0.30PbTiO3 single crystal

    Science.gov (United States)

    Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R.; Cao, Wenwu

    2010-01-01

    Through second harmonic measurements, the ultrasonic nonlinearity parameters of [001]c and [111]c polarized 0.70Pb(Mg1∕3Nb2∕3)O3–0.30PbTiO3(PMN–0.3PT) single crystals have been measured as a function of bias electric field. It was found that the nonlinearity parameter increases almost linearly with field at low field but shows a drastic increase near the coercive field. The [111]c polarized single domain crystal has much smaller nonlinearity parameter than that of the [001]c polarized multidomain crystal. Based on effective symmetries of these crystals, we were able to derive the field dependence of several third order elastic constants, which are important parameters for high field applications. PMID:20198132

  6. Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission

    National Research Council Canada - National Science Library

    Wilder, F. D; Ergun, R. E; Goodrich, K. A; Goldman, M. V; Newman, D. L; Malaspina, D. M; Jaynes, A. N; Schwartz, S. J; Trattner, K. J; Burch, J. L; Argall, M. R; Torbert, R. B; Lindqvist, P.‐A; Marklund, G; Le Contel, O; Mirioni, L; Khotyaintsev, Yu. V; Strangeway, R. J; Russell, C. T; Pollock, C. J; Giles, B. L; Plaschke, F; Magnes, W; Eriksson, S; Stawarz, J. E; Sturner, A. P; Holmes, J. C

    2016-01-01

    .... Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations...

  7. Threshold electric field in unconventional density waves

    Science.gov (United States)

    Dóra, Balázs; Virosztek, Attila; Maki, Kazumi

    2001-07-01

    As it is well known most charge-density waves (CDW's) and spin-density waves exhibit nonlinear transport with well-defined threshold electric field ET. Here we study theoretically the threshold electric field of unconventional density waves. We find that the threshold field increases monotonically with temperature without divergent behavior at Tc, unlike the one in conventional CDW. The present result in the three-dimensional weak pinning limit appears to describe rather well the threshold electric field observed recently in the low-temperature phase of α-(BEDT-TTF)2KHg(SCN)4.

  8. The Nonlinear Field Space Theory

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-08-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  9. The Nonlinear Field Space Theory

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)

    2016-08-10

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  10. The Nonlinear Field Space Theory

    Directory of Open Access Journals (Sweden)

    Jakub Mielczarek

    2016-08-01

    Full Text Available In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity, as well as in condensed matter physics (e.g. continuous spin chains, and can shed new light on the issue of divergences in quantum field theories.

  11. Shaping the nonlinear near field

    Science.gov (United States)

    Wolf, Daniela; Schumacher, Thorsten; Lippitz, Markus

    2016-01-01

    Light scattering at plasmonic nanoparticles and their assemblies has led to a wealth of applications in metamaterials and nano-optics. Although shaping of fields around nanostructures is widely studied, the influence of the field inside the nanostructures is often overlooked. The linear field distribution inside the structure taken to the third power causes third-harmonic generation, a nonlinear optical response of matter. Here we demonstrate by a far field Fourier imaging method how this simple fact can be used to shape complex fields around a single particle alone. We employ this scheme to switch the third-harmonic emission from a single point source to two spatially separated but coherent sources, as in Young's double-slit assembly. We envision applications as diverse as coherently feeding antenna arrays and optical spectroscopy of spatially extended electronic states.

  12. Compensation for electrical converter nonlinearities

    Science.gov (United States)

    Perisic, Milun; Ransom, Ray M; Kajouke, Lateef A

    2013-11-19

    Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module between the input interface and the output interface, an inductive element between the input interface and the energy conversion module, and a control module. The control module determines a compensated duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface and operates the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value. The compensated duty cycle control value is influenced by the current through the inductive element and accounts for voltage across the switching elements of the energy conversion module.

  13. Hydrogenic impurity, external electric and magnetic fields effects on the nonlinear optical properties of a multi-layer spherical quantum dot

    Science.gov (United States)

    Tanhaei, M. H.; Rezaei, G.

    2016-10-01

    In this work, effects of an on-center hydrogenic impurity, external electric and magnetic fields on the optical rectification coefficient (ORC), second and third harmonic generations (SHG and THG) of a multi-layer spherical quantum dot (MLSQD) are studied. Energy eigenvalues and eigenvectors are calculated using the direct matrix diagonalization method and optical properties are obtained using the compact density matrix approach. Our results reveal that the hydrogenic impurity and external fields have a great influence on these optical quantities. Hydrogenic impurity reduces the magnitude of the resonant peaks and shifts them to the higher energies. An increase in the magnetic (electric) field, leads to increase (decrease) the interval energies and the dipole moment matrix elements. Therefore, resonant peaks of these optical quantities find an obvious blue (red) shift and their magnitudes enhance (diminish) with increasing the external magnetic (electric) field.

  14. Selected topics in nonlinear dynamics and theoretical electrical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kyamakya, Kyandoghere; Chedjou, Jean Camberlain [Kalgenfurt Univ. (Austria); Halang, Wolfgang A.; Li, Zhong [Hagen Fernuniv. (Germany); Mathis, Wolfgang (eds.) [Leibniz Univ. Hannover (Germany). Inst. fuer Theoretische Elektrotechnik

    2013-02-01

    Post proceedings of Joint Conference INDS 2011 and ISTET 2011. Recent advances in nonlinear Dynamics and Synchronization as well as in Theoretical Electrical Engineering. Written by leading experts in the field. This book contains a collection of recent advanced contributions in the field of nonlinear dynamics and synchronization, including selected applications in the area of theoretical electrical engineering. The present book is divided into twenty-one chapters grouped in five parts. The first part focuses on theoretical issues related to chaos and synchronization and their potential applications in mechanics, transportation, communication and security. The second part handles dynamic systems modelling and simulation with special applications to real physical systems and phenomena. The third part discusses some fundamentals of electromagnetics (EM) and addresses the modelling and simulation in some real physical electromagnetic scenarios. The fourth part mainly addresses stability concerns. Finally, the last part assembles some sample applications in the area of optimization, data mining, pattern recognition and image processing.

  15. Nonlinear interaction of electromagnetic field with quantum plasma

    CERN Document Server

    Latyshev, A V

    2014-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures.

  16. What Are Electric and Magnetic Fields? (EMF)

    Science.gov (United States)

    ... take for granted. What are electric and magnetic fields? Electric and magnetic fields (EMF) are invisible lines of ... humans. AC electric power produces electric and magnetic fields that create weak electric currents in humans. Being exposed to some kinds ...

  17. Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: Effects of an applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Magdaleno, K.A.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calz. Solidaridad Esq. Paseo a La Bufa S/N. C.P. 98060 Zacatecas (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516 Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-03-15

    In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N{sub 2d}) of each single δ-doped quantum well are taken to vary within the range of 1.0×10{sup 12} to 7.0×10{sup 12} cm{sup −2}, consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system.

  18. Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission

    Science.gov (United States)

    Wilder, F. D.; Ergun, R. E.; Goodrich, K. A.; Goldman, M. V.; Newman, D. L.; Malaspina, D. M.; Jaynes, A. N.; Schwartz, S. J.; Trattner, K. J.; Burch, J. L.; Argall, M. R.; Torbert, R. B.; Lindqvist, P.-A.; Marklund, G.; Le Contel, O.; Mirioni, L.; Khotyaintsev, Yu. V.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Plaschke, F.; Magnes, W.; Eriksson, S.; Stawarz, J. E.; Sturner, A. P.; Holmes, J. C.

    2016-06-01

    We show observations from the Magnetospheric Multiscale (MMS) mission of whistler mode waves in the Earth's low-latitude boundary layer (LLBL) during a magnetic reconnection event. The waves propagated obliquely to the magnetic field toward the X line and were confined to the edge of a southward jet in the LLBL. Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations. The polarity of the ESWs suggests that if they propagate with the waves, they are electron enhancements as opposed to electron holes. The reduced electron distribution shows a shoulder in the distribution for parallel velocities between 17,000 and 22,000 km/s, which persisted during the interval when ESWs were observed, and is near the phase velocity of the whistlers. This shoulder can drive Langmuir waves, which were observed in the high-frequency parallel electric field data.

  19. Dilaton black holes coupled to nonlinear electrodynamic field

    CERN Document Server

    Sheykhi, A

    2015-01-01

    The theory of nonlinear electrodynamics has got a lot of attentions in recent years. It was shown that Born-Infeld nonlinear electrodynamics is not the only modification of the linear Maxwell's field which keeps the electric field of a charged point particle finite at the origin, and other type of nonlinear Lagrangian such as exponential and logarithmic nonlinear electrodynamics can play the same role. In this paper, we generalize the study on the exponential nonlinear electrodynamics by adding a scalar dilaton field to the action. By suitably choosing the coupling of the matter field to the dilaton field, we vary the action and obtain the corresponding field equations. Then, by making a proper ansatz, we construct a new class of charged dilaton black hole solutions coupled to the exponential nonlinear electrodynamics field in the presence of two Liouville-type potentials for the dilaton field. Due to the presence of the dilaton field, the asymptotic behavior of these solutions are neither flat nor (A)dS. In ...

  20. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non......-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is then the spatial...

  1. Studies on the Second-Order Nonlinear Optical Properties of Parabolic and Semi-parabolic Quantum Wells with Applied Electric Fields

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; XIE Hong-Jing

    2004-01-01

    Within the framework of compact density matrix approach and iterative procedure, a detailed procedure for the calculation of the second-harmonic generation (SHG)susceptibility tensor is given in the electric-field-biased parabolic and semi-parabolic quantum wells (QWs). The simple analytical formula for the SHG susceptibility in the systems is also deduced. Numerical results on typical AlGaAs/GaAs materials show that, for the same effective width,the SHG susceptibility in semi-parabolic QW is larger than that in parabolic QW due to the self-asymmetry of the semiparabolic QW, and the applied electric field can make the SHG susceptibilities in both systems enhance remarkably.Moreover, the SHG susceptibility is also related to the parabolic confinement frequency and the relaxation rate of the systems.

  2. Cryosurgery with pulsed electric fields.

    Science.gov (United States)

    Daniels, Charlotte S; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  3. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  4. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  5. Control of terahertz nonlinear transmission with electrically gated graphene metadevices

    Science.gov (United States)

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. K.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-02-01

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.

  6. Control of terahertz nonlinear transmission with electrically gated graphene metadevices

    Science.gov (United States)

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. k.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-01-01

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms. PMID:28216677

  7. Electric characterization of a nonlinear dispersive transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, E.S.; Ricotta, R.M. [Faculdade de Tecnologia de Sao Paulo (FATEC-SP), SP (Brazil)], Emails: ferreira@fatecsp.br, regina@fatecsp.br

    2009-07-01

    A preliminary study of electrical soliton propagation in a nonlinear dispersion electrical line is presented. This is probably the simplest system that allows the observation of such waves whose main characteristic is the perfect balance of nonlinear and dispersive aspects. (author)

  8. Electrical Field Effects in Phthalocyanine Film Growth by Vapor Deposition

    Science.gov (United States)

    Banks, Curtis E.; Zhu, Shen; Frazier, Donald O.; Penn, Benjamin; Abdeldayem, Hossin; Hicks, Roslin; Sarkisov, Sergey

    1999-01-01

    Phthalocyanine, an organic material, is a very good candidate for non-linear optical application, such as high-speed switching and optical storage devices. Phthalocyanine films have been synthesized by vapor deposition on quartz substrates. Some substrates were coated with a very thin gold film for introducing electrical field. These films have been characterized by surface morphology, material structure, chemical and thermal stability, non-linear optical parameters, and electrical behaviors. The films have excellent chemical and optical stability. However, the surface of these films grown without electrical field shows flower-like morphology. When films are deposited under an electrical field ( an aligned structure is revealed on the surface. A comparison of the optical and electrical properties and the growth mechanism for these films grown with and without an electrical field will be discussed.

  9. Electric Field Uniformity of TEPC

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Wei-hua; WANG; Zhi-qiang; LIU; Yi-na; LI; Chun-juan; LUO; Hai-long

    2012-01-01

    <正>As a proportional counter, the problem with tissue-equivalent proportional counter (TEPC) is that near the end of the anode wire the wall of detector is much closer to the anode, the electric field is stronger, and the gas gain is higher than at the center of the anode, namely end effects. In order to optimize the design of TEPC, a gas-flow TEPC (Fig. 1) is designed and constructed to take the research of electric field distribution characteristics.

  10. Nonlinear smoothing for random fields

    NARCIS (Netherlands)

    Aihara, Shin Ichi; Bagchi, Arunabha

    1995-01-01

    Stochastic nonlinear elliptic partial differential equations with white noise disturbances are studied in the countably additive measure set up. Introducing the Onsager-Machlup function to the system model, the smoothing problem for maximizing the modified likelihood functional is solved and the exp

  11. Parameter information from nonlinear cosmological fields

    CERN Document Server

    Watts, A T P

    2000-01-01

    We develop a general formalism for analysing parameter information from non-Gaussian cosmic fields. The method can be adapted to include the nonlinear effects in galaxy redshift surveys, weak lensing surveys and cosmic velocity field surveys as part of parameter estimation. It can also be used as a test of non-Gaussianity of the Cosmic Microwave Background. Generalising Maximum Likelihood analysis to second-order, we calculate the nonlinear Fisher Information matrix and likelihood surfaces in parameter space. To this order we find that the information content is always increased by including nonlinearity. Our methods are applied to a realistic model of a galaxy redshift survey, including nonlinear evolution, galaxy bias, shot-noise and redshift-space distortions to second-order. We find that including nonlinearities allows all of the degeneracies between parameters to be lifted. Marginalised parameter uncertainties of a few percent will then be obtainable using forthcoming galaxy redshift surveys.

  12. Nonlinear optimization in electrical engineering with applications in Matlab

    CERN Document Server

    Bakr, Mohamed

    2013-01-01

    Nonlinear Optimization in Electrical Engineering with Applications in MATLAB® provides an introductory course on nonlinear optimization in electrical engineering, with a focus on applications such as the design of electric, microwave, and photonic circuits, wireless communications, and digital filter design. Basic concepts are introduced using a step-by-step approach and illustrated with MATLAB® codes that the reader can use and adapt. Topics covered include: classical optimization methods; one dimensional optimization; unconstrained and constrained optimization; global optimization; space map

  13. Revisiting the Corotation Electric Field

    Science.gov (United States)

    Rothwell, P. L.

    2001-05-01

    The rotation of the Earth's dipole magnetic field produces a corotation electric field in the nonrotating frame of reference. A quick calculation implies that this field might arise from the relative motion of an observer in the nonrotating frame and the motion of rotating magnetic field lines. However, upon applying Faraday's Law one finds that total time rate of change of the magnetic field as seen in the nonrotating frame is zero due to the azimuthal symmetry of the dipole. Therefore, classical EM theory(1) predicts a zero corotation electric field in the nonrotating frame for a vacuum. This conundrum has been traditionally treated in the following manner(2,3). 1) Start with a vacuum state with no conductors and plasma present. The transformation between E (the electric field in the nonrotating frame) and E' (the electric field in the rotating frame)implies that in the rotating frame E' is nonzero while E = 0. 2) In the presence of a thin conducting spherical shell (the ionosphere) polarization charges form in the shell due to the magnetic force on the electrons. A polarization electric field Ep is created such that in the idealized case the shell has a uniform electric potential. This Ep has a component along the magnetic field lines outside the shell. 3) Plasma will polarize along B, thus canceling the parallel component of Ep which allows the potential on the shell to be mapped along the magnetic field lines setting E' = 0. From the transformation equation E is now nonzero. This is the electric field required in the nonrotating frame for the plasma to corotate with the dipole. The presence of the corotation electric field is not a local result, but a nonlocal effect that requires the presence of an ionosphere and a conducting plasma. (1) W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, 1956. (2) H. Alfven and C.-G. Falthammar, Cosmical Electrodynamics, 2nd ed., Oxford Press, 1963. (3) E.W.Hones and J.E.Bergeson, J. Geophys

  14. Nonlinear transmission of an intense terahertz field through monolayer graphene

    Directory of Open Access Journals (Sweden)

    H. A. Hafez

    2014-11-01

    Full Text Available We report nonlinear terahertz (THz effects in monolayer graphene, giving rise to transmission enhancement of a single-cycle THz pulse when the incident THz peak electric field is increased. This transmission enhancement is attributed to reduced photoconductivity, due to saturation effects in the field-induced current and increased intraband scattering rates arising from transient heating of electrons. We have developed a tight-binding model of the response using the length gauge interaction Hamiltonian that provides good qualitative agreement. The model fully accounts for the nonlinear response arising from the linear dispersion energy spectrum in graphene. The results reveal a strong dependence of the scattering time on the THz field, which is at the heart of the observed nonlinear response.

  15. THOR Electric Field Instrument - EFI

    Science.gov (United States)

    Khotyaintsev, Yuri; Bale, Stuart D.; Rothkaehl, Hanna; Bonnell, John; Åhlen, Lennart; Vaivads, Andris; Lindqvist, Per-Arne; Ivchenko, Nickolay; Soucek, Jan

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Electric Field Instrument (EFI) is to measure the electric field vector in the frequency range 0-200 kHz. EFI consists of two sets of sensors: Spin-plane Double Probes (EFI-SDP) providing high sensitivity DC electric field in the spacecraft spin plane (2D), and the High-Frequency Antenna (EFI-HFA) providing 3D electric field at frequencies above 1 kHz. EFI-SDP consists of 4 biased spherical probes extended on 50 m long wire booms, 90 degrees apart in the spin plane, giving a 100 m baseline for each of the two spin-plane electric field components. EFI-HFA consists of 6 x 1.25 m long monopoles, forming 3 dipolar antennas crossed at 90 degrees to each other. In addition to the sensors, EFI contains HFA and SDP pre-amplifiers, as well as bias electronics boards (BEBs) hosted in the man electronics box of the Field and Wave processor (FWP). As THOR spacecraft has a sun-pointing spin axis, EFI-SDP measures the electric field in the plane approximately orthogonal to the sun using long wire booms. The sun-pointing attitude greatly reduces errors due to wake effects and asymmetric photoelectron clouds, enabling the highly accurate in comparison to earlier missions ±0.1 mV/m near-DC electric field measurements. Interferometry using the electric field probes can be used to infer wavelengths and scale sizes at the smallest scales in the plasma. EFI also measures the floating potential of the satellite, which can be used to estimate the plasma density at very high time resolution (up to a few hundred Hz). The sun-pointing attitude greatly reduces changes in the illuminated area, and hence the associated spin-dependent errors. In combination with densities derived from the observed plasma frequency emission line, EFI monitors the plasma density from DC to a few hundred Hz. EFI measurements characterize electric field and density variations associated with kinetic

  16. Electric fields and quantum wormholes

    CERN Document Server

    Engelhardt, Dalit; Iqbal, Nabil

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole". We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a non-perturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U(1) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  17. Electric fields and quantum wormholes

    Science.gov (United States)

    Engelhardt, Dalit; Freivogel, Ben; Iqbal, Nabil

    2015-09-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole." We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a nonperturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U (1 ) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  18. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  19. Homogeneous solutions for elliptically polarized light in a cavity containing materials with electric and magnetic nonlinearities

    CERN Document Server

    Martin, D A

    2015-01-01

    We study evolution equations and stationary homogeneous solutions for electric and magnetic field amplitudes in a ring cavity with flat mirrors. The cavity is filled with a positive or negative refraction index material with third order Kerr-like electric nonlinearities and also magnetic nonlinearities, which can be relevant in metamaterials. We consider the degree of freedom of polarization in the incident beam. It is found that considering a magnetic nonlinearity increases the variety of possible qualitatively different solutions. A classification of solutions is proposed in terms of the number of bifurcations. The analysis can be useful for the implementation of optical switching or memory storage using ring cavities with non linear materials.

  20. Nonlinear propagation of strong-field THz pulses in doped semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We report on nonlinear propagation of single-cycle THz pulses with peak electric fields reaching 300 kV/cm in n-type semiconductors at room temperature. Dramatic THz saturable absorption effects are observed in GaAs, GaP, and Ge, which are caused by the nonlinear electron transport in THz fields....

  1. Microstickies agglomeration by electric field.

    Science.gov (United States)

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.

  2. Nonlinear interactions for massive spin-2 fields

    CERN Document Server

    Schmidt-May, Angnis

    2016-01-01

    We give a basic introduction to ghost-free nonlinear theories involving massive spin-2 fields, focussing on bimetric theory. After motivating the construction of such models from field theoretical considerations, we review the linear theories for massive and massless spin-2 fluctuations propagating on maximally symmetric backgrounds. The structure of general nonlinear spin-2 interactions is explained before we specialise to the ghost-free case. We review the maximally symmetric solutions of bimetric theory, its mass spectrum and the parameter limit which brings the theory close to general relativity. Finally we discuss applications of bimetric theory to cosmology with particular emphasis on the role of the general relativity limit.

  3. Special Effect of Parallel Inductive Electric Field

    Institute of Scientific and Technical Information of China (English)

    陈涛; 刘振兴; W.Heikkila

    2002-01-01

    Acceleration of electrons by a field-aligned electric field during a magnetospheric substorm in the deep geomagnetic tail is studied by means of a one-dimensional electromagnetic particle code. It was found that the free acceleration of the electrons by the parallel electric field is obvious; kinetic energy variation is greater than electromagnetic energy variation in the presence of parallel electric field. Magnetic energy is greater than kinetic energy variation and electric energy variation in the absence of the parallel electric field. More wave modes in the presence of the parallel electric field are generated than those in the absence of the parallel electric field.

  4. Linear electric field mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.; Nordholt, J.E.

    1991-03-29

    A mass spectrometer is described having a low weight and low power requirement, for use in space. It can be used to analyze the ionized particles in the region of the spacecraft on which it is mounted. High mass resolution measurements are made by timing ions moving through a gridless cylindrically sysmetric linear electric field.

  5. Electric fields and quantum wormholes

    NARCIS (Netherlands)

    Engelhardt, D.; Freivogel, B.; Iqbal, N.

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a

  6. Electric fields and quantum wormholes

    NARCIS (Netherlands)

    Engelhardt, D.; Freivogel, B.; Iqbal, N.

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "

  7. Cavity equations for a positive- or negative-refraction-index material with electric and magnetic nonlinearities

    Science.gov (United States)

    Mártin, Daniel A.; Hoyuelos, Miguel

    2009-11-01

    We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative-refraction-index material with third-order effective electric and magnetic nonlinearities. Two coupled nonlinear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato-Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

  8. Nonlinear electrical properties of Si three-terminal junction devices

    DEFF Research Database (Denmark)

    Fantao, Meng; Jie, Sun; Graczyk, Mariusz

    2010-01-01

    This letter reports on the realization and characterization of silicon three-terminal junction devices made in a silicon-on-insulator wafer. Room temperature electrical measurements show that the fabricated devices exhibit pronounced nonlinear electrical properties inherent to ballistic electron ...

  9. Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering

    CERN Document Server

    Halang, Wolfgang; Mathis, Wolfgang; Chedjou, Jean; Li, Zhong

    2013-01-01

    This book contains a collection of recent advanced contributions in the field of nonlinear dynamics and synchronization, including selected applications in the area of theoretical electrical engineering. The present book is divided into twenty-one chapters grouped in five parts. The first part focuses on theoretical issues related to chaos and synchronization and their potential applications in mechanics, transportation, communication and security. The second part handles dynamic systems modelling and simulation with special applications to real physical systems and phenomena. The third part discusses some fundamentals of electromagnetics (EM) and addresses the modelling and simulation in some real physical electromagnetic scenarios. The fourth part mainly addresses stability concerns. Finally, the last part assembles some sample applications in the area of optimization, data mining, pattern recognition and image processing.

  10. Selected topics in nonlinear dynamics and theoretical electrical engineering

    CERN Document Server

    Halang, Wolfgang; Mathis, Wolfgang; Chedjou, Jean; Li, Zhong

    2013-01-01

    This book contains a collection of recent advanced contributions in the field of nonlinear dynamics and synchronization, including selected applications in the area of theoretical electrical engineering. The present book is divided into twenty-one chapters grouped in five parts. The first part focuses on theoretical issues related to chaos and synchronization and their potential applications in mechanics, transportation, communication and security. The second part handles dynamic systems modelling and simulation with special applications to real physical systems and phenomena. The third part discusses some fundamentals of electromagnetics (EM) and addresses the modelling and simulation in some real physical electromagnetic scenarios. The fourth part mainly addresses stability concerns. Finally, the last part assembles some sample applications in the area of optimization, data mining, pattern recognition and image processing.

  11. Quantized amplitudes in a nonlinear resonant electrical circuit

    CERN Document Server

    Cretin, B

    2008-01-01

    We present a simple nonlinear resonant analog circuit which demonstrates quantization of resonating amplitudes, for a given excitation level. The system is a simple RLC resonator where C is an active capacitor whose value is related to the current in the circuit. This variation is energetically equivalent to a variation of the potential energy and the circuit acts as a pendulum in the gravitational field. The excitation voltage, synchronously switched at the current frequency, enables electrical supply and keeping the oscillation of the system. The excitation frequency has been set to high harmonic of the fundamental oscillation so that anisochronicity can keep constant the amplitude of the circuit voltage and current. The behavior of the circuit is unusual: different stable amplitudes have been measured depending on initial conditions and excitation frequency, for the same amplitude of the excitation. The excitation frequency is naturally divided by the circuit and the ratio is kept constant without external...

  12. Approximating electrical distribution networks via mixed-integer nonlinear programming

    Energy Technology Data Exchange (ETDEWEB)

    Lakhera, Sanyogita [Citibank, New York City, NY (United States); Shanbhag, Uday V. [Department of Industrial and Enterprise Systems Engineering at the University of Illinois at Urbana-Champaign, 117 Transportation Building, 104 S. Mathews Ave., Urbana, IL 61801 (United States); McInerney, Michael K. [Construction Engineering Research Laboratory (CERL) (United States)

    2011-02-15

    Given urban data derived from a geographical information system (GIS), we consider the problem of constructing an estimate of the electrical distribution system of an urban area. We employ the image data to obtain an approximate electrical load distribution over a network of a prespecificed discretization. Together with partial information about existing substations, we determine the optimal placement of electrical substations to sustain such a load that minimizes the cost of capital and losses. This requires solving large-scale quadratic programs with discrete variables for which we present a novel penalization-smoothing scheme. The choice of locations allows one to determine the optimal flows in this network, as required by physical requirements which provide us with an approximation of the distribution network. Furthermore, the scheme allows for approximating systems in the presence of no-go areas, such as lakes and fields. We examine the performance of our algorithm on the solution of a set of location problems and observe that the scheme is capable of solving large-scale instances, well beyond the realm of existing mixed-integer nonlinear programming solvers. We conclude with a case study in which a stage-wise extension of this scheme is developed to reflect the temporal evolution of load. (author)

  13. Giant and tunable electric field enhancement in the terahertz regime.

    Science.gov (United States)

    Lu, Xiaoyuan; Wan, Rengang; Wang, Guoxi; Zhang, Tongyi; Zhang, Wenfu

    2014-11-01

    A novel array of slits design combining the nano-slit grating and dielectric-metal is proposed to obtain giant and tunable electric field enhancement in the terahertz regime. The maximum amplitude of electric field is more than 6000 times larger than that of the incident electric field. It is found that the enhancement depends primarily on the stripe and nano-slits width of grating, as well as the thickness of spacer layer. This property is particularly beneficial for the realization of ultra-sensitive nanoparticles detection and nonlinear optics in the terahertz range, such as the second harmonic generation (SHG).

  14. Spiral Wave Generation in a Vortex Electric Field

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-Ping; CHEN Jiang-Xing; ZHAO Ye-Hua; LOU Qin; WANG Lu-Lu; SIIEN Qian

    2011-01-01

    The effect of a vortical electric field on nonlinear patterns in excitable media is studied. When an appropriate vortex electric field is applied, the system exhibits pattern transition from chemical turbulence to spiral waves, which possess the same chtality as the vortex electric field. The underlying mechanism of this is discussed. We also show the meandering behavior of a spiral under the taming of a vortex electric field. The results obtained here may contribute to control strategies of patterns on surface reaction.%The effect of a vortical electric field on nonlinear patterns in excitable media is studied.When an appropriate vortex electric field is applied,the system exhibits pattern transition from chemical turbulence to spiral waves,which possess the same chirality as the vortex electric field.The underlying mechanism of this is discussed.We also show the meandering behavior of a spiral under the taming of a vortex electric field.The results obtained here may contribute to control strategies of patterns on surface reaction.Spiral waves are one of the most common and widely studied patterns in nature.They appear in hydrodynamic systems,chemical reactions and a large variety of biological,chemical and physical systems.[1-5] Much attention has been paid to their rich nonlinear dynamics,as well as potential applications in various biological or physiological systems,since the emergence and instability of spirals usually lead to abnormal states,for example in cardiac arrythmia[6,7] and epilepsy[8].Much research has been carried out in studying pattern formations in catalytic CO oxidation on Pt(110),[9-11] because they provide practical utilization in industry.A rich variety of spatiotemporal patterns,including travelling pulses,standing waves,target patterns,spiral waves and chemical turbulence have been observed in this system.[12-16

  15. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    Science.gov (United States)

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...

  16. Electric field distribution of electron emitter surfaces

    Science.gov (United States)

    Tagawa, M.; Takenobu, S.; Ohmae, N.; Umeno, M.

    1987-03-01

    The electric field distribution of a tungsten field emitter surface and a LaB6 thermionic emitter surface has been studied. The computer simulation of electric field distribution on the emitter surface was carried out with a charge simulation method. The electric field distribution of the LaB6 thermionic emitter was experimentally evaluated by the Schottky plot. Two independent equations are necessary for obtaining local electric field and work function; the Fowler-Nordheim equation and the equation of total energy distribution of emitted electron being used to evaluate the electric field distribution of the tungsten field emitter. The experimental results agreed with the computer simulation.

  17. Research progress in nonlinear analysis of heart electric activities

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Nonlinear science research is a hot point in the world. It has deepened our cognition of determinism and randomicity, simplicity and complexity, noise and order and it will profoundly influence the progress of the study of natural science, including life science.Life is the most complex nonlinear system and heart is the core of lifecycle system. In the late more than 20 years, nonlinear research on heart electric activities has made much headway. The commonly used parameters are based on chaos and fractal theory, such as correlation dimension, Lyapunov exponent, Kolmogorov entropy and multifractal singularity spectrum. This paper summarizes the commonly used methods in the nonlinear study of heart electric signal. Then, considering the shortages of the above traditional nonlinear parameters, we mainly introduce the results on short-term heart rate variability (HRV) signal (500 R-R intervals) and HFECG signal (1-2s). Finally, we point out it is worthwhile to put emphasis on the study of the sensitive nonlinearity parameters of short-term heart electric signal and their dynamic character and clinical effectivity.

  18. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  19. New electric field in asymmetric magnetic reconnection.

    Science.gov (United States)

    Malakit, K; Shay, M A; Cassak, P A; Ruffolo, D

    2013-09-27

    We present a theory and numerical evidence for the existence of a previously unexplored in-plane electric field in collisionless asymmetric magnetic reconnection. This electric field, dubbed the "Larmor electric field," is associated with finite Larmor radius effects and is distinct from the known Hall electric field. Potentially, it could be an important indicator for the upcoming Magnetospheric Multiscale mission to locate reconnection sites as we expect it to appear on the magnetospheric side, pointing earthward, at the dayside magnetopause reconnection site.

  20. Cell separation using electric fields

    Science.gov (United States)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  1. Nonlinear spin control by terahertz-driven anisotropy fields

    Science.gov (United States)

    Baierl, S.; Hohenleutner, M.; Kampfrath, T.; Zvezdin, A. K.; Kimel, A. V.; Huber, R.; Mikhaylovskiy, R. V.

    2016-11-01

    Future information technologies, such as ultrafast data recording, quantum computation or spintronics, call for ever faster spin control by light. Intense terahertz pulses can couple to spins on the intrinsic energy scale of magnetic excitations. Here, we explore a novel electric dipole-mediated mechanism of nonlinear terahertz-spin coupling that is much stronger than linear Zeeman coupling to the terahertz magnetic field. Using the prototypical antiferromagnet thulium orthoferrite (TmFeO3), we demonstrate that resonant terahertz pumping of electronic orbital transitions modifies the magnetic anisotropy for ordered Fe3+ spins and triggers large-amplitude coherent spin oscillations. This mechanism is inherently nonlinear, it can be tailored by spectral shaping of the terahertz waveforms and its efficiency outperforms the Zeeman torque by an order of magnitude. Because orbital states govern the magnetic anisotropy in all transition-metal oxides, the demonstrated control scheme is expected to be applicable to many magnetic materials.

  2. Finite element modeling and analysis of piezo-integrated composite structures under large applied electric fields

    Science.gov (United States)

    Rao, M. N.; Tarun, S.; Schmidt, R.; Schröder, K.-U.

    2016-05-01

    In this article, we focus on static finite element (FE) simulation of piezoelectric laminated composite plates and shells, considering the nonlinear constitutive behavior of piezoelectric materials under large applied electric fields. Under the assumptions of small strains and large electric fields, the second-order nonlinear constitutive equations are used in the variational principle approach, to develop a nonlinear FE model. Numerical simulations are performed to study the effect of material nonlinearity for piezoelectric bimorph and laminated composite plates as well as cylindrical shells. In comparison to the experimental investigations existing in the literature, the results predicted by the present model agree very well. The importance of the present nonlinear model is highlighted especially in large applied electric fields, and it is shown that the difference between the results simulated by linear and nonlinear constitutive FE models cannot be omitted.

  3. Nonlinear optical field sensors in extreme electromagnetic and acoustic environments

    Science.gov (United States)

    Garzarella, Anthony; Wu, Dong Ho

    2014-03-01

    Sensors based on electro-optic (EO) and magneto-optic (MO) crystals measure external electric and magnetic fields through changes in birefringence which the fields induce on the nonlinear crystals. Due to their small size and all-dielectric structure, EO and MO sensors are ideal in environments involving very large electromagnetic powers. Conventional antennas and metallic probes not only present safety hazards, due to their metallic structure and the presence of large currents, but they can also perturb the very fields they intend to measure. In the case of railguns, the large electromagnetic signals are also accompanied by tremendous acoustic noise, which presents a noise background that the sensors must overcome. In this presentation, we describe extensive data obtained from fiber optic EO and MO sensors used in the railgun of the Naval Research Laboratory. Along with the field measurements obtained, we will describe the interactions between the acoustic noise and the nonlinear crystals (most notably, photoelastic effects), the noise equivalent fields they produce, and methods they could be suppressed through the optical and geometrical configurations of the sensor so that the signal to noise ratio can be maximized.

  4. Mean-field theory of strongly nonlinear random composites: Strong power-law nonlinearity and scaling behavior

    Science.gov (United States)

    Wan, W. M. V.; Lee, H. C.; Hui, P. M.; Yu, K. W.

    1996-08-01

    The effective response of random media consisting of two different kinds of strongly nonlinear materials with strong power-law nonlinearity is studied. Each component satisfies current density and electric-field relation of the form J=χ\\|E\\|βE. A simple self-consistent mean-field theory, which leads to a simple way in determining the average local electric field in each constituent, is introduced. Each component is assumed to have a conductivity depending on the averaged local electric field. The averaged local electric field is then determined self-consistently. Numerical simulations of the system are carried out on random nonlinear resistor networks. Theoretical results are compared with simulation data, and excellent agreements are found. Results are also compared with the Hashin-Shtrikman lower bound proposed by Ponte Castaneda et al. [Phys. Rev. B 46, 4387 (1992)]. It is found that the present theory, at small contrasts of χ between the two components, gives a result identical to that of Ponte Castaneda et al. up to second order of the contrast. The crossover and scaling behavior of the effective response near the percolation threshold as suggested by the present theory are discussed and demonstrated.

  5. Tuning Photoluminescence Response by Electric Field in Electrically Soft Ferroelectrics

    Science.gov (United States)

    Khatua, Dipak Kumar; Kalaskar, Abhijeet; Ranjan, Rajeev

    2016-03-01

    We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu3 + ion by electric field on a model system Eu-doped 0.94 (Na1 /2Bi1 /2TiO3)-0.06 (BaTiO3) . We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field.

  6. Electric double layer of anisotropic dielectric colloids under electric fields

    Science.gov (United States)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  7. Method for Measuring Small Nonlinearities of Electric Characteristics

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Meyer, Niels I; Schjær-Jacobsen, Jørgen

    1965-01-01

    A method is described for measuring very small deviations from linearity in electric characteristics. The measurement is based on the harmonics generated by the nonlinear element when subjected to a sine wave signal. A special bridge circuit is used to balance out the undesired harmonics...... of the signal generator together with the first harmonic frequency. The set-up measures the small-signal value and the first and second derivative with respect to voltage. The detailed circuits are given for measuring nonlinearities in Ohmic and capacitive components. In the Ohmic case, a sensitivity...

  8. Electric-field guiding of magnetic skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.

    2015-10-01

    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  9. Compact Electric- And Magnetic-Field Sensor

    Science.gov (United States)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  10. Imaging electric field dynamics with graphene optoelectronics

    Science.gov (United States)

    Horng, Jason; Balch, Halleh B.; McGuire, Allister F.; Tsai, Hsin-Zon; Forrester, Patrick R.; Crommie, Michael F.; Cui, Bianxiao; Wang, Feng

    2016-12-01

    The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts, a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena.

  11. An explicit MOT-TDVIE scheme for analyzing electromagnetic field interactions on nonlinear scatterers

    KAUST Repository

    Ulku, Huseyin Arda

    2015-02-01

    An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.

  12. Nonlinear Effects in High Electric Fields

    Science.gov (United States)

    1993-04-06

    Physical Review Letters (submitted...Kreuzer’ and X. Ye 2 Submitted to Physical Review Letters ’Fitz-Haber Institut der Max-Planck- Gesellschaft Fradayweg 4-6, 1000 Berlin 33, Germany and...Room 318 Columbus, OHk 43,22-1194 11. SUPPLEMENTARY NOTES Submitted to Physical Review Letters 12a. DISTR:9UTION AVAILA-I;LTY STATEMENT 12b.

  13. Entanglement Generation by Electric Field Background

    OpenAIRE

    Ebadi, Zahra; Mirza, Behrouz

    2014-01-01

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fer...

  14. Entanglement Generation by Electric Field Background

    CERN Document Server

    Ebadi, Zahra

    2014-01-01

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

  15. Plasma heating by electric field compression.

    Science.gov (United States)

    Avinash, K; Kaw, P K

    2014-05-09

    Plasma heating by compression of electric fields is proposed. It is shown that periodic cycles of external compression followed by the free expansion of electric fields in the plasma cause irreversible, collisionless plasma heating and corresponding entropy generation. As a demonstration of general ideas and scalings, the heating is shown in the case of a dusty plasma, where electric fields are created due to the presence of charged dust. The method is expected to work in the cases of compression of low frequency or dc electric fields created by other methods. Applications to high power laser heating of plasmas using this scheme are discussed.

  16. Electric field domain interface in helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Sanuki, Heiji; Toda, Shinichiro; Yokoyama, Masayuki [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan); Fukuyama, Atsushi [Kyoto Univ., Department of Nuclear Engineering, Kyoto (Japan)

    2001-07-01

    The electric field bifurcation in helical plasmas under the condition of continuous fluxes is investigated. The stationary solution of the transport equation, together with charge neutrality condition, is investigated. It is shown that the anomalous flux plays an important role in determining multiple electric field solutions. The transition to the branch with a strong positive electric field occurs when the heat flux exceeds a critical value. Condition for the presence of transition is obtained. The radial structure of the electric field domain interface is obtained. The condition that the suppression of turbulence is expected to occur is discussed. Comparison with experimental observation is briefly mentioned. (author)

  17. Nonlinear electrical properties of Si three-terminal junction devices

    DEFF Research Database (Denmark)

    Fantao, Meng; Jie, Sun; Graczyk, Mariusz

    2010-01-01

    This letter reports on the realization and characterization of silicon three-terminal junction devices made in a silicon-on-insulator wafer. Room temperature electrical measurements show that the fabricated devices exhibit pronounced nonlinear electrical properties inherent to ballistic electron...... transport in a three-terminal ballistic junction (TBJ) device. The results show that room temperature functional TBJ devices can be realized in a semiconductor material other than high-mobility III-V semiconductor heterostructures and provide a simple design principle for compact silicon devices...

  18. Uniform Core Field in Symmetrical Planar Waveguides and Circular Fibers with Nonlinear Claddings

    Institute of Scientific and Technical Information of China (English)

    庞霖; 严瑛白; 金国藩; 邬敏贤; 郭履容; 陈波

    2001-01-01

    It is known that no uniform electric field profile exists in a planar linear waveguide. The uniform core field can be shown to exist in symmetrical planar waveguides and circular fibers with nonlinear claddings. Theoretical analysis and numerical calculations are carried out to show that when the modal index equals to the core refractive-index, the core field becomes uniform at an appropriate optical power. Analysis for a step-index circular fiber with nonlinear cladding have also shown that the core field becomes uniform under similar conditions. The occurrence of a uniform field in a waveguide core may believe to have promising applications in waveguide, optoelectronic and photonic devices.

  19. Electric field soundings through thunderstorms

    Science.gov (United States)

    Marshall, Thomas C.; Rust, W. D.

    1991-01-01

    Twelve balloon soundings of the electric field in thunderstorms are reported. The maximum magnitude of E in the storms averaged 96 +/-28 kV/m, with the largest being 146 kV/m. The maximum was usually observed between vertically adjacent regions of opposite charge. Using a 1D approximation to Gauss' law, four to ten charge regions in the storms are inferred. The magnitude of the density in the charge regions varied between 0.2 and 13 nC/cu m. The vertical extent of the charge regions ranged from 130 to 2100 m. None of the present 12 storms had charge distributions that fit the long-accepted model of Simpson et al. (1937, 1941) of a lower positive charge, a main negative charge, and an upper positive charge. In addition to regions similar to the Simpson model, the present storms had screening layers at the upper and lower cloud boundaries and extra charge regions, usually in the lower part of the cloud.

  20. Stability of Nonlinear Force-Free Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    胡友秋

    2001-01-01

    Based on the magnetohydrodynamic energy principle, it is proved that Gold-Hoyle's nonlinear force-free magnetic field is unstable. This disproves the sufficient criterion for stability of nonlinear force-free magnetic fields given by Kriiger that a nonlinear force-free field is stable if the maximum absolute value of the force-free factor is smaller than the lowest eigenvalue associated with the domain of interest.

  1. Directed cell movement in pulsed electric fields.

    Science.gov (United States)

    Franke, K; Gruler, H

    1994-01-01

    Human granulocytes exposed to pulsed electric guiding fields were investigated. The trajectories were determined from digitized pictures (phase contrast). The basic results are: (i) No directed response was induced by pulsed electric guiding fields having a zero averaged field. (ii) A directed response was induced by pulsed electric guiding fields having a non-zero averaged field. (iii) The directed response was enhanced for pulse sequences having a repetition time of 8 s. (iv) The lag-time between signal recognition and cellular response was 8-10 s. The results are discussed in the framework of a self-ignition model.

  2. Controlling Growth Orientation of Phthalocyanine Films by Electrical Fields

    Science.gov (United States)

    Zhu, S.; Banks, C. E.; Frazier, D. O.; Ila, D.; Muntele, I.; Penn, B. G.; Sharma, A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Organic Phthalocyanine films have many applications ranging from data storage to various non-linear optical devices whose quality is affected by the growth orientation of Phthalocyanine films. Due to the structural and electrical properties of Phthalocyanine molecules, the film growth orientation depends strongly on the substrate surface states. In this presentation, an electrical field up to 4000 V/cm is introduced during film growth. The Phthalocyanine films are synthesized on quartz substrates using thermal evaporation. An intermediate layer is deposited on some substrates for introducing the electrical field. Scanning electron microscopy, x-ray diffraction, and Fourier transform infrared spectroscopy are used for measuring surface morphology, film structure, and optical properties, respectively. The comparison of Phthalocyanine films grown with and without the electrical field reveals different morphology, film density, and growth orientation, which eventually change optical properties of these films. These results suggest that the growth method in the electrical field can be used to synthesized Phthalocyanine films with a preferred crystal orientation as well as propose an interaction mechanism between the substrate surface and the depositing molecules. The details of growth conditions and of the growth model of how the Phthalocyanine molecules grow in the electrical field will be discussed.

  3. Electric Potential and Electric Field Imaging with Applications

    Science.gov (United States)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  4. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value ar

  5. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  6. Modeling of electric field distribution in tissues during electroporation.

    Science.gov (United States)

    Corovic, Selma; Lackovic, Igor; Sustaric, Primoz; Sustar, Tomaz; Rodic, Tomaz; Miklavcic, Damijan

    2013-02-21

    Electroporation based therapies and treatments (e.g. electrochemotherapy, gene electrotransfer for gene therapy and DNA vaccination, tissue ablation with irreversible electroporation and transdermal drug delivery) require a precise prediction of the therapy or treatment outcome by a personalized treatment planning procedure. Numerical modeling of local electric field distribution within electroporated tissues has become an important tool in treatment planning procedure in both clinical and experimental settings. Recent studies have reported that the uncertainties in electrical properties (i.e. electric conductivity of the treated tissues and the rate of increase in electric conductivity due to electroporation) predefined in numerical models have large effect on electroporation based therapy and treatment effectiveness. The aim of our study was to investigate whether the increase in electric conductivity of tissues needs to be taken into account when modeling tissue response to the electroporation pulses and how it affects the local electric distribution within electroporated tissues. We built 3D numerical models for single tissue (one type of tissue, e.g. liver) and composite tissue (several types of tissues, e.g. subcutaneous tumor). Our computer simulations were performed by using three different modeling approaches that are based on finite element method: inverse analysis, nonlinear parametric and sequential analysis. We compared linear (i.e. tissue conductivity is constant) model and non-linear (i.e. tissue conductivity is electric field dependent) model. By calculating goodness of fit measure we compared the results of our numerical simulations to the results of in vivo measurements. The results of our study show that the nonlinear models (i.e. tissue conductivity is electric field dependent: σ(E)) fit experimental data better than linear models (i.e. tissue conductivity is constant). This was found for both single tissue and composite tissue. Our results of

  7. Rotating artificial gauge magnetic and electric fields

    CERN Document Server

    Lembessis, V E; Alshamari, S; Siddig, A; Aldossary, O M

    2016-01-01

    We consider the creation of artificial gauge magnetic and electric fields created when a two-level atom interacts with an optical Ferris wheel light field.These fields have the spatial structure of the optical Ferris wheel field intensity profile. If this optical field pattern is made to rotate in space then we have the creation of artificial electromagnetic fields which propagate in closed paths. The properties of such fields are presented and discussed

  8. Nanorod dynamics in ac electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ruda, H E; Shik, A [Centre for Advanced Nanotechnology, University of Toronto, Toronto, M5S 3E3 (Canada)

    2010-06-11

    Metal and semiconductor nanorods polarized by an external electric field tend to align parallel to this field. We derived the equation of motion for this alignment, taking into account electrostatic forces, thermal fluctuations and viscous resistance of the liquid the nanorods are suspended in. It was solved for a strong ac electric field, as well as for the combination of strong dc and weak ac fields. The results were used for calculations of the capacity of the nanorod solution, its frequency dispersion and dependence on the field strength. Modification of the nanorod absorption spectra under the influence of an electric field was also considered. It was shown that metal nanorods in laser radiation, with the frequency belonging to the interval between longitudinal and transverse plasmon modes, tend to align perpendicular, rather than parallel, to the optical electric field.

  9. Sensing electric fields using single diamond spins

    CERN Document Server

    Dolde, Florian; Doherty, Marcus W; Nöbauer, Tobias; Rempp, Florian; Balasubramanian, Gopalakrishnan; Wolf, Thomas; Reinhard, Friedemann; Hollenberg, Lloyd C L; Jelezko, Fedor; Wrachtrup, Jörg

    2011-01-01

    The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electron transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/\\surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magneti...

  10. Elastic constant of Dendrobium protoplasts in AC electric fields

    Directory of Open Access Journals (Sweden)

    Pikul Wanichapichart

    2002-11-01

    Full Text Available This work reports elongation of Dendrobium protoplasts in an ac electric field between two cylindrical electrodes. A protoplast firstly was translated towards an electrode by dielectrophoretic force in 17 kV.m-1 field strength at 1 MHz, and secondly it was elongated due to an interaction between an induced electric dipole (μ and the electric field (E. Protoplast elongation was observed by varying both the field strength at 30, 45, 60, and 85 kV.m-1 and field frequency at 0.5, 1, 5, and 10 MHz. For a given field frequency and field strength, a parameter a/b (major/minor axis was measured as the protoplast elongation.Two-step elongation and restoration phases were observed. The former was completed within 2 minutes of field exposure, and the latter was completed within 15 seconds regardless of the field exposure time between 3 and 20 minutes. The evidence of a complete restoration indicated that the elasticity of the protoplast membrane obeyed Hooke’s law. This study also found that elastic constant k of the membrane varied non-linearly with the field strength. It was found to be from 0.04 to 0.08 mN.m-1, dependent on the field frequency.

  11. Measurement of nonlinear coefficients of crystals at terahertz frequencies via High Field THzat the FELIX FEL

    Science.gov (United States)

    2017-04-03

    Naftaly NPL MANAGEMENT LTD Final Report 04/02/2017 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOE...ADDRESS(ES) NPL MANAGEMENT LTD HAMPTON RD TEDDINGTON, TW11 0LW GB 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...refractive index and () is the incident electric field. The imaginary component of nonlinear refractive index, i.e. nonlinear or multi-photon

  12. Electric Field Generation in Martian Dust Devils

    Science.gov (United States)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.

    2015-01-01

    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Marsin situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the MacroscopicTriboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric ModelingSystem (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system.Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  13. Cavity equations for a positive or negative refraction index material with electric and magnetic non-linearities

    CERN Document Server

    Mártin, Daniel A; 10.1103/PhysRevE.80.056601

    2012-01-01

    We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative refraction index material with third order effective electric and magnetic non-linearities. Two coupled non-linear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

  14. Frequency Response and Gap Tuning for Nonlinear Electrical Oscillator Networks

    Science.gov (United States)

    Bhat, Harish S.; Vaz, Garnet J.

    2013-01-01

    We study nonlinear electrical oscillator networks, the smallest example of which consists of a voltage-dependent capacitor, an inductor, and a resistor driven by a pure tone source. By allowing the network topology to be that of any connected graph, such circuits generalize spatially discrete nonlinear transmission lines/lattices that have proven useful in high-frequency analog devices. For such networks, we develop two algorithms to compute the steady-state response when a subset of nodes are driven at the same fixed frequency. The algorithms we devise are orders of magnitude more accurate and efficient than stepping towards the steady-state using a standard numerical integrator. We seek to enhance a given network's nonlinear behavior by altering the eigenvalues of the graph Laplacian, i.e., the resonances of the linearized system. We develop a Newton-type method that solves for the network inductances such that the graph Laplacian achieves a desired set of eigenvalues; this method enables one to move the eigenvalues while keeping the network topology fixed. Running numerical experiments using three different random graph models, we show that shrinking the gap between the graph Laplacian's first two eigenvalues dramatically improves a network's ability to (i) transfer energy to higher harmonics, and (ii) generate large-amplitude signals. Our results shed light on the relationship between a network's structure, encoded by the graph Laplacian, and its function, defined in this case by the presence of strongly nonlinear effects in the frequency response. PMID:24223751

  15. MHD rotation of electrically conducting media in crossed fields

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, N.V.

    1978-01-01

    A nonlinear scheme is developed for calculating the hydrodynamic characteristics of MHD flow in a cylindrical vessel of finite dimensions, in an electric field and a magnetic field crossing each other. The incompressible fluid is assumed to have a constant viscosity and electrical conductivity. The solution to the complete system of MHD equations is expanded in a series with respect to the magnetic Reynolds number, for a large hydrodynamic Reynolds number. And rather simple engineering formulas for calculating the velocity field and the pressure field are derived by the Karman-Pohlhausen method of integral relations. The results are compared with experimental data pertaining to a model helium-xenon discharge chamber with distribution of the Lorentz force causing the plasma to rotate as a quasi-solid. 15 references, 5 figures, 1 table.

  16. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m(-1) for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m(-1) for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model.

  17. The Electric Field of a Weakly Electric Fish

    Science.gov (United States)

    Rasnow, Brian K.

    Freshwater fish of the genus Apteronotus (family Gymnotidae) generate a weak, high frequency electric field (electroreception. Temporal jitter of the periodic field is less than 1 musec. However, electrocyte activity is not globally synchronous along the fish's electric organ. The propagation of electrocyte activation down the fish's body produces a rotation of the electric field vector in the caudal part of the fish. This may assist the fish in identifying nonsymmetrical objects, and could also confuse electrosensory predators that try to locate Apteronotus by following its fieldlines. The propagation also results in a complex spatiotemporal pattern of the EOD potential near the fish. Visualizing the potential on the same and different fish over timescales of several months suggests that it is stable and could serve as a unique signature for individual fish. Measurements of the electric field were used to calculate the effects of simple objects on the fish's electric field. The shape of the perturbation or "electric image" on the fish's skin is relatively independent of a simple object's size, conductivity, and rostrocaudal location, and therefore could unambiguously determine object distance. The range of electrolocation may depend on both the size of objects and their rostrocaudal location. Only objects with very large dielectric constants cause appreciable phase shifts, and these are strongly dependent on the water conductivity.

  18. Interaction Between Flames and Electric Fields Studied

    Science.gov (United States)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  19. Local electric field measurements by optical tweezers

    Directory of Open Access Journals (Sweden)

    G. Pesce

    2011-09-01

    Full Text Available We report a new technique to measure direction and amplitude of electric fields generated by microelectrodes embedded in polar liquid environment, as often used in microfluidic devices. The method is based on optical tweezers which act as sensitive force transducer while a trapped charged microsphere behaves as a probe. When an electric field is applied the particles moves from its equilibrium position and finishes in a new equilibrium position where electric and optical forces are balanced. A trapped bead is moved to explore the electric field in a wide region around the microelectrodes. In such way maps of electric fields with high spatial resolution can be reconstructed even for complex electrode geometries where numerical simulation approaches can fail. Experimental results are compared with calculations based on finite element analysis simulation.

  20. Field distribution of epidural electrical stimulation.

    Science.gov (United States)

    Xie, Xiaobo; Cui, Hong yan; Xu, Shengpu; Hu, Yong

    2013-11-01

    Epidural electrical stimulation has been applied in clinics for many years. However, there is still a concern about possible injury to spinal nerves. This study investigated electrical field and current density distribution during direct epidural electrical stimulation. Field distribution models were theoretically deduced, while the distribution of potentials and current were analyzed. The current density presented an increase of 70-80%, with one peak value ranging from -85° to 85° between the two stimulated poles. The effect of direct epidural electrical stimulation is mainly on local tissue surrounding the electrodes, concentrated around the two stimulated positions. © 2013 Elsevier Ltd. All rights reserved.

  1. Additional electric field in real trench MOS barrier Schottky diode

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2016-04-01

    In real trench MOS barrier Schottky diode (TMBS diode) additional electric field (AEF) the whole is formed in the near contact region of the semiconductor and its propagation space is limited with the barrier metal and the metallic electrodes of MOS structures. Effective potential barrier height TMBS diode is formed via resulting electric field of superposition AEF and electric field of space charge region (SCR) semiconductor. The dependence of the resulting electric field intensity of the distance towards the inside the semiconductor is nonlinear and characterized by a peak at a certain distance from the interface. The thickness of the SCR in TMBS diode becomes equal to the trench depth. Force and energy parameters of the AEF, and thus resulting electric field in the SCR region, become dependent on the geometric design parameters TMBS diode. The forward I-V characteristic TMBS diode is described by the thermionic emission theory as in conventional flat Scottky diode, and in the reverse bias, current is virtually absent at initial voltage, appears abruptly at a certain critical voltage.

  2. Magnetotail electric fields observed from lunar orbit

    Science.gov (United States)

    Mccoy, J. E.; Lin, R. P.; Mcguire, R. E.; Chase, L. M.; Anderson, K. A.

    1975-01-01

    Direct observations of convection electric fields in the earth's magnetotail are reported. The electric fields have been measured from lunar orbit by detection of the E x B/B-squared drift displacement of low-energy electrons at the limb of the moon. It is found that electric fields range in magnitude from a value less than or equal to 0.02 mV/m, the limit of sensitivity of the method, to 2 mV/M. The typical value is 0.15 mV/M, and the corresponding convection velocity is 15 km/s. The sense of the electric field is almost always dawn to dusk. The electric field is often variable on a time scale of hours and sometimes minutes. The observations indicate that the electric field is not uniform across the magnetotail. If it is assumed that the typical measured electric-field value represents an average over the inhomogeneities, the potential drop across the entire tail is of the order of 40 kV.

  3. Molecular dynamics in high electric fields

    Science.gov (United States)

    Apostol, M.; Cune, L. C.

    2016-06-01

    Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  4. Novel Localized Excitations of Nonlinear Coupled Scalar Fields

    Institute of Scientific and Technical Information of China (English)

    ZHU Ren-Gui; LI Jin-Hua; WANG An-Min; WU Huang-Jiao

    2008-01-01

    Some extended solution mapping relations of the nonlinear coupled scalar field and the well-known φ4 model are presented. Simultaneously, inspired by the new solutions of the famous φ4 model recently proposed by Jia, Huang and Lou, five kinds of new localized excitations of the nonlinear coupled scalar field (NCSF) system are obtained.

  5. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-12-26

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions

  6. Time-Dependent Mean-Field Games with Logarithmic Nonlinearities

    KAUST Repository

    Gomes, Diogo A.

    2015-10-06

    In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.

  7. Strong nonlinear focusing of light in nonlinearly controlled electromagnetic active metamaterial field concentrators

    Science.gov (United States)

    Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.

    2014-05-01

    The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects

  8. On the ionospheric coupling of auroral electric fields

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2009-04-01

    Full Text Available The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop, ΔΦII, as inferred from the characteristic energy of upward ion (electron beams for the upward (downward current region and the high-altitude perpendicular (to B potential, ΔΦbot, as calculated by integrating the perpendicular electric field across the structure. For upward currents, the coupling can be expressed analytically, using the linear current-voltage relation, as outlined by Weimer et al. (1985. This gives a scale size dependent coupling where structures are coupled (decoupled above (below a critical scale size. For downward currents, the current-voltage relation is highly non-linear which complicates the understanding of how the coupling works. Results from this experimental study indicate that small-scale structures are decoupled, similar to small-scale structures in the upward current region. There are, however, exceptions to this rule as illustrated by Cluster results of small-scale intense electric fields, correlated with downward currents, indicating a perfect coupling between the ionosphere and Cluster altitude.

  9. Introduction to power-frequency electric and magnetic fields.

    OpenAIRE

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conduct...

  10. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field

    Science.gov (United States)

    Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.

    2017-03-01

    In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.

  11. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  12. Electric field imaging of single atoms.

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-05-30

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures.

  13. Electric-field-induced second harmonic generation in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Lafrentz, Marco; Brunne, David; Kaminski, Benjamin; Bayer, Manfred [Experimentelle Physik 2, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Yakovlev, Dmitri R. [Experimentelle Physik 2, Technische Universitaet Dortmund, D-44221 Dortmund (Germany); Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Pavlov, Victor V.; Pisarev, Roman V. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2011-07-01

    We report on electric-field-induced second-harmonic generation (SHG) in the GaAs semiconductor in the vicinity of the band gap. The light has been send along 001-crystallographic direction. In this geometry SHG is forbidden in electric-dipole approximation. In applied electric field the SHG signal arises due to field-induced symmetry breaking causing new optical nonlinearities. Electric-field and temperature investigations assign the strong signal at E(2{omega})=1.517 eV for T=2 K to excitonic resonance. This phenomenon is a supplementary tool for detailed investigation of complex susceptibilities we have reported on in the past.

  14. Electric field control of the magnetocaloric effect.

    Science.gov (United States)

    Gong, Yuan-Yuan; Wang, Dun-Hui; Cao, Qing-Qi; Liu, En-Ke; Liu, Jian; Du, You-Wei

    2015-02-04

    Through strain-mediated magnetoelectric coupling, it is demonstrated that the magnetocaloric effect of a ferromagnetic shape-memory alloy can be controlled by an electric field. Large hysteresis and the limited operating temperature region are effectively overcome by applying an electric field on a laminate comprising a piezoelectric and the alloy. Accordingly, a model for an active magnetic refrigerator with high efficiency is proposed in principle.

  15. Swarm equatorial electric field chain: First results

    OpenAIRE

    Alken, P; Maus, S.; A. Chulliat; Vigneron, P.; Sirol, O.; Hulot, G.

    2015-01-01

    International audience; The eastward equatorial electric field (EEF) in the E region ionosphere drives many important phenomena at low latitudes. We developed a method of estimating the EEF from magnetometer measurements of near-polar orbiting satellites as they cross the magnetic equator, by recovering a clean signal of the equatorial electrojet current and modeling the observed current to determine the electric field present during the satellite pass. This algorithm is now implemented as an...

  16. GEM Detector Electric Field Simulation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    GEM (Gas Electron Multiplier) detectors have been widely employed in the experimental field of high energy physics and nuclear physics. As a successor to drift chambers, GEMs are much easier to fabricate and have a much higher spatial resolution

  17. Electric-field effects in resistive oxides: facts and artifacts

    Directory of Open Access Journals (Sweden)

    Reisner G. M.

    2013-01-01

    Full Text Available Striking non-linear conductivity effects induced by surprisingly low electric-fields in charge-ordered oxides, were reported variously as dielectric breakdown, charge-order collapse, depinning of charge-density-waves or other electronic effects. Our pulsed and d.c. I-V measurements on resistive oxides show that non-linear conductivity of electronic origin at low electric-fields is a rare phenomenon. In the majority of cases we detected no deviations from linearity in pulsed I-V characteristics under fields up to E ~ 500 V/cm. Current-controlled negative-differential-resistance (NDR and hysteresis were found in d.c. measurements at fields that decrease with increasing temperatures, a behavior typical of Joule heating in materials with negative temperature coefficient of resistivity. For the d.c. I-V characteristics of our samples exhibiting NDR, we found a rather unexpected correlation between ρ(Em - the resistivity at maximum field (at the onset of NDR and ρ(E=0 – the ohmic resistivity. The data points for ρ(Em versus ρ(E=0 obtained from such characteristics of 13 samples (8 manganites, 4 nickelates and one multiferroic at various ambient temperatures, plotted together on a log-log scale, follow closely a linear dependence with slope one that spans more than five orders of magnitude. This dependence is reproduced by several simple models.

  18. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  19. Stability of Spherical Vesicles in Electric Fields

    Science.gov (United States)

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  20. Rotationally Vibrating Electric-Field Mill

    Science.gov (United States)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  1. Electric field measurements from Halley, Antarctica

    Science.gov (United States)

    Nicoll, Keri; Harrison, R. Giles

    2016-04-01

    Antarctica is a unique location for the study of atmospheric electricity. Not only is it one of the most pollutant free places on Earth, but its proximity to the south magnetic pole means that it is an ideal location to study the effects of solar variability on the atmospheric electric field. This is due to the reduced shielding effect of the geomagnetic field at the poles which leads to a greater flux of incoming Galactic Cosmic Rays (GCRs) as well as an increased probability of energetic particle precipitation from SEPs and relativistic electrons. To investigate such effects, two electric field mills of different design were installed at the British Antarctic Survey Halley base in February 2015 (75. 58 degrees south, 26.66 degrees west). Halley is situated on the Brunt Ice Shelf in the south east of the Weddell Sea and has snow cover all year round. Preliminary analysis has focused on selection of fair weather criteria using wind speed and visibility measurements which are vital to assess the effects of falling snow, blowing snow and freezing fog on the electric field measurements. When the effects of such adverse weather conditions are removed clear evidence of the characteristic Carnegie Curve diurnal cycle exists in the Halley electric field measurements (with a mean value of 50V/m and showing a 40% peak to peak variation in comparison to the 34% variation in the Carnegie data). Since the Carnegie Curve represents the variation in thunderstorm activity across the Earth, its presence in the Halley data confirms the presence of the global atmospheric electric circuit signal at Halley. The work presented here will discuss the details of the Halley electric field dataset, including the variability in the fair weather measurements, with a particular focus on magnetic field fluctuations.

  2. NONLINEAR J-E CHARACTERISTICS IN THE ELECTRIC-THERMAL EQUILIBRIUM STATE FOR HIGH DENSITY POLYETHYLENE CONDUCTIVE COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Qiang Zheng; Yi-hu Song; Xiao-su Yi

    2001-01-01

    The nonlinear J-E characteristics under self-heating equilibrium for conductive composites based on high density polyethylene were studied. The results show that there are identical conduction mechanisms under self-heating equilibrium for the composites with various initial resistivities determined by filler content or ambient temperature. The nonlinear conduction behavior was involved in the limited microstructure transformations of the conducting network induced by electrical field applied and the corresponding self-heating effect. A reversible thermal fuse (RTF) model was suggested to interpret the physical origin of the nonlinear J-E characteristics.

  3. Stratospheric electric field measurements with transmediterranean balloons

    Science.gov (United States)

    de La Morena, B. A.; Alberca, L. F.; Curto, J. J.; Holzworth, R. H.

    1993-01-01

    The horizontal component of the stratospheric electric field was measured using a balloon in the ODISEA Campaign of Transmediterranean Balloon Program. The balloon flew between Trapani (Sicily) and El Arenosillo (Huelva, Spain) along the 39 deg N parallel at a height between 34 and 24 km. The high values found for the field on fair-weather and its quasi-turbulent variation, both in amplitude and direction, are difficult to explain with the classical electric field source. A new source, first described by Holzworth (1989), is considered as possibly causing them.

  4. Biological Electric Fields and Rate Equations for Biophotons

    CERN Document Server

    Alvermann, M; Swain, J; Widom, A

    2014-01-01

    Ultraweak bioluminescence - the emission of biophotons - remains an experimentally well-established, but theoretically poorly understood phenomenon. This paper presents several related investigations into the physical process of both spontaneous biophoton emission and delayed luminescence. Since light intensities depend upon the modulus squared of their corresponding electric fields we first make some general estimates about the inherent electric fields within various biological systems. Since photon emission from living matter following an initial excitation ("delayed luminescence") typically does not follow a simple exponential decay law after excitation we discuss such non-exponential decays from a general theoretical perspective and argue that they are often to be expected and why. We then discuss the dynamics behind some nonlinear rate equations, connecting them both to biological growth rates and biophoton emission rates, noting a possible connection with cancer. We then return to non-exponential decay ...

  5. Zero-differential conductance of two-dimensional electrons in crossed electric and magnetic fields

    Science.gov (United States)

    Bykov, A. A.; Byrnes, Sean; Dietrich, Scott; Vitkalov, Sergey; Marchishin, I. V.; Dmitriev, D. V.

    2013-02-01

    An electronic state with zero-differential conductance is found in nonlinear response to an electric field E applied to two dimensional Corbino discs of highly mobile carriers placed in quantizing magnetic fields. The state occurs above a critical electric field E>Eth at low temperatures and is accompanied by an abrupt dip in the differential conductance. The proposed model considers a local instability of the electric field E as the origin of the observed phenomenon. Comparison between the observed electronic state and the state with zero differential resistance, occurring in Hall bar geometry, indicates that the nonlinear response of edge states and/or skipping orbits is not essential in the studied samples. The result confirms that quantal heating is the dominant nonlinear mechanism leading to electronic states with both zero differential resistance and conductance.

  6. The Role of Field Electron Emission in Polypropylene/Aluminum Nanodielectrics Under High Electric Fields.

    Science.gov (United States)

    Zhang, Guoqiang; Li, Yue; Tang, Saide; Thompson, Rhett D; Zhu, Lei

    2017-03-09

    Polymer/metallic particle nanocomposites or nanodielectrics can exhibit colossal dielectric constants with a relatively low dissipation factor under low electric fields and thus seem to be promising for high-energy density dielectric capacitors. To study this possibility, this work focused on the dielectric performance and loss mechanisms in polypropylene (PP)/aluminum nanoparticle (nAl NP) composites under high electric fields. Phosphonic acid-terminated poly(ethylene-co-1-butene) was grafted to the Al2O3 surface layer on the nAl NPs in order to achieve reasonable dispersion in the PP matrix. The dielectric breakdown study showed that the breakdown strength decreased to nearly 1/20 that of the neat PP film as the nAl content increased to 25.0 vol %. The leakage current study revealed three electronic conduction mechanisms in the PP/100 nm nAl nanocomposites, namely, ohmic conduction at low fields, hopping conduction at intermediate fields, and Fowler-Nordheim (FN) field electron emission above a critical field, depending on the filler content. Compared to the 100 nm nAl NPs, smaller (e.g., 18 nm) nAl NPs needed a much higher electric field to exhibit FN field electron emission. It was the FN electron tunneling that induced a substantial reduction in breakdown strength for the PP/nAl nanocomposites. Meanwhile, electron-tunneling injected space charges (electrons) from nAl NPs into the PP matrix, and internal electronic conduction led to significant dielectric nonlinearity at high poling fields. Although polymer/metallic NP composites are not suitable for high-field electric applications, they can be good candidates for electrical switches and quantum tunneling composites operated at relatively low electric fields.

  7. Geometric nonlinearities in field theory, condensed matter and analytical mechanics

    Directory of Open Access Journals (Sweden)

    J.J. Sławianowski

    2010-01-01

    Full Text Available There are two very important subjects in physics: Symmetry of dynamical models and nonlinearity. All really fundamental models are invariant under some particular symmetry groups. There is also no true physics, no our Universe and life at all, without nonlinearity. Particularly interesting are essential, non-perturbative nonlinearities which are not described by correction terms imposed on some well-defined linear background. Our idea in this paper is that there exists some mysterious, still incomprehensible link between essential, physically relevant nonlinearity and dynamical symmetry, first of all, of large symmetry groups. In some sense the problem is known even in soliton theory, where the essential nonlinearity is often accompanied by the infinite system of integrals of motion, thus, by infinite-dimensional symmetry groups. Here we discuss some more familiar problems from the realm of field theory, condensed matter physics, and analytical mechanics, where the link between essential nonlinearity and high symmetry is obvious, although not fully understandable.

  8. Effects of barium on the nonlinear electrical characteristics and dielectric properties of SnO2-based varistors

    Institute of Scientific and Technical Information of China (English)

    Wang Chun-Ming; Wang Jin-Feng; Wang Chun-Lei; Chen Hong-Cun; Su Wen-Bin; Zang Guo-Zhong; Qi Peng; Zhao Ming-Lei; Ming Bao-Quan

    2004-01-01

    The effects of barium on electrical and dielectric properties of the SnO2·Co2Oa.Ta2O5 varistor system sintered at 1250℃ for 60min were investigated. It is found that barium significantly improves the nonlinear properties. The breakdown electrical field increases from 378.0 to 2834.5V/mm, relative dielectric constant (at 1kHz) falls from 1206 to 161 and the resistivity (at 1kHz) rises from 60.3 to 1146.5kΩ·cm with an increase of BaCO3 concentration from 0mol%to 1.00mol%. The sample with 1.00mol% barium has the best nonlinear electrical property and the highest nonlinear coefficient (α=29.2). A modified defect barrier model is introduced to illustrate the grain-boundary barrier formation of barium-doped SnO2-based varistors.

  9. Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle.

    Science.gov (United States)

    El Majdoub, K; Giri, F; Ouadi, H; Chaoui, F Z

    2014-01-01

    The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope.

  10. Enhancement and electric charge-assisted tuning of nonlinear light generation in bipolar plasmonics.

    Science.gov (United States)

    Ding, Wei; Zhou, Liangcheng; Chou, Stephen Y

    2014-05-14

    We propose and experimentally demonstrate a new plasmonic nonlinear light generation (NLG) structure, termed plasmonic-enhanced, charge-assisted second-harmonic generator (p-CASH), that not only achieves high second-harmonic generation (SHG) enhancement (76-fold), large SHG tunability by bias (8%/V), wide tuning range (280%), 7.8 × 10(-9) conversion efficiency, and high stability but also exhibits a SHG tuning, that is bipolar rather than unipolar, not due to the third-order nonlinear polarization term, hence fundamentally different from the classic electric field induced SHG-tuning (EFISH). We propose a new SHG tuning mechanism: the second-order nonlinear polarization term enhanced by plasmonic effects, changed by charge injection and negative oxygen vacancies movement, and is nearly 3 orders of magnitude larger than EFISH. p-CASH is a bipolar parallel-plate capacitor with thin layers of plasmonic nanostructures, a TiOx (semiconductor and nonlinear) and a SiO2 (insulator) sandwiched between two electrodes. Fabrication of p-CASH used nanoimprint on 4″ wafer and is scalable to wallpaper-sized areas. The new structure, new properties, and new understanding should open up various new designs and applications of NLG in various fields.

  11. Schwinger effect in inhomogeneous electric fields

    CERN Document Server

    Hebenstreit, Florian

    2011-01-01

    The vacuum of quantum electrodynamics is unstable against the formation of many-body states in the presence of an external electric field, manifesting itself as the creation of electron-positron pairs (Schwinger effect). This effect has been a long-standing but still unobserved prediction as the generation of the required field strengths has not been feasible so far. However, due to the advent of a new generation of high-intensity laser systems such as the European XFEL or the Extreme Light Infrastructure (ELI), this effect might eventually become observable within the next decades. Based on the equal-time Wigner formalism, various aspects of the Schwinger effect in electric fields showing both temporal and spatial variations are investigated. Regarding the Schwinger effect in time-dependent electric fields, analytic expressions for the equal-time Wigner function in the presence of a static as well as a pulsed electric field are derived. Moreover, the pair creation process in the presence of a pulsed electric...

  12. Sintering of Ceramic Materials Under Electric Field

    OpenAIRE

    Naik , Kiran Suresh

    2014-01-01

    The remarkable discovery of flash sintering came across during the early work of Cologna et al. and emerged as an attractive technique in the field of ceramic processing. In this technique the applied electric field initiates the “flash” event, while the densification is controlled by the current density set. Sintering occurs in less than 5 s at a threshold temperature for a given applied field. The objective of this thesis is to analyse the phenomena of flash sintering with different cer...

  13. Possible mechanism of electrical field origin around celestial bodies

    OpenAIRE

    Bisnovatyi-Kogan, G. S.

    2002-01-01

    Slow magnetic field variations in stars and planets create a quasistationary electrical field which may be observed. It is supposed that the electrical field near the Earth surface may be partially connected with variation of the Earth magnetic field. Two examples of the electrical field distribution around the infinite cylinder, and the circular loop with a lineary growing with time electrical currents are given.

  14. On the non-linear stability of scalar field cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Alho, Artur; Mena, Filipe C [Centro de Matematica, Universidade do Minho, 4710-057 Braga (Portugal); Kroon, Juan A Valiente, E-mail: aalho@math.uminho.pt, E-mail: fmena@math.uminho.pt, E-mail: jav@maths.qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS (United Kingdom)

    2011-09-22

    We review recent work on the stability of flat spatially homogeneous and isotropic backgrounds with a self-interacting scalar field. We derive a first order quasi-linear symmetric hyperbolic system for the Einstein-nonlinear-scalar field system. Then, using the linearized system, we show how to obtain necessary and sufficient conditions which ensure the exponential decay to zero of small non-linear perturbations.

  15. Experimental study on the effects of AC electric fields on flame spreading over polyethylene-insulated electric-wire

    KAUST Repository

    Jin, Young Kyu

    2010-11-01

    In this present study, we experimentally investigated the effects of electric fields on the characteristics of flames spreading over electric-wires with AC fields. The dependence of the rate at which a flame spreads over polyethylene-insulated wires on the frequency and amplitude of the applied AC electric field was examined. The spreading of the flame can be categorized into linear spreading and non-linearly accelerated spreading of flame. This categorization is based on the axial distribution of the field strength of the applied electric field. The rate at which the flame spreads is highly dependent on the inclined direction of the wire fire. It could be possible to explain the spreading of the flame on the basis of thermal balance. © 2010 The Korean Society of Mechanical Engineers.

  16. Fundamental electric circuit elements based on the linear and nonlinear magnetoelectric effects (Presentation Recording)

    Science.gov (United States)

    Sun, Young; Shang, Dashan; Chai, Yisheng; Cao, Zexian; Lu, Jun

    2015-09-01

    From the viewpoint of electric circuit theory, the three fundamental two-terminal passive circuit elements, resistor R , capacitor C, and inductor L, are defined in terms of a relationship between two of the four basic circuit variables, charge q, current i, voltage v, and magnetic flux φ. From a symmetry concern, there should be a fourth fundamental element defined from the relationship between charge q and magnetic flux φ. Here we present both theoretical analysis and experimental evidences to demonstrate that a two-terminal passive device employing the magnetoelectric (ME) effects can exhibit a direct relationship between charge q and magnetic flux φ, and thus is able to act as the fourth fundamental circuit element. The ME effects refer to the induction of electric polarization by a magnetic field or magnetization by an electric field, and have attracted enormous interests due to their promise in many applications. However, no one has linked the ME effects with fundamental circuit theory. Both the linear and nonlinear-memory devices, termed transtor and memtranstor, respectively, have been experimentally realized using multiferroic materials showing strong ME effects. Based on our work, a full map of fundamental two-terminal circuit elements is constructed, which consists of four linear and four nonlinear-memory elements. This full map provides an invaluable guide to developing novel circuit functionalities in the future.

  17. Microwave electric field sensing with Rydberg atoms

    Science.gov (United States)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  18. Schwinger Pair Production in Pulsed Electric Fields

    CERN Document Server

    Kim, Sang Pyo; Ruffini, Remo

    2012-01-01

    We numerically investigate the temporal behavior and the structure of longitudinal momentum spectrum and the field polarity effect on pair production in pulsed electric fields in scalar quantum electrodynamics (QED). Using the evolution operator expressed in terms of the particle and antiparticle operators, we find the exact quantum states under the influence of electric pulses and measure the number of pairs of the Minkowski particle and antiparticle. The number of pairs, depending on the configuration of electric pulses, exhibits rich structures in the longitudinal momentum spectrum and undergoes diverse dynamical behaviors at the onset of the interaction but always either converges to a momentum-dependent constant or oscillates around a momentum-dependent time average after the completion of fields.

  19. Electric field induced deformation of sessile drops

    Science.gov (United States)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  20. Electric field controlled emulsion phase contactor

    Science.gov (United States)

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  1. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  2. Electric-field-stimulated protein mechanics.

    Science.gov (United States)

    Hekstra, Doeke R; White, K Ian; Socolich, Michael A; Henning, Robert W; Šrajer, Vukica; Ranganathan, Rama

    2016-12-15

    The internal mechanics of proteins-the coordinated motions of amino acids and the pattern of forces constraining these motions-connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2(PDZ2)) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function.

  3. Microfluidic Screening of Electric Fields for Electroporation

    Science.gov (United States)

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-02-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes.

  4. A bistable microelectronic circuit for sensing extremely low electric field

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Liu, Norman; Kho, Andy; Neff, Joseph D.; Palacios, Antonio; Bulsara, Adi R.

    2010-01-01

    Bistable systems are prevalently found in many sensor systems. Recently, we have explored (unidirectionally) coupled overdamped bistable systems that admit self-sustained oscillations when the coupling parameter is swept through the critical points of bifurcations [V. In et al., Phys. Rev. E 68, 045102-R (2003); A. R. Bulsara et al., Phys. Rev. E 70, 036103 (2004); V. In et al., Phys. Rev. E 72, 045104-R (2005); Phys Rev. Lett. 91, 244101 (2003); A. Palacios et al., Phys. Rev. E 72, 026211 (2005); V. In et al., Phys. Rev. E 73, 066121 (2006)]. Complex behaviors emerge, in addition, from these (relatively simple) coupled systems when an external signal (ac or dc) is applied uniformly to all the elements in the array. In particular, we have demonstrated this emergent behavior for a coupled system comprised of mean-field hysteretic elements describing a "single-domain" ferromagnetic sample. The results are being used to develop extremely sensitive magnetic sensors capable of resolving field changes as low as 150 pT by observing the changes in the oscillation characteristics of the coupled sensors. In this paper, we explore the underlying dynamics of a coupled bistable system realized by coupling microelectronic circuits, which belong to the same class of dynamics as the aforementioned (ferromagnetic) system, with the nonlinear features and coupling terms modeled by hyperbolic tangent nonlinearities; these nonlinearities stem from the operational transconductance amplifiers used in constructing the microcircuits. The emergent behavior is being applied to develop an extremely sensitive electric-field sensor.

  5. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... by DE 1. The selected passes, which occurred during substorm expansion phase, maximum, or early recovery phase, cover the entire nighttime substorm. The organization of the data used the method developed by Fujii et al. [1994], which divided the data into six local time sectors covering the nighttime...

  6. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  7. Nonlinear spin-wave excitations at low magnetic bias fields

    Science.gov (United States)

    Woltersdorf, Georg

    We investigate experimentally and theoretically the nonlinear magnetization dynamics in magnetic films at low magnetic bias fields. Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. In the experiments we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common Suhl instability model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behavior in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. For these modes, we also find pronounced frequency locking effects that may be used for synchronization purposes in magnonic devices. By using this effect, effective spin-wave sources based on parametric spin-wave excitation may be realized. Our results also show that it is not required to invoke a wave vector-dependent damping parameter in the interpretation of nonlinear magnetic resonance experiments performed at low bias fields.

  8. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  9. Electric field stimulated growth of Zn whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D.; McCulloch, J.; Irving, R.; Karpov, V. G. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Warrell, G. R.; Shvydka, Diana, E-mail: diana.shvydka@utoledo.edu [Department of Radiation Oncology, University of Toledo Health Science Campus, Toledo, Ohio 43614 (United States)

    2016-07-15

    We have investigated the impact of strong (∼10{sup 4} V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  10. Electric field stimulated growth of Zn whiskers

    Science.gov (United States)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  11. Electric fields and double layers in plasmas

    Science.gov (United States)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  12. Simulations of nonlinear continuous wave pressure fields in FOCUS

    Science.gov (United States)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  13. Critical electric field strengths of onion tissues treated by pulsed electric fields.

    Science.gov (United States)

    Asavasanti, Suvaluk; Ersus, Seda; Ristenpart, William; Stroeve, Pieter; Barrett, Diane M

    2010-09-01

    The impact of pulsed electric fields (PEF) on cellular integrity and texture of Ranchero and Sabroso onions (Allium cepa L.) was investigated. Electrical properties, ion leakage rate, texture, and amount of enzymatically formed pyruvate were measured before and after PEF treatment for a range of applied field strengths and number of pulses. Critical electric field strengths or thresholds (E(c)) necessary to initiate membrane rupture were different because dissimilar properties were measured. Measurement of electrical characteristics was the most sensitive method and was used to detect the early stage of plasma membrane breakdown, while pyruvate formation by the enzyme alliinase was used to identify tonoplast membrane breakdown. Our results for 100-μs pulses indicate that breakdown of the plasma membrane occurs above E(c)= 67 V/cm for 10 pulses, but breakdown of the tonoplast membrane is above either E(c)= 200 V/cm for 10 pulses or 133 V/cm for 100 pulses. This disparity in field strength suggests there may be 2 critical electrical field strengths: a lower field strength for plasma membrane breakdown and a higher field strength for tonoplast membrane breakdown. Both critical electric field strengths depended on the number of pulses applied. Application of a single pulse at an electric field up to 333 V/cm had no observable effect on any measured properties, while significant differences were observed for n≥10. The minimum electric field strength required to cause a measurable property change decreased with the number of pulses. The results also suggest that PEF treatment may be more efficient if a higher electric field strength is applied for a fewer pulses.

  14. Multilayer graphene under vertical electric field

    OpenAIRE

    Kumar, S. Bala; GUO, Jing

    2011-01-01

    We study the effect of vertical electric field (E-field) on the electronic properties of multilayer graphene. We show that the effective mass, electron velocity and density-of-state of a bilayer graphene are modified under the E-field. We also study the transformation of the band structure of multilayer graphenes. E-field induces finite (zero) bandgap in the even (odd)-layer ABA-stacking graphene. On the other hand, finite bandgap is induced in all ABC-stacking graphene. We also identify the ...

  15. Particle creation by peak electric field

    CERN Document Server

    Adorno, T C; Gitman, D M

    2016-01-01

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially-increasing and another exponentially-decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered.

  16. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  17. Structural Control of Metamaterial Oscillator Strength and Electric Field Enhancement at Terahertz Frequencies

    OpenAIRE

    Keiser, George R.; Seren, Huseyin R.; Strikwerda, Andrew C.; Zhang, Xin; Averitt, Richard D.

    2014-01-01

    The design of artificial nonlinear materials requires control over the internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists of a split ring resonator (SRR) array stacked above an array of nonresonant closed conducting rings. An in-plane, lateral shift of a half unit cell between the SRR and closed ring arrays results i...

  18. Health of workers exposed to electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, D.E.; Broadbent, M.H.; Male, J.C.; Jones, M.R.

    1985-02-01

    The results of health questionnaire interviews with 390 electrical power transmission and distribution workers, together with long term estimates of their exposure to 50 Hz electric fields, and short term measurements of the actual exposure for 287 of them are reported. Twenty eight workers received measurable exposures, averaging about 30 kVm-1h over the two week measurement period. Estimated exposure rates were considerably greater, but showed fair correlation with the measurements. Although the general level of health was higher than we have found in manual workers in other industries, there were significant differences in the health measures between different categories of job, different parts of the country, and in association with factors such as overtime, working alone, or frequently changing shift. After allowing for the effects of job and location, however, we found no significant correlations of health with either measured or estimated exposure to electric fields.

  19. Leidenfrost droplets in an electric field

    Science.gov (United States)

    Wildeman, Sander; Sun, Chao; Lohse, Detlef

    2014-11-01

    In a recent video broadcast dubbed the ``Knitting Needle Experiment,'' astronaut Don Petit aboard the ISS demonstrated how weightless water droplets can be made to orbit a statically charged Teflon rod. We study the earthly analogue of mobile droplets in an electric field, whereby the mobility is ensured by a thin vapor film sustained between the droplet and a hot plate (the Leidenfrost effect). We find that in a strong vertical electric field the droplet starts to bounce progressively higher, defying gravitational attraction. From its trajectory we can deduce the temporal evolution of the charge on the droplet. The measurements show that the charge starts high and then decreases in a step-like manner as the droplet evaporates. The discharge trend is predicted well by treating the droplet as a dielectric sphere in electrical contact with the hot plate, but the mechanism by which definite lumps of charge are transferred through the vapor film is still an open question.

  20. Structure Orientation in Phthalocyanine Film Growth by Vapor Deposition in Electrical Fields

    Science.gov (United States)

    Banks, C. E.; Zhu, S.; Frazier, D. O.; Penn, B. G.; Abdeldayem, H. A.; Sharma, A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Films of phthalocyanines were grown by vapor deposition in an electric field on to quartz substrates coated with a very thin layer of gold or indium tin oxide and compared to films grown in the absence of an electric field. A comparison of morphology, nonlinear optical properties, and crystal structure was also made. The films were characterized using scanning electron microscopy, x-ray diffraction, and FTIR. Films grown in the absence of an electric field had a fiber like morphology and those grown in electric fields having a maximum strength of 4000 V/cm had a dense-columnar structure. The crystal structure of films grown in an electric field was different than those grown in the absence of a field.

  1. Spinning Janus doublets driven in uniform AC electric fields

    CERN Document Server

    Boymelgreen, Alicia; Park, Sinwook; Miloh, Touvia

    2013-01-01

    We provide an experimental proof-of-concept for a robust, continuously rotating microstructure - consisting of two metallodielectric (gold-polystyrene)Janus particles rigidly attached to each other - which is driven in uniform ac fields by asymmetric induced-charge electroosmosis. The pairs (doublets) are stabilized on the substrate surface which is parallel to the plane of view and normal to the direction of the applied electric field. We find that the radius of orbit and angular velocity of the pair are predominantly dependent on the relative orientations of the interfaces between the metallic and dielectric hemispheres and that the electrohydrodynamic particle-particle interactions are small. Additionally, we verify that both the angular and linear velocities of the pair are proportional to the square of the applied field which is consistent with the theory for non-linear electrokinetics. A simple kinematic rigid body model is used to predict the paths and double velocities (angular and linear) based on th...

  2. Characterization of electrosynthesized conjugated polymer-carbon nanotube composite: optical nonlinearity and electrical property.

    Science.gov (United States)

    Bahrami, Afarin; Talib, Zainal Abidin; Shahriari, Esmaeil; Yunus, Wan Mahmood Mat; Kasim, Anuar; Behzad, Kasra

    2012-01-01

    The effects of multi-walled carbon nanotube (MWNT) concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS) as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM) indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n(2)) and the nonlinear absorption (β) of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW) laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n(2) and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.

  3. Characterization of Electrosynthesized Conjugated Polymer-Carbon Nanotube Composite: Optical Nonlinearity and Electrical Property

    Directory of Open Access Journals (Sweden)

    Afarin Bahrami

    2012-01-01

    Full Text Available The effects of multi-walled carbon nanotube (MWNT concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n2 and the nonlinear absorption (β of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n2 and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.

  4. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  5. Workshop on Biophysics of Transmembrane Electric Fields

    Science.gov (United States)

    1990-11-15

    research on the ionic mechanisms of electric-field detection. To obtain detailed information on the electroreceptive membrane and its ionic channels...not to all cells, tissues, and organs of the human body. The electroreceptive membranes also provide a unique opportunity for com- paring the ionic

  6. Modelling electricity forward markets by ambit fields

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Fred Espen Benth, Fred Espen; Veraart, Almut

    This paper proposes a new modelling framework for electricity forward markets, which is based on ambit fields. The new model can capture many of the stylised facts observed in energy markets. One of the main differences to the traditional models lies in the fact that we do not model the dynamics...

  7. Intrinsic nonlinearity of interaction of an electromagnetic field with quantum plasma and its research

    CERN Document Server

    Latyshev, A V

    2014-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. The concept of longitudinal-transversal conductivity is entered. The graphic analysis of the real and imaginary parts of dimensionless coefficient of longitudinal-transversal conductivity is made. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures. In this formula we have allocated known Kohn's singularities (W. Kohn, 1959).

  8. Motional Spin Relaxation in Large Electric Fields

    CERN Document Server

    Schmid, Riccardo; Filippone, B W

    2008-01-01

    We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}\\mathrm{He}$ atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}\\mathrm{He}$ samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}\\mathrm{He}$ atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}\\mathrm{He}$ atoms at temperatures below $600 \\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, ...

  9. Nonlinear Spinor Fields in Bianchi type-V spacetime

    CERN Document Server

    Saha, Bijan

    2016-01-01

    A self-consistent system of nonlinear spinor and Bianchi type-V anisotropic gravitational fields are investigated. It is found that the presence of nontrivial non-diagonal components of the energy-momentum tensor of the spinor field imposes some severe restrictions to the system. As a result two different solutions are found. In one case the metric functions are similar to each other, i.e., $a_1 \\sim a_2 \\sim a_3$ and the spinor mass and spinor field nonlinearity do not disappear from the system. In this case the spacetime expands with acceleration in case of a positive self-coupling constant $\\lambda$. A negative $\\lambda$ gives rise to a cyclic or periodical mode of expansion. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly with time.

  10. Nonlinear Spinor Fields in Bianchi type-III spacetime

    CERN Document Server

    Saha, Bijan

    2016-01-01

    Within the scope of Bianchi type-III spacetime we study the role of spinor field on the evolution of the Universe as well as the influence of gravity on the spinor field. In doing so we have considered a polynomial type of nonlinearity. In this case the spacetime remains locally rotationally symmetric and anisotropic all the time. It is found that depending on the sign of nonlinearity the models allows both accelerated and oscillatory modes of expansion. The non-diagonal components of energy-momentum tensor though impose some restrictions on metric functions and components of spinor field, unlike Bianchi type I, V and $VI_0$ cases, they do not lead to vanishing mass and nonlinear terms of the spinor field.

  11. Acceleration of Universe by Nonlinear Magnetic Monopole Fields

    CERN Document Server

    Övgün, A

    2016-01-01

    Despite impressive phenomenological successes, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. Within the scope of Friedmann-Robertson-Walker (FRW) spacetime we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory which generalizes Maxwell's theory for strong fields. A mathematical new model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  12. Preliminary Studies on Pulsed Electric Field Breakdown of Lead Azide

    Science.gov (United States)

    1976-10-01

    1/2 OS CO ton NO. S3L TECHNICAL REPORT 4991 PRELIMINARY SUJDfES ON PULSED ELECTRIC FIELD BREAKDOWN OF LEAD AZIDE L AVRAMI M. BUMS D. DOWNS...Introduction Background A. Contact Effects B. Pulsed Electric Field Measurements Experimental A. Contact Effects B. Pulsed Electric Fields Discussion...B. Pulsed Electric Field Measurements The application of pulsed electric fields to lead azide does not exactly simulate the conditions experienced

  13. Generation of longitudinal electric current by the transversal electromagnetic field in classical and quantum plasma

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with degenerate collisionless classical and quantum plasmas is carried out. Formulas for calculation electric current in degenerate collisionless classical and quantum plasmas are deduced. It has appeared, that the nonlinearity account leads to occurrence of longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis. Graphic comparison of density of electric current for classical degenerate Fermi plasmas and Fermi-Dirac plasmas (plasmas with any degree of degeneration of electronic gas) is carried out. Graphic comparison of density of electric current for classical and quantum degenerate plasmas is carried out. Also comparison of dependence of density of electric current of quantum degenerate plasmas from dimensionless wave number at various values of dimensionless frequency of oscillations of electromagnetic field is carried ...

  14. Generation of longitudinal electric current by transversal electromagnetic field in Maxwellian plasmas

    CERN Document Server

    Latyshev, A V

    2015-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with Maxwellian collisionless classical and quntum plasmas is carried out. Formulas for calculation electric current in Maxwellian collisionless classical and quntum plasmas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis. Graphic comparison of density of electric current for classical Maxwellian plasmas and Fermi---Dirac plasmas (plasmas with any degree of degeneration of electronic gas) is carried out. Graphic comparison of density of electric current for classical and quantum Maxwellian plasmas is carried out. Also comparison of dependence of density of electric current of quantum Maxwellian plasmas from dimensionless wave number at various values of dimensionless frequency of oscillations of electromagnetic field is carried ou...

  15. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-01-15

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.

  16. Regular rotating electrically charged black holes and solitons in nonlinear electrodynamics minimally coupled to gravity

    CERN Document Server

    Dymnikova, Irina

    2015-01-01

    In nonlinear electrodynamics coupled to gravity, regular spherically symmetric electrically charged solutions satisfy the weak energy condition and have obligatory de Sitter centre. By the G\\"urses-G\\"ursey algorithm they are transformed to spinning electrically charged solutions asymptotically Kerr-Newman for a distant observer. Rotation transforms de Sitter center into de Sitter vacuum surface which contains equatorial disk $r=0$ as a bridge. We present general analysis of the horizons, ergoregions and de Sitter surfaces, as well as the conditions of the existence of regular solutions to the field equations. We find asymptotic solutions and show that de Sitter vacuum surfaces have properties of a perfect conductor and ideal diamagnetic, violation of the weak energy condition is prevented by the basic requirement of electrodynamics of continued media, and the Kerr ring singularity is replaced with the superconducting current.

  17. Tikekar superdense stars in electric fields

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  18. Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies

    DEFF Research Database (Denmark)

    Keiser, G. R.; Seren, H. R.; Strikwerda, Andrew C.

    2014-01-01

    The design of artificial nonlinear materials requires control over internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists...... of a split ring resonator (SRR) array stacked above an array of closed conducting rings. An in-plane, lateral shift of a half unit cell between the SRR and closed ring arrays results in an increase of the MM oscillator strength by a factor of 4 and a 40% change in the amplitude of the resonant electric field...

  19. Influence of Atmospheric Electric Fields on the Radio Emission from Extensive Air Showers

    CERN Document Server

    Trinh, T N G; Buitink, S; Berg, A M van den; Corstanje, A; Ebert, U; Enriquez, J E; Falcke, H; Hörandel, J R; Köhn, C; Nelles, A; Rachen, J P; Rossetto, L; Rutjes, C; Schellart, P; Thoudam, S; ter Veen, S; de Vries, K D

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very non-linear dependence of the signal strength in the frequency window of 30-80 MHz on the magnitude of the atmospheric electric field. In this work we present an explanation of this dependence based on Monte-Carlo simulations, supported by arguments based on electron dynamics in air showers and expressed in terms of a simplified model. We show that by extending the frequency window to lower frequencies additional sensitivity to the atmospheric electric field is obtained.

  20. Conically shaped drops in electric fields

    Science.gov (United States)

    Stone, Howard A.; Brenner, Michael P.; Lister, John R.

    1996-11-01

    When an electric field is applied to a dielectric liquid containing a suspended immiscible fluid drop, the drop deforms into a prolate ellipsoidal shape. Above a critical field strength the drop develops conical ends, as first observed by Zeleny [Phys. Rev. 10, 1 (1917)] and Wilson & Taylor [Proc. Camb. Phil. Soc. 22, 728 (1925)] for, respectively, the case of conducting drops and soap films in air. The case of two dielectric liquids was studied recently using a slender drop approximation by Li, Halsey & Lobkovsky [Europhys. Lett 27, 575 (1994)]. In this presentation we further develop the slender body approximation to obtain coupled ordinary differential equations for the electric field and the drop shape. Analytical formulae are derived which approximately give the cone angle as a function of the dielectric constant ratio between the two fluids, and the minimum applied electric field at which conical tips first form as a function of the dielectric constant ratio. Finally, drops shapes are calculated numerically and compared with the common prolate shape assumption.

  1. Wormhole Solutions in the Presence of Nonlinear Maxwell Field

    Directory of Open Access Journals (Sweden)

    S. H. Hendi

    2014-01-01

    Full Text Available In generalizing the Maxwell field to nonlinear electrodynamics, we look for the magnetic solutions. We consider a suitable real metric with a lower bound on the radial coordinate and investigate the properties of the solutions. We find that in order to have a finite electromagnetic field near the lower bound, we should replace the Born-Infeld theory with another nonlinear electrodynamics theory. Also, we use the cut-and-paste method to construct wormhole structure. We generalize the static solutions to rotating spacetime and obtain conserved quantities.

  2. Electric Field and Humidity Trigger Contact Electrification

    Directory of Open Access Journals (Sweden)

    Yanzhen Zhang

    2015-01-01

    Full Text Available Here, we study the old problem of why identical insulators can charge one another on contact. We perform several experiments showing that, if driven by a preexisting electric field, charge is transferred between contacting insulators. This transfer happens because the insulator surfaces adsorb small amounts of water from a humid atmosphere. We believe the electric field then separates positively from negatively charged ions prevailing within the water, which we believe to be hydronium and hydroxide ions, such that at the point of contact, positive ions of one insulator neutralize negative ions of the other one, charging both of them. This mechanism can explain for the first time the observation made four decades ago that wind-blown sand discharges in sparks if and only if a thunderstorm is nearby.

  3. Broadband Electric-Field Sensor Array Technology

    Science.gov (United States)

    2012-08-05

    the RF DUT. The RF receiver measures the power output from the photodiode, Prf. Fringing RF electric fields from a microstrip resonator circuit ...are measured by placing the ring resonators on top of the circuit . A photograph of the microstrip resonator circuit is shown in Fig. 6(b). The... circuit is a one port device and consists of a 50 Ω input line gap-coupled to a second 50 Ω microstrip line resonator. From vector network analyzer (VNA

  4. Quantized Fields in a Nonlinear Dielectric Medium A Microscopic Approach

    CERN Document Server

    Hillery, M; Hillery, Mark; Mlodinow, Leonard

    1997-01-01

    Theories which have been used to describe the quantized electromagnetic field interacting with a nonlinear dielectric medium are either phenomenological or derived by quantizing the macroscopic Maxwell equations. Here we take a different approach and derive a Hamiltonian describing interacting fields from one which contains both field and matter degrees of freedom. The medium is modelled as a collection of two-level atoms, and these interact with the electromagnetic field. The atoms are grouped into effective spins and the Holstein- Primakoff representation of the spin operators is used to expand them in one over the total spin. When the lowest-order term is combined with the free atomic and field Hamiltonians, a theory of noninteracting polaritons results. When higher-order terms are expressed in terms of polariton operators, standard nonlinear optical interactions emerge.

  5. Nonlinear Electromagnetic Fields As a Source of Universe Acceleration

    CERN Document Server

    Kruglov, S I

    2016-01-01

    A model of nonlinear electromagnetic fields with a dimensional parameter $\\beta$ is proposed. From PVLAS experiment the bound on the parameter $\\beta$ was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the PLANCK, WMAP, and BICEP2 data.

  6. Electrohydrodynamic deformation of capsules in electric field

    Science.gov (United States)

    Das, Sudip; Thaokar, Rochish

    2016-11-01

    Micron size capsules are abundant in natural, technological and biological processes but they still require extensive investigation for better understanding of their mechanical behavior. A spherical capusle containing a Newtonian fluid bounded by a viscoelastic membrane and immersed in another Newtonian fluid, and subject to electric field is considered. Discontinuity of electrical properties such as conductivity and permittivity leads to a net Maxwell stress at the capsule interface. In response the capsule undergoes elastic deformation, leading to strain fields and elastic stresses that can balance the applied forces. We investigate this problem with fully resolved hydrodynamics in the Stokes flow limit and electrostatics using the capacitance model. Effect of AC, DC and pulsed DC fields is investigated. Our results show that membrane electrical properties have a huge impact on the equilibrium deformation as well as on the break up of capsules. Our results match with the literature results in the limit of high conductance of the membrane. Analytical theory is employed using spherical harmonics and numerical investigations are conducted using the Boundary integral method.

  7. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  8. Electrical nonlinear response of a photomixer for applications in ultrafast measurements

    Science.gov (United States)

    Constantin, Florin L.

    2014-05-01

    Electrical nonlinear response of a low-temperature-grown GaAs photomixer is exploited for THz-wave modulation, detection and waveform sampling. Current-voltage response at low bias field is modelled by electron drift velocity saturation. THz-wave rectification is discussed in a small-signal approximation and experimentally addressed in connection with the curvature of IV plot. The optical heterodyne signal from two lasers down-converted with the photomixer is modulated by applying an alternative bias field. Conversely, heterodyne detection of a continuous-wave THz source is demonstrated with the photomixer using the optical beat between the lasers as local oscillator. Alternatively, THz-waves with tunable carrier and pulse repetition rate are generated with a THz frequency multiplier driven by a pulsed microwave synthesizer. Asynchronous optical sampling with a pulsed optical beat is demonstrated with the heterodyne detection scheme.

  9. Nonlinear electron acoustic waves in presence of shear magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  10. Nonlinear lepton-photon interactions in external background fields

    Energy Technology Data Exchange (ETDEWEB)

    Akal, Ibrahim [DESY, Hamburg (Germany). Theory Group; Moortgat-Pick, Gudrid [DESY, Hamburg (Germany). Theory Group; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2016-02-09

    Nonlinear phenomena of lepton-photon interactions in external backgrounds with a generalised periodic plane-wave geometry are studied. We discuss nonlinear Compton scattering in head-on lepton-photon collisions extended properly to beyond the soft-photon regime. In addition, our results are applied to stimulated lepton-antilepton pair production in photon collisions with unrestricted energies. Derivations are considered semi-classically based on unperturbed fermionic Volkov representations encoding the full interaction with the background field. Closed expressions for total probabilities considering S-matrix elements have been derived. The general formula is applied to Compton scattering by an electron propagating in an external laser-like background. We obtain additive contributions in the extended unconstrained result which turns out to be stringently required in the highly nonlinear regime. A detailed comparison of contributing harmonics is discussed for various field parameters.

  11. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.;

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...... based approach is used to control the DC/DC power converters associated with the DC sources, the backstepping technique combined with the field oriented control strategy are invoked in order to control the induction motor. It is formally shown, using a theoretical analysis and simulation results...

  12. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    Science.gov (United States)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    , layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.

  13. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity.

    Science.gov (United States)

    Clayton, C E; Adli, E; Allen, J; An, W; Clarke, C I; Corde, S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Xu, X; Yakimenko, V

    2016-08-16

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m(-1) to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

  14. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    Science.gov (United States)

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-08-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within +/-3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m-1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

  15. Transient electrical field across cellular membranes: pulsed electric field treatment of microbial cells

    Energy Technology Data Exchange (ETDEWEB)

    Timoshkin, I V [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); MacGregor, S J [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Fouracre, R A [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Crichton, B H [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Anderson, J G [Robertson Trust Laboratory for Electronic Sterilization Technologies (ROLEST), Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2006-02-07

    The pulsed electric field (PEF) treatment of liquid and pumpable products contaminated with microorganisms has attracted significant interest from the pulsed power and bioscience research communities particularly because the inactivation mechanism is non-thermal, thereby allowing retention of the original nutritional and flavour characteristics of the product. Although the biological effects of PEF have been studied for several decades, the physical mechanisms of the interaction of the fields with microorganisms is still not fully understood. The present work is a study of the dynamics of the electrical field both in a PEF treatment chamber with dielectric barriers and in the plasma (cell) membrane of a microbial cell. It is shown that the transient process can be divided into three physical phases, and models for these phases are proposed and briefly discussed. The complete dynamics of the time development of the electric field in a spherical dielectric shell representing the cellular membrane is then obtained using an analytical solution of the Ohmic conduction problem. It was found that the field in the membrane reaches a maximum value that could be two orders of magnitude higher than the original Laplacian electrical field in the chamber, and this value was attained in a time comparable to the field relaxation time in the chamber. Thus, the optimal duration of the field during PEF treatment should be equal to such a time.

  16. Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method

    Science.gov (United States)

    Sedighi, Hamid M.; Shirazi, Kourosh H.

    2013-04-01

    This paper presents a new asymptotic procedure to predict the nonlinear vibrational behavior of micro-beams pre-deformed by an electric field. The nonlinear equation of motion includes both even and odd nonlinearities. A powerful analytical method called Parameter Expansion Method (PEM) is employed to obtain the approximated solution and frequency-amplitude relationship. It is demonstrated that the first two terms in series expansions are sufficient to produce an acceptable solution of mentioned system. The obtained results from numerical methods verify the soundness of the analytical procedure. Finally, the influences of basic parameters on pull-in instability and natural frequency are investigated.

  17. Complex behavior of internal collapse due to self-generated radial electric field

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Taro; Tokuda, Shinji; Kishimoto, Yasuaki; Takizuka, Tomonori [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Naitou, Hiroshi [Department of Electical and Electronic Engineering, Yamaguchi University, Ube, Yamaguchi (Japan)

    2000-07-01

    The density gradient effect is taken into account in the gyro-kinetic nonlinear simulation of the kinetic m=1 internal kink mode to clarify the nonlinear behavior of the internal collapse. Even when the density gradient is not so large enough to change the process of the full reconnection, the later process is changed considerably due to the self-generated radial electric field. The nonlinear growth of the 0/0 mode after the internal collapse violates the symmetrical flow of the parallel current, restricting the secondary reconnection. (author)

  18. Electric Field Induced Surface Modification of Au

    Energy Technology Data Exchange (ETDEWEB)

    Erchak, A.A.; Franklin, G.F.; Houston, J.E.; Mayer, T.M.; Michalske, T.A.

    1999-02-15

    We discuss the role of localized high electric fields in the modification of Au surfaces with a W probe using the Interfacial Force Microscope. Upon bringing a probe close to a Au surface, we measure both the interfacial force and the field emission current as a function of separation with a constant potential of 100 V between tip and sample. The current initially increases exponentially as the separation decreases. However, at a distance of less than {approximately} 500{angstrom} the current rises sharply as the surface begins to distort and rapidly close the gap. Retraction of the tip before contact is made reveals the formation of a mound on the surface. We propose a simple model, in which the localized high electric field under the tip assists the production of mobile Au adatoms by detachment from surface steps, and a radial field gradient causes a net flux of atoms toward the tip by surface diffusion. These processes give rise to an unstable surface deformation which, if left unchecked, results in a destructive mechanical contact. We discuss our findings with respect to earlier work using voltage pulses in the STM as a means of nanofabrication.

  19. A nonlinear dynamics for the scalar field in Randers spacetime

    Science.gov (United States)

    Silva, J. E. G.; Maluf, R. V.; Almeida, C. A. S.

    2017-03-01

    We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  20. A nonlinear dynamics for the scalar field in Randers spacetime

    Directory of Open Access Journals (Sweden)

    J.E.G. Silva

    2017-03-01

    Full Text Available We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  1. Influence of atmospheric electric fields on the radio emission from extensive air showers

    DEFF Research Database (Denmark)

    Trinh, T. N. G.; Scholten, O.; Buitink, S.

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of ...

  2. Formation of Root Singularities on the Free Surface of a Conducting Fluid in an Electric Field

    CERN Document Server

    Zubarev, N M

    1998-01-01

    The formation of singularities on a free surface of a conducting ideal fluid in a strong electric field is considered. It is found that the nonlinear equations of two-dimensional fluid motion can be solved in the small-angle approximation. This enables us to show that for almost arbitrary initial conditions the surface curvature becomes infinite in a finite time.

  3. Influence of atmospheric electric fields on the radio emission from extensive air showers

    NARCIS (Netherlands)

    Trinh, T. N. G.; Scholten, O.; Buitink, S.; van den Berg, A. M.; Corstanje, A.; Ebert, U.; Enriquez, J. E.; Falcke, H.; Horandel, J. R.; Kohn, C.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; ter Veen, S.; de Vries, K. D.

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of 30-

  4. Biofouling prevention with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Ghazala, A.; Schoenbach, K.H.

    2000-02-01

    Temporary immobilization of aquatic nuisance species through application of short electric pulses has been explored as a method to prevent biofouling in cooling water systems where untreated lake, river, or sea water is used. In laboratory experiments, electrical pulses with amplitudes on the order of kilovolts/centimeter and submicrosecond duration were found to be most effective in stunning time in a temporal range from minutes to hours. The temporary immobilization is assumed to be caused by reversible membrane breakdown. This assumption is supported by results of measurements of the energy required for stunning. Based on the data obtained in laboratory experiments, field experiments in a tidal water environment have been performed. The flow velocity was such that the residence time of the aquatic nuisance species in the system was approximately half a minute. The results showed that the pulsed electric field method provides full protection against biofouling when pulses of 0.77 {micro}s width and 6 kV/cm amplitude are applied to the water at the inlet of such a cooling water system. Even at amplitudes of 1 kV/cm, the protection is still in the 90% range, at an energy expenditure of 1 kWh for the treatment of 60,000 gallons of water.

  5. High field optical nonlinearity and the Kramers-Kronig relations.

    Science.gov (United States)

    Wahlstrand, J K; Cheng, Y-H; Milchberg, H M

    2012-09-14

    The nonlinear optical response to high fields is absolutely measured for the noble gas atoms He, Ne, Ar, Kr, and Xe. We find that the response is quadratic in the laser field magnitude up to the ionization threshold of each gas. Its size and quadratic dependence are well predicted by a Kramers-Kronig analysis employing known ionization probabilities, and the results are consistent with calculations using the time-dependent Schrödinger equation.

  6. Intracellular calcium during signal transduction in the lymphocyte is altered by ELF magnetic and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Liburdy, R.P. (Lawrence Berkeley Lab., CA (United States))

    1992-02-26

    Research has shown that ELF magnetic and electric fields alter calcium transport in rat thymic T-lymphocytes during signal transduction initiated by mitogen. Interestingly activated T-lymphocytes display a nonlinear dose-response for this basic field interaction which scales with the induced electric field in contrast to the applied magnetic field. Specialized multiring annular well cell culture plates based on Faraday's Law of Current Induction were used to demonstrate that the electric field associated with the magnetic field is the exposure metric of biological interest. The first real-time measurements of (Ca{sup 2+}){sub i} were recently presented and (Ca{sup 2+}){sub i} was shown to be altered by sinusoidal 60 Hz electric fields; magnetic fields that induced comparable electric fields yielded similar alterations in (Ca{sup 2+}){sub i}. The author now presents evidence that both parameters, (Ca{sup 2+}){sub i} and calcium transport, are altered by ELF fields during calcium signaling in thymocytes and scale with the induced electric field. In addition, (Ca{sup 2+}){sub i} studies have been conducted that provide evidence supporting the hypothesis that the mitogen-gated calcium channel present in the plasma cell membrane represents a specific site of interaction for ELF fields.

  7. Spontaneous electric fields in solid films: spontelectrics

    DEFF Research Database (Denmark)

    Field, David; Plekan, Oksana; Cassidy, Andrew

    2013-01-01

    When dipolar gases are condensed at sufficiently low temperature onto a solid surface, they form films that may spontaneously exhibit electric fields in excess of 108V/m. This effect, called the ‘spontelectric effect’, was recently revealed using an instrument designed to measure scattering...... that the spontelectric field generally decreases monotonically with increased deposition temperature, with the exception of methyl formate that shows an increase beyond a critical range of deposition temperature. Films of spontelectric material show a Curie temperature above which the spontelectric effect disappears....... Heterolayers may also be laid down creating potential wells on the nanoscale. A model is put forward based upon competition between dipole alignment and thermal disorder, which is successful in reproducing the variation of the degree of dipole alignment and the spontelectric field with deposition temperature...

  8. Can Neural Activity Propagate by Endogenous Electrical Field?

    National Research Council Canada - National Science Library

    Qiu, Chen; Shivacharan, Rajat S; Zhang, Mingming; Durand, Dominique M

    2015-01-01

    .... The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments...

  9. Chaos control and synchronization of two neurons exposed to ELF external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiang [School of Electrical and Automation Engineering, Tianjin University, Tianjin 300072 (China)]. E-mail: jiangwang@tju.edu.cn; Zhang Ting [School of Electrical and Automation Engineering, Tianjin University, Tianjin 300072 (China); Che Yanqiu [School of Electrical and Automation Engineering, Tianjin University, Tianjin 300072 (China)

    2007-11-15

    Chaos control and synchronization of two unidirectional coupled neurons exposed to ELF electrical field via nonlinear control technique is investigated. Based on results of space-time characteristics of trans-membrane voltage, the variation of cell trans-membrane voltage exposed to extremely low frequency (ELF) electric field is analyzed. The dynamical behaviors of the modified Hodgkin-Huxley (HH) model are identified under the periodic ELF electric field using both analytical and numerical analysis. Then, using the results of the analysis, a nonlinear feedback linearization control scheme and a modified adaptive control strategy are designed to synchronize the two unidirectional coupled neurons and stabilize the chaotic trajectory of the slave system to desired periodic orbit of the master system. The simulation results demonstrated the efficiency of the proposed algorithms.

  10. Electropumping of water with rotating electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; De Luca, Sergio; Todd, Billy

    2013-01-01

    of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also...... require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly...... exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum...

  11. The mathematical models of electromagnetic field dynamics and heat transfer in closed electrical contacts including Thomson effect

    Science.gov (United States)

    Kharin, Stanislav; Sarsengeldin, Merey; Kassabek, Samat

    2016-08-01

    We represent mathematical models of electromagnetic field dynamics and heat transfer in closed symmetric and asymmetric electrical contacts including Thomson effect, which are essentially nonlinear due to the dependence of thermal and electrical conductivities on temperature. Suggested solutions are based on the assumption of identity of equipotentials and isothermal surfaces, which agrees with experimental data and valid for both linear and nonlinear cases. Well known Kohlrausch temperature-potential relation is analytically justified.

  12. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...

  13. Characterization of composite particles responsive to electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaopeng; GUO Hongxia

    2004-01-01

    The multilayer particles with responses to electric and magnetic fields are a prerequisite for particles assembled under external fields. Three routes to produce particles responsive to electric and magnetic fields are presented in this article. The size and morphology, properties as well as the electric-magnetic responses of three kinds of particles are comparatively discussed. This will provide a useful basis for the control of the behavior of the particles in suspensions by external electric and magnetic fields.

  14. Hydrogel Actuation by Electric Field Driven Effects

    Science.gov (United States)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  15. Electric field control of Skyrmions in magnetic nanodisks

    Science.gov (United States)

    Nakatani, Y.; Hayashi, M.; Kanai, S.; Fukami, S.; Ohno, H.

    2016-04-01

    The control of magnetic Skyrmions confined in a nanometer scale disk using electric field pulses is studied by micromagnetic simulation. A stable Skyrmion can be created and annihilated by an electric field pulse depending on the polarity of the electric field. Moreover, the core direction of the Skyrmion can be switched using the same electric field pulses. Such creation and annihilation of Skyrmions, and its core switching do not require any magnetic field and precise control of the pulse length. This unconventional manipulation of magnetic texture using electric field pulses allows a robust way of controlling magnetic Skyrmions in nanodiscs, a path toward building ultralow power memory devices.

  16. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    Science.gov (United States)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  17. Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory.

    Science.gov (United States)

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2013-09-21

    In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.

  18. Electrostatic air filters generated by electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-27

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity.

  19. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    We analyze nonequilibrium screening with nonequilibrium Green function techniques. By employing the generalized Kadanoff-Baym ansatz to relate the correlation function to the nonequilibrium distribution function, the latter of which is assumed to be a shifted Maxwellian, an analytically tractable...... expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  20. Perturbative renormalization of the electric field correlator

    CERN Document Server

    Christensen, C

    2016-01-01

    The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3) gauge theory, finding a ~12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.

  1. Perturbative renormalization of the electric field correlator

    Directory of Open Access Journals (Sweden)

    C. Christensen

    2016-04-01

    Full Text Available The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3 gauge theory, finding a ∼12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.

  2. Perturbative renormalization of the electric field correlator

    Science.gov (United States)

    Christensen, C.; Laine, M.

    2016-04-01

    The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3) gauge theory, finding a ∼ 12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.

  3. Lyapunov based nonlinear control of electrical and mechanical systems

    Science.gov (United States)

    Behal, Aman

    This Ph.D. dissertation describes the design and implementation of various control strategies centered around the following applications: (i) an improved indirect field oriented controller for the induction motor, (ii) partial state feedback control of an induction motor with saturation effects, (iii) tracking control of an underactuated surface vessel, and (iv) an attitude tracking controller for an underactuated spacecraft. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these four primary chapters can be found in chapter one. In the second chapter, the previously published tracking control of [16] 1 is presented in the indirect field oriented control (IFOC) notation to achieve exponential rotor velocity/rotor flux tracking. Specifically, it is illustrated how the proposed IFOC controller can be rewritten in the manner of [16] to allow for a direct Lyapunov stability proof. Experimental results (implemented with the IFOC algorithm) are provided to corroborate the efficacy of the algorithm. In the third chapter, a singularity-free, rotor position tracking controller is presented for the full order, nonlinear dynamic model of the induction motor that includes the effects of magnetic saturation. Specifically, by utilizing the pi-equivalent saturation model, an observer/controller strategy is designed that achieves semi-global exponential rotor position tracking and only requires stator current, rotor velocity, and rotor position measurements. Simulation and experimental results are included to demonstrate the efficacy of the proposed algorithm. In the fourth chapter, a continuous, time-varying tracking controller is designed that globally exponentially forces the position/orientation tracking error of an under-actuated surface vessel to a neighborhood about zero that can be made arbitrarily small (i.e., global uniformly ultimately boundedness (GUUB)). The result is facilitated by

  4. Indications of nonlinear structures in brain electrical activity

    Science.gov (United States)

    Gautama, Temujin; Mandic, Danilo P.; van Hulle, Marc M.

    2003-04-01

    The dynamical properties of electroencephalogram (EEG) segments have recently been analyzed by Andrzejak and co-workers for different recording regions and for different brain states, using the nonlinear prediction error and an estimate of the correlation dimension. In this paper, we further investigate the nonlinear properties of the EEG signals using two established nonlinear analysis methods, and introduce a “delay vector variance” (DVV) method for better characterizing a time series. The proposed DVV method is shown to enable a comprehensive characterization of the time series, allowing for a much improved classification of signal modes. This way, the analysis of Andrzejak and co-workers can be extended toward classification of different brain states. The obtained results comply with those described by Andrzejak et al., and provide complementary indications of nonlinearity in the signals.

  5. Electric field gradient, generalized Sternheimer shieldings and electric field gradient polarizabilities by multiconfigurational SCF response

    Science.gov (United States)

    Rizzo, Antonio; Ruud, Kenneth; Helgaker, Trygve; Jaszuński, Michał

    1998-08-01

    The electric field gradient (EFG) at the nuclei, the generalized Sternheimer shielding constants and the EFG electric dipole polarizabilities are computed for eight small molecules employing multiconfigurational self-consistent field wave functions and the corresponding linear and quadratic response functions. The molecules studied are H2, N2, CO, HF, C2H2, HCl, HCN, and HNC, all of which are linear. For the hydrogen molecule, full configuration-interaction results for the properties are also reported. The dependence of the computed quantities on the basis set and the electron-correlation treatment is analyzed.

  6. Dielectric Fluid in Inhomogeneous Pulsed Electric Field

    CERN Document Server

    Shneider, M N

    2013-01-01

    We consider the dynamics of a compressible fluid under the influence of electrostrictive ponderomotive forces in strong inhomogeneous nonstationary electric fields. It is shown that if the fronts of the voltage rise at a sharp, needle-like electrode are rather steep (less than or about nanoseconds), and the region of negative pressure arises, which can reach values at which the fluid loses its continuity with the formation of cavitation ruptures. If the voltage on the electrode is not large enough or the front is flatter, the cavitation in the liquid does not occur. However, a sudden shutdown of the field results in a reverse flow of liquid from the electrode, which leads to appearance of negative pressure, and, possibly, cavitation.

  7. ELECTRIC FIELD SENSORS BASED ON MEMS TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    Gong Chao; Xia Shanhong; Deng Kai; Bai Qiang; Chen Shaofeng

    2005-01-01

    The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibrating modes. The volume is much smaller than other types of charge-induced EFSs such as field-mills. As miniaturizing, the induced signal is reduced enormously and a high sensitive circuit is needed to detect it. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Computer simulations for different structural parameters of the EFSs and vibrating methods have been carried out by Finite Element Method (FEM). It is proved that the new structures are realizable and the output signals are detectable.

  8. On a regular charged black hole with a nonlinear electric source

    CERN Document Server

    Culetu, Hristu

    2014-01-01

    A modified version of the Reissner-Nordstrom metric is proposed on the grounds of the nonlinear electrodynamics model. The source of curvature is an anisotropic fluid with $p_{r} = -\\rho$ which resembles the Maxwell stress tensor at $r >> q^{2}/2m$, where $q$ and $m$ are the mass and charge of the particle, respectively. We found the black hole horizon entropy obeys the relation $S = |W|/2T = A_{H}/4$, with $W$ the Komar energy and $A_{H}$ the horizon area. The electric field around the source depends not only on its charge but also on its mass. The corresponding electrostatic potential $\\Phi(r)$ is finite everywhere, vanishes at the origin and at $r = q^{2}/6m$ and is nonzero asymptotically, with $\\Phi_{\\infty} = 3m/2q$.

  9. Spectroscopic analysis of high electric field enhanced ionization in laser filaments in air for corona guiding

    Institute of Scientific and Technical Information of China (English)

    Yingxia Wei; Yaoxiang Liu; Tie-Jun Wang; Na Chen; Jingjing Ju; Yonghong Liu; Haiyi Sun; Cheng Wang; Jiansheng Liu; Haihe Lu; See Leang Chin; Ruxin Li

    2016-01-01

    We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge(CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation(FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.

  10. Frame Dependence of the Electric Field Spectrum of Solar Wind Turbulence

    CERN Document Server

    Chen, C H K; Salem, C; Mozer, F S

    2011-01-01

    We present the first survey of electric field data using the ARTEMIS spacecraft in the solar wind to study inertial range turbulence. We find that the average perpendicular spectral index of the electric field depends on the frame of measurement. In the spacecraft frame it is -5/3, which matches the magnetic field due to the large solar wind speed in Lorentz transformation. In the mean solar wind frame, the electric field is primarily due to the perpendicular velocity fluctuations and has a spectral index slightly shallower than -3/2, which is close to the scaling of the velocity. These results are an independent confirmation of the difference in scaling between the velocity and magnetic field, which is not currently well understood. The spectral index of the compressive fluctuations was also measured and found to be close to -5/3, indicating that they are not only passive to the velocity but may also interact nonlinearly with the magnetic field.

  11. The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach

    Energy Technology Data Exchange (ETDEWEB)

    Bessec, Marie [CGEMP, Universite Paris-Dauphine, Place du Marechal de Lattre de Tassigny Paris (France); Fouquau, Julien [LEO, Universite d' Orleans, Faculte de Droit, d' Economie et de Gestion, Rue de Blois, BP 6739, 45067 Orleans Cedex 2 (France)

    2008-09-15

    This paper investigates the relationship between electricity demand and temperature in the European Union. We address this issue by means of a panel threshold regression model on 15 European countries over the last two decades. Our results confirm the non-linearity of the link between electricity consumption and temperature found in more limited geographical areas in previous studies. By distinguishing between North and South countries, we also find that this non-linear pattern is more pronounced in the warm countries. Finally, rolling regressions show that the sensitivity of electricity consumption to temperature in summer has increased in the recent period. (author)

  12. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    Institute of Scientific and Technical Information of China (English)

    SUN Bao; CHEN Fu-Shen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive im-pulse electric field measurement. The integrated optical sensor is based on a Mach-Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The max-imal detectable electric field range (-75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation.

  13. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  14. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  15. Nonlinear subelliptic Schrodinger equations with external magnetic field

    Directory of Open Access Journals (Sweden)

    Kyril Tintarev

    2004-10-01

    Full Text Available To account for an external magnetic field in a Hamiltonian of a quantum system on a manifold (modelled here by a subelliptic Dirichlet form, one replaces the the momentum operator $frac 1i d$ in the subelliptic symbol by $frac 1i d-alpha$, where $alphain TM^*$ is called a magnetic potential for the magnetic field $eta=dalpha$. We prove existence of ground state solutions (Sobolev minimizers for nonlinear Schrodinger equation associated with such Hamiltonian on a generally, non-compact Riemannian manifold, generalizing the existence result of Esteban-Lions [5] for the nonlinear Schrödinger equation with a constant magnetic field on $mathbb{R}^N$ and the existence result of [6] for a similar problem on manifolds without a magnetic field. The counterpart of a constant magnetic field is the magnetic field, invariant with respect to a subgroup of isometries. As an example to the general statement we calculate the invariant magnetic fields in the Hamiltonians associated with the Kohn Laplacian and for the Laplace-Beltrami operator on the Heisenberg group.

  16. Manipulation of nano-entities in suspension by electric fields

    Science.gov (United States)

    Fan, Donglei

    Nanoscale entities, including nanospheres, nanodisks, nanorings, nanowires and nanotubes are potential building blocks for nanoscale devices. Among them, nanowires is an important type of nanoparticles, due to the potential application in microelectronics and bio-diagnosis. Manipulation of nanowires in suspension has been a formidable problem. As described in this thesis, using AC electric fields applied to strategically designed microelectrodes, nanowires in suspension can be driven to align, to chain, to accelerate in directions parallel and perpendicular to its orientation, to concentrate onto designated places, and to disperse in a controlled manner with high efficiency despite an extremely low Reynolds number at the level of 10-5. Randomly oriented nanowires in suspension can be rapidly assembled into extended nonlinear structures within seconds. We show that both the electric field and its gradient play the essential roles of aligning and transporting the nanowires into scaffolds according to the electric field distributions inherent to the geometry of the microelectrodes. The assembling efficiency depends strongly on the frequency of the applied AC voltages and varies as square of the voltage. Furthermore, nanowires have been rotated by AC electric fields applied to strategically designed electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 25000 rpm), definite chirality, and total angle of rotation. This new method has been used to controllably rotate magnetic and non-magnetic nanowires as well as multi-wall carbon nanotubes. We have also produced a micromotor using a rotating nanowire that can drive particles into circular motion. This has application to microfluidic devices, micro-stirrers, and micro electromechanical systems (MEMS). To move and place nanowires onto designated locations with high precision, electrophoretic force has been combined with dielectrophoretic force to

  17. Saturation of the Electric Field Transmitted to the Magnetosphere

    Science.gov (United States)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.

    2010-01-01

    We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.

  18. Dynamics of an electric dipole moment in a stochastic electric field.

    Science.gov (United States)

    Band, Y B

    2013-08-01

    The mean-field dynamics of an electric dipole moment in a deterministic and a fluctuating electric field is solved to obtain the average over fluctuations of the dipole moment and the angular momentum as a function of time for a Gaussian white-noise stochastic electric field. The components of the average electric dipole moment and the average angular momentum along the deterministic electric-field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a stochastic magnetic field with Gaussian white noise in all three components. The components of the average electric dipole moment and the average angular momentum perpendicular to the deterministic electric-field direction oscillate with time but decay to zero, and their variance grows with time.

  19. Manipulating colloids with charges and electric fields

    Science.gov (United States)

    Leunissen, M. E.

    2007-02-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their relatively large size, colloids are much easier to investigate and manipulate, though. This makes them excellent condensed matter model systems. With this in mind, we studied micrometer-sized perspex (‘PMMA’) spheres, labeled with a fluorescent dye for high-resolution confocal microscopy imaging, and suspended in a low-polar mixture of the organic solvents cyclohexyl bromide and cis-decalin. This system offered us the flexibility to change the interactions between the particles from ‘hard-sphere-like’ to long-ranged repulsive (between like-charged particles), long-ranged attractive (between oppositely charged particles) and dipolar (in an electric field). We investigated the phase behavior of our suspensions as a function of the particle concentration, the ionic strength of the solvent and the particles’ charges. In this way, we obtained new insight in the freezing and melting behavior of like-charged and oppositely charged colloids. Interestingly, we found that the latter can readily form large crystals, thus defying the common belief that plus-minus interactions inevitably lead to aggregation. Moreover, we demonstrated that these systems can serve as a reliable model system for classical ionic matter (‘salts’), and that opposite-charge interactions can greatly facilitate the self-assembly of new structures with special properties for applications. On a slightly different note, we also studied electrostatic effects in mixtures of the cyclohexyl bromide solvent and water, both with and without colloidal particles present. This provided new insight in the stabilization mechanisms of oil-water emulsions and gave us control over the self-assembly of various

  20. A Geometrically Nonlinear Phase Field Theory of Brittle Fracture

    Science.gov (United States)

    2014-10-01

    tension. Int J Fract Mech 4:257–266 Voyiadjis G, Mozaffari N (2013) Nonlocal damage model using the phase field method: theory and applications. Int J... model of fracture. Computer simula- tions enable descriptions of fracture in brittle solids under complex loading conditions and for nonlinear and...Simple models based on the notion of theo- retical strength (Gilman1960;Clayton 2009, 2010) can provide insight into directionality of fracture

  1. Electrical integrity of oxides in a radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Laboratory, TN (United States); Kinoshita, C.

    1996-04-01

    In the absence of an applied electric field, irradiation generally produces a decrease in the permanent (beam-off) electrical conductivity of ceramic insulators. However, in the past 6 years several research groups have reported a phenomenon known as radiation induced electrical degradation (RIED), which produces significant permanent increases in the electrical conductivity of ceramic insulators irradiated with an applied electric field. RIED has been reported to occur at temperatures between 420 and 800 K with applied electric fields as low as 20 V/mm.

  2. Electric field enhancement of depolarization of excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Hillard, G.B.; Glab, W.L.

    1985-12-01

    Our calculations show that an external dc electric field can enhance by many orders of magnitude the depolarization cross section of highly excited atoms by charged particles. The enhancement is due to the fact that the electric field extends and shifts the electronic charge distribution along its direction, thus effectively creating a giant electric dipole in the atom.

  3. Liquid methanol under a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cassone, Giuseppe, E-mail: giuseppe.cassone@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France); Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Giaquinta, Paolo V., E-mail: paolo.giaquinta@unime.it [Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); Saija, Franz, E-mail: saija@ipcf.cnr.it [CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Saitta, A. Marco, E-mail: marco.saitta@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France)

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  4. Patchy particle packing under electric fields.

    Science.gov (United States)

    Song, Pengcheng; Wang, Yufeng; Wang, Yu; Hollingsworth, Andrew D; Weck, Marcus; Pine, David J; Ward, Michael D

    2015-03-01

    Colloidal particles equipped with two, three, or four negatively charged patches, which endow the particles with 2-fold, 3-fold, or tetrahedral symmetries, form 1D chains, 2D layers, and 3D packings when polarized by an AC electric field. Two-patch particles, with two patches on opposite sides of the particle (2-fold symmetry) pack into the cmm plane group and 3D packings with I4mm space group symmetry, in contrast to uncharged spherical or ellipsoidal colloids that typically crystallize into a face-centered ABC layer packing. Three-patch particles (3-fold symmetry) form chains having a 21 screw axis symmetry, but these chains pair in a manner such that each individual chain has one-fold symmetry but the pair has 21 screw axis symmetry, in an arrangement that aligns the patches that would favor Coulombic interactions along the chain. Surprisingly, some chain pairs form unanticipated double-helix regions that result from mutual twisting of the chains about each other, illustrating a kind of polymorphism that may be associated with nucleation from short chain pairs. Larger 2D domains of the three-patch particles crystallize in the p6m plane group with alignment (with respect to the field) and packing densities that suggest random disorder in the domains, whereas four-patch particles form 2D domains in which close-packed rows are aligned with the field.

  5. Field-enhanced nonlinear optical properties of organic nanofibers

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana; Fiutowski, Jacek; Brewer, Jonathan R.;

    Second harmonic generation in nonlinearly optically active organic nanofibers, generated via self-assembled surface growth from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules, has been investigated. After the growth on mica templates, nanofibers have been transferred onto...... lithographically defined regular arrays of metal and dielectric nanostructures. Such hybrid systems were employed to correlate the second harmonic response to both morphology of the fibers i.e. local field enhancement due to local changes in the fiber’s morphology and field enhancement effects appearing...

  6. Field-enhanced nonlinear optical properties of organic nanofibers

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana; Fiutowski, Jacek; Brewer, Jonathan R.;

    2014-01-01

    Second harmonic generation in nonlinearly optically active organic nanofibers, generated via self-assembled surface growth from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules, has been investigated. After the growth on mica templates, nanofibers have been transferred onto...... lithographically defined regular arrays of metal and dielectric nanostructures. Such hybrid systems were employed to correlate the second harmonic response to both morphology of the fibers i.e. local field enhancement due to local changes in the fiber’s morphology and field enhancement effects appearing...

  7. Calculation of the microscopic and macroscopic linear and nonlinear optical properties of liquid acetonitrile. II. Local fields and linear and nonlinear susceptibilities in quadrupolar approximation.

    Science.gov (United States)

    Avramopoulos, A; Papadopoulos, M G; Reis, H

    2007-03-15

    A discrete model based on the multipolar expansion including terms up to hexadecapoles was employed to describe the electrostatic interactions in liquid acetonitrile. Liquid structures obtained form molecular dynamics simulations with different classical, nonpolarizable potentials were used to analyze the electrostatic interactions. The computed average local field was employed for the determination of the environmental effects on the linear and nonlinear electrical molecular properties. Dipole-dipole interactions yield the dominant contribution to the local field, whereas higher multipolar contributions are small but not negligible. Using the effective in-phase properties, macroscopic linear and nonlinear susceptibilities of the liquid were computed. Depending on the partial charges describing the Coulomb interactions of the force field employed, either the linear properties (refractive index and dielectric constant) were reproduced in good agreement with experiment or the nonlinear properties [third-harmonic generation (THG) and electric field induced second-harmonic (EFISH) generation] and the bulk density but never both sets of properties together. It is concluded that the partial charges of the force fields investigated are not suitable for reliable dielectric properties. New methods are probably necessary for the determination of partial charges, which should take into account the collective and long-range nature of electrostatic interactions more precisely.

  8. Robust electric-field tunable opto-electrical behavior in Pt-NiO-Pt planar structures.

    Science.gov (United States)

    Rebello, A; Adeyeye, A O

    2016-06-13

    Capacitor-like metal-NiO-metal structures have attracted large interest in non-volatile memory applications based on electric field control of resistance, known as resistive switching (RS). Formation of conducting nanofilaments by the application of an electric field (electroformation) is considered an important pre-requisite for RS. Besides RS, due to the wide band gap and p-type semiconducting nature, NiO has been used to fabricate heterojunctions for photodetector applications. However, very little is known about the electrical and opto-electrical properties of NiO films in planar structure. Here, we demonstrate intriguing photoresponse and electrical behavior in electroformed Pt-NiO-Pt planar structures. While the pristine devices show ohmic electrical behavior and negligible photoresponse, the electroformed devices exhibit a nonlinear rectification behavior and a remarkable photoresponse at low voltage biases. More interestingly, the devices show a dramatic change of sign of rectification under light illumination at higher voltage biases. A polarity dependent and robust gain phenomenon is demonstrated in these devices. The large sensitivity, fast response, simple design and ease of preparation of these planar structures make them attractive for integration with current circuit technologies and various novel opto-electrical applications.

  9. Robust electric-field tunable opto-electrical behavior in Pt-NiO-Pt planar structures

    Science.gov (United States)

    Rebello, A.; Adeyeye, A. O.

    2016-01-01

    Capacitor-like metal-NiO-metal structures have attracted large interest in non-volatile memory applications based on electric field control of resistance, known as resistive switching (RS). Formation of conducting nanofilaments by the application of an electric field (electroformation) is considered an important pre-requisite for RS. Besides RS, due to the wide band gap and p-type semiconducting nature, NiO has been used to fabricate heterojunctions for photodetector applications. However, very little is known about the electrical and opto-electrical properties of NiO films in planar structure. Here, we demonstrate intriguing photoresponse and electrical behavior in electroformed Pt-NiO-Pt planar structures. While the pristine devices show ohmic electrical behavior and negligible photoresponse, the electroformed devices exhibit a nonlinear rectification behavior and a remarkable photoresponse at low voltage biases. More interestingly, the devices show a dramatic change of sign of rectification under light illumination at higher voltage biases. A polarity dependent and robust gain phenomenon is demonstrated in these devices. The large sensitivity, fast response, simple design and ease of preparation of these planar structures make them attractive for integration with current circuit technologies and various novel opto-electrical applications. PMID:27294614

  10. Review Of Fiber-Optic Electric-Field Sensors

    Science.gov (United States)

    De Paula, Ramon P.; Jarzynski, Jacek

    1989-01-01

    Tutorial paper reviews state of art in fiber-optic sensors of alternating electric fields. Because such sensors are made entirely of dielectric materials, they are relatively transparent to incident electric fields; they do not distort fields significantly. Paper presents equations that express relationships among stress, strain, and electric field in piezoactive plastic and equations for phase shift in terms of photoelastic coefficients and strains in optical fiber.

  11. Parallel Electric Fields Associated with Sub-Solar Reconnection: MMS Observations

    Science.gov (United States)

    Ergun, Robert; Goodrich, Katherine; Wilder, Frederick; Holmes, Justin; Stawarz, Julia; Sturner, Andrew; Eriksson, Stefan; Malaspina, David; Unsanova, Maria; Torbert, Roy; Lindqvist, Per-Arne; Khotyaintsev, Yuri; Burch, James; Strangeway, Robert; Russel, Christopher; Giles, Barbara; Pollock, Craig

    2016-04-01

    We present MMS observations of parallel electric fields associated with sub-solar magnetic reconnection and provide an early interpretation of their implications on the reconnection processes. The MMS satellites have observed many instances of large-amplitude parallel electric fields (10's to greater than 100 mV/m) that appear to lie on or near the magnetic reconnection separatrix, in particular, near a strong current layer on the magnetospheric-side separatrix. These parallel electric field events are directly associated with magnetic reconnection and, on most occasions, are recorded by more than one of the MMS spacecraft. We see several types of parallel electric fields. We interpret purely parallel electrostatic waves and the evolved nonlinear states of these waves as mixing of cold plasma with warm magnetosheath plasma on a freshly reconnected field line. Large-amplitude spikes associated with tangled magnetic fields represent possible secondary reconnection events. Whistler waves and evolved non-linear whistler waves are associated with associated with mixing of plasmas. These observations suggest that (1) magnetic reconnection is often "patchy" and results in tangled magnetic field lines and that (2) cold plasma (<10 eV) is often present in sub-solar reconnection.

  12. Spinning Janus doublets driven in uniform ac electric fields

    Science.gov (United States)

    Boymelgreen, Alicia; Yossifon, Gilad; Park, Sinwook; Miloh, Touvia

    2014-01-01

    We provide an experimental proof of concept for a robust, continuously rotating microstructure—consisting of two metallodielectric (gold-polystyrene) Janus particles rigidly attached to each other—which is driven in uniform ac fields by asymmetric induced-charge electro-osmosis. The pairs (doublets) are stabilized on the substrate surface which is parallel to the plane of view and normal to the direction of the applied electric field. We find that the radius of orbit and angular velocity of the pair are predominantly dependent on the relative orientations of the interfaces between the metallic and dielectric hemispheres and that the electrohydrodynamic particle-particle interactions are small. Additionally, we verify that both the angular and linear velocities of the pair are proportional to the square of the applied field which is consistent with the theory for nonlinear electrokinetics. A simple kinematic rigid body model is used to predict the paths and doublet velocities (angular and linear) based on their relative orientations with good agreement.

  13. Rayleigh-Taylor Instability and Excitation of Super-Dreicer Electric Fields in the Solar Chromosphere

    Science.gov (United States)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2016-11-01

    Within the framework of the long-standing so-called "number problem" in the physics of solar flares, we consider the excitation of a super-Dreicer electric field at the leading edge of the electric current pulse that occurs at the chromospheric legs of a coronal magnetic loop as a result of the magnetic Rayleigh-Taylor instability. It is shown that for a sufficiently strong electric current, I0 ≥ 10^{10} A, the current pulse propagates in the non-linear mode and generates a strong longitudinal electric field Ez, which strongly depends on the current (Ez ∝ I03) and can exceed the Dreicer field (Ez > ED). In this case, the bulk of electrons in the site of the current pulse is in a runaway mode, and the energy release rate in the chromosphere increases significantly. Super-Dreicer electric fields also provide injection of protons into the regime of acceleration by Langmuir turbulence generated by fast electrons at the leading edge of the electric current pulse. The electric field at the pulse edge can exceed the Dreicer field starting from the chromosphere level with the number density n ≈ 10^{13} cm^{-3}. At a lower current I0 < 10^{10} A, a super-Dreicer mode at the higher levels of the chromosphere with n < 10^{12} cm^{-3} occurs.

  14. Rayleigh-Taylor Instability and Excitation of Super-Dreicer Electric Fields in the Solar Chromosphere

    Science.gov (United States)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2016-09-01

    Within the framework of the long-standing so-called "number problem" in the physics of solar flares, we consider the excitation of a super-Dreicer electric field at the leading edge of the electric current pulse that occurs at the chromospheric legs of a coronal magnetic loop as a result of the magnetic Rayleigh-Taylor instability. It is shown that for a sufficiently strong electric current, I0 ≥ 10^{10} A, the current pulse propagates in the non-linear mode and generates a strong longitudinal electric field Ez, which strongly depends on the current ( Ez ∝ I03) and can exceed the Dreicer field ( Ez > ED). In this case, the bulk of electrons in the site of the current pulse is in a runaway mode, and the energy release rate in the chromosphere increases significantly. Super-Dreicer electric fields also provide injection of protons into the regime of acceleration by Langmuir turbulence generated by fast electrons at the leading edge of the electric current pulse. The electric field at the pulse edge can exceed the Dreicer field starting from the chromosphere level with the number density n ≈ 10^{13} cm^{-3}. At a lower current I0 < 10^{10} A, a super-Dreicer mode at the higher levels of the chromosphere with n < 10^{12} cm^{-3} occurs.

  15. Electric Field Driven Torque in Biological Rotary Motors

    CERN Document Server

    Miller,, John H; Maric, Sladjana; Infante, Hans L; Claycomb, James R

    2013-01-01

    Ion driven rotary motors, such as Fo-ATP synthase (Fo) and the bacterial flagellar motor, act much like a battery-powered electric motor. They convert energy from ions as they move from high to low potential across a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields, emanating from channels in one or more stators, act on asymmetric charge distributions due to protonated and deprotonated sites in the rotor and drive it to rotate. The model predicts an ideal scaling law between torque and ion motive force, which can be hindered by mitochondrial mutations. The rotor of Fo drives the gamma-subunit to rotate within the ATP-producing complex (F1), working against an opposing torque that rises and falls periodically with angular position. Drawing an analogy with Brownian motion of a particle in a tilted washboard potential, we compute the highly nonlinear ATP production rate vs. proton motive force (pmf), showing a minimum pmf needed to drive ATP production with important me...

  16. Non-linear analysis of body responses to functional electrical stimulation on hemiplegic subjects.

    Science.gov (United States)

    Yu, W W; Acharya, U R; Lim, T C; Low, H W

    2009-08-01

    Functional electrical stimulation (FES) is a method of applying low-level electrical currents to restore or improve body functions lost through nervous system impairment. FES is applied to peripheral nerves that control specific muscles or muscle groups. Application of advanced signal computing techniques to the medical field has helped to achieve practical solutions to the health care problems accurately. The physiological signals are essentially non-stationary and may contain indicators of current disease, or even warnings about impending diseases. These indicators may be present at all times or may occur at random on the timescale. However, to study and pinpoint these subtle changes in the voluminous data collected over several hours is tedious. These signals, e.g. walking-related accelerometer signals, are not simply linear and involve non-linear contributions. Hence, non-linear signal-processing methods may be useful to extract the hidden complexities of the signal and to aid physicians in their diagnosis. In this work, a young female subject with major neuromuscular dysfunction of the left lower limb, which resulted in an asymmetric hemiplegic gait, participated in a series of FES-assisted walking experiments. Two three-axis accelerometers were attached to her left and right ankles and their corresponding signals were recorded during FES-assisted walking. The accelerometer signals were studied in three directions using the Hurst exponent H, the fractal dimension (FD), the phase space plot, and recurrence plots (RPs). The results showed that the H and FD values increase with increasing FES, indicating more synchronized variability due to FES for the left leg (paralysed leg). However, the variation in the normal right leg is more chaotic on FES.

  17. Electrically controlled nonlinear optical generation and signal processing in plasmonic metamaterials (Conference Presentation)

    Science.gov (United States)

    Cai, Wenshan

    2016-09-01

    Metamaterials have offered not only the unprecedented opportunity to generate unconventional electromagnetic properties that are not found in nature, but also the exciting potential to create customized nonlinear media with tailored high-order effects. Two particularly compelling directions of current interests are active metamaterials, where the optical properties can be purposely manipulated by external stimuli, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light. By exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically-controlled nonlinear processes from photonic metamaterials. We show that a variety of nonlinear optical phenomena, including the wave mixing and the optical rectification, can be purposely modulated by applied voltage signals. In addition, electrically-induced and voltage-controlled nonlinear effects facilitate us to demonstrate the backward phase matching in a negative index material, a long standing prediction in nonlinear metamaterials. Other results to be covered in this talk include photon-drag effect in plasmonic metamaterials and ion-assisted nonlinear effects from metamaterials in electrolytes. Our results reveal a grand opportunity to exploit optical metamaterials as self-contained, dynamic electrooptic systems with intrinsically embedded electrical functions and optical nonlinearities. Reference: L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, Nature Communications, 5, 4680 (2014). S. P. Rodrigues and W.Cai, Nature Nanotechnology, 10, 387 (2015). S. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. Cui, M. L. Brongersma, and W. Cai, Nature Materials, 14, 807 (2015).

  18. Nonlinear magnetic field transport in opening switch plasmas

    Science.gov (United States)

    Mason, R. J.; Auer, P. L.; Sudan, R. N.; Oliver, B. V.; Seyler, C. E.; Greenly, J. B.

    1993-04-01

    The nonlinear transport of magnetic field in collisionless plasmas, as present in the plasma opening switch (POS), using the implicit multifluid simulation code anthem [J. Comput. Phys. 71, 429 (1987)] is studied. The focus is on early time behavior in the electron-magnetohydrodynamic (EMHD) limit, with the ions fixed, and the electrons streaming as a fluid under the influence of ve×B Hall forces. Through simulation, magnetic penetration and magnetic exclusion waves are characterized, due to the Hall effect in the presence of transverse density gradients, and the interaction of these Hall waves with nonlinear diffusive disturbances from electron velocity advection, (veṡ∇)ve, is studied. It is shown how these mechanisms give rise to the anode magnetic insulation layer, central diffusion, and cathode potential hill structures seen in earlier opening switch plasmas studies.

  19. Suppressing Transverse Beam Halo with Nonlinear Magnetic Fields

    CERN Document Server

    Webb, Stephen D; Abell, Dan T; Danilov, Viatcheslav; Nagaitsev, Sergei; Valishev, Alexander; Danilov, Kirill; Cary, John R

    2012-01-01

    High intensity proton storage rings are central for the development of advanced neutron sources, drivers for the production of pions in neutrino factories or muon colliders, and transmutation of radioactive waste. Fractional proton loss from the beam must be very small to prevent radioac- tivation of nearby structures, but many sources of beam loss are driven by collective effects that increase with intensity. Recent theoretical work on the use of nonlinear magnetic fields to design storage rings with integrable transverse dynamics is extended here to include collective effects, with numerical results showing validity in the presence of very high beam current. Among these effects is the formation of beam halo, where particles are driven to large amplitude oscillations by coherent space charge forces. The strong variation of particle oscillation frequency with amplitude results in nonlinear decoherence that is observed to suppress transverse halo development in the case studied. We also present a necessary gen...

  20. The influence of electric field and confinement on cell motility.

    Science.gov (United States)

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.

  1. Biological effects of electric fields: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.; Phillips, R.D.

    1983-11-01

    An overview of the literature suggests tha electric-field exposure is an environmental agent/influence of relatively low potential toxicity to biological systems. Generally, many of the biological effects which have been reported are quite subtle and differences between exposed and unexposed subjects may be masked by normal biological variations. However, several recent reports indicate possibly more serious consequences from chronic exposure, emphasizing the need for more research in epidemiology and laboratory experiments. This paper presents a cursory overview of investigations on the biological consequences of exposure to ELF electromagnetic fields. Three important topics are discussed, including: 1) the general methodology of exposure experiments, including those elements which are critical for definitive studies in biological systems; 2) a brief discussion of epidemiological and clinical studies conducted to date; and 3) a somewhat more extensive examination of animal experiments representing major areas of investigation (behavior, biological rhythms, nervous and endocrine systems, bone growth and repair, cardiovascular system and blood chemistry, immunology, reproduction, growth and development mortality and pathology, cellular and membrane studies, and mutagenesis). A discussion of current concepts, possible mechanisms and future directions of research is presented. 110 references.

  2. Nonlinear growth of electron holes in cross-field wakes

    Science.gov (United States)

    Hutchinson, Ian; Haakonsen, C. B.; Zhou, C.

    2015-11-01

    Cross-field plasma flow past an obstacle is key to the physics underlying Mach-probes, space-craft charging, and the wakes of non-magnetic bodies: the solar-wind wake of the moon is a typical example. We report associated new nonlinear instability mechanisms. Ions are accelerated along the B-field into the wake, forming two beams, but they are not initially unstable to ion two-stream instabilities. Electron Langmuir waves become unstable much earlier because of an electron velocity-distribution distortion called the ``dimple''. The magnetic field, perpendicular to the flow, defines the 1-D direction of particle dynamics. In high-fidelity PIC simulations at realistic mass ratio, small electron holes--non-linearly self-binding electron density deficits--are spawned by the dimple in fe (v) near the phase-space separatrix. Most holes accelerate rapidly out of the wake, along B. However, some remain at very low speed, and grow until they are large enough to disrupt the two ion-streams, well before the ions are themselves linearly unstable. This non-linear hole growth is caused by the same mechanism that causes the dimple: cross-field drift from a lower to a higher density. Related mechanisms cause plasma near magnetized Langmuir probes to be unsteady. Partially supported by the NSF/DOE Basic Plasma Science Partnership grant DE-SC0010491.

  3. Measurements of the vertical atmospheric electric field and of the electrical conductivity with stratospheric balloons

    Science.gov (United States)

    Iversen, I. B.; Madsen, M. M.; Dangelo, N.

    1985-01-01

    Measurements of the atmospheric (vertical) electric field with balloons in the stratosphere are reported. The atmospheric electrical conductivity is also measured and the current density inferred. The average vertical current shows the expected variation with universal time and is also seen to be influenced by external (magnetospheric) electric fields.

  4. Standstill electric charge generates magnetostatic field under Born-Infeld electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Vellozo, S.O. [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil)]. E-mail: vellozo@cbpf.br; Helayeel-Neto, Jose A.; Assis, L.P.G. de [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: helayel@cbpf.br; lpgassis@cbpf.br; Smith, A.W. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: awsmith@cbpf.br

    2007-07-01

    The Abelian Born-Infeld classical non-linear electrodynamic has been used to investigate the electric and magnetostatic fields generated by a point-like electrical charge at rest in an inertial frame. The results show a rich internal structure for the charge. Analytical solutions have also been found. Such findings have been interpreted in terms of vacuum polarization and magnetic-like charges produced by the very high strengths of the electric field considered. Apparently non-linearity is to be accounted for the emergence of an anomalous magnetostatic field suggesting a possible connection to that created by a magnetic dipole composed of two magnetic charges with opposite signals. Consistently in situations where the Born-Infeld field strength parameter is free to become infinite, Maxwell's regime takes over, the magnetic sector vanishes and the electric field assumes a Coulomb behavior with no trace of a magnetic component. The connection to other monopole solutions, like Dirac's, t' Hoof's or Poliakov's types, are also discussed. Finally some speculative remarks are presented in an attempt to explain such fields. (author)

  5. Standstill electric charge generates magnetostatic field under Born-Infeld electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Vellozo, S.O. [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil)]. E-mail: vellozo@cbpf.br; Helayeel-Neto, Jose A.; Assis, L.P.G. de [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: helayel@cbpf.br; lpgassis@cbpf.br; Smith, A.W. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: awsmith@cbpf.br

    2007-07-01

    The Abelian Born-Infeld classical non-linear electrodynamic has been used to investigate the electric and magnetostatic fields generated by a point-like electrical charge at rest in an inertial frame. The results show a rich internal structure for the charge. Analytical solutions have also been found. Such findings have been interpreted in terms of vacuum polarization and magnetic-like charges produced by the very high strengths of the electric field considered. Apparently non-linearity is to be accounted for the emergence of an anomalous magnetostatic field suggesting a possible connection to that created by a magnetic dipole composed of two magnetic charges with opposite signals. Consistently in situations where the Born-Infeld field strength parameter is free to become infinite, Maxwell's regime takes over, the magnetic sector vanishes and the electric field assumes a Coulomb behavior with no trace of a magnetic component. The connection to other monopole solutions, like Dirac's, t' Hoof's or Poliakov's types, are also discussed. Finally some speculative remarks are presented in an attempt to explain such fields. (author)

  6. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    2014-01-01

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be possi

  7. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  8. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, D. A., E-mail: david.walsh@stfc.ac.uk; Snedden, E. W. [Accelerator Science and Technology Centre, STFC Daresbury National Laboratory, Warrington WA4 4AD (United Kingdom); Jamison, S. P. [Accelerator Science and Technology Centre, STFC Daresbury National Laboratory, Warrington WA4 4AD (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-05-04

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.

  9. The time resolved measurement of ultrashort THz-band electric fields without an ultrashort probe

    CERN Document Server

    Walsh, David A; Jamison, Steven P

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse, and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.

  10. Flow-driven cell migration under external electric fields

    Science.gov (United States)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  11. Effect of multilayer structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide.

    Science.gov (United States)

    Chen, Xianping; Tan, Chunjian; Yang, Qun; Meng, Ruishen; Liang, Qiuhua; Jiang, Junke; Sun, Xiang; Yang, D Q; Ren, Tianling

    2016-06-28

    Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order. The values for the bandgap show a monotonically decreasing relationship with increasing layer number. We also show that AB-stacking BP has a direct-bandgap, while ABA-stacking BP has an indirect-bandgap when the number of layers n > 2. In addition, for a bilayer and a trilayer, the bandgap increases (decreases) as the electric field increases along the positive direction of the external electric field (E-field) (negative direction). In the case of four-layer BP, the bandgap exhibits a nonlinearly decreasing behavior as the increase in the electric field is independent of the electric field direction. The tunable mechanism of the bandgap can be attributed to a giant Stark effect. Interestingly, the investigation also shows that a semiconductor-to-metal transition may occur for the four-layer case or more layers beyond the critical electric field. Our findings may inspire more efforts in fabricating new nanoelectronics devices based on few-layer BP.

  12. Efficient split field FDTD analysis of third-order nonlinear materials in two-dimensionally periodic media

    Science.gov (United States)

    Francés, Jorge; Bleda, Sergio; Bej, Subhajit; Tervo, Jani; Navarro-Fuster, Víctor; Fenoll, Sandra; Martínez-Gaurdiola, Francisco J.; Neipp, Cristian

    2016-04-01

    In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.

  13. Generation of Electric Field and Net Charge in Hall Reconnection

    Institute of Scientific and Technical Information of China (English)

    MA Zhi-Wei; FENG Shu-Ling

    2008-01-01

    @@ Generation of Hall electric field and net charge associated with magnetic reconnection is studied under different initial conditions of plasma density and magnetic field. With inclusion of the Hall effects, decoupling of the electron and ion motions leads to the formation of a narrow layer with strong electric field and large net charge density along the separatrix. The asymmetry of the plasma density or magnetic field or both across the current sheet will largely increase the magnitude of the electric field and net charge. The results indicate that the asymmetry of the magnetic field is more effective in producing larger electric field and charge density. The electric field and net charge are always much larger in the low density or/and high magnetic field side than those in the high density or/and low magnetic field side. Both the electric field and net charge density are linearly dependent on the ratios of the plasma density or the square of the magnetic field across the current sheet. For the case with both initial asymmetries of the magnetic field and density, rather large Hall electric field and charge density are generated.

  14. Electrically small, complementary electric-field-coupled resonator antennas

    Science.gov (United States)

    Odabasi, H.; Teixeira, F. L.; Guney, D. O.

    2013-02-01

    We study the radiation properties of electrically small resonant antennas (ka CELC) resonators and a monopole antenna. We use such parasitic ELC and CELC "metaresonators" to design various electrically small antennas. In particular, monopole-excited and bent-monopole-excited CELC resonator antennas are proposed that provide very low profiles on the order of λ0/20. We compare the performance of the proposed ELC and CELC antennas against more conventional designs based upon split-ring resonators.

  15. Effective Action of Scalar QED in Electric Field Backgrounds

    CERN Document Server

    Kim, Sang Pyo; Yoon, Yongsung

    2008-01-01

    We use the evolution operator method to find the one-loop effective action of scalar QED in electric field backgrounds in terms of the Bogoliubov coefficient between the ingoing and the outgoing vacuum. The effective action shows the general relation between the vacuum persistence and the mean number of created pairs for any electric field. We obtain the exact effective action for a constant electric field and a pulsed electric field, E_0 sech^2 (t/tau), and show that the imaginary part correctly yields the vacuum persistence.

  16. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  17. Electric field effects on electronic characteristics of arsenene nanoribbons

    Science.gov (United States)

    Luo, Yanwei; Li, Yuxiao; Wang, Fei; Guo, Peng; Jia, Yu

    2017-10-01

    By using the first-principles calculations, we investigate the effects of electric field on electronic structures of armchair and zigzag arsenene nanoribbons (AsNRs) with different widths. The results show that for each case, quantum size effects induce a smaller band gap in larger AsNRs. Moreover, electric field can reduce effectively the band gap of AsNRs. In addition, the electric field can induce only the transition of band structures in the A-AsNRs or Z-AsNRs with narrow size. The band gap decrease more rapidly and the threshold electric field induced metal becomes smaller in the wider AsNRs.

  18. Effects of aging in electric field on 2024 alloy

    Institute of Scientific and Technical Information of China (English)

    王秀芳; 孙东立; 武高辉; 王美玲

    2002-01-01

    The effect of heat treatment in an electric field on micro-plastic deformation characteristics of 2024 Al alloy was investigated.The mechanism of aging in an electric field affecting the micro-plastic deformation behavior was preliminarily discussed.The results show that the resistance to micro-plastic deformation of the alloy can be greatly increased by aging in an electric field.Aging temperature,aging time and electric field strength are selected by adopting the orthogonal design method and the optimum technological parameters are obtained.

  19. Nonlinear regimes in mean-field full-sphere dynamo

    CERN Document Server

    Pipin, V V

    2016-01-01

    The mean-field dynamo model is employed to study the non-linear dynamo regimes in a fully convective star of mass 0.3$M_{\\odot}$ rotating with period of 10 days. The differential rotation law was estimated using the mean-field hydrodynamic and heat transport equations. For the intermediate parameter of the turbulent magnetic Reynolds number, $Pm_{T}=3$ we found the oscillating dynamo regimes with period about 40Yr. The higher $Pm_{T}$ results to longer dynamo periods. The meridional circulation has one cell per hemisphere. It is counter-clockwise in the Northen hemisphere. The amplitude of the flow at the surface around 1 m/s. Tne models with regards for meridional circulation show the anti-symmetric relative to equator magnetic field. If the large-scale flows is fixed we find that the dynamo transits from axisymmetric to non-axisymmetric regimes for the overcritical parameter of the $\\alpha$effect. The change of dynamo regime occurs because of the non-axisymmetric non-linear $\\alpha$-effect. The situation pe...

  20. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu

    2011-03-01

    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  1. Nonlinear dynamic response of an electrically actuated imperfect microbeam resonator

    KAUST Repository

    Ruzziconi, Laura

    2013-08-04

    We present a study of the dynamic behavior of a MEMS device constituted of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. The nonlinear behavior is highlighted, which includes ranges of multistability, where the non-resonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is capable also to capture the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. Copyright © 2013 by ASME.

  2. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm

    CERN Document Server

    Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai

    2011-01-01

    The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...

  3. Scattering polarization in the presence of magnetic and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Yee Oo, Yee [Department of Physics, Mandalay University, Mandalay (Myanmar); Sampoorna, M. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Joint Astronomy Program, Department of Physics, IISc, Bangalore 560 012 (India); Nagendra, K.N. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Ananthamurthy, Sharath [Department of Physics, Bangalore University, Bangalore 560 056 (India); Ramachandran, G. [Indian Institute of Astrophysics, Bangalore 560 034 (India)], E-mail: gr@iiap.res.in

    2007-11-15

    The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Limiting cases of scattering under Zeeman effect, and Hanle effect in weak magnetic fields are discussed. The theory is general enough to handle scattering in intermediate magnetic fields (Hanle-Zeeman effect) and for arbitrary orientation of magnetic field. The quadrupolar electric field produces asymmetric line shifts, and causes interesting level-crossing phenomena either in the absence of an ambient magnetic field, or in its presence. It is shown that the quadrupolar electric field produces an additional depolarization in the Q/I profiles and rotation of the plane of polarization in the U/I profile over and above that arising from magnetic field itself. This characteristic may have a diagnostic potential to detect steady-state and time-varying electric fields that surround radiating atoms in solar atmospheric layers.

  4. Electric field induced relaxor behavior in anisotropically strained SrTiO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Y., E-mail: y.dai@fz-juelich.de; Schubert, J.; Hollmann, E.; Wördenweber, R.

    2016-03-15

    Electric fields can modify the dielectric response of ferroelectric and especially relaxor ferroelectric material. Since strained ferroelectric fields represent ideal candidates for relaxor ferroelectrics, we analyzed the impact of ac and dc electric fields and field orientation on the dielectric properties of anisotropically strained epitaxial SrTiO{sub 3} films in detail. The tensile strain in the SrTiO{sub 3} films causes an increase of the ferroelectric-dielectric phase transition temperature to 258 K and 288 K for small and large tensile strains, respectively. The resulting films represent relaxor-type ferroelectrics with properties that strongly depend on the applied electric field. While a dc bias field significantly suppresses the permittivity in the paraelectric regime ranging from 180 K to 320 K, an ac field leads to an even more pronounced enhancement of the permittivity in an even larger temperature regime (e.g. reduction of up to 50% versus enhancement of up to 380% for 0.5 V/μm dc bias or ac field, respectively). Furthermore the ac field dependence is nonlinear and cannot be explained by the classical Rayleigh law. Frequency dependent measurements show among others that the electric field dependences are strongly related to the relaxor-type behavior. The different dielectric responses are explained in terms of the mobility and dynamic of regimes of uniform polarization, the polar nanoregions, that are generally assumed to be responsible for the relaxor behavior.

  5. Electric-Field Switchable Second-Harmonic Generation in Bilayer MoS2 by Inversion Symmetry Breaking.

    Science.gov (United States)

    Klein, J; Wierzbowski, J; Steinhoff, A; Florian, M; Rösner, M; Heimbach, F; Müller, K; Jahnke, F; Wehling, T O; Finley, J J; Kaniber, M

    2017-01-11

    We demonstrate pronounced electric-field-induced second-harmonic generation in naturally inversion symmetric 2H stacked bilayer MoS2 embedded into microcapacitor devices. By applying strong external electric field perturbations (|F| = ±2.6 MV cm(-1)) perpendicular to the basal plane of the crystal, we control the inversion symmetry breaking and, hereby, tune the nonlinear conversion efficiency. Strong tunability of the nonlinear response is observed throughout the energy range (Eω ∼ 1.25-1.47 eV) probed by measuring the second-harmonic response at E2ω, spectrally detuned from both the A- and B-exciton resonances. A 60-fold enhancement of the second-order nonlinear signal is obtained for emission at E2ω = 2.49 eV, energetically detuned by ΔE = E2ω - EC = -0.26 eV from the C-resonance (EC = 2.75 eV). The pronounced spectral dependence of the electric-field-induced second-harmonic generation signal reflects the bandstructure and wave function admixture and exhibits particularly strong tunability below the C-resonance, in good agreement with density functional theory calculations. Moreover, we show that the field-induced second-harmonic generation relies on the interlayer coupling in the bilayer. Our findings strongly suggest that the strong tunability of the electric-field-induced second-harmonic generation signal in bilayer transition metal dichalcogenides may find applications in miniaturized electrically switchable nonlinear devices.

  6. Pulsed electric field assisted assembly of polyaniline

    Science.gov (United States)

    Kumar, Arun; Kazmer, David O.; Barry, Carol M. F.; Mead, Joey L.

    2012-08-01

    Assembling conducting polyaniline (PANi) on pre-patterned nano-structures by a high rate, commercially viable route offers an opportunity for manufacturing devices with nanoscale features. In this work we report for the first time the use of pulsed electric field to assist electrophoresis for the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 s, assembly resolution of 100 nm). Moreover, the area coverage increases with the increase in number of pulses. A similar trend was observed with the deposition height and the increase in deposition height followed a linear trend with a correlation coefficient of 0.95. When the experimental mass deposited was compared with Hamaker’s theoretical model, the two were found to be very close. The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process.

  7. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  8. Modeling large reversible electric-field-induced strain in ferroelectric materials using 90° orientation switching

    Institute of Scientific and Technical Information of China (English)

    WANG LinXiang; LIU Rong; Roderick V.N.MELNIK

    2009-01-01

    Reversible large electric-field-induced strain caused by reversible orientation switchings in BaTiO3 is modeled using the Landau's theory of phase transition. A triple well free energy function is constructed, Each of its minima is associated with one of the polarization orientations involved, Nonlinear constitu-tive laws accounting for reversible orientation switchings and electrostriction effects are obtained by using thermodynamic equilibrium conditions. Hysteretic dynamics of one-dimensional structures is described by coupled nonlinear differential equations. Double hysteretic loops in the electric and me-chanic fields are both successfully modeled. Giant reversible electrostriction is modeled as a conse-quence of reversible orientation switchings via electro-mechanical couplings. Comparisons with ex-perimental results reported in literatures are presented.

  9. Modeling large reversible electric-field-induced strain in ferroelectric materials using 90° orientation switching

    Institute of Scientific and Technical Information of China (English)

    Roderick; V.; N.; MELNIK

    2009-01-01

    Reversible large electric-field-induced strain caused by reversible orientation switchings in BaTiO3 is modeled using the Landau’s theory of phase transition. A triple well free energy function is constructed. Each of its minima is associated with one of the polarization orientations involved. Nonlinear constitu- tive laws accounting for reversible orientation switchings and electrostriction effects are obtained by using thermodynamic equilibrium conditions. Hysteretic dynamics of one-dimensional structures is described by coupled nonlinear differential equations. Double hysteretic loops in the electric and me- chanic fields are both successfully modeled. Giant reversible electrostriction is modeled as a conse-quence of reversible orientation switchings via electro-mechanical couplings. Comparisons with ex-perimental results reported in literatures are presented.

  10. Measurements of plasma density fluctuations and electric wave fields using spherical electrostatic probes

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, A.I.; Bostroem, R.

    1995-04-01

    Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs.

  11. Nonlinear longitudinal current in degenerate plasma, arising under the influence of the transversal electromagnetic field

    CERN Document Server

    Latyshev, A V

    2015-01-01

    Kinetic Vlasov-Boltzmann equation for degenerate collisional plasmas with integral of collisions of relaxation type BGK (Bhatnagar, Gross and Krook) is used. Square-law expansion on size of intensity of electric field for kinetic equation, Lorentz's force and integral of collisions is considered. It is shown, that nonlinearity leads to generation of the longitudinal electric current directed along a wave vector. Longitudinal current is perpendicular to the known transversal classical current received at the linear analysis. The case of small values of wave number is considered. When frequency of collisions tends to the zero, all received results for collisional pass plasmas in corresponding results for collisionless plasmas. Graphic research of the real and imaginary part current density is carried out.

  12. Some Nonlinear Reconstruction Algorithms for Electrical Impedance Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J G

    2001-03-09

    An impedance camera [Henderson and Webster, 1978; Dines and Lytle, 1981]--or what is now more commonly called electrical impedance tomography--attempts to image the electrical impedance (or just the conductivity) distribution inside a body using electrical measurements on its boundary. The method has been used successfully in both biomedical [Brown, 1983; Barber and Brown, 1986; J. C. Newell, D. G. Gisser, and D. Isaacson, 1988; Webster, 1990] and geophysical applications [Wexler, Fry, and Neurnan, 1985; Daily, Lin, and Buscheck, 1987], but the analysis of optimal reconstruction algorithms is still progressing [Murai and Kagawa, 1985; Wexler, Fry, and Neurnan, 1985; Kohn and Vogelius, 1987; Yorkey and Webster, 1987; Yorkey, Webster, and Tompkins, 1987; Berryman and Kohn, 1990; Kohn and McKenney, 1990; Santosa and Vogelius, 1990; Yorkey, 1990]. The most common application is monitoring the influx or efflux of a highly conducting fluid (such as brine in a porous rock or blood in the human body) through the volume being imaged. For biomedical applications, this met hod does not have the resolution of radiological methods, but it is comparatively safe and inexpensive and therefore provides a valuable alternative when continuous monitoring of a patient or process is desired. The following discussion is intended first t o summarize the physics of electrical impedance tomography, then to provide a few details of the data analysis and forward modeling requirements, and finally to outline some of the reconstruction algorithms that have proven to be most useful in practice. Pointers to the literature are provided throughout this brief narrative and the reader is encouraged to explore the references for more complete discussions of the various issues raised here.

  13. Measurement of electric fields and estimation of dielectric susceptibility

    Science.gov (United States)

    Nogi, Yasuyuki; Suzuki, Kiyomitsu; Ohkuma, Yasunori

    2013-05-01

    We describe a method of measuring the spatial structures of electric fields produced by charge distributions such as those on strip electrodes, small disk electrodes, and long double-plate electrodes. An electric-field sensor with high sensitivity to ac fields is fabricated for the measurement using a thin copper sheet. The reliability of the sensor is confirmed using a parallel-plate capacitor. The electric fields are oscillated at a frequency of 300 kHz to operate the electric-field sensor successfully. The structures of the measured fields coincide well with those of theoretical fields derived from Coulomb's law. When a dielectric is inserted in an electric field, polarization charges appear on the surface of the dielectric and modify the electric field in empty space. We measure the modified field and confirm the well-known linear relation between the polarization of a dielectric and the electric field. Dielectric susceptibilities are estimated from the linear relation for four types of dielectric.

  14. Simultaneous electric-field measurements on nearby balloons.

    Science.gov (United States)

    Mozer, F. S.

    1972-01-01

    Electric-field payloads were flown simultaneously on two balloons from Great Whale River, Canada, on September 21, 1971, to provide data at two points in the upper atmosphere that differed in altitude by more than one atmospheric density scale height and in horizontal position by 30-140 km. The altitude dependences in the two sets of data prove conclusively that the vertical electric field at balloon altitudes stems from fair-weather atmospheric electricity sources and that the horizontal fields are mapped down ionospheric fields, since the weather-associated horizontal fields were smaller than 2 mV/m.

  15. Electric fields inside and outside an anisotropic dielectric sphere

    Institute of Scientific and Technical Information of China (English)

    Li Ying-Le; Wang Ming-Jun

    2009-01-01

    Analytical expressions of electric fields inside and outside an anisotropic dielectric sphere are presented by transforming an anisotropic medium into an isotropic one based on the multi-scale transformation of electromagnetic theory.The theoretical expressions are consistent with those in the literature. The inside electric field, the outside electric field and the angle between their directions are derived in detail. Numerical simulations show that the direction of the outside field influences the magnitude of the inside field, while the dielectric constant tensor greatly affects its direction.

  16. Shift of the critical mixing temperature in strong electric fields. Theory and experiment.

    Science.gov (United States)

    Orzechowski, Kazimierz; Adamczyk, Mariusz; Wolny, Alicja; Tsori, Yoav

    2014-06-26

    We study the shift in the critical temperature T(c) in binary mixtures in strong electric fields. In experiments we measure the nonlinear dielectric effect (NDE) in a mixture of nitrobenze and n-octane and calculate Piekara's factor. We find that the critical anomaly of Piekara's factor is a function of an electric field strength. We propose to explain this observation as a result of a downward shift of T(c), and this allows us to calculate (∂T(c)/∂E(2)) = (-22 ± 10) × 10(-16) (K m(2))/V(2). In the theoretical part we amend Landau and Lifshitz's formula and show that the downward shift of Tc can be estimated from a simple mean-field theory taking into account the linear and quadratic terms in an expansion of the constitutive relation ε(x) between the electric constant ε and mixture composition x.

  17. Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies

    Science.gov (United States)

    Keiser, G. R.; Seren, H. R.; Strikwerda, A. C.; Zhang, X.; Averitt, R. D.

    2014-08-01

    The design of artificial nonlinear materials requires control over internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists of a split ring resonator (SRR) array stacked above an array of closed conducting rings. An in-plane, lateral shift of a half unit cell between the SRR and closed ring arrays results in an increase of the MM oscillator strength by a factor of 4 and a 40% change in the amplitude of the resonant electric field enhancement in the SRR capacitive gap. We use terahertz time-domain spectroscopy and numerical simulations to confirm our results. We show that the observed electromagnetic response in this MM is the result of image charges and currents induced in the closed rings by the SRR.

  18. Structural Control of Metamaterial Oscillator Strength and Electric Field Enhancement at Terahertz Frequencies

    CERN Document Server

    Keiser, George R; Strikwerda, Andrew C; Zhang, Xin; Averitt, Richard D

    2014-01-01

    The design of artificial nonlinear materials requires control over the internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists of a split ring resonator (SRR) array stacked above an array of nonresonant closed conducting rings. An in-plane, lateral shift of a half unit cell between the SRR and closed ring arrays results in a decrease of the MM oscillator strength by a factor of 4 and a 40% change in the amplitude of the resonant electric field enhancement in the SRR capacitive gap. We use terahertz time-domain spectroscopy and numerical simulations to confirm our results and we propose a qualitative inductive coupling model to explain the observed electromagnetic reponse.

  19. Modulational Instability in a Pair of Non-identical Coupled Nonlinear Electrical Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    Eric Tala-Tebue; Aurelien Kenfack-Jiotsa; Marius Hervé Tatchou-Ntemfack; Timoléon Crépin Kofané

    2013-01-01

    In this work,we investigate the dynamics of modulated waves non-identical coupled nonlinear transmission lines.Traditional methods for avoiding mode mixing in identical coupled nonlinear electrical lines consist of adding the same number of linear inductors in each branch.Adding linear inductors in a single line leads to asymmetric coupled nonlinear electrical transmission lines which propagate the signal and the mode mixing.On one hand,the difference between the two lines induced the fission for only one mode of propagation.This fission is influenced by the amplitude of the signal and the amount of the input energy as well; it also narrows the width of the input pulse soliton,leading to a possible increasing of the bit rate.On the other hand,the dissymmetry of the two lines converts the network into a good amplifier for the w_ mode which corresponds to the regime admitting low frequencies.

  20. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.

    2013-10-25

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  1. Decoherence and coherence in gravitational, electric and strong nuclear fields

    CERN Document Server

    Silva, P R

    2010-01-01

    Inspired in the work of Erich Joos which appreciated the role played by matter in making the decoherence of the gravitational field, we developed an alternative way of treating the former problem. Besides this, we used the alternative approach to examine the decoherence of the electric field performed by the conduction electrons in metals. As a counterpoint, we studied the coherence of the electric color field inside nucleons, which renders the strong field a totally quantum character.

  2. Orientation of the agarose gel matrix in pulsed electric fields.

    OpenAIRE

    Stellwagen, J; Stellwagen, N C

    1989-01-01

    The technique of transient electric birefringence was used to investigate the effect of pulsed electric fields on the orientation of the agarose gel matrix. Orientation of the gel was observed at all electric field strengths. Very slow, time-dependent effects were observed when pulses of 10-100 V/cm were applied to 1% gels for 0.5-2 seconds, indicating that domains of the matrix were being oriented by the electric field. The sign of the birefringence reversed when the direction of the applied...

  3. Fetal exposure to low frequency electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cech, R; Leitgeb, N; Pediaditis, M [Institute of Clinical Engineering, Graz University of Technology, Inffeldgasse 18, 8010 Graz (Austria)

    2007-02-21

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  4. Fetal exposure to low frequency electric and magnetic fields

    Science.gov (United States)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2007-02-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  5. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  6. Electric and Magnetic Fields | RadTown USA | US EPA

    Science.gov (United States)

    2017-08-07

    Electromagnetic fields (EMF) are a combination of electric and magnetic fields of energy that surround any electrical device when it is plugged in and turned on. Scientific experiments have not clearly shown whether or not exposure to EMF increases cancer risk. Scientists continue to study the issue.

  7. The effect of pulsed electric fields on carotenoids bioaccessibility

    NARCIS (Netherlands)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-01-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and

  8. High School Students' Representations and Understandings of Electric Fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  9. Interplay between electrical and mechanical domains in a high performance nonlinear energy harvester

    Science.gov (United States)

    Mallick, Dhiman; Amann, Andreas; Roy, Saibal

    2015-12-01

    This paper reports a comprehensive experimental characterization and modeling of a compact nonlinear energy harvester for low frequency applications. By exploiting the interaction between the electrical circuitry and the mechanical motion of the device, we are able to improve the power output over a large frequency range. This improvement is quantified using a new figure of merit based on a suitably defined ‘power integral (P f)’ for nonlinear vibrational energy harvesters. The developed device consists of beams with fixed-guided configuration which produce cubic monostable nonlinearity due to stretching strain. Using a high efficiency magnetic circuit a maximum output power of 488.47 μW across a resistive load of 4000 Ω under 0.5g input acceleration at 77 Hz frequency with 9.55 Hz of bandwidth is obtained. The dynamical characteristics of the device are theoretically reproduced and explained by a modified nonlinear Duffing oscillator model.

  10. Defect agglomeration in ferroelectric ceramics under cyclic electric field

    Institute of Scientific and Technical Information of China (English)

    GENG LiMing; YANG Wei

    2008-01-01

    The agglomeration of point defects in ferroelectric ceramics could be driven by repeated domain switching under cyclic electric field. The evolution equation of pore concentration under cyclic electric field is derived, with the help of a relation between the pore concentration and the extent of pore agglomeration. The results of the simulation agree quantitatively with the experimental data. An integrated framework about the mechanisms of electrically induced fatigue is proposed, which links the mechanisms at different scales.

  11. A concept for a magnetic field detector underpinned by the nonlinear dynamics of coupled multiferroic devices

    Science.gov (United States)

    Beninato, A.; Emery, T.; Baglio, S.; Andò, B.; Bulsara, A. R.; Jenkins, C.; Palkar, V.

    2013-12-01

    Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi0.7Dy0.3FeO3 shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi0.7Dy0.3FeO3, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a "blueprint" for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or "target" B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.

  12. All-electrical nonlinear fano resonance in coupled quantum point contacts

    Science.gov (United States)

    Xiao, Shiran

    This thesis is motivated by recent interest in the Fano resonance (FR). As a wave-interference phenomenon, this resonance is of increasing importance in optics, plasmon-ics, and metamaterials, where its ability to cause rapid signal modulations under variation of some suitable parameter makes it desirable for a variety of applications. In this thesis, I focus on a novel manifestation of this resonance in systems of coupled quantum point contacts (QPCs). The major finding of this work is that the FR in this system may be ma-nipulated by applying a nonlinear DC bias to the system. Under such conditions, we are able to induce significant distortions of resonance lineshape, providing a pathway to all-electrical manipulation of the FR. To interpret this behavior we apply a recently-developed model for a three-path FR, involving an additional "intruder" continuum. We have previously used this model to account for the magnetic-field induced distortions of the FR observed in coupled QPCs, and show here that this model also provides a frame-work for understanding the observed nonlinear behavior. Our work therefore reveals a new manifestation of the FR that can be sensitively tailored by external control, a finding that may eventually allow the application of this feature to nanoelectronics. Since the in-terference scheme involves in this thesis is a completely general one, it should be broadly applicable across a variety of different wave-based systems, including those in both pho-tonics and electronics and opening up the possibility of new applications in areas such as chemical and biological sensing and secure communications.

  13. Physical states and properties of barium titanate films in a plane electric field

    Science.gov (United States)

    Shirokov, V. B.; Kalinchuk, V. V.; Shakhovoi, R. A.; Yuzyuk, Yu. I.

    2016-07-01

    The influence of a plane electric field on the phase states of barium titanate thin films under the conditions of forced deformation has been studied. The field dependence of a complete set of material constants has been taken in the region of the c-phase, where polarization losses are absent. The material constants are calculated using equations of the piezoelectric effect derived by linearizing the nonlinear equations of state from the phenomenological; theory for barium titanate. It has been shown that there is a critical value of the field at which the electromechanical coupling coefficient reaches a maximum.

  14. Lamb-shift and electric field measurements in plasmas

    Science.gov (United States)

    Doveil, F.; Chérigier-Kovacic, L.; Ström, P.

    2017-01-01

    The electric field is a quantity of particular relevance in plasma physics. Indeed, its fluctuations are responsible for different macroscopic phenomena such as anomalous transport in fusion plasmas. Answering a long-standing challenge, we offer a new method to locally and non-intrusively measure weak electric fields and their fluctuations in plasmas, by means of a beam of hydrogen ions or atoms. We present measurements of the electric field in vacuum and in a plasma where Debye shielding is measured. For the first time, we have used the Lamb-shift resonance to measure oscillating electric fields around 1 GHz and observed the strong enhancement of the Lyman-α signal. The measurement is both direct and non-intrusive. This method provides sensitivity (mV cm-1) and temporal resolution (ns) that are three orders higher compared to current diagnostics. It thus allows measuring fluctuations of the electric field at scales not previously reached experimentally.

  15. Linear and nonlinear causality between sectoral electricity consumption and economic growth. Evidence from Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Cheng-Lang, Yang; Chang, Chih-Heng [Department of Managerial Economics, Nanhua University, Chiayi 62102 (China); Lin, Hung-Pin [Department of International Business and Trade, Shu-Te University, Kaohsiung 82445 (China)

    2010-11-15

    This study investigates the linear and nonlinear causality between the total electricity consumption (TEC) and real gross domestic production (RGDP). Unlike previous literature, we solve the undetermined relation between RGDP and electricity consumption by classifying TEC into industrial sector consumption (ISC) and residential sector consumption (RSC) as well as investigating how TEC, ISC, and RSC influence Taiwan's RGDP. By using the Granger's linear causality test, it is shown that (1) there is a bidirectional causality among TEC, ISC, and RGDP, but a neutrality between RSC and RGDP with regard to the linear causality and (2) there is still a bidirectional causality between TEC and RGDP, but a unidirectional causality between RSC and RGDP with regard to the nonlinear causality. On the basis of (1) and (2), we suggest that the electricity policy formulators loosen the restriction on ISC and limit RSC in order to achieve the goal of economic growth. (author)

  16. Linear and nonlinear causality between sectoral electricity consumption and economic growth: Evidence from Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cheng-Lang [Department of Managerial Economics, Nanhua University, Chiayi 62102, Taiwan (China); Lin, Hung-Pin, E-mail: lhp0606@stu.edu.t [Department of International Business and Trade, Shu-Te University, Kaohsiung 82445, Taiwan (China); Chang, Chih-Heng [Department of Managerial Economics, Nanhua University, Chiayi 62102, Taiwan (China)

    2010-11-15

    This study investigates the linear and nonlinear causality between the total electricity consumption (TEC) and real gross domestic production (RGDP). Unlike previous literature, we solve the undetermined relation between RGDP and electricity consumption by classifying TEC into industrial sector consumption (ISC) and residential sector consumption (RSC) as well as investigating how TEC, ISC, and RSC influence Taiwan's RGDP. By using the Granger's linear causality test, it is shown that (i) there is a bidirectional causality among TEC, ISC, and RGDP, but a neutrality between RSC and RGDP with regard to the linear causality and (ii) there is still a bidirectional causality between TEC and RGDP, but a unidirectional causality between RSC and RGDP with regard to the nonlinear causality. On the basis of (i) and (ii), we suggest that the electricity policy formulators loosen the restriction on ISC and limit RSC in order to achieve the goal of economic growth.

  17. Characteristics of DC electric fields at dipolarization fronts

    Science.gov (United States)

    Laakso, Harri; Escoubet, Philippe; Masson, Arnaud

    2016-04-01

    We investigate the characteristics of DC electric field at dipolarization fronts and BBF's using multi-point Cluster observations. There are plenty of important issues that are considered, such as what kind of DC electric fields exist in such events and what are their spatial scales. One can also recognize if electrons and ions perform ExB drift motions in these events. To investigate this, we take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer. The calibrated observations of the three spectrometers are used to determine the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. This investigation also helps understand how well different measurements are calibrated.

  18. Full-disk nonlinear force-free field extrapolation of SDO/HMI and SOLIS/VSM magnetograms

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Inhester, B.; MacNeice, P.; Pevtsov, A.; Sun, X.

    2013-02-01

    quantities, such as the total magnetic energy content, free magnetic energy, the longitudinal distribution of the magnetic pressure, and surface electric current density, using our spherical geometry extrapolation code. Results: The magnetic field lines obtained from nonlinear force-free extrapolation based on HMI and VSM data show good agreement. However, the nonlinear force-free extrapolation based on HMI data contain more total magnetic energy, free magnetic energy, the longitudinal distribution of the magnetic pressure, and surface electric current density than do the VSM data.

  19. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  20. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Directory of Open Access Journals (Sweden)

    Charlie Huveneers

    Full Text Available Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1 the behaviour of 18 white sharks (Carcharodon carcharias near a static bait, and (2 the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  1. Novel electric field effects on Landau levels in graphene.

    Science.gov (United States)

    Lukose, Vinu; Shankar, R; Baskaran, G

    2007-03-16

    A new effect in graphene in the presence of crossed uniform electric and magnetic fields is predicted. Landau levels are shown to be modified in an unexpected fashion by the electric field, leading to a collapse of the spectrum, when the value of electric to magnetic field ratio exceeds a certain critical value. Our theoretical results, strikingly different from the standard 2D electron gas, are explained using a "Lorentz boost," and as an "instability of a relativistic quantum field vacuum." It is a remarkable case of emergent relativistic type phenomena in nonrelativistic graphene. We also discuss few possible experimental consequence.

  2. Matter-Antimatter Propulsion via QFT Effects from Parallel Electric and Magnetic Fields

    CERN Document Server

    Cleaver, Gerald B

    2016-01-01

    Matter/antimatter (MAM) pair production from the vacuum through intense electric fields has been investigated theoretically for nearly a century. This history is reviewed and proposals of MAM for intra-solar system and interstellar propulsion systems are examined. The quantum mechanical foundation of MAM production was developed by MAM production occurs when the electric field strength is above the critical value at which the fields become non-linear with self-interactions (known as the Schwinger limit).MAM production occurs when the electric field strength is above the critical value at which the fields become non-linear with self-interactions (known as the Schwinger limit). As the energy density of lasers approach the critical strength of 10^16 V/cm, the feasibility and functionality of electron-positron pair production has received growing interest. Current laser intensities are approaching within 1 order of magnitude of the Schwinger limit. Processes for lowering the critical energy density below the Schw...

  3. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  4. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks

    Science.gov (United States)

    Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li

    2016-06-01

    Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.

  5. Integrated nanoplasmonic waveguides for magnetic, nonlinear, and strong-field devices

    Science.gov (United States)

    Sederberg, Shawn; Firby, Curtis J.; Greig, Shawn R.; Elezzabi, Abdulhakem Y.

    2017-01-01

    As modern complementary-metal-oxide-semiconductor (CMOS) circuitry rapidly approaches fundamental speed and bandwidth limitations, optical platforms have become promising candidates to circumvent these limits and facilitate massive increases in computational power. To compete with high density CMOS circuitry, optical technology within the plasmonic regime is desirable, because of the sub-diffraction limited confinement of electromagnetic energy, large optical bandwidth, and ultrafast processing capabilities. As such, nanoplasmonic waveguides act as nanoscale conduits for optical signals, thereby forming the backbone of such a platform. In recent years, significant research interest has developed to uncover the fundamental physics governing phenomena occurring within nanoplasmonic waveguides, and to implement unique optical devices. In doing so, a wide variety of material properties have been exploited. CMOS-compatible materials facilitate passive plasmonic routing devices for directing the confined radiation. Magnetic materials facilitate time-reversal symmetry breaking, aiding in the development of nonreciprocal isolators or modulators. Additionally, strong confinement and enhancement of electric fields within such waveguides require the use of materials with high nonlinear coefficients to achieve increased nonlinear optical phenomenon in a nanoscale footprint. Furthermore, this enhancement and confinement of the fields facilitate the study of strong-field effects within the solid-state environment of the waveguide. Here, we review current state-of-the-art physics and applications of nanoplasmonic waveguides pertaining to passive, magnetoplasmonic, nonlinear, and strong-field devices. Such components are essential elements in integrated optical circuitry, and each fulfill specific roles in truly developing a chip-scale plasmonic computing architecture.

  6. Why charged molecules move across a temperature gradient: the role of electric fields.

    Science.gov (United States)

    Reichl, Maren; Herzog, Mario; Götz, Alexandra; Braun, Dieter

    2014-05-16

    Methods to move solvated molecules are rare. Apart from electric fields, only thermal gradients are effective enough to move molecules inside a fluid. This effect is termed thermophoresis, and the underlying mechanisms are still poorly understood. Nevertheless, it is successfully used to quantify biomolecule binding in complex liquids. Here we show experiments that reveal that thermophoresis in water is dominated by two electric fields, both established by the salt ions of the solution. A local field around the molecule drives molecules along an energy gradient, whereas a global field moves the molecules by a combined thermoelectrophoresis mechanism known as the Seebeck effect. Both mechanisms combined predict the thermophoresis of DNA and RNA polymers for a wide range of experimental parameters. For example, we correctly predict a complex, nonlinear size transition, a salt-species-dependent offset, a maximum of thermophoresis over temperature, and the dependence of thermophoresis on the molecule concentration.

  7. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields.

    Science.gov (United States)

    Sutton, Gregory P; Clarke, Dominic; Morley, Erica L; Robert, Daniel

    2016-06-28

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee.

  8. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  9. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields

    Science.gov (United States)

    Sutton, Gregory P.; Clarke, Dominic; Morley, Erica L.; Robert, Daniel

    2016-01-01

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee. PMID:27247399

  10. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Transition of radial electric field in helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Sanuki, Heiji; Toda, Shinichiro; Yokoyama, Masayuki [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Fukuyama, Atsushi [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2001-06-01

    Transition of radial electric field is investigated in helical plasmas for the given plasma fluxes. The density and temperature gradients are simultaneously determined together with radial electric field. The electric field shows a nature of bifurcation, if an anomalous particle transport exist in addition to the neoclassical particle flux. Based on the Maxwell's construction with respect to the work-done, the critical condition for the bifurcation is obtained. The existence of bifurcation is not affected by the anomalous energy flux. The gradients are found to be subject to bifurcation at high plasma fluxes regime. The transition to a better confinement is predicted. The presence of hard transition of the gradient and electric field indicates the existence of the electric domain interface, across which the discontinuous change of gradient takes place. (author)

  12. On the correlation analysis of electric field inside jet engine

    OpenAIRE

    A Krishna; Khattab, T.; Abdelaziz, A.F.; Guizani, M.

    2014-01-01

    A Simple channel modeling method based on correlation analysis of the electric field inside jet engine is presented. The analysis of the statistical propagation characteristics of electromagnetic field inside harsh jet engine environment is presented by using `Ansys® HFSS'. In this paper, we propose a method to locate the best position for receiving probes inside jet engine with minimum correlation between the receiver points which have strong average electric field. Moreover, a MIMO system c...

  13. Fermionic Particle Production by Varying Electric and Magnetic Fields

    Science.gov (United States)

    Sogut, Kenan; Yanar, Hilmi; Havare, Ali

    2016-11-01

    Creation of fermionic particles by a time-dependent electric field and a space-dependent magnetic field is studied with the Bogoulibov transformation method. Exact analytic solutions of the Dirac equation are obtained in terms of the Whittaker functions and the particle creation number density depending on the electric and magnetic fields is determined. Supported by the Research Fund of Mersin University in TURKEY with project number: 2016-1-AP4-1425

  14. Numerical Simulation of Modified Radial Electric Field by LHCD

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Ding Bojiang; Kuang Guangli

    2005-01-01

    Based on the electron's radial force equilibrium, the profiles of radial electric field in OH and LHCD phase are calculated by using a simulation code. The dependences of radial electron field on electron density and its profile and different current ratio, Irf/Ip, are given. The connections between the improvement of plasma confinement and the modified radial electric field by LHCD are discussed by comparing the calculated results with the experimental results.

  15. Generation of superDreicer electric fields in the solar chromosphere

    Science.gov (United States)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2016-12-01

    The electric field generation at the front of the current pulse, which originates in a coronal magnetic loop owing to the development of the Rayleigh-Taylor magnetic instability at loop footpoints, has been considered. During the τA ≈ l/V A ≈ 5-25 s time (where l is the plasma plume height entering a magnetic loop as a result of the Rayleigh-Taylor instability), a disturbance related to the magnetic field tension B ϕ( r,t), "escapes" the instability region with the Alfvén velocity in this case. As a result, an electric current pulse Iz( z - V A t), at the front of which an induction magnetic field E z, which is directed along the magnetic tube axis and can therefore accelerate particles, starts propagating along a magnetic loop with a characteristic scale of Δξ ≈ l. In the case of sufficiently large currents, when B ϕ 2/8π > p, an electric current pulse propagates nonlinearly, and a relatively large longitudinal electric field originates E z ≈ 2 I z 3 V A/ c 4a2Bz 2l, which can be larger than the Dreicer field, depending on the electric current value.

  16. An ICPSO-RBFNN nonlinear inversion for electrical resistivity imaging

    Institute of Scientific and Technical Information of China (English)

    江沸菠; 戴前伟; 董莉

    2016-01-01

    To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network (RBFNN) based on information criterion (IC) and particle swarm optimization (PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE’s information criterion (AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks (BPNNs) and traditional least square(LS) inversion.

  17. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  18. Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects

    Science.gov (United States)

    Cheng, J. L.; Vermeulen, N.; Sipe, J. E.

    2017-01-01

    We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response. PMID:28262762

  19. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity.

    Science.gov (United States)

    Webb, Alexander J; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-04-26

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.

  20. Chaotic structures of nonlinear magnetic fields. I - Theory. II - Numerical results

    Science.gov (United States)

    Lee, Nam C.; Parks, George K.

    1992-01-01

    A study of the evolutionary properties of nonlinear magnetic fields in flowing MHD plasmas is presented to illustrate that nonlinear magnetic fields may involve chaotic dynamics. It is shown how a suitable transformation of the coupled equations leads to Duffing's form, suggesting that the behavior of the general solution can also be chaotic. Numerical solutions of the nonlinear magnetic field equations that have been cast in the form of Duffing's equation are presented.

  1. Nonlinear gravitational self-force: Field outside a small body

    Science.gov (United States)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  2. Nonlinear density fluctuation field theory for large scale structure

    Institute of Scientific and Technical Information of China (English)

    Yang Zhang; Hai-Xing Miao

    2009-01-01

    We develop an effective field theory of density fluctuations for a Newtonian self-gravitating N-body system in quasi-equilibrium and apply it to a homogeneous uni-verse with small density fluctuations. Keeping the density fluctuations up to second or-der, we obtain the nonlinear field equation of 2-pt correlation ξ(r), which contains 3-pt correlation and formal ultra-violet divergences. By the Groth-Peebles hierarchical ansatz and mass renormalization, the equation becomes closed with two new terms beyond the Gaussian approximation, and their coefficients are taken as parameters. The analytic solu-tion is obtained in terms of the hypergeometric functions, which is checked numerically.With one single set of two fixed parameters, the correlation ξ(r) and the corresponding power spectrum P(k) simultaneously match the results from all the major surveys, such as APM, SDSS, 2dfGRS, and REFLEX. The model gives a unifying understanding of several seemingly unrelated features of large scale structure from a field-theoretical per-spective. The theory is worth extending to study the evolution effects in an expanding universe.

  3. Classical chaos in one-dimensional hydrogen in strong dc electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Humm, D.C.; Nayfeh, M.H. (Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (US))

    1989-10-01

    We analyze the effect of a dc electric field on classical chaos in one-dimensional hydrogen in a microwave field in the {ital n} nonmixing regime and also in the inter-{ital n}-mixing regime where significant dc field-induced ionization occurs. We study the ac field-induced nonlinear classical resonances, the threshold of chaos, and the number of states trapped in the resonances. In the strong-{ital n}-mixing and ionizing regime (unclamping dc field), we find the chaotic dynamics depend sharply on the dc field and the number of states trapped in the resonances, allowing the system to undergo a transition from a regime of classical behavior to a regime of uniquely quantum behavior as the dc field is changed. We show that ionization by classical chaos competes favorably with ionization by tunneling in the transition region, and that tunneling allows very sensitive spectroscopy of this region.

  4. Enhancement of antibacterial properties of Ag nanorods by electric field

    Directory of Open Access Journals (Sweden)

    Omid Akhavan and Elham Ghaderi

    2009-01-01

    Full Text Available The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20–60 nm and a length of 260–550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100 thin film during its heat treatment at 700 °C in an Ar+H2 environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {100} facets. The antibacterial activity of the silver nanorods against Escherichia coli bacteria was evaluated at various electric fields applied in the direction of the nanorods without any electrical connection between the nanorods and the capacitor plates producing the electric field. Increasing the electric field from 0 to 50 V cm−1 resulted in an exponential increase in the relative rate of reduction of the bacteria from 3.9×10−2 to 10.5×10−2 min−1. This indicates that the antibacterial activity of silver nanorods can be enhanced by applying an electric field, for application in medical and food-preserving fields.

  5. Enhancement of antibacterial properties of Ag nanorods by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Akhavan, Omid [Department of Physics, Sharif University of Technology, PO Box 11155-9161, Tehran (Iran, Islamic Republic of); Ghaderi, Elham [Tehran University of Medical Sciences, PO Box 14155-6447, Tehran (Iran, Islamic Republic of)], E-mail: oakhavan@sharif.edu

    2009-01-15

    The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20-60 nm and a length of 260-550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100) thin film during its heat treatment at 700 deg. C in an Ar+H{sub 2} environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {l_brace}100{r_brace} facets. The antibacterial activity of the silver nanorods against Escherichia coli bacteria was evaluated at various electric fields applied in the direction of the nanorods without any electrical connection between the nanorods and the capacitor plates producing the electric field. Increasing the electric field from 0 to 50 V cm{sup -1} resulted in an exponential increase in the relative rate of reduction of the bacteria from 3.9x10{sup -2} to 10.5x10{sup -2} min{sup -1}. This indicates that the antibacterial activity of silver nanorods can be enhanced by applying an electric field, for application in medical and food-preserving fields.

  6. Effects of an electric field on interaction of aromatic systems.

    Science.gov (United States)

    Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S

    2016-04-30

    The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.

  7. Electric-field-assisted crystallisation in phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Kohary, Krisztian; Diosdado, Jorge A.V.; Ashwin, Peter; Wright, C. David [College of Engineering, Mathematics, and Physical Sciences, University of Exeter (United Kingdom)

    2012-10-15

    Phase-change materials are of intense research interest due mainly to their use in phase-change memory (PCM) devices that are emerging as a promising technology for future non-volatile, solid-state, electrical storage. Electrically driven transitions from the amorphous to the crystalline phase in such devices exhibit characteristic threshold switching. Several alternative electronic explanations for the origins of this characteristic behaviour have been put forward, for example Poole-Frenkel effects, delocalisation of tail states, field emission processes and space charge limited currents [for a full discussion, see Radielli et al., J. Appl. Phys. 103, 111101 (2008) and Simon et al., MRS Proc. 1251, H01-H011 (2010)]. However, an alternative to these conventional electronic models of threshold switching is based on electric field induced lowering of the system free energy, leading to the field induced nucleation of conducting crystal filaments. In this paper we investigate this alternative view. We present a detailed kinetics study of crystallisation in the presence of an electric field for the phase-change material Ge{sub 2}Sb{sub 2}Te{sub 5}. We derive quantitative crystallisation maps to show the effects of both temperature and electric field on crystallisation and we identify field ranges and parameter values where the electric field might play a significant role. Then we carry out physically realistic simulations of the threshold switching process in typical phase-change device structures, both with and without electric field dependent energy contributions to the system free energy. Our results show that threshold switching can be obtained by a mechanism driven purely by electric field induced nucleation, but the fields so required are large, of the order of 300 MV m{sup -1}, and significantly larger than the experimentally measured threshold fields. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. ELECTRICALLY FORCED THICKNESS-SHEAR VIBRATIONS OF QUARTZ PLATE WITH NONLINEAR COUPLING TO EXTENSION

    Institute of Scientific and Technical Information of China (English)

    Rongxing Wu; Jiashi Yang; Jianke Du; Ji Wang

    2008-01-01

    We study electrically forced nonlinear thickness-shear vibrations of a quartz plate resonator with relatively large amplitude. It is shown that thickness-shear is nonlinearly coupled to extension due to the well-known Poynting effect in nonlinear elasticity. This coupling is relatively strong when the resonant frequency of the extensional mode is about twice the resonant frequency of the thickness-shear mode. This happens when the plate length/thickness ratio assumes certain values. With this nonlinear coupling, the thickness-shear motion is no longer sinusoidal. Coupling to extension also affects energy trapping which is related to device mounting. When damping is 0.01, nonlinear coupling causes a frequency shift of the order of 10-e which is not insignificant,and an amplitude change of the order of 10-8. The effects are expected to be stronger under real damping of 10-5 or larger. To avoid nonlinear coupling to extension, certain values of the aspect ratio of the plate should be avoided.

  9. Nonlinear magneto-electric response of a giant magnetostrictive/piezoelectric composite cylinder

    Institute of Scientific and Technical Information of China (English)

    Yuan-Wen Gao; Juan-Juan Zhang

    2012-01-01

    In this study,we investigate the nonlinear coupling magneto-electric (ME) effect of a giant magnetostrictive/piezoelectric composite cylinder.The nonlinear constitutive relations of the ME material are taken into account,and the influences of the nonlinear material properties on the ME effect are investigated for the static and dynamic cases,respectively.The influences of different constraint conditions on the ME effect are discussed.In the dynamic case considering nonlinear material properties,the double frequency ME response (The response frequency is twice the applied magnetic frequency) is obtained and discussed,which can be used to explain the experiment phenomenon in which the input signal with frequency f is converted to the output signal with 2f in ME laminated structures.Some calculations on nonlinear ME effect are conducted.The obtained results indicate that the nonlinear material properties affect not only the magnitude of the ME effect in the static case but also the ME response frequency in the dynamic case.

  10. Electric field gradients in Hg compounds

    DEFF Research Database (Denmark)

    Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.

    2012-01-01

    We examine the performance of Density Functional Theory (DFT) approaches based on the Zeroth-Order Regular Approximation (ZORA) Hamiltonian (with and without inclusion of spinorbit coupling) for predictions of electric ¿eld gradients (EFGs) at the heavy atom Hg nucleus. This is achieved by compar......We examine the performance of Density Functional Theory (DFT) approaches based on the Zeroth-Order Regular Approximation (ZORA) Hamiltonian (with and without inclusion of spinorbit coupling) for predictions of electric ¿eld gradients (EFGs) at the heavy atom Hg nucleus. This is achieved...

  11. Scattering and pair creation by L-constant electric field

    CERN Document Server

    Gavrilov, S P

    2015-01-01

    Using QFT approach developed by us in Ref. arXiv:1506.01156, we consider particle scattering and vacuum instability in the so-called L-constant electric field, which is a constant electric field confined between two capacitor plates separated by a finite distance L. We obtain and analyze special sets of stationary solutions of the Dirac and Klein-Gordon equations with the L-constant electric field. Then, we represent probabilities of particle scattering and characteristics of the vacuum instability (related to the pair creation) in terms of the introduced solutions. From exact formulas, we derive asymptotic expressions for the differential mean numbers, for the total mean number of created particles, and for the vacuum-to-vacuum transition probability. Using the equivalence principle, we demonstrate that the distributions of created particles by L-constant electric field and gravitational field of a black hole have similar thermal structure.

  12. Relationship between large horizontal electric fields and auroral arc elements

    Energy Technology Data Exchange (ETDEWEB)

    Lanchester, B.S. [Univ. of Southampton (United Kingdom); Kaila, K. [Univ. of Oulu (Finland); McCrea, I.W. [Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom)

    1996-03-01

    The authors report on data which correlates high time resolution optical measurements of auroral features with EISCAT radar measurements of electron density, with 0.2 sec time resolution and horizontal electric field, with time resolution near 9 sec. The associations between such electric fields and auroral arc features have been a subject of interest for years. They report on one event where following an auroral breakup, an arc moved southward. During 30 seconds of this event a section of the arc was close to the radar beam, and better resolution was available for the electric field measurements. The results indicate that the electric field pointed towards the point of brightest emission in the arc, indicating that the fields might be associated with the charged-particle precipitation causing the bright features in the arc.

  13. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  14. Solar Wind Electric Fields in the Ion Cyclotron Frequency Range

    CERN Document Server

    Kellogg, P J; Mozer, F S; Horbury, T S; Reme, H

    2006-01-01

    Measurements of fluctuations of electric fields in the frequency range from a fraction of one Hz to 12.5 Hz are presented, and corrected for the Lorentz transformation of magnetic fluctuations to give the electric fields in the plasma frame. The electric fields are large enough to provide the dominant force on the ions of the solar wind in the region near the ion cyclotron frequency of protons, larger than the force due to magnetic fluctuations. They provide sufficient velocity space diffusion or heating to counteract conservation of magnetic moment in the expanding solar wind to maintain nearly isotropic velocity distributions.

  15. Effects of Orthogonal Rotating Electric Fields on Electrospinning Process

    CERN Document Server

    Cipolletta, Federico; Pontrelli, Giuseppe; Pisignano, Dario; Succi, Sauro

    2016-01-01

    Electrospinning is an nanotechnology process whereby an external electric field is used to accelerate and stretch a charged polymer jet, so as to produce fibers at nanoscale diameters. In quest of a further reduction in the cross section of electrified jets hence of the resulting electrospun fibers, we explore the effects of an external rotating electric field orthogonal to the jet direction. Through extensive particle simulations, it is shown that by a proper tuning of the electric field amplitude and frequency, a reduction of up to a 30% in the aforementioned radius can be obtained, thereby opening new perspectives in the design of future ultra-thin electrospun fibres.

  16. High Dynamic Range Electric Field Sensor for Electromagnetic Pulse Detection

    CERN Document Server

    Lin, Che-Yun; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T

    2014-01-01

    We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.

  17. Pulsed electric field technology: Modeling of electric field and temperature distributions within continuous flow PEF treatment chamber

    OpenAIRE

    Salengke, dkk

    2012-01-01

    Innovations and technology developments in the field of food pasteurization and sterilization are continuously evolving. These include innovations in thermal processing technologies such as aseptic processing, ohmic technology, and microwave technology, as well as non-thermal processing technologies which include pulsed electric field technology and high pressure processing technology. This paper discussed the results of a study on mathematical modeling of electric field and temperature distr...

  18. Synthesis of zirconium oxynitride in air under DC electric fields

    Science.gov (United States)

    Morisaki, Nobuhiro; Yoshida, Hidehiro; Matsui, Koji; Tokunaga, Tomoharu; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2016-08-01

    We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electron microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.

  19. High-frequency electric field amplification in a magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2006-11-30

    In the investigation of cyclotron ion heating in systems designed for plasma isotope separation, the high-frequency (HF) electric field amplification effect was found to occur in equilibrium plasma. In the present article this effect is treated as a result of the interaction of the plasma placed in a constant external magnetic field with the HF modes of the vacuum chamber. Consistent elaboration of this approach allowed obtaining a clear interpretation of the HF electric field amplification effect and constructing a simple model of HF field excitation in a plasma column embedded in the external magnetic field. (methodological notes)

  20. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Science.gov (United States)

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  1. Formation of Organized Protein Thin Films with External Electric Field.

    Science.gov (United States)

    Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M

    2015-10-01

    The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.

  2. Nonlinear Field Oriented Control of Induction Motors using the Backstepping Design

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1999-01-01

    Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping with a s......Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping...... with a simple flux observer is used in the design. Assuming known motor parameters the design achieves stabilioty with garanteed region of attraction. It is also shown how a conventional field oriented controller may be obtained by omitting parts of the nonlinear controller....

  3. Identifying the nonlinear mechanical behaviour of micro-speakers from their quasi-linear electrical response

    Science.gov (United States)

    Zilletti, Michele; Marker, Arthur; Elliott, Stephen John; Holland, Keith

    2017-05-01

    In this study model identification of the nonlinear dynamics of a micro-speaker is carried out by purely electrical measurements, avoiding any explicit vibration measurements. It is shown that a dynamic model of the micro-speaker, which takes into account the nonlinear damping characteristic of the device, can be identified by measuring the response between the voltage input and the current flowing into the coil. An analytical formulation of the quasi-linear model of the micro-speaker is first derived and an optimisation method is then used to identify a polynomial function which describes the mechanical damping behaviour of the micro-speaker. The analytical results of the quasi-linear model are compared with numerical results. This study potentially opens up the possibility of efficiently implementing nonlinear echo cancellers.

  4. Nonlinear Electrical Circuit Oscillator Control Based on Backstepping Method: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Mahsa Khoeiniha

    2012-01-01

    Full Text Available This paper investigated study of dynamics of nonlinear electrical circuit by means of modern nonlinear techniques and the control of a class of chaotic system by using backstepping method based on Lyapunov function. The behavior of such nonlinear system when they are under the influence of external sinusoidal disturbances with unknown amplitudes has been considered. The objective is to analyze the performance of this system at different amplitudes of disturbances. We illustrate the proposed approach for controlling duffing oscillator problem to stabilize this system at the equilibrium point. Also Genetic Algorithm method (GA for computing the parameters of controller has been used. GA can be successfully applied to achieve a better controller. Simulation results have shown the effectiveness of the proposed method.

  5. Electric charge is a magnetic dipole when placed in a background magnetic field

    CERN Document Server

    Adorno, T C; Shabad, A E

    2014-01-01

    It is demonstrated, owing to the nonlinearity of QED, that a static charge placed in a strong magnetic field\\ $B$\\ is a magnetic dipole (besides remaining an electric monopole, as well). Its magnetic moment grows linearly with $B$ as long as the latter remains smaller than the characteristic value of $1.2\\cdot 10^{13}\\unit{G}$ but tends to a constant as $B$ exceeds that value. The force acting on a densely charged object by the dipole magnetic field of a neutron star is estimated.

  6. Nonlinear Simulation of Plasma Response to the NSTX Error Field

    Science.gov (United States)

    Breslau, J. A.; Park, J. K.; Boozer, A. H.; Park, W.

    2008-11-01

    In order to better understand the effects of the time-varying error field in NSTX on rotation braking, which impedes RWM stabilization, we model the plasma response to an applied low-n external field perturbation using the resistive MHD model in the M3D code. As an initial benchmark, we apply an m=2, n=1 perturbation to the flux at the boundary of a non-rotating model equilibrium and compare the resulting steady-state island sizes with those predicted by the ideal linear code IPEC. For sufficiently small perturbations, the codes agree; for larger perturbations, the nonlinear correction yields an upper limit on the island width beyond which stochasticity sets in. We also present results of scaling studies showing the effects of finite resistivity on island size in NSTX, and of time-dependent studies of the interaction between these islands and plasma rotation. The M3D-C1 code is also being evaluated as a tool for this analysis; first results will be shown. J.E. Menard, et al., Nucl. Fus. 47, S645 (2007). W. Park, et al., Phys. Plasmas 6, 1796 (1999). J.K. Park, et al., Phys. Plasmas 14, 052110 (2007). S.C. Jardin, et al., J. Comp. Phys. 226, 2146 (2007).

  7. The bee, the flower and the electric field

    Directory of Open Access Journals (Sweden)

    Robert Daniel

    2016-01-01

    Full Text Available Insects use several different senses to forage on flowers, and detect floral cues such as color, shape, pattern, humidity and chemical volatiles. This presentation will present our discovery of a previously unappreciated sensory capacity in bumblebees (Bombus terrestris: the detection of floral electric fields. We show that these floral fields act as informational cues, and that they can be affected by the visit of naturally electrically charged bees. Like visual cues, floral electric fields exhibit variations in pattern and structure, which can be discriminated by bumblebees. We also show that such electric field information contributes to the complex array of floral cues that together improve a pollinator’s memory of floral rewards. Floral electric fields arise from complex interactions with the surrounding atmosphere, an interaction between plants and their environment that not well understood. Because floral electric fields can change within seconds, this new sensory modality - electrostatic field detection- may facilitate rapid and dynamic communication between flowers and their pollinators.

  8. EFFECT OF ELECTRIC FIELD ON CONTINUOUS LIQUID STREAM

    Science.gov (United States)

    The effect of an electrical field on a continous water jet is considered. The higher electrification of water jets, the more intense are jet sprays...It seems possible to contract an electrized water jet by letting it pass the cylinder charged with the same sign. An attempt to electrify kerosene and spindel oil jets (good insulators) was unsucessful.

  9. Magnetic domain wall motion triggered by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Pyatakov, A P; Sergeev, A S; Sechin, D A; Meshkov, G A; Nikolaeva, E P; Nikolaev, A V; Logginov, A S [Physics Department, M.V. Lomonosov Moscow State University, Leninskie gory, Moscow, 119296 (Russian Federation); Zvezdin, A K, E-mail: pyatakov@phys.msu.r [A.M. Prokhorov General Physics Institute, 38, Vavilova st., Moscow, 119991 (Russian Federation)

    2010-01-01

    We propose the new approach to the problem of electrically controlled magnetic state: the electric field driven domain wall motion. The effect is demonstrated in iron garnet films in ambient conditions. The theoretical model based on inhomogenous magnetoelectric interaction provides with the necessary criteria of the effect and the way to maximize it.

  10. Electric and magnetic field measurements. Annual report 80

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, R.H.; Kotter, F.R.; Misakian, M.; Ortiz, P.

    1981-02-01

    The NBS program is concerned with developing methods for evaluating and calibrating instrumentation for use in measuring the electric field and various ion-related electrical quantities in the vicinity of high-voltage direct current (HVDC) transmission lines and in apparatus designed to simulate the transmission line environment.

  11. Generation of Focused Electric Field Patterns at Dielectric Surfaces

    Science.gov (United States)

    Olofsson, Jessica; Levin, Mikael; Strömberg, Anette; Weber, Stephen G.; Ryttsén, Frida; Orwar, Owe

    2006-01-01

    We here report on a concept for creating well-defined electric field gradients between the boundaries of capillary electrode (a capillary of a nonconducting material equipped with an interior metal electrode) outlets, and dielectric surfaces. By keeping a capillary electrode opening close to a boundary between a conducting solution and a nonconducting medium, a high electric field can be created close to the interface by field focusing effects. By varying the inner and outer diameters of the capillary, the span of electric field strengths and the field gradient obtained can be controlled, and by varying the slit height between the capillary rim and the surface, or the applied current, the average field strength and gradient can be varied. Field focusing effects and generation of electric field patterns were analyzed using finite element method simulations. We experimentally verified the method by electroporation of a fluorescent dye (fluorescein diphosphate) into adherent, monolayered cells (PC-12 and WSS-1) and obtained a pattern of fluorescent cells corresponding to the focused electric field. PMID:16013887

  12. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi;

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensi......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.......The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors...

  13. Communication: Control of chemical reactions using electric field gradients.

    Science.gov (United States)

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  14. Probing surface electric field noise with a single ion

    CERN Document Server

    Daniilidis, N; Bolloten, G; Ramm, M; Ransford, A; Ulin-Avila, E; Talukdar, I; Häffner, H

    2013-01-01

    We report room-temperature electric field noise measurements combined with in-situ surface characterization and cleaning of a microfabricated ion trap. We used a single-ion electric field noise sensor in combination with surface cleaning and analysis tools, to investigate the relationship between electric field noise from metal surfaces in vacuum and the composition of the surface. These experiments were performed in a novel setup that integrates ion trapping capabilities with surface analysis tools. We find that surface cleaning of an aluminum-copper surface significantly reduces the level of electric field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The post-cleaning noise levels are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap.

  15. Direct sampling of electric-field vacuum fluctuations

    National Research Council Canada - National Science Library

    Riek, C; Seletskiy, D V; Moskalenko, A S; Schmidt, J F; Krauspe, P; Eckart, S; Eggert, S; Burkard, G; Leitenstorfer, A

    2015-01-01

    .... The ground-state electric-field variance is inversely proportional to the four-dimensional space-time volume, which we sampled electro-optically with tightly focused laser pulses lasting a few femtoseconds...

  16. Communication: Control of chemical reactions using electric field gradients

    Science.gov (United States)

    Deshmukh, Shivaraj D.; Tsori, Yoav

    2016-05-01

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  17. Calculation of the electric field gradients, generalized Sternheimer shielding constants, and electric-field-gradient polarizabilities for ten small molecules

    Science.gov (United States)

    Bishop, David M.; Cybulski, sławomir M.

    1994-05-01

    Electric field gradients, generalized Sternheimer shielding constants, and electric-field-gradient polarizabilities are calculated for H2, N2, F2, HF, HCl, CO, HCN, HNC, H2O, and NH3. The calculations are performed at both the Hartree-Fock and second order Møller-Plesset levels of approximation using large basis sets. For most of these molecules this is the first time that the shielding constants and electric field gradient polarizabilities have been determined. Electron correlation is generally found to be a significant factor.

  18. Effective critical electric field for runaway electron generation

    CERN Document Server

    Stahl, Adam; Decker, Joan; Embréus, Ola; Fülöp, Tünde

    2014-01-01

    In this letter we investigate factors that influence the effective critical electric field for runaway electron generation in plasmas. We present numerical solutions of the kinetic equation, and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature, and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.

  19. Drop oscillation and mass transfer in alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E.

    1992-06-24

    In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.

  20. Gravitational Field of the Early Universe; 1, Non-linear Scalar Field as the Source

    CERN Document Server

    Chervon, S V

    1997-01-01

    In this review article we consider three most important sources of the gravitational field of the Early Universe: self-interacting scalar field, chiral field and gauge field. The correspondence between all of them are pointed out. More attention is payed to nonlinear scalar field source of gravity. The progress in finding the exact solutions in inflationary universe is reviewed. The basic idea of `fine turning of the potential' method is discussed and computational background is presented in details. A set of new exact solutions for standard inflationary model and conformally-flat space-times are obtained. Special attention payed to relations between `fine turning of the potential' and Barrow's approaches. As the example of a synthesis of both methods new exact solution is obtained.

  1. Electric field effects in hyperexcitable neural tissue: A review

    Energy Technology Data Exchange (ETDEWEB)

    Durand, D.M

    2003-07-01

    Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm{sup -1} in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm{sup -1}. These results suggest that the threshold for this effect is clearly smaller than 1mV mm{sup -1}. The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease (n=4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than {approx}1mmV mm{sup -.} (author)

  2. Anomalous plasma transport and induced electric field in a stochastic magnetic field structure

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Tetsuyuki; Itoh, Sanae-I.; Toda, Shinichiro; Yamaguchi, Hiroki [Kyushu Univ., Fukuoka (Japan); Fukuyama, Atsushi [Okayama Univ. (Japan)

    1995-04-01

    The plasma transport matrix is formulated using the kinetic equation for the particles in the stochastic magnetic field. The radial electric field generation is analyzed using this transport matrix. This thermoelectric field is dictated by the difference between the electron heat flux and the ion heat flux. We calculate the spatial structures of the radial electric field and the temperature in the stochastic field region. 7 refs., 3 figs.

  3. Evolution of Spiral Waves under Modulated Electric Fields

    Institute of Scientific and Technical Information of China (English)

    MA Jun; YING He-Ping; PAN Guo-Wei; PU Zhong-Sheng

    2005-01-01

    @@ Spirals generated from the excitable media within the Barkley model is investigated under the gradient electric fields by a numerical simulation. The spiral drift and spiral break up are observed when the amplitude of the electric fields is modulated by a constant signal or a chaotic signal. It is also verified that, even in the presence of the white noise, the whole system can reach homogeneous states after the spiral breakup, by using an adaptive strategy.

  4. Electric field dependence of crystallinity in poly(vinylidene fluoride)

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, R.G.; Anderson, R.A.; Lagasse, R.R.

    1982-05-03

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  5. Electric Field Dependence of Crystallinity in Poly(Vinylidene Fluoride)

    Science.gov (United States)

    Kepler, R. G.; Anderson, R. A.; Lagasse, R. R.

    1982-05-01

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  6. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  7. Analysis of Electric Fields inside Microchannels and Single Cell Electrical Lysis with a Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Tofy Mussivand

    2013-06-01

    Full Text Available Analysis of electric fields generated inside the microchannels of a microfluidic device for electrical lysis of biological cells along with experimental verification are presented. Electrical lysis is the complete disintegration of cell membranes, due to a critical level of electric fields applied for a critical duration on a biological cell. Generating an electric field inside a microchannel of a microfluidic device has many advantages, including the efficient utilization of energy and low-current requirement. An ideal microchannel model was compared with a practical microchannel model using a finite element analysis tool that suggests that the overestimation error can be over 10%, from 2.5 mm or smaller, in the length of a microchannel. Two analytical forms are proposed to reduce this overestimation error. Experimental results showed that the high electric field is confined only inside the microchannel that is in agreement with the simulation results. Single cell electrical lysis was conducted with a fabricated microfluidic device. An average of 800 V for seven seconds across an 8 mm-long microchannel with the dimension of 100 μm × 20 μm was required for lysis, with electric fields exceeding 100 kV/m and consuming 300 mW.

  8. Holographic Superconductors with Logarithmic Nonlinear Electrodynamics in an External Magnetic Field

    Science.gov (United States)

    Sheykhi, A.; Shamsi, F.

    2017-03-01

    Based on the matching method, we explore the effects of adding an external magnetic field on the s-wave holographic superconductors when the gauge field is in the form of the logarithmic nonlinear source. First, we obtain the critical temperature as well as the condensation operator in the presence of logarithmic nonlinear electrodynamics and understand that they depend on the nonlinear parameter b. We show that the critical temperature decreases with increasing b, which implies that the nonlinear gauge field makes the condensation harder. Then, we turn on the magnetic field in the bulk and find the critical magnetic field, B c , in terms of the temperature, which also depends on the nonlinear parameter b. We observe that for temperature smaller than the critical temperature, T superconductor with magnetic field in Maxwell theory.

  9. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling-Yun; WANG Peng-Ye

    2008-01-01

    We present an analytical solution for fluid velocity field distribution of polyelectrolyte DNA. Both the electric field force and the viscous force in the DNA solution are considered under a suitable boundary condition. The solution of electric potential is analytically obtained by using the linearized Poisson-Boltzmann equation. The fluid velocity along the electric field is dependent on the cylindrical radius and concentration. It is shown that the electric field-induced fluid velocity will be increased with the increasing cylindrical radius, whose distribution also varies with the concentration

  10. Effects of high external electric fields on protein conformation

    Science.gov (United States)

    Pompa, Pier Paolo; Bramanti, Alessandro; Maruccio, Giuseppe; del Mercato, Loretta Laureana; Chiuri, Rocco; Cingolani, Roberto; Rinaldi, Ross

    2005-06-01

    Resistance of biomolecules to high electric fields is a main concern for nanobioelectronics/nanobiosensing applications, and it is also a relevant issue from a fundamental perspective, to understand the dielectric properties and structural dynamics of proteins. In nanoscale devices, biomolecules may experience electric fields as high as 107 V/m in order to elicit charge transport/transfer. Understanding the effects of such fields on their structural integrity is thus crucial to assess the reliability of biomolecular devices. In this study, we show experimental evidence for the retention of native-like fold pattern by proteins embedded in high electric fields. We have tested the metalloprotein azurin, deposited onto SiO2 substrates in air with proper electrode configuration, by applying high static electric fields (up to 106-107 V/m). The effects on the conformational properties of protein molecules have been determined by means of intrinsic fluorescence measurements. Experimental results indicate that no significant field-induced conformational alteration occurs. This behavior is also discussed and supported by theoretical predictions of the intrinsic intra-protein electric fields. As the general features of such inner fields are not peculiar of azurin, the conclusions presented here should have general validity.

  11. Particle acceleration by fluctuating electric fields at a magnetic field null point

    CERN Document Server

    Petkaki, P

    2007-01-01

    Particle acceleration consequences from fluctuating electric fields superposed on an X-type magnetic field in collisionless solar plasma are studied. Such a system is chosen to mimic generic features of dynamic reconnection, or the reconnective dissipation of a linear disturbance. We explore numerically the consequences for charged particle distributions of fluctuating electric fields superposed on an X-type magnetic field. Particle distributions are obtained by numerically integrating individual charged particle orbits when a time varying electric field is superimposed on a static X-type neutral point. This configuration represents the effects of the passage of a generic MHD disturbance through such a system. Different frequencies of the electric field are used, representing different possible types of wave. The electric field reduces with increasing distance from the X-type neutral point as in linear dynamic magnetic reconnection. The resulting particle distributions have properties that depend on the ampli...

  12. Migration of amoeba cells in an electric field

    Science.gov (United States)

    Guido, Isabella; Bodenschatz, Eberhard

    2015-03-01

    Exogenous and endogenous electric fields play a role in cell physiology as a guiding mechanism for the orientation and migration of cells. Electrotaxis of living cells has been observed for several cell types, e.g. neurons, fibroblasts, leukocytes, neural crest cells, cancer cells. Dictyostelium discoideum (Dd), an intensively investigated chemotactic model organism, also exhibits a strong electrotactic behavior moving toward the cathode under the influence of electric fields. Here we report experiments on the effects of DC electric fields on the directional migration of Dd cells. We apply the electric field to cells seeded into microfluidic devices equipped with agar bridges to avoid any harmful effects of the electric field on the cells (ions formation, pH changes, etc.) and a constant flow to prevent the build-up of chemical gradient that elicits chemotaxis. Our results show that the cells linearly increase their speed over time when a constant electric field is applied for a prolonged duration (2 hours). This novel phenomenon cannot be attributed to mechanotaxis as the drag force of the electroosmotic flow is too small to produce shear forces that can reorient cells. It is independent of the cellular developmental stage and to our knowledge, it was not observed in chemotaxis. This work is supported by MaxSynBio project of the Max Planck Society.

  13. Effect of superheat and electric field on saturated film boiling

    Science.gov (United States)

    Pandey, Vinod; Biswas, Gautam; Dalal, Amaresh

    2016-05-01

    The objective of this investigation is to study the influence of superheat temperature and applied uniform electric field across the liquid-vapor interface during film boiling using a coupled level set and volume of fluid algorithm. The hydrodynamics of bubble growth, detachment, and its morphological variation with electrohydrodynamic forces are studied considering the medium to be incompressible, viscous, and perfectly dielectric at near critical pressure. The transition in interfacial instability behavior occurs with increase in superheat, the bubble release being periodic both in space and time. Discrete bubble growth occurs at a smaller superheat whereas vapor columns form at the higher superheat values. Destabilization of interfacial motion due to applied electric field results in decrease in bubble separation distance and increase in bubble release rate culminating in enhanced heat transfer rate. A comparison of maximum bubble height owing to application of different intensities of electric field is performed at a smaller superheat. The change in dynamics of bubble growth due to increasing superheat at a high intensity of electric field is studied. The effect of increasing intensity of electric field on the heat transfer rate at different superheats is determined. The boiling characteristic is found to be influenced significantly only above a minimum critical intensity of the electric field.

  14. Spiking patterns of a hippocampus model in electric fields

    Institute of Scientific and Technical Information of China (English)

    Men Cong; Wang Jiang; Qin Ying-Mei; Wei Xi-Le; Che Yan-Qiu; Deng Bin

    2011-01-01

    We develop a model of CA3 neurons embedded in a resistive array to mimic the effects of electric fields from a new perspective.Effects of DC and sinusoidal electric fields on firing patterns in CA3 neurons are investigated in this study.The firing patterns can be switched from no firing pattern to burst or from burst to fast periodic firing pattern with the increase of DC electric field intensity.It is also found that the firing activities are sensitive to the frequency and amplitude of the sinusoidal electric field.Different phase-locking states and chaotic firing regions are observed in the parameter space of frequency and amplitude.These findings are qualitatively in accordance with the results of relevant experimental and numerical studies.It is implied that the external or endogenous electric field can modulate the neural code in the brain.Furthermore,it is helpful to develop control strategies based on electric fields to control neural diseases such as epilepsy.

  15. [Study on dewatering of activated sludge under applied electric field].

    Science.gov (United States)

    Ji, Xue-Yuan; Wang, Yi-Li; Feng, Jing

    2012-12-01

    For an electro-dewatering process of activated sludge (AS), the effect of pH and conductivity of AS, flocculation conditioning and operation factors of horizontal electric field (voltage magnitude, method of applying electric field and distance between plates) were investigated, and the corresponding optimum electro-dewatering conditions were also obtained. The results showed that the best electro-dewatering effect was achieved for AS without change of its pH value (6.93) and conductivity (1.46 mS x cm(-1)). CPAM conditioning could lead to the increase of 30%-40% in the dewatering rate and accelerate the dewatering process, whereas a slight increase in the electro-dewatering rate. The electro-dewatering rate for conditioned AS reached 83.12% during an electric field applied period of 60 minutes, while this rate for original AS could be 75.31% even the electric field applied period extended to 120 minutes. The delay of applying the electric field had an inhibition effect on the AS electro-dewatering rate. Moreover, the optimum conditions for AS electro-dewatering were followed: CPAM dose of 9 g x kg(-1), electric field strength of 600 V x m(-1), distance between the two plates of 40 mm, dehydration time of 60 minutes. Under above optimum conditions the AS electro-dewatering rate could approach to 85.33% and the moisture content in AS decreased from 99.30% to 95.15% accordingly.

  16. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  17. Propagation of Magnetic Fields from Electrical Domestic Appliances

    Science.gov (United States)

    Orlova, K. N.; Gaidamak, M. A.; Borovikov, I. F.

    2016-08-01

    The article presents a research into propagation of magnetic fields from electrical domestic devices. A safe distance at which magnetic induction does not exceed the background level is determined for each type of devices. It is proved that there are two stages of increasing magnetic induction as the distance from the source increases. At the first stage magnetic induction rises and electromagnetic field is formed. At the second stage exponential decrease of magnetic field induction takes place. Mathematical regularities of propagation of magnetic field from electrical domestic devices are experimentally educed.

  18. The chromatographic separation of particles using optical electric fields

    DEFF Research Database (Denmark)

    Javier Alvarez, Nicolas; Jeppesen, Claus; Yvind, Kresten

    2013-01-01

    We introduce a new field-flow fractionation (FFF) technique, whereby molecules are separated based on their differential interaction (dielectrophoresis (DEP)) with optical electric fields, i.e. electric fields with frequencies in the visible and near-infrared range. The results show that a parallel...... array of axially non-uniform optical fields yielding an attractive potential (positive-DEP-FFF) is advantageous for the separation of polymers, biomolecules, and nanoparticles over very short distances. Furthermore, positive-DEP-FFF yields superior selectivity and resolution compared to conventional...

  19. Vacuum radiation induced by time dependent electric field

    Science.gov (United States)

    Zhang, Bo; Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian; Gu, Yu-qiu

    2017-04-01

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  20. Ponderomotive Force in the Presence of Electric Fields

    Science.gov (United States)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  1. Low magnetic Johnson noise electric field plates for precision measurement

    CERN Document Server

    Rabey, I M; Hinds, E A; Sauer, B E

    2016-01-01

    We describe a parallel pair of high voltage electric field plates designed and constructed to minimise magnetic Johnson noise. They are formed by laminating glass substrates with commercially available polyimide (Kapton) tape, covered with a thin gold film. Tested in vacuum, the outgassing rate is less than $5\\times10^{-5}$ mbar.l/s. The plates have been operated at electric fields up to 8.3 kV/cm, when the leakage current is at most a few hundred pA. The design is discussed in the context of a molecular spin precession experiment to measure the permanent electric dipole moment of the electron.

  2. Electric field and temperature effects in irradiated MOSFETs

    Science.gov (United States)

    Silveira, M. A. G.; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A.; Aguiar, Vitor. A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H.

    2016-07-01

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices

  3. Electric Field-Responsive Mesoporous Suspensions: A Review

    Directory of Open Access Journals (Sweden)

    Seung Hyuk Kwon

    2015-12-01

    Full Text Available This paper briefly reviews the fabrication and electrorheological (ER characteristics of mesoporous materials and their nanocomposites with conducting polymers under an applied electric field when dispersed in an insulating liquid. Smart fluids of electrically-polarizable particles exhibit a reversible and tunable phase transition from a liquid-like to solid-like state in response to an external electric field of various strengths, and have potential applications in a variety of active control systems. The ER properties of these mesoporous suspensions are explained further according to their dielectric spectra in terms of the flow curve, dynamic moduli, and yield stress.

  4. Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...

  5. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  6. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  7. Nonlinear diffusion of a strong magnetic field in a conducting medium

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, V.F.

    1985-09-01

    The problem considered here is a self-similar problem concerning nonlinear diffusion of a strong magnetic field in a conducting nonmagnetic incompressible medium where the magnetic field is produced by a current passing along the symmetry axis. Nonlinear diffusion equations are solved analytically for various particular cases with allowance for the heating of the medium.

  8. Static electric field enhancement in nanoscale structures

    Science.gov (United States)

    Lepetit, Bruno; Lemoine, Didier; Márquez-Mijares, Maykel

    2016-08-01

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  9. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  10. Report on Non-Contact DC Electric Field Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Miles, R; Bond, T; Meyer, G

    2009-06-16

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  11. Reversible electric-field control of magnetization at oxide interfaces

    Science.gov (United States)

    Cuellar, F. A.; Liu, Y. H.; Salafranca, J.; Nemes, N.; Iborra, E.; Sanchez-Santolino, G.; Varela, M.; Hernandez, M. Garcia; Freeland, J. W.; Zhernenkov, M.; Fitzsimmons, M. R.; Okamoto, S.; Pennycook, S. J.; Bibes, M.; Barthélémy, A.; Te Velthuis, S. G. E.; Sefrioui, Z.; Leon, C.; Santamaria, J.

    2014-06-01

    Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.

  12. Electric field-induced softening of alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, C.; Heffner, W.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Tessarollo, R.; Raj, R. [Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  13. Electric field-induced softening of alkali silicate glasses

    Science.gov (United States)

    McLaren, C.; Heffner, W.; Tessarollo, R.; Raj, R.; Jain, H.

    2015-11-01

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  14. Rovibrational spectra of diatomic molecules in strong electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Ferez, R; Schmelcher, P [Departamento de Fisica Moderna and Instituto ' Carlos I' de Fisica Teorica y Computacional, Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain); Theoretische Chemie, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany)

    2005-01-01

    We investigate the effects of a strong static electric field on the rovibrational spectra of diatomic heteronuclear molecules in a {sup 1}{sigma}{sup +} electronic ground state. Using a hybrid computational technique combining discretization and basis set methods the full rovibrational equation of motion is solved. As a prototype for our computations we take the carbon monoxide molecule. For experimentally accessible field strengths we observe that while low-lying states are not significantly affected by the field, for highly excited states strong orientation and hybridization are achieved. We propose an effective rotor Hamiltonian, including the main properties of each vibrational state, to describe the influence of the electric field on the rovibrational spectra of a molecular system with a small coupling between its rotational and vibrational motions. This effective rotor approach goes significantly beyond the rigid rotor approach and is able to describe the effect of the electric field for highly excited states.

  15. Rydberg-Stark states in oscillating electric fields

    CERN Document Server

    Zhelyazkova, V

    2015-01-01

    Experimental and theoretical studies of the effects of weak radio-frequency electric fields on Rydberg-Stark states with electric dipole moments as large as 10000 D are reported. High-resolution laser spectroscopic studies of Rydberg states with principal quantum number $n=52$ and $53$ were performed in pulsed supersonic beams of metastable helium with the excited atoms detected by pulsed electric field ionisation. Experiments were carried out in the presence of sinusoidally oscillating electric fields with frequencies of 20~MHz, amplitudes of up to 120~mV/cm, and dc offsets of up to 4.4~V/cm. In weak fields the experimentally recorded spectra are in excellent agreement with the results of calculations carried out using Floquet methods to account for electric dipole couplings in the oscillating fields. This highlights the validity of these techniques for the accurate calculation of the Stark energy level structure in such fields, and the limitations of the calculations in stronger fields where $n-$mixing and ...

  16. Rydberg-Stark states in oscillating electric fields

    Science.gov (United States)

    Zhelyazkova, V.; Hogan, S. D.

    2015-12-01

    Experimental and theoretical studies of the effects of weak radio-frequency electric fields on Rydberg-Stark states with electric dipole moments as large as 10,000 D are reported. High-resolution laser spectroscopic studies of Rydberg states with principal quantum number n = 52 and 53 were performed in pulsed supersonic beams of metastable helium with the excited atoms detected by pulsed electric field ionisation. Experiments were carried out in the presence of sinusoidally oscillating electric fields with frequencies of 20 MHz, amplitudes of up to 120 mV/cm, and dc offsets of up to 4.4 V/cm. In weak fields, the experimentally recorded spectra are in excellent agreement with the results of calculations carried out using Floquet methods to account for electric dipole couplings in the oscillating fields. This highlights the validity of these techniques for the accurate calculation of the Stark energy level structure in such fields, and the limitations of the calculations in stronger fields where n-mixing and higher order contributions become important.

  17. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  18. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  19. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    DEFF Research Database (Denmark)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reac...

  20. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  1. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  2. Nonlinear quantum electrodynamic and electroweak processes in strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian

    2015-06-24

    Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.

  3. Limiting electric fields of HVDC overhead power lines.

    Science.gov (United States)

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  4. High school students' representations and understandings of electric fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-12-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields postinstruction as indicated by students' performance on textbook-style questions. It has, however, inadequately captured student ideas expressed in other situations yet informative to educational research. In this study, we explore students' ideas of electric fields preinstruction as shown by students' representations produced in open-ended activities. 92 participant students completed a worksheet that involved drawing comic strips about electric charges as characters of a cartoon series. Three students who had spontaneously produced arrow diagrams were interviewed individually after class. We identified nine ideas related to electric fields that these three students spontaneously leveraged in the comic strip activity. In this paper, we describe in detail each idea and its situated context. As most research in the literature has understood students as having relatively fixed conceptions and mostly identified divergences in those conceptions from canonical targets, this study shows students' reasoning to be more variable in particular moments, and that variability includes common sense resources that can be productive for learning about electric fields.

  5. Nonlinearity in Electro- and Magneto-statics with and without External Field

    CERN Document Server

    Adorno, T C; Gitman, D M; Shabad, A E

    2014-01-01

    Due to the nonlinearity of QED, a static charge becomes a magnetic dipole if placed in a magnetic field. Already without external field, the cubic Maxwell equation for the field of a point charge has a soliton solution with a finite field energy. Equations are given for self-coupling dipole moments. Any theoretically found value for a multipole moment of a baryon or a meson should be subjected to nonlinear renormalization.

  6. Consistency restrictions on maximal electric-field strength in quantum field theory.

    Science.gov (United States)

    Gavrilov, S P; Gitman, D M

    2008-09-26

    Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2, one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.

  7. Nonlinear response of superconductors to alternating fields and currents

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Jason [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    This report discusses the following topics on superconductivity: nonlinearities in hard superconductors such as surface impedance of a type II superconductimg half space and harmonic generation and intermodulation due to alternating transport currents; and nonlinearities in superconducting weak links such as harmonic generation by a long Josephson Junction in a superconducting slab.

  8. Realistic Electric Field Mapping of Anisotropic Muscle During Electrical Stimulation Using a Combination of Water Diffusion Tensor and Electrical Conductivity.

    Science.gov (United States)

    Choi, Bup Kyung; Oh, Tong In; Sajib, Saurav Zk; Kim, Jin Woong; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-04-01

    To realistically map the electric fields of biological tissues using a diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) method to estimate tissue response during electrical stimulation. Imaging experiments were performed using chunks of bovine muscle. Two silver wire electrodes were positioned inside the muscle tissue for electrical stimulation. Electric pulses were applied with a 100-V amplitude and 100-μs width using a voltage stimulator. During electrical stimulation, we collected DT-MREIT data from a 3T magnetic resonance imaging scanner. We adopted the projected current density method to calculate the electric field. Based on the relation between the water diffusion tensor and the conductivity tensor, we computed the position-dependent scale factor using the measured magnetic flux density data. Then, a final conductivity tensor map was reconstructed using the multiplication of the water diffusion tensor and the scale factor. The current density images from DT-MREIT data represent the internal current flows that exist not only in the electrodes but also in surrounding regions. The reconstructed electric filed map from our anisotropic conductivity tensor with the projected current density shows coverage that is more than 2 times as wide, and higher signals in both the electrodes and surrounding tissues, than the previous isotropic method owing to the consideration of tissue anisotropy. An electric field map obtained by an anisotropic reconstruction method showed different patterns from the results of the previous isotropic reconstruction method. Since accurate electric field mapping is important to correctly estimate the coverage of the electrical treatment, future studies should include more rigorous validations of the new method through in vivo and in situ experiments.

  9. Realistic Electric Field Mapping of Anisotropic Muscle During Electrical Stimulation Using a Combination of Water Diffusion Tensor and Electrical Conductivity

    Science.gov (United States)

    2017-01-01

    Purpose To realistically map the electric fields of biological tissues using a diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) method to estimate tissue response during electrical stimulation. Methods Imaging experiments were performed using chunks of bovine muscle. Two silver wire electrodes were positioned inside the muscle tissue for electrical stimulation. Electric pulses were applied with a 100-V amplitude and 100-μs width using a voltage stimulator. During electrical stimulation, we collected DT-MREIT data from a 3T magnetic resonance imaging scanner. We adopted the projected current density method to calculate the electric field. Based on the relation between the water diffusion tensor and the conductivity tensor, we computed the position-dependent scale factor using the measured magnetic flux density data. Then, a final conductivity tensor map was reconstructed using the multiplication of the water diffusion tensor and the scale factor. Results The current density images from DT-MREIT data represent the internal current flows that exist not only in the electrodes but also in surrounding regions. The reconstructed electric filed map from our anisotropic conductivity tensor with the projected current density shows coverage that is more than 2 times as wide, and higher signals in both the electrodes and surrounding tissues, than the previous isotropic method owing to the consideration of tissue anisotropy. Conclusions An electric field map obtained by an anisotropic reconstruction method showed different patterns from the results of the previous isotropic reconstruction method. Since accurate electric field mapping is important to correctly estimate the coverage of the electrical treatment, future studies should include more rigorous validations of the new method through in vivo and in situ experiments. PMID:28446015

  10. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  11. Electric field mapping inside metallized film capacitors

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    and durability and serves as verification that failure- and degradation mechanisms remain the same at different stress levels during accelerated testing. In this work we have used Kelvin probe force microscopy (KPFM) to analyze metallized film capacitors with the purpose of determining the degradation mechanism......(s) they suffered from accelerated testing. We have prepared film capacitors for analysis by micro-sectioning and verified the quality of the preparation procedure using optical and atomic force microscopy. The potential distribution in the layer structure (alternating 7 µm thick dielectric and 50-100 nm thick...... of the metallization stripes had lost contact to the end-spray. Thus, it is shown that the surface electric potential distributions on micro-sectioned film capacitors can be obtained through KPFM analysis. We have, from KPFM measurements, shown that the degraded capacitors under investigation had suffered from...

  12. High electric field phenomena in insulation

    Science.gov (United States)

    Laghari, J. R.; Sarjeant, W. J.

    1989-01-01

    The present study extends previous work to include electron radiation-induced changes in monoisopropyl biphenyl (MIPB)-impregnated polypropylene film as well as the effects of neutron/gamma radiation on dry polypropylene films. Effects that were quite similar were induced by both electron and neutron radiation on the properties of interest of the polypropylene films. Impregnation of the film with MIPB had a mitigatory effect on the degradation of the properties. This report also contains the results of a simultaneous electrical and thermal aging study of a capacitor-grade polypropylene film. The data obtained in this study was fitted to models that will enable realistic prediction of lifetimes under operating conditions.

  13. Wetting of sessile water drop under an external electrical field

    Science.gov (United States)

    Vancauwenberghe, Valerie; di Marco, Paolo; Brutin, David; Amu Collaboration; Unipi Collaboration

    2013-11-01

    The enhancement of heat and mass transfer using a static electric field is an interesting process for industrial applications, due to its low energy consumption and potentially high level of evaporation rate enhancement. However, to date, this phenomenon is still not understood in the context of the evaporation of sessile drops. We previously synthesized the state of the art concerning the effect of an electric field on sessile drops with a focus on the change of contact angle and shape and the influence of the evaporation rate [1]. We present here the preliminary results of an new experiment set-up. The novelty of the set-up is the drop injection from the bottom that allows to generate safety the droplet under the electrostatic field. The evaporation at room temperature of water drops having three different volumes has been investigated under an electric field up to 10.5 kV/cm. The time evolutions of the contact angles, volumes and diameters have been analysed. As reported in the literature, the drop elongate along the direction of the electric field. Despite the hysteresis effect of the contact angle, the receding contact angle increases with the strength of the electric field. This is clearly observable for the small drops for which the gravity effect can be neglected.

  14. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity either at blowoff or partial-detachment has been measured by varying the applied voltage and frequency of AC. The result showed that the detachment velocity increased with the applied AC electric fields, such that the flame could be nozzle-attached even over five times of the blowoff velocity without having electric fields. There existed four distinct regimes depending on applied AC voltage and frequency. In the low voltage regime, the threshold condition of AC electric fields was identified, below which the effect of electric fields on the detachment velocity is minimal. In the moderate voltage regime, the flame base oscillated with the frequency synchronized to AC frequency and the detachment velocity increased linearly with the applied AC voltage and nonlinearly with the frequency. In the high voltage regime, two different sub-regimes depending on AC frequency were observed. For relatively low frequency, the flame base oscillated with the applied AC frequency together with the half frequency and the variation of the detachment velocity was insensitive to the applied voltage. For relatively high frequency, the stabilization of the flame was significantly affected by the generation of streamers and the detachment velocity decreased with the applied voltage. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  15. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk

    2012-12-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  16. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  17. Using Gravitational Analogies to Introduce Elementary Electrical Field Theory Concepts

    Science.gov (United States)

    Saeli, Susan; MacIsaac, Dan

    2007-01-01

    Since electrical field concepts are usually unfamiliar, abstract, and difficult to visualize, conceptual analogies from familiar gravitational phenomena are valuable for teaching. Such analogies emphasize the underlying continuity of field concepts in physics and support the spiral development of student understanding. We find the following four…

  18. Noncommuting Electric Fields and Algebraic Consistency in Noncommutative Gauge theories

    CERN Document Server

    Banerjee, R

    2003-01-01

    We show that noncommuting electric fields occur naturally in noncommutative gauge theories. Using this noncommutativity, which is field dependent, and a hamiltonian generalisation of the Seiberg-Witten Map, the algebraic consistency in the lagrangian and hamiltonian formulations of these theories, is established. The stability of the Poisson algebra, under this generalised map, is studied.

  19. Electric-field effect in partially deoxygenated YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kula, W. (Dept. of Electrical Engineering and Lab. for Laser Energetics, Univ. of Rochester, NY (United States) Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland)); Sobolewski, R. (Dept. of Electrical Engineering and Lab. for Laser Energetics, Univ. of Rochester, NY (United States) Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland))

    1994-02-01

    We report our studies on the electric-field effect in partially oxygen-depleted YBa[sub 2]Cu[sub 3]O[sub y] (YBCO) thin-film test structures fabricated by a laser-writing patterning technique. Our preliminary results indicate substantial, field-induced changes of the sample critical current. (orig.)

  20. Asymmetry of Neoclassical Transport by Dipole Electric Field

    Institute of Scientific and Technical Information of China (English)

    王中天; 王龙

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity.