WorldWideScience

Sample records for nonlinear electric fields

  1. Nonlinear piezoelectricity in epitaxial ferroelectrics at high electric fields.

    Science.gov (United States)

    Grigoriev, Alexei; Sichel, Rebecca; Lee, Ho Nyung; Landahl, Eric C; Adams, Bernhard; Dufresne, Eric M; Evans, Paul G

    2008-01-18

    Nonlinear effects in the coupling of polarization with elastic strain have been predicted to occur in ferroelectric materials subjected to high electric fields. Such predictions are tested here for a PbZr0.2Ti0.8O3 ferroelectric thin film at electric fields in the range of several hundred MV/m and strains reaching up to 2.7%. The piezoelectric strain exceeds predictions based on constant piezoelectric coefficients at electric fields from approximately 200 to 400 MV/m, which is consistent with a nonlinear effect predicted to occur at corresponding piezoelectric distortions.

  2. Critical electric field for maximum tunability in nonlinear dielectrics

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2006-09-01

    The authors develop a self-consistent thermodynamic theory to compute the critical electric field at which maximum tunability is attained in a nonlinear dielectric. They then demonstrate that the stored electrostatic free energy functional has to be expanded at least up to the sixth order in electric field so as to define the critical field, and show that it depends solely on the fourth and sixth order permittivities. They discuss the deficiency of the engineering tunability metric in describing nonlinear dielectric phenomena, introduce a critical field renormalized tunability parameter, and substantiate the proposed formalism by computing the critical electric field for prototypical 0.9Pb(Mg1/3,Nb2/3)-0.1PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics.

  3. Nonlinear dynamics of semiconductors in strong THz electric fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun

    In this thesis, we investigate nonlinear interactions of an intense terahertz (THz) field with semiconductors, in particular the technologically relevant materials silicon and silicon carbide. We reveal the time-resolved dynamics of the nonlinear processes by pump-probe experiments that involve...

  4. Effective response of nonlinear cylindrical coated composites under external AC and DC electric field

    International Nuclear Information System (INIS)

    Yu-Yan, Shen; Xiao-Gang, Chen; Wei, Cui; Yan-Hua, Hao; Qian-Qian, Li

    2009-01-01

    This paper uses the perturbation method to study effective response of nonlinear cylindrical coated composites. Under the external AC and DC electric field E a (1 + sin ωt), the local potentials of composites at all harmonic frequencies are induced. An effective nonlinear response to composite is given for the cylindrical coated inclusions in the dilute limit. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. A Model for Periodic Nonlinear Electric Field Structures in Space Plasmas

    International Nuclear Information System (INIS)

    Qureshi, M.N.S.; Shi Jiankui; Liu Zhenxing

    2009-01-01

    In this study, we present a physical model to explain the generation mechanism of nonlinear periodic waves with a large amplitude electric field structures propagating obliquely and exactly parallel to the magnetic field. The 'Sagdeev potential' from the MHD equations is derived and the nonlinear electric field waveforms are obtained when the Mach number, direction of propagation, and the initial electric field satisfy certain plasma conditions. For the parallel propagation, the amplitude of the electric field waves with ion-acoustic mode increases with the increase of initial electric field and Mach number but its frequency decreases with the increase of Mach number. The amplitude and frequency of the electric field waves with ion-cyclotron mode decrease with the increase of Mach number and become less spiky, and its amplitude increases with the increase of initial electric field. For the oblique propagation, only periodic electric field wave with an ion-cyclotron mode obtained, its amplitude and frequency increase with the increase of Mach number and become spiky. From our model the electric field structures show periodic, spiky, and saw-tooth behaviours corresponding to different plasma conditions.

  6. A nonlinear efficient layerwise finite element model for smart piezolaminated composites under strong applied electric field

    International Nuclear Information System (INIS)

    Kapuria, S; Yaqoob Yasin, M

    2013-01-01

    In this work, we present an electromechanically coupled efficient layerwise finite element model for the static response of piezoelectric laminated composite and sandwich plates, considering the nonlinear behavior of piezoelectric materials under strong electric field. The nonlinear model is developed consistently using a variational principle, considering a rotationally invariant second order nonlinear constitutive relationship, and full electromechanical coupling. In the piezoelectric layer, the electric potential is approximated to have a quadratic variation across the thickness, as observed from exact three dimensional solutions, and the equipotential condition of electroded piezoelectric surfaces is modeled using the novel concept of an electric node. The results predicted by the nonlinear model compare very well with the experimental data available in the literature. The effect of the piezoelectric nonlinearity on the static response and deflection/stress control is studied for piezoelectric bimorph as well as hybrid laminated plates with isotropic, angle-ply composite and sandwich substrates. For high electric fields, the difference between the nonlinear and linear predictions is large, and cannot be neglected. The error in the prediction of the smeared counterpart of the present theory with the same number of primary displacement unknowns is also examined. (paper)

  7. Nonlinear diffusion in the presence of a time-dependent external electric field

    International Nuclear Information System (INIS)

    Lima e Silva, T. de; Galvao, R.M.O.

    1987-09-01

    The influence of a time-dependent external electric field on the nonlinear diffusion process of weakly ionized plasmas is investigated. A new solution of the diffusion equation is obtained for the case when electron-ion collisions can be neglected. (author) [pt

  8. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields

    International Nuclear Information System (INIS)

    Wu, Jinghe; Guo, Kangxian; Liu, Guanghui

    2014-01-01

    Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells are studied by the effective mass approximation and the perturbation theory. The numerical results show that nonlinear optical rectification coefficients are strongly dependent on the barrier hight V 0 of the Gaussian potential quantum wells, the range L of the confinement potential and the electric field F. Besides, the numerical results show that no matter how V 0 , L and F change, taking into consideration polaron effects, the optical rectification coefficients χ 0 (2) get greatly enhanced.

  9. Nonlinear analysis of field distribution in electric motor with periodicity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stabrowski, M M; Sikora, J

    1981-01-01

    Numerical analysis of electromagnetic field distribution in linear motion tubular electric motor has been performed with the aid of finite element method. Two Fortran programmes for the solution of DBBF and BF large linear symmetric equation systems have been developed for purposes of this analysis. A new iterative algorithm, taking into account iron nonlinearity and periodicity conditions, has been introduced. Final results of the analysis in the form of induction diagrammes and motor driving force are directly useful for motor designers.

  10. Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings

    International Nuclear Information System (INIS)

    Duque, C.M.; Morales, A.L.; Mora-Ramos, M.E.; Duque, C.A.

    2013-01-01

    The linear and nonlinear optical absorption as well as the linear and nonlinear corrections to the refractive index are calculated in a disc shaped quantum dot under the effect of an external magnetic field and parabolic and inverse square confining potentials. The exact solutions for the two-dimensional motion of the conduction band electrons are used as the basis for a perturbation-theory treatment of the effect of a static applied electric field. In general terms, the variation of one of the different potential energy parameters – for a fixed configuration of the remaining ones – leads to either blueshifts or redshifts of the resonant peaks as well as to distinct rates of change for their amplitudes. -- Highlights: • Optical absorption and corrections to the refractive in quantum dots. • Electric and magnetic field and parabolic and inverse square potentials. • Perturbation-theory treatment of the effect of the electric field. • Induced blueshifts or redshifts of the resonant peaks are studied. • Evolution of rates of change for amplitudes of resonant peaks

  11. Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.M., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Morales, A.L. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-11-15

    The linear and nonlinear optical absorption as well as the linear and nonlinear corrections to the refractive index are calculated in a disc shaped quantum dot under the effect of an external magnetic field and parabolic and inverse square confining potentials. The exact solutions for the two-dimensional motion of the conduction band electrons are used as the basis for a perturbation-theory treatment of the effect of a static applied electric field. In general terms, the variation of one of the different potential energy parameters – for a fixed configuration of the remaining ones – leads to either blueshifts or redshifts of the resonant peaks as well as to distinct rates of change for their amplitudes. -- Highlights: • Optical absorption and corrections to the refractive in quantum dots. • Electric and magnetic field and parabolic and inverse square potentials. • Perturbation-theory treatment of the effect of the electric field. • Induced blueshifts or redshifts of the resonant peaks are studied. • Evolution of rates of change for amplitudes of resonant peaks.

  12. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: rrestre@gmail.com [Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Morales, A.L. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Martínez-Orozco, J.C. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, CP 98060, Zacatecas (Mexico); Baghramyan, H.M.; Barseghyan, M.G. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-11-15

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p{sub z}-like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum.

  13. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    International Nuclear Information System (INIS)

    Restrepo, R.L.; Morales, A.L.; Martínez-Orozco, J.C.; Baghramyan, H.M.; Barseghyan, M.G.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p z -like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum

  14. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    Science.gov (United States)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  15. Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field

    International Nuclear Information System (INIS)

    Duque, C.A.; Kasapoglu, E.; Sakiroglu, S.; Sari, H.; Soekmen, I.

    2011-01-01

    In this work the effects of intense laser on the electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As quantum wells are studied under, applied electric and magnetic field. The electric field is applied along the growth direction of the quantum well whereas the magnetic field has been considered to be in-plane. The calculations were performed within the density matrix formalism with the use of the effective mass and parabolic band approximations. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Results are presented for the nonlinear optical absorption, the nonlinear optical rectification and the resonant peak of these two optical processes. Several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation have been considered. The outcome of the calculation suggests that the nonlinear optical absorption and optical rectification are non-monotonic functions of the dimensions of the heterostructure and of the external perturbations considered in this work.

  16. Field-effect transistors as electrically controllable nonlinear rectifiers for the characterization of terahertz pulses

    Science.gov (United States)

    Lisauskas, Alvydas; Ikamas, Kestutis; Massabeau, Sylvain; Bauer, Maris; ČibiraitÄ--, DovilÄ--; Matukas, Jonas; Mangeney, Juliette; Mittendorff, Martin; Winnerl, Stephan; Krozer, Viktor; Roskos, Hartmut G.

    2018-05-01

    We propose to exploit rectification in field-effect transistors as an electrically controllable higher-order nonlinear phenomenon for the convenient monitoring of the temporal characteristics of THz pulses, for example, by autocorrelation measurements. This option arises because of the existence of a gate-bias-controlled super-linear response at sub-threshold operation conditions when the devices are subjected to THz radiation. We present measurements for different antenna-coupled transistor-based THz detectors (TeraFETs) employing (i) AlGaN/GaN high-electron-mobility and (ii) silicon CMOS field-effect transistors and show that the super-linear behavior in the sub-threshold bias regime is a universal phenomenon to be expected if the amplitude of the high-frequency voltage oscillations exceeds the thermal voltage. The effect is also employed as a tool for the direct determination of the speed of the intrinsic TeraFET response which allows us to avoid limitations set by the read-out circuitry. In particular, we show that the build-up time of the intrinsic rectification signal of a patch-antenna-coupled CMOS detector changes from 20 ps in the deep sub-threshold voltage regime to below 12 ps in the vicinity of the threshold voltage.

  17. Nonlinear optical rectification in semiparabolic quantum wells with an applied electric field

    International Nuclear Information System (INIS)

    Karabulut, ibrahim; Safak, Haluk

    2005-01-01

    The optical rectification (OR) in a semiparabolic quantum well with an applied electric field has been theoretically investigated. The electronic states in a semiparabolic quantum well with an applied electric field are calculated exactly, within the envelope function and the displaced harmonic oscillator approach. Numerical results are presented for the typical Al x Ga 1- x As/GaAs quantum well. These results show that the applied electric field and the confining potential frequency of the semiparabolic quantum well have a great influence on the OR coefficient. Moreover, the OR coefficient also depends sensitively on the relaxation rate of the semiparabolic quantum well system

  18. Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Richert, Ranko [School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604 (United States)

    2016-03-21

    A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N{sub corr}, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.

  19. Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Restrepo, R.L. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Ungan, F.; Yesilgul, U.; Sari, H. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-03-15

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two lower-lying electronic levels in the step-like GaAs/Ga{sub 1−x}Al{sub x}As quantum well under external electric and magnetic fields are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass and parabolic band approximations. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the well dimensions and the effects of external fields. By changing the intensities of the electric, magnetic and non-resonant intense laser fields together with the well dimensions, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • Augmentation of laser-field results in red shift in total AC spectra. • Magnetic field induces a blue-shift in the resonant peak. • Resonant peak position shifts to red with effect of electric field. • Resonant peak of total AC shifts to the higher photon energies with increasing well width.

  20. Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Duque, C.A.; Mora-Ramos, M.E.; Restrepo, R.L.; Ungan, F.; Yesilgul, U.; Sari, H.; Sökmen, I.

    2015-01-01

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change for transition between two lower-lying electronic levels in the step-like GaAs/Ga 1−x Al x As quantum well under external electric and magnetic fields are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass and parabolic band approximations. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the well dimensions and the effects of external fields. By changing the intensities of the electric, magnetic and non-resonant intense laser fields together with the well dimensions, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • Augmentation of laser-field results in red shift in total AC spectra. • Magnetic field induces a blue-shift in the resonant peak. • Resonant peak position shifts to red with effect of electric field. • Resonant peak of total AC shifts to the higher photon energies with increasing well width

  1. Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring

    International Nuclear Information System (INIS)

    Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.

    2009-01-01

    The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed

  2. Considerations on 'Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring'

    International Nuclear Information System (INIS)

    Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.

    2009-01-01

    In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.

  3. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  4. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Correa, J. D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M. E., E-mail: memora@uaem.mx [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C. A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  5. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  6. The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga{sub 1−x}Al{sub x}As/GaAs quantum dot under applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autóonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-10-01

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change (the linear and third-order nonlinear) for transitions between different intersubbands in the Ga{sub 1−x}Al{sub x}As/GaAs cylindrical quantum dot under external electric field are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass approximation. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the electric and intense laser fields. By changing the intensities of the electric and laser fields, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • The effects of the non-resonant intense laser field and electric field on the nonlinear optical properties of cylindrical quantum dot are investigated. • The both total absorption coefficient and refractive index change are sensitive to dot dimensions and the effects of external fields. • By changing the external fields together with dot dimensions a blue or red shift can be obtained.

  7. Electron-related nonlinearities in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells under the effects of intense laser field and applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, Mexico (Mexico); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Kasapoglu, E.; Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Soekmen, I. [Dokuz Eyluel University, Physics Department, 35160 Buca, Izmir (Turkey)

    2013-03-15

    The combined effects of intense laser radiation and applied electric fields on the intersubband-related linear and nonlinear optical properties in GaAs-based quantum wells are discussed. It is shown that for asymmetric double quantum well, the increasing laser field intensity causes progressive redshifts in the peak positions of the second and third harmonic coefficients. However, the resonant peaks of the nonlinear optical rectification can suffer a blueshift or a redshift, depending on the laser strengths. The same feature appears in the case of the resonant peaks corresponding to the total coefficients of optical absorption and relative change in the refractive index. - Highlights: Black-Right-Pointing-Pointer Nonlinear optical properties in double quantum wells. Black-Right-Pointing-Pointer Increasing laser field intensity causes redshifts in the peak positions. Black-Right-Pointing-Pointer Resonant peak of second order nonlinearities can be blue-shifted. Black-Right-Pointing-Pointer Relative change in refractive index depends of the applied electric field. Black-Right-Pointing-Pointer The energy position depends of the laser field parameter.

  8. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  9. Electric Field Imaging

    Data.gov (United States)

    National Aeronautics and Space Administration — NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields....

  10. Field guide to nonlinear optics

    CERN Document Server

    Powers, Peter E

    2013-01-01

    Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics

  11. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  12. The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code

    Energy Technology Data Exchange (ETDEWEB)

    Kirtman, Bernard [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Springborg, Michael [Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken (Germany); Rérat, Michel [Equipe de Chimie Physique, IPREM UMR5254, Université de Pau et des Pays de l' Adour, 64000 Pau (France); Ferrero, Mauro; Lacivita, Valentina; Dovesi, Roberto [Departimeno di Chimica, IFM, Università di Torino and NIS - Nanostructure Interfaces and Surfaces - Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Orlando, Roberto [Departimento di Scienze e Tecnologie Avanzati, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria (Italy)

    2015-01-22

    An implementation of the vector potential approach (VPA) for treating the response of infinite periodic systems to static and dynamic electric fields has been initiated within the CRYSTAL code. The VPA method is based on the solution of a time-dependent Hartree-Fock or Kohn-Sham equation for the crystal orbitals wherein the usual scalar potential, that describes interaction with the field, is replaced by the vector potential. This equation may be solved either by perturbation theory or by finite field methods. With some modification all the computational procedures of molecular ab initio quantum chemistry can be adapted for periodic systems. Accessible properties include the linear and nonlinear responses of both the nuclei and the electrons. The programming of static field pure electronic (hyper)polarizabilities has been successfully tested. Dynamic electronic (hyper)polarizabilities, as well as infrared and Raman intensities, are in progress while the addition of finite fields for calculation of vibrational (hyper)polarizabilities, through nuclear relaxation procedures, will begin shortly.

  13. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  14. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  15. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  16. The Nonlinear Field Space Theory

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)

    2016-08-10

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  17. The Nonlinear Field Space Theory

    International Nuclear Information System (INIS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-01-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  18. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  19. Magnetodynamic non-linearity of electric properties of uncompensated metals

    International Nuclear Information System (INIS)

    Sobol', V.R.; Mazurenko, O.N.

    2001-01-01

    Magnetodynamic non-linearity of electric properties of normal metals is investigated both experimentally and analytically provided that the drift of charge carriers of high density in crossed electric and magnetic fields results in generation of a self current field. The measurements were made on high purity polycrystalline aluminium cylindrical conductors under the action of the magnetic field, coaxial the sample axis, on the radial current. The electric potential and its nonlinear correction are determined in a wide range of energy dissipation values up to the levels corresponding to the crisis of liquid helium boiling. In the approximation of contribution additivity to the resistive effect of both the external and self magnetic field agreement between the experimental data and the results calculated using the macroscopic field equations is attained. The problems of magnetic energy concentration for cylindrical conductors is discussed in the approximation of long and short solenoids

  20. Nonlinear optical rectification and optical absorption in GaAs-Ga1-xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure

    International Nuclear Information System (INIS)

    Karabulut, I.; Mora-Ramos, M.E.; Duque, C.A.

    2011-01-01

    The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: → Maxima of the NOA correspond to zero in the NOR. → Electric fields can couple the double quantum wells. → Hydrostatic pressure can couple the double quantum wells. → NOA can increase/decrease with hydrostatic pressure. → Overlap between wave functions depends on the magnetic field.

  1. Nonlinear wave chaos: statistics of second harmonic fields.

    Science.gov (United States)

    Zhou, Min; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M

    2017-10-01

    Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.

  2. An electric field in a gravitational field

    International Nuclear Information System (INIS)

    Harpaz, Amos

    2005-01-01

    The behaviour of an electric field in a gravitational field is analysed. It is found that due to the mass (energy) of the electric field, it is subjected to gravity and it falls in the gravitational field. This fall curves the electric field, a stress force (a reaction force) is created, and the interaction of this reaction force with the static charge gives rise to the creation of radiation

  3. Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: Effects of an applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Magdaleno, K.A.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calz. Solidaridad Esq. Paseo a La Bufa S/N. C.P. 98060 Zacatecas (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516 Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-03-15

    In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N{sub 2d}) of each single δ-doped quantum well are taken to vary within the range of 1.0×10{sup 12} to 7.0×10{sup 12} cm{sup −2}, consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system.

  4. Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: Effects of an applied electric field

    International Nuclear Information System (INIS)

    Rodríguez-Magdaleno, K.A.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N 2d ) of each single δ-doped quantum well are taken to vary within the range of 1.0×10 12 to 7.0×10 12 cm −2 , consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system

  5. Finite element and network electrical simulation of rotating magnetofluid flow in nonlinear porous media with inclined magnetic field and hall currents

    Directory of Open Access Journals (Sweden)

    Bég Anwar O.

    2014-01-01

    Full Text Available A mathematical model is presented for viscous hydromagnetic flow through a hybrid non-Darcy porous media rotating generator. The system is simulated as steady, incompressible flow through a nonlinear porous regime intercalated between parallel plates of the generator in a rotating frame of reference in the presence of a strong, inclined magnetic field A pressure gradient term is included which is a function of the longitudinal coordinate. The general equations for rotating viscous magnetohydrodynamic flow are presented and neglecting convective acceleration effects, the two-dimensional viscous flow equations are derived incorporating current density components, porous media drag effects, Lorentz drag force components and Hall current effects. Using an appropriate group of dimensionless variables, the momentum equations for primary and secondary flow are rendered nondimensional and shown to be controlled by six physical parameters-Hartmann number (Ha, Hall current parameter (Nh, Darcy number (Da, Forchheimer number (Fs, Ekman number (Ek and dimensionless pressure gradient parameter (Np, in addition to one geometric parameter-the orientation of the applied magnetic field (θ . Several special cases are extracted from the general model, including the non-porous case studied earlier by Ghosh and Pop (2006. A numerical solution is presented to the nonlinear coupled ordinary differential equations using both the Network Simulation Method and Finite Element Method, achieving excellent agreement. Additionally very good agreement is also obtained with the earlier analytical solutions of Ghosh and Pop (2006. for selected Ha, Ek and Nh values. We examine in detail the effects of magnetic field, rotation, Hall current, bulk porous matrix drag, second order porous impedance, pressure gradient and magnetic field inclination on primary and secondary velocity distributions and also frictional shear stresses at the plates. Primary velocity is seen to decrease

  6. Electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Falthammar, C.G.

    1989-01-01

    Electric field measurements on the satellites GEOS-1, GEOS-2, ISEE-1, and Viking have extended the empirical knowledge of electric fields in space so as to include the outer regions of the magnetosphere. While the measurements confirm some of the theoretically expected properties of the electric fields, they also reveal unexpected features and a high degree of complexity and variability. The existence of a magnetospheric dawn-to-dusk electric field, as expected on the basis of extrapolation from low altitude measurements, is confirmed in an average sense. However, the actual field exhibits large spatial and temporal variations, including strong fields of inductive origin. At the magnetopause, the average (dawn-to-dusk directed) tangential electric field component is typically obscured by irregular fluctuations of larger amplitude. The magnetic-field aligned component of the electric field, which is of particular importance for ionosphere-magnetosphere coupling and for auroral acceleration, is even now very difficult to measure directly. However, the data from electric field measurements provide further support for the conclusion, based on a variety of evidence, that a non-vanishing magnetic-field aligned electric field exists in the auroral acceleration region

  7. On some nonlinear effects in ultrasonic fields

    Science.gov (United States)

    Tjotta

    2000-03-01

    Nonlinear effects associated with intense sound fields in fluids are considered theoretically. Special attention is directed to the study of higher effects that cannot be described within the standard propagation models of nonlinear acoustics (the KZK and Burgers equations). The analysis is based on the fundamental equations of motion for a thermoviscous fluid, for which thermal equations of state exist. Model equations are derived and used to analyze nonlinear sources for generation of flow and heat, and other changes in the ambient state of the fluid. Fluctuations in the coefficients of viscosity and thermal conductivity caused by the sound field, are accounted for. Also considered are nonlinear effects induced in the fluid by flexural vibrations. The intensity and absorption of finite amplitude sound waves are calculated, and related to the sources for generation of higher order effects.

  8. Electric field gradients in metals

    International Nuclear Information System (INIS)

    Schatz, G.

    1979-01-01

    A review of the recent works on electric field gradient in metals is given. The main emphasis is put on the temperature dependence of the electric field gradient in nonmagnetic metals. Some methods of investigation of this effect using nuclear probes are described. One of them is nuclear accoustic resonance method. (S.B.)

  9. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  10. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  11. Electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1989-12-01

    The electric field plays an important role in the complex plasma system called the magnetosphere. In spite of this, direct measurement of this quantity are still scarce except in its lowest-altitude part, i.e. the ionosphere. The large scale ionospheric electric field has been determined from measurement on the ground and in low satellite orbit. For most of the magnetosphere, our concepts of the electric field have mostly been based on theoretical considerations and extrapolations of the ionspheric electric field. Direct, in situ, electric field measurements in the outer parts of the magnetosphere have been made only relatively recently. A few satellite missions. most recently the Viking mission, have extended the direct empirical knowledge so as to include major parts of the magnetosphere. These measurements have revealed a number of unexpected features. The actual electric field has been found to have unexpectedly strong space and time variations, which reflect the dynamic nature of the system. Examples are give of measured electric fields in the plasmasphere, the plasmasheet, the neutral sheet, the magnetotail, the flanks of the magnetosphere, the dayside magnetopause and the auroral acceleration region. (author)

  12. Nonlinear physics of twisted magnetic field lines

    International Nuclear Information System (INIS)

    Yoshida, Zensho

    1998-01-01

    Twisted magnetic field lines appear commonly in many different plasma systems, such as magnetic ropes created through interactions between the magnetosphere and the solar wind, magnetic clouds in the solar wind, solar corona, galactic jets, accretion discs, as well as fusion plasma devices. In this paper, we study the topological characterization of twisted magnetic fields, nonlinear effect induced by the Lorentz back reaction, length-scale bounds, and statistical distributions. (author)

  13. High electric field conduction in low-alkali boroaluminosilicate glass

    Science.gov (United States)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  14. Electric Field Fluctuations in Water

    Science.gov (United States)

    Thorpe, Dayton; Limmer, David; Chandler, David

    2013-03-01

    Charge transfer in solution, such as autoionization and ion pair dissociation in water, is governed by rare electric field fluctuations of the solvent. Knowing the statistics of such fluctuations can help explain the dynamics of these rare events. Trajectories short enough to be tractable by computer simulation are virtually certain not to sample the large fluctuations that promote rare events. Here, we employ importance sampling techniques with classical molecular dynamics simulations of liquid water to study statistics of electric field fluctuations far from their means. We find that the distributions of electric fields located on individual water molecules are not in general gaussian. Near the mean this non-gaussianity is due to the internal charge distribution of the water molecule. Further from the mean, however, there is a previously unreported Bjerrum-like defect that stabilizes certain large fluctuations out of equilibrium. As expected, differences in electric fields acting between molecules are gaussian to a remarkable degree. By studying these differences, though, we are able to determine what configurations result not only in large electric fields, but also in electric fields with long spatial correlations that may be needed to promote charge separation.

  15. Visualization of induced electric fields

    NARCIS (Netherlands)

    Deursen, van A.P.J.

    2005-01-01

    A cylindrical electrolytic tank between a set of Helmholtz coils provides a classroom demonstration of induced, nonconservative electric fields. The field strength is measured by a sensor consisting of a pair of tiny spheres immersed in the liquid. The sensor signal depends on position, frequency,

  16. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  17. Electric field dependence of excess electrical conductivity below transition temperature in thin superconducting lead films

    Energy Technology Data Exchange (ETDEWEB)

    Ashwini Kumar, P K; Duggal, V P [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-01-26

    Results of measurements of the electric field dependence of the excess electrical conductivity are reported in thin superconducting lead films below the transition temperature. It is observed that the normal state sheet resistance has some effect on the nonlinearity but the theory of Yamaji still fits well to the experimental data.

  18. Microstickies agglomeration by electric field.

    Science.gov (United States)

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.

  19. Electric fields and quantum wormholes

    NARCIS (Netherlands)

    Engelhardt, D.; Freivogel, B.; Iqbal, N.

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a

  20. Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Yesilgul, U., E-mail: uyesilgul@cumhuriyet.edu.tr [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Ungan, F. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, C.P. 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Kasapoglu, E.; Sarı, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sökmen, I. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey)

    2014-01-15

    The effects of the intense high-frequency laser field on the optical absorption coefficients and the refractive index changes in a GaAs/GaAlAs parabolic quantum well under the applied electric field have been investigated theoretically. The electron energy levels and the envelope wave functions of the parabolic quantum well are calculated within the effective mass approximation. Analytical expressions for optical properties are obtained using the compact density-matrix approach. The numerical results show that the intense high-frequency laser field has a large effect on the optical characteristics of these structures. Also we can observe that the refractive index and absorption coefficient changes are very sensitive to the electric field in large dimension wells. Thus, this result gives a new degree of freedom in the optoelectronic device applications. -- Highlights: • ILF has a large effect on the optical properties of parabolic quantum wells. • The total absorption coefficients increase as the ILF increases. • The RICs increase as the ILF increases.

  1. Electric field bifurcation and transition in the core plasma of CHS

    International Nuclear Information System (INIS)

    Fujisawa, A.; Iguchi, H.; Sanuki, H.; Itoh, K.; Okamura, S.; Matsuoka, K.; Hamada, Y.; Itoh, S.-I.

    1997-01-01

    In the CHS heliotron/torsatron, dynamic phenomena associated with transitions in radial electric field were observed during combined ECH+NBI heated plasmas. The observations with high temporal resolution confirmed a nonlinear relation between radial electric field and radial current to cause these phenomena associated with electric field bifurcation. (author)

  2. Nanoscale electron manipulation in metals with intense THz electric fields

    Science.gov (United States)

    Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi

    2018-03-01

    Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.

  3. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    Science.gov (United States)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  4. Nonlinear dynamics in the relativistic field equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An

    2007-01-01

    We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory

  5. Non-linear spectral splitting of Rydberg sodium in external fields

    International Nuclear Information System (INIS)

    Gao Wei; Yang Hai-Feng; Cheng Hong; Zhang Shan-Shan; Liu Hong-Ping; Liu Dan-Feng

    2015-01-01

    We have studied highly excited sodium in various electric fields, parallel electric and magnetic fields, with one σ and π photon irradiation, and even in a magnetic field with a complex laser polarization configuration. The σ spectra shows a simple linear Stark effect with the applied electric field, while the π spectra exhibits a strong non-linear dependence on the electric field. The π transitions in parallel fields show a similar behavior to that in a pure electric field but the spectra get more smooth due to the magnetic field. The diamagnetic spectrum with laser polarization angles between 0 and π/2 proves that it can be reproduced by simple linear combination of π and σ components, indicating there is no interference between the π and σ channels. A full quantum calculation considering the quantum defects accounts for all the observations. The quantum defects, especially for the channel np, play an important role in the spectral profile. (paper)

  6. An explicit MOT-TDVIE scheme for analyzing electromagnetic field interactions on nonlinear scatterers

    KAUST Repository

    Ulku, Huseyin Arda

    2015-02-01

    An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.

  7. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  8. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  9. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  10. Electric field measurements in high pressure discharges

    International Nuclear Information System (INIS)

    Mitko, S.V.; Ochkin, V.N.; Serdyuchenko, A.Yu.; Tskhai, S.N.

    2001-01-01

    Electric fields define a wide range of interactions and phenomena at different phases of matter both on micro- and macro-level. Investigation of electric fields behavior provides a key for understanding of these phenomena and their application

  11. Method for Measuring Small Nonlinearities of Electric Characteristics

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Meyer, Niels I; Schjær-Jacobsen, Jørgen

    1965-01-01

    A method is described for measuring very small deviations from linearity in electric characteristics. The measurement is based on the harmonics generated by the nonlinear element when subjected to a sine wave signal. A special bridge circuit is used to balance out the undesired harmonics...... of the signal generator together with the first harmonic frequency. The set-up measures the small-signal value and the first and second derivative with respect to voltage. The detailed circuits are given for measuring nonlinearities in Ohmic and capacitive components. In the Ohmic case, a sensitivity...

  12. Electrical field of electrical appliances versus distance: A preliminary analysis

    International Nuclear Information System (INIS)

    Mustafa, Nur Badariah Ahmad; Nordin, Farah Hani; Ismail, Fakaruddin Ali Ahmad; Alkahtani, Ammar Ahmed; Balasubramaniam, Nagaletchumi; Hock, Goh Chin; Shariff, Z A M

    2013-01-01

    Every household electrical appliance that is plugged in emits electric field even if it is not operating. The source where the appliance is plugged into and the components of household electrical appliance contribute to electric field emission. The electric field may cause unknown disturbance to the environment or also affect the human health and the effect might depends on the strength of the electric field emitted by the appliance. This paper will investigate the strength of the electric field emitted by four different electrical appliances using spectrum analyser. The strength will be captured at three different distances; (i) 1m (ii) 2m and (iii) 3m and analysis of the strength of the electrical field is done based on the three different distances. The measurement results show that the strength of the electric field is strongest when it is captured at 1m and the weakest at 3m from the electrical appliance. The results proved that the farther an object is located from the electrical appliance; the less effect the magnetic field has.

  13. Inhomogeneous electric field air cleaner

    International Nuclear Information System (INIS)

    Schuster, B.G.

    1976-01-01

    For applications requiring the filtration of air contaminated with enriched uranium, plutonium or other transuranium compounds, it appears desirable to collect the material in a fashion more amenable to recovery than is now practical when material is collected on HEPA filters. In some instances, it may also be desirable to use an air cleaner of this type to substantially reduce the loading to which HEPA filters are subjected. A theoretical evaluation of such an air cleaner considers the interaction between an electrically neutral particle, dielectric or conducting, with an inhomogeneous electric field. An expression is derived for the force exerted on a particle in an electrode configuration of two concentric cylinders. Equations of motion are obtained for a particle suspended in a laminar flow of air passing through this geometry. An electrical quadrupole geometry is also examined and shown to be inferior to the cylindrical one. The results of two separate configurations of the single cell prototypes of the proposed air cleaner are described. These tests were designed to evaluate collection efficiencies using mono-disperse polystyrene latex and polydisperse NaCl aerosols. The advantages and problems of such systems in terms of a large scale air cleaning facility will be discussed

  14. Do neutrons feel electric fields?

    International Nuclear Information System (INIS)

    Klein, Tony; Werner, Sam

    1991-01-01

    An accounts is given of the results of a co-operative research carried out at the University of Melbourne in Australia and the University of Missouri, Columbia in the United States on the physics of neutrons and their interactions as a test of fundamental principles in quantum mechanics and electrodynamics. In particular it comments on the verification of the Aharonov-Casher effect in electric as well as magnetic fields in the case of neutral particles. It was demonstrated that neutrons have a magnetic moment which precess and acquire phase shifts when exposed to magnetic fields. The sign of the measured phase shift agreed with the theoretical prediction and the magnitude was within one and a half standard deviations of it. 12 refs., 4 figs

  15. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.; Park, Sun H.; Park, Jeong; Fujita, Osamu; Keel, Sang I.; Chung, Suk-Ho

    2017-01-01

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field

  16. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    -linear propagation. The speed of sound is calculated from the instantaneous pressure of the pulse and the nonlinearity B/A parameter of the medium. The harmonic field is found by introducing a number of virtual planes in front of the aperture and then propagating the pulse using Burgers' solution between the planes....... Simulations on the acoustical axis of an array transducer were performed and compared to measurements made in a water tank. A 3 MHz convex array transducer with a pitch of 0.53 mm and a height of 13 mm was used. The electronic focus was at 45 mm and 16 elements were used for emission. The emitted pressure...... was 1.4 MPa measured 6 mm from the aperture by a Force Institute MH25-5 needle hydrophone in a water bath. The build-up of higher harmonics can here be predicted accurately up to the 5th harmonic. The second harmonic is simulated with an accuracy of ±2.6 dB and the third harmonic with ±2 dB compared...

  17. Nonlinear electrical properties of Si three-terminal junction devices

    DEFF Research Database (Denmark)

    Fantao, Meng; Jie, Sun; Graczyk, Mariusz

    2010-01-01

    This letter reports on the realization and characterization of silicon three-terminal junction devices made in a silicon-on-insulator wafer. Room temperature electrical measurements show that the fabricated devices exhibit pronounced nonlinear electrical properties inherent to ballistic electron...... transport in a three-terminal ballistic junction (TBJ) device. The results show that room temperature functional TBJ devices can be realized in a semiconductor material other than high-mobility III-V semiconductor heterostructures and provide a simple design principle for compact silicon devices...

  18. Time-Dependent Mean-Field Games with Logarithmic Nonlinearities

    KAUST Repository

    Gomes, Diogo A.; Pimentel, Edgard

    2015-01-01

    In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.

  19. Time-Dependent Mean-Field Games with Logarithmic Nonlinearities

    KAUST Repository

    Gomes, Diogo A.

    2015-10-06

    In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.

  20. Particle reflection along the magnetic field in nonlinear magnetosonic pulses

    Science.gov (United States)

    Ohsawa, Yukiharu

    2017-11-01

    Reflection of electrons and positrons in oblique, nonlinear magnetosonic pulses is theoretically analyzed. With the use of the parallel pseudo potential F, which is the integral of the parallel electric field along the magnetic field, a simple equation for reflection conditions is derived, which shows that reflection along the magnetic field is caused by two forces: one arising from the parallel pseudo potential multiplied by the particle charge and the other from the magnetic mirror effect. The two forces push electrons in the opposite directions. In compressive solitons, in which the magnetic field is intensified, electrons with large magnetic moments can be reflected by the magnetic mirror effect, whereas in rarefactive solitons, in which the magnetic field is weaker than outside, electrons with small magnetic moments can be reflected by the parallel pseudo potential. Although F is basically positive and large in shock waves, it occasionally becomes negative in some regions behind the shock front in nonstationary wave evolution. These negative spikes of F can reflect electrons. In contrast to the case of electrons, the two forces push positrons in the same direction. For this reason, compressive solitons in an electron-positron-ion plasma reflect a large fraction of positrons compared with electrons, whereas rarefactive solitons will reflect no positrons. A shock wave can reflect a majority of positrons with its large F. However, in a pure electron-positron plasma, in which F becomes zero, positron reflection will rarely occur.

  1. Relative permittivity in the electrical double layer from nonlinear optics

    Science.gov (United States)

    Boamah, Mavis D.; Ohno, Paul E.; Geiger, Franz M.; Eisenthal, Kenneth B.

    2018-06-01

    Second harmonic generation (SHG) spectroscopy has been applied to probe the fused silica/water interface at pH 7 and the uncharged 11 ¯ 02 sapphire/water interface at pH 5.2 in contact with aqueous solutions of NaCl, NaBr, NaI, KCl, RbCl, and CsCl as low as several 10 μM. For ionic strengths up to about 0.1 mM, the SHG responses were observed to increase, reversibly for all salts surveyed, when compared to the condition of zero salt added. Further increases in the salt concentration led to monotonic decreases in the SHG response. The SHG increases followed by decreases are found to be consistent with recent reports of phase interference and phase matching in nonlinear optics. By varying the relative permittivity employed in common mean field theories used to describe electrical double layers and by comparing our results to available literature data, we find that models recapitulating the experimental observations are the ones in which (1) the relative permittivity of the diffuse layer is that of bulk water, with other possible values as low as 30, (2) the surface charge density varies with salt concentration, and (3) the charge in the Stern layer or its thickness varies with salt concentration. We also note that the experimental data exhibit sensitivity depending on whether the salt concentration is increased from low to high values or decreased from high to low values, which, however, is not borne out in the fits, at least within the current uncertainties associated with the model point estimates.

  2. An Electric Field Test Using the MRI

    Czech Academy of Sciences Publication Activity Database

    Fiala, P.; Bartušek, Karel

    2008-01-01

    Roč. 4, č. 7 (2008), s. 701-705 ISSN 1931-7360 Institutional research plan: CEZ:AV0Z20650511 Keywords : MRI * electric field * numerical modeling Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  3. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  4. Nonlinear propagation of strong-field THz pulses in doped semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2012-01-01

    We report on nonlinear propagation of single-cycle THz pulses with peak electric fields reaching 300 kV/cm in n-type semiconductors at room temperature. Dramatic THz saturable absorption effects are observed in GaAs, GaP, and Ge, which are caused by the nonlinear electron transport in THz fields....... The semiconductor conductivity, and hence the THz absorption, is modulated due to the acceleration of carriers in strong THz fields, leading to an increase of the effective mass of the electron population, as the electrons are redistributed from the low-momentum, low-effective-mass states to the high-momentum, high...

  5. Two devices for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Colombet, Andre; Hubert, Pierre.

    1977-02-01

    Two instruments installed at St Privat d'Allier for electric field measurement in connection with the rocket triggered lighting experiment program are described. The first one is a radioactive probe electrometer used as a warning device. The second is a field mill used for tape recording of electric field variation during the triggering events. Typical examples of such records are given [fr

  6. Tripolar electric field Structure in guide field magnetic reconnection

    OpenAIRE

    S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng

    2018-01-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...

  7. The constructive approach to nonlinear quantum field theory

    International Nuclear Information System (INIS)

    Segal, I.

    1976-01-01

    The general situation in nonlinear quantum field theory is outlined. The author discusses a reversion to the canonical quantization formalism and develops it to the maximal level attainable on the basis of advances in the past decade in nonlinear scattering and functional integration. (B.R.H.)

  8. Nonlinear vibration of an electrically actuated microresonator tuned by combined DC piezoelectric and electric actuations

    International Nuclear Information System (INIS)

    Zamanian, M; Khadem, S E

    2010-01-01

    This paper studies the nonlinear vibration of a clamped–clamped microresonator under combined electric and piezoelectric actuations. The electric actuation is induced by applying an AC–DC voltage between the microbeam and the electrode plate that lies on opposite sides of the microbeam, and the piezoelectric actuation is induced by applying the DC voltage between upper and lower sides of the piezoelectric layer deposited on the microbeam length. It is assumed that the neutral axis of bending is stretched when the microbeam is deflected. The equations of motion are derived using Newton's second law, and are solved using the multiple-scale perturbation method. It is shown that, depending on the value of DC electric and piezoelectric actuations, geometry and the bending stiffness of the system. A softening or hardening behavior may be realized. It demonstrates that nonlinear behavior of an electrically actuated microresonator may be tuned to a linear behavior by applying a convenient DC electric voltage to the piezoelectric layer, and so an undesirable shift of resonance frequency may be removed. If one lets the applied voltage to the piezoelectric layer be equal to zero, this paper would be an effort to tailor the linear and nonlinear stiffness coefficients of two layered electrically actuated microresonators without the assumption that the lengths of the two layers are equal

  9. Electric fields in the ionosphere

    International Nuclear Information System (INIS)

    Kirchhoff, V.W.J.H.

    1975-01-01

    F-region drift velocities, measured by incoherent-scatter radar, were analyzed in terms of diurnal, seasonal, magnetic-activity, and solar-cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day, but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component

  10. Nonlinear scalar field equations. Pt. 1

    International Nuclear Information System (INIS)

    Berestycki, H.; Lions, P.L.

    1983-01-01

    This paper as well as a subsequent one is concerned with the existence of nontrivial solutions for some semi-linear elliptic equations in Rsup(N). Such problems are motivated in particular by the search for certain kinds of solitary waves (stationary states) in nonlinear equations of the Klein-Gordon or Schroedinger type. (orig./HSI)

  11. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected

  12. Canonical action-angle formalism for quantized nonlinear fields

    International Nuclear Information System (INIS)

    Garbaczewki, P.

    1987-01-01

    The canonical quantizations of field and action-angle coordinates which (locally) parameterize the phase manifold for the same nonlinear field theory model (e.g. sine-Gordon and nonlinear Schrodinger with the attractive coupling) are reconciled on the common for both cases state space. The classical-quantum relationship is maintained in the mean: coherent state expectation values of operators give rise to classical objects

  13. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    Downum, W.B.

    1981-01-01

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  14. Underwater electric field detection system based on weakly electric fish

    Science.gov (United States)

    Xue, Wei; Wang, Tianyu; Wang, Qi

    2018-04-01

    Weakly electric fish sense their surroundings in complete darkness by their active electric field detection system. However, due to the insufficient detection capacity of the electric field, the detection distance is not enough, and the detection accuracy is not high. In this paper, a method of underwater detection based on rotating current field theory is proposed to improve the performance of underwater electric field detection system. First of all, we built underwater detection system based on the theory of the spin current field mathematical model with the help of the results of previous researchers. Then we completed the principle prototype and finished the metal objects in the water environment detection experiments, laid the foundation for the further experiments.

  15. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value

  16. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  17. Electric generating capacity planning: A nonlinear programming approach

    Energy Technology Data Exchange (ETDEWEB)

    Yakin, M.Z.; McFarland, J.W.

    1987-02-01

    This paper presents a nonlinear programming approach for long-range generating capacity expansion planning in electrical power systems. The objective in the model is the minimization of total cost consisting of investment cost plus generation cost for a multi-year planning horizon. Reliability constraints are imposed by using standard and practical reserve margin requirements. State equations representing the dynamic aspect of the problem are included. The electricity demand (load) and plant availabilities are treated as random variables, and the method of cumulants is used to calculate the expected energy generated by each plant in each year of the planning horizon. The resulting model has a (highly) nonlinear objective function and linear constraints. The planning model is solved over the multiyear planning horizon instead of decomposing it into one-year period problems. This approach helps the utility decision maker to carry out extensive sensitivity analysis easily. A case study example is provided using EPRI test data. Relationships among the reserve margin, total cost and surplus energy generating capacity over the planning horizon are explored by analyzing the model.

  18. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  19. Electric Potential and Electric Field Imaging with Applications

    Science.gov (United States)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  20. Electric field mapping and auroral Birkeland currents

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Larson, D.J.

    1989-01-01

    Magnetic field lines, electric fields and equipotentials have been mapped throughout the magnetosphere in the vicinity of strong Birkeland currents. It was found that a uniform electric field at either the ionospheric or the equatorial end of a field line can map to a highly structured field at the other end if strong Birkeland currents are located nearby. The initiation of sheet currents of the region 1 - region 2 scale size and intensity resulted in magnetic field line displacements of about 1/2 hour in local time between equatorial and ionospheric end points. As a result, a uniform dawn to dusk electric field at the equator mapped to an ionospheric electric field with strong inward pointing components in the dusk hemisphere. Similar distortions were produced by Birkeland currents associated with narrow east-west-aligned auroral arcs. A specific model for the auroral current system, based on ionospheric measurements during a large substorm, was used to study effects seen during disturbed periods. An iterative procedure was developed to generate a self-consistent current system even in the presence of highly twisted field lines. The measured ionospheric electric field was projected tot he equatorial plane in the presence of the model Birkeland current system. Several physical processes were seen to influence ionospheric and equatorial electric fields, and the associated plasma convection, during a substorm

  1. Simulations of nonlinear continuous wave pressure fields in FOCUS

    Science.gov (United States)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  2. Nanomechanical electric and electromagnetic field sensor

    Science.gov (United States)

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  3. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m -1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m -1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. ESTIMATING ELECTRIC FIELDS FROM VECTOR MAGNETOGRAM SEQUENCES

    International Nuclear Information System (INIS)

    Fisher, G. H.; Welsch, B. T.; Abbett, W. P.; Bercik, D. J.

    2010-01-01

    Determining the electric field distribution on the Sun's photosphere is essential for quantitative studies of how energy flows from the Sun's photosphere, through the corona, and into the heliosphere. This electric field also provides valuable input for data-driven models of the solar atmosphere and the Sun-Earth system. We show how observed vector magnetogram time series can be used to estimate the photospheric electric field. Our method uses a 'poloidal-toroidal decomposition' (PTD) of the time derivative of the vector magnetic field. These solutions provide an electric field whose curl obeys all three components of Faraday's Law. The PTD solutions are not unique; the gradient of a scalar potential can be added to the PTD electric field without affecting consistency with Faraday's Law. We then present an iterative technique to determine a potential function consistent with ideal MHD evolution; but this field is also not a unique solution to Faraday's Law. Finally, we explore a variational approach that minimizes an energy functional to determine a unique electric field, a generalization of Longcope's 'Minimum Energy Fit'. The PTD technique, the iterative technique, and the variational technique are used to estimate electric fields from a pair of synthetic vector magnetograms taken from an MHD simulation; and these fields are compared with the simulation's known electric fields. The PTD and iteration techniques compare favorably to results from existing velocity inversion techniques. These three techniques are then applied to a pair of vector magnetograms of solar active region NOAA AR8210, to demonstrate the methods with real data. Careful examination of the results from all three methods indicates that evolution of the magnetic vector by itself does not provide enough information to determine the true electric field in the photosphere. Either more information from other measurements, or physical constraints other than those considered here are necessary to find

  5. On the ionospheric coupling of auroral electric fields

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2009-04-01

    Full Text Available The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop, ΔΦII, as inferred from the characteristic energy of upward ion (electron beams for the upward (downward current region and the high-altitude perpendicular (to B potential, ΔΦbot, as calculated by integrating the perpendicular electric field across the structure. For upward currents, the coupling can be expressed analytically, using the linear current-voltage relation, as outlined by Weimer et al. (1985. This gives a scale size dependent coupling where structures are coupled (decoupled above (below a critical scale size. For downward currents, the current-voltage relation is highly non-linear which complicates the understanding of how the coupling works. Results from this experimental study indicate that small-scale structures are decoupled, similar to small-scale structures in the upward current region. There are, however, exceptions to this rule as illustrated by Cluster results of small-scale intense electric fields, correlated with downward currents, indicating a perfect coupling between the ionosphere and Cluster altitude.

  6. Vacuum instability in a random electric field

    International Nuclear Information System (INIS)

    Krive, I.V.; Pastur, L.A.

    1984-01-01

    The reaction of the vacuum on an intense spatially homogeneous random electric field is investigated. It is shown that a stochastic electric field always causes a breakdown of the boson vacuum, and the number of pairs of particles which are created by the electric field increases exponentially in time. For the choice of potential field in the form of a dichotomic random process we find in explicit form the dependence of the average number of pairs of particles on the time of the action of the source of the stochastic field. For the fermion vacuum the average number of pairs of particles which are created by the field in the lowest order of perturbation theory in the amplitude of the random field is independent of time

  7. Moderate and high intensity pulsed electric fields

    OpenAIRE

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for pasteurisation are high intensity pulsed electric fields aiming for minimal heat load, with an electric field strength (E) in the range of 15 − 20 kV/cm and pulse width (τ) between 2 − 20 μs. Alternativel...

  8. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-12-26

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions

  9. Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle.

    Science.gov (United States)

    El Majdoub, K; Giri, F; Ouadi, H; Chaoui, F Z

    2014-01-01

    The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope.

  10. Traction control of an electric vehicle based on nonlinear observers

    Directory of Open Access Journals (Sweden)

    Diego A. Aligia

    2017-12-01

    Full Text Available A traction control strategy for a four-wheel electric vehicle is proposed in this paper. The strategy is based on nonlinear observers which allows estimating the maximum force that can be transmitted to the road. Knowledge of the maximum force allows controlling the slip of the driving wheels, preventing the wheel’s slippage in low-grip surfaces. The proposed strategy also allows to avoid the undesired yaw moment in the vehicle which occurs when road conditions on either side of it are dierent. This improves the eciency and the control of the vehicle, avoiding possible losses of stability that can result in risks for its occupants. Both the proposed observer and the control strategy are designed based on a dynamic rotational model of the wheel and a brush force model. Simulation results are obtained based on a complete vehicle model on the Simulink/CarSim platform.

  11. Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills

    Science.gov (United States)

    Lucas, G.; Thayer, J. P.; Deierling, W.

    2016-12-01

    Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.

  12. Electropumping of water with rotating electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; De Luca, Sergio; Todd, Billy

    2013-01-01

    exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum...

  13. Effects of electric fields in polymerization on enthalpy of PMAA anhydridization

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhenqi; Liu Gang; Zhang Zhicheng

    2004-02-19

    PMAA (polymethacrylic acid) polymerized by {gamma}-irradiation in electric field forms six-membered cyclic anhydride during heating process and the enthalpy of PMAA anhydridization was determined by DSC. Why the endothermic peak of PMAA anhydridization in DSC curve between 200 and 300 deg. C appears is particularly explained by calculation. The relations between applied electric field and the enthalpy of PMAA anhydridization are studied. The results show that, with the increases of the intensity of electric field in polymerization, the enthalpy of PMAA forming anhydrides nonlinearly increase, which might be related to orientation of carboxylic acid groups of the PMAA in an electric field.

  14. Erythrocytes in alternating electric fields

    International Nuclear Information System (INIS)

    Morariu, V.V.; Chifu, A.; Simplaceanu, T.; Frangopol, P.T.

    1983-02-01

    The elastic and inelastic deformation of erythrocytes induced by alternating fields and the suggestion that moderate field intensities (1.2 kV/cm) when continuously applied can cause lysis by a different mechanism compared to the action of short intense field pulses is presented. The different experimental conditions can be used to approach various properties of the membrane such as those related to the dielectric polarization of the membrane or to the interfacial polarization, leading to the inelastic deformation of the cells. (authors)

  15. Axial Field Electric Motor and Method

    National Research Council Canada - National Science Library

    Cho, Chahee P

    2007-01-01

    .... A hybrid field, brushless, permanent magnet electric motor utilizing a rotor with two sets of permanent magnets oriented such that the flux produced by the two sets of magnets is perpendicular to each...

  16. Inductive electric field at the magnetopause

    International Nuclear Information System (INIS)

    Heikkila, W.J.

    1982-01-01

    The electric field data for two crossings of the magnetopause by ISEE-1 on November 20, 1977, have been analyzed with high time resolution. In both cases the electric field has a negative dawn-dusk component in the boundary layer, so it must reverse somewhere within the current layer to the positive value outside. If there is a component parallel to the moving magnetopause current it is small, and by no means obvious. In the case of the exit crossing from the boundary layer to the magnetosheath the data show that the electric field vector is turning for about two seconds at roughly the satellite spin rate; this changing direction suggests that the electric field has a curl. Such a curl could be caused by a travelling localized perturbation of the magnetopause surface current associated with impulsive plasma transport through the magnetopause

  17. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-01-01

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments

  18. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  19. Particle creation in colour-electric fields

    International Nuclear Information System (INIS)

    Ambjorn, J.; Hughes, R.J.

    1982-01-01

    The decay of the Yang-Mills vacuum in a uniform colour-electric field is calculated using the method of Bogoliubov transformations. The result does not agree with that obtained by summation of the corresponding perturbation series. (orig.)

  20. Molecular dynamics in high electric fields

    International Nuclear Information System (INIS)

    Apostol, M.; Cune, L.C.

    2016-01-01

    Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  1. Two dimensional analytical considerations of large magnetic and electric fields in laser produced plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Loeb, A.

    1985-08-01

    A simple model in two dimensions is developed and solved analytically taking into account the electric and magnetic fields in laser procuded plasmas. The electric potential in this model is described by a nonlinear differential equation. The stationary solution of this model is consistent for -0.1 less than or equal to psi 6 v/cm]/[B/MGauss] approx. 1

  2. New solutions of a nonlinear classical field theory

    International Nuclear Information System (INIS)

    Marques, G.C.; Ventura, I.

    1975-01-01

    New solutions of a relativistic, classical, field theoretical model having logarithmic nonlinearities are obtained. Some of these solutions correspond to field not bounded in time but having finite energy and charge. There are no bounded solutions (bound states and resonances in particular) if the charge exceeds a certain value. This effect is due to the existance of a 'charge barrier' in this field theoretical model. All calculations are performed in a number of spatial dimensions [pt

  3. Second quantization of classical nonlinear relativistic field theory. Pt. 2

    International Nuclear Information System (INIS)

    Balaban, T.

    1976-01-01

    The construction of a relativistic interacting local quantum field is given in two steps: first the classical nonlinear relativistic field theory is written down in terms of Poisson brackets, with initial conditions as canonical variables: next a representation of Poisson bracket Lie algebra by means of linear operators in the topological vector space is given and an explicit form of a local interacting relativistic quantum field PHI is obtained. (orig./BJ) [de

  4. Crystal growth under external electric fields

    International Nuclear Information System (INIS)

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-01-01

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal

  5. Crystal growth under external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  6. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of

  7. A non-linear field theory

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    A unified field theory of mesons and their particle sources is proposed and considered in its classical aspects. The theory has static solutions of a singular nature, but finite energy, characterized by spin directions; the number of such entities is a rigorously conserved constant of motion; they interact with an external meson field through a derivative-type coupling with the spins, akin to the formalism of strong-coupling meson theory. There is a conserved current identifiable with isobaric spin, and another that may be related to hypercharge. The postulates include one constant of the dimensions of length, and another that is conjecture necessarily to have the value (h/2π)c, or perhaps 1/2(h/2π)c, in the quantized theory. (author). 5 refs

  8. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1997-10-01

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  9. Magnetospheric electric fields and auroral oval

    Science.gov (United States)

    Laakso, Harri; Pedersen, Arne; Craven, John D.; Frank, L. A.

    1992-01-01

    DC electric field variations in a synchronous orbit (GEOS 2) during four substorms in the time sector 19 to 01 LT were investigated. Simultaneously, the imaging photometer on board DE 1 provided auroral images that are also utilized. Substorm onset is defined here as a sudden appearance of large electric fields. During the growth phase, the orientation of the electric field begins to oscillate some 30 min prior to onset. About 10 min before the onset GEOS 2 starts moving into a more tenuous plasma, probably due to a thinning of the current sheet. The onset is followed by a period of 10 to 15 min during which large electric fields occur. This interval can be divided into two intervals. During the first interval, which lasts 4 to 8 min, very large fields of 8 to 20 mV/m are observed, while the second interval contains relatively large fields (2 to 5 mV/m). A few min after the onset, the spacecraft returns to a plasma region of higher electron fluxes which are usually larger than before substorm. Some 30 min after onset, enhanced activity, lasting about 10 min, appears in the electric field. One of the events selected offers a good opportunity to study the formation and development of the Westward Traveling Surge (WST). During the traversal of the leading edge of the WTS (approximately 8 min) a stable wave mode at 5.7 mHz is detected.

  10. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  11. Electrically induced magnetic fields; a consistent approach

    Science.gov (United States)

    Batell, Brian; Ferstl, Andrew

    2003-09-01

    Electromagnetic radiation exists because changing magnetic fields induce changing electric fields and vice versa. This fact often appears inconsistent with the way some physics textbooks solve particular problems using Faraday's law. These types of problems often ask students to find the induced electric field given a current that does not vary linearly with time. A typical example involves a long solenoid carrying a sinusoidal current. This problem is usually solved as an example or assigned as a homework exercise. The solution offered by many textbooks uses the approximation that the induced, changing electric field produces a negligible magnetic field, which is only valid at low frequencies. If this approximation is not explicitly acknowledged, then the solution appears inconsistent with the description of electromagnetic radiation. In other cases, when the problem is solved without this approximation, the electric and magnetic fields are derived from the vector potential. We present a detailed calculation of the electric and magnetic fields inside and outside the long solenoid without using the vector potential. We then offer a comparison of our solution and a solution given in an introductory textbook.

  12. Lovelock black holes with a nonlinear Maxwell field

    International Nuclear Information System (INIS)

    Maeda, Hideki; Hassaiene, Mokhtar; Martinez, Cristian

    2009-01-01

    We derive electrically charged black hole solutions of the Einstein-Gauss-Bonnet equations with a nonlinear electrodynamics source in n(≥5) dimensions. The spacetimes are given as a warped product M 2 xK n-2 , where K n-2 is a (n-2)-dimensional constant curvature space. We establish a generalized Birkhoff's theorem by showing that it is the unique electrically charged solution with this isometry and for which the orbit of the warp factor on K n-2 is non-null. An extension of the analysis for full Lovelock gravity is also achieved with a particular attention to the Chern-Simons case.

  13. Detection of electric field around field-reversed configuration plasma

    International Nuclear Information System (INIS)

    Ikeyama, Taeko; Hiroi, Masanori; Nogi, Yasuyuki; Ohkuma, Yasunori

    2010-01-01

    Electric-field probes consisting of copper plates are developed to measure electric fields in a vacuum region around a plasma. The probes detect oscillating electric fields with a maximum strength of approximately 100 V/m through a discharge. Reproducible signals from the probes are obtained with an unstable phase dominated by a rotational instability. It is found that the azimuthal structure of the electric field can be explained by the sum of an n=2 mode charge distribution and a convex-surface electron distribution on the deformed separatrix at the unstable phase. The former distribution agrees with that anticipated from the diamagnetic drift motions of plasma when the rotational instability occurs. The latter distribution suggests that an electron-rich plasma covers the separatrix.

  14. Hofstadter spectrum in electric and magnetic fields

    International Nuclear Information System (INIS)

    Kunold, Alejandro; Torres, Manuel

    2005-01-01

    The problem of Bloch electrons in two dimensions subjected to magnetic and intense electric fields is investigated. Magnetic translations, electric evolution, and energy translation operators are used to specify the solutions of the Schroedinger equation. For rational values of the magnetic flux quanta per unit cell and commensurate orientations of the electric field relative to the original lattice, an extended superlattice can be defined and a complete set of mutually commuting space-time symmetry operators is obtained. Dynamics of the system is governed by a finite difference equation that exactly includes the effects of: an arbitrary periodic potential, an electric field orientated in a commensurable direction of the lattice, and coupling between Landau levels. A weak periodic potential broadens each Landau level in a series of minibands, separated by the corresponding minigaps. The addition of the electric field induces a series of avoided and exact crossing of the quasienergies, for sufficiently strong electric field the spectrum evolves into equally spaced discreet levels, in this 'magnetic Stark ladder' the energy separation is an integer multiple of hE/aB, with a the lattice parameter

  15. Study of Dynamic Membrane Behavior in Applied DC Electric Field

    Science.gov (United States)

    Dutta, Prashanta; Morshed, Adnan; Hossan, Mohammad

    2017-11-01

    Electrodeformation of vesicles can be used as a useful tool to understand the characteristics of biological soft matter, where vesicles immersed in a fluid medium are subjected to an applied electric field. The complex response of the vesicle membrane strongly depends on the conductivity of surrounding fluid, vesicle size and shape, and applied electric field We studied the electrodeformation of vesicles immersed in a fluid media under a short DC electric pulse. An immersed interface method is used to solve the electric field over the domain with conductive or non-conductive vesicles while an immersed boundary scheme is employed to solve fluid flow, fluid-solid interaction, membrane mechanics and vesicle movement. Force analysis on the membrane surface reveals almost linear relation with vesicle size, but highly nonlinear influence of applied field as well as the conductivity ratios inside and outside of the vesicle. Results also point towards an early linear deformation regime followed by an equilibrium stage for the membranes. Moreover, significant influence of the initial aspect ratio of the vesicle on the force distribution is observed across a range of conductivity ratios. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  16. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    Science.gov (United States)

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.

  17. The electric field standing wave effect in infrared transflection spectroscopy

    Science.gov (United States)

    Mayerhöfer, Thomas G.; Popp, Jürgen

    2018-02-01

    We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.

  18. Characterization of electrosynthesized conjugated polymer-carbon nanotube composite: optical nonlinearity and electrical property.

    Science.gov (United States)

    Bahrami, Afarin; Talib, Zainal Abidin; Shahriari, Esmaeil; Yunus, Wan Mahmood Mat; Kasim, Anuar; Behzad, Kasra

    2012-01-01

    The effects of multi-walled carbon nanotube (MWNT) concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS) as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM) indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n(2)) and the nonlinear absorption (β) of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW) laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n(2) and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.

  19. Positrons trapped in polyethylene: Electric field effect

    International Nuclear Information System (INIS)

    Bertolaccini, M.; Bisi, A.; Gambarini, G.; Zappa, L.

    1978-01-01

    The intensity of the iot 2 -component of positrons annihilated in polyethylene is found to increase with increasing electric field, while the formation probability of the positron state responsible for this component remains independent of the field. (orig.) 891 HPOE [de

  20. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect.

    Science.gov (United States)

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  1. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.

    Science.gov (United States)

    Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A

    2017-02-01

    Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.

  2. Electric arc behaviour in dynamic magnetic fields

    International Nuclear Information System (INIS)

    Put'ko, V.F.

    2000-01-01

    The behaviour of an electric arc in different time-dependent (dynamic) magnetic fields was investigated. New possibilities were found for spatial and energy stabilisation of a discharge, for intensifying heat exchange, extending the electric arc and distributed control of electric arc plasma. Rotating, alternating and travelling magnetic fields were studied. It was found that under the effect of a relatively low frequency of variations of dynamic magnetic fields (f 1000 Hz) the arc stabilised at the axis of the discharge chamber, the pulsation level decreased and discharge stability increased. The borders between these two arc existence modes were formed by a certain critical field variation frequency the period of which was determined by the heat relaxation time of the discharge. (author)

  3. Ultrafast nonlinear response of silicon carbide to intense THz fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Kaltenecker, Korbinian J.

    2017-01-01

    We demonstrate ultrafast nonlinear absorption induced by strong, single-cycle THz fields in bulk, lightly doped 4H silicon carbide. A combination of Zener tunneling and intraband transitions makes the effect as at least as fast as the excitation pulse. The sub-picosecond recovery time makes...

  4. A nonlinear dynamics for the scalar field in Randers spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.E.G. [Universidade Federal do Cariri (UFCA), Instituto de formação de professores, Rua Olegário Emídio de Araújo, Brejo Santo, CE, 63.260.000 (Brazil); Maluf, R.V. [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza, CE, C.P. 6030, 60455-760 (Brazil)

    2017-03-10

    We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  5. Statistics of peaks in cosmological nonlinear density fields

    International Nuclear Information System (INIS)

    Suginohara, Tatsushi; Suto, Yasushi.

    1990-06-01

    Distribution of the high-density peaks in the universe is examined using N-body simulations. Nonlinear evolution of the underlying density field significantly changes the statistical properties of the peaks, compared with the analytic results valid for the random Gaussian field. In particular, the abundances and correlations of the initial density peaks are discussed in the context of biased galaxy formation theory. (author)

  6. Magnetic-field asymmetry of nonlinear thermoelectric and heat transport

    International Nuclear Information System (INIS)

    Hwang, Sun-Yong; Sánchez, David; López, Rosa; Lee, Minchul

    2013-01-01

    Nonlinear transport coefficients do not obey, in general, reciprocity relations. We here discuss the magnetic-field asymmetries that arise in thermoelectric and heat transport of mesoscopic systems. Based on a scattering theory of weakly nonlinear transport, we analyze the leading-order symmetry parameters in terms of the screening potential response to either voltage or temperature shifts. We apply our general results to a quantum Hall antidot system. Interestingly, we find that certain symmetry parameters show a dependence on the measurement configuration. (paper)

  7. Experimental study on the effects of AC electric fields on flame spreading over polyethylene-insulated electric-wire

    KAUST Repository

    Jin, Young Kyu

    2010-11-01

    In this present study, we experimentally investigated the effects of electric fields on the characteristics of flames spreading over electric-wires with AC fields. The dependence of the rate at which a flame spreads over polyethylene-insulated wires on the frequency and amplitude of the applied AC electric field was examined. The spreading of the flame can be categorized into linear spreading and non-linearly accelerated spreading of flame. This categorization is based on the axial distribution of the field strength of the applied electric field. The rate at which the flame spreads is highly dependent on the inclined direction of the wire fire. It could be possible to explain the spreading of the flame on the basis of thermal balance. © 2010 The Korean Society of Mechanical Engineers.

  8. Research on Nonlinear Feature of Electrical Resistance of Acupuncture Points

    Directory of Open Access Journals (Sweden)

    Jianzi Wei

    2012-01-01

    Full Text Available A highly sensitive volt-ampere characteristics detecting system was applied to measure the volt-ampere curves of nine acupuncture points, LU9, HT7, LI4, PC6, ST36, SP6, KI3, LR3, and SP3, and corresponding nonacupuncture points bilaterally from 42 healthy volunteers. Electric currents intensity was increased from 0 μA to 20 μA and then returned to 0 μA again. The results showed that the volt-ampere curves of acupuncture points had nonlinear property and magnetic hysteresis-like feature. On all acupuncture point spots, the volt-ampere areas of the increasing phase were significantly larger than that of the decreasing phase (P<0.01. The volt-ampere areas of ten acupuncture point spots were significantly smaller than those of the corresponding nonacupuncture point spots when intensity was increase (P<0.05~P<0.001. And when intensity was decrease, eleven acupuncture point spots showed the same property as above (P<0.05~P<0.001, while two acupuncture point spots showed opposite phenomenon in which the areas of two acupuncture point spots were larger than those of the corresponding nonacupuncture point spots (P<0.05~P<0.01. These results show that the phenomenon of low skin resistance does not exist to all acupuncture points.

  9. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  10. Temperature/electric field scaling in Ferroelectrics

    International Nuclear Information System (INIS)

    Hajjaji, Abdelowahed; Guyomar, Daniel; Pruvost, Sebastien; Touhtouh, Samira; Yuse, Kaori; Boughaleb, Yahia

    2010-01-01

    The effects of the field amplitude (E) and temperature on the polarization and their scaling relations were investigated on rhombohedral PMN-xPT ceramics. The scaling law was based on the physical symmetries of the problem and rendered it possible to express the temperature variation (Δθ) as an electric field equivalent ΔE eq =(α+2βxP(E,θ 0 ))xΔθ. Consequently, this was also the case for the relationship between the entropy (Γ) and polarization (P). Rhombohedral Pb(Mg 1/3 Nb 2/3 ) 0.75 Ti 0.25 O 3 ceramics were used for the verification. It was found that such an approach permitted the prediction of the maximal working temperature, using only purely electrical measurements. It indicates that the working temperature should not exceed 333 K. This value corresponds to the temperature maximum before the dramatic decrease of piezoelectric properties. Reciprocally, the polarization behavior under electrical field can be predicted, using only purely thermal measurements. The scaling law enabled a prediction of the piezoelectric properties (for example, d 31 ) under an electrical field replacing the temperature variation (Δθ) by ΔE/(α+2βxp(E,θ 0 )). Inversely, predictions of the piezoelectric properties (d 31 ) as a function of temperature were permitted using purely only electrical measurements.

  11. Temperature/electric field scaling in Ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Hajjaji, Abdelowahed, E-mail: Hajjaji12@gmail.co [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Guyomar, Daniel; Pruvost, Sebastien [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Touhtouh, Samira [Laboratoire de Physique de la Matiere Condensee, LPMC, Departement de Physique, Faculte des Sciences, 24000 El-Jadida, Maroc (Morocco); Yuse, Kaori [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Boughaleb, Yahia [Laboratoire de Physique de la Matiere Condensee, LPMC, Departement de Physique, Faculte des Sciences, 24000 El-Jadida, Maroc (Morocco)

    2010-07-01

    The effects of the field amplitude (E) and temperature on the polarization and their scaling relations were investigated on rhombohedral PMN-xPT ceramics. The scaling law was based on the physical symmetries of the problem and rendered it possible to express the temperature variation ({Delta}{theta}) as an electric field equivalent {Delta}E{sub eq}=({alpha}+2{beta}xP(E,{theta}{sub 0}))x{Delta}{theta}. Consequently, this was also the case for the relationship between the entropy ({Gamma}) and polarization (P). Rhombohedral Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.75}Ti{sub 0.25}O{sub 3} ceramics were used for the verification. It was found that such an approach permitted the prediction of the maximal working temperature, using only purely electrical measurements. It indicates that the working temperature should not exceed 333 K. This value corresponds to the temperature maximum before the dramatic decrease of piezoelectric properties. Reciprocally, the polarization behavior under electrical field can be predicted, using only purely thermal measurements. The scaling law enabled a prediction of the piezoelectric properties (for example, d{sub 31}) under an electrical field replacing the temperature variation ({Delta}{theta}) by {Delta}E/({alpha}+2{beta}xp(E,{theta}{sub 0})). Inversely, predictions of the piezoelectric properties (d{sub 31}) as a function of temperature were permitted using purely only electrical measurements.

  12. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  13. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  14. Parallel electric fields from ionospheric winds

    International Nuclear Information System (INIS)

    Nakada, M.P.

    1987-01-01

    The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced. These appear to be sufficient to heat the electrons which reduces the conductivity and produces further increases in parallel electric fields and temperatures. Calculations indicate that high enough temperatures for optical emission can be produced in less than 0.3 s. Some properties of auroras that might be produced by dynamo winds are examined; one property is a time delay in brightening at higher and lower altitudes

  15. Electric field stimulated growth of Zn whiskers

    Science.gov (United States)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  16. Electric field stimulated growth of Zn whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D.; McCulloch, J.; Irving, R.; Karpov, V. G. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Warrell, G. R.; Shvydka, Diana, E-mail: diana.shvydka@utoledo.edu [Department of Radiation Oncology, University of Toledo Health Science Campus, Toledo, Ohio 43614 (United States)

    2016-07-15

    We have investigated the impact of strong (∼10{sup 4} V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  17. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  18. Finite element solution of quasistationary nonlinear magnetic field

    International Nuclear Information System (INIS)

    Zlamal, Milos

    1982-01-01

    The computation of quasistationary nonlinear two-dimensional magnetic field leads to the following problem. There is given a bounded domain OMEGA and an open nonempty set R included in OMEGA. We are looking for the magnetic vector potential u(x 1 , x 2 , t) which satisifies: 1) a certain nonlinear parabolic equation and an initial condition in R: 2) a nonlinear elliptic equation in S = OMEGA - R which is the stationary case of the above mentioned parabolic equation; 3) a boundary condition on delta OMEGA; 4) u as well as its conormal derivative are continuous accross the common boundary of R and S. This problem is formulated in two equivalent abstract ways. There is constructed an approximate solution completely discretized in space by a generalized Galerkin method (straight finite elements are a special case) and by backward A-stable differentiation methods in time. Existence and uniqueness of a weak solution is proved as well as a weak and strong convergence of the approximate solution to this solution. There are also derived error bounds for the solution of the two-dimensional nonlinear magnetic field equations under the assumption that the exact solution is sufficiently smooth

  19. Pentacene Excitons in Strong Electric Fields.

    Science.gov (United States)

    Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus

    2018-02-05

    Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spinor Field Nonlinearity and Space-Time Geometry

    Science.gov (United States)

    Saha, Bijan

    2018-03-01

    Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time

  1. Assessment of multiple frequency ELF electric and magnetic field exposure

    International Nuclear Information System (INIS)

    Leitgeb, N

    2008-01-01

    Electromagnetic fields both in daily life and at workplaces exhibit increasingly complex frequency spectra. Present spectral assessment rules proved to be too conservative for health risk assessment. This is because they are based on the assumption that cells would react like linear systems in terms of responding to a sum of frequencies by a sum of independent responses to each individual frequency. Based on numerical investigations with the Hodgkin-Huxley and the Frankenhaeuser-Huxley nerve cell models, it could be shown that accounting for the nonlinear behaviour of cellular excitation processes avoids considerable overestimation of simultaneous exposures to multiple frequency ELF electric and magnetic fields. Besides this, it could be shown that the role of phase relationships is less important than that assumed so far. The present assessment rules lead to non-compliances of marketed electric appliances. For general application, a nonlinear biology-based assessment (NBBA) rule has been proposed, validated and proven advantageous compared with ICNIRP's rule. While staying conservative it avoids unnecessary overestimation and demonstrates compliance even in cases of suspected non-conformities. It is up to responsible bodies to decide upon the adoption of this proposal and the potential need for implementing additional or reducing the already incorporated safety factors

  2. Green functions in an external electric field

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Shvartsman, Sh.M.

    1979-01-01

    In the framework of scalar quantum electrodynamics, when vacuum is unstable as to the birth of electron-positron couples, calculated have been Green functions for the case of stable homogeneous electric field. By summing corresponding solutions of the Klein-Gordon equation of the Green function are obtained in the form of contour integrals according to the proper time. Operation representations of all the calculated Green functions in the mentioned field are presented

  3. Electrical circuit modeling of reversed field pinches

    International Nuclear Information System (INIS)

    Sprott, J.C.

    1988-02-01

    Equations are proposed to describe the radial variation of the magnetic field and current density in a circular, cylindrical RFP. These equations are used to derive the electrical circuit parameters (inductance, resistance, and coupling coefficient) for an RFP discharge. The circuit parameters are used to evaluate the flux and energy consumption for various startup modes and for steady-state operation using oscillating field current drive. The results are applied to the MST device. 32 refs., 14 figs., 1 tab

  4. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hengan; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2014-03-10

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1∕3}Nb{sub 2∕3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.

  5. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    International Nuclear Information System (INIS)

    Zhou, Hengan; Fan, Xiaolong; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-01-01

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg 1∕3 Nb 2∕3 )O 3 -PbTiO 3 substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time

  6. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  7. Moderate and high intensity pulsed electric fields

    NARCIS (Netherlands)

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for

  8. Distribution of particles in stochastic electric fields

    International Nuclear Information System (INIS)

    Rolland, Paul.

    1979-11-01

    The distribution of one particle as well as an ensemble of particles submitted to a stochastic electric field obeying different kinds of laws is studied. A particular attention is devoted to the deviation from the gaussian distribution and to the consequences of this effect on diffusion and heating [fr

  9. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  10. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-01-15

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.

  11. Silicon Photomultiplier Performance in High ELectric Field

    Science.gov (United States)

    Montoya, J.; Morad, J.

    2016-12-01

    Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to

  12. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...

  13. Sensitivity-based virtual fields for the non-linear virtual fields method

    Science.gov (United States)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  14. Soliton excitations in a class of nonlinear field theory models

    International Nuclear Information System (INIS)

    Makhan'kov, V.G.; Fedyanin, V.K.

    1985-01-01

    Investigation results of nonlinear models of the field theory with a lagrangian are described. The theory includes models both with zero stable vacuum epsilon=1 and with condensate epsilon=-1 (of disturbed symmetry). Conditions of existence of particle-like solutions (PLS), stability of these solutions are investigated. Soliton dynamics is studied. PLS formfactors are calculated. Statistical mechanics of solitons is built and their dynamic structure factors are calculated

  15. On the pressure field of nonlinear standing water waves

    Science.gov (United States)

    Schwartz, L. W.

    1980-01-01

    The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.

  16. Plasmasheet boundary electric fields during substorms

    International Nuclear Information System (INIS)

    Pedersen, A.

    1985-01-01

    Electric field data from the ISEE-1 and GEOS-2 satellites have been studied during two substorms when ISEE-1 was in a favourable position in the magneto-tail and GEOS-2 was in the afternoon/evening sector of the geostationary orbit. Both electric field measurements were carried out with spherical double probes, separately by 73.5 m on ISEE-1, and 42 m on GEOS-2. In one case GEOS-2, in the afternoon sector, detected an increase of the dawn-to-dusk electric field during plasmasheet thinning and approximately 10 minutes prior to a substorm expansion. At the time of this expansion ISEE-1 was most likely near an X-line, on the Earthward side and detected Earthward antiE x antiB velocities, in excess of 500 km s -1 . In another example ISEE-1 was most likely near an X-line, on the tailward side, and observed tailward antiE x antiB velocities which were followed, 5-20 minutes later, by characteristic oscillating electric fields (time scales of 10s-30s) on GEOS-2 near 23 local time. Such signatures have on many occasions been connected with observations of westward travelling surges near the GEOS-2 conjugated area in Scandinavia. The ISEE-1 observations of large-dawn-to-dusk electric fields were concentrated to the outer boundary of the plasmasheet, and in the case of the westward travelling surge. GEOS-2 was most likely at the inner, Earthward edge of the plasmasheet. Time delays between ISEE-1 and GEOS-2 indicate a propagation velocity comparable to the antiE x antiB velocity

  17. Charged Hadron Properties in Background Electric Fields

    International Nuclear Information System (INIS)

    Detmold, William; Tiburzi, Brian C.; Walker-Loud, Andre

    2010-01-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields. A staple component of any electrodynamics or quantum mechanics course is the electric polarizability. Neutral material immersed in a weak external field polarizes, internally setting up an electric dipole moment, aligned so as to minimize the energy. At the atomic level, the electron clouds are distorted creating these microscopic dipole moments. The same process occurs at the hadronic level but the polarization effects are now constrained by the strong force. Polarizabilities of these bound QCD states can be viewed as a distortion of the charged pion cloud of a given hadron. One can use lattice QCD to non-perturbatively compute the quark and gluon interactions in the presence of background electric (or magnetic) fields. For sufficiently weak background fields, the low energy properties of the hadrons can be rigorously computed using effective field theory. With this treatment, a picture of hadrons emerges from chiral dynamics: that of a hadronic core surrounded by a pseudoscalar meson cloud. As some pseudoscalar mesons are charged, polarizabilities of hadrons encode the stiffness of the charged meson cloud (as well as that of the core). The form of pseudoscalar meson polarizabilities is consequently strongly constrained by chiral dynamics. However, beyond the leading order, the results depend upon essentially unknown low-energy constants, which must currently be estimated in a model-dependent fashion. In the case of the charged pion, the experimental measurement of the polarizability has proven difficult, both in the original measurement as well as the most recent published result. Currently, there is a 2-3 sigma discrepancy between the two-loop cPT prediction and the measured charged pion polarizability. New results with higher

  18. Static electric fields modify the locomotory behaviour of cockroaches.

    Science.gov (United States)

    Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L

    2011-06-15

    Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.

  19. Calculation of the internal electric field within doped semiconductors

    International Nuclear Information System (INIS)

    Phelps, G J

    2012-01-01

    A detailed model for the calculation of the internal potential and electric field profile within doped semiconductors is developed from a first-principles approach and presented in this paper. The model utilizes Poisson's equation and basic Boltzmann statistics to develop a standard nonlinear Poisson–Boltzmann equation (NPBE) for doped semiconductors. The resultant NPBE links the internal electrostatic potential within the doped semiconductor to the doping concentration profile of the semiconductor device under consideration. The NPBE is solved by the application of numerical methods, is general in formulation, supporting multiple simultaneous dopant configurations, and may be applied to any semiconductor type. Calculated results of the electric field profile for various semiconductor dopant structures derived using the model are additionally presented in this paper. The electric field results predicted by the model are shown to be in excellent agreement with those found by other methods. The model may be expanded to accommodate effects involving internal substrate electron–hole pair generation (gemination) caused by photo-ionization for application to and the modeling of solar cell device structures. (paper)

  20. Topological and statistical properties of nonlinear force-free fields

    Science.gov (United States)

    Mangalam, A.; Prasad, A.

    2018-01-01

    We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions.

  1. Tikekar superdense stars in electric fields

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  2. Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies

    DEFF Research Database (Denmark)

    Keiser, G. R.; Seren, H. R.; Strikwerda, Andrew C.

    2014-01-01

    The design of artificial nonlinear materials requires control over internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists...... of a split ring resonator (SRR) array stacked above an array of closed conducting rings. An in-plane, lateral shift of a half unit cell between the SRR and closed ring arrays results in an increase of the MM oscillator strength by a factor of 4 and a 40% change in the amplitude of the resonant electric field...

  3. Statistical properties of nonlinear one-dimensional wave fields

    Directory of Open Access Journals (Sweden)

    D. Chalikov

    2005-01-01

    Full Text Available A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.

  4. Statistical properties of nonlinear one-dimensional wave fields

    Science.gov (United States)

    Chalikov, D.

    2005-06-01

    A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.

  5. Nonlinear dynamics of tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.

    1987-05-01

    The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10 ≤ n ≤ 20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back-coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments. 13 refs., 21 figs., 1 tab

  6. Nonlinear dynamics of tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.

    1988-01-01

    The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10approx. < napprox. <20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments

  7. Electrical and magnetic fields of the power supply

    International Nuclear Information System (INIS)

    2017-01-01

    The availability of electrical energy in all areas of life is guaranteed by a widely ramified power grid. When electricity is transported, magnetic fields are created in addition to the electrical fields. In this brochure one will learn more about the causes and effects of electrical and magnetic fields as well as protection concepts and preventive measures. [de

  8. SIMULATION OF SYNCHRONIZATION OF NONLINEAR OSCILLATORS BY THE EXTERNAL FIELD

    Directory of Open Access Journals (Sweden)

    V. M. Kuklin

    2017-05-01

    Full Text Available In this paper, the self-consistent model was considered, consisting of a system of oscillators, the coupling between them was assumed to be integral (due to the fields formed as a result of their co-radiation. With the help of this model, the features of synchronization by waves of finite amplitude of a system of oscillators were refined, the initial phase values of which are random. The effect of nonlinearity, in particular, due to the change in the mass of the oscillator due to relativistic effects, was taken into account. It was shown that the nonlinearity does not violate the nature of the energy exchange between the wave and the oscillator system, leading only to a slight decrease in the efficiency of such an exchange.

  9. Nonlinear massive spin-2 field generated by higher derivative gravity

    International Nuclear Information System (INIS)

    Magnano, Guido; Sokolowski, Leszek M.

    2003-01-01

    We present a systematic exposition of the Lagrangian field theory for the massive spin-2 field generated in higher-derivative gravity upon reduction to a second-order theory by means of the appropriate Legendre transformation. It has been noticed by various authors that this nonlinear field overcomes the well-known inconsistency of the theory for a linear massive spin-2 field interacting with Einstein's gravity. Starting from a Lagrangian quadratically depending on the Ricci tensor of the metric, we explore the two possible second-order pictures usually called '(Helmholtz-)Jordan frame' and 'Einstein frame'. In spite of their mathematical equivalence, the two frames have different structural properties: in Einstein frame, the spin-2 field is minimally coupled to gravity, while in the other frame it is necessarily coupled to the curvature, without a separate kinetic term. We prove that the theory admits a unique and linearly stable ground state solution, and that the equations of motion are consistent, showing that these results can be obtained independently in either frame (each frame therefore provides a self-contained theory). The full equations of motion and the (variational) energy-momentum tensor for the spin-2 field in Einstein frame are given, and a simple but non-trivial exact solution to these equations is found. The comparison of the energy-momentum tensors for the spin-2 field in the two frames suggests that the Einstein frame is physically more acceptable. We point out that the energy-momentum tensor generated by the Lagrangian of the linearized theory is unrelated to the corresponding tensor of the full theory. It is then argued that the ghost-like nature of the nonlinear spin-2 field, found long ago in the linear approximation, may not be so harmful to classical stability issues, as has been expected

  10. Synchronization of FitzHugh-Nagumo neurons in external electrical stimulation via nonlinear control

    International Nuclear Information System (INIS)

    Wang Jiang; Zhang Ting; Deng Bin

    2007-01-01

    Synchronization of FitzHugh-Nagumo neural system under external electrical stimulation via the nonlinear control is investigated in this paper. Firstly, the different dynamical behavior of the nonlinear cable model based on the FitzHugh-Nagumo model responding to various external electrical stimulations is studied. Next, using the result of the analysis, a nonlinear feedback linearization control scheme and an adaptive control strategy are designed to synchronization two neurons. Computer simulations are provided to verify the efficiency of the designed synchronization schemes

  11. Pulsed Electric Field treatment of packaged food

    OpenAIRE

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal pasteurisation. With this method, pasteurisation is realised by electroporation of bacterial membranes, which prolong the shelf-life of the product. Existing PEF treatment is based on the applicati...

  12. Ambipolarons: Solitary wave solutions for the radial electric field in a plasma

    International Nuclear Information System (INIS)

    Hastings, D.E.; Hazeltine, R.D.; Morrison, P.J.

    1986-01-01

    The ambipolar radial electric field in a nonaxisymmetric plasma can be described by a nonlinear diffusion equation. This equation is shown to possess solitary wave solutions. A model nonlinear diffusion equation with a cubic nonlinearity is studied. An explicit analytic step-like form for the solitary wave is found. It is shown that the solitary wave solutions are linearly stable against all but translational perturbations. Collisions of these solitary waves are studied and three possible final states are found: two diverging solitary waves, two stationary solitary waves, or two converging solitary waves leading to annihilation

  13. Spontaneous electric fields in solid films: spontelectrics

    DEFF Research Database (Denmark)

    Field, David; Plekan, Oksana; Cassidy, Andrew

    2013-01-01

    When dipolar gases are condensed at sufficiently low temperature onto a solid surface, they form films that may spontaneously exhibit electric fields in excess of 108V/m. This effect, called the ‘spontelectric effect’, was recently revealed using an instrument designed to measure scattering....... Heterolayers may also be laid down creating potential wells on the nanoscale. A model is put forward based upon competition between dipole alignment and thermal disorder, which is successful in reproducing the variation of the degree of dipole alignment and the spontelectric field with deposition temperature...

  14. Influence of atmospheric electric fields on the radio emission from extensive air showers

    DEFF Research Database (Denmark)

    Trinh, T. N. G.; Scholten, O.; Buitink, S.

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of ...

  15. Liquid toroidal drop under uniform electric field

    Science.gov (United States)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  16. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  17. Nonlinear interactions of focused resonance cone fields with plasmas

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Gekelman, W.

    1977-01-01

    A simple yet novel rf exciter structure has been developed for generating remotely intense rf fields in a magnetoplasma. It is a circular line source of radius R in a plane perpendicularB 0 driven with an rf signal at ω 0 E/sub rf/ 2 /nkT/sub e/>0.2, a strong density depression in the focal region (deltan/n>40%) is observed. The density perturbation modifies the cone angle and field distribution. This nonlinear interaction leads to a rapid growth of ion acoustic wave turbulence and a corresponding random rf field distribution in a broadened focal region. The development of the interaction is mapped in space and time

  18. Mean field strategies induce unrealistic nonlinearities in calcium puffs

    Directory of Open Access Journals (Sweden)

    Guillermo eSolovey

    2011-08-01

    Full Text Available Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs. To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic nonlinear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes.

  19. The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach

    Energy Technology Data Exchange (ETDEWEB)

    Bessec, Marie [CGEMP, Universite Paris-Dauphine, Place du Marechal de Lattre de Tassigny Paris (France); Fouquau, Julien [LEO, Universite d' Orleans, Faculte de Droit, d' Economie et de Gestion, Rue de Blois, BP 6739, 45067 Orleans Cedex 2 (France)

    2008-09-15

    This paper investigates the relationship between electricity demand and temperature in the European Union. We address this issue by means of a panel threshold regression model on 15 European countries over the last two decades. Our results confirm the non-linearity of the link between electricity consumption and temperature found in more limited geographical areas in previous studies. By distinguishing between North and South countries, we also find that this non-linear pattern is more pronounced in the warm countries. Finally, rolling regressions show that the sensitivity of electricity consumption to temperature in summer has increased in the recent period. (author)

  20. Chameleon's behavior of modulable nonlinear electrical transmission line

    Science.gov (United States)

    Togueu Motcheyo, A. B.; Tchinang Tchameu, J. D.; Fewo, S. I.; Tchawoua, C.; Kofane, T. C.

    2017-12-01

    We show that modulable discrete nonlinear transmission line can adopt Chameleon's behavior due to the fact that, without changing its appearance structure, it can become alternatively purely right or left handed line which is different to the composite one. Using a quasidiscrete approximation, we derive a nonlinear Schrödinger equation, that predicts accurately the carrier frequency threshold from the linear analysis. It appears that the increasing of the linear capacitor in parallel in the series branch induced the selectivity of the filter in the right-handed region while it increases band pass filter in the left-handed region. Numerical simulations of the nonlinear model confirm the forward wave in the right handed line and the backward wave in the left handed one.

  1. Chaos control and synchronization of two neurons exposed to ELF external electric field

    International Nuclear Information System (INIS)

    Wang Jiang; Zhang Ting; Che Yanqiu

    2007-01-01

    Chaos control and synchronization of two unidirectional coupled neurons exposed to ELF electrical field via nonlinear control technique is investigated. Based on results of space-time characteristics of trans-membrane voltage, the variation of cell trans-membrane voltage exposed to extremely low frequency (ELF) electric field is analyzed. The dynamical behaviors of the modified Hodgkin-Huxley (HH) model are identified under the periodic ELF electric field using both analytical and numerical analysis. Then, using the results of the analysis, a nonlinear feedback linearization control scheme and a modified adaptive control strategy are designed to synchronize the two unidirectional coupled neurons and stabilize the chaotic trajectory of the slave system to desired periodic orbit of the master system. The simulation results demonstrated the efficiency of the proposed algorithms

  2. Heisenberg representation for secondary-quantized fields in nonstationary external fields and dielectric nonlinear medium

    International Nuclear Information System (INIS)

    Lobashev, A.A.; Mostepanenko, V.M.

    1993-01-01

    Heisenberg formalism is developed for creation-annihilation operators of quantum fields propagating in nonstationary external fields. Quantum fields with spin 0,1/2, 1 are considered in the presence of such external fields as electromagnetic, scalar and the field of nonstationary dielectric properties of nonlinear medium. Elliptic operator parametrically depending on time is constructed. In Heisenberg representation field variables are decomposed over eigenfunction of this operator. The relation between Heisenberg creation-annihilation operators and the operators obtained in the frame of diagonalization of Hamiltonian with Bogoliubov transformations is set up

  3. Low frequency electric and magnetic fields

    Science.gov (United States)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  4. Effects of applied electromagnetic fields on the linear and nonlinear optical properties in an inverse parabolic quantum well

    International Nuclear Information System (INIS)

    Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2012-01-01

    In this present work, we have investigated theoretically the effects of applied electric and magnetic fields on the linear and nonlinear optical properties in a GaAs/Al x Ga 1−x As inverse parabolic quantum well for different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The energy levels and wave functions are calculated within the effective mass approximation and the envelope function approach. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The linear, third-order nonlinear and total absorption and refractive index changes depending on the Al concentration at the well center are investigated as a function of the incident photon energy for the different values of the applied electric and magnetic fields. The results show that the applied electric and magnetic fields have a great effect on these optical quantities. - Highlights: ► The x c concentration has a great effect on the optical characteristics of these structures. ► The EM fields have a great effect on the optical properties of these structures. ► The total absorption coefficients increased as the electric and magnetic field increases. ► The RICs reduced as the electric and magnetic field increases.

  5. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-01-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received

  6. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    Science.gov (United States)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  7. Modelling electricity forward markets by ambit fields

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Fred Espen Benth, Fred Espen; Veraart, Almut

    This paper proposes a new modelling framework for electricity forward markets, which is based on ambit fields. The new model can capture many of the stylised facts observed in energy markets. One of the main differences to the traditional models lies in the fact that we do not model the dynamics......, but the forward price directly, where we focus on models which are stationary in time. We give a detailed account on the probabilistic properties of the new model and we discuss martingale conditions and change of measure within the new model class. Also, we derive a model for the spot price which is obtained...

  8. Electrostatic air filters generated by electric fields

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-01

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity

  9. Nonlinear mean field theory for nuclear matter and surface properties

    International Nuclear Information System (INIS)

    Boguta, J.; Moszkowski, S.A.

    1983-01-01

    Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)

  10. Hydrogenic donor in a quantum well with an electric field

    International Nuclear Information System (INIS)

    Jayakumar, K.; Balasubramanian, S.; Tomak, M.

    1985-08-01

    Variational calculations of the binding energy of a hydrogenic donor in a quantum well formed by GaAs and Gasub(1-x)A1sub(x)As with a constant electric field are performed for different electric fields and well widths. A critical electric field is defined and its variation with well width is presented. (author)

  11. Interaction between lf electric fields and biological bodies

    Directory of Open Access Journals (Sweden)

    Češelkoska Vesna C.

    2004-01-01

    Full Text Available In this paper the Equivalent electrodes method is used for electric field calculation in the proximity of the various biological subjects exposed to an electric field in the LF range. Several results of the electric field intensity on the body surface and numerous graphical results for equipotential and equienergetic curves are presented.

  12. NONLINEAR DYNAMO IN A ROTATING ELECTRICALLY CONDUCTING FLUID

    Directory of Open Access Journals (Sweden)

    M. I. Kopp

    2017-05-01

    Full Text Available We found a new large-scale instability, which arises in the rotating conductive fluid with small-scale turbulence. Turbulence is generated by small-scale external force with a low Reynolds number. The theory is built simply by the method of multiscale asymptotic expansions. Nonlinear equations for vortex and magnetic perturbations obtained in the third order for small Reynolds number. It is shown that the combined effects of the Coriolis force and the small external forces in a rotating conducting fluid possible large-scale instability. The large-scale increments of the instability, correspond to generation as the vortex and magnetic disturbances. This type of instability is classified as hydrodynamic and MHD alpha-effect. We studied the stationary regimes of nonlinear equations of magneto-vortex dynamo. In the limit of weakly conducting fluid found stationary solutions in the form of helical kinks. In the limit of high conductivity fluid was obtained stationary solutions in the form of nonlinear periodic waves and kinks.

  13. Empirical high-latitude electric field models

    International Nuclear Information System (INIS)

    Heppner, J.P.; Maynard, N.C.

    1987-01-01

    Electric field measurements from the Dynamics Explorer 2 satellite have been analyzed to extend the empirical models previously developed from dawn-dusk OGO 6 measurements (J.P. Heppner, 1977). The analysis embraces large quantities of data from polar crossings entering and exiting the high latitudes in all magnetic local time zones. Paralleling the previous analysis, the modeling is based on the distinctly different polar cap and dayside convective patterns that occur as a function of the sign of the Y component of the interplanetary magnetic field. The objective, which is to represent the typical distributions of convective electric fields with a minimum number of characteristic patterns, is met by deriving one pattern (model BC) for the northern hemisphere with a +Y interplanetary magnetic field (IMF) and southern hemisphere with a -Y IMF and two patterns (models A and DE) for the northern hemisphere with a -Y IMF and southern hemisphere with a +Y IMF. The most significant large-scale revisions of the OGO 6 models are (1) on the dayside where the latitudinal overlap of morning and evening convection cells reverses with the sign of the IMF Y component, (2) on the nightside where a westward flow region poleward from the Harang discontinuity appears under model BC conditions, and (3) magnetic local time shifts in the positions of the convection cell foci. The modeling above was followed by a detailed examination of cases where the IMF Z component was clearly positive (northward). Neglecting the seasonally dependent cases where irregularities obscure pattern recognition, the observations range from reasonable agreement with the new BC and DE models, to cases where different characteristics appeared primarily at dayside high latitudes

  14. Planned waveguide electric field breakdown studies

    International Nuclear Information System (INIS)

    Wang Faya; Li Zenghai

    2012-01-01

    This paper presents an experimental setup for X-band rf breakdown studies. The setup is composed of a section of WR90 waveguide with a tapered pin located at the middle of the waveguide E-plane. Another pin is used to rf match the waveguide so it operates in a travelling wave mode. By adjusting the penetration depth of the tapered pin, different surface electric field enhancements can be obtained. The setup will be used to study the rf breakdown rate dependence on power flow in the waveguide for a constant maximum surface electric field on the pin. Two groups of pins have been designed. The Q of one group is different and very low. The other has a similar Q. With the test of the two groups of pins, we should be able to discern how the net power flow and Q affect the breakdown. Furthermore, we will apply an electron beam treatment to the pins to study its effect on breakdown. Overall, these experiments should be very helpful in understanding rf breakdown phenomena and could significantly benefit the design of high gradient accelerator structures.

  15. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  16. The induced electric field distribution in the solar atmosphere

    International Nuclear Information System (INIS)

    Chen Rong; Yang Zhi-Liang; Deng Yuan-Yong

    2013-01-01

    A method of calculating the induced electric field is presented. The induced electric field in the solar atmosphere is derived by the time variation of the magnetic field when the accumulation of charged particles is neglected. In order to derive the spatial distribution of the magnetic field, several extrapolation methods are introduced. With observational data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory taken on 2010 May 20, we extrapolate the magnetic field from the photosphere to the upper atmosphere. By calculating the time variation of the magnetic field, we can get the induced electric field. The derived induced electric field can reach a value of 10 2 V cm −1 and the average electric field has a maximum point at the layer 360 km above the photosphere. The Monte Carlo method is used to compute the triple integration of the induced electric field.

  17. Magnetic resonance electrical impedance tomography for determining electric field distribution during electroporation

    International Nuclear Information System (INIS)

    Kranjc, Matej; Miklavcic, Damijan; Bajd, Franci; Serša, Igor

    2013-01-01

    Electroporation is a phenomenon caused by externally applied electric field to cells that results in an increase of cell membrane permeability to various molecules. Accurate coverage of the tissue with a sufficiently large electric field presents one of the most important conditions for successful membrane permeabilization. Applications based on electroporation would greatly benefit with a method for monitoring the electric field, especially if it could be done in situ. As the membrane electroporation is a consequence of an induced transmembrane potential, which is directly proportional to the local electric field, we have been investigating current density imaging and magnetic resonance electrical impedance tomography techniques to determine the electric field distribution during electroporation. In this paper, we present comparison of current density and electric field distribution in an agar phantom and in a liver tissue exposed to electroporation pulses. As expected, a region of increased electrical conductivity was observed in the liver tissue exposed to sufficiently high electric field but not in agar phantom.

  18. Manipulation of nano-entities in suspension by electric fields

    Science.gov (United States)

    Fan, Donglei

    Nanoscale entities, including nanospheres, nanodisks, nanorings, nanowires and nanotubes are potential building blocks for nanoscale devices. Among them, nanowires is an important type of nanoparticles, due to the potential application in microelectronics and bio-diagnosis. Manipulation of nanowires in suspension has been a formidable problem. As described in this thesis, using AC electric fields applied to strategically designed microelectrodes, nanowires in suspension can be driven to align, to chain, to accelerate in directions parallel and perpendicular to its orientation, to concentrate onto designated places, and to disperse in a controlled manner with high efficiency despite an extremely low Reynolds number at the level of 10-5. Randomly oriented nanowires in suspension can be rapidly assembled into extended nonlinear structures within seconds. We show that both the electric field and its gradient play the essential roles of aligning and transporting the nanowires into scaffolds according to the electric field distributions inherent to the geometry of the microelectrodes. The assembling efficiency depends strongly on the frequency of the applied AC voltages and varies as square of the voltage. Furthermore, nanowires have been rotated by AC electric fields applied to strategically designed electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 25000 rpm), definite chirality, and total angle of rotation. This new method has been used to controllably rotate magnetic and non-magnetic nanowires as well as multi-wall carbon nanotubes. We have also produced a micromotor using a rotating nanowire that can drive particles into circular motion. This has application to microfluidic devices, micro-stirrers, and micro electromechanical systems (MEMS). To move and place nanowires onto designated locations with high precision, electrophoretic force has been combined with dielectrophoretic force to

  19. Nonlinear tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Miller, G.

    1989-01-01

    Finite-amplitude islands, which are the saturated states of tearing modes in the reversed field pinch, are calculated. These states are bifurcated noncylindrical equilibrium states. With σ(r) (σequivalentj x B/B 2 ) nonuniform across the plasma, as is consistent with experiment, a variety of m = 1 and m = 0 bifurcated equilibria are possible, instead of just the m = 1 helix calculated for uniform σ(r) by Taylor [in Pulsed High Beta Plasmas, edited by D. Evans (Pergamon, Oxford, 1976), p. 59]. Assuming the magnetic field lines in the reversed field pinch are weakly stochastic, the growth time of an unstable tearing mode is on the inertial time scale, as in the Taylor model, in constrast to growth on the resistive time scale predicted from nonlinear tearing mode theory when magnetic surfaces exist. The dependence of the saturated island width on radius of a conducting shell is investigated. Islands in the reversed field pinch often have magnetic wells in the island interior, which may result in improved confinement in the island regions

  20. Study of diffusion of wave packets in a square lattice under external fields along the discrete nonlinear Schrödinger equation

    International Nuclear Information System (INIS)

    Brito, P.E. de; Nazareno, H.N.

    2012-01-01

    The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.

  1. Enhanced Dielectronic Recombination in Crossed Electric and Magnetic Fields

    International Nuclear Information System (INIS)

    Robicheaux, F.; Pindzola, M.S.

    1997-01-01

    The dependence of the dielectronic recombination cross section on crossed electric and magnetic fields is described. The enhancement of this cross section due to a static electric field is further increased when a magnetic field is added perpendicular to the electric field. Calculation of this field induced enhancement is presented for a realistic atomic model, and the mechanism for the enhancement is discussed. copyright 1997 The American Physical Society

  2. Manipulating colloids with charges and electric fields

    Science.gov (United States)

    Leunissen, M. E.

    2007-02-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their relatively large size, colloids are much easier to investigate and manipulate, though. This makes them excellent condensed matter model systems. With this in mind, we studied micrometer-sized perspex (‘PMMA’) spheres, labeled with a fluorescent dye for high-resolution confocal microscopy imaging, and suspended in a low-polar mixture of the organic solvents cyclohexyl bromide and cis-decalin. This system offered us the flexibility to change the interactions between the particles from ‘hard-sphere-like’ to long-ranged repulsive (between like-charged particles), long-ranged attractive (between oppositely charged particles) and dipolar (in an electric field). We investigated the phase behavior of our suspensions as a function of the particle concentration, the ionic strength of the solvent and the particles’ charges. In this way, we obtained new insight in the freezing and melting behavior of like-charged and oppositely charged colloids. Interestingly, we found that the latter can readily form large crystals, thus defying the common belief that plus-minus interactions inevitably lead to aggregation. Moreover, we demonstrated that these systems can serve as a reliable model system for classical ionic matter (‘salts’), and that opposite-charge interactions can greatly facilitate the self-assembly of new structures with special properties for applications. On a slightly different note, we also studied electrostatic effects in mixtures of the cyclohexyl bromide solvent and water, both with and without colloidal particles present. This provided new insight in the stabilization mechanisms of oil-water emulsions and gave us control over the self-assembly of various

  3. Inhibition of brain tumor cell proliferation by alternating electric fields

    International Nuclear Information System (INIS)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun; Koh, Eui Kwan

    2014-01-01

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  4. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    International Nuclear Information System (INIS)

    Bao, Sun; Fu-Shen, Chen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation

  5. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  6. Nonlinear dynamic response of an electrically actuated imperfect microbeam resonator

    KAUST Repository

    Ruzziconi, Laura

    2013-08-04

    We present a study of the dynamic behavior of a MEMS device constituted of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. The nonlinear behavior is highlighted, which includes ranges of multistability, where the non-resonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is capable also to capture the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. Copyright © 2013 by ASME.

  7. A concept for a magnetic field detector underpinned by the nonlinear dynamics of coupled multiferroic devices

    Science.gov (United States)

    Beninato, A.; Emery, T.; Baglio, S.; Andò, B.; Bulsara, A. R.; Jenkins, C.; Palkar, V.

    2013-12-01

    Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi0.7Dy0.3FeO3 shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi0.7Dy0.3FeO3, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a "blueprint" for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or "target" B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.

  8. Nonlinear systems

    CERN Document Server

    Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

    2018-01-01

    This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

  9. Liquid methanol under a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cassone, Giuseppe, E-mail: giuseppe.cassone@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France); Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Giaquinta, Paolo V., E-mail: paolo.giaquinta@unime.it [Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); Saija, Franz, E-mail: saija@ipcf.cnr.it [CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Saitta, A. Marco, E-mail: marco.saitta@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France)

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  10. Nonlinear gravitational self-force: Field outside a small body

    Science.gov (United States)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  11. Control of the radial electric field shear by modification of the magnetic field configuration in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Yoshinuma, M.; Yokoyama, M.

    2005-01-01

    Control of the radial electric field, E γ , is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric field have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially producing a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by 1) changing the radial profile of the helical ripples, ε h , 2) creating a magnetic island with an external perturbation field coil and 3) changing the local island divertor coil current. (author)

  12. Control of the radial electric field shear by modification of the magnetic field configuration in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Yoshinuma, M.; Yokoyama, M.

    2005-01-01

    Control of the radial electric field, E r , is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric fields have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially to produce a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by (1) changing the radial profile of the effective helical ripples, ε h (2) creating a magnetic island with an external perturbation field coil and (3) changing the local island divertor coil current

  13. MTX microwave-electric-field diagnostic

    International Nuclear Information System (INIS)

    Odajima, Kazuo; Ohasa, Kazumi; Shiho, Makoto

    1990-06-01

    A joint Japan-U.S. project is in progress to measure the high electric fields produced by a free-electron laser beam of GW-peak-power level when injected into the plasma of the Microwave Tokamak Experiment (MTX) at the Lawrence Livermore National Laboratory in California. In this report, we discuss the planned method of measurement and the status of the work. The equipment needed is either well along in the design stage or is being built. We plan to test out the combined operation of all components in Japan before shipping to Livermore. Although the measurement appears difficult for a variety of technical and physics reasons, calculations indicate that it should be possible. (author)

  14. Topology Optimized Nanostrips for Electric Field Enhancements

    DEFF Research Database (Denmark)

    Vester-Petersen, Joakim; Christiansen, Rasmus E.; Julsgaard, Brian

    This work addresses efficiency improvements of solar cells by manipulating the spectrum of sunlight to bettermatch the range of efficient current generation. The intrinsic transmission losses in crystalline silicon can effectivelybe reduced using photon upconversion in erbium ions in which low...... energy photons are converted to higher energy photons able to bridge the band gap energy and contribute the energy generation. The upconversion process in erbium is inefficient under the natural solar irradiation, and without any electric field enhancements of the incident light, the process...... is negligible for photo-voltaic applications. However, the probability for upconversion can be increased by focusing the incident light onto the erbium ions using optimized metal nanostructures[1, 2, 3]. The aim of this work is to increase the photon upconversion yield by optimizing the design of metalic...

  15. Electric field encephalography for brain activity monitoring.

    Science.gov (United States)

    Versek, Craig William; Frasca, Tyler; Zhou, Jianlin; Chowdhury, Kaushik; Sridhar, Srinivas

    2018-05-11

    Objective - We describe an early-stage prototype of a new wireless electrophysiological sensor system, called NeuroDot, which can measure neuroelectric potentials and fields at the scalp in a new modality called Electric Field Encephalography (EFEG). We aim to establish the physical validity of the EFEG modality, and examine some of its properties and relative merits compared to EEG. Approach - We designed a wireless neuroelectric measurement device based on the Texas Instrument ADS1299 Analog Front End platform and a sensor montage, using custom electrodes, to simultaneously measure EFEG and spatially averaged EEG over a localized patch of the scalp (2cm x 2cm). The signal properties of each modality were compared across tests of noise floor, Berger effect, steady-state Visually Evoked Potential (ssVEP), signal-to-noise ratio (SNR), and others. In order to compare EFEG to EEG modalities in the frequency domain, we use a novel technique to compute spectral power densities and derive narrow-band SNR estimates for ssVEP signals. A simple binary choice brain-computer-interface (BCI) concept based on ssVEP is evaluated. Also, we present examples of high quality recording of transient Visually Evoked Potentials and Fields (tVEPF) that could be used for neurological studies. Main results - We demonstrate the capability of the NeuroDot system to record high quality EEG signals comparable to some recent clinical and research grade systems on the market. We show that the locally-referenced EFEG metric is resistant to certain types of movement artifacts. In some ssVEP based measurements, the EFEG modality shows promising results, demonstrating superior signal to noise ratios than the same recording processed as an analogous EEG signal. We show that by using EFEG based ssVEP SNR estimates to perform a binary classification in a model BCI, the optimal information transfer rate (ITR) can be raised from 15 to 30 bits per minute - though these preliminary results are likely

  16. Technical Note: Computation of Electric Field Strength Necessary for ...

    African Journals Online (AJOL)

    Obviously, electric field is established by this charge. The effects of this field on the objects lying within its vicinity depend on its intensity. In this paper, the electric field of 33kV overhead line is considered. The aim of the paper is to determine the maximum electric field strength or potential gradient, E of the 33kV overhead ...

  17. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.

    Science.gov (United States)

    Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V

    2018-04-01

    We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that

  18. Role of random electric fields in relaxors

    Science.gov (United States)

    Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang; Ganesh, Panchapakesan; Gehring, Peter M.

    2014-01-01

    PbZr1–xTixO3 (PZT) and Pb(Mg1/3Nb2/3)1–xTixO3 (PMN-xPT) are complex lead-oxide perovskites that display exceptional piezoelectric properties for pseudorhombohedral compositions near a tetragonal phase boundary. In PZT these compositions are ferroelectrics, but in PMN-xPT they are relaxors because the dielectric permittivity is frequency dependent and exhibits non-Arrhenius behavior. We show that the nanoscale structure unique to PMN-xPT and other lead-oxide perovskite relaxors is absent in PZT and correlates with a greater than 100% enhancement of the longitudinal piezoelectric coefficient in PMN-xPT relative to that in PZT. By comparing dielectric, structural, lattice dynamical, and piezoelectric measurements on PZT and PMN-xPT, two nearly identical compounds that represent weak and strong random electric field limits, we show that quenched (static) random fields establish the relaxor phase and identify the order parameter. PMID:24449912

  19. A model of electric breakdown in polycrystalline semiconductors with highly nonlinear I - V characteristics

    International Nuclear Information System (INIS)

    Yildirim, E.H.; Tanatar, B.; Canessa, E.

    1993-07-01

    A deterministic algorithm to study the nonlinear current-voltage characteristics of polycrystalline semiconductors, such as ZnO-based metal oxide varistors, under dc bias and at room temperature is developed based on the electrical properties of individual grain boundaries. Assuming a thermionic emission type mechanism between individual grains and a nonuniform distribution of barrier heights at grain boundaries, the set of nonlinear Kirchhoff equations that determines the macroscopic current across the specimen and the nonlinearity coefficient α is solved numerically. The applied voltage dependence of the barrier height is found to be crucial to obtain α values reaching ∼50, indicating high nonlinearity as required by potential commercial applications. (author). 20 refs, 3 figs

  20. Plasma Flows in Crossed Magnetic and Electric Fields

    International Nuclear Information System (INIS)

    Belikov, A.G.

    2005-01-01

    The effect of the magnitude and direction of an external electric field on the plasma flowing through a magnetic barrier is studied by numerically solving two-fluid MHD equations. The drift velocity of the plasma flow and the distribution of the flow electrons over transverse velocities are found to depend on the magnitude and direction of the electric field. It is shown that the direction of the induced longitudinal electric field is determined by the direction of the external field and that the electric current generated by the plasma flow significantly disturbs the barrier field

  1. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.; Tuccio, S.; Giugni, A.; Toma, A.; Liberale, Carlo; Das, G.; Angelis, F.D.; Fabrizio, E.D.; Zaccaria, R.P.

    2013-01-01

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  2. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.

    2013-10-25

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  3. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    International Nuclear Information System (INIS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators

  4. Determination of Moessbauer electric field gradient

    International Nuclear Information System (INIS)

    Garg, V.K.

    1980-01-01

    There are several reports of the electric quadrupole interactions available in the literature. 1 - 4 The present discussion is a short survey, introducing the electric quadrupole up to the experimental polarised studies. (Author) [pt

  5. The chromatographic separation of particles using optical electric fields

    DEFF Research Database (Denmark)

    Javier Alvarez, Nicolas; Jeppesen, Claus; Yvind, Kresten

    2013-01-01

    We introduce a new field-flow fractionation (FFF) technique, whereby molecules are separated based on their differential interaction (dielectrophoresis (DEP)) with optical electric fields, i.e. electric fields with frequencies in the visible and near-infrared range. The results show that a parall...

  6. ion in crossed gradient electric and magnetic fields

    Indian Academy of Sciences (India)

    Photodetachment cross-section for variousexternal fields and the laser polarization are calculated and displayed. A comparison with the photodetachment cross-section in crossed uniform electric and magnetic fields or in a single gradient electric field has been made.The agreement of our results with the above two special ...

  7. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  8. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be

  9. Problems related to macroscopic electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.

    1977-01-01

    The macroscopic electric fields in the magnetosphere originate from internal as well as external sources. The fields are intimately coupled with the dynamics of magnetospheric plasma convection. They also depend on the complicated electrical properties of the hot collisionless plasma. Macroscopic electric fields are responsible for some important kinds of energization of charged particles that take place in the magnetosphere and affect not only particles of auroral energy but also, by multistep processes, trapped high-energy particles. A particularly interesting feature of magnetospheric electric fields is that they can have substantial components along the geomagnetic field, as has recently been confirmed by observations. Several physical mechanisms have been identified by which such electric fields can be supported even when collisions between particles are negligible. Comments are made on the magnetic mirror effect, anomalous resistivity, the collisionless thermoelectric effect, and electric double layers, emphasizing key features and differences and their significance in the light of recent observational data

  10. Dynamics analysis of extraction of manganese intensified by electric field

    Science.gov (United States)

    Ma, Wenrui; Tao, Changyuan; Li, Huizhan; Liu, Zuohua; Liu, Renlong

    2018-06-01

    In this study, a process reinforcement technology for leaching process of pyrolusite was developed. The electric field was introduced to decrease reaction temperature and improve the leaching rate of pyrolusite. The mechanisms of electric field intensifying leaching process of pyrolusite were investigated through X-ray diffraction (XRD), and Brunauer Emmett Teller (BET) in detail. The results showed that the electric field could decrease obviously the apparent activation energy of leaching process of pyrolusite. The apparent activation energy of the leaching of pyrolusite intensified by electric field was calculated to be 53.76 kJ.mol-1. In addition, the leaching efficiency of manganese was effectively increased by 10% to 20% than that without electric field under the same conditions. This was because that the electron conduit between Fe (II)/Fe (III) and pyrite was dredged effectively by electric field.

  11. Linear and nonlinear causality between sectoral electricity consumption and economic growth: Evidence from Taiwan

    International Nuclear Information System (INIS)

    Yang, Cheng-Lang; Lin, Hung-Pin; Chang, Chih-Heng

    2010-01-01

    This study investigates the linear and nonlinear causality between the total electricity consumption (TEC) and real gross domestic production (RGDP). Unlike previous literature, we solve the undetermined relation between RGDP and electricity consumption by classifying TEC into industrial sector consumption (ISC) and residential sector consumption (RSC) as well as investigating how TEC, ISC, and RSC influence Taiwan's RGDP. By using the Granger's linear causality test, it is shown that (i) there is a bidirectional causality among TEC, ISC, and RGDP, but a neutrality between RSC and RGDP with regard to the linear causality and (ii) there is still a bidirectional causality between TEC and RGDP, but a unidirectional causality between RSC and RGDP with regard to the nonlinear causality. On the basis of (i) and (ii), we suggest that the electricity policy formulators loosen the restriction on ISC and limit RSC in order to achieve the goal of economic growth.

  12. Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field

    International Nuclear Information System (INIS)

    Wang, De-hua

    2017-01-01

    Highlights: • The photodetachment of H − in an oscillating electric field has been studied using the time-dependent closed orbit theory. • An analytical formula for calculating the photodetachement cross section has been put forward. • Our study provides a clear physical picture for the photodetachment of negative ion in an oscillating electric filed. • Our work is useful in guiding the experimental research for the photodetachment dynamics in the time-dependent field. - Abstract: Using the time-dependent closed orbit theory, we study the photodetachment of H − ion in a time-dependent electric field. The photodetachment cross section is specifically studied in the presence of a static electric field plus an oscillating electric field. We find that the photodetachment of negative ion in the time-dependent electric field becomes much more complicated than the case in a static electric field. The oscillating electric field can weaken the photodetachment cross section greatly when the strength of the oscillating electric field is less than the static electric field. However, as the strength of the oscillating electric field is larger than the static electric field, four types of closed orbits are identified for the detached electron, which makes the oscillating amplitude in the photodetachment cross section gets increased again. The connection between the detached electron’s closed orbit with the oscillating cross section is analyzed quantitatively. This study provides a clear and intuitive picture for the understanding of the connections between quantum and classical description for the time-dependent Hamiltonian systems and may guide the future experimental research for the photodetachment dynamics in the time-dependent electric field.

  13. A new normalization method based on electrical field lines for electrical capacitance tomography

    International Nuclear Information System (INIS)

    Zhang, L F; Wang, H X

    2009-01-01

    Electrical capacitance tomography (ECT) is considered to be one of the most promising process tomography techniques. The image reconstruction for ECT is an inverse problem to find the spatially distributed permittivities in a pipe. Usually, the capacitance measurements obtained from the ECT system are normalized at the high and low permittivity for image reconstruction. The parallel normalization model is commonly used during the normalization process, which assumes the distribution of materials in parallel. Thus, the normalized capacitance is a linear function of measured capacitance. A recently used model is a series normalization model which results in the normalized capacitance as a nonlinear function of measured capacitance. The newest presented model is based on electrical field centre lines (EFCL), and is a mixture of two normalization models. The multi-threshold method of this model is presented in this paper. The sensitivity matrices based on different normalization models were obtained, and image reconstruction was carried out accordingly. Simulation results indicate that reconstructed images with higher quality can be obtained based on the presented model

  14. Measurements of plasma density fluctuations and electric wave fields using spherical electrostatic probes

    International Nuclear Information System (INIS)

    Eriksson, A.I.; Bostroem, R.

    1995-04-01

    Spherical electrostatic probes are in wide use for the measurements of electric fields and plasma density. This report concentrates on the measurements of fluctuations of these quantities rather than background values. Potential problems with the technique include the influence of density fluctuations on electric field measurements and vice versa, effects of varying satellite potential, and non-linear rectification in the probe and satellite sheaths. To study the actual importance of these and other possible effects, we simulate the response of the probe-satellite system to various wave phenomena in the plasma by applying approximate analytical as well as numerical methods. We use a set of non-linear probe equations, based on probe characteristics experimentally obtained in space, and therefore essentially independent of any specific probe theory. This approach is very useful since the probe theory for magnetized plasmas is incomplete. 47 refs

  15. Measurement of electric fields in the H-1NF heliac

    International Nuclear Information System (INIS)

    James, B.W.; Howard, J.

    1999-01-01

    There are a number of laser induced fluorescence techniques which can be used to measure internal plasma electric fields. It is planned to use a technique based on Stark mixing of energy levels in a supersonic beam containing metastable helium atoms to measure radial electric fields in H-1NF. Enhanced values of radial electric field are associated with improved confinement modes in H-1NF and other magnetically confined plasmas

  16. Effect of increased ionization on the atmospheric electric field

    International Nuclear Information System (INIS)

    Boeck, W.L.

    1980-01-01

    This study is a review of atmospheric electrical theory with the purpose of predicting the atmospheric electrical effects of increased ionization caused by radioactive inert gases. A time-independent perturbation model for the global atmospheric electric circuit precdicts that the electric field at the sea surface would be reduced to about 76% of its unperturbed value by a surface 85 Kr concentration of 3 nCi/m 3 . The electric field at a typical land station is predicted to be about 84% of its unperturbed value. Some scientists have suggested that the atmospheric electric field is part of a closed electrical feedback loop. The present model does not include such a closed feedback loop and may underestimate the total effects. This model is also useful for interpreting atmospheric electrical responses to natural fluctuations in the cosmic-ray component of background radiation

  17. A study on the influence of corona on currents and electromagnetic fields predicted by a nonlinear lightning return-stroke model

    Science.gov (United States)

    De Conti, Alberto; Silveira, Fernando H.; Visacro, Silvério

    2014-05-01

    This paper investigates the influence of corona on currents and electromagnetic fields predicted by a return-stroke model that represents the lightning channel as a nonuniform transmission line with time-varying (nonlinear) resistance. The corona model used in this paper allows the calculation of corona currents as a function of the radial electric field in the vicinity of the channel. A parametric study is presented to investigate the influence of corona parameters, such as the breakdown electric field and the critical electric field for the stable propagation of streamers, on predicted currents and electromagnetic fields. The results show that, regardless of the assumed corona parameters, the incorporation of corona into the nonuniform and nonlinear transmission line model under investigation modifies the model predictions so that they consistently reproduce most of the typical features of experimentally observed lightning electromagnetic fields and return-stroke speed profiles. In particular, it is shown that the proposed model leads to close vertical electric fields presenting waveforms, amplitudes, and decay with distance in good agreement with dart leader electric field changes measured in triggered lightning experiments. A comparison with popular engineering return-stroke models further confirms the model's ability to predict consistent electric field waveforms in the close vicinity of the channel. Some differences observed in the field amplitudes calculated with the different models can be related to the fact that current distortion, while present in the proposed model, is ultimately neglected in the considered engineering return-stroke models.

  18. Nonlinear quantum electrodynamic and electroweak processes in strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian

    2015-06-24

    Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.

  19. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  20. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  1. Principles of spectroscopic diagnostics of a plasma with oscillating electric fields

    International Nuclear Information System (INIS)

    Oks, E.A.

    1986-01-01

    Three types of main principles of spectroscopic diagnosis of the plasma with quasimonochromatic electric fields (QEF) are considered. Principles based on the effects intersectionally depending on the parameters of QEF and the plasma medium are considered. Occurrence of depressions or dips in the profiles of spectral lines is the most important effect among others. Principles based on the nonlinear theory of plasma and laser sattelites of spectral lines as well as laser-spectroscopic diagnosis of QEF in the plasma are considered

  2. Experimental observation of nonlinear behaviour in a helium plasma discharge in the presence of a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Toma, M.; Sanduloviciu, M.

    1994-01-01

    The nonlinear behaviour in an electrical discharge plasma due to the action of an external nonuniform magnetic field is presented. The discharge geometry and the magnetic field configuration ('inverse' cylindrical magnetron discharge) were so chosen that there is a possibility to control the net electron flux in a certain region of a positive electrode. The plasma discharge nonlinearity manifested in the profile of the current-voltage, current-magnetic field and current-gas pressure characteristics by the appearance of the anomalous negative resistance, in the bistability and hysteresis and also in the periodical and chaotic variation of the discharge current. The profile of the current variation vs control discharge parameters was related to the appearance of a space charge structure in the shape of nearly spherical bulges, delimited from the surrounding plasma by a double layer. (Author)

  3. End-shorting and electric field in edge plasmas with application to field-reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, Loren C.

    2002-01-01

    The shorting of open field lines where they intersect external boundaries strongly modifies the transverse electric field all along the field lines. The modified electric field is found by an extension of the familiar Boltzmann relation for the electric potential. This leads to a prediction of the electric drift. Flow generation by electrical shorting is applied here to three aspects of elongated field-reversed configurations: plasma rotation rate; the particle-loss spin-up mechanism; and the sustainability of the rotating magnetic field current drive method

  4. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm

    CERN Document Server

    Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai

    2011-01-01

    The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...

  5. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  6. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

    Science.gov (United States)

    Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour

    2018-04-01

    The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

  7. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu

    2011-03-01

    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  8. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  9. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity

    International Nuclear Information System (INIS)

    Webb, Alexander J; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-01-01

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current–voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling. (paper)

  10. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity.

    Science.gov (United States)

    Webb, Alexander J; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-04-26

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.

  11. A multi-component nanocomposite screen-printed ink with non-linear touch sensitive electrical conductivity

    Science.gov (United States)

    Webb, Alexander J.; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David

    2013-04-01

    Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.

  12. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  13. Electric Field Measurements At The Magnetopause

    Science.gov (United States)

    Lindqvist, P.-A.; Dunlop, M.

    The quasi-thermal noise (QTN) is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distribu- tions and the antenna geometry. So, conversely, the "spectroscopy" of this noise re- veals the local plasma properties. This method is routinely used on various spacecraft (Ulysses, Wind) in the solar wind or in planetary magnetospheres/ionospheres (Image at Earth, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons pertubations, since it senses a large plasma volume. It provides an accurate measurement of the electron density (a few %) because it is based on the detection of the strong signal peak near the local plasma frequency (which is close to a resonance for electrostatic waves). We will show that QTN may be as well adapted to measure 1) magnetized (anisotropic) plasmas (and deduce the magnetic field strength), 2) suprathermal or non-thermal component (as for example a kappa distribution), and 3) a wide range of core temperature, i.e from ~10 eV, as in the solar wind, to rather low temperatures (tron density and temperature for comparison with our models of Mercury/solar wind interaction.

  14. Static and low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Thommesen, G.; Tynes, T.

    1994-01-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people. Static and low frequency electric and magnetic fields may elicit biological reactions. Whether exposure to such fields may affect human health at field strengths present in everyday or occupational life is still unsettled. There is unsufficient knowledge to establish any dose concept relevant to health risk. 196 refs., 6 tabs

  15. Geomagnetic storms and electric fields in the equatorial ionosphere

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1977-01-01

    Using direct measurements of equatorial electric field during a geomagnetic storm it is shown that the large decrease in the field observed near the dip equator is due to the reversal of the equatorial electrojet current. This is caused by the imposition of an additional westward electric field on the equatorial ionosphere which was originated by the interaction of solar wind with the interplanetary magnetic field. (author)

  16. A multi-scale and multi-field coupling nonlinear constitutive theory for the layered magnetoelectric composites

    Science.gov (United States)

    Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining

    2018-05-01

    The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.

  17. Field-enhanced nonlinear optical properties of organic nanofibers

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana; Fiutowski, Jacek; Brewer, Jonathan R.

    2014-01-01

    Second harmonic generation in nonlinearly optically active organic nanofibers, generated via self-assembled surface growth from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules, has been investigated. After the growth on mica templates, nanofibers have been transferred onto...

  18. Identifying the nonlinear mechanical behaviour of micro-speakers from their quasi-linear electrical response

    Science.gov (United States)

    Zilletti, Michele; Marker, Arthur; Elliott, Stephen John; Holland, Keith

    2017-05-01

    In this study model identification of the nonlinear dynamics of a micro-speaker is carried out by purely electrical measurements, avoiding any explicit vibration measurements. It is shown that a dynamic model of the micro-speaker, which takes into account the nonlinear damping characteristic of the device, can be identified by measuring the response between the voltage input and the current flowing into the coil. An analytical formulation of the quasi-linear model of the micro-speaker is first derived and an optimisation method is then used to identify a polynomial function which describes the mechanical damping behaviour of the micro-speaker. The analytical results of the quasi-linear model are compared with numerical results. This study potentially opens up the possibility of efficiently implementing nonlinear echo cancellers.

  19. Fetal exposure to low frequency electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cech, R; Leitgeb, N; Pediaditis, M [Institute of Clinical Engineering, Graz University of Technology, Inffeldgasse 18, 8010 Graz (Austria)

    2007-02-21

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  20. Fetal exposure to low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Cech, R; Leitgeb, N; Pediaditis, M

    2007-01-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary

  1. Remote sensing of mesospheric electric fields using MF radars

    Science.gov (United States)

    Meek, C. E.; Manson, A. H.; Martynenko, S. I.; Rozumenko, V. T.; Tyrnov, O. F.

    2004-07-01

    Large mesospheric electric fields can play an essential role in middle atmospheric electrodynamics (see, e.g., Goldberg, R. A., Middle Atmospheric Electrodynamics during MAP, Adv. Space Res. 10 (10) (1990) 209). The V/m electric fields of atmospheric origin can be the possible cause of large variations in the electron collision frequency at mesospheric altitudes, and this provides a unique opportunity to take measurements of electric fields in the lower ionosphere by using remote sensing instruments employing radiowave techniques. A technique has been proposed for making estimates of large mesospheric electric field intensities on the lower edge of the ionosphere by using MF radar data and the inherent effective electron collision frequency. To do this, data collected in Canada and Ukraine were utilized. The developed technique permits the changes in mesospheric electric field intensities to be derived from MF radar data in real time. The statistical analysis of data consistent with large mesospheric electric field intensities in the 60-67km region resulted in the following inferences. There are at least two mechanisms for the generation of large mesospheric electric fields in the mesosphere. The most likely mechanism, with a probability of 60-70%, is the summation of random fields from a large number of elementary small-scale mesospheric generators, which results in a one-parameter Rayleigh distribution of the total large mesospheric electric field intensity E with a mean value of approximately 0.7-0.9V/m in the 60-67km altitude region, or in the corresponding one-parameter exponential distribution of the intensity squared E2 of large mesospheric electric fields. The second mechanism of unknown nature, with 5-15% probability, gives rise to the sporadic appearance of large mesospheric electric field intensities E>2.5V/m with a mean of 4V/m. Statistically significant seasonal differences in the averaged large mesospheric electric field parameters have not been

  2. A simplified model of polar cap electric fields

    International Nuclear Information System (INIS)

    D'Angelo, N.

    1977-01-01

    A simple-minded 'model' is used in order to visualize the gross features of polar cap electric fields, in particular the 'diode' effect which had emerged already from earlier observations and the asymmetry between the electric fields observed on the dawn and dusk sides of the polar cap, which depends on Bsub(y)

  3. Electric field induced dewetting at polymer/polymer interfaces

    NARCIS (Netherlands)

    Lin, Z.Q.; Kerle, T.; Russell, T.P.; Schäffer, E.; Steiner, U

    2002-01-01

    External electric fields were used to amplify interfacial fluctuations in the air/polymer/polymer system where one polymer dewets the other. Two different hydrodynamic regimes were found as a function of electric field strength. If heterogeneous nucleation leads to the formation of holes before the

  4. Effect of electric field (at different temperatures) on germination of ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum) seeds were exposed to electric field from zero to 1300 V for 15 min at three different temperatures (13, 16 and 19°C). It was found that the exposure of chickpea seeds to the electric field caused a change in water uptake capacity (and its coefficient) as compared to control. A new theoretical model ...

  5. Incompressible Einstein–Maxwell fluids with specified electric fields

    Indian Academy of Sciences (India)

    The Einstein–Maxwell equations describing static charged spheres with uniform density and variable electric field intensity are studied. The special case of constant electric field is also studied. The evolution of the model is governed by a hypergeometric differential equation which has a general solution in terms of special ...

  6. Study of electric field pulsation in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S; Itoh, K

    2011-01-01

    A model for the experimental results of the periodic oscillation of the electric field, so-called the electric field pulsation, observed in the Compact Helical Device (Fujisawa et al 1998 Phys. Rev. Lett. 81 2256) and the Large Helical Device (Shimizu et al 2010 Plasma Fusion Res. 5 S1015) is presented. A self-generated oscillation of the radial electric field is shown as the simulation result in helical plasmas. The reduction of the anomalous transport diffusivity in the core region is observed due to the strong shear of the radial electric field when the positive electric field is shown in the core region in the periodic oscillation of E r . Two different time scales are found in the self-generated oscillation, which are the transport time scale and the fast time scale at the transition of the radial electric field. This oscillation because of the hysteresis characteristic is attributed to the electric field pulsation observed in helical plasmas. The parameter region of the condition for the self-generated oscillation is derived. It is shown that the multiple solutions of the radial electric field for the ambipolar condition are necessary but not sufficient for obtaining the self-generated oscillation.

  7. Effects of Radial Electric Fields on ICRF Waves

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.C.; Ono, M.; Wilson, J.R.

    2001-01-01

    Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model

  8. Phonon-assisted transitions in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1980-05-01

    A theory of the effect of a crossed electric, E, and magnetic, H, fields in the indirect transitions in semiconductors is developed. A semi-classical treatment is adopted where the electric field is considered as a small perturbation. A numerical application to GaP gives the limiting values of E/H valid to this approach. (author)

  9. High School Students' Representations and Understandings of Electric Fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  10. The effect of pulsed electric fields on carotenoids bioaccessibility

    NARCIS (Netherlands)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-01-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and

  11. Electric field measurements in a xenon discharge using Spark spectroscopy

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2005-01-01

    Measurements of electric field distributions in a low-pressure xenon discharge are presented. The measurement technique is based on Stark spectroscopy, using a 2 + 1 excitation scheme with fluorescence dip detection. Electric fields can be measured by detecting Stark shifts of high-lying Rydberg

  12. Effect of a background electric field on the Hagedorn temperature

    International Nuclear Information System (INIS)

    Ferrer, E.J.; Incera, V. de la; Fradkin, E.S.

    1990-07-01

    We compute the one-loop free energy of the open neutral string gas in a constant electromagnetic background. Starting from this result we show that the Hagedorn temperature of this hot string gas depends on the background electric field. The larger the electric field, the lower the Hagedorn temperature is. (author). 13 refs

  13. Electric Field-Assisted Pressureless Sintering of Ceramic Protonic Conductors

    DEFF Research Database (Denmark)

    Muccillo, R.; Esposito, Vincenzo; Zanetti De Florio, Daniel

    2017-01-01

    Gadolinium, yttrium and samarium-doped barium cerate (BCGd, BCY and BCSm, respectively) polycrystalline green pellets were submitted to electric field-assisted pressureless sintering experiments isothermally in the temperature range 800-1200oC under 100-200 V cm-1 electric fields, limiting to 1-5...

  14. Nonequilibrium electrophoresis of an ion-selective microgranule for weak and moderate external electric fields

    Science.gov (United States)

    Frants, E. A.; Ganchenko, G. S.; Shelistov, V. S.; Amiroudine, S.; Demekhin, E. A.

    2018-02-01

    Electrokinetics and the movement of charge-selective micro-granules in an electrolyte solution under the influence of an external electric field are investigated theoretically. Straightforward perturbation analysis is applied to a thin electric double layer and a weak external field, while a numerical solution is used for moderate electric fields. The asymptotic solution enables the determination of the salt concentration, electric charge distribution, and electro-osmotic velocity fields. It may also be used to obtain a simple analytical formula for the electrophoretic velocity in the case of quasi-equilibrium electrophoresis (electrophoresis of the first kind). This formula differs from the famous Helmholtz-Smoluchowski relation, which applies to dielectric microparticles, but not to ion-selective granules. Numerical calculations are used to validate the derived formula for weak external electric fields, but for moderate fields, nonlinear effects lead to a significant increase in electrophoretic mobility and to a transition from quasi-equilibrium electrophoresis of the first kind to nonequilibrium electrophoresis of the second kind. Theoretical results are successfully compared with experimental data.

  15. An effective field theory for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Chang, D.; Kephart, T.W.; Keung, W.Y.; Yuan, T.C.

    1992-01-01

    We derive a CP-odd effective field theory involving the field strengths of the gluon and the photon and their duals as a result of integrating out a heavy quark which carries both the chromo-electric dipole moment and electric dipole moment. The coefficients of the induced gluonic, photonic, and mixed gluon-photon operators with dimension ≤ 8 are determined. Implications of some of these operators on the neutron electric dipole moment are also discussed. (orig.)

  16. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...

  17. Effects of transverse electric field and heterogeneity of a poorly electrically conducting fluid saturated nanoporous zeolites acquiring smart material properties

    International Nuclear Information System (INIS)

    Rudraiah, N.; Ranganna, G.; Shilpa, P.

    2013-01-01

    In this paper we explain a Mathematical Model involving Darcy linear drag, Forchheimer quadratic drag, horizontal density gradient and the variation of electrical conductivity due to organic substances dissolved in a heterogeneous Boussinesq poorly conducting couple stress fluid flow (PCPCSFF) through Nano Porous Zeolites regarded as densely packed porous media. Initially, the flow is at rest and set in motion due to initial piecewise horizontal concentration gradient. Analytical solutions, for electric potential using the Maxwell field equations and for velocity and density using nonlinear Darcy – Forchheimer equation in the presence of couple stress and electric force are obtained using the method of time series evolution. The analytical solutions for streamlines and density are computed for different values of time, t, for a particular value of electric number W 1 and couple stress parameter β and the results are depicted graphically in figures 1 and 2. From these figures we found that the streamlines are closer in the region of x 0 and the density profiles are concentrated in the lower region and develop curvature in the presence of electric field and couple stress parameter. The physical reason for the nature of streamlines and density profiles are given in the last section and some important conclusions are drawn. (author)

  18. A nonlinear approach to modelling the residential electricity consumption in Ethiopia

    International Nuclear Information System (INIS)

    Gabreyohannes, Emmanuel

    2010-01-01

    In this paper an attempt is made to model, analyze and forecast the residential electricity consumption in Ethiopia using the self-exciting threshold autoregressive (SETAR) model and the smooth transition regression (STR) model. For comparison purposes, the application was also extended to standard linear models. During the empirical presentation of both models, significant nonlinear effects were found and linearity was rejected. The SETAR model was found out to be relatively better than the linear autoregressive model in out-of-sample point and interval (density) forecasts. Results from our STR model showed that the residual variance of the fitted STR model was only about 65.7% of that of the linear ARX model. Thus, we can conclude that the inclusion of the nonlinear part, which basically accounts for the arrival of extreme price events, leads to improvements in the explanatory abilities of the model for electricity consumption in Ethiopia. (author)

  19. A nonlinear approach to modelling the residential electricity consumption in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Gabreyohannes, Emmanuel [Ethiopian Civil Service College, P.O.Box 5648, Addis Ababa (Ethiopia)

    2010-05-15

    In this paper an attempt is made to model, analyze and forecast the residential electricity consumption in Ethiopia using the self-exciting threshold autoregressive (SETAR) model and the smooth transition regression (STR) model. For comparison purposes, the application was also extended to standard linear models. During the empirical presentation of both models, significant nonlinear effects were found and linearity was rejected. The SETAR model was found out to be relatively better than the linear autoregressive model in out-of-sample point and interval (density) forecasts. Results from our STR model showed that the residual variance of the fitted STR model was only about 65.7% of that of the linear ARX model. Thus, we can conclude that the inclusion of the nonlinear part, which basically accounts for the arrival of extreme price events, leads to improvements in the explanatory abilities of the model for electricity consumption in Ethiopia. (author)

  20. Electric field measurements in the auroral E region

    International Nuclear Information System (INIS)

    Mahon, H.P.; Smiddy, M.; Sagalyn, R.C.

    1975-01-01

    Dipole electric field, positive ion and electron densities and temperatures, vehicle potential, and plasma sheath measurements have been made in the auroral E region by means of rockets flown from Fort Churchill, Canada. These results are described and compared over the altitude region 100 to 165 km. On a rocket flight launched on 10 December 1969 during very quiet conditions, adjacent to a stable, low intensity auroral arc, the plasma density and temperatures are found to be high and the electric fields large and steady. Electric field components of the order of -17 mv m -1 to +6 mv m -1 were measured along the Earth's magnetic field. The plasma results indicate that these fields may be contributing to enhanced electron temperatures. On a flight of 9 March 1970 during a large magnetic storm with widespread auroral activity, lower plasma densities and temperatures and much smaller and more erratic electric fields were observed with no significant component parallel to the magnetic field. (auth)

  1. Electric field numerical simulation of disc type electrostatic spinning spinneret

    Science.gov (United States)

    Wei, L.; Deng, ZL; Qin, XH; Liang, ZY

    2018-01-01

    Electrospinning is a new type of free-end spinning built on electric field. Different from traditional single needle spinneret, in this study, a new disc type free surface spinneret is used to produce multiple jets, this will greatly improve production efficiency of nanofiber. The electric-field distribution of spinneret is the crux of the formation and trajectory of jets. In order to probe the electric field intensity of the disc type spinneret, computational software of Ansoft Maxwell 12 is adopted for a precise and intuitive analysis. The results showed that the whole round cambered surface of the spinning solution at edge of each layer of the spinneret with the maximum curvature has the highest electric field intensity, and through the simulation of the electric field distribution of different spinneret parameters such as layer, the height and radius of the spinneret. Influences of various parameters on the electrostatic spinning are obtained.

  2. Background field method for nonlinear σ-model in stochastic quantization

    International Nuclear Information System (INIS)

    Nakazawa, Naohito; Ennyu, Daiji

    1988-01-01

    We formulate the background field method for the nonlinear σ-model in stochastic quantization. We demonstrate a one-loop calculation for a two-dimensional non-linear σ-model on a general riemannian manifold based on our formulation. The formulation is consistent with the known results in ordinary quantization. As a simple application, we also analyse the multiplicative renormalization of the O(N) nonlinear σ-model. (orig.)

  3. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  4. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    1998-12-01

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  5. Density nonlinearities and a field theory for the dynamics of simple fluids

    OpenAIRE

    Mazenko, Gene F.; Yeo, Joonhyun

    1994-01-01

    We study the role of the Jacobian arising from a constraint enforcing the nonlinear relation: ${\\bf g}=\\rho{\\bf V}$, where $\\rho,\\: {\\bf g}$ and ${\\bf V}$ are the mass density, the momentum density and the local velocity field, respectively, in the field theoretic formulation of the nonlinear fluctuating hydrodynamics of simple fluids. By investigating the Jacobian directly and by developing a field theoretic formulation without the constraint, we find that no changes in dynamics result as co...

  6. Electric field with bipolar structure during magnetic reconnection without a guide field

    Science.gov (United States)

    Guo, Jun

    2014-05-01

    We present a study on the polarized electric field during the collisionless magnetic reconnection of antiparallel fields using two dimensional particle-in-cell simulations. The simulations demonstrate clearly that electron holes and electric field with bipolar structure are produced during magnetic reconnection without a guide field. The electric field with bipolar structure can be found near the X-line and on the separatrix and the plasma sheet boundary layer, which is consistent with the observations. These structures will elongate electron's time staying in the diffusion region. In addition, the electric fields with tripolar structures are also found in our simulation.

  7. Radiation of an electron in an electric field. 1

    International Nuclear Information System (INIS)

    Fedosov, N.I.; Flesher, G.I.

    1976-01-01

    The problem of electron radiation in a field of a travelling electric wave is solved by methods of classical electrodynamics. Such a field may serve as a model of a field on the linear accelerator axis. It is shown that the total radiation power, as well as the spectral-angular distribution of the radiation energy of an electron travelling in a longitudinal electric wave coincide with radiation in a stationary uniform electric field with the strength equal to that of the wave at the point where the particle velocity becomes close to the velocity of light [ru

  8. Neoclassical transport and radial electric fields in TJ-K

    International Nuclear Information System (INIS)

    Rahbarnia, K.; Greiner, F.; Ramisch, M.; Stroth, U.; Greiner, F.

    2003-01-01

    The neoclassical transport is investigated in the torsatron TJ-K, which is operated with a low-temperature plasma. In the low-collisionality regime neoclassical losses are not intrinsically ambipolar, leading to the formation of a radial electric field which acts on both neoclassical and turbulent transport. This electric field is measured with a combination of Langmuir and emissive probes. The data are compared with the ambipolar electric field calculated with an analytic model. The experimental fields are positive and larger than the calculated ones. Direct losses of the fast electrons might explain this discrepancy. (orig.)

  9. Field-theoretical investigations in nonlinear realizations of gauge symmetry

    International Nuclear Information System (INIS)

    Lee, Chenhan.

    1989-01-01

    A review of both linear realization and non-linear realization of gauge symmetries is given and the connection between the two recipes is carefully examined. The author then constructs both linear and non-linear realizations for of supersymmetric theories. The supermultiplets of the Goldstone modes contain Goldstone bosons, quasi-Goldstone bosons and quasi-Goldstone fermions. He makes an attempt to construct a specific model of a supersymmetric non-linear realization for the Nambu-Goldstone superfields and the quasi-Goldstone fermions are identified with the quarks and leptons. Further, he discusses a mechanism by which the components of the Nambu-Goldstone supermultiplets are given non-zero mass splittings by the coupling to a hidden sector. Next, he turns to anti-symmetric tensor gauge theories, which are shown to be classically equivalent to the non-linear models describing the complete symmetry breakdown. To study the quantum mechanical equivalence of these two models, he carries out the tensor gauge fixing and the quantization procedures for the anti-symmetric tensor theories and establish the global symmetry currents which connect the two models. He then builds the supersymmetric extensions of the anti-symmetric tensor gauge theories in both abelian and non-abelian versions. Such super-tensor gauge theories are shown, by using the superfield equations of motion, to be equivalent to the fully doubled supersymmetric non-linear models of complete symmetry breakdown

  10. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  11. Should we be afraid of magnetic fields related to electricity?

    International Nuclear Information System (INIS)

    Souques, M.

    2009-01-01

    After having recalled that the main sources of 50 Hz electric field are high voltage lines while such a field around any electrical equipment is null because of a presence of insulation, the author comments the magnetic field level at the vicinity of common electrical equipment (refrigerator, hi-fi, computer, television, and so on) and at some distance (30 or 100 meters) of high-voltage and low-voltage lines. She comments the knowledge on the effects of exposure to a 50 Hz magnetic field, and recalls that a publication suggested in 1979 that there was a risk of leukaemia for children living close to electrical lines. More recent studies proposed to apply to magnetic fields an existing classification of products with respect to cancer risk (known, likely, possible, insufficient knowledge, not carcinogen). Some studies put the risk of leukaemia associated to magnetic fields into question again

  12. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro.

    Science.gov (United States)

    Bikson, Marom; Inoue, Masashi; Akiyama, Hiroki; Deans, Jackie K; Fox, John E; Miyakawa, Hiroyoshi; Jefferys, John G R

    2004-05-15

    The effects of uniform steady state (DC) extracellular electric fields on neuronal excitability were characterized in rat hippocampal slices using field, intracellular and voltage-sensitive dye recordings. Small electric fields (tips of basal and apical dendrites. The polarization was biphasic in the mid-apical dendrites; there was a time-dependent shift in the polarity reversal site. DC fields altered the thresholds of action potentials evoked by orthodromic stimulation, and shifted their initiation site along the apical dendrites. Large electric fields could trigger neuronal firing and epileptiform activity, and induce long-term (>1 s) changes in neuronal excitability. Electric fields perpendicular to the apical-dendritic axis did not induce somatic polarization, but did modulate orthodromic responses, indicating an effect on afferents. These results demonstrate that DC fields can modulate neuronal excitability in a time-dependent manner, with no clear threshold, as a result of interactions between neuronal compartments, the non-linear properties of the cell membrane, and effects on afferents.

  13. On an effect of interplanetary magnetic field on a distribution electric fields in the polar ionosphere

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1985-01-01

    The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields

  14. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Directory of Open Access Journals (Sweden)

    Charlie Huveneers

    Full Text Available Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1 the behaviour of 18 white sharks (Carcharodon carcharias near a static bait, and (2 the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  15. Generation of superDreicer electric fields in the solar chromosphere

    Science.gov (United States)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2016-12-01

    The electric field generation at the front of the current pulse, which originates in a coronal magnetic loop owing to the development of the Rayleigh-Taylor magnetic instability at loop footpoints, has been considered. During the τA ≈ l/V A ≈ 5-25 s time (where l is the plasma plume height entering a magnetic loop as a result of the Rayleigh-Taylor instability), a disturbance related to the magnetic field tension B ϕ( r,t), "escapes" the instability region with the Alfvén velocity in this case. As a result, an electric current pulse Iz( z - V A t), at the front of which an induction magnetic field E z, which is directed along the magnetic tube axis and can therefore accelerate particles, starts propagating along a magnetic loop with a characteristic scale of Δξ ≈ l. In the case of sufficiently large currents, when B ϕ 2/8π > p, an electric current pulse propagates nonlinearly, and a relatively large longitudinal electric field originates E z ≈ 2 I z 3 V A/ c 4a2Bz 2l, which can be larger than the Dreicer field, depending on the electric current value.

  16. Probing Surface Electric Field Noise with a Single Ion

    Science.gov (United States)

    2013-07-30

    potentials is housed inside a Faraday cage providing more than 40 dB of attenuation for electromagnetic fields in the range of frequencies between 200...and measuring the ion quantum state [16]. Thus, by measuring the effect of electric field noise on the motional quantum state of the ion, one can probe...understand these effects . In summary, we have probed the electric field noise near an aluminum-copper surface at room temperature using a single trapped ion

  17. Geometrical phases from global gauge invariance of nonlinear classical field theories

    International Nuclear Information System (INIS)

    Garrison, J.C.; Chiao, R.Y.

    1988-01-01

    We show that the geometrical phases recently discovered in quantum mechanics also occur naturally in the theory of any classical complex multicomponent field satisfying nonlinear equations derived from a Lagrangean with is invariant under gauge transformations of the first kind. Some examples are the paraxial wave equation for nonlinear optics, and Ginzburg-Landau equations for complex order parameters in condensed-matter physics

  18. A new theoretical basis for numerical simulations of nonlinear acoustic fields

    Science.gov (United States)

    Wójcik, Janusz

    2000-07-01

    Nonlinear acoustic equations can be considerably simplified. The presented model retains the accuracy of a more complex description of nonlinearity and a uniform description of near and far fields (in contrast to the KZK equation). A method has been presented for obtaining solutions of Kuznetsov's equation from the solutions of the model under consideration. Results of numerical calculations, including comparative ones, are presented.

  19. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  20. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Electric field measurements at subcritical, oblique bow shock crossings

    International Nuclear Information System (INIS)

    Wygant, J.R.; Bensadoun, M.; Mozer, F.S.

    1987-01-01

    Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field dominates, accounting for most of the cross-shock potential, but that there is a nonnegligible parallel component. This large-scale parallel component has a magnitude of 1-2 mV/m which sometimes results in a potential well for electrons with a depth of ∼150 eV. It is experimentally demonstrated that the dominance of the perpendicular over the parallel component of the electric field resulted in a correlation between the longitudinal component of the large-scale electric field and the fluctuations in the magnetic field component perpendicular to the coplanarity plane

  2. Nonlinear drift tearing mode

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1989-01-01

    Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed

  3. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  4. Electric conductivity of TlInTe2 monocrystal in strong electric fields

    International Nuclear Information System (INIS)

    Zarbaliev, M.M.; Godzhaev, Eh.M.; Gadzhiev, V.A.

    1980-01-01

    Electric condUctivity of the TlInTe 2 single crystal in strong electric fields has been studied in the range of 77-300 K. The electron part of the TlInTe 2 dielectric constant has been found to be 4. The dependence of the activation energy of current carriers on the electric field strength is constructed and the value of the activation energy of current carriers in the absence of an electric field is determined by the extrapolation method. The results of the experiments are in good agreement with the Frenkel-Pool theory, and this affords grounds for asserting that the obtained dependences of electric conductivity on temperature and the electric field strength are defined by variation in the current carrier concentration due to action of the thermal-electron ionization mechanism

  5. Electric field prediction for a human body-electric machine system.

    Science.gov (United States)

    Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia

    2004-01-01

    A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.

  6. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  7. The relationship between anatomically correct electric and magnetic field dosimetry and published electric and magnetic field exposure limits

    International Nuclear Information System (INIS)

    Kavet, R.; Dovan, T.; Patrick Reilly, J.

    2012-01-01

    Electric and magnetic field exposure limits published by International Commission for Non-Ionizing Radiation Protection and Inst. of Electrical and Electronics Engineers are aimed at protection against adverse electro-stimulation, which may occur by direct coupling to excitable tissue and, in the case of electric fields, through indirect means associated with surface charge effects (e.g. hair vibration, skin sensations), spark discharge and contact current. For direct coupling, the basic restriction (BR) specifies the not-to-be-exceeded induced electric field. The key results of anatomically based electric and magnetic field dosimetry studies and the relevant characteristics of excitable tissue were first identified. This permitted us to assess the electric and magnetic field exposure levels that induce dose in tissue equal to the basic restrictions, and the relationships of those exposure levels to the limits now in effect. We identify scenarios in which direct coupling of electric fields to peripheral nerve could be a determining factor for electric field limits. (authors)

  8. Nucleation of superconductivity under rapid cycling of an electric field

    International Nuclear Information System (INIS)

    Bandyopadhyay, Malay

    2008-01-01

    The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (H c 2 ) as well as the surface critical nucleation field (H c 3 ) of superconductivity as compared to the case of absent electric field (ε 0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of H c 3 is 1.6592 times larger than that of H c 2

  9. Effects of an electric field on interaction of aromatic systems.

    Science.gov (United States)

    Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S

    2016-04-30

    The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.

  10. Symmetry properties of some nonlinear field theory models

    International Nuclear Information System (INIS)

    Shvachka, A.B.

    1984-01-01

    Various approaches towards the study of symmetry properties of some nonlinear evolution equations as well as possible ways of their computer implementation using the computer algebra systems langage are discussed. Special attention is paid to the method of pseudopotential investigation of formal integrability and isovector method for the equations of balance

  11. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    Science.gov (United States)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  12. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  13. Galvanotactic behavior of Tetrahymena pyriformis under electric fields

    International Nuclear Information System (INIS)

    Kim, Dal Hyung; Kim, Paul Seung Soo; Kim, Min Jun; Lee, Kyoungwoo; Kim, JinSeok

    2013-01-01

    Tetrahymena pyriformis, a eukaryotic ciliate, swims toward a cathode in straight or cross-shaped microchannels under an applied electric field, a behavioral response called cathodal galvanotaxis. In straight channel experiments, a one-dimensional electric field was applied, and the galvanotactic swimming behavior of Tetrahymena pyriformis was observed and described in detail while the polarity of this field is switched. In most individual cases, the cell would immediately switch its direction toward the cathode; however, exceptional cases have been observed where cells exhibit a turning delay or do not turn after a polarity switch. In cross-channel experiments, feedback control using vision-based tracking was used to steer a cell in the microchannel intersection using a two-dimensional electric field generated by four electrodes placed at four ends of the cross channel. The motivation for this work is to study the swimming behavior of Tetrahymena pyriformis as a microrobot under the control of electric fields. (paper)

  14. Optical Remote Sensing of Electric Fields Above Thunderstorms

    Science.gov (United States)

    Burns, B. M.; Carlson, B. E.; Lauben, D.; Cohen, M.; Smith, D.; Inan, U. S.

    2010-12-01

    Measurement of thunderstorm electric fields typically require balloon-borne measurements in the region of interest. Such measurements are cumbersome and provide limited information at a single point. Remote sensing of electric fields by Kerr-effect induced optical polarization changes of background skylight circumvents many of these difficulties and can in principle provide a high-speed movie of electric field behavior. Above-thundercloud 100 kV/m quasi-static electric fields are predicted to produce polarization changes at above the part in one million level that should be detectable at a ground instrument featuring 1 cm2sr geometric factor and 1 kHz bandwidth (though more sensitivity is nonetheless desired). Currently available optical and electronic components may meet these requirements. We review the principles of this measurement and discuss the current status of a field-ready prototype instrument currently in construction.

  15. Initial plasma production by induction electric field on QUEST tokamak

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Nakamura, Kazuo; Sato, Kohnosuke

    2007-01-01

    Induction electric field by center solenoid coil plays a roll to produce initial plasma. According to Townsend avalanche theory, minimum electric field for plasma breakdown depends on neutral gas pressure and connection length. On QUEST spherical tokamak, a connection length is evaluated as 966m on null point neighborhood with coil current ratio I PF26 /I CS =0.1, and induction electric field considering eddy current of vacuum vessel is evaluated as about 0.1 V/m on null point neighborhood. With Townsend avalanche theory, these values manage to produce initial plasma on QUEST. (author)

  16. Distributions of electric and elastic fields at domain boundaries

    International Nuclear Information System (INIS)

    Novak, Josef; Fousek, Jan; Maryska, Jiri; Marvan, Milan

    2005-01-01

    In this paper we describe the application of the finite element method (FEM) in modelling spatial distributions of electric and elastic fields in a ferroelectric crystals with two domains separated by a 90 deg. domain wall. The domain boundary is idealized as a two-dimensional defect in an electro-elastic continuum. It represents the source of inhomogenity and internal distortion in both elastic and electric fields. The main results are distributions of electric field, strain and mechanical force along the domain boundary

  17. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  18. Electric field studies: TLE-induced waveforms and ground conductivity impact on electric field propagation

    Science.gov (United States)

    Farges, Thomas; Garcia, Geraldine; Blanc, Elisabeth

    2010-05-01

    We review in this paper main results obtained from electric field (from VLF to HF) measurement campaigns realized by CEA in the framework of the Eurosprite program [Neubert et al., 2005, 2008] from 2003 to 2009 in France in different configurations. Two main topics have been studied: sprite or elve induced phenomena (radiation or perturbation) and wave propagation. Using a network of 4 stations, VLF radiations from sprite have been successfully located at 10 km from the sprite parent lightning, in agreement with possible sprite location, generally displaced from the parent lightning. The MF (300 kHz - 3 MHz) source bursts were identified simultaneously with the occurrence of sprites observed with cameras [Farges et al., 2004; Neubert et al., 2008]. These observations are compared to recent broadband measurements, assumed to be due to relativistic electron beam radiation related to sprites [Fullekrug et al., 2009]. Recently, in 2009, with a new instrumentation, an ELF tail has been clearly measured after the lightning waveform, while sprites were observed at about 500 km from our station. This ELF tail is usually observed at distances higher than thousand km and is associated to sprite generation. This opens the capacity to measure the charge moment of the parent-lightning, using such measurement close to the source. Farges et al. [2007] showed that just after a lightning return stroke, a strong transient attenuation is very frequently observed in the MF waves of radio transmissions. They showed that this perturbation is due to heating of the lower ionosphere by the lightning-induced EMP during few milliseconds. These perturbations are then the MF radio signature of the lightning EMP effects on the lower ionosphere, in the same way as elves correspond to their optical signature. The experiment also provided the electric field waveforms directly associated to elves, while lightning were not detected by Météorage. Many of them present a double peak feature. The

  19. Effects of a static electric field on nonsequential double ionization

    International Nuclear Information System (INIS)

    Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao

    2007-01-01

    Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI

  20. Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...

  1. Effects of Exponential Nonlinear Electrodynamics and External Magnetic Field on Holographic Superconductors

    Science.gov (United States)

    Sheykhi, A.; Abdollahzadeh, Z.

    2018-03-01

    We investigate the effects of an external magnetic field as well as exponential nonlinear electrodynamics on the properties of s-wave holographic superconductors. Our strategy for this study is the matching method, which is based on the match of the solutions near the horizon and on the boundary at some intermediate point. When the magnetic field is turned off, we obtain the critical temperature as well as the condensation operator and show that the critical exponent is still 1/2, which is the universal value in the mean field theory. Then, we turn on the magnetic field and obtain the critical magnetic field, B c , in order to study its behavior in terms of the temperature. Interestingly enough, we find that in the presence of exponential nonlinear electrodynamics, the critical temperature decreases, while the critical magnetic field increases compared to the Maxwell case. We also observe that the critical magnetic field increases with increasing the nonlinear parameter b.

  2. Effects of electron-electron interactions on the electron distribution function of a plasma in the presence of an external electric field

    International Nuclear Information System (INIS)

    Molinari, V.G.; Pizzio, F.; Spiga, G.

    1979-01-01

    The electron distribution function, the electron temperature and some transport parameters (electrical conductivity and energy flow coefficient) are obtained starting from the nonlinear Boltzmann equation for a plasma under the action of an external electric field. The Fokker-Planck approximation is used for electron-electron and electron-ion interactions. The effects of electron-electron collisions are studied for different values of collision frequencies and electric field. (author)

  3. Nonlinear inertial Alfven waves in plasmas with sheared magnetic field and flow

    International Nuclear Information System (INIS)

    Chen Yinhua; Wang Ge; Tan Liwei

    2004-01-01

    Nonlinear equations describing inertial Alfven waves in plasmas with sheared magnetic field and flow are derived. For some specific parameters chosen, authors have found a new type of electromagnetic coherent structures in the tripolar vortex-like form

  4. New approaches and solutions of the nonlinear force-free field

    International Nuclear Information System (INIS)

    Xie Baisong; Yin Xintao; Luo Xia

    2006-01-01

    New approaches to nonlinear force-free field equations are presented and new exact solutions are found analytically. Examples are given and some implications of the results to astrophysical solar plasmas as well as tokamak plasmas are discussed

  5. Some nonlinear estimates for lateral propagation of self-generated B fields

    International Nuclear Information System (INIS)

    Goldman, S.R.

    1982-01-01

    We present nonlinear estimates which provide plausible guidelines and scalings for the lateral transport of magnetic fields due to laser-plasma interaction in both slab and cylindrical geometries. Limitations of the modelling are also indicated

  6. Electric field induced instabilities in free emulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Tchoukov, P.; Dabros, T. [Natural Resources Canada, Devon, AB (Canada); Mostowfi, F. [Schlumberger DBR Technology Center, Edmonton, AB (Canada); Panchev, N. [Champion Technologies Inc., Houston, TX (United States); Czarnecki, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2009-07-01

    This presentation reported on a study that investigated the mechanism of electric field-induced breakdown of free emulsion films. Instability patterns were observed on the plane of a water-oil-water film following electric polarization. The length-scales of the instabilities were measured by analyzing images immediately after applying the electric field. Linear stability analysis was used to calculate the theoretical dominant wavelengths. The calculated values were found to be in good agreement with measured values. The films were formed in a thin film apparatus modified so that the oil film separated 2 aqueous phase compartments, each in contact with a platinum electrode. This enabled the measurement of disjoining pressure while applying the electric field to the film. It was concluded that breakdown of thin films induced by electric field has many applications, including electrostatic de-emulsification/desalination of crude oil and emulsion stability measurements. It was concluded that electroporation and dielectric breakdown may be responsible for electric field-induced breakdown. This study also presented evidence of an increase in electric field-induced instabilities in emulsion films resulting in rupture. tabs., figs.

  7. Quantum particle in a potential well field and in an electric field

    International Nuclear Information System (INIS)

    Gyunter, U.; Olejnik, V.P.

    1990-01-01

    Solutions of the Dirac equation in the field of δ-like potential well with arbitrary symmetry and in uniform electric field were obtained and analyzed. It is shown that wave function and energy of electron in bound state in the absence of electric field depend sufficiently on the type of potential well symmetry. 1 ref

  8. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  9. Field-aligned current density versus electric potential characteristics for magnetospheric flux tubes

    International Nuclear Information System (INIS)

    Lemaire, J.; Scherer, M.

    1983-01-01

    The field-aligned current density (Jsub(tot)) is a non-linear function of the applied potential difference (phi) between the ionosphere and the magnetosphere. This nonlinear function has been calculated for plasma boundary conditions typical in a dayside cusp magnetic flux tube. The J-characteristic of such a flux tube changes when the temperatures of the warm magnetospheric electrons and of the cold ionospheric electrons are modified; it changes also when the relative density of the warm plasma is modified; the presence of trapped secondary electrons changes also the J-characteristic. The partial currents contributed by the warm and cold electrons, and by warm and cold ions are illustrated. The dynamic characteristic of an electric circuit depends on the static characteristic of each component of the sytem: i.e. the resistive ionosphere, the return current region, and the region of particle precipitation whose field-aligned current/voltage characteristics have been studied in this article

  10. Manipulation of positron orbits in a dipole magnetic field with fluctuating electric fields

    Science.gov (United States)

    Saitoh, H.; Horn-Stanja, J.; Nißl, S.; Stenson, E. V.; Hergenhahn, U.; Pedersen, T. Sunn; Singer, M.; Dickmann, M.; Hugenschmidt, C.; Stoneking, M. R.; Danielson, J. R.; Surko, C. M.

    2018-01-01

    We report the manipulation of positron orbits in a toroidal dipole magnetic field configuration realized with electric fields generated by segmented electrodes. When the toroidal circulation motion of positrons in the dipole field is coupled with time-varying electric fields generated by azimuthally segmented outer electrodes, positrons undergo oscillations of their radial positions. This enables quick manipulation of the spatial profiles of positrons in a dipole field trap by choosing appropriate frequency, amplitude, phase, and gating time of the electric fields. According to numerical orbit analysis, we applied these electric fields to positrons injected from the NEPOMUC slow positron facility into a prototype dipole field trap experiment with a permanent magnet. Measurements with annihilation γ-rays clearly demonstrated the efficient compression effects of positrons into the strong magnetic field region of the dipole field configuration. This positron manipulation technique can be used as one of essential tools for future experiments on the formation of electron-positron plasmas.

  11. Enhanced electrical conductivity in graphene and boron nitride nanoribbons in large electric fields

    Science.gov (United States)

    Chegel, Raad

    2018-02-01

    Based on data of density function theory (DFT) as the input of tight binding model, the electrical conductivity (σ(T)) of graphene nanoribbos (GNRs) and Boron Nitride nanoribbos (BNNRs) under external electric fields with different wide are studied using the Green's function method. The BNNRs are wide band gap semiconductor and they are turned into metal depending on their electric field strength. The σ(T) shows increasing in low temperature region and after reaching the maximum value, it will decrease in high temperature region. In lower temperature ranges, the electrical conductivity of the GNRs is greater than that of the BNNRs. In a low temperature region, the σ(T) of GNRs increases linearly with temperature unlike the BNNRs. The electrical conductivity are strongly dependent on the electric field strength.

  12. On the electric field model for an open magnetosphere

    Science.gov (United States)

    Wang, Zhi; Ashour-Abdalla, Maha; Walker, Raymond J.

    1993-01-01

    We have developed a new canonical separator line type magnetospheric magnetic field and electric field model for use in magnetospheric calculations, we determine the magnetic and electric field by controlling the reconnection rate at the subsolar magnetopause. The model is applicable only for purely southward interplanetary magnetic field (IMF). We have obtained a more realistic magnetotail configuration by applying a stretch transformation to an axially symmetric field solution. We also discuss the Stern singularity in which there is an electric field singlarity in the canonical separate line models for B(sub y) not = to 0 by using a new technique that solves for the electric field along a field line directly instead of determining it by a potential mapping. The singularity not only causes an infinite electric field on the polar cap, but also causes the boundary conditions at plus infinity and minus infinity in the solar wind to contradict each other. This means that the canonical separator line models do not represent the open magnetosphere well, except for the case of purely southward IMF.

  13. Effects of an Electric Field on White Sharks: In Situ Testing of an Electric Deterrent

    Science.gov (United States)

    Huveneers, Charlie; Rogers, Paul J.; Semmens, Jayson M.; Beckmann, Crystal; Kock, Alison A.; Page, Brad; Goldsworthy, Simon D.

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  14. The bee, the flower and the electric field

    Directory of Open Access Journals (Sweden)

    Robert Daniel

    2016-01-01

    Full Text Available Insects use several different senses to forage on flowers, and detect floral cues such as color, shape, pattern, humidity and chemical volatiles. This presentation will present our discovery of a previously unappreciated sensory capacity in bumblebees (Bombus terrestris: the detection of floral electric fields. We show that these floral fields act as informational cues, and that they can be affected by the visit of naturally electrically charged bees. Like visual cues, floral electric fields exhibit variations in pattern and structure, which can be discriminated by bumblebees. We also show that such electric field information contributes to the complex array of floral cues that together improve a pollinator’s memory of floral rewards. Floral electric fields arise from complex interactions with the surrounding atmosphere, an interaction between plants and their environment that not well understood. Because floral electric fields can change within seconds, this new sensory modality - electrostatic field detection- may facilitate rapid and dynamic communication between flowers and their pollinators.

  15. Electric and magnetic fields in medicine and biology

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Papers Include: The effects of low frequency (50 Hz) magnetic fields on neuro-chemical transmission in vitro; Morphological changes in E Coli subjected to DC electrical fields; An investigation of some claimed biological effects of electromagnetic fields; Electrical phenomena and bone healing - a comparison of contemporary techniques; Clinical evaluations of a portable module emitting pulsed RF energy; The design, construction and performance of a magnetic nerve stimulator; The principle of electric field tomography and its application to selective read-out of information from peripheral nerves; Applied potential tomography - clinical applications; Impendance imaging using a linear electrode array; Mathematics as an aid to experiment: human body currents induced by power frequency electric fields; Effects of electric field near 750KV transmission line and protection against their harmful consequences; Leukemia and electromagnetic fields: a case-control study; Overhead power lines and childhood cancer; Magnetic measurement of nerve action currents - a new intraoperative recording technique; The potential use of electron spin resonance or impedance measurement to image neuronal electrical activity in the human brain

  16. The transient electric field measurement system for EAST device

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wayong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Ji, Z.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Zhu, C.M. [The Experiment & Verification Center of State Grid Electric Power Research Institute (The Automation Equipment EMC Lab. of State Grid Co.), Nanjing, Jiangsu (China); Zhang, Z.C.; Ma, T.F.; Xu, Z.H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-11-15

    The electromagnetic environment around the Experimental Advanced Superconducting Tokamak (EAST) device is very complex during plasma discharge experiment. In order to fully monitor the changes of electric field around the EAST device during plasma discharge, a transient electric field measurement system based on PCI eXtensions for Instrumentation (PXI) platform has been designed. A digitizer is used for high-speed data acquisition of raw signals from electric field sensors, and a Field Programmable Gate Array (FPGA) module is used for realizing an on-the-fly fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) algorithm including a beforehand identified antenna factor (AF) to achieve finally a calibrated and filtered electric field measurement, then these signals can be displayed and easily analyzed. The raw signals from electric field sensors are transferred through optical fiber by optical isolation to reduce electromagnetic interference (EMI). The high speed data streaming technology is used for data storage. A prototype of this system has been realized to measure the transient electric field strength, with the real-time processing and continuous acquisition ability of one channel of 14-bit resolution and up to 50 MHz sampling rate, and 6 KHz FFT frequency resolution.

  17. Nonlinear optical properties of an electromagnetically induced transparency medium interacting with two quantized fields

    CERN Document Server

    Kuang-Leman; Wu Yong Shi

    2003-01-01

    We study linear and nonlinear optical properties of an electromagnetically induced transparency (EIT) medium interacting with two quantized laser fields in the adiabatic EIT case. We show that the EIT medium exhibits normal dispersion. Kerr and higher-order nonlinear refractive index coefficients are also calculated in a completely analytical form. It is indicated that the EIT medium exhibits giant resonantly enhanced nonlinearities. We discuss the response of the EIT medium to nonclassical light fields and find that the polarization vanishes when the probe laser is initially in a nonclassical state of no single-photon coherence.

  18. Vector optical fields with polarization distributions similar to electric and magnetic field lines.

    Science.gov (United States)

    Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian

    2013-07-01

    We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.

  19. Streamer discharges can move perpendicularly to the electric field

    NARCIS (Netherlands)

    Nijdam, S.; Takahashi, E.; Teunissen, J.; Ebert, U.

    2014-01-01

    Streamer discharges are a primary mode of electric breakdown in thunderstorms and high voltage technology; they are generally believed to grow along electric field lines. However, we here give experimental and numerical evidence that streamers can propagate nearly perpendicularly to the background

  20. Electric field effects in hyperexcitable neural tissue: A review

    International Nuclear Information System (INIS)

    Durand, D.M.

    2003-01-01

    Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm -1 in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm -1 . These results suggest that the threshold for this effect is clearly smaller than 1mV mm -1 . The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease ( n =4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than ∼1mmV mm -. (author)

  1. Communication: Control of chemical reactions using electric field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Shivaraj D.; Tsori, Yoav, E-mail: tsori@bgu.ac.il [Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  2. Impact of electric field on Hofmeister effects in aggregation of ...

    Indian Academy of Sciences (India)

    Electric field; Hofmeister effects; ionic polarization; colloidal minerals; electrostatic interaction. 1. Introduction. Aggregation .... sions containing a given quantity of colloidal minerals ..... account to explain the observed Hofmeister effects. On the ...

  3. Ion-storage in radiofrequency electric quadrupole field

    International Nuclear Information System (INIS)

    Gheorghe, V.

    1976-01-01

    The confinement of charged particles in a quadrupole radiofrequency electric field are presented. The stability diagrams and phase space trajectories for the quadrupole mass spectrometer and for the ion trap are represented and their main characteristics are discussed. (author)

  4. Communication: Control of chemical reactions using electric field gradients.

    Science.gov (United States)

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  5. Roles of electric field on toroidal magnetic confinement

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Sanuki, Heiji; Fukuyama, Atsushi.

    1992-11-01

    Theoretical research on the influence of the electric field on the toroidal magnetic confinement is surveyed. The static electric field is first described. Physics pictures on the generation of the radial electric field and the influence on the confinement are shown. Neoclassical effects as well as the nonclassical processes are discussed. Emphasis is made on the connection with the improved confinement. Convective cell, i.e. the nonuniform potential on the magnetic surface is also discussed. The roles of the fluctuating electric field are then reviewed. The progress in the recent theories on the anomalous transport is addressed. Through these surveys, the impact of the experiments using the heavy ion beam probes on the modern plasma physics is illustrated. (author) 66 refs

  6. Pulsed electric fields for pasteurization: defining processing conditions

    Science.gov (United States)

    Application of pulsed electric fields (PEF) technology in food pasteurization has been extensively studied. Optimal PEF treatment conditions for maximum microbial inactivation depend on multiple factors including PEF processing conditions, production parameters and product properties. In order for...

  7. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensi......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.......The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors...

  8. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  9. Equatorial ionospheric electric fields during the November 2004 magnetic storm

    OpenAIRE

    Fejer, Bela G.; Jensen, J. W.; Kikuchi, T.; Abdu, M. A.; Chau, J. L.

    2007-01-01

    [1] We use radar measurements from the Jicamarca Radio Observatory, magnetometer observations from the Pacific sector and ionosonde data from Brazil to study equatorial ionospheric electric fields during the November 2004 geomagnetic storm. Our data show very large eastward and westward daytime electrojet current perturbations with lifetimes of about an hour (indicative of undershielding and overshielding prompt penetration electric fields) in the Pacific equatorial region during the November...

  10. Effect of External Electric Field Stress on Gliadin Protein Conformation

    OpenAIRE

    Singh, Ashutosh; Munshi, Shirin; Raghavan, Vijaya

    2013-01-01

    A molecular dynamic (MD) modeling approach was applied to evaluate the effect of external electric field on gliadin protein structure and surface properties. Static electric field strengths of 0.001 V/nm and 0.002 V/nm induced conformational changes in the protein but had no significant effect on its surface properties. The study of hydrogen bond evolution during the course of simulation revealed that the root mean square deviation, radius of gyration and secondary structure formation, all de...

  11. 3D Modeling of Electric Fields in the LUX Detector

    OpenAIRE

    LUX Collaboration; Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.

    2017-01-01

    This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data during two periods of searching for weakly interacting massive particle (WIMP) searches. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, g...

  12. 3D modeling of electric fields in the LUX detector

    OpenAIRE

    Akerib, DS; Alsum, S; Araújo, HM; Bai, X; Bailey, AJ; Balajthy, J; Beltrame, P; Bernard, EP; Bernstein, A; Biesiadzinski, TP; Boulton, EM; Brás, P; Byram, D; Cahn, SB; Carmona-Benitez, MC

    2017-01-01

    © 2017 IOP Publishing Ltd and Sissa Medialab. This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the de...

  13. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  14. Modeling of Monthly Residential and Commercial Electricity Consumption Using Nonlinear Seasonal Models—The Case of Hong Kong

    Directory of Open Access Journals (Sweden)

    Wai-Ming To

    2017-06-01

    Full Text Available Accurate modeling and forecasting monthly electricity consumption are the keys to optimizing energy management and planning. This paper examines the seasonal characteristics of electricity consumption in Hong Kong—a subtropical city with 7 million people. Using the data from January 1970 to December 2014, two novel nonlinear seasonal models for electricity consumption in the residential and commercial sectors were obtained. The models show that the city’s monthly residential and commercial electricity consumption patterns have different seasonal variations. Specifically, monthly residential electricity consumption (mainly for appliances and cooling in summer has a quadratic relationship with monthly mean air temperature, while monthly commercial electricity consumption has a linear relationship with monthly mean air temperature. The nonlinear seasonal models were used to predict residential and commercial electricity consumption for the period January 2015–December 2016. The correlations between the predicted and actual values were 0.976 for residential electricity consumption and 0.962 for commercial electricity consumption, respectively. The root mean square percentage errors for the predicted monthly residential and commercial electricity consumption were 7.0% and 6.5%, respectively. The new nonlinear seasonal models can be applied to other subtropical urban areas, and recommendations on the reduction of commercial electricity consumption are given.

  15. Weak nonlinear analysis of magneto–convection under magnetic field modulation

    International Nuclear Information System (INIS)

    Bhadauria, B S; Kiran, Palle

    2014-01-01

    An analytic study of heat transport in an electrically conducting fluid layer is performed under a non-uniform time-dependent magnetic field. The applied vertical magnetic field consists of two parts: a constant part and a time-dependent periodic part, which varies sinusoidally with time. A weakly nonlinear theory has been considered to investigate heat transfer in the fluid layer. The heat transfer coefficient is obtained by deriving the non-autonomous Ginzburg–Landau equation for an amplitude of convection. This amplitude of convection is derived by using NDSolve Mathematica 8, and the results are verified using Runge–Kutta–Fehlberg method. The Nusselt number is obtained in terms of various system parameters and the effect of each parameter on heat transport is reported in detail. The effect of magnetic Prandtl number Pm, amplitude of modulation δ is to enhance the heat transfer. The Chandrasekhar number Q, modulation frequency ω is to stabilize the system. Further, it is found that magnetic modulation can be used effectively in either enhancing the heat transfer or diminishing it. (paper)

  16. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  17. Vacuum radiation induced by time dependent electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)

    2017-04-10

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  18. Spiking patterns of a hippocampus model in electric fields

    International Nuclear Information System (INIS)

    Men Cong; Wang Jiang; Qin Ying-Mei; Wei Xi-Le; Deng Bin; Che Yan-Qiu

    2011-01-01

    We develop a model of CA3 neurons embedded in a resistive array to mimic the effects of electric fields from a new perspective. Effects of DC and sinusoidal electric fields on firing patterns in CA3 neurons are investigated in this study. The firing patterns can be switched from no firing pattern to burst or from burst to fast periodic firing pattern with the increase of DC electric field intensity. It is also found that the firing activities are sensitive to the frequency and amplitude of the sinusoidal electric field. Different phase-locking states and chaotic firing regions are observed in the parameter space of frequency and amplitude. These findings are qualitatively in accordance with the results of relevant experimental and numerical studies. It is implied that the external or endogenous electric field can modulate the neural code in the brain. Furthermore, it is helpful to develop control strategies based on electric fields to control neural diseases such as epilepsy. (interdisciplinary physics and related areas of science and technology)

  19. Effect of the radial electric field on turbulence

    International Nuclear Information System (INIS)

    Carreras, B.A.; Lynch, V.E.

    1990-01-01

    For many years, the neoclassical transport theory for three- dimensional magnetic configurations, such as magnetic mirrors, ELMO Bumpy Tori (EBTs), and stellarators, has recognized the critical role of the radial electric field in the confinement. It was in these confinement devices that the first experimental measurements of the radial electric field were made and correlated with confinement losses. In tokamaks, the axisymmetry implies that the neoclassical fluxes are ambipolar and, as a consequence, independent of the radial electric field. However, axisymmetry is not strict in a tokamak with turbulent fluctuations, and near the limiter ambipolarity clearly breaks down. Therefore, the question of the effect of the radial electric field on tokamak confinement has been raised in recent years. In particular, the radial electric field has been proposed to explain the transition from L-mode to H-mode confinement. There is some initial experimental evidence supporting this type of explanation, although there is not yet a self-consistent theory explaining the generation of the electric field and its effect on the transport. Here, a brief review of recent results is presented. 27 refs., 4 figs

  20. Enhance soil bioremediation with electric fields

    International Nuclear Information System (INIS)

    Acar, Y.B.; Rabbi, M.F.; Gale, R.J.; Ozsu, E.E.; Alshawabkeh, A.N.

    1996-01-01

    Electrokinetic remediation is an in situ remediation technique that uses low-level direct-current electric potential differences (on the order of volts per centimeter) or an electric current (on the order of milliamps per square centimeter of cross-sectional area between electrodes) applied across a soil mass by electrodes placed in an open- or closed-flow arrangement. In electrokinetic methods, the groundwater in the boreholes or an externally supplied fluid (processing fluid) is used as the conductive medium. Electrokinetic remediation technology for metal extraction is expected to decrease the cost of remediating contaminated soils to the lower end of the $100--$1,000/m 3 range. This would be a significant savings in the $350 billion hazardous waste site cleanup and remediation market. The environmental restoration cost for the mixed (radioactive)-waste market is separately estimated to be $65 billion. The potential of the electrokinetic remediation technique in remediating soils contaminated with radioactive mixed waste using depolarization agents and complexing agents is noteworthy. The authors have removed uranyl ions from spiked kaolinite using the technique

  1. Electric fields and monopole currents in compact QED

    International Nuclear Information System (INIS)

    Zach, M.; Faber, M.; Kainz, W.; Skala, P.

    1995-01-01

    The confinement in compact QED is known to be related to magnetic monopoles. Magnetic currents form a solenoid around electric flux lines between a pair of electric charges. This behaviour can be described by the dual version of Maxwell-London equations including a fluctuating string. We use a definition of magnetic monopole currents adjusted to the definition of the electric field strength on a lattice and get good agreement for field and current distributions between compact QED and the predictions of dual Maxwell-London equations. Further we show that the monopole fluctuations in the vacuum are suppressed by the flux tube. ((orig.))

  2. Electric field and temperature effects in irradiated MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M. A. G., E-mail: marcilei@fei.edu.br; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A. [Centro Universitário da FEI, São Bernardo do Campo, S.P. (Brazil); Aguiar, Vitor A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H. [Instituto de Física da USP, São Paulo, S.P. (Brazil)

    2016-07-07

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices.

  3. Action potential propagation: ion current or intramembrane electric field?

    Science.gov (United States)

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  4. Low-pressure gas breakdown in longitudinal combined electric fields

    International Nuclear Information System (INIS)

    Lisovskiy, V A; Kharchenko, N D; Yegorenkov, V D

    2010-01-01

    This paper contains the complete experimental and analytical picture of gas breakdown in combined electric fields for arbitrary values of rf and dc fields. To obtain it, we continued the study of the discharge ignition modes in nitrogen with simultaneous application of dc and rf electric fields presented in Lisovskiy et al (2008 J. Phys. D: Appl. Phys. 41 125207). To this end, we studied the effect of rf voltage on dc discharge ignition. When we applied an rf voltage exceeding the one corresponding to the minimum breakdown voltage of a self-sustained rf discharge, the curve of dependence of the dc breakdown voltage of a combined discharge on gas pressure was found to consist of two sections. We got the generalized gas breakdown criterion in the combined field valid for arbitrary values of rf and dc electric fields. The calculation results agree with experimental data satisfactorily.

  5. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    International Nuclear Information System (INIS)

    Kotov, I.V.; Humanic, T.J.; Nouais, D.; Randel, J.; Rashevsky, A.

    2006-01-01

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and s imulation/atlas.html>] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile

  6. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V. [Ohio State University, Columbus, OH 43210 (United States)]. E-mail: kotov@mps.ohio-state.edu; Humanic, T.J. [Ohio State University, Columbus, OH 43210 (United States); Nouais, D. [INFN, Sezione di Torino, I-10125 Turin (Italy); Randel, J. [Ohio State University, Columbus, OH 43210 (United States); Rashevsky, A. [INFN, Sezione di Triste, I-34127 Trieste (Italy)

    2006-11-30

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and ] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile.

  7. Sparse Reconstruction of Electric Fields from Radial Magnetic Data

    International Nuclear Information System (INIS)

    Yeates, Anthony R.

    2017-01-01

    Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a localized solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.

  8. Sparse Reconstruction of Electric Fields from Radial Magnetic Data

    Energy Technology Data Exchange (ETDEWEB)

    Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, Durham, DH1 3LE (United Kingdom)

    2017-02-10

    Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a localized solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.

  9. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  10. Surface states in an external electric field

    International Nuclear Information System (INIS)

    Steslicka, M.

    1975-10-01

    Under conditions typical for field ion microscopy, true surface states can exist. Their shift towards higher energies can be quite significant and, moreover, additional surface levels at still higher energies can appear. The latter can play an important role in the process of tunneling of image gas electrons into surface states

  11. Nonlinear electromagnetic fields in 0.5 MHz inductively coupled plasmas

    DEFF Research Database (Denmark)

    Ostrikov, K.N.; Tsakadze, E.L.; Xu, S.

    2003-01-01

    Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (similar to500 kHz) inductively coupled plasmas have been measured using miniature magnetic probes. In the low-power (similar to170 W) E-mode, the magnetic field pattern is purely linear......, with the fundamental frequency harmonics only. After transition to higher-power (similar to1130 W) H-mode, the second-harmonic nonlinear azimuthal magnetic field B-phi(2omega) that is in 4-6 times larger than the fundamental frequency component B-phi(omega), has been observed. A simplified plasma fluid model...... explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source is proposed. The nonlinear second harmonic poloidal (r-z) rf current generating the azimuthal magnetic field B-phi(2omega) is attributed to nonlinear interactions between the fundamental frequency radial...

  12. Limiting electric fields of HVDC overhead power lines.

    Science.gov (United States)

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  13. Time development of electric fields and currents in space plasmas

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-05-01

    Full Text Available Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1 some limitations of the Bu approach in solving the time development of electric fields and currents, (2 the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3 the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.

  14. Design of HIFU Transducers to Generate Specific Nonlinear Ultrasound Fields

    Science.gov (United States)

    Khokhlova, Vera A.; Yuldashev, Petr V.; Rosnitskiy, Pavel B.; Maxwell, Adam D.; Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.

    Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements on the pressure level and degree of nonlinear waveform distortion at the focus. Applications that utilize nonlinear waves with developed shocks are of growing interest, for example, for mechanical disintegration as well as for accelerated thermal ablation oftissue. In this work, an inverse problem of determining transducer parameters to enable formation of shockswith desired amplitude at the focus is solved. The solution was obtained by performing multipledirect simulations of the parabolic Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for various parameters of the source. It is shown that results obtained within the parabolic approximation can be used to describe the focal region of single element spherical sourcesas well as complex transducer arrays. It is also demonstrated that the focal pressure level at which fully developed shocksare formed mainly depends on the focusing angle of the source and only slightly depends on its aperture and operating frequency. Using the simulation results, a 256-element HIFU array operating at 1.5 MHz frequency was designed for a specific application of boiling-histotripsy that relies on the presence of 90-100 MPa shocks at the focus. The size of the array elements and focusing angle of the array were chosen to satisfy technical limitations on the intensity at the array elements and desired shock amplitudes in the focal waveform. Focus steering capabilities of the array were analysed using an open-source T-Array software developed at Moscow State University.

  15. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  16. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  17. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity either at blowoff or partial-detachment has been measured by varying the applied voltage and frequency of AC. The result showed that the detachment velocity increased with the applied AC electric fields, such that the flame could be nozzle-attached even over five times of the blowoff velocity without having electric fields. There existed four distinct regimes depending on applied AC voltage and frequency. In the low voltage regime, the threshold condition of AC electric fields was identified, below which the effect of electric fields on the detachment velocity is minimal. In the moderate voltage regime, the flame base oscillated with the frequency synchronized to AC frequency and the detachment velocity increased linearly with the applied AC voltage and nonlinearly with the frequency. In the high voltage regime, two different sub-regimes depending on AC frequency were observed. For relatively low frequency, the flame base oscillated with the applied AC frequency together with the half frequency and the variation of the detachment velocity was insensitive to the applied voltage. For relatively high frequency, the stabilization of the flame was significantly affected by the generation of streamers and the detachment velocity decreased with the applied voltage. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  18. A modeling approach to predict acoustic nonlinear field generated by a transmitter with an aluminum lens.

    Science.gov (United States)

    Fan, Tingbo; Liu, Zhenbo; Chen, Tao; Li, Faqi; Zhang, Dong

    2011-09-01

    In this work, the authors propose a modeling approach to compute the nonlinear acoustic field generated by a flat piston transmitter with an attached aluminum lens. In this approach, the geometrical parameters (radius and focal length) of a virtual source are initially determined by Snell's refraction law and then adjusted based on the Rayleigh integral result in the linear case. Then, this virtual source is used with the nonlinear spheroidal beam equation (SBE) model to predict the nonlinear acoustic field in the focal region. To examine the validity of this approach, the calculated nonlinear result is compared with those from the Westervelt and (Khokhlov-Zabolotskaya-Kuznetsov) KZK equations for a focal intensity of 7 kW/cm(2). Results indicate that this approach could accurately describe the nonlinear acoustic field in the focal region with less computation time. The proposed modeling approach is shown to accurately describe the nonlinear acoustic field in the focal region. Compared with the Westervelt equation, the computation time of this approach is significantly reduced. It might also be applicable for the widely used concave focused transmitter with a large aperture angle.

  19. On a Correlation between the Ionospheric Electric Field and the Time Derivative of the Magnetic Field

    Directory of Open Access Journals (Sweden)

    R. R. Ilma

    2012-01-01

    Full Text Available A correlation of the ionospheric electric field and the time derivative of the magnetic field was noticed over thirty years ago and has yet to be explained. Here we report on another set of examples during the superstorm of November 2004. The electric field in the equatorial ionosphere, measured with the Jicamarca incoherent scatter radar, exhibited a 3 mV/m electric field pulse that was not seen in the interplanetary medium. It was, however, accompanied by a correlation with the time derivative of the magnetic field measured at two points in Peru. Our inclination was to assume that the field was inductive. However, the time scale of the pulse was too short for the magnetic field to penetrate the crust of the Earth. This means that the area threaded by ∂B/∂t was too small to create the observed electric field by induction. We suggest that the effect was caused by a modulation of the ring current location relative to the Earth due to the electric field. This electric field is required, as the magnetic field lines are considered frozen into the plasma in the magnetosphere. The closer location of the ring current to the Earth in turn increased the magnetic field at the surface.

  20. Synchronization control of Hodgkin-Huxley neurons exposed to ELF electric field

    International Nuclear Information System (INIS)

    Che Yanqiu; Wang Jiang; Zhou Sisi; Deng Bin

    2009-01-01

    This paper presents an adaptive neural network H ∞ control for unidirectional synchronization of modified Hodgkin-Huxley (HH) neurons exposed to extremely low frequency (ELF) electric field. The proposed modified HH neurons exhibit periodic and chaotic dynamics in response to sinusoidal electric field stimulation. Based on the Lyapunov stability theory, we derive the updated laws of neural network for approximating the nonlinear uncertain functions of the error dynamical system. The H ∞ design technique makes the controller robust to unmodeled dynamics, disturbances and approximate errors. The proposed controller not only ensures closed-loop stability, but also guarantees an H ∞ performance for the synchronization error system. The states of the controlled slave system exponentially synchronize with that of the master one after control. The simulation results demonstrate the validity of the proposed method.

  1. Assessment of Extremely Low Frequency (ELF Electric and Magnetic Fields in Hamedan High Electrical Power Stations and their Effects on Workers

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani Shahna

    2011-09-01

    Full Text Available Introduction: Public and occupational exposure to extremely low frequency (ELF electric and magnetic fields induced by electrical equipment is a significant issue in the environment and at the workplace due to their potential health effects on public health. The purpose of this study was assessment of the electric and magnetic fields intensities and determination of mental and psychological effects of occupational exposure in the high voltage electric power stations in the city of Hamadan, Iran. Material and Methods: The intensities of the magnetic and electric fields were measured at eight high voltage electric power stations at three different intervals of sources using an HI-3604 instrument. A two-part questionnaire was used to assess mental and psychological effects of the exposure to these fields. Two groups of control and case workers including 30 samples were selected to determine the exposure effects. Results: The results of field measurements showed the highest average electric field intensity was related to the CVT unit with 3110 V/m at a 2 m distance from the source and the lowest average was related to the control room with 1.35 V/m next to the source. Also, the highest and lowest magnetic field intensities were close to the transformator 2 and the battery room (50.42 and 1.31 mG, respectively. Discussion and Conclusion: The intensities of electric and magnetic fields in the selected stations are lower than the ACGIH and ICNIRP standard levels for occupational exposures. The results obtained indicate that the distribution of these fields was nonlinear around the sources and the effects observed on exposed workers were non-thermal.

  2. Electrical resistivity of UBe13 in high magnetic fields

    International Nuclear Information System (INIS)

    Schmiedeshoff, G.M.; Lacerda, A.; Fisk, Z.; Smith, J.L.

    1996-01-01

    We have measured the temperature dependent electrical resistivity of single and polycrystal samples of UBe 13 in high magnetic fields. Two maxima in the resistivity are observed at T M1 and T M2 . T M1 , the temperature of the colder maximum, increases quadratically with magnetic field H, a field dependence previously observed under hydrostatic pressure. The high temperature maximum at T M2 emerges in fields above about 4 T and increases linearly with H, a behavior which may be due to a sharpening of the crystal field levels associated with a depression of the Kondo effect by high magnetic fields. copyright 1996 The American Physical Society

  3. Asymmetry of neoclassical transport by dipole electric field

    International Nuclear Information System (INIS)

    Wang Zhongtian; Wang Long

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity. (authors)

  4. Statistical analysis of the ratio of electric and magnetic fields in random fields generators

    NARCIS (Netherlands)

    Serra, R.; Nijenhuis, J.

    2013-01-01

    In this paper we present statistical models of the ratio of random electric and magnetic fields in mode-stirred reverberation chambers. This ratio is based on the electric and magnetic field statistics derived for ideal reverberation conditions. It provides a further performance indicator for

  5. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  6. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    DEFF Research Database (Denmark)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reac...

  7. Optimized design of micromachined electric field mills to maximize electrostatic field sensitivity

    OpenAIRE

    Zhou, Yu; Shafai, Cyrus

    2016-01-01

    This paper describes the design optimization of a micromachined electric field mill, in relation to maximizing its output signal. The cases studied are for a perforated electrically grounded shutter vibrating laterally over sensing electrodes. It is shown that when modeling the output signal of the sensor, the differential charge on the sense electrodes when exposed to vs. visibly shielded from the incident electric field must be considered. Parametric studies of device dimensions show that t...

  8. 3D modeling of electric fields in the LUX detector

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.

    2017-11-01

    This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.

  9. Electric and magnetic fields at extremely low frequencies

    International Nuclear Information System (INIS)

    Anderson, L.E.; Kaune, W.T.

    1989-01-01

    Whole-body exposure to extremely low frequency (ELF, 30-300 Hz) electric fields may involve effects related to stimulation of the sensory apparatus at the body surface (hair vibration, possible direct neural stimulation) and effects within the body caused by the flow of current. Magnetic fields may interact predominantly by the induction of internal current flow. Biological effects observed in a living organism may depend on the electric fields induced inside the body, possibly on the magnetic fields penetrating into the body, and on the fields acting at the surface of the body. Areas in which effects have been observed often appear to be associated with the nervous system, including altered neuronal excitability and neurochemical changes, altered hormone levels, changes in behavioural responses, and changes in biological rhythms. No studies unequivocably demonstrate deleterious effects of ELF electric or magnetic field exposure on mammalian reproduction and development, but several suggest such effects. Exposure to ELF electric and magnetic fields does produce biological effects. However, except for fields strong enough to induce current densities above the threshold for the stimulation of nerve tissues, there is no consensus as to whether these effects constitute a hazard to human health. Human data from epidemiological studies, including reported effects on cancer promotion, congenital malformations, reproductive performance and general health, though somewhat suggestive of adverse health effects, are not conclusive. 274 refs, 13 figs, 6 tabs

  10. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  11. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    Science.gov (United States)

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  12. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea.

    Science.gov (United States)

    Meaud, Julien; Grosh, Karl

    2012-03-21

    In this article, a nonlinear mathematical model is developed based on the physiology of the cochlea of the guinea pig. The three-dimensional intracochlear fluid dynamics are coupled to a micromechanical model of the organ of Corti and to electrical potentials in the cochlear ducts and outer hair cells (OHC). OHC somatic electromotility is modeled by linearized piezoelectric relations whereas the OHC hair-bundle mechanoelectrical transduction current is modeled as a nonlinear function of the hair-bundle deflection. The steady-state response of the cochlea to a single tone is simulated in the frequency domain using an alternating frequency time scheme. Compressive nonlinearity, harmonic distortion, and DC shift on the basilar membrane (BM), tectorial membrane (TM), and OHC potentials are predicted using a single set of parameters. The predictions of the model are verified by comparing simulations to available in vivo experimental data for basal cochlear mechanics. In particular, the model predicts more amplification on the reticular lamina (RL) side of the cochlear partition than on the BM, which replicates recent measurements. Moreover, small harmonic distortion and DC shifts are predicted on the BM, whereas more significant harmonic distortion and DC shifts are predicted in the RL and TM displacements and in the OHC potentials. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Effects of pulsed electric field on ULQ and RFP plasmas

    International Nuclear Information System (INIS)

    Watanabe, M.; Saito, K.; Suzuki, T.

    1997-01-01

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  14. Relativistic Bosons in Time-Harmonic Electric Fields

    Science.gov (United States)

    Buhucianu, Ovidiu; Dariescu, Marina-Aura; Dariescu, Ciprian

    2012-02-01

    In the present paper, we consider a bi-dimensional thin sample, placed in a strong harmonically oscillating electric field and a static magnetic induction, both directed along the normal to the sample's plane. The Klein-Gordon equation describing the relativistic bosons leads to a Mathieu's type equation for the temporal part of the wave functions. It follows that, for the electric field pulsation inside a computable range, depending on the external fields intensities, the amplitude functions are turning from oscillatory to exponentially growing modes. For ultra-relativistic particles, one can recover the periodic stationary amplitude behavior.

  15. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  16. High-electric-field quantum transport theory for semiconductor superlattices

    International Nuclear Information System (INIS)

    Nguyen Hong Shon; Nazareno, H.N.

    1995-12-01

    Based on the Baym-Kadanoff-Keldysh nonequilibrium Green's functions technique, a quantum transport theory for semiconductor superlattices under high-electric field is developed. This theory is capable of considering collisional broadening, intra-collisional field effects and band transport and hopping regimes simultaneously. Numerical calculations for narrow-miniband superlattices in high electric field, when the hopping regime dominates are in reasonable agreement with experimental results and show a significant deviation from the Boltzmann theory. A semiphenomenological formula for current density in hopping regime is proposed. (author). 60 refs, 4 figs

  17. Ab initio molecular dynamics in a finite homogeneous electric field.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  18. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk

    2012-12-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  19. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min; Lee, Yonggyu

    2012-01-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  20. Ionization and recombination in attosecond electric field pulses

    International Nuclear Information System (INIS)

    Dimitrovski, Darko; Solov'ev, Eugene A.; Briggs, John S.

    2005-01-01

    Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)], we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field, give excellent agreement with fully numerical calculations for all momentum transfers

  1. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  2. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  3. radiation and electric field induced effects on the order-disorder phase in lithium sodium sulphate crystals

    Science.gov (United States)

    Hamed, A. E.; Kassem, M. E.; El-Wahidy, E. F.; El-Abshehy, M. A.

    1995-03-01

    The temperature dependence of specific heat at constant pressure, Cp(T), has been measured for lithium sodium sulphate, LiNaSo4 crystals, at different ?-radiation doses and external bias electric field (Eb), in the temperature range 300-900 K. A nonlinear dependence of transition temperature, T1 and a remarkable change in the thermodynamic parameters, were obtained as the effect of both electric field and ?-radiation. The effect of ?-radiation doses on the phase transition in LiNaSO4 crystals was explained as due to an internal bias field, Eb, originating from the interaction of polar defects with the order parameter of the host lattice. The internal bias field effect on the behaviour of Cp(T) in LiNaSO4 crystals was similar to that of the external electric field (E).

  4. Manipulation of red blood cells with electric field

    Science.gov (United States)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  5. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    Energy Technology Data Exchange (ETDEWEB)

    Oevguen, A. [Eastern Mediterranean Univ., Famagusta (Country Unknown). Dept. of Physics

    2017-02-15

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields. (orig.)

  6. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    Science.gov (United States)

    Övgün, A.

    2017-02-01

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  7. Construction of local and non-local conservation laws for non-linear field equations

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  8. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low

  9. Nonequilibrium response of an electron-mediated charge density wave ordered material to a large dc electric field

    Science.gov (United States)

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2016-01-01

    Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.

  10. Nonlinear Decoupling of Torque and Field Amplitude in an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1997-01-01

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor...... torque. The method is tested both by simulation and by experiments on a motor drive....

  11. Relationships between the Birkeland currents, ionospheric currents, and electric fields

    International Nuclear Information System (INIS)

    Bleuler, E.; Li, C.H.; Nisbet, J.S.

    1982-01-01

    Calculations are made of the currents and electric fields in the ionosphere by using a global model of the electron densities including conjugate coupling along field lines. Incoherent scatter and rocket measurements of high-latitude electron densities have been used to derive realistic variations of the polar conductivities as a function of magnetic activity. The Birkeland currents have been specified in terms of three indices, the total current into and out of the hemisphere, the ratio of the magnitudes of the currents in the AM and PM sectors, R/sub ap/ , and R 12 , the ratio of the magnitudes of the currents in region 1 and 2. The relationship between these parameters of the Birkeland current systems and the auroral electrojet indices AE, AL, and AU is examined as well as the polar cap potential and the electric field at lower latitudes. The cusp currents have been modeled in relation to the interplanetary magnetic field and calculations are given of their effect on electric field and current patterns. One aim of this study is to produce a mathematical model of the currents, electric fields and energy inputs produced by field aligned currents that is consistent with, and specifiable in terms of, measured geophysical indices

  12. MgB_{2} nonlinear properties investigated under localized high rf magnetic field excitation

    Directory of Open Access Journals (Sweden)

    Tamin Tai

    2012-12-01

    Full Text Available The high transition temperature and low surface resistance of MgB_{2} attracts interest in its potential application in superconducting radio frequency accelerating cavities. However, compared to traditional Nb cavities, the viability of MgB_{2} at high rf fields is still open to question. Our approach is to study the nonlinear electrodynamics of the material under localized rf magnetic fields. Because of the presence of the small superconducting gap in the π band, the nonlinear response of MgB_{2} at low temperature is potentially complicated compared to a single-gap s-wave superconductor such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB_{2}, as well as extrinsic sources of nonlinearity, is an urgent requirement. A localized and strong rf magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [T. Tai et al., IEEE Trans. Appl. Supercond. 21, 2615 (2011ITASE91051-822310.1109/TASC.2010.2096531]. MgB_{2} films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that several possible mechanisms are responsible for this nonlinear response.

  13. Development of ultrasound transducer diffractive field theory for nonlinear propagation-based imaging

    Science.gov (United States)

    Kharin, Nikolay A.

    2000-04-01

    In nonlinear ultrasound imaging the images are formed using the second harmonic energy generated due to the nonlinear nature of finite amplitude propagation. This propagation can be modeled using the KZK wave equation. This paper presents further development of nonlinear diffractive field theory based on the KZK equation and its solution by means of the slowly changing profile method for moderate nonlinearity. The analytical expression for amplitudes and phases of sum frequency wave are obtained in addition to the second harmonic wave. Also, the analytical expression for the relative curvature of the wave fronts of fundamental and second harmonic signals are derived. The media with different nonlinear properties and absorption coefficients were investigated to characterize the diffractive field of the transducer at medical frequencies. All expressions demonstrate good agreement with experimental results. The expressions are novel and provide an easy way for prediction of amplitude and phase structure of nonlinearly distorted field of a transducer. The sum frequency signal technique could be implemented as well as second harmonic technique to improve the quality of biomedical images. The results obtained are of importance for medical diagnostic ultrasound equipment design.

  14. Nonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation.

    Science.gov (United States)

    Brito, Carlos S N; Gerstner, Wulfram

    2016-09-01

    The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common principle, namely nonlinear Hebbian learning. When nonlinear Hebbian learning is applied to natural images, receptive field shapes were strongly constrained by the input statistics and preprocessing, but exhibited only modest variation across different choices of nonlinearities in neuron models or synaptic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for the development of localized receptive fields. The analysis of alternative sensory modalities such as auditory models or V2 development lead to the same conclusions. In all examples, receptive fields can be predicted a priori by reformulating an abstract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities.

  15. Nonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation.

    Directory of Open Access Journals (Sweden)

    Carlos S N Brito

    2016-09-01

    Full Text Available The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common principle, namely nonlinear Hebbian learning. When nonlinear Hebbian learning is applied to natural images, receptive field shapes were strongly constrained by the input statistics and preprocessing, but exhibited only modest variation across different choices of nonlinearities in neuron models or synaptic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for the development of localized receptive fields. The analysis of alternative sensory modalities such as auditory models or V2 development lead to the same conclusions. In all examples, receptive fields can be predicted a priori by reformulating an abstract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities.

  16. Carrier heating in disordered conjugated polymers in electric field

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2010-01-26

    The electric field dependence of charge carrier transport and the effect of carrier heating in disordered conjugated polymers were investigated. A parameter-free multiscale methodology consisting of classical molecular dynamics simulation for the generation of the atomic structure, large system electronic structure and electron-phonon coupling constants calculations and the procedure for extracting the bulk polymer mobility, was used. The results suggested that the mobility of a fully disordered poly(3-hexylthiophene) (P3HT) polymer increases with electric field which is consistent with the experimental results on samples of regiorandom P3HT and different from the results on more ordered regioregular P3HT polymers, where the opposite trend is often observed at low electric fields. We calculated the electric field dependence of the effective carrier temperature and showed however that the effective temperature cannot be used to replace the joint effect of temperature and electric field, in contrast to previous theoretical results from phenomenological models. Such a difference was traced to originate from the use of simplified Miller-Abrahams hopping rates in phenomenological models in contrast to our considerations that explicitly take into account the electronic state wave functions and the interaction with all phonon modes.

  17. Instability of surface electron cyclotron TM-modes influenced by non-monochromatic alternating electric field

    International Nuclear Information System (INIS)

    Girka, I. O.; Girka, V. O.; Sydora, R. D.; Thumm, M.

    2016-01-01

    The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1. An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.

  18. Nonlinear Spinor Fields in Bianchi type-I spacetime reexamined

    OpenAIRE

    Saha, Bijan

    2013-01-01

    The specific behavior of spinor field in curve space-time with the exception of FRW model almost always gives rise to non-trivial non-diagonal components of the energy-momentum tensor. This non-triviality of non-diagonal components of the energy-momentum tensor imposes some severe restrictions either on the spinor field or on the metric functions. In this paper within the scope of an anisotropic Bianchi type-I Universe we study the role of spinor field in the evolution of the Universe. It is ...

  19. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    Science.gov (United States)

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  20. Electric field enhanced hydrogen storage on polarizable materials substrates

    Science.gov (United States)

    Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.

    2010-01-01

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647

  1. Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice

    Science.gov (United States)

    Shige, S.; Miyasaka, K.; Shi, W.; Soga, Y.; Sato, M.; Sievers, A. J.

    2018-02-01

    Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping an LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum the LSM can be continuously converted into ILMs and vice versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.

  2. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  3. Electric Field Structures in Thin Films: Formation and Properties

    DEFF Research Database (Denmark)

    Cassidy, Andrew; Plekan, Oksana; Balog, Richard

    2014-01-01

    A newly discovered class of molecular materials, so-called “spontelectrics”, display spontaneous electric fields. Here we show that the novel properties of spontelectrics can be used to create composite spontelectrics, illustrating how electric fields in solid films may be structured on the nanoscale...... by combining layers of different spontelectric materials. This is demonstrated using the spontelectric materials nitrous oxide, toluene, isoprene, isopentane, and CF2Cl2. These yield a variety of tailored electric field structures, with individual layers harboring fields between 107 and 108 V/m. Fields may...

  4. Modelling of radial electric field profile for different divertor configurations

    International Nuclear Information System (INIS)

    Rozhansky, V; Kaveeva, E; Voskoboynikov, S; Counsell, G; Kirk, A; Meyer, H; Coster, D; Conway, G; Schirmer, J; Schneider, R

    2006-01-01

    The impact of divertor configuration on the structure of the radial electric field has been simulated by the B2SOLPS5.0 transport fluid code. It is shown that the change in the parallel flows in the scrape-off layer, which are transported through the separatrix due to turbulent viscosity and diffusivity, should result in variation of the radial electric field and toroidal rotation in the separatrix vicinity. The modelling predictions are compared with the measurements of the radial electric field for the low field side equatorial mid-plane of ASDEX Upgrade in lower, upper and double-null (DN) divertor configurations. The parallel (toroidal) flows in the scrape-off layer and mechanisms for their formation are analysed for different geometries. It is demonstrated that a spike in the electric field exists at the high field side equatorial mid-plane in the connected DN divertor configuration. Its origin is connected with different potential drops between the separatrix vicinity and divertor plates in the two disconnected scrape-off layers, while the separatrix should be at almost the same potential. The spike might be important for additional turbulent suppression

  5. A New Energy-Based Method for 3-D Finite-Element Nonlinear Flux Linkage computation of Electrical Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    This paper presents a new method for computation of the nonlinear flux linkage in 3-D finite-element models (FEMs) of electrical machines. Accurate computation of the nonlinear flux linkage in 3-D FEM is not an easy task. Compared to the existing energy-perturbation method, the new technique......-perturbation method. The new method proposed is validated using experimental results on two different permanent magnet machines....

  6. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  7. Controlling turbulent drag across electrolytes using electric fields.

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Lee, Alpha A

    2017-07-01

    Reversible in operando control of friction is an unsolved challenge that is crucial to industrial tribology. Recent studies show that at low sliding velocities, this control can be achieved by applying an electric field across electrolyte lubricants. However, the phenomenology at high sliding velocities is yet unknown. In this paper, we investigate the hydrodynamic friction across electrolytes under shear beyond the transition to turbulence. We develop a novel, highly parallelised numerical method for solving the coupled Navier-Stokes Poisson-Nernst-Planck equation. Our results show that turbulent drag cannot be controlled across dilute electrolytes using static electric fields alone. The limitations of the Poisson-Nernst-Planck formalism hint at ways in which turbulent drag could be controlled using electric fields.

  8. The electric field of a uniformly charged cubic shell

    Science.gov (United States)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  9. Time dependent convection electric fields and plasma injection

    International Nuclear Information System (INIS)

    Kaye, S.M.; Kivelson, M.G.

    1979-01-01

    Large-scale electric fields associated with storms or substorms are responsible for inward convection and energization of plasma sheet plasma. Calculations based on steady state convection theory show that the response to such electric fields qualitatively accounts for many features of the injected particle distribution, but quantitative agreement with the theory has not yet been obtained. It is known that the predictions can be improved by introducing the concept of convection in response to a time dependent electric field. On the other hand, time dependent calculations are sensitive to the choice of initial conditions, and most models have failed to incorporate these conditions in a realistic and self-consistent manner. In this paper we present a more complete model consisting of realisic initial conditions and time dependent convection to explain a typical substorm-associated electron injection event. We find very good agreement between the observed electron flux changes and those predicted by our model

  10. Dark sector impact on gravitational collapse of an electrically charged scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-04

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  11. Properties of partially ionized hydrogen plasmas in high electric fields

    International Nuclear Information System (INIS)

    Morawetz, K.

    1993-03-01

    In this thesis the fundamental equations of many-particle quantum-statistics of nonequilibrium are treated in respect to arbitrary high electric fields. Generalizations are found for the T-matrix approximation as well as for the shielded potential approximation valid for any field strength. These result in a non-Markovian behavior of the obtained collision integrals, also known as intra-collisional-field-effect (ICFE), and in a broadening of the energy conservation, the so-called collisional broadening (CB), caused by applied electric fields. In linear response it is shown in a new way, how the Debye-Onsager relaxation effect can be rederived from these collision integrals. Furthermore the complete quantum result is presented. Both effects, ICFE and CB, contribute to the right classical limit. The quantum result yields an surprising maximum of this field effects in dependence of the interacting mass ratio, which may be important in exciton-plasmas and semiconductors. (orig.)

  12. Electric and magnetic field reduction by alternative transmission line options

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, J.R. (Power Technologies, Inc., Schenectady, NY (United States)); Dale, S.J. (Oak Ridge National Lab., TN (United States)); Klein, K.W. (Energetics, Inc., Columbia, MD (United States))

    1991-01-01

    Ground level electric, and more recently magnetic, fields from overhead power transmission lines are increasingly important considerations in right of way specification, with states setting or planning to set edge of right of way limits. Research has been conducted in high phase order power transmission wherein six of twelve phases are used to transmit power in less physical space and with reduced electrical environmental effects than conventional designs. The first magnetic field testing, as reported in this paper, has verified predictive methods for determination of magnetic fields from high phase order lines. Based on these analytical methods, field profiles have been determined for lines of different phase order of comparable power capacity. Potential advantages of high phase order as a means of field mitigation are discussed. 10 refs., 12 figs., 3 tabs.

  13. Phenomenon of the time-reversal violating magnetic field generation by a static electric field in a medium and vacuum

    OpenAIRE

    Baryshevsky, Vladimir G.

    1999-01-01

    It is shown that the T- and P-odd weak interactions yield to the existence of both electric field and magnetic (directed along the electric field) field around an electric charge. Similarly the assotiated magnetic field is directed along the vector of strength of stationary gravitational field.

  14. An explanation for parallel electric field pulses observed over thunderstorms

    Science.gov (United States)

    Kelley, M. C.; Barnum, B. H.

    2009-10-01

    Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.

  15. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  16. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Jørgen Arendt

    2013-01-01

    A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...... with a center frequency of 5 MHz. The speed is increased approximately by a factor of 140 and the calculation time is 12 min with a standard PC, when simulating the second harmonic pulse at the focal point. For the second harmonic point spread function the full width error is 1.5% at 6 dB and 6.4% at 12 d...

  17. Control of magnetism in Co by an electric field

    Science.gov (United States)

    Chiba, D.; Ono, T.

    2013-05-01

    In this paper, we review the recent experimental developments on electric-field switching of ferromagnetism in ultra-thin Co films. The application of an electric field changes the electron density at the surface of the Co film, which results in modulation of its Curie temperature. A capacitor structure consisting of a gate electrode, a solid-state dielectric insulator and a Co bottom electrode is used to observe the effect. To obtain a larger change in the electron density, we also fabricated an electric double-layer capacitor structure using an ionic liquid. A large change in the Curie temperature of ∼100 K across room temperature is achieved with this structure. The application of the electric field influences not only the Curie temperature but also the domain-wall motion. A change in the velocity of a domain wall prepared in a Co micro-wire of more than one order of magnitude is observed. Possible mechanisms to explain the above-mentioned electric-field effects in Co ultra-thin films are discussed.

  18. Control of magnetism in Co by an electric field

    International Nuclear Information System (INIS)

    Chiba, D; Ono, T

    2013-01-01

    In this paper, we review the recent experimental developments on electric-field switching of ferromagnetism in ultra-thin Co films. The application of an electric field changes the electron density at the surface of the Co film, which results in modulation of its Curie temperature. A capacitor structure consisting of a gate electrode, a solid-state dielectric insulator and a Co bottom electrode is used to observe the effect. To obtain a larger change in the electron density, we also fabricated an electric double-layer capacitor structure using an ionic liquid. A large change in the Curie temperature of ∼100 K across room temperature is achieved with this structure. The application of the electric field influences not only the Curie temperature but also the domain-wall motion. A change in the velocity of a domain wall prepared in a Co micro-wire of more than one order of magnitude is observed. Possible mechanisms to explain the above-mentioned electric-field effects in Co ultra-thin films are discussed. (topical review)

  19. Effect of Enhanced Air Temperature (extreme heat, and Load of Non-Linear Against the Use of Electric Power

    Directory of Open Access Journals (Sweden)

    I Ketut Wijaya

    2015-12-01

    Full Text Available Usage Electric power is very easy to do, because the infrastructure for connecting  already available and widely sold. Consumption electric power is not accompanied by the ability to recognize electric power. The average increase of electricity power in Bali in extreme weather reaches 10% in years 2014, so that Bali suffered power shortages and PLN as the manager of electric power to perform scheduling on of electric power usage. Scheduling is done because many people use electric power as the load  of fan and Air Conditioner exceeding the previous time. Load of fan, air conditioning, and computers including non-linear loads which can add heat on the conductor of electricity. Non-linear load and hot weather can lead to heat on conductor so  insulation damaged  and cause electrical short circuit. Data of electric power obtained through questionnaires, surveys, measurement and retrieve data from various parties. Fires that occurred in 2014, namely 109 events, 44 is  event caused by an electric short circuit (approximately 40%. Decrease power factors can cause losses of electricity and hot. Heat can cause and adds heat on the  conductor electric. The analysis showed  understanding electric power of the average  is 27,700 with value between 20 to 40. So an understanding of the electrical power away from the understand so that many errors because of the act own. Installation tool ELCB very necessary but very necessary provide counseling   of electricity to the community.

  20. Nonlinear properties of gated graphene in a strong electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: cos@ucy.ac.cy [University of Cyprus, Department of Physics (Cyprus)

    2017-03-15

    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  1. Effects of radial electrical field on neoclassical transport in tokamaks

    International Nuclear Information System (INIS)

    Wang Zhongtian; Le Clair, G.

    1996-07-01

    Neoclassical transport theory for tokamaks in presence of a radial electrical field with shear is developed using Hamiltonian formalism. Diffusion coefficients are derived in both plateau regime including a large electric field and banana regime including the squeezing factor which can greatly affect diffusion at the plasma edge. The scaling on squeezing factor is different from the one given by Shaing and Hazeltine. Rotation speeds are calculated in the scrape-off region. They are in good agreement with measurements on TdeV Tokamak. (2 figs.)

  2. Electric field effects in scanning tunneling microscope imaging

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Quaade, Ulrich; Grey, Francois

    1998-01-01

    We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...... parameters. We use the method to calculate theoretical STM images of the monohydrate Si(100)-H(2x1) surface with missing hydrogen defects at -2V and find an enhanced corrugation due to the electric field, in good agreement with experimental images....

  3. Reduced dielectric response in spatially varying electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2015-01-01

    relations between the flux and the gradient of the polarization. Comparison between the theory and molecular dynamics simulations confirms this effect. The effect is significant for small length scale electric field variations and the inclusion of the flux is thus important in nanoscale modeling......In this paper, the dynamical equation for polarization is derived. From this the dielectric response to a spatially varying electric field is analyzed showing a reduced response due to flux of polarization in the material. This flux is modeled as a diffusive process through linear constitutive...

  4. Magnetic fluid droplet in a harmonic electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kvasov, D., E-mail: kvasovdmitry@gmail.com [Lomonosov Moscow State University, Moscow (Russian Federation); Naletova, V. [Lomonosov Moscow State University, Moscow (Russian Federation); Beketova, E.; Dikanskii, Yu. [North-Caucasus Federal University, Stavropol (Russian Federation)

    2017-06-01

    A magnetic fluid droplet immersed in oil in an applied harmonic electric field is studied experimentally and theoretically. It is shown that deformations of the droplet observed experimentally are not described by the well-known theory. New double-layer droplet model which describes experimental data well is proposed. - Highlights: • The magnetic fluid droplet in the oil in a harmonic electric field is studied. • The paradoxical flattening effect of the droplet is observed experimentally. • For explaining this effect the model of the double-layer droplet is proposed. • Numerical and experimental data coincide qualitatively and quantitatively.

  5. Laterally coupled circular quantum dots under applied electric field

    Science.gov (United States)

    Duque, C. M.; Correa, J. D.; Morales, A. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-03-01

    The optical response of a system of two laterally coupled quantum dots with circular cross-sectional shape is investigated within the effective mass approximation, taking into account the effects of the change in the geometrical configuration, the application of an external static electric field, and the presence of a donor impurity center. The first-order dielectric susceptibility is calculated in order to derive the corresponding light absorption and relative refractive index coefficients. The possibility of tuning these optical properties by means of changes in the quantum dot symmetry and the electric field intensity is particularly discussed.

  6. Dependence of electric field on STM tip preparation

    DEFF Research Database (Denmark)

    Huang, D.H.; Grey, Francois; Aono, M.

    1998-01-01

    Voltage pulses applied between an STM tip and a surface can modify the surface on the nanometer scale due to electric-field-induced evaporation. However, at present, different groups have achieved surface modification with quite different bias conditions, and it is still difficult to obtain high...... reproducibility in such experiments. In this paper, we measure the tip displacement during a pulse at constant tunnelling current, and deduce that the electric field produced by the pulse depends in a systematic way on tip preparation, The results show how differences in tip preparation can be a major source...

  7. Electric field measuring and display system. [for cloud formations

    Science.gov (United States)

    Wojtasinski, R. J.; Lovall, D. D. (Inventor)

    1974-01-01

    An apparatus is described for monitoring the electric fields of cloud formations within a particular area. It utilizes capacitor plates that are alternately shielded from the clouds for generating an alternating signal corresponding to the intensity of the electric field of the clouds. A synchronizing signal is produced for controlling sampling of the alternating signal. Such samplings are fed through a filter and converted by an analogue to digital converter into digital form and subsequently fed to a transmitter for transmission to the control station for recording.

  8. Electric field-decoupled electroosmotic pump for microfluidic devices.

    Science.gov (United States)

    Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J

    2003-09-26

    An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.

  9. Characterization of complementary electric field coupled resonant surfaces

    Science.gov (United States)

    Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.

    2008-11-01

    We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.

  10. Probing the interatomic potential of solids with strong-field nonlinear phononics

    Science.gov (United States)

    von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.

    2018-03-01

    Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.

  11. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  12. Electric Vehicle Longitudinal Stability Control Based on a New Multimachine Nonlinear Model Predictive Direct Torque Control

    Directory of Open Access Journals (Sweden)

    M’hamed Sekour

    2017-01-01

    Full Text Available In order to improve the driving performance and the stability of electric vehicles (EVs, a new multimachine robust control, which realizes the acceleration slip regulation (ASR and antilock braking system (ABS functions, based on nonlinear model predictive (NMP direct torque control (DTC, is proposed for four permanent magnet synchronous in-wheel motors. The in-wheel motor provides more possibilities of wheel control. One of its advantages is that it has low response time and almost instantaneous torque generation. Moreover, it can be independently controlled, enhancing the limits of vehicular control. For an EV equipped with four in-wheel electric motors, an advanced control may be envisaged. Taking advantage of the fast and accurate torque of in-wheel electric motors which is directly transmitted to the wheels, a new approach for longitudinal control realized by ASR and ABS is presented in this paper. In order to achieve a high-performance torque control for EVs, the NMP-DTC strategy is proposed. It uses the fuzzy logic control technique that determines online the accurate values of the weighting factors and generates the optimal switching states that optimize the EV drives’ decision. The simulation results built in Matlab/Simulink indicate that the EV can achieve high-performance vehicle longitudinal stability control.

  13. Electroporation of Mammalian Cells by Nanosecond Electric Field Oscillations and its Inhibition by the Electric Field Reversal

    Science.gov (United States)

    2015-09-08

    Report 3. DATES COVERED (From – To) March 2013 to July 2015 4. TITLE AND SUBTITLE Electroporation of mammalian cells by nanosecond electric field...Prescribed by ANSI Std. Z39.18 1Scientific RepoRts | 5:13818 | DOi: 10.1038/srep13818 www.nature.com/scientificreports Electroporation of mammalian cells...first to demonstrate that mammalian cells can be electroporated by damped sine wave electric stimuli of nanosecond duration. By comparing the

  14. Effect of radial electric field inhomogeneity on anomalous cross field plasma flux in Heliotron/Torsatron

    International Nuclear Information System (INIS)

    Yamagishi, Tomejiro; Sanuki, Heiji.

    1996-01-01

    Anomalous cross field plasma fluxes induced by the electric field fluctuations has been evaluated in a rotating plasma with shear flow in a helical system. The anomalous ion flux is evaluated by the contribution from ion curvature drift resonance continuum in the test particle model. The radial electric field induces the Doppler frequency shift which disappears in the frequency integrated anomalous flux. The inhomogeneity of the electric field (shear flow effect), however, induces a new force term in the flux. The curvature drift resonance also induces a new force term '/ which, however, did not make large influence in the ion flux in the CHS configuration. The shear flow term in the flux combined with the electric field in neoclassical flux reduces to a first order differential equation which governs the radial profile of the electric field. Numerical results indicate that the shear flow effect is important for the anomalous cross field flux and for determination of the radial electric field particularly in the peripheral region. (author)

  15. Relative Nonlinear Electrodynamics Interaction of Charged Particles with Strong and Super Strong Laser Fields

    CERN Document Server

    Avetissian, Hamlet

    2006-01-01

    This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems.

  16. Acceleration of auroral particles by magnetic-field aligned electric fields

    International Nuclear Information System (INIS)

    Block, L.P.

    1988-01-01

    Measurements on the S3-3 and Viking satellites appear to show that at least a large fraction of magnetic field-aligned potential drops are made up of multiple double layers. Solitons and double layers in U-shaped potential structures give rise to spiky electric fields also perpendicular to the magnetic field in agreement with satellite measurements. The large scale potential structures associated with inverted V-events are built up of many similar short-lived structures on a small scale. Viking measurements indicate that electric fields parallel to the magnetic field are almost always directed upward

  17. Effects of the reconnection electric field on crescent electron distribution functions in asymmetric guide field reconnection

    Science.gov (United States)

    Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.

    2017-12-01

    In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the

  18. Electric field tuning of phase separation in manganite thin films

    KAUST Repository

    Lourembam, James; Wu, Jianchun; Ding, Junfeng; Lin, Weinan; Wu, Tao

    2014-01-01

    In this paper, we investigate the electric field effect on epitaxial Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films in electric double-layer transistors. Different from the conventional transistors with semiconducting channels, the sub(micrometer)-scale phase separation in the manganite channels is expected to result in inhomogeneous distribution of mobile carriers and local enhancement of electric field. The field effect is much larger in the low-temperature phase separation region compared to that in the high-temperature polaron transport region. Further enhancement of electroresistance is achieved by applying a magnetic field, and a 250% modulation of resistance is observed at 80 K, equivalent to an increase of the ferromagnetic metallic phase fraction by 0.51%, as estimated by the general effective medium model. Our results illustrate the complementary nature of electric and magnetic field effects in phase-separated manganites, providing insights on such novel electronic devices based on complex oxides.

  19. AC Electric Field Communication for Human-Area Networking

    Science.gov (United States)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  20. Electric fields and energetic particle precipitation in an auroral arc

    International Nuclear Information System (INIS)

    Edwards, T.; Bryant, D.A.; Smith, M.J.; Fahleson, U.; Faelthammer, C.G.; Pedersen, A.

    1975-01-01

    Preliminary results are presented from a rocket flight across a single discrete auroral arc extending from early evening to magnetic midnight. The rocket was fired at the end of the growth phase of an isolated auroral substorm. It carried a separating payload to make simultaneous measurements of electrons (0.6 - 25 keV, pitch angle 0 - 60 0 ) at two points. From the main vehicle measurements were also made of ions (same energy range) as well as of the electric field vector and plasma parameters. The electron spectra were hardest towards the centre of the arc, where the peak intensity was at 9.5 keV. The precipitation structure observed was similar to that of an 'inverted V' but on a smaller scale. The electric field was northward south of the arc, southward within the arc and somewhat north of it, then again northward. At the northern edge of the precipitation region the field was very irregular. The field strength reached a maximum of about 50 mV/m some distance north of the arc. The line integral of the electric field across the arc was of the order of a kilovolt, too small to be responsible for the changes observed in the electron energy spectrum. An electric potential distribution, consistent with the results obtained, is present. (Auth.)

  1. Plasmasphere and ring current electric fields observed by GEOS 2

    International Nuclear Information System (INIS)

    Schmidt, R.; Pedersen, A.

    1988-01-01

    The electric field double probe data from GEOS 2 have been statistically examined to study the consecutive passage of the afternoon plasmaspheric bulge and the trough at the geostationary orbit. It was found that the average location of the bulge depends on the magnetic activity and was encountered at earlier local times for higher magnetospheric activity. Within the bulge the electric field showed very frequently a typical directional change from dawnward outside to duskward inside the bulge. The magnitude of the magnetic field was frequently much smaller near the outbound crossing of the plasmaspheric bulge than is expected from a long-term average. The E x B/B-squared drift pointed azimuthally eastward prior to the encounter of the bulge and rotated into the sunward direction within the bulge. Following its passage through the dense, cold plasma in the bulge, GEOS 2 encountered a hot and tenuous plasma sheet-type plasma in the trough that occasionally corrupted the electric field measurements. Generally, the electric field in the trough is much smaller than in the bulge. A possible cause of the sunward plasma flow within the bulge is discussed on the basis of these data. 13 references

  2. Electric field tuning of phase separation in manganite thin films

    KAUST Repository

    Lourembam, James

    2014-01-29

    In this paper, we investigate the electric field effect on epitaxial Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films in electric double-layer transistors. Different from the conventional transistors with semiconducting channels, the sub(micrometer)-scale phase separation in the manganite channels is expected to result in inhomogeneous distribution of mobile carriers and local enhancement of electric field. The field effect is much larger in the low-temperature phase separation region compared to that in the high-temperature polaron transport region. Further enhancement of electroresistance is achieved by applying a magnetic field, and a 250% modulation of resistance is observed at 80 K, equivalent to an increase of the ferromagnetic metallic phase fraction by 0.51%, as estimated by the general effective medium model. Our results illustrate the complementary nature of electric and magnetic field effects in phase-separated manganites, providing insights on such novel electronic devices based on complex oxides.

  3. Properties of bare strange stars associated with surface electric fields

    International Nuclear Information System (INIS)

    Picanco Negreiros, Rodrigo; Mishustin, Igor N.; Schramm, Stefan; Weber, Fridolin

    2010-01-01

    In this paper we investigate the electrodynamic surface properties of bare strange quark stars. The surfaces of such objects are characterized by the formation of ultrahigh electric surface fields which might be as high as ∼10 19 V/cm. These fields result from the formation of electric dipole layers at the stellar surfaces. We calculate the increase in gravitational mass associated with the energy stored in the electric dipole field, which turns out to be only significant if the star possesses a sufficiently strong net electric charge distribution. In the second part of the paper, we explore the intriguing possibility of what happens when the electron layer (sphere) rotates with respect to the stellar strange matter body. We find that in this event magnetic fields can be generated which, for moderate effective rotational frequencies between the electron layer and the stellar body, agree with the magnetic fields inferred for several central compact objects. These objects could thus be comfortably interpreted as strange stars whose electron atmospheres rotate at frequencies that are moderately different (∼10 Hz) from the rotational frequencies of the strange star itself.

  4. Electric field computation and measurements in the electroporation of inhomogeneous samples

    Science.gov (United States)

    Bernardis, Alessia; Bullo, Marco; Campana, Luca Giovanni; Di Barba, Paolo; Dughiero, Fabrizio; Forzan, Michele; Mognaschi, Maria Evelina; Sgarbossa, Paolo; Sieni, Elisabetta

    2017-12-01

    In clinical treatments of a class of tumors, e.g. skin tumors, the drug uptake of tumor tissue is helped by means of a pulsed electric field, which permeabilizes the cell membranes. This technique, which is called electroporation, exploits the conductivity of the tissues: however, the tumor tissue could be characterized by inhomogeneous areas, eventually causing a non-uniform distribution of current. In this paper, the authors propose a field model to predict the effect of tissue inhomogeneity, which can affect the current density distribution. In particular, finite-element simulations, considering non-linear conductivity against field relationship, are developed. Measurements on a set of samples subject to controlled inhomogeneity make it possible to assess the numerical model in view of identifying the equivalent resistance between pairs of electrodes.

  5. Solitons of scalar field with induced nonlinearity and their stability

    International Nuclear Information System (INIS)

    Saha, B.

    1999-09-01

    Exact particle-like static, spherically and/or cylindrically symmetric solutions to the equations of interacting scalar and electromagnetic field system have been obtained. We considered FRW and Goedel universes as external gravitational field with spherical and cylindrical symmetry respectively. Beside the usual solitons some special regular solutions known as droplets, anti-droplets and hats (confined in finite interval and having trivial value beyond it) have been obtained. It has been shown that in FRW space-time equations with different interaction terms may have stable solutions while within the scope of Goedel model only the droplet-like and the hat-like configurations may be stable, providing that they are located in the region where g 00 > 0. (author)

  6. Extraction of the Electric Field in Field Plate Assisted RESURF Devices

    NARCIS (Netherlands)

    Boksteen, B.K.; Dhar, S.; Heringa, A.; Koops, G.E.J.; Hueting, Raymond Josephus Engelbart

    2012-01-01

    It has previously been reported that the lateral electric field (Ex) in the drain extension of thin SOI HV (700V) field plate assisted RESURF devices can be extracted from their ID-VD characteristics in the subthreshold regime. In this work the prerequisites for valid field extraction and the

  7. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  8. Low frequency electric and magnetic fields - the topic of cancer

    International Nuclear Information System (INIS)

    Thommesen, G.

    1988-01-01

    A review is made of the literature about the biological effects of low frequency electric and magnetic fields. It is still an unsettled question whether extremely low frequency magnetic fields may increase the incidence of cancer. Experimental data arise mainly from exposure to field strengths or frequencies seldom or never encountered by people. The results give no clear explanation to the increase in cancer incidence reported in epidemiological works. The spectre of possible mechanisms imply that no simple dose/effect relationship should be expected, as conflicting mechanisms may dominate at different exposure levels. There is therefore no basis at present for giving numerical value to cancer risk from exposure to low frequency electric or magnetic fields

  9. Inactivation of Listeria monocytogenes in milk by pulsed electric field.

    Science.gov (United States)

    Reina, L D; Jin, Z T; Zhang, Q H; Yousef, A E

    1998-09-01

    Pasteurized whole, 2%, and skim milk were inoculated with Listeria monocytogenes Scott A and treated with high-voltage pulsed electric field (PEF). The effects of milk composition (fat content) and PEF parameters (electric field strength, treatment time, and treatment temperature) on the inactivation of the bacterium were studied. No significant differences were observed in the inactivation of L. monocytogenes Scott A in three types of milk by PEF treatment. With treatment at 25 degrees C, 1- to 3-log reductions of L. monocytogenes were observed. PEF lethal effect was a function of field strength and treatment time. Higher field strength or longer treatment time resulted in a greater reduction of viable cells. A 4-log reduction of the bacterium was obtained by increasing the treatment temperature to 50 degrees C. Results indicate that the use of a high-voltage PEF is a promising technology for inactivation of foodborne pathogens.

  10. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  11. Control of colloids with gravity, temperature gradients, and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Matt [Department of Physics, Princeton University, Princeton, NJ (United States); Zhao Kun [Department of Physics, Princeton University, Princeton, NJ (United States); Harrison, Christopher [Department of Physics, Princeton University, Princeton, NJ (United States); Austin, Robert H [Department of Physics, Princeton University, Princeton, NJ (United States); Megens, Mischa [Department of Physics, Princeton University, Princeton, NJ (United States); Hollingsworth, Andrew [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Russel, William B [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Cheng Zhengdong [ExxonMobil Research, Annandale, NJ (United States); Mason, Thomas [ExxonMobil Research, Annandale, NJ (United States); Chaikin, P M [Department of Physics, Princeton University, Princeton, NJ (United States)

    2003-01-15

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  12. Calculation of the Magnetic Fields of the Electric Power Line

    Directory of Open Access Journals (Sweden)

    Patsiuk V.

    2016-12-01

    Full Text Available The task of calculation of per unit length parameters of multi-conductor electrical overhead transmission lines has been treated in the paper. The calculation of distribution of electric and magnetic fields has been performed by means of the finite volume method for entire span of the line. The theoretical justification of the method for calculation the parameters of electromagnetic field taking into account the change of the vector of magnetic potential along the line has been given. The problems of electrostatic and magnetostatic for a single electric conductor and unlimited long conductor with current have been solved. For the inner and total inductivities of a single conductor under the current have been obtained relationships and drawn dependences. Dependence between the speeds of light and of electromagnetic wave’s propagation has been presented. Based on the characteristics of distribution of electric and magnetic fields of multi-conductor lines has been provided the method of calculation of the matrix of own and mutual capacitances and inductivities the calculated values of per unit length parameters of compact 110 kV electric line which is in concordance with one of basic physical constant – the speed of light.

  13. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  14. Measurement of Two-Phase Flow Fields by Application of Dynamic Electrical Impedance Imaging

    International Nuclear Information System (INIS)

    Kim, KyungYoun; Kang, Sook In; Kim, Ho Chan; Kim, Sin; Lee, Yoon Joon; Kim, Min Chan; Anghaie, Samim

    2002-01-01

    This study presents a visualization technique for the phase distribution in a two-phase flow field with an electrical impedance imaging technique, which reconstructs the resistivity distribution with electrical responses that are determined by corresponding excitations. Special emphasis is placed on the development of dynamic imaging technique for two-phase system undergoing a rapid transient, which could not be visualized with conventional static imaging techniques. The proposed algorithm treats the image reconstruction problem as a nonlinear state estimation problem and the unknown state (resistivity distribution, i.e. phase distribution) is estimated with the aid of a Kalman filter in a minimum mean square error sense. Several illustrative examples with computer simulations are successfully provided to verify the reconstruction performance of the proposed algorithm. (authors)

  15. Fluorescence excitation studies of molecular photoionization in external electric fields

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Dehmer, J.L.; Parr, A.C.; Leroi, G.E.

    1985-01-01

    Using molecular nitrogen as an example, we show that fluorescence excitation spectroscopy can be used to measure partial photoionization cross sections of free molecules in external electric fields. The production of the N 2 + (B 2 Σ/sub u/ + ) state was studied and the threshold for this process was found to shift linearly with the square root of the applied field. This behavior is compared with the hydrogenic case and with previously studied systems

  16. Modeling electric fields in two dimensions using computer aided design

    International Nuclear Information System (INIS)

    Gilmore, D.W.; Giovanetti, D.

    1992-01-01

    The authors describe a method for analyzing static electric fields in two dimensions using AutoCAD. The algorithm is coded in LISP and is modeled after Coloumb's Law. The software platform allows for facile graphical manipulations of field renderings and supports a wide range of hardcopy-output and data-storage formats. More generally, this application is representative of the ability to analyze data that is the solution to known mathematical functions with computer aided design (CAD)

  17. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities

    International Nuclear Information System (INIS)

    But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.

    2014-01-01

    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm 2 was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm 2 range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm 2 . The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ∼0.5 mW/cm 2 to ∼5 kW/cm 2 )

  18. Two-fluid and nonlinear effects of tearing and pressure-driven resistive modes in reversed field pinches

    International Nuclear Information System (INIS)

    Mirnov, V.V.

    2002-01-01

    Large-scale tearing instabilities have long been considered to underlie transport and dynamo processes in the reversed field pinch (RFP). The vast majority of theoretical and computational RFP work has focused on pressureless, single-fluid MHD in cylindrical plasmas driven solely by a toroidal electric field. We report results of five investigations covering two-fluid dynamos, toroidal nonlinear MHD computation, nonlinear computation of Oscillating Field Current Drive (OFCD), the effect of shear flow on tearing instability, and the effect of pressure on resistive instability. The key findings are: (1) two-fluid dynamo arising from the Hall term is much larger than the standard MHD dynamo present in a single-fluid treatment, (2) geometric coupling from toroidicity precludes the occurrence of laminar single helicity states, except for nonreversed plasmas, (3) OFCD, a form of AC helicity injection, can sustain the RFP plasma current, although magnetic fluctuations are enhanced, (4) edge shear flow can destabilize the edge resonant m=0 modes, which occur as spikes in experiment, and (5) pressure driven modes are resistive at low beta, only becoming ideal at extremely high beta. (author)

  19. Local electric field screening in bi-layer graphene devices

    Directory of Open Access Journals (Sweden)

    Vishal ePanchal

    2014-02-01

    Full Text Available We present experimental studies of both local and macroscopic electrical effects in uniform single- (1LG and bi-layer graphene (2LG devices as well as in devices with non-uniform graphene coverage, under ambient conditions. DC transport measurements on sub-micron scale Hall bar devices were used to show a linear rise in carrier density with increasing amounts of 2LG coverage. Electrical scanning gate microscopy was used to locally top gate uniform and non-uniform devices in order to observe the effect of local electrical gating. We experimentally show a significant level of electric field screening by 2LG. We demonstrate that SGM technique is an extremely useful research tool for studies of local screening effects, which provides a complementary view on phenomena that are usually considered only within a macroscopic experimental scheme.

  20. Field distribution and DNA transport in solid tumors during electric field-mediated gene delivery.

    Science.gov (United States)

    Henshaw, Joshua W; Yuan, Fan

    2008-02-01

    Gene therapy has a great potential in cancer treatment. However, the efficacy of cancer gene therapy is currently limited by the lack of a safe and efficient means to deliver therapeutic genes into the nucleus of tumor cells. One method under investigation for improving local gene delivery is based on the use of pulsed electric field. Despite repeated demonstration of its effectiveness in vivo, the underlying mechanisms behind electric field-mediated gene delivery remain largely unknown. Without a thorough understanding of these mechanisms, it will be difficult to further advance the gene delivery. In this review, the electric field-mediated gene delivery in solid tumors will be examined by following individual transport processes that must occur in vivo for a successful gene transfer. The topics of examination include: (i) major barriers for gene delivery in the body, (ii) distribution of electric fields at both cell and tissue levels during the application of external fields, and (iii) electric field-induced transport of genes across each of the barriers. Through this approach, the review summarizes what is known about the mechanisms behind electric field-mediated gene delivery and what require further investigations in future studies.