WorldWideScience

Sample records for nonlinear driving terms

  1. Measurement of Driving Terms

    CERN Document Server

    Schmidt, F; Faus-Golfe, A

    2001-01-01

    In 2000 a series of MDs has been performed at the SPS to measure resonance driving terms. Theory predicts that these terms can be determined by harmonic analysis of BPM data recorded after applying single kicks at various amplitudes. Strong sextupoles were introduced to create a sizeable amount of nonlinearities. Experiments at injection energy (26 GeV) with single bunch as well as one experiment at 120 GeV with 84 bunches were carried out. The expected nonlinear content is compared to the experimenteal observation.

  2. Resonant driving of a nonlinear Hamiltonian system

    International Nuclear Information System (INIS)

    Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro

    2013-01-01

    As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.

  3. Measurement of Resonance driving terms in the ATF Damping Ring

    CERN Document Server

    Tomás, R; Kuroda, S; Naito, T; Okugi, T; Urakawa, J; Zimmermann, F

    2008-01-01

    The measurement of resonance driving terms in the Damping Ring of the Accelerator Test Facility in KEK could help finding possible machine imperfections and even to optimize single particle stability through the minimization of non-linearities. The first experimental attempts of this enterprise are reported in this note.

  4. Disturbance Observer-Based Simple Nonlinearity Compensation for Matrix Converter Drives

    Directory of Open Access Journals (Sweden)

    Kyo-Beum Lee

    2009-01-01

    Full Text Available This paper presents a new method to compensate the nonlinearity for matrix converter drives using disturbance observer. The nonlinearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modeled by disturbance observer and compensated. The proposed method does not need any additional hardware and offline experimental measurements. The proposed compensation method is applied for high-performance induction motor drives using a 3 kW matrix converter system without a speed sensor. Simulation and experimental results show that the proposed method using disturbance observer provides good compensating characteristics.

  5. Nonlinear adaptive observer-based sliding mode control for LAMOST mount driving

    International Nuclear Information System (INIS)

    Zhou Wangping; Guo Wei; Yu Li; Yang Changsong; Zheng Yi

    2010-01-01

    Heavy disturbances caused mainly by wind and friction in the mount drive system greatly impair the pointing accuracy of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). To overcome this negative effect, a third order Higher Order Sliding Mode (HOSM) controller is proposed. The key part of this approach is to design an appropriate observer which obtains the acceleration state. A nonlinear adaptive observer is proposed in which a novel polynomial model is applied to estimate the internal disturbances of the mount drive system. Theoretical analysis demonstrates the stability of the proposed observer. Simulation results show that this nonlinear adaptive observer can obtain a high precision acceleration signal which completes the HOSM controller. Furthermore, the HOSM approach can easily satisfy the position tracking requirements of the LAMOST mount drive system.

  6. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    Science.gov (United States)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  7. Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation

    International Nuclear Information System (INIS)

    Ferretti, Sara; Andreani, Lucio Claudio; Tuereci, Hakan E.; Gerace, Dario

    2010-01-01

    We calculate the normalized second-order correlation function for a system of two tunnel-coupled photonic resonators, each one exhibiting a single-photon nonlinearity of the Kerr type. We employ a full quantum formulation: The master equation for the model, which takes into account both a coherent continuous drive and radiative as well as nonradiative dissipation channels, is solved analytically in steady state through a perturbative approach, and the results are compared to exact numerical simulations. The degree of second-order coherence displays values between 0 and 1, and divides the diagram identified by the two energy scales of the system - the tunneling and the nonlinear Kerr interaction - into two distinct regions separated by a crossover. When the tunneling term dominates over the nonlinear one, the system state is delocalized over both cavities, and the emitted light is coherent. In the opposite limit, photon blockade sets in, and the system shows an insulatorlike state with photons locked on each cavity, identified by antibunching of emitted light.

  8. Nonlinear control of permanent magnet synchronous motor driving a ...

    African Journals Online (AJOL)

    This paper presents a non-linear control of permanent magnet synchronous motor (PMSM) fed by a PWM voltage source inverter. To improve the performance of this control technique, the input-output linearization technique is proposed for a system driving a mechanical load with two masses. In order to ensure a steady ...

  9. Speed-Sensorless DTC-SVM for Matrix Converter Drives With Simple Nonlinearity Compensation

    DEFF Research Database (Denmark)

    Lee, Kyo Beum; Blaabjerg, Frede; Yoon, Tae-Woong

    2007-01-01

    This paper presents a new method to improve the sensorless performance of matrix converter drives using a parameter estimation scheme. To improve low-speed sensorless performance, the nonlinearities of a matrix converter drive such as commutation delays, turn-on and turn-off times of switching de...... compensation method is applied for high performance induction motor drives using a 3-kW matrix converter system without a speed sensor. Experimental results are shown to illustrate the feasibility of the proposed strategy....

  10. Nonlinear plasma waves excited near resonance

    International Nuclear Information System (INIS)

    Cohen, B.I.; Kaufman, A.N.

    1977-01-01

    The nonlinear resonant response of a uniform plasma to an external plane-wave field is formulated in terms of the mismatch Δ/sub n l/ between the driving frequency and the time-dependent, complex, nonlinear normal mode frequency at the driving wavenumber. This formalism is applied to computer simulations of this process, yielding a deduced nonlinear frequency shift. The time dependence of the nonlinear phenomena, at frequency Δ/sub n l/ and at the bounce frequency of the resonant particles, is analyzed. The interdependence of the nonlinear features is described by means of energy and momentum relations

  11. Variable Parameter Nonlinear Control for Maximum Power Point Tracking Considering Mitigation of Drive-train Load

    Institute of Scientific and Technical Information of China (English)

    Zaiyu; Chen; Minghui; Yin; Lianjun; Zhou; Yaping; Xia; Jiankun; Liu; Yun; Zou

    2017-01-01

    Since mechanical loads exert a significant influence on the life span of wind turbines, the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking(MPPT) controller.Moreover, a trade-off between the efficiency of wind energy extraction and the load level of drive-train shaft becomes a key issue. However, for the existing control strategies based on nonlinear model of wind turbines, the MPPT efficiencies are improved at the cost of the intensive fluctuation of generator torque and significant increase of transient load on drive train shaft. Hence, in this paper, a nonlinear controller with variable parameter is proposed for improving MPPT efficiency and mitigating transient load on drive-train simultaneously. Then,simulations on FAST(Fatigue, Aerodynamics, Structures, and Turbulence) code and experiments on the wind turbine simulator(WTS) based test bench are presented to verify the efficiency improvement of the proposed control strategy with less cost of drive-train load.

  12. Variable Parameter Nonlinear Control for Maximum Power Point Tracking Considering Mitigation of Drive-train Load

    Institute of Scientific and Technical Information of China (English)

    Zaiyu Chen; Minghui Yin; Lianjun Zhou; Yaping Xia; Jiankun Liu; Yun Zou

    2017-01-01

    Since mechanical loads exert a significant influence on the life span of wind turbines,the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking (MPPT) controller.Moreover,a trade-off between the efficiency of wind energy extraction and the load level of drive-train shaft becomes a key issue.However,for the existing control strategies based on nonlinear model of wind turbines,the MPPT efficiencies are improved at the cost of the intensive fluctuation of generator torque and significant increase of transient load on drive train shaft.Hence,in this paper,a nonlinear controller with variable parameter is proposed for improving MPPT efficiency and mitigating transient load on drive-train simultaneously.Then,simulations on FAST (Fatigue,Aerodynamics,Structures,and Turbulence) code and experiments on the wind turbine simulator (WTS) based test bench are presented to verify the efficiency improvement of the proposed control strategy with less cost of drive-train load.

  13. Design and implementation plan for indirect-drive highly nonlinear ablative Rayleigh-Taylor instability experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Delorme, B.; Jacquet, L.; Liberatore, S.; Smalyuk, V.; Martinez, D.; Seugling, R.; Park, H.S.; Remington, B.A.; Moore, A.; Igumenshev, I.; Chicanne, C.

    2013-01-01

    In the context of National Ignition Facility Basic Science program we propose to study on the NIF ablative Rayleigh-Taylor (RT) instability in transition from weakly nonlinear to highly nonlinear regimes. Based on the analogy between flame front and ablation front, highly nonlinear RT instability measurements at the ablation front can provide important insights into the initial deflagration stage of thermonuclear supernovae of type Ia. NIF provides a unique platform to study the rich physics of nonlinear and turbulent mixing flows in High Energy Density plasmas because it can accelerate targets over much larger distances and longer time periods than previously achieved on the NOVA and OMEGA lasers. In one shot, growth of RT modulations can be measured from the weakly nonlinear stage near nonlinear saturation levels to the highly nonlinear bubble-competition, bubble-merger regimes and perhaps into a turbulent-like regime. The role of ablation on highly-nonlinear RT instability evolution will be comprehensively studied by varying ablation velocity using indirect and direct-drive platforms. We present a detailed hydro-code design of the indirect-drive platform and discuss the implementation plan for these experiments which only use NIF diagnostics already qualified. (authors)

  14. Nonlinear Kalman Filtering in Affine Term Structure Models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze...... the potential of the unscented Kalman …filter to properly capture nonlinearities. To illustrate the advantages of the unscented Kalman …filter, we analyze the cross section of swap rates, which are relatively simple non-linear instruments, and cap prices, which are highly nonlinear in the states. An extensive...

  15. Quantitative theory of driven nonlinear brain dynamics.

    Science.gov (United States)

    Roberts, J A; Robinson, P A

    2012-09-01

    Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Prediction Governors for Input-Affine Nonlinear Systems and Application to Automatic Driving Control

    Directory of Open Access Journals (Sweden)

    Yuki Minami

    2018-04-01

    Full Text Available In recent years, automatic driving control has attracted attention. To achieve a satisfactory driving control performance, the prediction accuracy of the traveling route is important. If a highly accurate prediction method can be used, an accurate traveling route can be obtained. Despite the considerable efforts that have been invested in improving prediction methods, prediction errors do occur in general. Thus, a method to minimize the influence of prediction errors on automatic driving control systems is required. This need motivated us to focus on the design of a mechanism for shaping prediction signals, which is called a prediction governor. In this study, we first extended our previous study to the input-affine nonlinear system case. Then, we analytically derived a solution to an optimal design problem of prediction governors. Finally, we applied the solution to an automatic driving control system, and demonstrated its usefulness through a numerical example and an experiment using a radio controlled car.

  17. Spline Collocation Method for Nonlinear Multi-Term Fractional Differential Equation

    OpenAIRE

    Choe, Hui-Chol; Kang, Yong-Suk

    2013-01-01

    We study an approximation method to solve nonlinear multi-term fractional differential equations with initial conditions or boundary conditions. First, we transform the nonlinear multi-term fractional differential equations with initial conditions and boundary conditions to nonlinear fractional integral equations and consider the relations between them. We present a Spline Collocation Method and prove the existence, uniqueness and convergence of approximate solution as well as error estimatio...

  18. Computer-aided Nonlinear Control System Design Using Describing Function Models

    CERN Document Server

    Nassirharand, Amir

    2012-01-01

    A systematic computer-aided approach provides a versatile setting for the control engineer to overcome the complications of controller design for highly nonlinear systems. Computer-aided Nonlinear Control System Design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product. Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mecha...

  19. Modeling TAE Response To Nonlinear Drives

    Science.gov (United States)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-10-01

    Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.

  20. Robust Backstepping Control for Cold Rolling Main Drive System with Nonlinear Uncertainties

    Directory of Open Access Journals (Sweden)

    Xu Yang

    2013-01-01

    Full Text Available The nonlinear model of main drive system in cold rolling process, which considers the influence with parameter uncertainties such as clearance and variable friction coefficient, as well as external disturbance by roll eccentricity and variation of strip material quality, is built. By transformation, the lower triangular structure form of main drive system is obtained. The backstepping algorithm based on signal compensation is proposed to design a linear time-invariant (LTI robust controller, including a nominal controller and a robust compensator. A comparison with PI controller shows that the controller has better disturbance attenuation performance and tracking behaviors. Meanwhile, according to its LTI characteristic, the robust controller can be realized easily; therefore it is also appropriated to high speed dynamic rolling process.

  1. Performance Improvement of Sensorless Vector Control for Induction Motor Drives Fed by Matrix Converter Using Nonlinear Model and Disturbance Observer

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with a non-linearity compensation and disturbance observer. The nonlinear voltage distortion that is caused by communication delay and on-state voltage drop in switching...

  2. Modeling of Nonlinear Beat Signals of TAE's

    Science.gov (United States)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-03-01

    Experiments on Alcator C-Mod reveal Toroidal Alfven Eigenmodes (TAE) together with signals at various beat frequencies, including those at twice the mode frequency. The beat frequencies are sidebands driven by quadratic nonlinear terms in the MHD equations. These nonlinear sidebands have not yet been quantified by any existing codes. We extend the AEGIS code to capture nonlinear effects by treating the nonlinear terms as a driving source in the linear MHD solver. Our goal is to compute the spatial structure of the sidebands for realistic geometry and q-profile, which can be directly compared with experiment in order to interpret the phase contrast imaging diagnostic measurements and to enable the quantitative determination of the Alfven wave amplitude in the plasma core

  3. Accuracy Improvement of the Method of Multiple Scales for Nonlinear Vibration Analyses of Continuous Systems with Quadratic and Cubic Nonlinearities

    Directory of Open Access Journals (Sweden)

    Akira Abe

    2010-01-01

    and are the driving and natural frequencies, respectively. The application of Galerkin's procedure to the equation of motion yields nonlinear ordinary differential equations with quadratic and cubic nonlinear terms. The steady-state responses are obtained by using the discretization approach of the MMS in which the definition of the detuning parameter, expressing the relationship between the natural frequency and the driving frequency, is changed in an attempt to improve the accuracy of the solutions. The validity of the solutions is discussed by comparing them with solutions of the direct approach of the MMS and the finite difference method.

  4. COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Borland, Michael

    2017-06-25

    Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.

  5. On-line control of the nonlinear dynamics for synchrotrons

    Science.gov (United States)

    Bengtsson, J.; Martin, I. P. S.; Rowland, J. H.; Bartolini, R.

    2015-07-01

    We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of "smart sextupole knobs" attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.

  6. Distributed synchronization of networked drive-response systems: A nonlinear fixed-time protocol.

    Science.gov (United States)

    Zhao, Wen; Liu, Gang; Ma, Xi; He, Bing; Dong, Yunfeng

    2017-11-01

    The distributed synchronization of networked drive-response systems is investigated in this paper. A novel nonlinear protocol is proposed to ensure that the tracking errors converge to zeros in a fixed-time. By comparison with previous synchronization methods, the present method considers more practical conditions and the synchronization time is not dependent of arbitrary initial conditions but can be offline pre-assign according to the task assignment. Finally, the feasibility and validity of the presented protocol have been illustrated by a numerical simulation. Copyright © 2017. Published by Elsevier Ltd.

  7. On-line control of the nonlinear dynamics for synchrotrons

    Directory of Open Access Journals (Sweden)

    J. Bengtsson

    2015-07-01

    Full Text Available We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of “smart sextupole knobs” attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.

  8. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  9. Equivalent Representation Form of Oscillators with Elastic and Damping Nonlinear Terms

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others.

  10. Long-Term Aging Diagnosis of Rotor Steel Using Acoustic Nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of); Park, Ik Keun; Hyun, Chang Yong [Seoul National University of Science and Tecnology, Seoul (Korea, Republic of)

    2011-12-15

    The long-term aging of ferritic 2.25CrMo steel was characterized using the acoustic nonlinear effect in order to apply to diagnose the degradation behavior of structural materials. We measured the acoustic nonlinearity parameter for each thermally aged specimen by the higher harmonic-generation technique. The acoustic nonlinearity parameter increased with aging time due to equilibrium M6C carbide precipitation, and has a favorable linear relation with Rockwell hardness. This study suggests that acoustic nonlinearity testing may be applicable to diagnostics on strength degradation in rotor steels.

  11. Multi-scale-nonlinear interactions among micro-turbulence, double tearing instability and zonal flows

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2007-01-01

    Micro-turbulence and macro-magnetohydrodynamic (macro-MHD) instabilities can appear in plasma at the same time and interact with each other in a plasma confinement. The multi-scale-nonlinear interaction among micro-turbulence, double tearing instability and zonal flow is investigated by numerically solving a reduced set of two-fluid equations. It is found that the double tearing instability, which is a macro-MHD instability, appears in an equilibrium formed by a balance between micro-turbulence and zonal flow when the double tearing mode is unstable. The roles of the nonlinear and linear terms of the equations in driving the zonal flow and coherent convective cell flow of the double tearing mode are examined. The Reynolds stress drives zonal flow and coherent convective cell flow, while the ion diamagnetic term and Maxwell stress oppose the Reynolds stress drive. When the double tearing mode grows, linear terms in the equations are dominant and they effectively release the free energy of the equilibrium current gradient

  12. Nonlinear equilibrium in Tokamaks including convective terms and viscosity

    International Nuclear Information System (INIS)

    Martin, P.; Castro, E.; Puerta, J.

    2003-01-01

    MHD equilibrium in tokamaks becomes very complex, when the non-linear convective term and viscosity are included in the momentum equation. In order to simplify the analysis, each new term has been separated in type gradient terms and vorticity depending terms. For the special case in which the vorticity vanishes, an extended Grad-Shafranov type equation can be obtained. However now the magnetic surface is not isobars or current surfaces as in the usual Grad-Shafranov treatment. The non-linear convective terms introduces gradient of Bernoulli type kinetic terms . Montgomery and other authors have shown the importance of the viscosity terms in tokamaks [1,2], here the treatment is carried out for the equilibrium condition, including generalized tokamaks coordinates recently described [3], which simplify the equilibrium analysis. Calculation of the new isobar surfaces is difficult and some computation have been carried out elsewhere for some particular cases [3]. Here, our analysis is extended discussing how the toroidal current density, plasma pressure and toroidal field are modified across the midplane because of the new terms (convective and viscous). New calculations and computations are also presented. (Author)

  13. Nonlinear viscosity in brane-world cosmology with a Gauss–Bonnet term

    Science.gov (United States)

    Debnath, P. S.; Beesham, A.; Paul, B. C.

    2018-06-01

    Cosmological solutions are obtained with nonlinear bulk viscous cosmological fluid in the Randall–Sundrum type II (RS) brane-world model with or without Gauss–Bonnet (GB) terms. To describe such a viscous fluid, we consider the nonlinear transport equation which may be used far from equilibrium during inflation or reheating. Cosmological models are explored for both (i) power law and (ii) exponential evolution of the early universe in the presence of an imperfect fluid described by the non-linear Israel and Stewart theory (nIS). We obtain analytic solutions and the complex field equations are also analyzed numerically to study the evolution of the universe. The stability analysis of the equilibrium points of the dynamical system associated with the evolution of the nonlinear bulk viscous fluid in the RS Brane in the presence (or absence) of a GB term are also studied.

  14. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    Science.gov (United States)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  15. Engineering non-linear resonator mode interactions in circuit QED by continuous driving: Manipulation of a photonic quantum memory

    Science.gov (United States)

    Reagor, Matthew; Pfaff, Wolfgang; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Albert, Victor V.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.

    2015-03-01

    Recent advances in circuit QED have shown great potential for using microwave resonators as quantum memories. In particular, it is possible to encode the state of a quantum bit in non-classical photonic states inside a high-Q linear resonator. An outstanding challenge is to perform controlled operations on such a photonic state. We demonstrate experimentally how a continuous drive on a transmon qubit coupled to a high-Q storage resonator can be used to induce non-linear dynamics of the resonator. Tailoring the drive properties allows us to cancel or enhance non-linearities in the system such that we can manipulate the state stored in the cavity. This approach can be used to either counteract undesirable evolution due to the bare Hamiltonian of the system or, ultimately, to perform logical operations on the state encoded in the cavity field. Our method provides a promising pathway towards performing universal control for quantum states stored in high-coherence resonators in the circuit QED platform.

  16. SDRE control strategy applied to a nonlinear robotic including drive motor

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Jeferson J. de, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Tusset, Angelo M., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Janzen, Frederic C., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Piccirillo, Vinicius, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Nascimento, Claudinor B., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br [UTFPR-PONTA GROSSA, PR (Brazil); Balthazar, José M., E-mail: jmbaltha@rc.unesp.br [UNESP-BAURU, SP (Brazil); Brasil, Reyolando M. L. R. da Fonseca, E-mail: reyolando.brasil@ufabc.edu.br [UFABC-SANTO ANDRE, SP (Brazil)

    2014-12-10

    A robotic control design considering all the inherent nonlinearities of the robot-engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State-Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case I: For control positioning, it is only used motor voltage; Case II: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.

  17. Nonlinear Dynamical Modes as a Basis for Short-Term Forecast of Climate Variability

    Science.gov (United States)

    Feigin, A. M.; Mukhin, D.; Gavrilov, A.; Seleznev, A.; Loskutov, E.

    2017-12-01

    We study abilities of data-driven stochastic models constructed by nonlinear dynamical decomposition of spatially distributed data to quantitative (short-term) forecast of climate characteristics. We compare two data processing techniques: (i) widely used empirical orthogonal function approach, and (ii) nonlinear dynamical modes (NDMs) framework [1,2]. We also make comparison of two kinds of the prognostic models: (i) traditional autoregression (linear) model and (ii) model in the form of random ("stochastic") nonlinear dynamical system [3]. We apply all combinations of the above-mentioned data mining techniques and kinds of models to short-term forecasts of climate indices based on sea surface temperature (SST) data. We use NOAA_ERSST_V4 dataset (monthly SST with space resolution 20 × 20) covering the tropical belt and starting from the year 1960. We demonstrate that NDM-based nonlinear model shows better prediction skill versus EOF-based linear and nonlinear models. Finally we discuss capability of NDM-based nonlinear model for long-term (decadal) prediction of climate variability. [1] D. Mukhin, A. Gavrilov, E. Loskutov , A.Feigin, J.Kurths, 2015: Principal nonlinear dynamical modes of climate variability, Scientific Reports, rep. 5, 15510; doi: 10.1038/srep15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J., 2016: Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. [3] Ya. Molkov, D. Mukhin, E. Loskutov, A. Feigin, 2012: Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.

  18. A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Chengshi Tian

    2018-03-01

    Full Text Available Short-term load forecasting plays an indispensable role in electric power systems, which is not only an extremely challenging task but also a concerning issue for all society due to complex nonlinearity characteristics. However, most previous combined forecasting models were based on optimizing weight coefficients to develop a linear combined forecasting model, while ignoring that the linear combined model only considers the contribution of the linear terms to improving the model’s performance, which will lead to poor forecasting results because of the significance of the neglected and potential nonlinear terms. In this paper, a novel nonlinear combined forecasting system, which consists of three modules (improved data pre-processing module, forecasting module and the evaluation module is developed for short-term load forecasting. Different from the simple data pre-processing of most previous studies, the improved data pre-processing module based on longitudinal data selection is successfully developed in this system, which further improves the effectiveness of data pre-processing and then enhances the final forecasting performance. Furthermore, the modified support vector machine is developed to integrate all the individual predictors and obtain the final prediction, which successfully overcomes the upper drawbacks of the linear combined model. Moreover, the evaluation module is incorporated to perform a scientific evaluation for the developed system. The half-hourly electrical load data from New South Wales are employed to verify the effectiveness of the developed forecasting system, and the results reveal that the developed nonlinear forecasting system can be employed in the dispatching and planning for smart grids.

  19. Nonlinear Recurrent Dynamics and Long-Term Nonstationarities in EEG Alpha Cortical Activity: Implications for Choosing Adequate Segment Length in Nonlinear EEG Analyses.

    Science.gov (United States)

    Cerquera, Alexander; Vollebregt, Madelon A; Arns, Martijn

    2018-03-01

    Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.

  20. SOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    H. Jafari

    2010-07-01

    Full Text Available In this paper, nonlinear Klein-Gordon equation with quadratic term is solved by means of an analytic technique, namely the Homotopy analysis method (HAM.Comparisons are made between the Adomian decomposition method (ADM, the exact solution and homotopy analysis method. The results reveal that the proposed method is very effective and simple.

  1. A New Chaotic Attractor with Quadratic Exponential Nonlinear Term from Chen’s Attractor

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmed

    2014-02-01

    Full Text Available In this paper a new three-dimensional chaotic system is proposed, which relies on a nonlinear exponential term and a nonlinear quadratic cross term necessary for folding trajectories. Basic dynamical characteristics of the new system are analyzed. Compared with the Chen system, the equilibrium points of the new system does not contain the origin, and has a greater positive Lyapunov index, can produce more complex shaped chaotic attractor.

  2. TRACKING CONTROL FOR A HYDRAULIC DRIVE WITH A PRESSURE COMPENSATOR

    Directory of Open Access Journals (Sweden)

    S. V. Aranovskiy

    2015-07-01

    Full Text Available A problem of tracking control is considered for a hydraulic drive with a pressure compensator that is widespread in the equipment of heavy-duty machines. Method. The control problem is solved by means of a switching sliding-mode controller coupled with static nonlinear compensation and desired velocity feedforward. Main Results. Mathematical model of a hydraulic drive is given in view of the pressure compensator presence. Traditional model of a hydraulic drive is formulated for a system with a spool valve; purpose and principles of operation of the pressure compensator in hydraulic systems are described, and the extended model is presented illustrating compensator contribution to overall system dynamics. It is shown that the obtained model has an input static nonlinearity; the nonlinearity cancellation method is proposed giving the possibility for injection of a desired velocity feedforward term. The control law is chosen as a switching one and two chattering attenuation methods are studied: equivalent control estimation via filtering and sign function integration. Experimental studies are performed at a forestry hydraulic crane prototype and illustrate high tracking accuracy achieved for typical crane motions. Practical Significance. The results are suitable for heavy-duty hydraulic machines automation in construction, road building and forestry.

  3. Nonlinear dynamics of spring softening and hardening in folded-mems comb drive resonators

    KAUST Repository

    Elshurafa, Amro M.

    2011-08-01

    This paper studies analytically and numerically the spring softening and hardening phenomena that occur in electrostatically actuated microelectromechanical systems comb drive resonators utilizing folded suspension beams. An analytical expression for the electrostatic force generated between the combs of the rotor and the stator is derived and takes into account both the transverse and longitudinal capacitances present. After formulating the problem, the resulting stiff differential equations are solved analytically using the method of multiple scales, and a closed-form solution is obtained. Furthermore, the nonlinear boundary value problem that describes the dynamics of inextensional spring beams is solved using straightforward perturbation to obtain the linear and nonlinear spring constants of the beam. The analytical solution is verified numerically using a Matlab/Simulink environment, and the results from both analyses exhibit excellent agreement. Stability analysis based on phase plane trajectory is also presented and fully explains previously reported empirical results that lacked sufficient theoretical description. Finally, the proposed solutions are, once again, verified with previously published measurement results. The closed-form solutions provided are easy to apply and enable predicting the actual behavior of resonators and gyroscopes with similar structures. © 2011 IEEE.

  4. Nonlinear second order evolution inclusions with noncoercive viscosity term

    Science.gov (United States)

    Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D.

    2018-04-01

    In this paper we deal with a second order nonlinear evolution inclusion, with a nonmonotone, noncoercive viscosity term. Using a parabolic regularization (approximation) of the problem and a priori bounds that permit passing to the limit, we prove that the problem has a solution.

  5. A driving system for Moessbauer spectrometer

    International Nuclear Information System (INIS)

    Maslan, M.; Cholmeckij, A.; Evdokimov, V.; Misevic, O.; Fedorov, A.; Zak, D.

    1993-01-01

    The driving system of a Moessbauer spectrometer is described. The system comprises a minivibrator, a digital generator of the reference velocity signal, and circuits for controlling the vibrator. The reference velocity signal is stored by the control computer in an intermediate storage. The feedback in the control circuits includes correction for nonlinearity of the driving facility. A Moessbauer spectrometer which is equipped with this driving system exhibits a velocity scale nonlinearity below 0.1%. The resonance line width for sodium nitroprusside is 0.27 ± 0.01 mm/s. (author). 6 figs., 8 refs

  6. Nonlinear elasticity in resonance experiments

    Science.gov (United States)

    Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel

    2018-04-01

    Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.

  7. Psychophysiological responses to short-term cooling during a simulated monotonous driving task.

    Science.gov (United States)

    Schmidt, Elisabeth; Decke, Ralf; Rasshofer, Ralph; Bullinger, Angelika C

    2017-07-01

    For drivers on monotonous routes, cognitive fatigue causes discomfort and poses an important risk for traffic safety. Countermeasures against this type of fatigue are required and thermal stimulation is one intervention method. Surprisingly, there are hardly studies available to measure the effect of cooling while driving. Hence, to better understand the effect of short-term cooling on the perceived sleepiness of car drivers, a driving simulator study (n = 34) was conducted in which physiological and vehicular data during cooling and control conditions were compared. The evaluation of the study showed that cooling applied during a monotonous drive increased the alertness of the car driver. The sleepiness rankings were significantly lower for the cooling condition. Furthermore, the significant pupillary and electrodermal responses were physiological indicators for increased sympathetic activation. In addition, during cooling a better driving performance was observed. In conclusion, the study shows generally that cooling has a positive short-term effect on drivers' wakefulness; in detail, a cooling period of 3 min delivers best results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.

    Science.gov (United States)

    Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N

    2014-09-01

    We present the fifth-order equation of the nonlinear Schrödinger hierarchy. This integrable partial differential equation contains fifth-order dispersion and nonlinear terms related to it. We present the Lax pair and use Darboux transformations to derive exact expressions for the most representative soliton solutions. This set includes two-soliton collisions and the degenerate case of the two-soliton solution, as well as beating structures composed of two or three solitons. Ultimately, the new quintic operator and the terms it adds to the standard nonlinear Schrödinger equation (NLSE) are found to primarily affect the velocity of solutions, with complicated flow-on effects. Furthermore, we present a new structure, composed of coincident equal-amplitude solitons, which cannot exist for the standard NLSE.

  9. Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonlinear Sliding Surface

    OpenAIRE

    Yong-Kun Lu

    2015-01-01

    An adaptive fuzzy integral sliding-mode controller using nonlinear sliding surface is designed for the speed regulator of a field-oriented induction motor drive in this paper. Combining the conventional integral sliding surface with fractional-order integral, a nonlinear sliding surface is proposed for the integral sliding-mode speed control, which can overcome the windup problem and the convergence speed problem. An adaptive fuzzy control term is utilized to approximate the uncertainty. The ...

  10. Enhanced stability of car-following model upon incorporation of short-term driving memory

    Science.gov (United States)

    Liu, Da-Wei; Shi, Zhong-Ke; Ai, Wen-Huan

    2017-06-01

    Based on the full velocity difference model, a new car-following model is developed to investigate the effect of short-term driving memory on traffic flow in this paper. Short-term driving memory is introduced as the influence factor of driver's anticipation behavior. The stability condition of the newly developed model is derived and the modified Korteweg-de Vries (mKdV) equation is constructed to describe the traffic behavior near the critical point. Via numerical method, evolution of a small perturbation is investigated firstly. The results show that the improvement of this new car-following model over the previous ones lies in the fact that the new model can improve the traffic stability. Starting and breaking processes of vehicles in the signalized intersection are also investigated. The numerical simulations illustrate that the new model can successfully describe the driver's anticipation behavior, and that the efficiency and safety of the vehicles passing through the signalized intersection are improved by considering short-term driving memory.

  11. Engineering non-linear resonator mode interactions in circuit QED by continuous driving: Introduction

    Science.gov (United States)

    Pfaff, Wolfgang; Reagor, Matthew; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Krastanov, Stefan; Frunzio, Luigi; Devoret, Michel; Jiang, Liang; Schoelkopf, Robert

    2015-03-01

    High-Q microwave resonators show great promise for storing and manipulating quantum states in circuit QED. Using resonator modes as such a resource in quantum information processing applications requires the ability to manipulate the state of a resonator efficiently. Further, one must engineer appropriate coupling channels without spoiling the coherence properties of the resonator. We present an architecture that combines millisecond lifetimes for photonic quantum states stored in a linear resonator with fast measurement provided by a low-Q readout resonator. We demonstrate experimentally how a continuous drive on a transmon can be utilized to generate highly non-classical photonic states inside the high-Q resonator via effective nonlinear resonator mode interactions. Our approach opens new avenues for using modes of long-lived linear resonators in the circuit QED platform for quantum information processing tasks.

  12. Short- and long-term variations in non-linear dynamics of heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E

    1996-01-01

    OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... rate and describes mainly linear correlations. Non-linear predictability is correlated with heart rate variability measured as the standard deviation of the R-R intervals and the respiratory activity expressed as power of the high-frequency band. The dynamics of heart rate variability changes suddenly...

  13. A nonlinear model for fluid flow in a multiple-zone composite reservoir including the quadratic gradient term

    International Nuclear Information System (INIS)

    Wang, Xiao-Lu; Fan, Xiang-Yu; Nie, Ren-Shi; Huang, Quan-Hua; He, Yong-Ming

    2013-01-01

    Based on material balance and Darcy's law, the governing equation with the quadratic pressure gradient term was deduced. Then the nonlinear model for fluid flow in a multiple-zone composite reservoir including the quadratic gradient term was established and solved using a Laplace transform. A series of standard log–log type curves of 1-zone (homogeneous), 2-zone and 3-zone reservoirs were plotted and nonlinear flow characteristics were analysed. The type curves governed by the coefficient of the quadratic gradient term (β) gradually deviate from those of a linear model with time elapsing. Qualitative and quantitative analyses were implemented to compare the solutions of the linear and nonlinear models. The results showed that differences of pressure transients between the linear and nonlinear models increase with elapsed time and β. At the end, a successful application of the theoretical model data against the field data shows that the nonlinear model will be a good tool to evaluate formation parameters more accurately. (paper)

  14. Self-rated Driving and Driving Safety in Older Adults

    OpenAIRE

    Ross, Lesley A.; Dodson, Joan; Edwards, Jerri D.; Ackerman, Michelle L.; Ball, Karlene

    2012-01-01

    Many U.S. states rely on older adults to self-regulate their driving and determine when driving is no longer a safe option. However, the relationship of older adults’ self-rated driving in terms of actual driving competency outcomes is unclear. The current study investigates self-rated driving in terms of (1) systematic differences between older adults with high (good/excellent) versus low (poor/fair/average) self-ratings, and (2) the predictive nature of self-rated driving to adverse driving...

  15. Driving ability in cancer patients receiving long-term morphine analgesia.

    Science.gov (United States)

    Vainio, A; Ollila, J; Matikainen, E; Rosenberg, P; Kalso, E

    1995-09-09

    When given in single doses to healthy volunteers, opioid analgesics impair reaction time, muscle coordination, attention, and short-term memory sufficiently to affect driving and other skilled activities. Despite the increasing use of oral morphine daily, little is known about the effect of long-term opioid therapy on psychomotor performance. To examine the effects of continuous morphine medication, psychological and neurological tests originally designed for professional motor vehicle drivers were conducted in two groups of cancer patients who were similar apart from experience of pain. 24 were on continuous morphine (mean 209 mg oral morphine daily) for cancer pain; and 25 were pain-free without regular analgesics. Though the results were a little worse in the patients taking morphine, there were no significant differences between the groups in intelligence, vigilance, concentration, fluency of motor reactions, or division of attention. Of the neural function tests, reaction times (auditory, visual, associative), thermal discrimination, and body sway with eyes open were similar in the two groups; only balancing ability with closed eyes was worse in the morphine group. These results indicate that, in cancer patients receiving long-term morphine treatment with stable doses, morphine has only a slight and selective effect on functions related to driving.

  16. Renormalization of the nonlinear O(3) model with θ-term

    Energy Technology Data Exchange (ETDEWEB)

    Flore, Raphael, E-mail: raphael.flore@uni-jena.de [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-05-11

    The renormalization of the topological term in the two-dimensional nonlinear O(3) model is studied by means of the Functional Renormalization Group. By considering the topological charge as a limit of a more general operator, it is shown that a finite multiplicative renormalization occurs in the extreme infrared. In order to compute the effects of the zero modes, a specific representation of the Clifford algebra is developed which allows to reformulate the bosonic problem in terms of Dirac operators and to employ the index theorem.

  17. The role of reduced aerosol precursor emissions in driving near-term warming

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Von Salzen, Knut

    2013-01-01

    The representative concentration pathway (RCP) scenarios all assume stringent emissions controls on aerosols and their precursors, and hence include progressive decreases in aerosol and aerosol precursor emissions through the 21st century. Recent studies have suggested that the resultant decrease in aerosols could drive rapid near-term warming, which could dominate the effects of greenhouse gas (GHG) increases in the coming decades. In CanESM2 simulations, we find that under the RCP 2.6 scenario, which includes the fastest decrease in aerosol and aerosol precursor emissions, the contribution of aerosol reductions to warming between 2000 and 2040 is around 30%. Moreover, the rate of warming in the RCP 2.6 simulations declines gradually from its present-day value as GHG emissions decrease. Thus, while aerosol emission reductions contribute to gradual warming through the 21st century, we find no evidence that aerosol emission reductions drive particularly rapid near-term warming in this scenario. In the near-term, as in the long-term, GHG increases are the dominant driver of warming. (letter)

  18. Engineering high-order nonlinear dissipation for quantum superconducting circuits

    Science.gov (United States)

    Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.

    Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.

  19. Plain and oscillatory solitons of the cubic complex Ginzburg-Landau equation with nonlinear gradient terms

    Science.gov (United States)

    Facão, M.; Carvalho, M. I.

    2017-10-01

    In this work, we present parameter regions for the existence of stable plain solitons of the cubic complex Ginzburg-Landau equation (CGLE) with higher-order terms associated with a fourth-order expansion. Using a perturbation approach around the nonlinear Schrödinger equation soliton and a full numerical analysis that solves an ordinary differential equation for the soliton profiles and using the Evans method in the search for unstable eigenvalues, we have found that the minimum equation allowing these stable solitons is the cubic CGLE plus a term known in optics as Raman-delayed response, which is responsible for the redshift of the spectrum. The other favorable term for the occurrence of stable solitons is a term that represents the increase of nonlinear gain with higher frequencies. At the stability boundary, a bifurcation occurs giving rise to stable oscillatory solitons for higher values of the nonlinear gain. These oscillations can have very high amplitudes, with the pulse energy changing more than two orders of magnitude in a period, and they can even exhibit more complex dynamics such as period-doubling.

  20. A probabilistic analysis of the crystal oscillator behavior at low drive levels

    Science.gov (United States)

    Shmaliy, Yuriy S.; Brendel, Rémi

    2008-03-01

    The paper discusses a probabilistic model of a crystal oscillator at low drive levels where the noise intensity is comparable with the oscillation amplitude. The stationary probability density of the oscillations envelope is derived and investigated for the nonlinear resonator loses. A stochastic explanation is given for the well-known phenomenon termed sleeping sickness associated with losing a facility of self-excitation by a crystal oscillator after a long storage without a power supply. It is shown that, with low drive levels leading to an insufficient feedback, a crystal oscillator generates the noise-induced oscillations rather than it absolutely "falls in sleep".

  1. Vectorial control of nonlinear emission via chiral butterfly nanoantennas: generation of pure high order nonlinear vortex beams.

    Science.gov (United States)

    Lesina, Antonino Cala'; Berini, Pierre; Ramunno, Lora

    2017-02-06

    We report on a chiral gap-nanostructure, which we term a "butterfly nanoantenna," that offers full vectorial control over nonlinear emission. The field enhancement in its gap occurs for only one circular polarization but for every incident linear polarization. As the polarization, phase and amplitude of the linear field in the gap are highly controlled, the linear field can drive nonlinear emitters within the gap, which behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged in a metasurface, and the nonlinear Huygens sources exploited to produce a highly structured far-field optical beam. Nonlinearity allows us to shape the light at shorter wavelengths, not accessible by linear plasmonics, and resulting in high purity beams. The chirality of the butterfly allows us to create orbital angular momentum states using a linearly polarized excitation. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance computing platform of the full plasmonic metasurface with an area large enough to contain up to 3600 nanoantennas.

  2. The use of driving simulators for enhancing train driver’s performance in terms of energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Salvador Zuriaga, P.; Garcia Roman, C.; Pineda Jaramillo, J.D.; Insa Franco, R.

    2016-07-01

    This paper presents a driving simulator to be used by train drivers for training their driving skills in terms of energy-efficiency. In railway operations, previous experiences have shown differences in energy consumption up to 20 % among train drivers for the same journey in similar operational conditions. This shows great saving potentials in both economic and environmental terms. For this reason, railway companies wishing to become more efficient must encourage their train drivers to balance the energy consumption towards the minimum threshold. In this sense, driving simulators are a good complement for training courses on energy-saving best practices given to train drivers, where they can put into practice the learned contents. The developed driving simulator consists in an Excel spreadsheet including an accurate energy consumption model, which was previously developed from real measurements on different train services. The fact of being an Excel spreadsheet provides a familiar interface to train drivers, making easier its use, and becomes an affordable tool for small and medium size freight private railway companies. Furthermore, the fact of being a non-real-time simulation makes possible to perform a journey of several hours in a few minutes, thus being able to test different driving strategies for the same train journey in a short time period. In this paper, the driving simulator was applied to the Valencia-Cuenca-Aranjuez railway line operated by Renfe Operadora with Diesel Multiple Units. The results are given in terms of fuel consumption, costs of fuel and CO2 emissions and enable train drivers to find by themselves the most efficient way to drive the train between two stations. Finally, this driving simulator may serve as the basis for training and evaluating train drivers in order to set up a bonus/penalty policy for rewarding the most efficient train drivers and achieve an overall energy consumption reduction. (Author)

  3. Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A., E-mail: alexis.casner@cea.fr; Masse, L.; Liberatore, S.; Loiseau, P.; Masson-Laborde, P. E.; Jacquet, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Martinez, D.; Moore, A. S.; Seugling, R.; Felker, S.; Haan, S. W.; Remington, B. A.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M.; Giraldez, E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States)

    2015-05-15

    Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.

  4. Simplified Model of Nonlinear Landau Damping

    International Nuclear Information System (INIS)

    Yampolsky, N.A.; Fisch, N.J.

    2009-01-01

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  5. Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O.; Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A.; Igumenshchev, I.; Chicanne, C.

    2012-01-01

    We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.

  6. Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O. [CEA, DAM, DIF, F-91297 Arpajon (France); Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Igumenshchev, I. [Laboratory of Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Chicanne, C. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)

    2012-08-15

    We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.

  7. Theory of nonlinear acoustic forces acting on fluids and particles in microsystems

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias

    fundamentally new capabilities in chemical, biomedical, or clinical studies of single cells and bioparticles. This thesis, entitled Theory of nonlinear acoustic forces acting on fluids and particles in microsystems, advances the fundamental understanding of acoustofluidics by addressing the origin...... of the nonlinear acoustic forces acting on fluids and particles. Classical results in nonlinear acoustics for the non-dissipative acoustic radiation force acting on a particle or an interface, as well as the dissipative acoustic force densities driving acoustic streaming, are derived and discussed in terms...... in the continuous fluid parameters of density and compressibility, e.g., due to a solute concentration field, the thesis presents novel analytical results on the acoustic force density acting on inhomogeneous fluids in acoustic fields. This inhomogeneity-induced acoustic force density is non-dissipative in origin...

  8. Long-term social dynamics drive loss of function in pathogenic bacteria

    DEFF Research Database (Denmark)

    Breum Andersen, Sandra; Marvig, Rasmus Lykke; Molin, Søren

    2015-01-01

    Laboratory experiments show that social interactions between bacterial cells can drive evolutionary change at the population level, but significant challenges limit attempts to assess the relevance of these findings to natural populations, where selection pressures are unknown. We have increasingly...... sophisticated methods for monitoring phenotypic and genotypic dynamics in bacteria causing infectious disease, but in contrast, we lack evidence-based adaptive explanations for those changes. Evolutionary change during infection is often interpreted as host adaptation, but this assumption neglects to consider...... social dynamics shown to drive evolutionary change in vitro. We provide evidence to show that long-term behavioral dynamics observed in a pathogen are driven by selection to outcompete neighboring conspecific cells through social interactions. We find that Pseudomonas aeruginosa bacteria, causing lung...

  9. Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces.

    Directory of Open Access Journals (Sweden)

    Yonatan Berman

    Full Text Available Financial markets are partially composed of sectors dominated by external driving forces, such as commodity prices, infrastructure and other indices. We characterize the statistical properties of such sectors and present a novel model for the coupling of the stock prices and their dominating driving forces, inspired by mean reverting stochastic processes. Using the model we were able to explain the market sectors' long term behavior and estimate the coupling strength between stocks in financial markets and the sector specific driving forces. Notably, the analysis was successfully applied to the shipping market, in which the Baltic dry index (BDI, an assessment of the price of transporting the major raw materials by sea, influences the shipping financial market. We also present the analysis of other sectors-the gold mining market and the food production market, for which the model was also successfully applied. The model can serve as a general tool for characterizing the coupling between external forces and affected financial variables and therefore for estimating the risk in sectors and their vulnerability to external stress.

  10. Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms

    International Nuclear Information System (INIS)

    Sugahara, Y.; Toki, H.

    1994-01-01

    We search for a new parameter set for the description of stable as well as unstable nuclei in the wide mass range within the relativistic mean-field theory. We include a non-linear ω self-coupling term in addition to the non-linear σ self-coupling terms, the necessity of which is suggested by the relativistic Brueckner-Hartree-Fock (RBHF) theory of nuclear matter. We find two parameter sets, one of which is for nuclei above Z=20 and the other for nuclei below that. The calculated results agree very well with the existing data for finite nuclei. The parameter set for the heavy nuclei provides the equation of state of nuclear matter similar to the one of the RBHF theory. ((orig.))

  11. Four-plate piezoelectric actuator driving a large-diameter special optical fiber for nonlinear optical microendoscopy.

    Science.gov (United States)

    Wang, Ying; Li, Zhi; Liang, Xiaobao; Fu, Ling

    2016-08-22

    In nonlinear optical microendoscope (NOME), a fiber with excellent optical characteristics and a miniature scanning mechanism at the distal end are two key components. Double-clad fibers (DCFs) and double-clad photonic crystal fibers (DCPCFs) have shown great optical characteristics but limited vibration amplitude due to large diameter. Besides reducing the damping of fiber cantilever, optimizing the structural of the actuator for lower energy dissipation also contributes to better driving capability. This paper presented an optimized actuator for driving a particular fiber cantilever in the view point of energy. Firstly, deformation energy of a bending fiber cantilever operating in resonant mode is investigated. Secondly, strain and stress analyses revealed that the four-plate actuator achieved lower energy dissipation. Then, finite-element simulations showed that the large-diameter fiber yielded an adequate vibration amplitude driven by a four-plate actuator, which was confirmed by experiments of our home-made four-plate actuator prototypes. Additionally, a NOME based on a DCPCF with a diameter of 350 μm driven by four-plate piezoelectric actuator has been developed. The NOME can excite and collect intrinsic second-harmonic and two-photon fluorescence signals with the excitation power of 10-30 mW and an adequate field of view of 200 μm, which suggest great potential applications in neuroscience and clinical diagnoses.

  12. Exponential Extinction of Nicholson's Blowflies System with Nonlinear Density-Dependent Mortality Terms

    Directory of Open Access Journals (Sweden)

    Wentao Wang

    2012-01-01

    Full Text Available This paper presents a new generalized Nicholson’s blowflies system with patch structure and nonlinear density-dependent mortality terms. Under appropriate conditions, we establish some criteria to guarantee the exponential extinction of this system. Moreover, we give two examples and numerical simulations to demonstrate our main results.

  13. Explicit and exact solutions for a generalized long-short wave resonance equations with strong nonlinear term

    International Nuclear Information System (INIS)

    Shang Yadong

    2005-01-01

    In this paper, the evolution equations with strong nonlinear term describing the resonance interaction between the long wave and the short wave are studied. Firstly, based on the qualitative theory and bifurcation theory of planar dynamical systems, all of the explicit and exact solutions of solitary waves are obtained by qualitative seeking the homoclinic and heteroclinic orbits for a class of Lienard equations. Then the singular travelling wave solutions, periodic travelling wave solutions of triangle functions type are also obtained on the basis of the relationships between the hyperbolic functions and that between the hyperbolic functions with the triangle functions. The varieties of structure of exact solutions of the generalized long-short wave equation with strong nonlinear term are illustrated. The methods presented here also suitable for obtaining exact solutions of nonlinear wave equations in multidimensions

  14. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    Science.gov (United States)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  15. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    Directory of Open Access Journals (Sweden)

    Shahid Hasnain

    2017-07-01

    Full Text Available This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  16. Reduction of the state vector by a nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Pearle, P.

    1976-01-01

    It is hypothesized that the state vector describes the physical state of a single system in nature. Then it is necessary that the state vector of a macroscopic apparatus not assume the form of a superposition of macroscopically distinguishable state vectors. To prevent this, it is suggested that a nonlinear term be added to the Schrodinger equation, which rapidly drives the amplitude of one or another of the state vectors in such a superposition to one, and the rest to zero. It is proposed that it is the phase angles of the amplitudes immediately after a measurement which determine which amplitude is driven to one. A diffusion equation is arrived at to describe the reduction of an ensemble of state vectors corresponding to an ensemble of macroscopically identically prepared experiments. Then a nonlinear term to add to the Schrodinger equation is presented, and it is shown that this leads to the diffusion equation in a weak-coupling approximation

  17. Modeling and Positioning of a PZT Precision Drive System

    Directory of Open Access Journals (Sweden)

    Che Liu

    2017-11-01

    Full Text Available The fact that piezoelectric ceramic transducer (PZT precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  18. Modeling and Positioning of a PZT Precision Drive System.

    Science.gov (United States)

    Liu, Che; Guo, Yanling

    2017-11-08

    The fact that piezoelectric ceramic transducer (PZT) precision drive systems in 3D printing are faced with nonlinear problems with respect to positioning, such as hysteresis and creep, has had an extremely negative impact on the precision of laser focusing systems. To eliminate the impact of PZT nonlinearity during precision drive movement, mathematical modeling and theoretical analyses of each module comprising the system were carried out in this study, a micro-displacement measurement circuit based on Position Sensitive Detector (PSD) is constructed, followed by the establishment of system closed-loop control and creep control models. An XL-80 laser interferometer (Renishaw, Wotton-under-Edge, UK) was used to measure the performance of the precision drive system, showing that system modeling and control algorithms were correct, with the requirements for precision positioning of the drive system satisfied.

  19. Kinetic theory of rf current drive and helicity injection

    International Nuclear Information System (INIS)

    Mett, R.R.

    1992-01-01

    Current drive and helicity injection by plasma waves are examined with the use of kinetic theory. The Vlasov equation yields a general current drive formula that contains resonant and nonresonant (ponderomotivelike) contributions. Standard quasilinear current drive is described by the former, while helicity current drive may be contained in the latter. Since direct analytical comparison of the sizes of the two terms is, in general, difficult, a new approach is taken. Solution of the drift-kinetic equation shows that the standard Landau damping/transit time magnetic pumping quasilinear diffusion coefficient is the only contribution to steady-state current drive to leading order in ε=ρ L /l, where ρ L is the Larmor radius and l is the inhomogeneity scale length. All nonresonant contributions, including the helicity, appear at higher order, after averages are taken over a flux surface, over azimuth, and over time. Consequently, at wave frequencies well below the electron cyclotron frequency, a wave helicity flux perpendicular to the magnetic field does not influence the parallel motion of electrons to leading order and therefore will not drive a significant current. Any current associated with a wave helicity flux is then either ion current (and thus inefficient) or electron current stemming from effects not included in the drift-kinetic treatment, such as cyclotron, collisional, or nonlinear (i.e., not quasilinear)

  20. Harmonic Coupling Analysis of a Multi-Drive System with Slim DC-link Drive

    DEFF Research Database (Denmark)

    Yang, Feng; Kwon, Jun Bum; Blaabjerg, Frede

    2017-01-01

    One of the problems with slim dc-link adjustable speed drive is the difficulties to analyze the harmonic coupling when it is integrated into a multi-drive system. The traditional methods analyze this harmonic issue by neglecting the harmonic coupling, and base on the linear time-invariant methods....... Its disadvantages include the time consumption and large computer memory. This paper proposes to do harmonic analysis by using the harmonic state-space modeling method by using the linear time-periodic theory. By using the proposed model, the harmonic couplings, between dc-link and point of common...... coupling in different drives, are all analyzed in the multi-drive system. In the meantime, the effects of the small film dc-link capacitance and the nonlinear characteristic of the diode rectifier are considered. The detailed modeling procedure, the simulations and the lab experiment on a two-drive system...

  1. Nonlinear NDT: A Route to Conventional Ultrasonic Testing

    OpenAIRE

    Igor Solodov

    2016-01-01

    The bottleneck problem of nonlinear NDT is a low efficiency of conversion from fundamental frequency to nonlinear frequency components. In this paper, it is proposed to use a combination of nonlinearity with Local Defect Resonance (LDR) to enhance substantially the input-output conversion. Since LDR is an efficient resonance “amplifier” of the local vibrations, it manifests a profound nonlinearity even at moderate ultrasonic excitation level. As the driving frequency matches the LDR-frequency...

  2. Noise Response Data Reveal Novel Controllability Gramian for Nonlinear Network Dynamics

    Science.gov (United States)

    Kashima, Kenji

    2016-01-01

    Control of nonlinear large-scale dynamical networks, e.g., collective behavior of agents interacting via a scale-free connection topology, is a central problem in many scientific and engineering fields. For the linear version of this problem, the so-called controllability Gramian has played an important role to quantify how effectively the dynamical states are reachable by a suitable driving input. In this paper, we first extend the notion of the controllability Gramian to nonlinear dynamics in terms of the Gibbs distribution. Next, we show that, when the networks are open to environmental noise, the newly defined Gramian is equal to the covariance matrix associated with randomly excited, but uncontrolled, dynamical state trajectories. This fact theoretically justifies a simple Monte Carlo simulation that can extract effectively controllable subdynamics in nonlinear complex networks. In addition, the result provides a novel insight into the relationship between controllability and statistical mechanics. PMID:27264780

  3. Experimental characterization and modelling of non-linear coupling of the lower hybrid current drive power on Tore Supra

    Science.gov (United States)

    Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.

    2013-01-01

    To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave-plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra.

  4. Experimental characterization and modelling of non-linear coupling of the lower hybrid current drive power on Tore Supra

    International Nuclear Information System (INIS)

    Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.

    2013-01-01

    To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave–plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra. (paper)

  5. Class-D amplifier design and performance for driving a Piezo Actuator Drive servomotor

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Zhang, Zhe; Andersen, Michael A. E.

    2016-01-01

    This paper investigates the behavior of piezoelectric stacks in a Piezoelectric Actuator Drive (PAD) motor, which shows non-linear equivalent impedance and has a dramatic impact on the overall system performance. Therefore, in this paper, the piezo stackt’s model is discussed and an improved large...

  6. A Simplification for Exp-Function Method When the Balanced Nonlinear Term Is a Certain Product

    Directory of Open Access Journals (Sweden)

    Hong-Zhun Liu

    2013-01-01

    Full Text Available The Exp-function method plays an important role in searching for analytic solutions of many nonlinear differential equations. In this paper, we prove that the balancing procedure in the method is unnecessary when the balanced nonlinear term is a product of the dependent variable under consideration and its derivatives. And in this case, the ansatz of the method can be simplified to be with less parameters so as to be easy to calculate.

  7. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  8. Controlled Nonlinear Stochastic Delay Equations: Part II: Approximations and Pipe-Flow Representations

    International Nuclear Information System (INIS)

    Kushner, Harold J.

    2012-01-01

    This is the second part of a work dealing with key issues that have not been addressed in the modeling and numerical optimization of nonlinear stochastic delay systems. We consider new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. Part I was concerned with issues concerning the class of admissible controls and their approximations, since the classical definitions are inadequate for our models. This part is concerned with transportation equation representations and their approximations. Such representations of nonlinear stochastic delay models have been crucial in the development of numerical algorithms with much reduced memory and computational requirements. The representations for the new models are not obvious and are developed. They also provide a template for the adaptation of the Markov chain approximation numerical methods.

  9. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    Science.gov (United States)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  10. An Analytic Approach to Cascade Control Design for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Hansen, Anders Hedegaard; Andersen, Torben O.

    2016-01-01

    , unfortunately not present in valve-operated hydraulic drives. This paper considers a cascade control approach for hydraulic valve-cylinder drives motivated by the fact that this may be applied to successfully suppress nonlinearities. The drive is pre-compensated utilizing a pressure updated inverse valve flow...

  11. Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Wenqiang, E-mail: wfeng1@vols.utk.edu [Department of Mathematics, The University of Tennessee, Knoxville, TN 37996 (United States); Salgado, Abner J., E-mail: asalgad1@utk.edu [Department of Mathematics, The University of Tennessee, Knoxville, TN 37996 (United States); Wang, Cheng, E-mail: cwang1@umassd.edu [Department of Mathematics, The University of Massachusetts, North Dartmouth, MA 02747 (United States); Wise, Steven M., E-mail: swise1@utk.edu [Department of Mathematics, The University of Tennessee, Knoxville, TN 37996 (United States)

    2017-04-01

    We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a general framework for PSD in Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems – including thin film epitaxy with slope selection and the square phase field crystal model – are carried out to verify the efficiency of the scheme.

  12. Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control

    International Nuclear Information System (INIS)

    Cui Baotong; Lou Xuyang

    2009-01-01

    In this paper, a new method to synchronize two identical chaotic recurrent neural networks is proposed. Using the drive-response concept, a nonlinear feedback control law is derived to achieve the state synchronization of the two identical chaotic neural networks. Furthermore, based on the Lyapunov method, a delay independent sufficient synchronization condition in terms of linear matrix inequality (LMI) is obtained. A numerical example with graphical illustrations is given to illuminate the presented synchronization scheme

  13. Nonlinear and self-consistent treatment of ECRH

    Energy Technology Data Exchange (ETDEWEB)

    Tsironis, C.; Vlahos, L.

    2005-07-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  14. Nonlinear and self-consistent treatment of ECRH

    International Nuclear Information System (INIS)

    Tsironis, C.; Vlahos, L.

    2005-01-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  15. Self-rated driving and driving safety in older adults.

    Science.gov (United States)

    Ross, Lesley A; Dodson, Joan E; Edwards, Jerri D; Ackerman, Michelle L; Ball, Karlene

    2012-09-01

    Many U.S. states rely on older adults to self-regulate their driving and determine when driving is no longer a safe option. However, the relationship of older adults' self-rated driving in terms of actual driving competency outcomes is unclear. The current study investigates self-rated driving in terms of (1) systematic differences between older adults with high (good/excellent) versus low (poor/fair/average) self-ratings, and (2) the predictive nature of self-rated driving to adverse driving outcomes in older adults (n=350; mean age 73.9, SD=5.25, range 65-91). Adverse driving outcomes included self-reported incidences of (1) being pulled over by the police, (2) receiving a citation, (3) receiving a recommendation to cease or limit driving, (4) crashes, and (5) state-reported crashes. Results found that older drivers with low self-ratings reported more medical conditions, less driving frequency, and had been given more suggestions to stop/limit their driving; there were no other significant differences between low and high self-raters. Logistic regression revealed older drivers were more likely to have a state-reported crash and receive a suggestion to stop or limit driving. Men were more likely to report all adverse driving outcomes except for receiving a suggestion to stop or limit driving. Regarding self-rated driving, older adults with high ratings were 66% less likely (OR=0.34, 95% CI=0.14-0.85) to have received suggestions to limit or stop driving after accounting for demographics, health and driving frequency. Self-ratings were not predictive of other driving outcomes (being pulled over by the police, receiving a citation, self-reported crashes, or state-reported crashes, ps>0.05). Most older drivers (85.14%) rated themselves as either good or excellent drivers regardless of their actual previous citation or crash rates. Self-rated driving is likely not related to actual driving proficiency as indicated by previous crash involvement in older adults

  16. Computer Simulation of Hydraulic Systems with Typical Nonlinear Characteristics

    Directory of Open Access Journals (Sweden)

    D. N. Popov

    2017-01-01

    Full Text Available The task was to synthesise an adjustable hydraulic system structure, the mathematical model of which takes into account its inherent nonlinearity. Its solution suggests using a successive computer simulations starting with a structure of the linearized stable hydraulic system, which is then complicated by including the essentially non-linear elements. The hydraulic system thus obtained may be unable to meet the Lyapunov stability criterion and be unstable. This can be eliminated through correcting elements. Control of correction results is provided according to the form of transition processes due to stepwise variation of the control signal.Computer simulation of a throttle-controlled electrohydraulic servo drive with the rotary output element illustrates the proposed method application. A constant pressure power source provides fluid feed for the drive under pressure.For drive simulation the following models were involved: the linear model, the model taking into consideration a non-linearity of the flow-dynamic characteristics of a spool-type valve, and the non-linear models that take into account the dry friction in the spool-type valve, the backlash in the steering angle sensor of the motor shaft.The paper shows possibility of damping oscillation caused by variable hydrodynamic forces through introducing a correction device.The list of references attached contains 16 sources, which were used to justify and explain certain factors of the automatic control theory and the fluid mechanics of unsteady flows.The article presents 6 block-diagrams of the electrohydraulic servo drive and their appropriate transition processes, which have been studied.

  17. Higher order terms of the nonlinear forces in plasmas with collisions at laser interaction

    International Nuclear Information System (INIS)

    Kentwell, G.W.; Hora, H.

    1980-01-01

    The evaluation of the general expression of the nonlinear force of laser-plasma interaction showed discrepancies depending on the assumptions of the phase and collisions in the expressions used for E and H. While the first order terms of the derivations are remaining unchanged, new third order terms are found for the case of perpendicular incidence without collisions. With collisions, the additional non-pondermotive terms are derived to be more general than known before. It is then possible to evaluate the forces for oblique incidence with collisions and find an absorption caused force in the plane of the plasma surface. (author)

  18. A neural network driving curve generation method for the heavy-haul train

    Directory of Open Access Journals (Sweden)

    Youneng Huang

    2016-05-01

    Full Text Available The heavy-haul train has a series of characteristics, such as the locomotive traction properties, the longer length of train, and the nonlinear train pipe pressure during train braking. When the train is running on a continuous long and steep downgrade railway line, the safety of the train is ensured by cycle braking, which puts high demands on the driving skills of the driver. In this article, a driving curve generation method for the heavy-haul train based on a neural network is proposed. First, in order to describe the nonlinear characteristics of train braking, the neural network model is constructed and trained by practical driving data. In the neural network model, various nonlinear neurons are interconnected to work for information processing and transmission. The target value of train braking pressure reduction and release time is achieved by modeling the braking process. The equation of train motion is computed to obtain the driving curve. Finally, in four typical operation scenarios, comparing the curve data generated by the method with corresponding practical data of the Shuohuang heavy-haul railway line, the results show that the method is effective.

  19. Current drive for rotamak plasmas

    Indian Academy of Sciences (India)

    Abstract. Experiments which have been undertaken over a number of years have shown that a rotating magnetic field can drive a significant non-linear Hall current in a plasma. Successful experiments of this concept have been made with a device called rotamak. In its original configuration this device was a field reversed ...

  20. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    International Nuclear Information System (INIS)

    Tataronis, J. A.

    2004-01-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory

  1. Nonlinear Kalman filtering in affine term structure models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    2014-01-01

    The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... with that of the particle filter. We analyze the cross section of swap rates, which are mildly nonlinear in the states, and cap prices, which are highly nonlinear. When caps are used to filter the states, the unscented Kalman filter significantly outperforms its extended counterpart. The unscented Kalman filter also...... performs well when compared with the much more computationally intensive particle filter. These findings suggest that the unscented Kalman filter may be a good approach for a variety of problems in fixed-income pricing....

  2. Simulation and measurement of nonlinear behavior in a high-power test cell.

    Science.gov (United States)

    Harvey, Gerald; Gachagan, Anthony

    2011-04-01

    High-power ultrasound has many diverse uses in process applications in industries ranging from food to pharmaceutical. Because cavitation is frequently a desirable effect within many high-power, low-frequency systems, these systems are commonly expected to feature highly nonlinear acoustic propagation because of the high input levels employed. This generation of harmonics significantly alters the field profile compared with that of a linear system, making accurate field modeling difficult. However, when the short propagation distances involved are considered, it is not unreasonable to assume that these systems may remain largely linear until the onset of cavitation, in terms of classical acoustic propagation. The purpose of this paper is to investigate the possible nonlinear effects within such systems before the onset of cavitation. A theoretical description of nonlinear propagation will be presented and the merits of common analytical models will be discussed. Following this, a numerical model of nonlinearity will be outlined and the advantages it presents for representing nonlinear effects in bounded fields will be discussed. Next, the driving equipment and transducers will be evaluated for linearity to disengage any effects from those formed in the transmission load. Finally, the linearity of the system will be measured using an acoustic hydrophone and compared with finite element analysis to confirm that nonlinear effects are not prevalent in such systems at the onset of cavitation. © 2011 IEEE

  3. A Generic Model Based Tracking Controller for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Schmidt, Lasse; Pedersen, Henrik Clemmensen

    2016-01-01

    in the entire range of operation, rather than reducing stationary errors, and may be parameterized from the desired gain margin, as well as linear model parameters. The proposed control design approaches are evaluated in an experimentally validated, nonlinear simulation model of a hydraulic valve-cylinder drive......The control of hydraulic valve-cylinder drives is still an active subject of research, and various linear and particularly nonlinear approaches has been proposed, especially in the last two-three decades. In many cases the proposed controllers appear to produce excellent tracking ability due...... generally has failed to break through in industry. This paper discusses the dominant properties necessary to take into account when considering position tracking control of hydraulic valve-cylinder drives, and presents two generally applicable, generic control design approaches that combines non...

  4. Estimating Multivariate Exponentail-Affine Term Structure Models from Coupon Bound Prices using Nonlinear Filtering

    DEFF Research Database (Denmark)

    Baadsgaard, Mikkel; Nielsen, Jan Nygaard; Madsen, Henrik

    2000-01-01

    An econometric analysis of continuous-timemodels of the term structure of interest rates is presented. A panel of coupon bond prices with different maturities is used to estimate the embedded parameters of a continuous-discrete state space model of unobserved state variables: the spot interest rate...... noise term should account for model errors. A nonlinear filtering method is used to compute estimates of the state variables, and the model parameters are estimated by a quasimaximum likelihood method provided that some assumptions are imposed on the model residuals. Both Monte Carlo simulation results...

  5. Oscillating field current drive for reversed field pinch discharges

    International Nuclear Information System (INIS)

    Schoenberg, K.F.; Gribble, R.F.; Baker, D.A.

    1984-06-01

    Oscillating Field Current Drive (OFCD), also known as F-THETA pumping, is a steady-state current-drive technique proposed for the Reversed Field Pinch (RFP). Unlike other current-drive techniques, which employ high-technology, invasive, and power intensive schemes using radio frequency or neutral particle injection, F-THETA pumping entails driving the toroidal and poloidal magnetic field circuits with low-frequency (audio) oscillating voltage sources. Current drive by this technique is a consequence of the strong nonlinear plasma coupling in the RFP. Because of its low frequency and efficient plasma coupling, F-THETA pumping shows excellent promise as a reactor-relevant current-drive technique. A conceptual and computational study of this concept, including its experimental and reactor relevance, is explored in this paper

  6. Influence of asymmetric magnetic perturbation on the nonlinear evolution of double tearing modes

    Science.gov (United States)

    Xiong, G. Z.; Wang, L.; Li, X. Q.; Liu, H. F.; Tang, C. J.; Huang, J.; Zhang, X.; Wang, X. Q.

    2017-06-01

    The effects of asymmetric magnetic perturbation on the triggering and evolution of double tearing modes (DTMs) are investigated using nonlinear magnetohydrodynamics simulations in a slab geometry. We find that for reversed magnetic shear plasmas the resistive reconnection process induced by the initial perturbation at one rational surface can drive a new island at the other rational surface with the same mode number. The four typical states of the mode for the time evolution are found, and include: (i) a linear growth stage; (ii) a linear/nonlinear stable stage; (iii) an interactively driving stage; and (iv) a symmetric DTM stage. These differ from previous simulation results. Moreover, nonlinear DTM growth is found to strongly depend on the asymmetric magnetic perturbation, particularly in the early nonlinear phase. The initial perturbation strength scale of island width suggests that the left island enters into a Sweet-Parker growth process when the right island is sufficiently large to effectively drive the other. These results predict that although externally applied magnetic perturbations can suppress the neoclassical tearing mode they can also trigger new instabilities such as asymmetric DTMs.

  7. Influence of asymmetric magnetic perturbation on the nonlinear evolution of double tearing modes

    International Nuclear Information System (INIS)

    Xiong, G Z; Liu, H F; Huang, J; Wang, X Q; Wang, L; Li, X Q; Tang, C J; Zhang, X

    2017-01-01

    The effects of asymmetric magnetic perturbation on the triggering and evolution of double tearing modes (DTMs) are investigated using nonlinear magnetohydrodynamics simulations in a slab geometry. We find that for reversed magnetic shear plasmas the resistive reconnection process induced by the initial perturbation at one rational surface can drive a new island at the other rational surface with the same mode number. The four typical states of the mode for the time evolution are found, and include: (i) a linear growth stage; (ii) a linear/nonlinear stable stage; (iii) an interactively driving stage; and (iv) a symmetric DTM stage. These differ from previous simulation results. Moreover, nonlinear DTM growth is found to strongly depend on the asymmetric magnetic perturbation, particularly in the early nonlinear phase. The initial perturbation strength scale of island width suggests that the left island enters into a Sweet–Parker growth process when the right island is sufficiently large to effectively drive the other. These results predict that although externally applied magnetic perturbations can suppress the neoclassical tearing mode they can also trigger new instabilities such as asymmetric DTMs. (paper)

  8. Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays

    Science.gov (United States)

    Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong

    2018-03-01

    We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).

  9. Spatial nonlinearities: Cascading effects in the earth system

    Science.gov (United States)

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  10. Polyspectral signal analysis techniques for condition based maintenance of helicopter drive-train system

    Science.gov (United States)

    Hassan Mohammed, Mohammed Ahmed

    For an efficient maintenance of a diverse fleet of air- and rotorcraft, effective condition based maintenance (CBM) must be established based on rotating components monitored vibration signals. In this dissertation, we present theory and applications of polyspectral signal processing techniques for condition monitoring of critical components in the AH-64D helicopter tail rotor drive train system. Currently available vibration-monitoring tools are mostly built around auto- and cross-power spectral analysis which have limited performance in detecting frequency correlations higher than second order. Studying higher order correlations and their Fourier transforms, higher order spectra, provides more information about the vibration signals which helps in building more accurate diagnostic models of the mechanical system. Based on higher order spectral analysis, different signal processing techniques are developed to assess health conditions of different critical rotating-components in the AH-64D helicopter drive-train. Based on cross-bispectrum, quadratic nonlinear transfer function is presented to model second order nonlinearity in a drive-shaft running between the two hanger bearings. Then, quadratic-nonlinearity coupling coefficient between frequency harmonics of the rotating shaft is used as condition metric to study different seeded shaft faults compared to baseline case, namely: shaft misalignment, shaft imbalance, and combination of shaft misalignment and imbalance. The proposed quadratic-nonlinearity metric shows better capabilities in distinguishing the four studied shaft settings than the conventional linear coupling based on cross-power spectrum. We also develop a new concept of Quadratic-Nonlinearity Power-Index spectrum, QNLPI(f), that can be used in signal detection and classification, based on bicoherence spectrum. The proposed QNLPI(f) is derived as a projection of the three-dimensional bicoherence spectrum into two-dimensional spectrum that

  11. Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity

    Science.gov (United States)

    Jeevarekha, A.; Paul Asir, M.; Philominathan, P.

    2016-06-01

    This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.

  12. Analysis of Vehicle Steering and Driving Bifurcation Characteristics

    Directory of Open Access Journals (Sweden)

    Xianbin Wang

    2015-01-01

    Full Text Available The typical method of vehicle steering bifurcation analysis is based on the nonlinear autonomous vehicle model deriving from the classic two degrees of freedom (2DOF linear vehicle model. This method usually neglects the driving effect on steering bifurcation characteristics. However, in the steering and driving combined conditions, the tyre under different driving conditions can provide different lateral force. The steering bifurcation mechanism without the driving effect is not able to fully reveal the vehicle steering and driving bifurcation characteristics. Aiming at the aforementioned problem, this paper analyzed the vehicle steering and driving bifurcation characteristics with the consideration of driving effect. Based on the 5DOF vehicle system dynamics model with the consideration of driving effect, the 7DOF autonomous system model was established. The vehicle steering and driving bifurcation dynamic characteristics were analyzed with different driving mode and driving torque. Taking the front-wheel-drive system as an example, the dynamic evolution process of steering and driving bifurcation was analyzed by phase space, system state variables, power spectral density, and Lyapunov index. The numerical recognition results of chaos were also provided. The research results show that the driving mode and driving torque have the obvious effect on steering and driving bifurcation characteristics.

  13. Nonlinear damping of drift waves by strong flow curvature

    International Nuclear Information System (INIS)

    Sidikman, K.L.; Carreras, B.A.; Garcia, L.; Diamond, P.H.

    1993-01-01

    A single-equation model has been used to study the effect of a fixed poloidal flow (V 0 ) on turbulent drift waves. The electron dynamics come from a laminar kinetic equation in the dissipative trapped-electron regime. In the past, the authors have assumed that the mode frequency is close to the drift-wave frequency. Trapped-electron density fluctuations are then related to potential fluctuations by an open-quotes iδclose quotes term. Flow shear (V 0 ') and curvature (V 0 double-prime) both have a stabilizing effect on linear modes for this open-quotes iδclose quotes model. However, in the nonlinear regime, single-helicity effects inhibit the flow damping. Neither V 0 ' nor V 0 double-prime produces a nonlinear damping effect. The above assumption on the frequency can be relaxed by including the electron time-response in the linear part of the evolution. In this time-dependent model, instability drive due to trapped electrons is reduced when mode frequency is greater than drift-wave frequency. Since V 0 double-prime produces such a frequency shift, its linear effect is enhanced. There is also nonlinear damping, since single-helicity effects do not eliminate the shift. Renormalized theory for this model predicts nonlinear stability for sufficiently large curvature. Single-helicity calculations have already shown nonlinear damping, and this strong V 0 double-prime regime is being explored. In the theory, the Gaussian shape of the nonlinear diffusivity is expanded to obtain a quadratic potential. The implications of this assumption will be tested by solving the full renormalized equation using a shooting method

  14. Driving forces shaping advanced reactor designs: Near-term and long-term prospects

    International Nuclear Information System (INIS)

    Sholly, S.C.

    1990-01-01

    This paper explores the forces which have driven and which in the opinion of the author should be driving advanced reactor development programs. Four general driving forces are identified: cost, safety, environmental concerns, and non-proliferation concerns. It is suggested that the primary driving forces should be cost and safety concerns. It is suggested that advanced reactors need to demonstrate the following characteristics: (a) A design which explicitly accounts for severe accidents, including severe external events (not necessarily limited to contemporary design basis events) and which results in a frequency of severe core damage substantially lower than in current plants. The goal for the frequency of severe core damage should reflect a reasonable assurance that a severe core damage accident will not occur during the operating lifetime of a fleet' of such plants. (b) A design which explicitly accounts for severe accidents in terms of accident mitigation, resulting in a very low conditional likelihood of a substantial fission product release given a severe accident. (c) A design which utilizes near-passive and passive concepts (whose safety and reliability are demonstrable by experiment and/or full-scale test) for both accident prevention and accident mitigation to the maximum extent feasible. (d) A design which allows f a suitably long time between refueling outages, with a balance struck between refueling outage duration and refueling outage frequency so as to maximize availability and capacity factor. (e) A design which emphasizes modular construction and exceptional quality control. (f) A design which de emphasizes the importance of maintenance and human reliability more generally to assure that safety functions are performed with acceptable reliability, and to assure that passive safety characteristics are not compromised by design, manufacturing, or installation defects. It is further suggested that key factors in gaining public acceptance are the early

  15. Driving forces shaping advanced reactor designs: Near-term and long-term prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sholly, S C [MHB Technical Associates, San Jose, CA (United States)

    1990-07-01

    This paper explores the forces which have driven and which in the opinion of the author should be driving advanced reactor development programs. Four general driving forces are identified: cost, safety, environmental concerns, and non-proliferation concerns. It is suggested that the primary driving forces should be cost and safety concerns. It is suggested that advanced reactors need to demonstrate the following characteristics: (a) A design which explicitly accounts for severe accidents, including severe external events (not necessarily limited to contemporary design basis events) and which results in a frequency of severe core damage substantially lower than in current plants. The goal for the frequency of severe core damage should reflect a reasonable assurance that a severe core damage accident will not occur during the operating lifetime of a fleet' of such plants. (b) A design which explicitly accounts for severe accidents in terms of accident mitigation, resulting in a very low conditional likelihood of a substantial fission product release given a severe accident. (c) A design which utilizes near-passive and passive concepts (whose safety and reliability are demonstrable by experiment and/or full-scale test) for both accident prevention and accident mitigation to the maximum extent feasible. (d) A design which allows f a suitably long time between refueling outages, with a balance struck between refueling outage duration and refueling outage frequency so as to maximize availability and capacity factor. (e) A design which emphasizes modular construction and exceptional quality control. (f) A design which de emphasizes the importance of maintenance and human reliability more generally to assure that safety functions are performed with acceptable reliability, and to assure that passive safety characteristics are not compromised by design, manufacturing, or installation defects. It is further suggested that key factors in gaining public acceptance are the early

  16. Driving electrostatic transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    Electrostatic transducers represent a very interesting alternative to the traditional inefficient electrodynamic transducers. In order to establish the full potential of these transducers, power amplifiers which fulfill the strict requirements imposed by such loads (high impedance, frequency...... depended, nonlinear and high bias voltage for linearization) must be developed. This paper analyzes power stages and bias configurations suitable for driving an electrostatic transducer. Measurement results of a 300 V prototype amplifier are shown. Measuring THD across a high impedance source is discussed...

  17. Nonlinear phenomena at cyclotron resonance

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.

    1986-01-01

    Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH

  18. Mechanisms of the negative synergy effect between electron cyclotron current drive and lower hybrid current drive in tokamak

    International Nuclear Information System (INIS)

    Chen Shaoyong; Hong Binbin; Tang Changjian; Yang Wen; Zhang Xinjun

    2013-01-01

    The synergy current drive by combining electron cyclotron wave (ECW) with lower hybrid wave (LHW) can be used to either increase the noninductive current drive efficiency or shape the plasma current profile. In this paper, the synergy current drive by ECW and LHW is studied with numerical simulation. The nonlinear relationship between the wave powers and the synergy current of ECW and LHW is revealed. When the LHW power is small, the synergy current reduces as the ECW power increases, and the synergy current is even reduced to lower than zero, which is referred as negative synergy in the this context. Research shows that the mechanism of the negative synergy is the peaking effect of LHW power profile and the trapped electrons effect. The present research is helpful for understanding the physics of synergy between electron cyclotron current drive and lower hybrid current drive, it can also instruct the design of experiments. (authors)

  19. Adaptive projective synchronization of different chaotic systems with nonlinearity inputs

    International Nuclear Information System (INIS)

    Niu Yu-Jun; Pei Bing-Nan; Wang Xing-Yuan

    2012-01-01

    We investigate the projective synchronization of different chaotic systems with nonlinearity inputs. Based on the adaptive technique, sliding mode control method and pole assignment technique, a novel adaptive projective synchronization scheme is proposed to ensure the drive system and the response system with nonlinearity inputs can be rapidly synchronized up to the given scaling factor. (general)

  20. Nonlinear wave-mixing processes in the extreme ultraviolet

    International Nuclear Information System (INIS)

    Misoguti, L.; Christov, I. P.; Backus, S.; Murnane, M. M.; Kapteyn, H. C.

    2005-01-01

    We present data from two-color high-order harmonic generation in a hollow waveguide, that suggest the presence of a nonlinear-optical frequency conversion process driven by extreme ultraviolet light. By combining the fundamental and second harmonic of an 800 nm laser in a hollow-core fiber, with varying relative polarizations, and by observing the pressure and power scaling of the various harmonic orders, we show that the data are consistent with a picture where we drive the process of high-harmonic generation, which in turn drives four-wave frequency mixing processes in the extreme EUV. This work promises a method for extending nonlinear optics into the extreme ultraviolet region of the spectrum using an approach that has not previously been considered, and has compelling implications for generating tunable light at short wavelengths

  1. Nonlinear oscillations in coriolis based gyroscopes

    Directory of Open Access Journals (Sweden)

    Dag Kristiansen

    1999-01-01

    Full Text Available In this paper we model and analyze nonlinear oscillations which are known to exist in some Coriolis based gyroscopes due to large amplitude excitation in the drive loop. A detailed derivation of a dynamic model for a cylinder gyroscope which includes geometric nonlinearities is given, and energy transfer between the system's modes are analyzed using perturbation theory and by proposing a simplified model. The model is also simulated, and the results are shown to give an accurate description of the experimental results. This work is done in order to gain a better understanding of the gyroscope's dynamics, and is intended to be a starting point for designing nonlinear observers and vibration controllers for the gyroscope in order to increase the performance.

  2. The non-linear response of the magnetosphere: 30 October 1978

    International Nuclear Information System (INIS)

    Price, C.P.; Prichard, D.

    1993-01-01

    The authors address the question of whether the response of the earth magnetosphere to the solar wind can be viewed as a nonlinear phenomena, rather than a linear response. The difficulty in answering this question is that the driving function, namely the solar wind, is very aperiodic, and it is difficult to argue that the system has time to go to any sort of a steady state in response to the driving force, prior to its making another random change. The application of nonlinear analysis methods in the face of this type of system is very limited. The authors pick a particular day, namely October 30, 1978, when the solar wind was very uniform for an extended period of time, and there is the possibility the system could converge to some type of strange attractor state within this period. They look at the auroral electrojet as a measure of the potential nonlinear response of the magnetosphere, and apply both nonlinear and linear analysis procedures to the data to try to determine if the data would support a nonlinear response of the magnetosphere to the solar wind driver, taken as the product of the solar wind speed v, and the southward component of the interplanetary magnetic field B s

  3. Metamaterial-Enhanced Nonlinear Terahertz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhang X.

    2013-03-01

    Full Text Available We demonstrate large nonlinear terahertz responses in the gaps of metamaterial split ring resonators in several materials and use nonlinear THz transmission and THz-pump/THz-probe spectroscopy to study the nonlinear responses and dynamics. We use the field enhancement in the SRR gaps to initiate high-field phenomena at lower incident fields. In vanadium dioxide, we drive the insulator-to-metal phase transition with high-field THz radiation. The film conductivity increases by over two orders of magnitude and the phase transition occurs on a several picosecond timescale. In gallium arsenide, we observe high-field transport phenomena, including mobility saturation and impact ionization. The carrier density increases by up to ten orders of magnitude at high fields. At the highest fields, we demonstrate THz-induced damage in both vanadium dioxide and gallium arsenide.

  4. Speed-Sensorless DTC-SVM for Matrix Converter Drives With Simple Non-Linearity Compensation

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede; Yoon, Tae-Woong

    2005-01-01

    This paper presents a new method to improve sensorless performance of matrix converter drives using a parameter estimation scheme. To improve low-speed sensorless performance, the non-Iinearities of a matrix converter drive such as commutation delays, turn-on and turn-off times of switching devic...... method is applied for high performance induction motor drives using a 3 kW matrix converter system without a speed sensor. Experimental results are shown to illustrate the feasibility of the proposed strategy....

  5. A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations

    International Nuclear Information System (INIS)

    Yomba, Emmanuel

    2008-01-01

    With the aid of symbolic computation, a generalized auxiliary equation method is proposed to construct more general exact solutions to two types of NLPDEs. First, we present new family of solutions to a nonlinear Klein-Gordon equation, by using this auxiliary equation method including a new first-order nonlinear ODE with six-degree nonlinear term proposed by Sirendaoreji. Then, we apply an indirect F-function method very close to the F-expansion method to solve the generalized Camassa-Holm equation with fully nonlinear dispersion and fully nonlinear convection C(l,n,p). Taking advantage of the new first-order nonlinear ODE with six degree nonlinear term, this indirect F-function method is used to map the solutions of C(l,n,p) equations to those of that nonlinear ODE. As a result, we can successfully obtain in a unified way, many exact solutions

  6. The geometric background-field method, renormalization and the Wess-Zumino term in non-linear sigma-models

    International Nuclear Information System (INIS)

    Mukhi, S.

    1986-01-01

    A simple recursive algorithm is presented which generates the reparametrization-invariant background-field expansion for non-linear sigma-models on manifolds with an arbitrary riemannian metric. The method is also applicable to Wess-Zumino terms and to counterterms. As an example, the general-metric model is expanded to sixth order and compared with previous results. For locally symmetric spaces, we actually obtain a general formula for the nth order term. The method is shown to facilitate the study of models with Wess-Zumino terms. It is demonstrated that, for chiral models, the Wess-Zumino term is unrenormalized to all orders in perturbation theory even when the model is not conformally invariant. (orig.)

  7. A Nonlinear Fuel Optimal Reaction Jet Control Law

    National Research Council Canada - National Science Library

    Breitfeller, Eric

    2002-01-01

    We derive a nonlinear fuel optimal attitude control system (ACS) that drives the final state to the desired state according to a cost function that weights the final state angular error relative to the angular rate error...

  8. Apparently noninvariant terms of nonlinear sigma models in lattice perturbation theory

    International Nuclear Information System (INIS)

    Harada, Koji; Hattori, Nozomu; Kubo, Hirofumi; Yamamoto, Yuki

    2009-01-01

    Apparently noninvariant terms (ANTs) that appear in loop diagrams for nonlinear sigma models are revisited in lattice perturbation theory. The calculations have been done mostly with dimensional regularization so far. In order to establish that the existence of ANTs is independent of the regularization scheme, and of the potential ambiguities in the definition of the Jacobian of the change of integration variables from group elements to 'pion' fields, we employ lattice regularization, in which everything (including the Jacobian) is well defined. We show explicitly that lattice perturbation theory produces ANTs in the four-point functions of the pion fields at one-loop and the Jacobian does not play an important role in generating ANTs.

  9. State Estimation of Induction Motor Drives Using the Unscented Kalman Filter

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, M.Sami

    2012-01-01

    This paper investigates the application, design, and implementation of unscented Kalman filters (KFs) (UKFs) for induction motor (IM) sensorless drives. UKFs use nonlinear unscented transforms (UTs) in the prediction step in order to preserve the stochastic characteristics of a nonlinear system....... The advantage of using UTs is their ability to capture the nonlinear behavior of the system, unlike extended KFs (EKFs) that use linearized models. Four original variants of the UKF for IM state estimation, based on different UTs, are described, analyzed, and compared. The four transforms are basic, general...

  10. Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications

    Science.gov (United States)

    Pesaresi, L.; Salles, L.; Jones, A.; Green, J. S.; Schwingshackl, C. W.

    2017-02-01

    Underplatform dampers (UPD) are commonly used in aircraft engines to mitigate the risk of high-cycle fatigue failure of turbine blades. The energy dissipated at the friction contact interface of the damper reduces the vibration amplitude significantly, and the couplings of the blades can also lead to significant shifts of the resonance frequencies of the bladed disk. The highly nonlinear behaviour of bladed discs constrained by UPDs requires an advanced modelling approach to ensure that the correct damper geometry is selected during the design of the turbine, and that no unexpected resonance frequencies and amplitudes will occur in operation. Approaches based on an explicit model of the damper in combination with multi-harmonic balance solvers have emerged as a promising way to predict the nonlinear behaviour of UPDs correctly, however rigorous experimental validations are required before approaches of this type can be used with confidence. In this study, a nonlinear analysis based on an updated explicit damper model having different levels of detail is performed, and the results are evaluated against a newly-developed UPD test rig. Detailed linear finite element models are used as input for the nonlinear analysis, allowing the inclusion of damper flexibility and inertia effects. The nonlinear friction interface between the blades and the damper is described with a dense grid of 3D friction contact elements which allow accurate capturing of the underlying nonlinear mechanism that drives the global nonlinear behaviour. The introduced explicit damper model showed a great dependence on the correct contact pressure distribution. The use of an accurate, measurement based, distribution, better matched the nonlinear dynamic behaviour of the test rig. Good agreement with the measured frequency response data could only be reached when the zero harmonic term (constant term) was included in the multi-harmonic expansion of the nonlinear problem, highlighting its importance

  11. An Adaptive Gain Nonlinear Observer for State of Charge Estimation of Lithium-Ion Batteries in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yong Tian

    2014-09-01

    Full Text Available The state of charge (SOC is important for the safety and reliability of battery operation since it indicates the remaining capacity of a battery. However, it is difficult to get an accurate value of SOC, because the SOC cannot be directly measured by a sensor. In this paper, an adaptive gain nonlinear observer (AGNO for SOC estimation of lithium-ion batteries (LIBs in electric vehicles (EVs is proposed. The second-order resistor–capacitor (2RC equivalent circuit model is used to simulate the dynamic behaviors of a LIB, based on which the state equations are derived to design the AGNO for SOC estimation. The model parameters are identified using the exponential-function fitting method. The sixth-order polynomial function is used to describe the highly nonlinear relationship between the open circuit voltage (OCV and the SOC. The convergence of the proposed AGNO is proved using the Lyapunov stability theory. Two typical driving cycles, including the New European Driving Cycle (NEDC and Federal Urban Driving Schedule (FUDS are adopted to evaluate the performance of the AGNO by comparing with the unscented Kalman filter (UKF algorithm. The experimental results show that the AGNO has better performance than the UKF algorithm in terms of reducing the computation cost, improving the estimation accuracy and enhancing the convergence ability.

  12. Nonlinear ultrasonic wave modulation for online fatigue crack detection

    Science.gov (United States)

    Sohn, Hoon; Lim, Hyung Jin; DeSimio, Martin P.; Brown, Kevin; Derriso, Mark

    2014-02-01

    This study presents a fatigue crack detection technique using nonlinear ultrasonic wave modulation. Ultrasonic waves at two distinctive driving frequencies are generated and corresponding ultrasonic responses are measured using permanently installed lead zirconate titanate (PZT) transducers with a potential for continuous monitoring. Here, the input signal at the lower driving frequency is often referred to as a 'pumping' signal, and the higher frequency input is referred to as a 'probing' signal. The presence of a system nonlinearity, such as a crack formation, can provide a mechanism for nonlinear wave modulation, and create spectral sidebands around the frequency of the probing signal. A signal processing technique combining linear response subtraction (LRS) and synchronous demodulation (SD) is developed specifically to extract the crack-induced spectral sidebands. The proposed crack detection method is successfully applied to identify actual fatigue cracks grown in metallic plate and complex fitting-lug specimens. Finally, the effect of pumping and probing frequencies on the amplitude of the first spectral sideband is investigated using the first sideband spectrogram (FSS) obtained by sweeping both pumping and probing signals over specified frequency ranges.

  13. Punchets: nonlinear transport in Hamiltonian pump-ratchet hybrids

    Science.gov (United States)

    Dittrich, Thomas; Medina Sánchez, Nicolás

    2018-02-01

    ‘Punchets’ are hybrids between ratchets and pumps, combining a spatially periodic static potential, typically asymmetric under space inversion, with a local driving that breaks time-reversal invariance, and are intended to model metal or semiconductor surfaces irradiated by a collimated laser beam. Their crucial feature is irregular driven scattering between asymptotic regions supporting periodic (as opposed to free) motion. With all binary spatio-temporal symmetries broken, scattering in punchets typically generates directed currents. We here study the underlying nonlinear transport mechanisms, from chaotic scattering to the parameter dependence of the currents, in three types of Hamiltonian models, (i) with spatially periodic potentials where only in the driven scattering region, spatial and temporal symmetries are broken, and (ii), spatially asymmetric (ratchet) potentials with a driving that only breaks time-reversal invariance. As more realistic models of laser-irradiated surfaces, we consider (iii), a driving in the form of a running wave confined to a compact region by a static envelope. In this case, the induced current can even run against the direction of wave propagation, drastically evidencing its nonlinear nature. Quantizing punchets is indicated as a viable research perspective.

  14. A nonlinearity compensation method for a matrix converter drive

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2005-01-01

    converter model using the direction of current. The proposed method does not need any additional hardware or complicated software and it is easy to realize by applying the algorithm to the conventional vector control. The proposed compensation method is applied for high-performance induction motor drives...... using a 3-kW matrix converter system without a speed sensor. Experimental results show the proposed method provides good compensating characteristics....

  15. Asymptotic profile of global solutions to the generalized double dispersion equation via the nonlinear term

    Science.gov (United States)

    Wang, Yu-Zhu; Wei, Changhua

    2018-04-01

    In this paper, we investigate the initial value problem for the generalized double dispersion equation in R^n. Weighted decay estimate and asymptotic profile of global solutions are established for n≥3 . The global existence result was already proved by Kawashima and the first author in Kawashima and Wang (Anal Appl 13:233-254, 2015). Here, we show that the nonlinear term plays an important role in this asymptotic profile.

  16. The SR Approach: a new Estimation Method for Non-Linear and Non-Gaussian Dynamic Term Structure Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Christensen, Bent Jesper

    This paper suggests a new and easy approach to estimate linear and non-linear dynamic term structure models with latent factors. We impose no distributional assumptions on the factors and they may therefore be non-Gaussian. The novelty of our approach is to use many observables (yields or bonds p...

  17. A nonlinear plate control without linearization

    Directory of Open Access Journals (Sweden)

    Yildirim Kenan

    2017-03-01

    Full Text Available In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.

  18. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    Science.gov (United States)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  19. Null Controllability of a Nonlinear Dissipative System and Application to the Detection of the Incomplete Parameter for a Nonlinear Population Dynamics Model

    Directory of Open Access Journals (Sweden)

    Yacouba Simporé

    2016-01-01

    Full Text Available We first prove a null controllability result for a nonlinear system derived from a nonlinear population dynamics model. In order to tackle the controllability problem we use an adapted Carleman inequality. Next we consider the nonlinear population dynamics model with a source term called the pollution term. In order to obtain information on the pollution term we use the method of sentinel.

  20. Utilization of control rod drive (CRD) system for long term core cooling

    International Nuclear Information System (INIS)

    Huerta B, A.

    1991-01-01

    In this paper we consider an application of Probabilistic Risk Assessment (PRA) to risk management. Foreseeable risk management strategies to prevent core damage are constrained by the availability of first line systems as well as support systems. The actual trend in the evaluation of risk management options can be performed in a number of ways. An example is the identification of back-up systems which could be used to perform the same safety functions. In this work we deal with the evaluation of the feasibility, for BWR's, to use the Control Rod Drive system to maintain an adequate reactor core long term cooling in some accident sequences. This preliminary evaluation is carried out as a part of the Internal Events Analysis for Laguna Verde Nuclear Power Plant (LVNPP) that is currently under way by the Mexican Nuclear Regulatory Body. This analysis addresses the evaluation and incorporation of all the systems, including the safety related and the back-up non safety related systems, that are available for the operator in order to prevent core damage. As a part of this analysis the containment venting capability is also evaluated as a back-up of the containment heat removal function. This will prevent the primary containment overpressurization and loss of certain core cooling systems. A selection of accident sequences in which the Control Rod Drive system could be used to mitigate the accident and prevent core damage are discussed. A personal computer transient analysis code is used to carry out thermohydraulic simulations in order to evaluate the Control Rod Drive system performance, the corresponding results are presented. Finally, some preliminary conclusions are drawn. (author). 9 refs, 5 figs

  1. Disturbance Observer-Based Simple Nonlinearity Compensation for Matrix Converter Drives

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2009-01-01

    by disturbance observer and compensated. The proposed method does not need any additional hardware and offline experimental measurements. The proposed compensation method is applied for highperformance induction motor drives using a 3kW matrix converter system without a speed sensor. Simulation and experimental...

  2. Expansion of the relativistic Fokker-Planck equation including non-linear terms and a non-Maxwellian background

    International Nuclear Information System (INIS)

    Shkarofsky, I.P.

    1997-01-01

    The relativistic Fokker-Planck collision term in Braams and Karney [Phys. Fluids B 1, 1355 (1989)] is expanded using Cartesian tensors (equivalent to associated Legendre spherical harmonics) retaining all non-linear terms and an arbitrary zeroth order distribution background. Expressions are given for collision terms between all harmonics and the background distribution in terms of the j and y functions in Braams and Karney. The results reduce to Braams and Karney for the first order harmonic term with a Maxwellian background and to those given by Shkarofsky [Can. J. Phys. 41, 1753 (1963)] in the non-relativistic limit. Expressions for the energy and momentum transfer associated with relativistic Coulomb collisions are given. The fast two dimensional Fokker-Planck solver in Shoucri and Shkarofsky [Comput. Phys. Commun. 82, 287 (1994)] has been extended to include the second order harmonic term. copyright 1997 American Institute of Physics

  3. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  4. Parametric autoresonant excitation of the nonlinear Schrödinger equation.

    Science.gov (United States)

    Friedland, L; Shagalov, A G

    2016-10-01

    Parametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics.

  5. Square Root Unscented Kalman Filters for State Estimation of Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, M.Sami

    2013-01-01

    This paper investigates the application, design, and implementation of the square root unscented Kalman filter (UKF) (SRUKF) for induction motor (IM) sensorless drives. The UKF uses nonlinear unscented transforms (UTs) in the prediction step in order to preserve the stochastic characteristics...... of a nonlinear system. The advantage of using the UT is its ability to capture the nonlinear behavior of the system, unlike the extended Kalman filter (EKF) that uses linearized models. The SRUKF implements the UKF using square root filtering to reduce computational errors. We discuss the theoretical aspects...

  6. MODELING CONTROLLED ASYNCHRONOUS ELECTRIC DRIVES WITH MATCHING REDUCERS AND TRANSFORMERS

    Directory of Open Access Journals (Sweden)

    V. S. Petrushin

    2015-04-01

    Full Text Available Purpose. Working out of mathematical models of the speed-controlled induction electric drives ensuring joint consideration of transformers, motors and loadings, and also matching reducers and transformers, both in static, and in dynamic regimes for the analysis of their operating characteristics. Methodology. At mathematical modelling are considered functional, mass, dimensional and cost indexes of reducers and transformers that allows observing engineering and economic aspects of speed-controlled induction electric drives. The mathematical models used for examination of the transitive electromagnetic and electromechanical processes, are grounded on systems of nonlinear differential equations with nonlinear coefficients (parameters of equivalent circuits of motors, varying in each operating point, including owing to appearances of saturation of magnetic system and current displacement in a winding of a rotor of an induction motor. For the purpose of raise of level of adequacy of models a magnetic circuit iron, additional and mechanical losses are considered. Results. Modelling of the several speed-controlled induction electric drives, different by components, but working on a loading equal on character, magnitude and a demanded control range is executed. At use of characteristic families including mechanical, at various parameters of regulating on which performances of the load mechanism are superimposed, the adjusting characteristics representing dependences of a modification of electrical, energy and thermal magnitudes from an angular speed of motors are gained. Originality. The offered complex models of speed-controlled induction electric drives with matching reducers and transformers, give the chance to realize well-founded sampling of components of drives. They also can be used as the design models by working out of speed-controlled induction motors. Practical value. Operating characteristics of various speed-controlled induction electric

  7. Influence of Control Structures and Load Parameters on Performance of a Pseudo Direct Drive

    Directory of Open Access Journals (Sweden)

    Mohammed Bouheraoua

    2014-07-01

    Full Text Available The paper describes an in-depth and systematic analysis of a pseudo direct drive permanent magnet machine in closed loop control. Due to the torque being transmitted from the high-speed rotor (HSR to the low-speed rotor (LSR, through a relatively low stiffness magnetic gear with non-linear characteristics, speed oscillations appear in the drive output with a conventional proportional integral (PI controller. Therefore two candidate controllers have been proposed as an alternative to the PI control and all controllers have been optimally tuned with a genetic algorithm against a defined criterion. Furthermore, closed loop models are established in the complex frequency domain to determine the system damping and the cause of the oscillations. Consequently, the best controller structure that improves the dynamic behaviour of the system in terms of speed tracking and disturbance rejection could be identified, based on the frequency domain analysis. Experimental results are presented to validate the analysis and the proposed control technique.

  8. Nonlinear MHD dynamics of tokamak plasmas on multiple time scales

    International Nuclear Information System (INIS)

    Kruger, S.E.; Schnack, D.D.; Brennan, D.P.; Gianakon, T.A.; Sovinec, C.R.

    2003-01-01

    Two types of numerical, nonlinear simulations using the NIMROD code are presented. In the first simulation, we model the disruption occurring in DIII-D discharge 87009 as an ideal MHD instability driven unstable by neutral-beam heating. The mode grows faster than exponential, but on a time scale that is a hybrid of the heating rate and the ideal MHD growth rate as predicted by analytic theory. The second type of simulations, which occur on a much longer time scale, focus on the seeding of tearing modes by sawteeth. Pressure effects play a role both in the exterior region solutions and in the neoclassical drive terms. The results of both simulations are reviewed and their implications for experimental analysis is discussed. (author)

  9. Piecewise nonlinear dynamic characteristics study of the control rod drive mechanism

    International Nuclear Information System (INIS)

    Shen Xiaoyao; Wang Feng

    2011-01-01

    Piecewise nonlinear dynamics of the control rod mechanism (CRDM), one of the critical components in PWR nuclear power plants, are studied for its lifting process in this paper. Firstly, equations of the electric circuit and the magnetic circuit are set up. Then based on the dynamic lifting process analysis of CRDM, its motion procedure is divided into three stages, and the coupled magnetic-electric-mechanical equation for each stage is derived. By combining the analytical solution method and the numerical simulation method, the piecewise nonlinear governing equations are solved. Finally, parameters which can illustrate the dynamic characteristics of CRDM, such as the magnetic force, the coil current, the armature displacement, the armature velocity and the acceleration are obtained and corresponding curves with the time are drawn and analyzed. The analysis results are confirmed by the test which proves the validity of our method. Work in this paper can be used for design and analysis as well as the site fault diagnosis of CRDM. (author)

  10. 2002 Nonlinear Optics Measurements andModelling for the SPS at 26 GeV

    CERN Document Server

    Arduini, Gianluigi; Faus-Golfe, A; Iida, N; Tomás, R; CERN. Geneva. AB Department

    2003-01-01

    During SPS MDs in the summer of 2002, nonlinear chromaticity, coupling, amplitude-dependent detuning, resonance driving terms and phase advancesalong the ring were measured with a 72-bunch LHC batch at 26 GeV. Following the procedure developed in previous years, the SPS optics model has been updated, by adjusting the magnitude of sextupole and decapole components in the SPS dipole magnets and octupole components in the quadrupoles, respectively, to values which would be consistent with the measurements. We compare the field errors deduced in 2002, measuring over a larger momentum range, with those found in 2001 and 2000. We show that the resolution can be improved by averaging over the turn-by-turn beam position data from all BPMs, distributed around the ring, instead of using the single dedicated pick up of the tune meter. Computations by two different codes, MAD and SAD, indicate the sensitivity to matching algorithm and magnet representation. Finally, the tune shifts with transverse amplitude, the driving ...

  11. Nonlinear Multiantenna Detection Methods

    Directory of Open Access Journals (Sweden)

    Chen Sheng

    2004-01-01

    Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.

  12. Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input

    International Nuclear Information System (INIS)

    Hung, M.-L.; Yan, J.-J.; Liao, T.-L.

    2008-01-01

    This paper addresses the synchronization problem of drive-response chaotic gyros coupled with dead-zone nonlinear input. Using the sliding mode control technique, a novel control law is established which guarantees generalized projective synchronization even when the dead-zone nonlinearity is present. Numerical simulations are presented to verify that the synchronization can be achieved by using the proposed synchronization scheme

  13. Nonlinear analysis on power reactor dynamics

    International Nuclear Information System (INIS)

    Konno, H.; Hayashi, K.

    1997-01-01

    We have shown that the origin of intermittent oscillation observed in a BWR can be ascribed to the couplings among the spatial modes starting from a non-linear center manifold equation with a delay-time and a spatial diffusion. We can reduce the problem to the stochastic coupled van der Pol oscillators with non-linear coupling term. This non-linear coupling term plays an important role to break the symmetry of the system and the non-linear damping of the system. The phenomenological generalization of van der Pol oscillator coupled by the linear diffusion term is not appropriate for describing the nuclear power reactors. However, one must start from the coupled partial differential equations by taking into account the two energy group neutrons, the thermo-hydraulic equations including two-phase flow. In this case, the diffusion constant must be a complex number as is demonstrated in a previous paper. The results will be reported in the near future. (J.P.N.)

  14. Estimation of dynamic reactivity using an H∞ optimal filter with a nonlinear term

    International Nuclear Information System (INIS)

    Suzuki, Katsuo; Watanabe, Koiti

    1996-01-01

    A method of nonlinear filtering is applied to the problem of estimating the dynamic reactivity of a nonlinear reactor system. The nonlinear filtering algorithm developed is a simple modification of a linear H ∞ optimal filter with a nonlinear feedback loop added. The linear filter is designed on the basis of a linearized dynamical system model that consists of linearized point reactor kinetic equations and a reactivity state equation driven by a fictitious signal. The latter is artificially introduced to deal with the reactivity as a state variable. The results of the computer simulation show that the nonlinear filtering algorithm can be applied to estimate the dynamic reactivity of the nonlinear reactor system, even under relatively large reactivity disturbances

  15. Nonlinear response and bistability of driven ion acoustic waves

    Science.gov (United States)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  16. Breatherlike impurity modes in discrete nonlinear lattices

    DEFF Research Database (Denmark)

    Hennig, D.; Rasmussen, Kim; Tsironis, G. P.

    1995-01-01

    We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...

  17. The relationship of dangerous driving with traffic offenses: A study on an adapted measure of dangerous driving.

    Science.gov (United States)

    Iliescu, Dragoş; Sârbescu, Paul

    2013-03-01

    Using data from three different samples and more than 1000 participants, the current study examines differences in dangerous driving in terms of age, gender, professional driving, as well as the relationship of dangerous driving with behavioral indicators (mileage) and criteria (traffic offenses). The study uses an adapted (Romanian) version of the Dula Dangerous Driving Index (DDDI, Dula and Ballard, 2003) and also reports data on the psychometric characteristics of this measure. Findings suggest that the Romanian version of the DDDI has sound psychometric properties. Dangerous driving is higher in males and occasional drivers, is not correlated with mileage and is significantly related with speeding as a traffic offense, both self-reported and objectively measured. The utility of predictive models including dangerous driving is not very large: logistic regression models have a significant fit to the data, but their misclassification rate (especially in terms of sensitivity) is unacceptable high. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.

    Science.gov (United States)

    Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor

    2013-08-01

    The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.

  19. The numerical dynamic for highly nonlinear partial differential equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  20. All-Coefficient Adaptive Control of Dual-Motor Driving Servo System

    Directory of Open Access Journals (Sweden)

    Zhao Haibo

    2017-01-01

    Full Text Available Backlash nonlinearity and friction nonlinearity exist in dual-motor driving servo system, which reducing system response speed, steady accuracy and anti-interference ability. In order to diminish the adverse effects of backlash and friction nonlinearity to system, we proposed a new all-coefficient adaptive control method. Firstly, we introduced the dynamic model of backlash and friction nonlinearity respectively. Then on this basis, we established the characteristic model when backlash and friction nonlinearity coexist. We used recursive least square method for parameter estimation. Finally we designed the all-coefficient adaptive controller. On the basis of simplex all-coefficient adaptive controller, we designed a feedforward all-coefficient adaptive controller. The simulations of feedforward all-coefficient adaptive control and simplex all-coefficient adaptive control were compared. The results show that the former has quicker response speed, higher steady accuracy, stronger anti-interference performance and better robustness, which validating the efficacy of the proposed control strategy.

  1. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies. [various hybrid/electric power train configurations and electrical and mechanical drive-line components

    Science.gov (United States)

    1979-01-01

    The relative attractiveness of various hybrid/electric power train configurations and electrical and mechanical drive-line components was studied. The initial screening was concerned primarily with total vehicle weight and economic factors and identified the hybrid power train combinations which warranted detailed evaluation over various driving cycles. This was done using a second-by-second vehicle simulation program which permitted the calculations of fuel economy, electricity usage, and emissions as a function of distance traveled in urban and highway driving. Power train arrangement possibilities were examined in terms of their effect on vehicle handling, safety, serviceability, and passenger comfort. A dc electric drive system utilizing a separately excited motor with field control and battery switching was selected for the near term hybrid vehicle. Hybrid vehicle simulations showed that for the first 30 mi (the electric range of the vehicle) in urban driving, the fuel economy was 80 mpg using a gasoline engine and 100 mpg using a diesel engine. In urban driving the hybrid would save about 75% of the fuel used by the conventional vehicle and in combined urban/highway driving the fuel saving is about 50%.

  2. Single-ion nonlinear mechanical oscillator

    International Nuclear Information System (INIS)

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.

    2010-01-01

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  3. VEHICLE DRIVING CYCLE OPTIMISATION ON THE HIGHWAY

    Directory of Open Access Journals (Sweden)

    Zinoviy STOTSKO

    2016-06-01

    Full Text Available This paper is devoted to the problem of reducing vehicle energy consumption. The authors consider the optimisation of highway driving cycle a way to use the kinetic energy of a car more effectively at various road conditions. The model of a vehicle driving control at the highway which consists of elementary cycles, such as accelerating, free rolling and deceleration under forces of external resistance, was designed. Braking, as an energy dissipation regime, was not included. The influence of the various longitudinal profiles of the road was taken into consideration and included in the model. Ways to use the results of monitoring road and traffic conditions are presented. The method of non-linear programming is used to design the optimal vehicle control function and phase trajectory. The results are presented by improved typical driving cycles that present energy saving as a subject of choice at a specified schedule.

  4. On nonlinear control design for autonomous chaotic systems of integer and fractional orders

    International Nuclear Information System (INIS)

    Ahmad, Wajdi M.; Harb, Ahmad M.

    2003-01-01

    In this paper, we address the problem of chaos control for autonomous nonlinear chaotic systems. We use the recursive 'backstepping' method of nonlinear control design to derive the nonlinear controllers. The controller effect is to stabilize the output chaotic trajectory by driving it to the nearest equilibrium point in the basin of attraction. We study two nonlinear chaotic systems: an electronic chaotic oscillator model, and a mechanical chaotic 'jerk' model. We demonstrate the robustness of the derived controllers against system order reduction arising from the use of fractional integrators in the system models. Our results are validated via numerical simulations

  5. Modeling and Dynamic Analysis of Cutterhead Driving System in Tunnel Boring Machine

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2017-01-01

    Full Text Available Failure of cutterhead driving system (CDS of tunnel boring machine (TBM often occurs under shock and vibration conditions. To investigate the dynamic characteristics and reduce system vibration further, an electromechanical coupling model of CDS is established which includes the model of direct torque control (DTC system for three-phase asynchronous motor and purely torsional dynamic model of multistage gear transmission system. The proposed DTC model can provide driving torque just as the practical inverter motor operates so that the influence of motor operating behavior will not be erroneously estimated. Moreover, nonlinear gear meshing factors, such as time-variant mesh stiffness and transmission error, are involved in the dynamic model. Based on the established nonlinear model of CDS, vibration modes can be classified into three types, that is, rigid motion mode, rotational vibration mode, and planet vibration mode. Moreover, dynamic responses under actual driving torque and idealized equivalent torque are compared, which reveals that the ripple of actual driving torque would aggravate vibration of gear transmission system. Influence index of torque ripple is proposed to show that vibration of system increases with torque ripple. This study provides useful guideline for antivibration design and motor control of CDS in TBM.

  6. Travelling solitons in the parametrically driven nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Zemlyanaya, E.V.; Baer, M.

    2000-01-01

    We show that the parametrically driven nonlinear Schroedinger equation has wide classes of travelling soliton solutions, some of which are stable. For small driving strengths stable nonpropagating and moving solitons co-exist while strongly forced solitons can only be stable when moving sufficiently fast

  7. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-01-01

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies

  8. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  9. Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations

    International Nuclear Information System (INIS)

    Kushner, Harold J.

    2012-01-01

    This two-part paper deals with “foundational” issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.

  10. Tracing the transition of a macro electron shuttle into nonlinear response

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chulki [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136791 (Korea, Republic of); Prada, Marta [I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstr. 9, Hamburg 20355 (Germany); Qin, Hua [Key Laboratory of Nanodevices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Industrial Park, Suzhou City, Jiangsu 215123 (China); Kim, Hyun-Seok [Division of Electronics and Electrical Engineering, Dongguk University-Seoul, 100715 Seoul (Korea, Republic of); Blick, Robert H., E-mail: rblick@physnet.uni-hamburg.de [Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin-53706 (United States); Center for Hybrid Nanostructures, Universität Hamburg, Jungiusstr. 11c, Hamburg 20355 (Germany); Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Dr. Madison, Wisconsin-53706 (United States)

    2015-02-09

    We present a study on a macroscopic electron shuttle in the transition from linear to nonlinear response. The shuttle consists of a classical mechanical pendulum situated between two capacitor plates. The metallic pendulum enables mechanical transfer of electrons between the plates, hence allowing to directly trace electron shuttling in the time domain. By applying a high voltage to the plates, we drive the system into a controlled nonlinear response, where we observe period doubling.

  11. Feedback control systems for non-linear simulation of operational transients in LMFBRs

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Agrawal, A.K.; Srinivasan, E.S.

    1979-01-01

    Feedback control systems for non-linear simulation of operational transients in LMFBRs are developed. The models include (1) the reactor power control and rod drive mechanism, (2) sodium flow control and pump drive system, (3) steam generator flow control and valve actuator dynamics, and (4) the supervisory control. These models have been incorporated into the SSC code using a flexible approach, in order to accommodate some design dependent variations. The impact of system nonlinearity on the control dynamics is shown to be significant for severe perturbations. Representative result for a 10 cent and 25 cent step insertion of reactivity and a 10% ramp change in load in 40 seconds demonstrate the suitability of this model for study of operational transients without scram in LMFBRs

  12. Periodic and solitary wave solutions of cubic–quintic nonlinear ...

    Indian Academy of Sciences (India)

    Hence, most of the real nonlinear physical equations possess variable ... evolution of the system with time and second term represents the convective flux term. The ... Travelling wave solutions of nonlinear reaction-diffusion equations are.

  13. Solution of continuous nonlinear PDEs through order completion

    CERN Document Server

    Oberguggenberger, MB

    1994-01-01

    This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function.

  14. Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.

    2008-01-01

    By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.

  15. Exact solutions of nonlinear generalizations of the Klein Gordon and Schrodinger equations

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given. 14 references

  16. Nonlinear dynamical modeling and prediction of the terrestrial magnetospheric activity

    International Nuclear Information System (INIS)

    Vassiliadis, D.

    1992-01-01

    The irregular activity of the magnetosphere results from its complex internal dynamics as well as the external influence of the solar wind. The dominating self-organization of the magnetospheric plasma gives rise to repetitive, large-scale coherent behavior manifested in phenomena such as the magnetic substorm. Based on the nonlinearity of the global dynamics this dissertation examines the magnetosphere as a nonlinear dynamical system using time series analysis techniques. Initially the magnetospheric activity is modeled in terms of an autonomous system. A dimension study shows that its observed time series is self-similar, but the correlation dimension is high. The implication of a large number of degrees of freedom is confirmed by other state space techniques such as Poincare sections and search for unstable periodic orbits. At the same time a stability study of the time series in terms of Lyapunov exponents suggests that the series is not chaotic. The absence of deterministic chaos is supported by the low predictive capability of the autonomous model. Rather than chaos, it is an external input which is largely responsible for the irregularity of the magnetospheric activity. In fact, the external driving is so strong that the above state space techniques give results for magnetospheric and solar wind time series that are at least qualitatively similar. Therefore the solar wind input has to be included in a low-dimensional nonautonomous model. Indeed it is shown that such a model can reproduce the observed magnetospheric behavior up to 80-90 percent. The characteristic coefficients of the model show little variation depending on the external disturbance. The impulse response is consistent with earlier results of linear prediction filters. The model can be easily extended to contain nonlinear features of the magnetospheric activity and in particular the loading-unloading behavior of substorms

  17. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....

  18. A novel nonlinear damage resonance intermodulation effect for structural health monitoring

    Science.gov (United States)

    Ciampa, Francesco; Scarselli, Gennaro; Meo, Michele

    2017-04-01

    This paper is aimed at developing a theoretical model able to predict the generation of nonlinear elastic effects associated to the interaction of ultrasonic waves with the steady-state nonlinear response of local defect resonance (LDR). The LDR effect is used in nonlinear elastic wave spectroscopy to enhance the excitation of the material damage at its local resonance, thus to dramatically increase the vibrational amplitude of material nonlinear phenomena. The main result of this work is to prove both analytically and experimentally the generation of novel nonlinear elastic wave effects, here named as nonlinear damage resonance intermodulation, which correspond to a nonlinear intermodulation between the driving frequency and the LDR one. Beside this intermodulation effect, other nonlinear elastic wave phenomena such as higher harmonics of the input frequency and superharmonics of LDR frequency were found. The analytical model relies on solving the nonlinear equation of motion governing bending displacement under the assumption of both quadratic and cubic nonlinear defect approximation. Experimental tests on a damaged composite laminate confirmed and validated these predictions and showed that using continuous periodic excitation, the nonlinear structural phenomena associated to LDR could also be featured at locations different from the damage resonance. These findings will provide new opportunities for material damage detection using nonlinear ultrasounds.

  19. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    International Nuclear Information System (INIS)

    Bora, B.

    2015-01-01

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage

  20. Self-protecting nonlinear compression in a solid fiber for long-term stable ultrafast lasers at 2 μm wavelength

    Science.gov (United States)

    Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas; Pupeza, Ioachim

    2017-02-01

    Ultrashort-pulse laser systems are an enabling technology for numerous applications. The stability of such systems is especially crucial for frequency metrology and high precision spectroscopy. Thulium-based fiber lasers are an ideal starting point as a reliable and yet powerful source for the nonlinear conversion towards the mid-IR region. Recently, we have demonstrated that nonlinear self-compression in a fused silica solid-core fiber allows for few-cycle pulse duration with up to 24 MW peak power using a high-repetition rate thulium-based fiber laser system operating at around 2 μm wavelength [1]. This experiment operates near the self-focusing limit of about 24 MW for circular polarization, which increases the requirements for the system stability due to the risk of a fiber damage. Here, we present a self-protecting nonlinear compression regime allowing for long-term operation and high output-pulse stability with very similar output performance.

  1. Forces that Drive Nanoscale Self-assembly on Solid Surfaces

    International Nuclear Information System (INIS)

    Suo, Z.; Lu, W.

    2000-01-01

    Experimental evidence has accumulated in the recent decade that nanoscale patterns can self-assemble on solid surfaces. A two-component monolayer grown on a solid surface may separate into distinct phases. Sometimes the phases select sizes about 10 nm, and order into an array of stripes or disks. This paper reviews a model that accounts for these behaviors. Attention is focused on thermodynamic forces that drive the self-assembly. A double-welled, composition-dependent free energy drives phase separation. The phase boundary energy drives phase coarsening. The concentration-dependent surface stress drives phase refining. It is the competition between the coarsening and the refining that leads to size selection and spatial ordering. These thermodynamic forces are embodied in a nonlinear diffusion equation. Numerical simulations reveal rich dynamics of the pattern formation process. It is relatively fast for the phases to separate and select a uniform size, but exceedingly slow to order over a long distance, unless the symmetry is suitably broken

  2. Solving Nonlinear Coupled Differential Equations

    Science.gov (United States)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  3. Nonlinear evolution of magnetic islands in a two fluid torus

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.

    1996-01-01

    A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress

  4. Cubication of conservative nonlinear oscillators

    International Nuclear Information System (INIS)

    Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  5. Reduced Order Extended Luenberger Observer Based Sensorless Vector Control Fed by Matrix Converter with Non-linearity Modeling

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching device is corrected by a new...

  6. Nonlinear physics of shear Alfvén waves

    International Nuclear Information System (INIS)

    Zonca, Fulvio; Chen, Liu

    2014-01-01

    Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results

  7. Nonlinear physics of shear Alfvén waves

    Science.gov (United States)

    Zonca, Fulvio; Chen, Liu

    2014-02-01

    Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These "nonlinear equilibria" or "phase-space zonal structures" dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.

  8. Efficient excitation of nonlinear phonons via chirped pulses: Induced structural phase transitions

    Science.gov (United States)

    Itin, A. P.; Katsnelson, M. I.

    2018-05-01

    Nonlinear phononics play important role in strong laser-solid interactions. We discuss a dynamical protocol for efficient phonon excitation, considering recent inspiring proposals: inducing ferroelectricity in paraelectric perovskites, and inducing structural deformations in cuprates [Subedi et al., Phys. Rev. B 89, 220301(R) (2014), 10.1103/PhysRevB.89.220301; Phys. Rev. B 95, 134113 (2017), 10.1103/PhysRevB.95.134113]. High-frequency phonon modes are driven by midinfrared pulses, and coupled to lower-frequency modes those indirect excitations cause structural deformations. We study in more detail the case of KTaO3 without strain, where it was not possible to excite the needed low-frequency phonon mode by resonant driving of the higher frequency one. Behavior of the system is explained using a reduced model of coupled driven nonlinear oscillators. We find a dynamical mechanism which prevents effective excitation at resonance driving. To induce ferroelectricity, we employ driving with sweeping frequency, realizing so-called capture into resonance. The method can be applied to many other related systems.

  9. Theory of free-electron-laser heating and current drive in magnetized plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.

    1991-01-01

    The introduction of a powerful new microwave source, the free-electron laser, provides new opportunities for novel heating and current-drive schemes to be used in toroidal fusion devices. This high-power, pulsed source has a number of technical advantages for these applications, and its use is predicted to lead to improved current-drive efficiencies and opacities in reactor-grade fusion plasmas in specific cases. The Microwave Tokamak Experiment at the Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. Although the motivation for much of this research has derived from the application of a free-electron laser to the heating of a tokamak plasma at a frequency near the electron cyclotron frequency, the underlying physics, i.e., the highly nonlinear interaction of an intense, pulsed, coherent electromagnetic wave with an electron in a magnetized plasma including relativistic effects, is of general interest. Other relevant applications include ionospheric modification by radio-frequency waves, high-energy electron accelerators, and the propagation of intense, pulsed electromagnetic waves in space and astrophysical plasmas. This review reports recent theoretical progress in the analysis and computer simulation of the absorption and current drive produced by intense pulses, and of the possible complications that may arise, e.g., parametric instabilities, nonlinear self-focusing, trapped-particle sideband instability, and instabilities of the heated plasma

  10. Spurious Solutions Of Nonlinear Differential Equations

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1992-01-01

    Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.

  11. A new energy-efficient control approach for astronomical telescope drive system

    Science.gov (United States)

    Zhou, W.; Wang, Y.

    2012-12-01

    Drive control makes the astronomical telescope accurately tracking celestial bodies in spite of external and internal disturbances, which is a key technique to the performance of telescopes. In this paper, we propose a nonlinear ad, aptive observer based on power reversible approach for high precision telescope position tracking. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be evidently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. During the period of the mount slowing down, the armature current of drive motor goes through the two path-wise diodes to charge the battery. Thus, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an evaluation function which is made up of a weighted sum of position errors and energy consumption.The outputs of the controller are applied to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.

  12. On state estimation in electric drives

    International Nuclear Information System (INIS)

    Leon, A.E.; Solsona, J.A.

    2010-01-01

    This paper deals with state estimation in electric drives. On one hand a nonlinear observer is designed, whereas on the other hand the speed state is estimated by using the dirty derivative from the position measured. The dirty derivative is an approximate version of the perfect derivative which introduces an estimation error few times analyzed in drive applications. For this reason, our proposal in this work consists in illustrating several aspects on the performance of the dirty derivator in presence of both model uncertainties and noisy measurements. To this end, a case study is introduced. The case study considers rotor speed estimation in a permanent magnet stepper motor, by assuming that rotor position and electrical variables are measured. In addition, this paper presents comments about the connection between dirty derivators and observers, and advantages and disadvantages of both techniques are also remarked.

  13. Nonlinear Time Series Prediction Using Chaotic Neural Networks

    Science.gov (United States)

    Li, Ke-Ping; Chen, Tian-Lun

    2001-06-01

    A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting, we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation. By selecting the suitable feedback term, the system can escape from the local minima and converge to the global minimum or its approximate solutions, and the forecasting results are better than those of backpropagation algorithm. The project supported by National Basic Research Project "Nonlinear Science" and National Natural Science Foundation of China under Grant No. 60074020

  14. Nonlinear waves in electron–positron–ion plasmas including charge ...

    Indian Academy of Sciences (India)

    2017-01-04

    Jan 4, 2017 ... The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E0 was reduced. The results are compared with satellite observations. Keywords. Nonlinear waves; low frequency; ion-acoustic waves. PACS Nos 52.35.Qz; 52.35.Fp; 52.35 ...

  15. Combined kinetic and transport modeling of radiofrequency current drive

    International Nuclear Information System (INIS)

    Dumont, R.; Giruzzi, G.; Barbato, E.

    2000-07-01

    A numerical model for predictive simulations of radiofrequency current drive in magnetically confined plasmas is developed. It includes the minimum requirements for a self consistent description of such regimes, i.e., a 3-D ,kinetic equation for the electron distribution function, 1-D heat and current transport equations, and resonant coupling between velocity space and configuration space dynamics, through suitable wave propagation equations. The model finds its full application in predictive studies of complex current profile control scenarios in tokamaks, aiming at the establishment of internal transport barriers by the simultaneous use of various radiofrequency current drive methods. The basic properties of this non-linear numerical system are investigated and illustrated by simulations applied to reversed magnetic shear regimes obtained by Lower Hybrid and Electron Cyclotron current drive for parameters typical of the Tore Supra tokamak. (authors)

  16. Superposition of elliptic functions as solutions for a large number of nonlinear equations

    International Nuclear Information System (INIS)

    Khare, Avinash; Saxena, Avadh

    2014-01-01

    For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ 4 , the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn 2 (x, m), it also admits solutions in terms of dn 2 (x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations

  17. Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime

    Science.gov (United States)

    Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying

    2018-03-01

    Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.

  18. Nonlinear Klein-Gordon soliton mechanics

    International Nuclear Information System (INIS)

    Reinisch, G.

    1992-01-01

    Nonlinear Klein-Gordon solitary waves - or solitons in a loose sense - in n+1 dimensions, driven by very general external fields which must only satisfy continuity - together with regularity conditions at the boundaries of the system, obey a quite simple equation of motion. This equation is the exact generalization to this dynamical system of infinite number of degrees of freedom - which may be conservative or not - of the second Newton's law setting the basis of material point mechanics. In the restricted case of conservative nonlinear Klein-Gordon systems, where the external driving force is derivable from a potential energy, we recover the generalized Ehrenfest theorem which was itself the extension to such systems of the well-known Ehrenfest theorem in quantum mechanics. This review paper first displays a few (of one-dimensional sine-Gordon type) typical examples of the basic difficulties related to the trial construction of solitary-waves is proved and the derivation of the previous sine-Gordon examples from this theorem is displayed. Two-dimensional nonlinear solitary-wave patterns are considered, as well as a special emphasis is put on the applications to space-time complexity of 1-dim. sine-Gordon systems

  19. Travelling Solitons in the Damped Driven Nonlinear Schroedinger Equation

    CERN Document Server

    Barashenkov, I V

    2003-01-01

    The well-known effect of the linear damping on the moving nonlinear Schrodinger soliton (even when there is energy supply via the spatially homogeneous driving) is to quench its momentum to zero. Surprisingly, the zero momentum does not necessarily mean zero velocity. We show that two or more parametrically driven damped solitons can form a complex travelling with zero momentum at a nonzero constant speed. All travelling complexes we have found so far, turned out to be unstable. Thus, the parametric driving is capable of sustaining the uniform motion of damped solitons, but some additional agent is required to make this motion stable.

  20. Travelling solitons in the damped driven nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Zemlyanaya, E.V.

    2003-01-01

    The well known effect of the linear damping on the moving nonlinear Schroedinger soliton (even when there is energy supply via the spatially homogeneous driving) is to quench its momentum to zero. Surprisingly, the zero momentum does not necessarily mean zero velocity. We show that two or more parametrically driven damped solitons can form a complex travelling with zero momentum at a nonzero constant speed. All travelling complexes we have found so far, turned out to be unstable. Thus, the parametric driving is capable of sustaining the uniform motion of damped solitons, but some additional agent is required to make this motion stable

  1. Turbulent current drive mechanisms

    Science.gov (United States)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  2. Time Variance of the Suspension Nonlinearity

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Pedersen, Bo Rohde

    2008-01-01

    but recovers quickly. The the high power and long term measurements affect the non-linearity of the speaker, by incresing the compliance value for all values of displacement. This level dependency is validated with distortion measurements and it is demonstrated how improved accuracy of the non-linear model can...

  3. Coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, J; Scott, A C

    1983-01-01

    Topics discussed include transitions in weakly coupled nonlinear oscillators, singularly perturbed delay-differential equations, and chaos in simple laser systems. Papers are presented on truncated Navier-Stokes equations in a two-dimensional torus, on frequency locking in Josephson point contacts, and on soliton excitations in Josephson tunnel junctions. Attention is also given to the nonlinear coupling of radiation pulses to absorbing anharmonic molecular media, to aspects of interrupted coarse-graining in stimulated excitation, and to a statistical analysis of long-term dynamic irregularity in an exactly soluble quantum mechanical model.

  4. Engineered nonlinear lattices

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.

    1999-01-01

    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...... discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term...

  5. Chaos control of third-order phase-locked loops using backstepping nonlinear controller

    International Nuclear Information System (INIS)

    Harb, Ahmad M.; Harb, Bassam A.

    2004-01-01

    Previous study showed that a third-order phase-locked loop (PLL) with sinusoidal phase detector characteristics experienced a Hopf bifurcation point as well as chaotic behavior. As a result, this behavior drives the PLL to the out-of-lock (unstable) state. The analysis was based on a modern nonlinear theory such as bifurcation and chaos. The main goal of this paper is to control this chaotic behavior. A nonlinear controller based on the theory of backstepping is designed. The study showed the effectiveness of the designed nonlinear controller in controlling the undesirable unstable behavior and pulling the PLL back to the in-lock state

  6. Nonlinear Elasticity of Doped Semiconductors

    Science.gov (United States)

    2017-02-01

    AFRL-RY-WP-TR-2016-0206 NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS Mark Dykman and Kirill Moskovtsev Michigan State University...2016 4. TITLE AND SUBTITLE NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS 5a. CONTRACT NUMBER FA8650-16-1-7600 5b. GRANT NUMBER 5c. PROGRAM...vibration amplitude. 15. SUBJECT TERMS semiconductors , microresonators, microelectromechanical 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  7. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    Science.gov (United States)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  8. Quantum and classical nonlinear dynamics in a microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Meaney, Charles H.; Milburn, Gerard J. [The University of Queensland, Department of Physics, St Lucia, QLD (Australia); Nha, Hyunchul [Texas A and M University at Qatar, Department of Physics, PO Box 23874, Doha (Qatar); Duty, Timothy [The University of New South Wales, Department of Physics, Kensington, NSW (Australia)

    2014-12-01

    We consider a quarter wave coplanar microwave cavity terminated to ground via a superconducting quantum interference device. By modulating the flux through the loop, the cavity frequency is modulated. The flux is varied at twice the cavity frequency implementing a parametric driving of the cavity field. The cavity field also exhibits a large effective nonlinear susceptibility modelled as an effective Kerr nonlinearity, and is also driven by a detuned linear drive. We show that the semi-classical model corresponding to this system exhibits a fixed point bifurcation at a particular threshold of parametric pumping power. We show the quantum signature of this bifurcation in the dissipative quantum system. We further linearise about the below threshold classical steady state and consider it to act as a bifurcation amplifier, calculating gain and noise spectra for the corresponding small signal regime. Furthermore, we use a phase space technique to analytically solve for the exact quantum steady state. We use this solution to calculate the exact small signal gain of the amplifier. (orig.)

  9. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    Science.gov (United States)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  10. Ego, drives, and the dynamics of internal objects

    Directory of Open Access Journals (Sweden)

    Simon eBoag

    2014-07-01

    Full Text Available This paper addresses the relationship between the ego, id, and internal objects. While ego psychology views the ego as autonomous of the drives, a less well-known alternative position views the ego as constituted by the drives. Based on Freud’s ego-instinct account, this position has developed into a school of thought which postulates that the drives act as knowers. Given that there are multiple drives, this position proposes that personality is constituted by multiple knowers. Following on from Freud, the ego is viewed as a composite sub-set of the instinctual drives (ego-drives, whereas those drives cut off from expression form the id. The nature of the ‘self’ is developed in terms of identification and the possibility of multiple personalities is also established. This account is then extended to object-relations and the explanatory value of the ego-drive account is discussed in terms of the addressing the nature of ego-structures and the dynamic nature of internal objects. Finally, the impact of psychological conflict and the significance of repression for understanding the nature of splits within the psyche are also discussed.

  11. Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors

    Science.gov (United States)

    Chen, Liangyuan

    2018-03-01

    The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.

  12. Seismic appraisal test of control rod drive mechanism of China experiment fast reactor

    International Nuclear Information System (INIS)

    Song Qing; Yang Hongyi; Jing Yueqing; Wen Jing; Liu Guijuan; Sun Lei

    2008-01-01

    The structure of the control rod drive mechanism in pool type sodium-cooled fast reactor is the characterized by long, thin, and geometric nonlinearity, and the seismic load is multiple activation. The anti-seismic evaluation is always paid great attention by the countries developing the technology worldwide. This article introduces the seismic appraisal test of the control rod drive mechanism of China Experimental Fast Reactor (CEFR) performed on a seismic platform which is vertical shaft style and multiple activation. The result of the test shows the structural integrity and the function of the control rod drive mechanism could meet the design requirements of the earthquake intensity. (authors)

  13. Wormholes, warp drives and energy conditions

    CERN Document Server

    2017-01-01

    Top researchers in the field of gravitation present the state-of-the-art topics outlined in this book, ranging from the stability of rotating wormholes solutions supported by ghost scalar fields, modified gravity applied to wormholes, the study of novel semi-classical and nonlinear energy conditions, to the applications of quantum effects and the superluminal version of the warp drive in modified spacetime. Based on Einstein's field equations, this cutting-edge research area explores the more far-fetched theoretical outcomes of General Relativity and relates them to quantum field theory. This includes quantum energy inequalities, flux energy conditions, and wormhole curvature, and sheds light on not just the theoretical physics but also on the possible applications to warp drives and time travel. This book extensively explores the physical properties and characteristics of these 'exotic spacetimes,' describing in detail the general relativistic geometries that generate closed timelike curves.

  14. Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shi-bing, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xing-yuan, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xiu-you [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Zhou, Yu-fei [College of Electrical Engineering and Automation, Anhui University, Hefei 230601 (China)

    2016-04-15

    With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complex Lü system, and hyperchaotic complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.

  15. Linear and nonlinear resonance features of an erbium-doped fibre ...

    Indian Academy of Sciences (India)

    2014-07-01

    Jul 1, 2014 ... Abstract. The continuous-wave output of a single-mode erbium-doped fibre ring laser when sub- jected to cavity-loss modulation is found to exhibit linear as well as nonlinear resonances. At sufficiently low driving amplitude, the system resembles a linear damped oscillator. At higher amplitudes, the ...

  16. On a new series of integrable nonlinear evolution equations

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.

    1980-10-01

    Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)

  17. Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.

    1998-01-01

    We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....

  18. Medications and impaired driving.

    Science.gov (United States)

    Hetland, Amanda; Carr, David B

    2014-04-01

    To describe the association of specific medication classes with driving outcomes and provide clinical recommendations. The MEDLINE and EMBASE databases were searched for articles published from January 1973 to June 2013 on classes of medications associated with driving impairment. The search included outcome terms such as automobile driving, motor vehicle crash, driving simulator, and road tests. Only English-language articles that contained findings from observational or interventional designs with ≥ 10 participants were included in this review. Cross-sectional studies, case series, and case reports were excluded. Driving is an important task and activity for the majority of adults. Some commonly prescribed medications have been associated with driving impairment measured by road performance, driving simulation, and/or motor vehicle crashes. This review of 30 studies identified findings with barbiturates, benzodiazepines, hypnotics, antidepressants, opioid and nonsteroidal analgesics, anticonvulsants, antipsychotics, antiparkinsonian agents, skeletal muscle relaxants, antihistamines, anticholinergic medications, and hypoglycemic agents. Additional studies of medication impact on sedation, sleep latency, and psychomotor function, as well as the role of alcohol, are also discussed. Psychotropic agents and those with central nervous system side effects were associated with measures of impaired driving performance. It is difficult to determine if such associations are actually a result of medication use or the medical diagnosis itself. Regardless, clinicians should be aware of the increased risk of impaired driving with specific classes of medications, educate their patients, and/or consider safer alternatives.

  19. Sensorless Speed Control including zero speed of Non Salient PM Synchronous Drives

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    This paper presents a position sensorless drive of non salient pole PM synchronous motors for all speeds including zero speed. Using adaptive Lyapunov design a new approach for the design of an observer is developed. The resulting scheme leads to a nonlinear full order observer for the motor states...

  20. Sensorless Speed Control including zero speed of Non Salient PM Synchronous Drives

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2005-01-01

    This paper presents a position sensorless drive of non salient pole PM synchronous motors for all speeds including zero speed. Using adaptive Lyapunov design a new approach for the design of an observer is developed. The resulting scheme leads to a nonlinear full order observer for the motor states...

  1. Sensorless speed Control including Zero Speed on Non Salient PM Synchronous Drives

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2006-01-01

    This paper presents a position sensorless drive of non salient pole PM synchronous motors for all speeds including zero speed. Using adaptive Lyapunov design a new approach for the design of an observer is developed. The resulting scheme leads to a nonlinear full order observer for the motor states...

  2. Nonlinear instability and chaos in plasma wave-wave interactions

    International Nuclear Information System (INIS)

    Kueny, C.S.

    1993-01-01

    Conventional linear stability analysis may fail for fluid systems with an indefinite free energy functional. When such a system is linearly stable, it is said to possess negative energy modes. Instability may then occur either via dissipation of the negative energy modes. Instability may then occur either via dissipation of the negative energy modes. Instability may then occur either via dissipitation of the negative energy modes, or nonlinearly via resonant wave-wave coupling, which leads to explosive growth. In the dissipationaless case, it is conjectured that intrinsic chaotic behavior may allow initially non-resonant systems to reach resonance by diffusion in phase space. This is illustrated for a simple equilibrium involving cold counter-streaming ions. The system is described in the fluid approximation by a Hamilitonian functional and associated noncanonical Poisson bracket. By Fourier decomposition and appropriate coordinate transformations, the Hamilitonian for the perturbed energy is expressed in action-angle form. The normal modes correspond to Doppler-shifted ion-acoustic waves of positive and negative energy. Nonlinear coupling leads to decay instability via two-wave interactions, which occur generically for long enough wavelengths. Three-wave interactions which occur in isolated, but numerous, regions of parameter space can drive either decay instability or explosive instability. When the resonance for explosive growth is detuned, a stable region exists around the equilibrium point in phase space, while explosive growth occurs outside of a separatrix. These interactions may be described exactly if only one resonance is considered, while multiple nonlinear terms make the Hamiltonian nonintegradable. Simple Hamiltonians of two and three degrees of freedom are studied numerically using symplectic integration algorithms, including an explicit algorithm derived using Lie algebraic methods

  3. The Importance of Non-Linearity on Turbulent Fluxes

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2007-01-01

    Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...

  4. Elastic Nonlinear Response in Granular Media Under Resonance Conditions

    Science.gov (United States)

    Jia, X.; Johnson, P. A.

    2004-12-01

    beads. The wave signals are detected using a lock-in amplifier, and frequency and amplitude are recorded on computer. Drive frequency is swept from below to above the resonance mode. A typical frequency sweep is 3 kHz in width with a frequency sampling of 6 Hz. Frequency sweeps are applied at progressively increasing drive voltages to test for nonlinear-dynamical induced modulus softening. The resonance frequency at peak amplitude corresponds directly to modulus. We find significant elastic nonlinearity at all effective pressures, manifest by the fundamental-mode resonance curves decreasing progressively, at progressively increasing drive level. This is equivalent to progressive material softening with wave amplitude, meaning the wavespeed and modulus diminish. The wave dissipation simultaneously increases (Johnson and Sutin 2004). For example, at 0.11 Mpa effective pressure the observed change in resonance frequency of about 2.6% corresponds to a material bulk modulus decrease of about 5.2%. Strain amplitudes are 10-7-10-6. Thus, we would predict that surface sediments should have significant elastic nonlinear response beginning at about 10-6 strain amplitude. reference: Johnson, P. and A. Sutin, Slow dynamics in diverse solids, J. Acoust. Soc Am., in press (2004).

  5. Study on mechanics of driving drum with superelastic convexity surface covering-layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.J.; Sui, X.H.; Miao, D.J. [Shandong University of Science & Technology, Qingdao (China)

    2008-09-15

    Belt conveyor is one of the main transport equipment in coal mine and the driving drum is its key part. With the method of bionic design, the mushroom morphological structure is applied to the design of covering-layer structure of driving drum surface of belt conveyor. Superelastic rubber with large deformation is adopted as the covering-layer material. Nonlinear constitutive model of rubber, which is of superelasticity and large deformation, is established. The stress states and deformation principles of driving drums including both bionic covering-layer and common covering-layer are obtained by static intensity analysis with Finite Element Analysis (FEA) software ANSYS. The values of the stress and strain on the driving drum surface are gotten and the dangerous area is determined. FEA results show that the superelastic convexity surface structure can enlarge the contact area between the driving drum and viscoelastic belt. The results also show that in comparison with common driving drum, the bionic surface driving drum can not only increase the friction coefficient between drum and belt but also prolong its service life.

  6. Ultrasonic nonlinearity of AISI316 austenitic steel subjected to long-term isothermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Won Sik; Kim, Chung Seok [Dept. of Materials Science and Engineering, Chosun University, Gwangju (Korea, Republic of)

    2014-06-15

    This study presents the ultrasonic nonlinearity of AISI316 austenitic stainless steels subjected to longterm isothermal aging. These steels are attractive materials for use in industrial mechanical structures because of their strength at high-temperatures and their chemical stability. The test materials were subjected to accelerated heat-treatment in an electrical furnace for a predetermined aging duration. The variations in the ultrasonic nonlinearity and microstructural damage were carefully evaluated through observation of the microstructure. The ultrasonic nonlinearity stiffly dropped after aging for up to 1000 h and, then, monotonously decreased. The polygonal shape of the initial grain structures changed to circular, especially as the annealing twins in the grains dissolved and disappeared. The delta ferrite on the grain boundaries could not be observed at 1000 h of aging, and these continuously transformed into their sigma phases. Consequently, in the intial aging period, the rapid decrease in the ultrasonic nonlinearity was caused by voids, dislocations, and twin annihilation. The continuous monotonic decrease in the ultrasonic nonlinearity after the first drop resulted from the generation of Cr{sub 23}C{sub 6} precipitates and σ phases.

  7. Nonlinear Magnus-induced dynamics and Shapiro spikes for ac and dc driven skyrmions on periodic quasi-one-dimensional substrates

    Science.gov (United States)

    Reichhardt, Charles; Reichhardt, Cynthia J. Olson

    We numerically examine skyrmions interacting with a periodic quasi-one-dimensional substrate. When we drive the skyrmions perpendicular to the substrate periodicity direction, a rich variety of nonlinear Magnus-induced effects arise, in contrast to an overdamped system that shows only a linear velocity-force curve for this geometry. The skyrmion velocity-force curve is strongly nonlinear and we observe a Magnus-induced speed-up effect when the pinning causes the Magnus velocity response to align with the dissipative response. At higher applied drives these components decouple, resulting in strong negative differential conductivity. For skyrmions under combined ac and dc driving, we find a new class of phase locking phenomena in which the velocity-force curves contain a series of what we call Shapiro spikes, distinct from the Shapiro steps observed in overdamped systems. There are also regimes in which the skyrmion moves in the direction opposite to the applied dc drive to give negative mobility.

  8. Critical power for lower hybrid current drive

    International Nuclear Information System (INIS)

    Assis, A.S. de; Sakanaka, P.H.; Azevedo, C.A. de; Busnardo-Neto, J.

    1995-11-01

    We have solved numerically the quasilinear Fokker-Planck equation which models the critical power for lower hybrid wave current drive. An exact value for the critical power necessary for current saturation, for tokamak current drive experiments, has been obtained. The nonlinear treatment presented here leads to a final profile for the parallel distribution function which is a plateau only in a part of the resonance region. This form of the distribution function is intermediate between two well known results: a plateau throughout the resonance region for the linear strong-source regime, D wave >> D coll and no plateau at all in the resonance region the linear weak-source regimen, D wave coll . The strength of the external power source and the value of the dc electric field are treated as given parameters in the integration scheme. (author). 24 refs, 6 figs

  9. Nonlinear dynamics of spring softening and hardening in folded-mems comb drive resonators

    KAUST Repository

    Elshurafa, Amro M.; Khirallah, Kareem; Tawfik, Hani H.; Emira, Ahmed; Abdel Aziz, Ahmed K S; Sedky, Sherif M.

    2011-01-01

    This paper studies analytically and numerically the spring softening and hardening phenomena that occur in electrostatically actuated microelectromechanical systems comb drive resonators utilizing folded suspension beams. An analytical expression

  10. Point source identification in nonlinear advection–diffusion–reaction systems

    International Nuclear Information System (INIS)

    Mamonov, A V; Tsai, Y-H R

    2013-01-01

    We consider a problem of identification of point sources in time-dependent advection–diffusion systems with a nonlinear reaction term. The linear counterpart of the problem in question can be reduced to solving a system of nonlinear algebraic equations via the use of adjoint equations. We extend this approach by constructing an algorithm that solves the problem iteratively to account for the nonlinearity of the reaction term. We study the question of improving the quality of source identification by adding more measurements adaptively using the solution obtained previously with a smaller number of measurements. (paper)

  11. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    Science.gov (United States)

    Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman

    2016-02-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.

  12. Structure Learning in Stochastic Non-linear Dynamical Systems

    Science.gov (United States)

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  13. Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)

    CERN Document Server

    Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J

    2013-01-01

    This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).

  14. Simplified Fuzzy Control for Flux-Weakening Speed Control of IPMSM Drive

    Directory of Open Access Journals (Sweden)

    M. J. Hossain

    2011-01-01

    Full Text Available This paper presents a simplified fuzzy logic-based speed control scheme of an interior permanent magnet synchronous motor (IPMSM above the base speed using a flux-weakening method. In this work, nonlinear expressions of d-axis and q-axis currents of the IPMSM have been derived and subsequently incorporated in the control algorithm for the practical purpose in order to implement fuzzy-based flux-weakening strategy to operate the motor above the base speed. The fundamentals of fuzzy logic algorithms as related to motor control applications are also illustrated. A simplified fuzzy speed controller (FLC for the IPMSM drive has been designed and incorporated in the drive system to maintain high performance standards. The efficacy of the proposed simplified FLC-based IPMSM drive is verified by simulation at various dynamic operating conditions. The simplified FLC is found to be robust and efficient. Laboratory test results of proportional integral (PI controller-based IPMSM drive have been compared with the simulated results of fuzzy controller-based flux-weakening IPMSM drive system.

  15. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    Science.gov (United States)

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  16. Stabilization and regulation of nonlinear systems a robust and adaptive approach

    CERN Document Server

    Chen, Zhiyong

    2015-01-01

    The core of this textbook is a systematic and self-contained treatment of the nonlinear stabilization and output regulation problems. Its coverage embraces both fundamental concepts and advanced research outcomes and includes many numerical and practical examples. Several classes of important uncertain nonlinear systems are discussed. The state-of-the art solution presented uses robust and adaptive control design ideas in an integrated approach which demonstrates connections between global stabilization and global output regulation allowing both to be treated as stabilization problems. Stabilization and Regulation of Nonlinear Systems takes advantage of rich new results to give students up-to-date instruction in the central design problems of nonlinear control, problems which are a driving force behind the furtherance of modern control theory and its application. The diversity of systems in which stabilization and output regulation become significant concerns in the mathematical formulation of practical contr...

  17. Polynomial solutions of nonlinear integral equations

    International Nuclear Information System (INIS)

    Dominici, Diego

    2009-01-01

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials

  18. Polynomial solutions of nonlinear integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu

    2009-05-22

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.

  19. Nonlinear Elliptic Boundary Value Problems at Resonance with Nonlinear Wentzell Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Ciprian G. Gal

    2017-01-01

    Full Text Available Given a bounded domain Ω⊂RN with a Lipschitz boundary ∂Ω and p,q∈(1,+∞, we consider the quasilinear elliptic equation -Δpu+α1u=f in Ω complemented with the generalized Wentzell-Robin type boundary conditions of the form bx∇up-2∂nu-ρbxΔq,Γu+α2u=g on ∂Ω. In the first part of the article, we give necessary and sufficient conditions in terms of the given functions f, g and the nonlinearities α1, α2, for the solvability of the above nonlinear elliptic boundary value problems with the nonlinear boundary conditions. In other words, we establish a sort of “nonlinear Fredholm alternative” for our problem which extends the corresponding Landesman and Lazer result for elliptic problems with linear homogeneous boundary conditions. In the second part, we give some additional results on existence and uniqueness and we study the regularity of the weak solutions for these classes of nonlinear problems. More precisely, we show some global a priori estimates for these weak solutions in an L∞-setting.

  20. Localization of Stable and Chaotic Nonpropagating Structures in Nonlinear Mesoscopic Lattices.

    Science.gov (United States)

    Greenfield, Alan Barry

    Recent developments in the study of non-linear localized states, especially non-propagating ones, are outlined. Theoretical models of linear and nonlinear states in a lattice of coupled pendulums and related systems are reviewed. Particular attention is paid to those states which can be described by the Nonlinear Schrodinger equation as well as states where two modes can coexist and states exhibiting chaos. Measurement of localized stable and chaotic states in a 35 site physical pendulum lattice is reported. Various measurement techniques that were used are explained. States that were measured include the tanh profile or kink soliton, and the corresponding uniform state in the wavelength 2 mode, a similar soliton and uniform state in the wavelength 4 mode, a domain wall between the wavelength 2 and 4 modes and a domain wall between a chaotic state and the wavelength 2 mode. Amplitude profiles were measured for the stable kink and domain wall states and smooth curves were obtained by dividing the kink states by the corresponding uniform states. Return maps were measured for two sites in the chaotic domain wall. Simulation of a chaotic domain wall in a 50 site numerical lattice is reported. This system has the advantage that its parameters can be modified much more easily than those of the physical lattice. An attempt is made at quantifying the level of chaos as a function of lattice site with fractal dimension calculations on return maps embedded in a three dimensional space. The drive plane of the chaotic domain wall is mapped out in the drive amplitude - drive frequency plane. Transitions to various stable and quasiperiodic domain walls are noted.

  1. Model analysis of adaptive car driving behavior

    NARCIS (Netherlands)

    Wewerinke, P.H.

    1996-01-01

    This paper deals with two modeling approaches to car driving. The first one is a system theoretic approach to describe adaptive human driving behavior. The second approach utilizes neural networks. As an illustrative example the overtaking task is considered and modeled in system theoretic terms.

  2. A study on the effects of fatigue driving and drunk driving on drivers' physical characteristics.

    Science.gov (United States)

    Zhang, Xingjian; Zhao, Xiaohua; Du, Hongji; Rong, Jian

    2014-01-01

    The purpose of this study was to analyze the effects of fatigue driving and drunk driving on drivers' physical characteristics; to analyze the differences in drivers' physical characteristics affected by different kinds of fatigue; and to compare the differences in the effects of the 2 driving states, fatigue driving and drunk driving. Twenty-five participants' physical characteristics were collected under 5 controlled situations: normal, tired driving, drowsy driving, drowsiness + tired driving, and drunk driving. In this article, fatigue driving refers to tiredness and drowsiness and includes 3 situations: tired driving, drowsy driving, and drowsiness + tired driving. The drivers' physical characteristics were measured in terms of 9 parameters: systolic blood pressure (SBP), heart rate (HR), eyesight, dynamic visual acuity (DVA), time for dark adaption (TDA), reaction time to sound (RTS), reaction time to light (RTL), deviation of depth perception (DDP), and time deviation of speed anticipation (TDSA). They were analyzed using analysis of variance (ANOVA) with repeated measures. Binary logistical regression analysis was used to explain the relationship between drivers' physical characteristics and the two driving states. Most of the drivers' physical characteristic parameters were found to be significantly different under the influence of different situations. Four indicators are significantly affected by fatigue driving during deep fatigue (in decreasing order of influence): HR, RTL, SBP and RTS. HR and RTL are significant in the logistical regression model of the drowsiness + tired driving situation and normal situations. Six indicators of the drivers' physical characteristics are significantly affected by drunk driving (in decreasing order of influence): SBP, RTL, DDP, eyesight, RTS, and TDSA. SBP and DDP have a significant effect in the logistical regression model of the drunk driving situation and the normal situation. Both fatigue driving and drunk driving

  3. Nonlinear saturation of the Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.

    1997-01-01

    A detailed numerical simulation of the nonlinear state of the Rayleigh endash Taylor instability has been carried out. There are three distinct phases of evolution where it is governed by the (i) linear effects, (ii) effects arising from the conventional nonlinear terms and (iii) subtle nonlinear effects arising through the coupling terms. During the third phase of evolution, there is a self-consistent generation of shear flow which saturates the Rayleigh endash Taylor instability even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. The Galerkin approximation is presented to provide an understanding of our numerical findings. Last, there is an attempt to provide a comprehensive understanding of the nonlinear state of the Rayleigh endash Taylor instability by comparing and contrasting this work with earlier studies. copyright 1997 American Institute of Physics

  4. Adjustable Speed Drives and Power Quality

    DEFF Research Database (Denmark)

    Davari, Pooya; Yang, Yongheng; Zare, Firuz

    2016-01-01

    This paper provides an overview and proposes cost-effective and efficient opportunities in improving power quality in Adjustable Speed Drive (ASD) systems. In particular, an Electronic Inductor (EI) technique has been used in single drives to overcome the existing challenges in conventional...... frontend rectifiers even at partial loading conditions. Moreover, the effectiveness of the EI technique along with a phase-shifted current control in terms of improved grid current quality in multi-drive configurations is addressed. Furthermore, a novel DC-link current modulation scheme for multi...

  5. Nonlinear turbulence theory and simulation of Buneman instability

    International Nuclear Information System (INIS)

    Yoon, P. H.; Umeda, T.

    2010-01-01

    In the present paper, the weak turbulence theory for reactive instabilities, formulated in a companion paper [P. H. Yoon, Phys. Plasmas 17, 112316 (2010)], is applied to the strong electron-ion two-stream (or Buneman) instability. The self-consistent theory involves quasilinear velocity space diffusion equation for the particles and nonlinear wave kinetic equation that includes quasilinear (or induced emission) term as well as nonlinear wave-particle interaction term (or a term that represents an induced scattering off ions). We have also performed one-dimensional electrostatic Vlasov simulation in order to benchmark the theoretical analysis. Under the assumption of self-similar drifting Gaussian distribution function for the electrons it is shown that the current reduction and the accompanying electron heating as well as electric field turbulence generation can be discussed in a self-consistent manner. Upon comparison with the Vlasov simulation result it is found that quasilinear wave kinetic equation alone is insufficient to account for the final saturation amplitude. Upon including the nonlinear scattering term in the wave kinetic equation, however, we find that a qualitative agreement with the simulation is recovered. From this, we conclude that the combined quasilinear particle diffusion plus induced emission and scattering (off ions) processes adequately account for the nonlinear development of the Buneman instability.

  6. Nonlinear lattice waves in heterogeneous media

    International Nuclear Information System (INIS)

    Laptyeva, T V; Ivanchenko, M V; Flach, S

    2014-01-01

    We discuss recent advances in the understanding of the dynamics of nonlinear lattice waves in heterogeneous media, which enforce complete wave localization in the linear wave equation limit, especially Anderson localization for random potentials, and Aubry–André localization for quasiperiodic potentials. Additional nonlinear terms in the wave equations can either preserve the phase-coherent localization of waves, or destroy it through nonintegrability and deterministic chaos. Spreading wave packets are observed to show universal features in their dynamics which are related to properties of nonlinear diffusion equations. (topical review)

  7. Probing the interatomic potential of solids with strong-field nonlinear phononics

    Science.gov (United States)

    von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.

    2018-03-01

    Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.

  8. Two-fluid and nonlinear effects of tearing and pressure-driven resistive modes in reversed field pinches

    International Nuclear Information System (INIS)

    Mirnov, V.V.

    2002-01-01

    Large-scale tearing instabilities have long been considered to underlie transport and dynamo processes in the reversed field pinch (RFP). The vast majority of theoretical and computational RFP work has focused on pressureless, single-fluid MHD in cylindrical plasmas driven solely by a toroidal electric field. We report results of five investigations covering two-fluid dynamos, toroidal nonlinear MHD computation, nonlinear computation of Oscillating Field Current Drive (OFCD), the effect of shear flow on tearing instability, and the effect of pressure on resistive instability. The key findings are: (1) two-fluid dynamo arising from the Hall term is much larger than the standard MHD dynamo present in a single-fluid treatment, (2) geometric coupling from toroidicity precludes the occurrence of laminar single helicity states, except for nonreversed plasmas, (3) OFCD, a form of AC helicity injection, can sustain the RFP plasma current, although magnetic fluctuations are enhanced, (4) edge shear flow can destabilize the edge resonant m=0 modes, which occur as spikes in experiment, and (5) pressure driven modes are resistive at low beta, only becoming ideal at extremely high beta. (author)

  9. Nonlinear response and avalanche behavior in metallic glasses

    Science.gov (United States)

    Riechers, B.; Samwer, K.

    2017-08-01

    The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke's Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.

  10. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, A; Fraboulet, D; Giruzzi, G; Moreau, D; Saoutic, B [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Chinardet, J [CISI Ingenierie, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs.

  11. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Becoulet, A.; Fraboulet, D.; Giruzzi, G.; Moreau, D.; Saoutic, B.

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs

  12. Nonlinear threshold Boolean automata networks and phase transitions

    OpenAIRE

    Demongeot, Jacques; Sené, Sylvain

    2010-01-01

    In this report, we present a formal approach that addresses the problem of emergence of phase transitions in stochastic and attractive nonlinear threshold Boolean automata networks. Nonlinear networks considered are informally defined on the basis of classical stochastic threshold Boolean automata networks in which specific interaction potentials of neighbourhood coalition are taken into account. More precisely, specific nonlinear terms compose local transition functions that define locally t...

  13. On Optimizing Steering Performance of Multi-axle Vehicle Based on Driving Force Control

    Directory of Open Access Journals (Sweden)

    Wu Zhicheng

    2017-01-01

    Full Text Available The steering performance of multi-axle vehicle with independent driving system is affected by the distribution of the wheel driving force. A nonlinear vehicle dynamics model including magic formula tire model for describing 11 DoF four-axle vehicle with dual-front-axle-steering (DFAS system was presented. The influence of different driving force distribution scheme on the steering performance of the vehicle was analyzed. A control strategy for improving the steady response and transient response of the vehicle steering is proposed. The results show: For the steady response, setting different drive force for internal and external wheels according to the actual steering characteristics of the vehicle can effectively improve its steering characteristics; For the transient response, adopting the zero sideslip angle control strategy and using the PID control algorithm to control the driving force of the outside wheel of tear-two-axle, under angle step input, the vehicle sideslip angle can quickly stabilize to 0 and yaw rate also significantly decreases.

  14. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-01-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼ 3 [P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing

  15. A new energy-efficient control approach for space telescope drive system

    Science.gov (United States)

    Zhou, Wangping; Wang, Yong

    Drive control makes the telescope accurately track celestial bodies in spite of external and in-ternal disturbances, and is a key technique to the performance of telescopes. In this paper, we propose a nonlinear adaptive observer based on power reversible approach for high preci-sion position tracking, i.e., space telescopes. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be ev-idently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. A pair of diagonal sections is switched on for speeding up the reaction wheel and the other pair act in reverse. During the period of the wheel slowing down, the armature current of drive motor goes through the two path-wise diodes to discharge the battery. Thusly, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an eval-uation function which is made up of a weighted sum of position errors and energy consumption. The outputs of the controller are amplified to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.

  16. Distracted driving due to visual working memory load.

    Science.gov (United States)

    2014-07-01

    In an attempt to understand the : specific mechanism by which distractions (such as cell : - : phone use) can interfere with : driving, this work tested the idea that driving performance depends on available space within visual short : - : term memor...

  17. Performance Improvement of Sensorless Vector Control for Matrix Converter Drives Using PQR Transformation

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2005-01-01

    This paper presents a new method to improve sensorless performance of matrix converter drives using PQR power transformation. The non-linearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modelled...... using PQR transformation and compensated using a reference current control scheme. To eliminate the input current distortion due to the input voltage unbalance, a simple method using PQR transformation is also proposed. The proposed compensation method is applied for high performance induction motor...

  18. Improved algorithm for solving nonlinear parabolized stability equations

    International Nuclear Information System (INIS)

    Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng

    2016-01-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)

  19. Stability and performance of variable gain controllers with application to a dvd storage drive

    NARCIS (Netherlands)

    Heertjes, M.F.; Steinbuch, M.

    2004-01-01

    This paper deals with the control design for optical storage drives. A nonlinear design is suggested to overcome the tradeoff between disturbance rejection, in the sense of tracking error reduction during low-frequency shock and vibration, and playability, in the sense of sensor noise tracking

  20. Numerical treatments for solving nonlinear mixed integral equation

    Directory of Open Access Journals (Sweden)

    M.A. Abdou

    2016-12-01

    Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

  1. Nonlinear Schrödinger equations with single power nonlinearity and harmonic potential

    Science.gov (United States)

    Cipolatti, R.; de Macedo Lira, Y.; Trallero-Giner, C.

    2018-03-01

    We consider a generalized nonlinear Schrödinger equation (GNLS) with a single power nonlinearity of the form λ ≤ft\\vert \\varphi \\right\\vert p , with p  >  0 and λ\\in{R} , in the presence of a harmonic confinement. We report the conditions that p and λ must fulfill for the existence and uniqueness of ground states of the GNLS. We discuss the Cauchy problem and summarize which conditions are required for the nonlinear term λ ≤ft\\vert \\varphi \\right\\vert p to render the ground state solutions orbitally stable. Based on a new variational method we provide exact formulæ for the minimum energy for each index p and the changing range of values of the nonlinear parameter λ. Also, we report an approximate close analytical expression for the ground state energy, performing a comparative analysis of the present variational calculations with those obtained by a generalized Thomas-Fermi approach, and soliton solutions for the respective ranges of p and λ where these solutions can be implemented to describe the minimum energy.

  2. Topological approximation of the nonlinear Anderson model

    Science.gov (United States)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  3. A nonlinear dynamics of trunk kinematics during manual lifting tasks.

    Science.gov (United States)

    Khalaf, Tamer; Karwowski, Waldemar; Sapkota, Nabin

    2015-01-01

    Human responses at work may exhibit nonlinear properties where small changes in the initial task conditions can lead to large changes in system behavior. Therefore, it is important to study such nonlinearity to gain a better understanding of human performance under a variety of physical, perceptual, and cognitive tasks conditions. The main objective of this study was to investigate whether the human trunk kinematics data during a manual lifting task exhibits nonlinear behavior in terms of determinist chaos. Data related to kinematics of the trunk with respect to the pelvis were collected using Industrial Lumbar Motion Monitor (ILMM), and analyzed applying the nonlinear dynamical systems methodology. Nonlinear dynamics quantifiers of Lyapunov exponents and Kaplan-Yorke dimensions were calculated and analyzed under different task conditions. The study showed that human trunk kinematics during manual lifting exhibits chaotic behavior in terms of trunk sagittal angular displacement, velocity and acceleration. The findings support the importance of accounting for nonlinear dynamical properties of biomechanical responses to lifting tasks.

  4. Effect of gain nonlinearity in semiconductor lasers

    DEFF Research Database (Denmark)

    Jensen, Niels H.; Christiansen, Peter Leth; Skovgaard, Ove

    1988-01-01

    Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2+1)-dimensi......Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2...

  5. Energy-Based Adaptive Sliding Mode Speed Control for Switched Reluctance Motor Drive

    Directory of Open Access Journals (Sweden)

    M. M. Namazi Isfahani

    2012-03-01

    Full Text Available Torque ripple minimization of switched reluctance motor drives is a major subject based on these drives’ extensive use in the industry. In this paper, by using a well-known cascaded torque control structure and taking the machine physical structure characteristics into account, the proposed energy-based (passivity-based adaptive sliding algorithm derived from the view point of energy dissipation, control stability and algorithm robustness. First, a nonlinear dynamic model is developed and decomposed into separate slow and fast passive subsystems which are interconnected by negative feedbacks. Then, an outer loop speed control is employed by adaptive sliding controller to determine the appropriate torque command. Finally, to reduce torque ripple in switched reluctance motor a high-performance passivity-based current controller is proposed. It can overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. The performance of the proposed controller algorithm has been demonstrated in simulation, and experimental using a 4KW, four-phase, 8/6 pole SRM DSP-based drive system.

  6. The impact of therapeutic opioid agonists on driving-related psychomotor skills assessed by a driving simulator or an on-road driving task: A systematic review.

    Science.gov (United States)

    Ferreira, Diana H; Boland, Jason W; Phillips, Jane L; Lam, Lawrence; Currow, David C

    2018-04-01

    Driving cessation is associated with poor health-related outcomes. People with chronic diseases are often prescribed long-term opioid agonists that have the potential to impair driving. Studies evaluating the impact of opioids on driving-related psychomotor skills report contradictory results likely due to heterogeneous designs, assessment tools and study populations. A better understanding of the effects of regular therapeutic opioid agonists on driving can help to inform the balance between individual's independence and community safety. To identify the literature assessing the impact of regular therapeutic opioid agonists on driving-related psychomotor skills for people with chronic pain or chronic breathlessness. Systematic review reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-analysis statement; PROSPERO Registration CRD42017055909. Six electronic databases and grey literature were systematically searched up to January, 2017. Inclusion criteria were as follows: (1) empirical studies reporting data on driving simulation, on-the-road driving tasks or driving outcomes; (2) people with chronic pain or chronic breathlessness; and (3) taking regular therapeutic opioid agonists. Critical appraisal used the National Institutes of Health's quality assessment tools. From 3809 records screened, three studies matched the inclusion criteria. All reported data on people with chronic non-malignant pain. No significant impact of regular therapeutic opioid agonists on people's driving-related psychomotor skills was reported. One study reported more intense pain significantly worsened driving performance. This systematic review does not identify impaired simulated driving performance when people take regular therapeutic opioid agonists for symptom control, although more prospective studies are needed.

  7. Modelling long term rockslide displacements with non-linear time-dependent relationships

    Science.gov (United States)

    De Caro, Mattia; Volpi, Giorgio; Castellanza, Riccardo; Crosta, Giovanni; Agliardi, Federico

    2015-04-01

    Rockslides undergoing rapid changes in behaviour pose major risks in alpine areas, and require careful characterization and monitoring both for civil protection and mitigation activities. In particular, these instabilities can undergo very slow movement with occasional and intermittent acceleration/deceleration stages of motion potentially leading to collapse. Therefore, the analysis of such instabilities remains a challenging issue. Rockslide displacements are strongly conditioned by hydrologic factors as suggested by correlations with groundwater fluctuations, snowmelt, with a frequently observed delay between perturbation and system reaction. The aim of this work is the simulation of the complex time-dependent behaviour of two case studies for which also a 2D transient hydrogeological simulation has been performed: Vajont rockslide (1960 to 1963) and the recent Mt. de La Saxe rockslide (2009 to 2012). Non-linear time-dependent constitutive relationships have been used to describe long-term creep deformation. Analyses have been performed using a "rheological-mechanical" approach that fits idealized models (e.g. viscoelastic, viscoplastic, elasto-viscoplastic, Burgers, nonlinear visco-plastic) to the experimental behaviour of specific materials by means of numerical constants. Bidimensional simulations were carried out using the finite difference code FLAC. Displacements time-series, available for the two landslides, show two superimposed deformation mechanisms: a creep process, leading to movements under "steady state" conditions (e.g. constant groundwater level), and a "dynamic" process, leading to an increase in displacement rate due to changes of external loads (e.g. groundwater level). For both cases sliding mass is considered as an elasto-plastic body subject to its self-weight, inertial and seepage forces varying with time according to water table fluctuation (due to snowmelt or changing in reservoir level) and derived from the previous hydrogeological

  8. Model of anisotropic nonlinearity in self-defocusing photorefractive media.

    Science.gov (United States)

    Barsi, C; Fleischer, J W

    2015-09-21

    We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.

  9. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    Science.gov (United States)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  10. Parametric Identification of Nonlinear Dynamical Systems

    Science.gov (United States)

    Feeny, Brian

    2002-01-01

    In this project, we looked at the application of harmonic balancing as a tool for identifying parameters (HBID) in a nonlinear dynamical systems with chaotic responses. The main idea is to balance the harmonics of periodic orbits extracted from measurements of each coordinate during a chaotic response. The periodic orbits are taken to be approximate solutions to the differential equations that model the system, the form of the differential equations being known, but with unknown parameters to be identified. Below we summarize the main points addressed in this work. The details of the work are attached as drafts of papers, and a thesis, in the appendix. Our study involved the following three parts: (1) Application of the harmonic balance to a simulation case in which the differential equation model has known form for its nonlinear terms, in contrast to a differential equation model which has either power series or interpolating functions to represent the nonlinear terms. We chose a pendulum, which has sinusoidal nonlinearities; (2) Application of the harmonic balance to an experimental system with known nonlinear forms. We chose a double pendulum, for which chaotic response were easily generated. Thus we confronted a two-degree-of-freedom system, which brought forth challenging issues; (3) A study of alternative reconstruction methods. The reconstruction of the phase space is necessary for the extraction of periodic orbits from the chaotic responses, which is needed in this work. Also, characterization of a nonlinear system is done in the reconstructed phase space. Such characterizations are needed to compare models with experiments. Finally, some nonlinear prediction methods can be applied in the reconstructed phase space. We developed two reconstruction methods that may be considered if the common method (method of delays) is not applicable.

  11. Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane

    Science.gov (United States)

    Zhang, Zhen; Manevitch, Leonid I.; Smirnov, Valeri; Bergman, Lawrence A.; Vakakis, Alexander F.

    2018-01-01

    We study the in-plane damped oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Strong nonlinearity in this system is generated by geometric effects due to the in-plane stretching of the coupling spring elements. The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear normal modes - NNMs), and an equal number of axial linear modes which are nonlinearly coupled to the transverse ones. Nonlinear interactions between the transverse and axial modes under harmonic excitation give rise to unexpected and extreme nonlinear energy exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, we detect the stable response of the directly excited transverse NNM (despite its instability in the absence of forcing), with simultaneous stability of the indirectly excited axial linear mode. Second, by changing the system and forcing parameters we report extreme nonlinear "energy explosions," whereby, after an initial regime of stability, the directly excited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial modes of the lattice, at all possible wave numbers. This strong instability is triggered by the parametric instability of an indirectly excited axial mode which builds energy until the explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we report intermittent, intense energy transfers from the directly excited transverse NNM to a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited axial mode to a small set of axial modes, but with larger wavelengths. These intermittent energy transfers resemble energy cascades occurring in turbulent flows. Our results show that

  12. Electromagnetic pulses at the boundary of a nonlinear plasma

    International Nuclear Information System (INIS)

    Satorius, E.H.

    1975-01-01

    An investigation was made of the behavior of strong electromagnetic pulses at the boundary of a nonlinear, cold, collisionless, and uniform plasma. The nonlinearity considered here is due to the nonlinear terms in the fluid equation which is used to describe the plasma. Two cases are studied. First, the case where there is a voltage pulse applied across the plane boundary of a semi-infinite, nonlinear plasma. Two different voltage pulses are considered, i.e., a delta function pulse and a suddenly turned-on sinusoidal pulse. The resulting electromagnetic fields propagating in the nonlinear plasma are found in this case. In the second case, the reflection of incident E-polarized and H-polarized, electromagnetic pulses at various angles of incidence from a nonlinear, semi-infinite plasma are considered. Again, two forms of incident pulses are considered: a delta function pulse and a suddenly turned-on sinusoidal pulse. In case two, the reflected electromagnetic fields are found. In both cases, the method used for finding the fields is to first solve the fluid equation (which describes the plasma) for the nonlinear conduction current in terms of the electric field using a perturbation method (since the nonlinear effects are assumed to be small). Next, this current is substituted into Maxwell's equations, and finally the electromagnetic fields which satisfy the boundary conditions are found. (U.S.)

  13. Modulated Langmuir waves and nonlinear Landau damping

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Oikawa, Masayuki; Satsuma, Junkichi; Namba, Chusei.

    1975-01-01

    The nonlinear Schroedinger euqation with an integral term, iusub(t)+P/2.usub(xx)+Q/u/ 2 u+RP∫sub(-infinity)sup(infinity)[/u(x',t)/ 2 /(x-x')]dx'u=0, which describes modulated Langmuir waves with the nonlinear Landau damping effect, is solved by numerical calculations. Especially, the effects of nonlinear Landau damping on solitary wave solutions are studied. For both cases, PQ>0 and PQ<0, the results show that the solitary waves deform in an asymmetric way changing its velocity. (auth.)

  14. Analytical Solutions to Non-linear Mechanical Oscillation Problems

    DEFF Research Database (Denmark)

    Kaliji, H. D.; Ghadimi, M.; Barari, Amin

    2011-01-01

    In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...

  15. Prolongation Structure of Semi-discrete Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Bai Yongqiang; Wu Ke; Zhao Weizhong; Guo Hanying

    2007-01-01

    Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schroedinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.

  16. A nonlinear bounce kinetic equation for trapped electrons

    International Nuclear Information System (INIS)

    Gang, F.Y.

    1990-03-01

    A nonlinear bounce averaged drift kinetic equation for trapped electrons is derived. This equation enables one to compute the nonlinear response of the trapped electron distribution function in terms of the field-line projection of a potential fluctuation left-angle e -inqθ φ n right-angle b . It is useful for both analytical and computational studies of the nonlinear evolution of short wavelength (n much-gt 1) trapped electron mode-driven turbulence. 7 refs

  17. Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor

    International Nuclear Information System (INIS)

    Zainal, Nurul Afiqah; Tat, Chan Sooi; Ajisman

    2016-01-01

    Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's output is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor. (paper)

  18. Neural networks for feedback feedforward nonlinear control systems.

    Science.gov (United States)

    Parisini, T; Zoppoli, R

    1994-01-01

    This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.

  19. Superconducting nanowires as nonlinear inductive elements for qubits

    Science.gov (United States)

    Ku, Jaseung; Manucharyan, Vladimir; Bezryadin, Alexey

    2011-03-01

    We report microwave transmission measurements of superconducting Fabry-Perot resonators, having a superconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercurrent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation. We show that such amplitude-dependent response is due to the nonlinearity of the current-phase relationship of the nanowire. The results are explained within a nonlinear oscillator model of the Duffing oscillator, in which the nanowire acts as a purely inductive element, in the limit of low temperatures and low amplitudes. The low-quality factor sample exhibits a ``crater'' at the resonance peak at higher driving power, which is due to dissipation. We observe a hysteretic bifurcation behavior of the transmission response to frequency sweep in a sample with a higher quality factor. The Duffing model is used to explain the Duffing bistability diagram. NSF DMR-1005645, DOE DO-FG02-07ER46453.

  20. Data Assimilation by Conditioning of Driving Noise on Future Observations

    KAUST Repository

    Lee, Wonjung

    2014-08-01

    Conventional recursive filtering approaches, designed for quantifying the state of an evolving stochastic dynamical system with intermittent observations, use a sequence of i) an uncertainty propagation step followed by ii) a step where the associated data is assimilated using Bayes\\' rule. Alternatively, the order of the steps can be switched to i) one step ahead data assimilation followed by ii) uncertainty propagation. In this paper, we apply this smoothing-based sequential filter to systems driven by random noise, however with the conditioning on future observation not only to the system variable but to the driving noise. Our research reveals that, for the nonlinear filtering problem, the conditioned driving noise is biased by a nonzero mean and in turn pushes forward the filtering solution in time closer to the true state when it drives the system. As a result our proposed method can yield a more accurate approximate solution for the state estimation problem. © 1991-2012 IEEE.

  1. A new algebraic growth of nonlinear tearing mode

    International Nuclear Information System (INIS)

    Li, D.

    1995-01-01

    It is found that the quasilinear modification of magnetic field produces a nonlinear Lorentz force opposing the linear driving force and slowing down the vortex flow. A new algebraic growth appears due to this damping mechanism to oppose the linear growth of the tearing mode. This effect was eliminated in Rutherford's model [Phys. Fluids 16, 1903 (1973)] under the flux average operation and the assumption ∂/∂t much-lt η/δ 2 (here η is the resistivity, δ is the resistive layer width). A unified analytical model is developed by using standard perturbation theory for the linear and nonlinear growth of the tearing mode. The inertia effect and quasilinear effects of both the current density and the magnetic field have been included. A nonlinear evolution equation is analytically derived for the tearing mode to describe the linear growth, Rutherford's behavior, and the new behavior. The classical linear result is exactly recovered as the quasilinear effects are negligible. It is shown that a more slowly algebraic growth like Ψ 1 ∝t can become dominant in the nonlinear phase instead of Rutherford behavior like Ψ 1 ∝t 2 , provided the tearing mode in the linear phase is strongly unstable. Here Ψ 1 is the magnetic flux perturbation. copyright 1995 American Institute of Physics

  2. Modulational instability development and current drive

    International Nuclear Information System (INIS)

    Popel, S.I.; Vladimirov, S.V.; Tsytovich, V.N.

    1992-01-01

    Recently many investigations on current driven by lower-hybrid (LH) waves in a plasma of toroidal nuclear fusion installations are carried out. Usually a theoretical approach taking into account quasilinear and binary collisions effects is used to describe current drive. However a problem of comparison of the results obtained with the aid of the above theoretical approach and experimental data takes place. Namely the experimentally observed currents driven by LH waves is two-three orders of magnitude larger than those calculated. The above discrepancy between theory and experiment is related with the existence of the so-called ''spectral gap'', that is the gap between the parallel phase velocities of LH waves ω/k || (where ω, k || are LH wave frequency and a component of wavenumber k parallel to the external magnetic field) which are necessary for effective Landau damping of LH waves (i.e. velocities as high as several electron thermal velocities) and the lowest parallel phase velocity in the injected LH wave spectrum. Experimentally observed current drive may be explained if one accounts for filling of the ''spectral gap'' by LH waves. Some nonlinear effects have been drawn in current drive description to explain the ''spectral gap'' filling by LH waves. However the LH wave modulational instability (MI) effect has not been considered yet in application to current drive description. The aim of this paper is to investigate this MI influence. We shall show that for sufficiently intensive pump level of LH wave the MI can lead to ''spectral gap'' filling. (author) 4 refs

  3. Performance improvement of sensorless vector control for matrix converter drives using PQR power theory

    DEFF Research Database (Denmark)

    Lee, Kyo Beum; Blaabjerg, Frede

    2007-01-01

    This paper presents a new method to improve sensorless performance of matrix converter drives using PQR power transformation. The non-linearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modelled...... using PQR transformation and compensated using a reference current control scheme. To eliminate the input current distortion due to the input voltage unbalance, a simple method using PQR transformation is also proposed. The proposed compensation method is applied for high performance induction motor...

  4. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    Science.gov (United States)

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  5. Computation of the Coupling Resonance Driving term f1001 and the coupling coefficient C from turn-by-turn single-BPM data.

    CERN Document Server

    Franchi, A; Vanbavinkhove, G; CERN. Geneva. BE Department

    2010-01-01

    In this note we show how to compute the Resonance Driving Term (RDT) f1001, the local resonance term chi 1010 and the coupling coefficient C from the spectrum of turn-by-turn single-BPM data. The harmonic analysis of real coordinate x(y) is model independent, conversely to the the analysis of the complex Courant-Snyder coordinate hx,- = x-ipx. From the computation of f1001 along the ring is closely related to the global coupling coefficient C, but it is affected by an intrinsic error, discussed in this note.

  6. A new approach to nonlinear constrained Tikhonov regularization

    KAUST Repository

    Ito, Kazufumi

    2011-09-16

    We present a novel approach to nonlinear constrained Tikhonov regularization from the viewpoint of optimization theory. A second-order sufficient optimality condition is suggested as a nonlinearity condition to handle the nonlinearity of the forward operator. The approach is exploited to derive convergence rate results for a priori as well as a posteriori choice rules, e.g., discrepancy principle and balancing principle, for selecting the regularization parameter. The idea is further illustrated on a general class of parameter identification problems, for which (new) source and nonlinearity conditions are derived and the structural property of the nonlinearity term is revealed. A number of examples including identifying distributed parameters in elliptic differential equations are presented. © 2011 IOP Publishing Ltd.

  7. Clutch pressure estimation for a power-split hybrid transmission using nonlinear robust observer

    Science.gov (United States)

    Zhou, Bin; Zhang, Jianwu; Gao, Ji; Yu, Haisheng; Liu, Dong

    2018-06-01

    For a power-split hybrid transmission, using the brake clutch to realize the transition from electric drive mode to hybrid drive mode is an available strategy. Since the pressure information of the brake clutch is essential for the mode transition control, this research designs a nonlinear robust reduced-order observer to estimate the brake clutch pressure. Model uncertainties or disturbances are considered as additional inputs, thus the observer is designed in order that the error dynamics is input-to-state stable. The nonlinear characteristics of the system are expressed as the lookup tables in the observer. Moreover, the gain matrix of the observer is solved by two optimization procedures under the constraints of the linear matrix inequalities. The proposed observer is validated by offline simulation and online test, the results have shown that the observer achieves significant performance during the mode transition, as the estimation error is within a reasonable range, more importantly, it is asymptotically stable.

  8. Space and time evolution of two nonlinearly coupled variables

    International Nuclear Information System (INIS)

    Obayashi, H.; Totsuji, H.; Wilhelmsson, H.

    1976-12-01

    The system of two coupled linear differential equations are studied assuming that the coupling terms are proportional to the product of the dependent variables, representing e.g. intensities or populations. It is furthermore assumed that these variables experience different linear dissipation or growth. The derivations account for space as well as time dependence of the variables. It is found that certain particular solutions can be obtained to this system, whereas a full solution in space and time as an initial value problem is outside the scope of the present paper. The system has a nonlinear equilibrium solution for which the nonlinear coupling terms balance the terms of linear dissipation. The case of space and time evolution of a small perturbation of the nonlinear equilibrium state, given the initial one-dimensional spatial distribution of the perturbation, is also considered in some detail. (auth.)

  9. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

    Science.gov (United States)

    Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

    For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

  10. A Photonic Basis for Deriving Nonlinear Optical Response

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2009-01-01

    Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…

  11. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance......Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...

  12. Beam Stability and Nonlinear Dynamics. Proceedings

    International Nuclear Information System (INIS)

    Parsa, Z.

    1997-01-01

    These proceedings represent papers presented at the Beam Stability and Nonlinear Dynamics symposium held in Santa Barbara in December 1996. The symposium was sponsored by the National Science Foundation as part of the United States long term accelerator research. The focus of this symposium was on nonlinear dynamics and beam stability. The topics included single-particle and many-particle dynamics, and stability in large circular accelerators such as the Large Hadron Collider(LHC). Other subjects covered were spin dynamics, nonlinear aberration correction, collective effects in the LHC, sawtooth instability and Landau damping in the presence of strong nonlinearity. There were presentations concerning plasma physics including the effect of beam echo. There are 17 papers altogether in these proceedings and 8 of them have been abstracted for the Energy Science and Technology database

  13. Improved algorithm for solving nonlinear parabolized stability equations

    Science.gov (United States)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  14. An Enhanced Asymptotic Expansion for the Stability of Nonlinear Elastic Structures

    DEFF Research Database (Denmark)

    Christensen, Claus Dencker; Byskov, Esben

    2010-01-01

    A new, enhanced asymptotic expansion applicable to stability of structures made of nonlinear elastic materials is established. The method utilizes “hyperbolic” terms instead of the conventional polynomial terms, covers full kinematic nonlinearity and is applied to nonlinear elastic Euler columns...... with two different types of cross-section. Comparison with numerical results show that our expansion provides more accurate predictions of the behavior than usual expansions. The method is based on an extended version of the principle of virtual displacements that covers cases with auxiliary conditions...

  15. Measuring localized nonlinear components in a circular accelerator with a nonlinear tune response matrix

    Directory of Open Access Journals (Sweden)

    G. Franchetti

    2008-09-01

    Full Text Available In this paper we present a method for measuring the nonlinear errors in a circular accelerator by taking advantage of the feed-down effect of high order multipoles when the closed orbit is globally deformed. We devise a nonlinear tune response matrix in which the response to a closed orbit deformation is obtained in terms of change of machine tune and correlated with the strength of the local multipoles. A numerical example and a proof of principle experiment to validate the theoretical methods are presented and discussed.

  16. ANALYSIS OF INFLUENCE OF DESIGN CHARACTERISTICS OF INCLINED BUCKET ELEVATOR ON THE POWER OF ITS DRIVE

    Directory of Open Access Journals (Sweden)

    V. M. Bohomaz

    2016-12-01

    Full Text Available Purpose.One of the main elements of the inclined belt bucket elevators is their drive. To determine the drive power, it is necessary to carry out calculations according to standard methods, which are described in the modern literature. The basic design parameters are the productivity, lifting height, type and properties of the transported material, the angle of inclination. It is necessary to build a parametric dependence of the driving power of the elevator on its design parameters, which takes into account the standard sizes and types of buckets and belts. Methodology. Using the methodology of traction calculation of inclined belt bucket elevator there were built parametric dependences of efforts in specific points of the route of the elevator, as well as the parametric dependences of the drive power of high-speed elevators with deep and shallow buckets on their design parameters and characteristics. Findings. On the basis of constructed parametric dependencies, it was found that the function of changing the value of the elevator’s power from design capacity (at fixed lifting height, type of cargo, belt speed is piecewise constant and monotonically increasing. It was built a graphical representation of elevator drive power on the angle of its inclination within acceptable limits of change. The resulting relationship is non-linear and monotonically decreasing. In general terms the intervals of project performance values, which provide a constant value of drive power of inclined elevator were defined. As an example of the obtained results it was observed the process of dependence construction of the drive power on design capacity and inclination angle of the elevator for transporting the fine coal. Originality. For the first time there were constructed the parametric dependences of drive power of inclined bucket elevator on its design parameters that take into account the standard sizes and types of buckets and belts. Practical value. Using

  17. Stability analysis solutions and optical solitons in extended nonlinear Schrödinger equation with higher-order odd and even terms

    Science.gov (United States)

    Peng, Wei-Qi; Tian, Shou-Fu; Zou, Li; Zhang, Tian-Tian

    2018-01-01

    In this paper, the extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms is investigated, whose particular cases are the Hirota equation, the Sasa-Satsuma equation and Lakshmanan-Porsezian-Daniel equation by selecting some specific values on the parameters of higher-order terms. We first study the stability analysis of the equation. Then, using the ansatz method, we derive its bright, dark solitons and some constraint conditions which can guarantee the existence of solitons. Moreover, the Ricatti equation extension method is employed to derive some exact singular solutions. The outstanding characteristics of these solitons are analyzed via several diverting graphics.

  18. 3-D nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed

  19. The drive revisited: Mastery and satisfaction.

    Science.gov (United States)

    Denis, Paul

    2016-06-01

    Starting from the theory of the libido and the notions of the experience of satisfaction and the drive for mastery introduced by Freud, the author revisits the notion of the drive by proposing the following model: the drive takes shape in the combination of two currents of libidinal cathexis, one which takes the paths of the 'apparatus for obtaining mastery' (the sense-organs, motricity, etc.) and strives to appropriate the object, and the other which cathects the erotogenic zones and the experience of satisfaction that is experienced through stimulation in contact with the object. The result of this combination of cathexes constitutes a 'representation', the subsequent evocation of which makes it possible to tolerate for a certain period of time the absence of a satisfying object. On the basis of this conception, the author distinguishes the representations proper, vehicles of satisfaction, from imagos and traumatic images which give rise to excitation that does not link up with the paths taken by the drives. This model makes it possible to conciliate the points of view of the advocates of 'object-seeking' and of those who give precedence to the search for pleasure, and, further, to renew our understanding of object-relations, which can then be approached from the angle of their relations to infantile sexuality. Destructiveness is considered in terms of "mastery madness" and not in terms of the late Freudian hypothesis of the death drive. Copyright © 2015 Institute of Psychoanalysis.

  20. Non-linear neutron star oscillations viewed as deviations from an equilibrium state

    International Nuclear Information System (INIS)

    Sperhake, U

    2002-01-01

    A numerical technique is presented which facilitates the evolution of non-linear neutron star oscillations with a high accuracy essentially independent of the oscillation amplitude. We apply this technique to radial neutron star oscillations in a Lagrangian formulation and demonstrate the superior performance of the new scheme compared with 'conventional' techniques. The key feature of our approach is to describe the evolution in terms of deviations from an equilibrium configuration. In contrast to standard perturbation analysis we keep all higher order terms in the evolution equations and thus obtain a fully non-linear description. The advantage of our scheme lies in the elimination of background terms from the equations and the associated numerical errors. The improvements thus achieved will be particularly significant in the study of mildly non-linear effects where the amplitude of the dynamic signal is small compared with the equilibrium values but large enough to warrant non-linear effects. We apply the new technique to the study of non-linear coupling of Eigenmodes and non-linear effects in the oscillations of marginally stable neutron stars. We find non-linear effects in low amplitude oscillations to be particularly pronounced in the range of modes with vanishing frequency which typically mark the onset of instability. (author)

  1. Nonlinear waves in electron-positron-ion plasmas including charge separation

    Science.gov (United States)

    Mugemana, A.; Moolla, S.; Lazarus, I. J.

    2017-02-01

    Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.

  2. Multi-diffusive nonlinear Fokker–Planck equation

    International Nuclear Information System (INIS)

    Ribeiro, Mauricio S; Casas, Gabriela A; Nobre, Fernando D

    2017-01-01

    Nonlinear Fokker–Planck equations, characterized by more than one diffusion term, have appeared recently in literature. Here, it is shown that these equations may be derived either from approximations in a master equation, or from a Langevin-type approach. An H-theorem is proven, relating these Fokker–Planck equations to an entropy composed by a sum of contributions, each of them associated with a given diffusion term. Moreover, the stationary state of the Fokker–Planck equation is shown to coincide with the equilibrium state, obtained by extremization of the entropy, in the sense that both procedures yield precisely the same equation. Due to the nonlinear character of this equation, the equilibrium probability may be obtained, in most cases, only by means of numerical approaches. Some examples are worked out, where the equilibrium probability distribution is computed for nonlinear Fokker–Planck equations presenting two diffusion terms, corresponding to an entropy characterized by a sum of two contributions. It is shown that the resulting equilibrium distribution, in general, presents a form that differs from a sum of the equilibrium distributions that maximizes each entropic contribution separately, although in some cases one may construct such a linear combination as a good approximation for the equilibrium distribution. (paper)

  3. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

    Science.gov (United States)

    Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.

    2018-05-01

    Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

  4. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

    Science.gov (United States)

    Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

  5. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    Science.gov (United States)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  6. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    International Nuclear Information System (INIS)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant; Ó Náraigh, Lennon

    2016-01-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  7. Nonlinear super-W algebras at fixed central charge

    NARCIS (Netherlands)

    Bergshoeff, E.

    1991-01-01

    We discuss how a class of nonlinear higher-spin superalgebras, containing a Virasoro subalgebra at fixed central charge, can be obtained from a realisation of the super-W∞(λ) algebra in terms of a supersymmetric BC system. We explicitly work out the example of the nonlinear super-W2 algebra.

  8. Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles

    Directory of Open Access Journals (Sweden)

    Yihe Sun

    2011-04-01

    Full Text Available Emerging green-energy transportation, such as hybrid electric vehicles (HEVs and plug-in HEVs (PHEVs, has a great potential for reduction of fuel consumption and greenhouse emissions. The lithium-ion battery system used in these vehicles, however, is bulky, expensive and unreliable, and has been the primary roadblock for transportation electrification. Meanwhile, few studies have considered user-specific driving behavior and its significant impact on (PHEV fuel efficiency, battery system lifetime, and the environment. This paper presents a detailed investigation of battery system modeling and real-world user-specific driving behavior analysis for emerging electric-drive vehicles. The proposed model is fast to compute and accurate for analyzing battery system run-time and long-term cycle life with a focus on temperature dependent battery system capacity fading and variation. The proposed solution is validated against physical measurement using real-world user driving studies, and has been adopted to facilitate battery system design and optimization. Using the collected real-world hybrid vehicle and run-time driving data, we have also conducted detailed analytical studies of users’ specific driving patterns and their impacts on hybrid vehicle electric energy and fuel efficiency. This work provides a solid foundation for future energy control with emerging electric-drive applications.

  9. Quantum effects in warp drives

    Directory of Open Access Journals (Sweden)

    Finazzi Stefano

    2013-09-01

    Full Text Available Warp drives are interesting configurations that, at least theoretically, provide a way to travel at superluminal speed. Unfortunately, several issues seem to forbid their realization. First, a huge amount of exotic matter is required to build them. Second, the presence of quantum fields propagating in superluminal warp-drive geometries makes them semiclassically unstable. Indeed, a Hawking-like high-temperature flux of particles is generated inside the warp-drive bubble, which causes an exponential growth of the energy density measured at the front wall of the bubble by freely falling observers. Moreover, superluminal warp drives remain unstable even if the Lorentz symmetry is broken by the introduction of regulating higher order terms in the Lagrangian of the quantum field. If the dispersion relation of the quantum field is subluminal, a black-hole laser phenomenon yields an exponential amplification of the emitted flux. If it is superluminal, infrared effects cause a linear growth of this flux.

  10. Nonlinear Mirror and Weibel modes: peculiarities of quasi-linear dynamics

    Directory of Open Access Journals (Sweden)

    O. A. Pokhotelov

    2010-12-01

    Full Text Available A theory for nonlinear evolution of the mirror modes near the instability threshold is developed. It is shown that during initial stage the major instability saturation is provided by the flattening of the velocity distribution function in the vicinity of small parallel ion velocities. The relaxation scenario in this case is accompanied by rapid attenuation of resonant particle interaction which is replaced by a weaker adiabatic interaction with mirror modes. The saturated plasma state can be considered as a magnetic counterpart to electrostatic BGK modes. After quasi-linear saturation a further nonlinear scenario is controlled by the mode coupling effects and nonlinear variation of the ion Larmor radius. Our analytical model is verified by relevant numerical simulations. Test particle and PIC simulations indeed show that it is a modification of distribution function at small parallel velocities that results in fading away of free energy driving the mirror mode. The similarity with resonant Weibel instability is discussed.

  11. Traveling wave solutions for two nonlinear evolution equations with nonlinear terms of any order

    International Nuclear Information System (INIS)

    Feng Qing-Hua; Zhang Yao-Ming; Meng Fan-Wei

    2011-01-01

    In this paper, based on the known first integral method and the Riccati sub-ordinary differential equation (ODE) method, we try to seek the exact solutions of the general Gardner equation and the general Benjamin—Bona—Mahoney equation. As a result, some traveling wave solutions for the two nonlinear equations are established successfully. Also we make a comparison between the two methods. It turns out that the Riccati sub-ODE method is more effective than the first integral method in handling the proposed problems, and more general solutions are constructed by the Riccati sub-ODE method. (general)

  12. Chaos synchronizations of chaotic systems via active nonlinear control

    International Nuclear Information System (INIS)

    Huang, J; Xiao, T J

    2008-01-01

    This paper not only investigates the chaos synchronization between two LCC chaotic systems, but also discusses the chaos synchronization between LCC system and Genesio system. Some novel active nonlinear controllers are designed to achieve synchronizations between drive and response systems effectively. Moreover, the sufficient conditions of synchronizations are derived by using Lyapunov stability theorem. Numerical simulations are presented to verify the theoretical analysis, which shows that the synchronization schemes are global effective

  13. Nonlinear Decoupling of Torque and Field Amplitude in an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1997-01-01

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor...... torque. The method is tested both by simulation and by experiments on a motor drive....

  14. Nonlinear simulation of electromagnetic current diffusive interchange mode turbulence

    International Nuclear Information System (INIS)

    Yagi, M.; Itoh, S.I.; Fukuyama, A.

    1998-01-01

    The anomalous transport in toroidal plasmas has been investigated extensively. It is pointed out that the nonlinear instability is important in driving the microturbulence[1], i.e., the self-sustained plasma turbulence. This concept is explained as follows; when the electron motion along the magnetic field line is resisted by the background turbulence, it gives rise to the effective resistivity and enhances the level of the turbulence. The nonlinear simulation of the electrostatic current diffusive interchange mode (CDIM) in the two dimensional sheared slab geometry has been performed as an example. The occurrence of the nonlinear instability and the self-sustainment of the plasma turbulence were confirmed by this simulation[2]. On the other hand, the electromagnetic turbulence is sustained in the high pressure limit. The possibility of the self-organization with more variety has been pointed out[3]. It is important to study the electromagnetic turbulence based on the nonlinear simulation. In this paper, the model equation for the electrostatic CDIM turbulence[2] is extended for both electrostatic and electromagnetic turbulence. (1) Not only E x B convective nonlinearity but also the electromagnetic nonlinearity which is related to the parallel flow are incorporated into the model equation. (2) The electron and ion pressure evolution equations are solved separately, making it possible to distinguish the electron and ion thermal diffusivities. The two dimensional nonlinear simulation of the electromagnetic CDIM is performed based on the extended fluid model. This paper is organized as follows. The model equation is explained in section II. The result of simulation is shown in section III. The conclusion and discussion are given in section IV. (author)

  15. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    OpenAIRE

    A. M. de Paor

    1998-01-01

    International audience; Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ? has the value 1 is proved via ...

  16. Measuring RF circuits exhibiting nonlinear responses combined with short and long term memory effects

    NARCIS (Netherlands)

    Janssen, E.J.G.; Milosevic, D.; Baltus, P.G.M.

    2010-01-01

    All RF circuits that incorporate active devices exhibit nonlinear behavior. Nonlinearities result in signal distortion, and therefore state the upper limit of the dynamic range of the circuits. A measure for linearity used quite commonly in RF is the P1dB and/or IP3 point. These quantities are

  17. Nonlinear dynamics of magnetic vortices in single-crystal and ion-damaged NbSe2

    International Nuclear Information System (INIS)

    Zhang, J.; De Long, L.E.; Majidi, V.; Budhani, R.C.

    1996-01-01

    Nonlinear dynamics of magnetic flux lines in superconducting NbSe 2 are studied using the vibrating-reed technique and a resonance-line-shape analysis. A yield point for plastic deformation of the flux-line lattice is linked to the onset of a dissipation anomaly previously associated with a flux-line lattice melting transition. The resonance (10 kHz range) of radiation-damaged samples bifurcates into patterned sidebands at high drives, with additional nonlinear response emerging above 200 kHz, which may signal the onset of chaos. copyright 1996 The American Physical Society

  18. Consistent Automation Solutions for Electrohydraulic Drives in Times of Industry 4.0

    OpenAIRE

    Köckemann, Albert; Birke, Benno

    2016-01-01

    Electrohydraulic drives are primarily used whenever a low power/weight ratio, a compact build and/or large forces are required for individual applications. These drives are often used together with electric drive technology in machines. However, in terms of automation, unlike electric drives, electrohydraulic drives are still largely connected via analog interfaces and centralized closed control loops today. To compensate for this competitive disadvantage of hydraulic drive technology and, at...

  19. Long-term stability of Sm2Co17-type magnets for control rod drive mechanism (CRDM) in a nuclear reactor

    International Nuclear Information System (INIS)

    Iida, H.; Imayoshi, S.; Morimoto, K.; Watanabe, M.; Komada, N.; Takeshita, T.

    1995-01-01

    Control rod drive mechanism (CRDM) is an apparatus that regulates vertical position of control rods in a nuclear reactor by using a driving motor of synchronous type. While CRDM is usually placed outside the reactor vessel to escape from the severe environment inside the vessel, built-in type CRDM, which is now being developed for advanced marine reactors, is placed inside the vessel for making the reactor compact. The driving motor must stand in high-temperature (573--603 K) and high-pressure (approximately 120 atm) water which contains a trace amount of hydrogen. Although the magnet rotor is sealed by corrosion-resistant alloy, the magnets still need to have excellent thermal and chemical stabilities in order to ensure the reliability of the system. For an application of Sm 2 Co 17 -type magnets for a driving motor of control rod drive mechanism (CRDM) placed inside a nuclear reactor vessel, long-term stabilities of Sm(Co 0.61 Fe 0.28 Cu 0.08 Ni 0.01 Zr 0.02 ) 7.3 magnets were evaluated under the severe conditions. Initial magnetic properties of the specimens at room temperature were: B r = 1.03 T, H cJ = 1,400 kA/m and (BH) max = 207 kJ/m 3 . Irreversible losses of open-circuit remanent flux of the specimens exposed for 19,000 hours in 1 atm Ar atmosphere were 5--10% at the temperature (573--603 K) and the operating point (permeance coefficient of 1.7--2.4) of the actual driving motor application. Large fraction of the irreversible loss is attributed to permanent flux loss due to oxidation of the specimen. Losses due to thermal fluctuation aftereffect of these specimens are estimated to be less than 5%. Multilayer coating of Ni, Cu, Ni and Au was found to be effective to protect the magnets from the oxidation. The coated specimens exhibited a small permanent loss value of 0.5% after the exposure to 120 atm water for 2,000 hours at 613 K

  20. Heterotic sigma models and non-linear strings

    International Nuclear Information System (INIS)

    Hull, C.M.

    1986-01-01

    The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)

  1. Spectral properties of a confined nonlinear quantum oscillator in one and three dimensions

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel; Gordon, Christopher R.

    2013-01-01

    We analyze the spectral behaviour of a nonlinear quantum oscillator model under confinement. The underlying potential is given by a harmonic oscillator interaction plus a nonlinear term that can be weakened or strengthened through a parameter. Numerical eigenvalues of the model in one and three dimensions are presented. The asymptotic behaviour of the eigenvalues for confinement relaxation and for vanishing nonlinear term in the potential is investigated. Our findings are compared with existing results.

  2. Nonlinear Dynamic Model of PMBLDC Motor Considering Core Losses

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2017-01-01

    The phase variable model is used commonly when simulating a motor drive system with a three-phase permanent magnet brushless DC (PMBLDC) motor. The phase variable model neglects core losses and this affects its accuracy when modelling fractional-slot machines. The inaccuracy of phase variable mod...... on the detailed analysis of the flux path and the variation of flux in different components of the machine. A prototype of fractional slot axial flux PMBLDC in-wheel motor is used to assess the proposed nonlinear dynamic model....... of fractional-slot machines can be attributed to considerable armature flux harmonics, which causes an increased core loss. This study proposes a nonlinear phase variable model of PMBLDC motor that considers the core losses induced in the stator and the rotor. The core loss model is developed based...

  3. Intermittent Motion, Nonlinear Diffusion Equation and Tsallis Formalism

    Directory of Open Access Journals (Sweden)

    Ervin K. Lenzi

    2017-01-01

    Full Text Available We investigate an intermittent process obtained from the combination of a nonlinear diffusion equation and pauses. We consider the porous media equation with reaction terms related to the rate of switching the particles from the diffusive mode to the resting mode or switching them from the resting to the movement. The results show that in the asymptotic limit of small and long times, the spreading of the system is essentially governed by the diffusive term. The behavior exhibited for intermediate times depends on the rates present in the reaction terms. In this scenario, we show that, in the asymptotic limits, the distributions for this process are given by in terms of power laws which may be related to the q-exponential present in the Tsallis statistics. Furthermore, we also analyze a situation characterized by different diffusive regimes, which emerges when the diffusive term is a mixing of linear and nonlinear terms.

  4. On the synchronization of neural networks containing time-varying delays and sector nonlinearity

    International Nuclear Information System (INIS)

    Yan, J.-J.; Lin, J.-S.; Hung, M.-L.; Liao, T.-L.

    2007-01-01

    We present a systematic design procedure for synchronization of neural networks subject to time-varying delays and sector nonlinearity in the control input. Based on the drive-response concept and the Lyapunov stability theorem, a memoryless decentralized control law is proposed which guarantees exponential synchronization even when input nonlinearity is present. The supplementary requirement that the time-derivative of time-varying delays must be smaller than one is released for the proposed control scheme. A four-dimensional Hopfield neural network with time-varying delays is presented as the illustrative example to demonstrate the effectiveness of the proposed synchronization scheme

  5. Detecting nonlinearity in time series driven by non-Gaussian noise: the case of river flows

    Directory of Open Access Journals (Sweden)

    F. Laio

    2004-01-01

    Full Text Available Several methods exist for the detection of nonlinearity in univariate time series. In the present work we consider riverflow time series to infer the dynamical characteristics of the rainfall-runoff transformation. It is shown that the non-Gaussian nature of the driving force (rainfall can distort the results of such methods, in particular when surrogate data techniques are used. Deterministic versus stochastic (DVS plots, conditionally applied to the decay phases of the time series, are instead proved to be a suitable tool to detect nonlinearity in processes driven by non-Gaussian (Poissonian noise. An application to daily discharges from three Italian rivers provides important clues to the presence of nonlinearity in the rainfall-runoff transformation.

  6. Extended driving impairs nocturnal driving performances.

    Directory of Open Access Journals (Sweden)

    Patricia Sagaspe

    Full Text Available Though fatigue and sleepiness at the wheel are well-known risk factors for traffic accidents, many drivers combine extended driving and sleep deprivation. Fatigue-related accidents occur mainly at night but there is no experimental data available to determine if the duration of prior driving affects driving performance at night. Participants drove in 3 nocturnal driving sessions (3-5 am, 1-5 am and 9 pm-5 am on open highway. Fourteen young healthy men (mean age [+/-SD] = 23.4 [+/-1.7] years participated Inappropriate line crossings (ILC in the last hour of driving of each session, sleep variables, self-perceived fatigue and sleepiness were measured. Compared to the short (3-5 am driving session, the incidence rate ratio of inappropriate line crossings increased by 2.6 (95% CI, 1.1 to 6.0; P<.05 for the intermediate (1-5 am driving session and by 4.0 (CI, 1.7 to 9.4; P<.001 for the long (9 pm-5 am driving session. Compared to the reference session (9-10 pm, the incidence rate ratio of inappropriate line crossings were 6.0 (95% CI, 2.3 to 15.5; P<.001, 15.4 (CI, 4.6 to 51.5; P<.001 and 24.3 (CI, 7.4 to 79.5; P<.001, respectively, for the three different durations of driving. Self-rated fatigue and sleepiness scores were both positively correlated to driving impairment in the intermediate and long duration sessions (P<.05 and increased significantly during the nocturnal driving sessions compared to the reference session (P<.01. At night, extended driving impairs driving performances and therefore should be limited.

  7. A Review on Fatigue Driving Detection

    Directory of Open Access Journals (Sweden)

    Shi Sheng-Yang

    2017-01-01

    Full Text Available The socialization of automobile development has brought great convenience to people’s travel. However, the rapid increase in the number of vehicles has also caused a series of problems. The increase in traffic accidents has brought great social casualties and economic losses. Fatigue driving, which is an important factor in the traffic accident, has aroused people’s attention. This paper reviews all kinds of fatigue driving detection methods at present; compares various fatigue driving detection methods in terms of accuracy, real-time and cost; analyses the advantages and disadvantages of various methods; introduces the application of fatigue detection system in automobile; summarizes the current deficiencies and future development trends in the field of fatigue driving detection. The future research of this field will be more to the data fusion, computer vision and deep learning.

  8. Modified wave operators for nonlinear Schrodinger equations in one and two dimensions

    Directory of Open Access Journals (Sweden)

    Nakao Hayashi

    2004-04-01

    Full Text Available We study the asymptotic behavior of solutions, in particular the scattering theory, for the nonlinear Schr"{o}dinger equations with cubic and quadratic nonlinearities in one or two space dimensions. The nonlinearities are summation of gauge invariant term and non-gauge invariant terms. The scattering problem of these equations belongs to the long range case. We prove the existence of the modified wave operators to those equations for small final data. Our result is an improvement of the previous work [13

  9. Non-reciprocity in nonlinear elastodynamics

    Science.gov (United States)

    Blanchard, Antoine; Sapsis, Themistoklis P.; Vakakis, Alexander F.

    2018-01-01

    Reciprocity is a fundamental property of linear time-invariant (LTI) acoustic waveguides governed by self-adjoint operators with symmetric Green's functions. The break of reciprocity in LTI elastodynamics is only possible through the break of time reversal symmetry on the micro-level, and this can be achieved by imposing external biases, adding nonlinearities or allowing for time-varying system properties. We present a Volterra-series based asymptotic analysis for studying spatial non-reciprocity in a class of one-dimensional (1D), time-invariant elastic systems with weak stiffness nonlinearities. We show that nonlinearity is neither necessary nor sufficient for breaking reciprocity in this class of systems; rather, it depends on the boundary conditions, the symmetries of the governing linear and nonlinear operators, and the choice of the spatial points where the non-reciprocity criterion is tested. Extension of the analysis to higher dimensions and time-varying systems is straightforward from a mathematical point of view (but not in terms of new non-reciprocal physical phenomena), whereas the connection of non-reciprocity and time irreversibility can be studied as well. Finally, we show that suitably defined non-reciprocity measures enable optimization, and can provide physical understanding of the nonlinear effects in the dynamics, enabling one to establish regimes of "maximum nonlinearity." We highlight the theoretical developments by means of a numerical example.

  10. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids.

    Science.gov (United States)

    Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A

    2003-06-01

    Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.

  11. The effect of nonlinear forces on coherently oscillating space-charge-dominated beams

    International Nuclear Information System (INIS)

    Celata, C.M.

    1987-03-01

    A particle-in-cell computer simulation code has been used to study the transverse dynamics of nonrelativistic misaligned space-charge-dominated coasting beams in an alternating gradient focusing channel. In the presence of nonlinear forces due to dodecapole or octupole imperfections of the focusing fields or to image forces, the transverse rms emittance grows in a beat pattern. Analysis indicates that this emittance dilution is due to the driving of coherent modes of the beam near their resonant frequencies by the nonlinear force. The effects of the dodecapole and images forces can be made to effectively cancel for some boundary conditions, but the mechanism is not understood at this time

  12. Nonlinear switching dynamics in a photonic-crystal nanocavity

    International Nuclear Information System (INIS)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel; Vukovic, Dragana; Peucheret, Christophe; Yvind, Kresten; Mork, Jesper

    2014-01-01

    We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching contrast.

  13. Nonlinear switching dynamics in a photonic-crystal nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2014-01-01

    We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When...... of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching...... the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms...

  14. Directed motion generated by heat bath nonlinearly driven by external noise

    International Nuclear Information System (INIS)

    Chaudhuri, J Ray; Barik, D; Banik, S K

    2007-01-01

    Based on the heat bath system approach where the bath is nonlinearly modulated by an external Gaussian random force, we propose a new microscopic model to study directed motion in the overdamped limit for a nonequilibrium open system. Making use of the coupling between the heat bath and the external modulation as a small perturbation, we construct a Langevin equation with multiplicative noise- and space-dependent dissipation and the corresponding Fokker-Planck-Smoluchowski equation in the overdamped limit. We examine the thermodynamic consistency condition and explore the possibility of observing a phase-induced current as a consequence of state-dependent diffusion and, necessarily, nonlinear driving of the heat bath by the external noise

  15. Directed motion generated by heat bath nonlinearly driven by external noise

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, J Ray [Department of Physics, Katwa College, Katwa, Burdwan 713 130, West Bengal (India); Barik, D [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Banik, S K [Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435 (United States)

    2007-12-07

    Based on the heat bath system approach where the bath is nonlinearly modulated by an external Gaussian random force, we propose a new microscopic model to study directed motion in the overdamped limit for a nonequilibrium open system. Making use of the coupling between the heat bath and the external modulation as a small perturbation, we construct a Langevin equation with multiplicative noise- and space-dependent dissipation and the corresponding Fokker-Planck-Smoluchowski equation in the overdamped limit. We examine the thermodynamic consistency condition and explore the possibility of observing a phase-induced current as a consequence of state-dependent diffusion and, necessarily, nonlinear driving of the heat bath by the external noise.

  16. Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.

    Science.gov (United States)

    Andres, Jeanne Therese H; Cardoso, Silvana S S

    2012-09-01

    We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.

  17. Optical rogue waves and soliton turbulence in nonlinear fibre optics

    DEFF Research Database (Denmark)

    Genty, G.; Dudley, J. M.; de Sterke, C. M.

    2009-01-01

    We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....

  18. Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs

    Directory of Open Access Journals (Sweden)

    Jaime Buitrago

    2017-01-01

    Full Text Available Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN with exogenous multi-variable input (NARX. The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input. Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. The New England electrical load data are used to train and validate the forecast prediction.

  19. Non-linear simulations of ELMs in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Orain, Francois; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Becoulet, Marina; Huysmans, Guido [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    Large edge localized modes (ELMs) are a severe concern for the operation of future tokamak devices like ITER or DEMO due to the high transient heat loads induced on divertor targets and wall structures. It is therefore important to study ELMs both theoretically and experimentally in order to obtain a comprehensive understanding of the underlying mechanisms which is necessary for the prediction of ELM properties and the design of ELM mitigation systems. Using the non-linear MHD code JOREK, we have performed first simulations of full ELM crashes in ASDEX Upgrade, taking into account a large number of toroidal Fourier harmonics. The evolution of the toroidal mode spectrum has been investigated. In particular, we confirm the previously observed non-linear drive of linearly sub-dominant low-n components in the early non-linear phase of the ELM crash. Preliminary comparisons of the simulations with experimental observations regarding heat and particle losses, pedestal evolution and heat deposition patterns are shown. On the long run we aim at code validation as well as an improved understanding of the ELM dynamics and possibly a better characterization of different ELM types.

  20. NONLINEAR ACCELERATOR LATTICES WITH ONE AND TWO ANALYTIC INVARIANTS

    International Nuclear Information System (INIS)

    Danilov, Viatcheslav V.

    2010-01-01

    Integrable systems appeared in physics long ago at the onset of classical dynamics with examples being Kepler s and other famous problems. Unfortunately, the majority of nonlinear problems turned out to be nonintegrable. In accelerator terms, any 2D nonlinear map produces a chaotic motion and a complex network of stable and unstable resonances with the unit probability. Nevertheless, in the proximity of an integrable system the full volume of such a chaotic network is small. Thus, the integrable nonlinear motion in accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to mitigate space charge effects with relatively small resonances and particle loss. To create such an accelerator lattice one has to find magnetic and electrtic field combinations leading to a stable integrable motion. This paper presents families of lattices with one invariant where bounded motion can be easily created in large volumes of the phase space. In addition, it presents 3 families of integrable nonlinear accelerator lattices, relizable with longitudinal-coordinate-dependent magnetic or electric fields with the stable nonlinear motion, which can be solved in terms of separable variables.

  1. Nonlinear PI control of chaotic systems using singular perturbation theory

    International Nuclear Information System (INIS)

    Wang Jiang; Wang Jing; Li Huiyan

    2005-01-01

    In this paper, we develop the nonlinear PI controllers for a class of chaotic systems based on singular perturbation theory. The original system is decomposed into two reduced order systems, to which the nonlinear uncertain terms belongs. In order to alleviate the deterioration of these nonlinear uncertainties, the nonlinear PI controllers are applied to each subsystem and combined to construct the composite controller for the full order system. The effectiveness and feasibility of the proposed control scheme is demonstrated through numerical simulations on the chaotic Chua's circuit

  2. Chaotic synchronization of two complex nonlinear oscillators

    International Nuclear Information System (INIS)

    Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.

    2009-01-01

    Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

  3. Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle.

    Science.gov (United States)

    Serebryannikov, E E; Zheltikov, A M

    2014-07-25

    Ultrafast ionization dynamics within the field half cycle is shown to be the key physical factor that controls the properties of optical nonlinearity as a function of the carrier wavelength and intensity of a driving laser field. The Schrödinger-equation analysis of a generic hydrogen quantum system reveals universal tendencies in the wavelength dependence of optical nonlinearity, shedding light on unusual properties of optical nonlinearities in the midinfrared. For high-intensity low-frequency fields, free-state electrons are shown to dominate over bound electrons in the overall nonlinear response of a quantum system. In this regime, semiclassical models are shown to offer useful insights into the physics behind optical nonlinearity.

  4. Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis

    Science.gov (United States)

    Rahman, M. A.; Ahmed, U.; Uddin, M. S.

    2013-08-01

    A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement

  5. Nonlinear optical properties of ultrathin metal layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg

    2016-01-01

    This thesis presents experimental and theoretical studies of nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The strip plasmonic waveguides are fabricated in house, and contain a gold layer, adhesion layers, and silicon dioxide cladding. The opt......This thesis presents experimental and theoretical studies of nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The strip plasmonic waveguides are fabricated in house, and contain a gold layer, adhesion layers, and silicon dioxide cladding......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...

  6. Nonlinear decoupling of torque and field amplitude in an induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, H. [Aalborg University, Aalborg (Denmark); Vadstrup, P.; Boersting, H. [Grundfos A/S, Bjerringbro (Denmark)

    1997-12-31

    A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor torque. The method is tested both by simulation and by experiments on a motor drive. (orig.) 12 refs.

  7. Nonlocal description of X waves in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole

    2006-01-01

    We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...

  8. Construction of the Courant-Snyder invariants for the non-linear equations of motion and criterion for the long-term stability of the beam in a storage ring

    International Nuclear Information System (INIS)

    Garczynski, V.

    1993-01-01

    The Courant-Snyder invariants become Lyapunov functions when the β-functions admit non-zero lower, and finite upper bounds. The long-term stability of motion then follows. This alternative criterion for the long-term stability of motion can be generalized to the nonlinear case. A single particle subjected to an arbitrary static magnetic field is considered in some detail, as an example

  9. Electric drives

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-01

    Several electric vehicles have been tested in long-term tests, i.e. an electric passenger car (maximum speed 115 km/h) and several busses for use in pedestrians' zones, spas, airports, natural reserves, and urban transportation (DUO busses). The ICE high-speed train is discussed in some detail, i.e. its aeroacoustic and aerodynamic design, running gear, computer-controlled drives and brakes, diagnostic systems, and electrical equipment. The Berlin Maglev system is mentioned as well as current inverters in rail vehicles. (HWJ).

  10. Nonlinear Modeling by Assembling Piecewise Linear Models

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  11. Neoclassical transport including collisional nonlinearity.

    Science.gov (United States)

    Candy, J; Belli, E A

    2011-06-10

    In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.

  12. Time series with tailored nonlinearities

    Science.gov (United States)

    Räth, C.; Laut, I.

    2015-10-01

    It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.

  13. The impact of LED transfer function nonlinearity on high-speed optical wireless communications based on discrete-multitone modulation

    NARCIS (Netherlands)

    Inan, B.; Lee, S.C.J.; Randel, S.; Neokosmidis, L.; Koonen, A.M.J.; Walewski, J.

    2009-01-01

    The nonlinear dependence of the optical power from white LEDs on the applied driving current and its impact on discrete-multitone modulation was investigated by use of numerical simulations for the case of optical wireless communications.

  14. Application of second order sliding mode algorithms for output feedback control in hydraulic cylinder drives with profound valve dynamics

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.

    2016-01-01

    The application of second order sliding mode algorithms for output feedback control in hydraulic valve-cylinder drives appear attractive due to their simple realization and parametrization, and strong robustness toward bounded parameter variations and uncertainties. However, intrinsic nonlinear...

  15. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  16. Modeling of Volatility with Non-linear Time Series Model

    OpenAIRE

    Kim Song Yon; Kim Mun Chol

    2013-01-01

    In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.

  17. Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry

    Science.gov (United States)

    Al Jaafari, Khaled Ali

    Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a

  18. A linear chromatic mechanism drives the pupillary response.

    Science.gov (United States)

    Tsujimura, S.; Wolffsohn, J. S.; Gilmartin, B.

    2001-01-01

    Previous studies have shown that a chromatic mechanism can drive pupil responses. The aim of this research was to clarify whether a linear or nonlinear chromatic mechanism drives pupillary responses by using test stimuli of various colours that are defined in cone contrast space. The pupil and accommodation responses evoked by these test stimuli were continuously and simultaneously objectively measured by photorefraction. The results with isochromatic and isoluminant stimuli showed that the accommodative level remained approximately constant (< 0.25 D change in mean level) even when the concurrent pupillary response was large (ca. 0.30 mm). The pupillary response to an isoluminant grating was sustained, delayed (by ca. 60 ms) and larger in amplitude than that for a isochromatic uniform stimulus, which supports previous work suggesting that the chromatic mechanism contributes to the pupillary response. In a second experiment, selected chromatic test gratings were used and isoresponse contours in cone contrast space were obtained. The results showed that the isoresponse contour in cone contrast space is well described (r(2) = 0.99) by a straight line with a positive slope. The results indicate that a /L - M/ linear chromatic mechanism, whereby a signal from the long wavelength cone is subtracted from that of the middle wavelength cone and vice versa, drives pupillary responses. PMID:11674867

  19. An Eight-Term Novel Four-Scroll Chaotic System with Cubic Nonlinearity and its Circuit Simulation

    Directory of Open Access Journals (Sweden)

    S. Sampath

    2014-11-01

    Full Text Available This research work proposes an eight-term novel four-scroll chaotic system with cubic nonlinearity and analyses its fundamental properties such as dissipativity, equilibria, symmetry and invariance, Lyapunov exponents and KaplanYorke dimension. The phase portraits of the novel chaotic system, which are obtained in this work by using MATLAB, depict the four-scroll attractor of the system. For the parameter values and initial conditions chosen in this work, the Lyapunov exponents of the novel four-scroll chaotic system are obtained as L1 = 0.75335, L2 = 0 and L3 = −22.43304. Also, the Kaplan-Yorke dimension of the novel four-scroll chaotic system is obtained as DKY = 2.0336. Finally, an electronic circuit realization of the novel four-scroll chaotic system is presented by using SPICE to confirm the feasibility of the theoretical model.

  20. Bright THz Instrument and Nonlinear THz Science

    Science.gov (United States)

    2017-10-30

    Report: Bright THz Instrument and Nonlinear THz Science The views, opinions and/or findings contained in this report are those of the author(s) and...Number: W911NF-16-1-0436 Organization: University of Rochester Title: Bright THz Instrument and Nonlinear THz Science Report Term: 0-Other Email: xi...exploring new cutting-edge research and broader applications, following the significant development of THz science and technology in the late 80’s, is the

  1. Traveling solitary wave solutions to evolution equations with nonlinear terms of any order

    International Nuclear Information System (INIS)

    Feng Zhaosheng

    2003-01-01

    Many physical phenomena in one- or higher-dimensional space can be described by nonlinear evolution equations, which can be reduced to ordinary differential equations such as the Lienard equation. Thus, to study those ordinary differential equations is of significance not only in mathematics itself, but also in physics. In this paper, a kind of explicit exact solutions to the Lienard equation is obtained. The applications of the solutions to the nonlinear RR-equation and the compound KdV-type equation are presented, which extend the results obtained in the previous literature

  2. Spectral decomposition of nonlinear systems with memory

    Science.gov (United States)

    Svenkeson, Adam; Glaz, Bryan; Stanton, Samuel; West, Bruce J.

    2016-02-01

    We present an alternative approach to the analysis of nonlinear systems with long-term memory that is based on the Koopman operator and a Lévy transformation in time. Memory effects are considered to be the result of interactions between a system and its surrounding environment. The analysis leads to the decomposition of a nonlinear system with memory into modes whose temporal behavior is anomalous and lacks a characteristic scale. On average, the time evolution of a mode follows a Mittag-Leffler function, and the system can be described using the fractional calculus. The general theory is demonstrated on the fractional linear harmonic oscillator and the fractional nonlinear logistic equation. When analyzing data from an ill-defined (black-box) system, the spectral decomposition in terms of Mittag-Leffler functions that we propose may uncover inherent memory effects through identification of a small set of dynamically relevant structures that would otherwise be obscured by conventional spectral methods. Consequently, the theoretical concepts we present may be useful for developing more general methods for numerical modeling that are able to determine whether observables of a dynamical system are better represented by memoryless operators, or operators with long-term memory in time, when model details are unknown.

  3. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    Science.gov (United States)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  4. Internal Decoupling in Nonlinear Process Control

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1988-07-01

    Full Text Available A simple method has been investigated for the total or partial removal of the effect of non-linear process phenomena in multi-variable feedback control systems. The method is based upon computing the control variables which will drive the process at desired rates. It is shown that the effect of model errors in the linearization of the process can be partly removed through the use of large feedback gains. In practice there will be limits on how large gains can he used. The sensitivity to parameter errors is less pronounced and the transient behaviour is superior to that of ordinary PI controllers.

  5. Dynamic neural networks based on-line identification and control of high performance motor drives

    Science.gov (United States)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  6. Effect of Nonlinear Hardening of Lead Rubber Bearing on Long Term Behavior of Base Isolated Containment Building

    International Nuclear Information System (INIS)

    Park, Junhee; Choun, Young-Sun; Kim, Min-Kyu

    2015-01-01

    The rubber material used in laminated rubber bearings is the hyper elastic material whose stress-strain relationship can be defined as nonlinearly elastic. From the previous research, it was presented that the rubber hardness and stiffness was increased by the aging of LRB. The mechanical properties of LRB changed by aging can directly affect a nonlinear hardening behavior. Therefore it is needed to consider the nonlinear hardening effect for exactly evaluating the seismic safety of base isolated structure during the life time. In this study, the seismic response analysis of base isolated containment building was performed by using the bilinear model and the hardening model to identify the effect of structural response on the nonlinear hardening behavior of isolator. Moreover the floor response spectrum of base isolated structure considering the aging was analyzed by according to the analysis model of LRB.. The hardening behavior of lead rubber bearing occurs at high strain. Therefore it is reasonable to assume that the hysteretic model of LRB is the nonlinear hardening model for exactly evaluating the seismic response of base isolated structure. The nonlinear analysis of base isolated containment was performed by using the nonlinear hardening variables which was resulted from the test results and finite element analysis. From the analysis results, it was represented that the FRS was higher about 40% with nonlinear hardening model than with the bilinear model. Therefore the seismic response of base isolated structure with bilinear model can be underestimated than the real response. It is desired that the nonlinear hardening model of LRB is applied for the seismic risk evaluation requiring the ultimate state of LRB

  7. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Science.gov (United States)

    de Paor, A. M.

    Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.

  8. Global output feedback stabilisation of stochastic high-order feedforward nonlinear systems with time-delay

    Science.gov (United States)

    Zhang, Kemei; Zhao, Cong-Ran; Xie, Xue-Jun

    2015-12-01

    This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.

  9. Prevalence of texting while driving and other risky driving behaviors among young people in Ontario, Canada: Evidence from 2012 and 2014.

    Science.gov (United States)

    Tucker, Sean; Pek, Simon; Morrish, Jayne; Ruf, Megan

    2015-11-01

    This paper reports on the prevalence of texting while driving and other risky driving behaviors by age and gender in two large samples of youth aged 16-19 years in Ontario, Canada. In Study 1 (N=6133), we found that males reported more frequent texting while driving and speeding than females and, in terms of age, sixteen year olds reported frequent texting while driving than older participants. In Study 2 (N=4450), which was conducted two years later, males again reported more frequent texting while driving, however there was no difference in the rate of talking on the phone while driving among males and females. Participants also reported on experiences that led to a significant reduction in their texting while driving. The most common reasons were the perceived danger of texting while driving, laws and fines against texting while driving, and observing close-calls and accidents experienced by other people. The results of both studies suggest that driving-related risk-taking behaviors co-occur and that young passengers in vehicles, including 14 and 15 year olds, are bystanders to texting while driving. Finally, there was a substantial decline in the prevalence of texting while driving across the studies. In Study 1, 27% of participants reported "sometimes" to "almost always" texting while driving compared to 6% of participants in Study 2. Limitations and implications for public campaigns targeted youth distracted driving are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Nonlinear analysis of a reaction-diffusion system: Amplitude equations

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)

    2012-10-15

    A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.

  11. Nonlinear System Identification and Its Applications in Fault Detection and Diagnosis

    DEFF Research Database (Denmark)

    Sun, Zhen

    equation, the ISDE model generally consists of not only a structured deterministic part called drift term, but also a structured random part called diffusion term. The model can describe the system in which the random features are correlated with system states (inputs, outputs) and this relationship can......Interest in nonlinear system identification has grown significantly in recent years. It is much more difficult to develop general results than the concern for linear models since the nonlinear model structures are often much more complicated. As a consequence, the thesis only considers two...... different kinds of models, one is a type of state space model which is described by Itô Stochastic Differential Equations (ISDE), the other one is a nonlinear First Order Plus Dead Time (FOPDT) model. This thesis aims to investigate these two different kinds of nonlinear models and to propose...

  12. Optimal beamforming in MIMO systems with HPA nonlinearity

    KAUST Repository

    Qi, Jian

    2010-09-01

    In this paper, multiple-input multiple-output (MIMO) transmit beamforming (TB) systems under the consideration of nonlinear high-power amplifiers (HPAs) are investigated. The optimal beamforming scheme, with the optimal beamforming weight vector and combining vector, is proposed for MIMO systems with HPA nonlinearity. The performance of the proposed MIMO beamforming scheme in the presence of HPA nonlinearity is evaluated in terms of average symbol error probability (SEP), outage probability and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, namely, parameters of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of phase-shift keying (PSK), on performance. ©2010 IEEE.

  13. Optimal beamforming in MIMO systems with HPA nonlinearity

    KAUST Repository

    Qi, Jian; Aissa, Sonia

    2010-01-01

    In this paper, multiple-input multiple-output (MIMO) transmit beamforming (TB) systems under the consideration of nonlinear high-power amplifiers (HPAs) are investigated. The optimal beamforming scheme, with the optimal beamforming weight vector and combining vector, is proposed for MIMO systems with HPA nonlinearity. The performance of the proposed MIMO beamforming scheme in the presence of HPA nonlinearity is evaluated in terms of average symbol error probability (SEP), outage probability and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, namely, parameters of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of phase-shift keying (PSK), on performance. ©2010 IEEE.

  14. Nonlinear wave particle interaction in the Earth's foreshock

    Science.gov (United States)

    Mazelle, C.; LeQueau, D.; Meziane, K.; Lin, R. P.; Parks, G.; Reme, H.; Sanderson, T.; Lepping, R. P.

    1997-01-01

    The possibility that ion beams could provide a free energy source for driving an ion/ion instability responsible for the ULF wave occurrence is investigated. For this, the wave dispersion relation with the observed parameters is solved. Secondly, it is shown that the ring-like distributions could then be produced by a coherent nonlinear wave-particle interaction. It tends to trap the ions into narrow cells in velocity space centered around a well-defined pitch-angle, directly related to the saturation wave amplitude in the analytical theory. The theoretical predictions with the observations are compared.

  15. Glaucoma and Driving: On-Road Driving Characteristics

    Science.gov (United States)

    Wood, Joanne M.; Black, Alex A.; Mallon, Kerry; Thomas, Ravi; Owsley, Cynthia

    2016-01-01

    Purpose To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment. Methods Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years) with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB) and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years). On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire. Results Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability. Conclusions Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness. PMID:27472221

  16. Glaucoma and Driving: On-Road Driving Characteristics.

    Directory of Open Access Journals (Sweden)

    Joanne M Wood

    Full Text Available To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment.Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years. On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire.Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability.Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness.

  17. Glaucoma and Driving: On-Road Driving Characteristics.

    Science.gov (United States)

    Wood, Joanne M; Black, Alex A; Mallon, Kerry; Thomas, Ravi; Owsley, Cynthia

    2016-01-01

    To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment. Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years) with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB) and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years). On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire. Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability. Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness.

  18. ECO-DRIVING Europe - building the frame for a European market for eco-driving

    International Nuclear Information System (INIS)

    Raimund, Willy; Fickl, Stephan

    2003-01-01

    Due to rapidly increasing greenhouse gas emissions, the transport sector is a key issue in any sustainability and climate strategy. Still, it is the one most difficult to deal with because of it's complexity and direct impact on everybody's life. Innovative transport technologies can significantly contribute to reducing emissions and energy use, but there is also a need for behavioural changes to turn down energy demand, especially in individual motorised transport. One of the most cost-effective measures in this field is Ecodriving, an energy efficient and road safety improving driving style. Nowadays, there are several stand-alone initiatives in Europe. But to strengthen Ecodriving and increase its market share it needs: - an overview of existing offers and facilities, - pilot projects with different target groups, - training courses (both for novice drivers and experienced road users), - quality standards, - scientific proof of the various benefits, - awareness raising and marketing. That's why ECO-DRIVING Europe has been initiated by the main stakeholders in Europe. It aims to change the behaviour of drivers by using technological developments, influencing legislation and supporting long term driving and mobility culture change. The Europe-wide ECO-DRIVING project (www.ecodrive.org ) tries to reach this goal by integrating Ecodriving into various policy fields such as energy, climate change, road safety, local environment, sustainable transport and legislation for driver licence procedures. By decreasing greenhouse gas emission by 10-20% compared to normal driving, Ecodriving can considerably contribute to reduce energy demand in transport and fight climate change. Keywords ECO-DRIVING, sustainable transport, energy efficiency, behavioural change, market penetration, environmental and economic benefits, road safety

  19. Nonlinear Cross-Diffusion with Size Exclusion

    KAUST Repository

    Burger, Martin; Di Francesco, Marco; Pietschmann, Jan-Frederik; Schlake, Bä rbel

    2010-01-01

    The aim of this paper is to investigate the mathematical properties of a continuum model for diffusion of multiple species incorporating size exclusion effects. The system for two species leads to nonlinear cross-diffusion terms with double

  20. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    International Nuclear Information System (INIS)

    Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A

    2009-01-01

    The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.

  1. GHM method for obtaining rationalsolutions of nonlinear differential equations.

    Science.gov (United States)

    Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

    2015-01-01

    In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

  2. Saturation and stability of nonlinear photonic crystals

    International Nuclear Information System (INIS)

    Franco-Ortiz, M; Corella-Madueño, A; Rosas-Burgos, R A; Adrian Reyes, J; Avendaño, Carlos G

    2017-01-01

    We consider a one-dimensional photonic crystal made by an infinite set of nonlinear nematic films immersed in a linear dielectric medium. The thickness of each equidistant film is negligible and its refraction index depends continuously on the electric field intensity, giving rise to all the involved nonlinear terms, which joints from a starting linear index for negligible amplitudes to a final saturation index for extremely large field intensities. We show that the nonlinear exact solutions of this system form an intensity-dependent band structure which we calculate and analyze. Next, we ponder a finite version of this system; that is, we take a finite array of linear dielectric stacks of the same size separated by the same nonlinear extremely thin nematic slabs and find the reflection coefficients for this arrangement and obtain the dependence on the wave number and intensity of the incident wave. As a final step we analyze the stability of the analytical solutions of the nonlinear crystal by following the evolution of an additive amplitude to the analytical nonlinear solution we have found here. We discuss our results and state our conclusions. (paper)

  3. Complex state variable- and disturbance observer-based current controllers for AC drives

    DEFF Research Database (Denmark)

    Dal, Mehmet; Teodorescu, Remus; Blaabjerg, Frede

    2013-01-01

    In vector-controlled AC drives, the design of current controller is usually based on a machine model defined in synchronous frame coordinate, where the drive performance may be degraded by both the variation of the machine parameters and the cross-coupling between the d- and q-axes components...... of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path...... of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller....

  4. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  5. Neuromorphic meets neuromechanics, part II: the role of fusimotor drive

    Science.gov (United States)

    Jalaleddini, Kian; Minos Niu, Chuanxin; Chakravarthi Raja, Suraj; Sohn, Won Joon; Loeb, Gerald E.; Sanger, Terence D.; Valero-Cuevas, Francisco J.

    2017-04-01

    Objective. We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response. Approach. As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool. Main results. We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled. Significance. We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function—and its

  6. Wave modulation in a nonlinear dispersive medium

    International Nuclear Information System (INIS)

    Kim, Y.C.; Khadra, L.; Powers, E.J.

    1980-01-01

    A model describing the simultaneous amplitude and phase modulation of a carrier wave propagating in a nonlinear dispersive medium is developed in terms of nonlinear wave-wave interactions between the sidebands and a low frequency wave. It is also shown that the asymmetric distribution of sidebands is determined by the wavenumber dependence of the coupling coefficient. Digital complex demodulation techniques are used to study modulated waves in a weakly ionized plasma and the experimental results support the analytical model

  7. Free-vibration acoustic resonance of a nonlinear elastic bar

    Science.gov (United States)

    Tarumi, Ryuichi; Oshita, Yoshihito

    2011-02-01

    Free-vibration acoustic resonance of a one-dimensional nonlinear elastic bar was investigated by direct analysis in the calculus of variations. The Lagrangian density of the bar includes a cubic term of the deformation gradient, which is responsible for both geometric and constitutive nonlinearities. By expanding the deformation function into a complex Fourier series, we derived the action integral in an analytic form and evaluated its stationary conditions numerically with the Ritz method for the first three resonant vibration modes. This revealed that the bar shows the following prominent nonlinear features: (i) amplitude dependence of the resonance frequency; (ii) symmetry breaking in the vibration pattern; and (iii) excitation of the high-frequency mode around nodal-like points. Stability of the resonant vibrations was also addressed in terms of a convex condition on the strain energy density.

  8. Experimental verification of a bridge-shaped, nonlinear vibration energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Gafforelli, Giacomo, E-mail: giacomo.gafforelli@polimi.it; Corigliano, Alberto [Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, 20133 (Italy); Xu, Ruize; Kim, Sang-Gook [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-11-17

    This paper reports a comprehensive modeling and experimental characterization of a bridge shaped nonlinear energy harvester. A doubly clamped beam at large deflection requires stretching strain in addition to the bending strain to be geometrically compatible, which stiffens the beam as the beam deflects and transforms the dynamics to a nonlinear regime. The Duffing mode non-linear resonance widens the frequency bandwidth significantly at higher frequencies than the linear resonant frequency. The modeling includes a nonlinear measure of strain coupled with piezoelectric constitutive equations which end up in nonlinear coupling terms in the equations of motion. The main result supports that the power generation is bounded by the mechanical damping for both linear and nonlinear harvesters. Modeling also shows the power generation is over a wider bandwidth in the nonlinear case. A prototype is manufactured and tested to measure the power generation at different load resistances and acceleration amplitudes. The prototype shows a nonlinear behavior with well-matched experimental data to the modeling.

  9. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features.

  10. Preventing distracted driving among college students: Addressing smartphone use.

    Science.gov (United States)

    Hassani, Sahar; Kelly, Erin H; Smith, Jennifer; Thorpe, Sara; Sozzer, Fatima H; Atchley, Paul; Sullivan, Elroy; Larson, Dean; Vogel, Lawrence C

    2017-02-01

    Based on the National Highway Traffic Safety Association's (NHTSA) Report, fatalities due to distracted driving are on the rise and the highest proportion of fatalities by age group is the 20-29 year old category. To date little has been done to educate college students about the dangers of distracted driving and engage these students in promoting a safe driving culture. Intervening among college students has the potential for making real-time behavior change, can foster a lifetime of safe driving habits among these students, and can help contribute to a culture of safe driving that can be created and sustained through positive messages from peers. The goals of this study were to develop, implement and evaluate a distracted driving presentation for college students to change knowledge, attitude and behavior on distracted driving. A 30-min, multi-media presentation on distracted driving was presented to 19 colleges and universities, totaling 444 college students (mean age 23.7±7.0 years of age, 61% females, 39% males). Students completed three surveys: prior to the workshop (interview 1), immediately after the workshop (interview 2), and 3 months following the workshop (interview 3). We assessed changes between interview 1 and interview 2 and found 15 of the 15 attitude-knowledge based questions significantly improved after the course. In addition, we assessed changes from interviews 1 and 3, and found 11 of the 15 attitude-knowledge based questions maintained their significance. Responses to behavior related questions at three months were also compared to baseline, and significant improvements were found for 12 of the 14 questions. While this study was successful in improving the short-term attitude-knowledge and behaviors on distracted driving, work is needed to sustain (and evaluate) long-term effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Loss Minimization Sliding Mode Control of IPM Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Mehran Zamanifar

    2010-01-01

    Full Text Available In this paper, a nonlinear loss minimization control strategy for an interior permanent magnet synchronous motor (IPMSM based on a newly developed sliding mode approach is presented. This control method sets force the speed control of the IPMSM drives and simultaneously ensures the minimization of the losses besides the uncertainties exist in the system such as parameter variations which have undesirable effects on the controller performance except at near nominal conditions. Simulation results are presented to show the effectiveness of the proposed controller.

  12. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...

  13. The Power of Unit Root Tests Against Nonlinear Local Alternatives

    DEFF Research Database (Denmark)

    Demetrescu, Matei; Kruse, Robinson

    of Econometrics 112, 359-379) in comparison to the linear Dickey-Fuller test. To this end, we consider different adjustment schemes for deterministic terms. We provide asymptotic results which imply that the error variance has a severe impact on the behavior of the tests in the nonlinear case; the reason...... for such behavior is the interplay of nonstationarity and nonlinearity. In particular, we show that nonlinearity of the data generating process can be asymptotically negligible when the error variance is moderate or large (compared to the "amount of nonlinearity"), rendering the linear test more powerful than...

  14. Counter-diabatic driving for Dirac dynamics

    Science.gov (United States)

    Fan, Qi-Zhen; Cheng, Xiao-Hang; Chen, Xi

    2018-03-01

    In this paper, we investigate the fast quantum control of Dirac equation dynamics by counter-diabatic driving, sharing the concept of shortcut to adiabaticity. We systematically calculate the counter-diabatic terms in different Dirac systems, like graphene and trapped ions. Specially, the fast and robust population inversion processes are achieved in Dirac system, taking into account the quantum simulation with trapped ions. In addition, the population transfer between two bands can be suppressed by counter-diabatic driving in graphene system, which might have potential applications in opt-electric devices.

  15. Non-linear Dynamics Of Toroidicity-induced Alfven Eigenmodes On The National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Podesta, M.; Bell, R.E.; Crocker, N.A.; Fredrickson, E.D.; Gorelenkov, N.N.; Heidbrink, W.W.; Kubota, S.; LeBlanc, B.P.; Yu, H.

    2011-01-01

    The National Spherical Torus Experiment (NSTX, (M. Ono et al., Nucl. Fusion 40, 557 (2000))) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfvenic, with velocities 1 fast /v Alfven < 5. This provides a strong drive for toroidicity-induced Alfven eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (∼<30%) fast ion losses over ∼ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.

  16. Non-linear Dynamics Of Toroidicity-induced Alfven Eigenmodes On The National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Podesta, M; Crocker, N A; Fredrickson, E D; Gorelenkov, N N; Heidbrink, W W; Kubota, S; LeBlanc, B P

    2011-04-26

    The National Spherical Torus Experiment (NSTX, [M. Ono et al., Nucl. Fusion 40, 557 (2000)]) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfv enic, with velocities 1 < vfast=vAlfven < 5. This provides a strong drive for toroidicity-induced Alfv en eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (≤ 30%) fast ion losses over ~ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.

  17. Non-linear dynamics of toroidicity-induced Alfven eigenmodes on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Crocker, N.A.; Kubota, S.; Heidbrink, W.W.; Yuh, H.

    2011-01-01

    The National Spherical Torus Experiment (NSTX, (Ono et al 2000 Nucl. Fusion 40 557)) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfvenic, with velocities 1 fast /v Alfven < 5. This provides a strong drive for toroidicity-induced Alfven eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (∼<30%) fast ion losses over ∼1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.

  18. Collapse of solitary excitations in the nonlinear Schrödinger equation with nonlinear damping and white noise

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim

    1996-01-01

    in an exponentially decreasing width of the solution in the long-time limit. We also find that a sufficiently large noise variance may cause an initially localized distribution to spread instead of contracting, and that the critical variance necessary to cause dispersion will for small damping be the same......We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schrodinger equation (NLS). Using a collective approach, we find that for initial conditions where total collapse occurs in the unperturbed NLS, the presence of the damping term will instead...

  19. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Directory of Open Access Journals (Sweden)

    A. M. de Paor

    1998-01-01

    Full Text Available Hide (Nonlinear Processes in Geophysics, 1998 has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ε has the value 1 is proved via the Popov theorem from feedback system stability theory.

  20. Research on Dynamic Models and Performances of Shield Tunnel Boring Machine Cutterhead Driving System

    Directory of Open Access Journals (Sweden)

    Xianhong Li

    2013-01-01

    Full Text Available A general nonlinear time-varying (NLTV dynamic model and linear time-varying (LTV dynamic model are presented for shield tunnel boring machine (TBM cutterhead driving system, respectively. Different gear backlashes and mesh damped and transmission errors are considered in the NLTV dynamic model. The corresponding multiple-input and multiple-output (MIMO state space models are also presented. Through analyzing the linear dynamic model, the optimal reducer ratio (ORR and optimal transmission ratio (OTR are obtained for the shield TBM cutterhead driving system, respectively. The NLTV and LTV dynamic models are numerically simulated, and the effects of physical parameters under various conditions of NLTV dynamic model are analyzed. Physical parameters such as the load torque, gear backlash and transmission error, gear mesh stiffness and damped, pinions inertia and damped, large gear inertia and damped, and motor rotor inertia and damped are investigated in detail to analyze their effects on dynamic response and performances of the shield TBM cutterhead driving system. Some preliminary approaches are proposed to improve dynamic performances of the cutterhead driving system, and dynamic models will provide a foundation for shield TBM cutterhead driving system's cutterhead fault diagnosis, motion control, and torque synchronous control.

  1. Nonlinear Markov processes: Deterministic case

    International Nuclear Information System (INIS)

    Frank, T.D.

    2008-01-01

    Deterministic Markov processes that exhibit nonlinear transition mechanisms for probability densities are studied. In this context, the following issues are addressed: Markov property, conditional probability densities, propagation of probability densities, multistability in terms of multiple stationary distributions, stability analysis of stationary distributions, and basin of attraction of stationary distribution

  2. Exact solutions of a nonpolynomially nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Parwani, R.; Tan, H.S.

    2007-01-01

    A nonlinear generalisation of Schrodinger's equation had previously been obtained using information-theoretic arguments. The nonlinearities in that equation were of a nonpolynomial form, equivalent to the occurrence of higher-derivative nonlinear terms at all orders. Here we construct some exact solutions to that equation in 1+1 dimensions. On the half-line, the solutions resemble (exponentially damped) Bloch waves even though no external periodic potential is included. The solutions are nonperturbative as they do not reduce to solutions of the linear theory in the limit that the nonlinearity parameter vanishes. An intriguing feature of the solutions is their infinite degeneracy: for a given energy, there exists a very large arbitrariness in the normalisable wavefunctions. We also consider solutions to a q-deformed version of the nonlinear equation and discuss a natural discretisation implied by the nonpolynomiality. Finally, we contrast the properties of our solutions with other solutions of nonlinear Schrodinger equations in the literature and suggest some possible applications of our results in the domains of low-energy and high-energy physics

  3. TeenDrivingPlan effectiveness: the effect of quantity and diversity of supervised practice on teens' driving performance.

    Science.gov (United States)

    Mirman, Jessica H; Albert, W Dustin; Curry, Allison E; Winston, Flaura K; Fisher Thiel, Megan C; Durbin, Dennis R

    2014-11-01

    The large contribution of inexperience to the high crash rate of newly licensed teens suggests that they enter licensure with insufficient skills. In a prior analysis, we found moderate support for a direct effect of a web-based intervention, the TeenDrivingPlan (TDP), on teens' driving performance. The purpose of the present study was to identify the mechanisms by which TDP may be effective and to extend our understanding of how teens learn to drive. A randomized controlled trial conducted with teen permit holders and parent supervisors (N = 151 dyads) was used to determine if the effect of TDP on driver performance operated through five hypothesized mediators: (1) parent-perceived social support; (2) teen-perceived social support; (3) parent engagement; (4) practice quantity; and (5) practice diversity. Certified driving evaluators, blinded to teens' treatment allocation, assessed teens' driving performance 24 weeks after enrollment. Mediator variables were assessed on self-report surveys administered periodically over the study period. Exposure to TDP increased teen-perceived social support, parent engagement, and practice diversity. Both greater practice quantity and diversity were associated with better driving performance, but only practice diversity mediated the relationship between TDP and driver performance. Practice diversity is feasible to change and increases teens' likelihood of completing a rigorous on-road driving assessment just before licensure. Future research should continue to identify mechanisms that diversify practice driving, explore complementary ways to help families optimize the time they spend on practice driving, and evaluate the long-term effectiveness of TDP. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  4. Convex models and probabilistic approach of nonlinear fatigue failure

    International Nuclear Information System (INIS)

    Qiu Zhiping; Lin Qiang; Wang Xiaojun

    2008-01-01

    This paper is concerned with the nonlinear fatigue failure problem with uncertainties in the structural systems. In the present study, in order to solve the nonlinear problem by convex models, the theory of ellipsoidal algebra with the help of the thought of interval analysis is applied. In terms of the inclusion monotonic property of ellipsoidal functions, the nonlinear fatigue failure problem with uncertainties can be solved. A numerical example of 25-bar truss structures is given to illustrate the efficiency of the presented method in comparison with the probabilistic approach

  5. Solutions to nonlinear Schrodinger equations for special initial data

    Directory of Open Access Journals (Sweden)

    Takeshi Wada

    2015-11-01

    Full Text Available This article concerns the solvability of the nonlinear Schrodinger equation with gauge invariant power nonlinear term in one space dimension. The well-posedness of this equation is known only for $H^s$ with $s\\ge 0$. Under some assumptions on the nonlinearity, this paper shows that this equation is uniquely solvable for special but typical initial data, namely the linear combinations of $\\delta(x$ and p.v. (1/x, which belong to $H^{-1/2-0}$. The proof in this article allows $L^2$-perturbations on the initial data.

  6. A genuine nonlinear approach for controller design of a boiler-turbine system.

    Science.gov (United States)

    Yang, Shizhong; Qian, Chunjiang; Du, Haibo

    2012-05-01

    This paper proposes a genuine nonlinear approach for controller design of a drum-type boiler-turbine system. Based on a second order nonlinear model, a finite-time convergent controller is first designed to drive the states to their setpoints in a finite time. In the case when the state variables are unmeasurable, the system will be regulated using a constant controller or an output feedback controller. An adaptive controller is also designed to stabilize the system since the model parameters may vary under different operating points. The novelty of the proposed controller design approach lies in fully utilizing the system nonlinearities instead of linearizing or canceling them. In addition, the newly developed techniques for finite-time convergent controller are used to guarantee fast convergence of the system. Simulations are conducted under different cases and the results are presented to illustrate the performance of the proposed controllers. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  7. DAC to Mitigate the Effect of Periodic Disturbances on Drive Train using Collective Pitch for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammad; Hussain, Dil Muhammad Akbar; Soltani, Mohsen

    2015-01-01

    scheme to mitigate the effect of 3p flicker on drive train. 5MW wind turbine of the National Renewable Laboratories (NREL) is used as research object and results are simulated in MATLAB/Simulink. We designed the controller based on linearized model of the wind turbine generated for above rated wind speed...... and then tested its performance on the nonlinear model of wind turbine. We have shown a comparison of the results for proportional-integral(PI) and proposed DAC controller tested on nonlinear model of wind turbine. Result shows that our proposed controller shows better mitigation of flicker generated due to 3p......DAC is a linear control technique used to mitigate the effect of disturbance on the plant. It is a superposition of full state feedback and disturbance feedback. This paper presents a control technique based on Disturbance Accommodation Control (DAC) to reduce fatigue on drive train generated...

  8. Adaptive back-stepping control of the harmonic drive system with LuGre model-based friction compensation

    Science.gov (United States)

    Liu, Sen; Gang, Tieqiang

    2018-03-01

    Harmonic drives are widely used in aerospace and industrial robots. Flexibility, friction and parameter uncertainty will result in transmission performance degradation. In this paper, an adaptive back-stepping method with friction compensation is proposed to improve the tracking performance of the harmonic drive system. The nonlinear friction is described by LuGre model and compensated with a friction observer, and the uncertainty of model parameters is resolved by adaptive parameter estimation method. By using Lyapunov stability theory, it is proved that all the errors of the closed-loop system are uniformly ultimately bounded. Simulations illustrate the effectiveness of our friction compensation method.

  9. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  10. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-03-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  11. Analysis of the Nonlinear Characteristics of Microwave Power Heterojunction Bipolar Transistors and Optoelectronic Integrated Circuits.

    Science.gov (United States)

    Samelis, Apostolos

    A physical basis for large-signal HBT modeling was established in terms of transit times using a Monte Carlo analysis of AlGaAs/GaAs and GaInP/GaAs designs. Static carriers located in the collector-subcollector interface were found to prohibit accurate evaluation of transit times from electron velocity profiles. These carriers also influence the bias dependence of device capacitances. Analytical parameter extraction techniques for DC, thermal and high frequency HBT parameters were developed and applied to HBT large-signal modeling. The "impedance block" conditioned optimization technique was introduced to facilitate parameter extraction. Physical analysis of HBTs by means of Volterra Series techniques showed that C_{bc } dominates nonlinear distortion in high gain amplifiers. Designs with that C_{bc }-V_{cb} characteristics i.e. p -n collector HBTs lead to more than 10 dB IP3 improvement over n-collector HBTs. Nonlinear current cancellation was found to improve intermodulation distortion. A Gummel -Poon-based HBT large-signal model incorporating self-heating effects was developed and applied to AlGaAs/GaAs HBTs. Maximum power drive was shown to occur using constant V _{be} father than I_ {b} bias. The device temperature of constant I_{b} biased HBTs decreases at increased rf-drive levels ensuring in this case safer device operation. A large-signal model incorporating "soft" -breakdown effects typical of InP/InGaAs HBTs was developed and found to model succesfully the power characteristics of OEICs built with them. The effective large-signal transimpedance of a cascode transimpedance preamplifier was evaluated using this model and found to degrade by 3dBOmega for a variation of P_{in} from -65 to -5 dBm. Self-bias of individual transistors was studied and found to be related to variations of the amplifier characteristics at higher rf-drive levels. The power characteristics of CE and CB AlGaAs/GaAs HBTs were investigated using an on -wafer source/load pull setup

  12. A Simple Sensorless Scheme for Induction Motor Drives Fed by a Matrix Converter Using Constant Air-Gap Flux and PQR Transformation

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Lee, Kyo Beum

    2007-01-01

    This paper presents a new and simple method for sensorless operation of matrix converter drives using a constant air-gap flux and the imaginary power flowing to the motor. To improve low-speed sensorless performance, the non-linearities of a matrix converter drive such as commutation delays, turn......-on and turn-off times of switching devices, and on-state switching device voltage drop are modeled using PQR transformation and compensated using a reference current control scheme. The proposed compensation method is applied for high performance induction motor drives using a 3 kW matrix converter system...

  13. On the merits of heating and current drive for tearing mode stabilization

    International Nuclear Information System (INIS)

    De Lazzari, D.; Westerhof, E.

    2009-01-01

    Neoclassical tearing modes (NTMs) are magnetohydrodynamic modes that can limit the performance of high β discharges in a tokamak, leading eventually to a plasma disruption. A NTM is sustained by the perturbation of the 'bootstrap' current, which is a consequence of the pressure flattening across a magnetic island. Control and suppression of this mode can be achieved by means of electron cyclotron waves (ECWs) which allow the deposition of highly localized power at the island location. The ECW power replenishes the missing bootstrap current by generating a current perturbation either inductively, through a temperature perturbation (electron cyclotron resonance heating), or non-inductively by direct current drive (electron cyclotron current drive). Although both methods have been applied successfully to experiments showing a predominance of ECRH for medium-sized limiter tokamaks (TEXTOR, T-10) and of ECCD for mid-to-large-sized divertor tokamaks (AUG, DIII-D, JT-60), conditions determining their relative importance are still unclear. We address this problem with a numerical study focused on the contributions of heating and current drive to the temporal evolution of NTMs as described by the modified Rutherford equation. For the effects of both heating as well as current drive, simple analytical expressions have been found in terms of an efficiency fore-factor times a 'geometrical' term depending on the power deposition width w dep , location and modulation. When the magnetic island width w equals the width of the deposition profile, w ∼ w dep , both geometric terms are practically identical. Whereas for current drive the geometric term approaches a constant for small island widths and is inversely proportional to (w/w dep ) 2 for large island widths, the heating term approaches a constant for large island widths and is proportional to (w/w dep ) for small island widths. For medium-sized tokamaks (TEXTOR, AUG) the heating and current drive efficiencies are of the

  14. An analysis on older driver's driving behavior by GPS tracking data: Road selection, left/right turn, and driving speed

    Directory of Open Access Journals (Sweden)

    Yanning Zhao

    2018-02-01

    Full Text Available With the high older-related accident ratio and increasing population aging problem, understanding older drivers' driving behaviors has become more and more important for building and improving transportation system. This paper examines older driver's driving behavior which includes road selection, left/right turn and driving speed. A two-month experiment of 108 participants was carried out in Aichi Prefecture, Japan. Since apparently contradictory statements were often drawn in survey-based or simulators-based studies, this study collected not only drivers' basic information but also GPS data. Analysis of road selection demonstrates that older drivers are reluctant to drive on expressway not only in short trips but also in long trips. The present study did not find significant difference between older drivers and others while turning at the intersections. To investigate the impact factors on driving speed, a random-effects regression model is constructed with explanatory variables including age, gender, road types and the interaction terms between age and road types. Compared with other variables, it fails to find that age (60 years old or over has significant impact on driving speed. Moreover, the results reflect that older drivers drive even faster than others at particular road types: national road and ordinary municipal road. The results in this study are expected to help improve transportation planning and develop driving assistance systems for older drivers.

  15. Unusual motions due to nonlinear effects in a driven vibrating string

    Science.gov (United States)

    Hanson, Roger J.

    2005-09-01

    Usual nonlinear effects observed in a sinusoidally driven vibrating string include generation of motion perpendicular to the driving plane, sudden jumps of amplitude and associated hysteresis, and generation of higher harmonics. In addition, under some conditions, there can be a rich variety of unusual, very complex motions of a point on the string, the pattern of which, together with associated harmonic (and sometimes subharmonic) content, can change dramatically with a slight change in driving frequency or sometimes with constant driving frequency and force. Intrinsic string asymmetries can also have a profound effect on the behavior. In a brass harpsichord string (wire) such asymmetries can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%, strongly dependent on tension.) The two frequency components are associated, respectively, with the transverse motion along two orthogonal characteristic wire axes. Emphasis will be on display of optically detected unusual motion patterns of a point on the string, including an example of a pattern period of 10 s when driving at 50 Hz. See R. J. Hanson et al., J. Acoust. Soc. Am. 117, 400-412 (2005) for a more complete treatment.

  16. Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications

    Science.gov (United States)

    2016-10-22

    AFRL-AFOSR-JP-TR-2016-0088 Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications Sheng-Kwang Hwang NATIONAL CHENG KUNG...2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 26 May 2015 to 25 May 2016 4. TITLE AND SUBTITLE Nonlinear Photonic Systems for V- and W-Band...TERMS nonlinear, photonic , antenna, remote, microwave, amplification, bandwith, modulation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR

  17. Fuzzy model-based servo and model following control for nonlinear systems.

    Science.gov (United States)

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  18. Impaired driving from medical conditions: A 70-year-old man trying to decide if he should continue driving

    Science.gov (United States)

    Rizzo, Matthew

    2012-01-01

    Some medical disorders can impair performance, increasing the risk of driving safety errors that can lead to vehicle crashes. The causal pathway often involves a concatenation of factors or events, some of which can be prevented or controlled. Effective interventions can operate before, during, or after a crash occurs at the levels of driver capacity, vehicle and road design, and public policy. A variety of systemic, neurological, psychiatric, and developmental disorders put drivers at potential increased risk of a car crash in the short or long term. Medical diagnosis and age alone are usually insufficient criteria for determining fitness to drive. Strategies are needed for determining what types and levels of reduced function provide a threshold for disqualification in drivers with medical disorders. Evidence of decreased mileage, self-restriction to driving in certain situations, collisions, moving violations, aggressive driving, sleepiness, alcohol abuse, metabolic disorders, and multiple medications may trigger considerations of driver safety. A general framework for evaluating driver fitness relies on a functional evaluation of multiple domains (cognitive, motor, perceptual, and psychiatric) that are important for safe driving and can be applied across many disorders, including conditions that have rarely been studied with respect to driving, and in patients with multiple conditions and medications. Neurocognitive tests, driving simulation, and road tests provide complementary sources of evidence to evaluate driver safety. No single test is sufficient to determine who should drive and who should not. PMID:21364126

  19. Impaired driving from medical conditions: a 70-year-old man trying to decide if he should continue driving.

    Science.gov (United States)

    Rizzo, Matthew

    2011-03-09

    Some medical disorders can impair performance, increasing the risk of driving safety errors that can lead to vehicle crashes. The causal pathway often involves a concatenation of factors or events, some of which can be prevented or controlled. Effective interventions can operate before, during, or after a crash occurs at the levels of driver capacity, vehicle and road design, and public policy. A variety of systemic, neurological, psychiatric, and developmental disorders put drivers at potential increased risk of a car crash in the short or long term. Medical diagnosis and age alone are usually insufficient criteria for determining fitness to drive. Strategies are needed for determining what types and levels of reduced function provide a threshold for disqualification in drivers with medical disorders. Evidence of decreased mileage, self-restriction to driving in certain situations, collisions, moving violations, aggressive driving, sleepiness, alcohol abuse, metabolic disorders, and multiple medications may trigger considerations of driver safety. A general framework for evaluating driver fitness relies on a functional evaluation of multiple domains (cognitive, motor, perceptual, and psychiatric) that are important for safe driving and can be applied across many disorders, including conditions that have rarely been studied with respect to driving, and in patients with multiple conditions and medications. Neurocognitive tests, driving simulation, and road tests provide complementary sources of evidence to evaluate driver safety. No single test is sufficient to determine who should drive and who should not.

  20. Design of High-Security USB Flash Drives Based on Chaos Authentication

    Directory of Open Access Journals (Sweden)

    Teh-Lu Liao

    2018-05-01

    Full Text Available This paper aims to propose a novel design of high-security USB flash drives with the chaos authentication. A chaos authentication approach with the non-linear encryption and decryption function design is newly proposed and realized based on the controller design of chaos synchronization. To complete the design of high-security USB flash drives, first, we introduce six parameters into the original Henon map to adjust and obtain richer chaotic state responses. Then a discrete sliding mode scheme is proposed to solve the synchronization problem of discrete hyperchaotic Henon maps. The proposed sliding mode controller can ensure the synchronization of the master-slave Henon maps. The selection of the switching surface and the existence of the sliding motion are also addressed. Finally, the obtained results are applied to design a new high-security USB flash drive with chaos authentication. We built discrete hyperchaotic Henon maps in the smartphone (master and microcontroller (slave, respectively. The Bluetooth module is used to communicate between the master and the slave to achieve chaos synchronization such that the same random and dynamical chaos signal can be simultaneously obtained at both the USB flash drive and smartphone, and pass the chaos authentication. When users need to access data in the flash drive, they can easily enable the encryption APP in the smartphone (master for chaos authentication. After completing the chaos synchronization and authentication, the ARM-based microcontroller allows the computer to access the data in the high-security USB flash drive.

  1. Skeletal Muscle Pump Drives Control of Cardiovascular and Postural Systems

    Science.gov (United States)

    Verma, Ajay K.; Garg, Amanmeet; Xu, Da; Bruner, Michelle; Fazel-Rezai, Reza; Blaber, Andrew P.; Tavakolian, Kouhyar

    2017-03-01

    The causal interaction between cardio-postural-musculoskeletal systems is critical in maintaining postural stability under orthostatic challenge. The absence or reduction of such interactions could lead to fainting and falls often experienced by elderly individuals. The causal relationship between systolic blood pressure (SBP), calf electromyography (EMG), and resultant center of pressure (COPr) can quantify the behavior of cardio-postural control loop. Convergent cross mapping (CCM) is a non-linear approach to establish causality, thus, expected to decipher nonlinear causal cardio-postural-musculoskeletal interactions. Data were acquired simultaneously from young participants (25 ± 2 years, n = 18) during a 10-minute sit-to-stand test. In the young population, skeletal muscle pump was found to drive blood pressure control (EMG → SBP) as well as control the postural sway (EMG → COPr) through the significantly higher causal drive in the direction towards SBP and COPr. Furthermore, the effect of aging on muscle pump activation associated with blood pressure regulation was explored. Simultaneous EMG and SBP were acquired from elderly group (69 ± 4 years, n = 14). A significant (p = 0.002) decline in EMG → SBP causality was observed in the elderly group, compared to the young group. The results highlight the potential of causality to detect alteration in blood pressure regulation with age, thus, a potential clinical utility towards detection of fall proneness.

  2. On unitary representations of the exceptional non-linear N=7 and N=8 superconformal algebras in terms of free fields

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1996-01-01

    The simplest free-field realizations of the exceptional non-linear (quadratically generated, or W-type) N=8 and N=7 superconformal algebras with Spin(7) and G 2 affine currents, respectively, are investigated. Both the N=8 and N=7 algebras are found to admit unitary and highest-weight irreducible representations in terms of a single free boson and free fermions in 8 of Spin(7) or 7 of G 2 , respectively, at level k=1 and the corresponding central charges c 8 =26/5 and c 7 =5. (orig.)

  3. Dissimilar trend of nonlinearity in ultrasound transducers and systems at resonance and non-resonance frequencies

    DEFF Research Database (Denmark)

    Ghasemi, Negareh; Zare, Firuz; Davari, Pooya

    2017-01-01

    Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric...... was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30–200 V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage...... and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across...

  4. Particular solutions to multidimensional PDEs with KdV-type nonlinearity

    International Nuclear Information System (INIS)

    Zenchuk, A.I.

    2014-01-01

    We consider a class of particular solutions to the (2+1)-dimensional nonlinear partial differential equation (PDE) u t +∂ x 2 n u x 1 −u x 1 u=0 (here n is any integer) reducing it to the ordinary differential equation (ODE). In a simplest case, n=1, the ODE is solvable in terms of elementary functions. Next choice, n=2, yields the cnoidal waves for the special case of Zakharov–Kuznetsov equation. The proposed method is based on the deformation of the characteristic of the equation u t −uu x 1 =0 and might also be useful in study of the higher-dimensional PDEs with arbitrary linear part and KdV-type nonlinearity (i.e. the nonlinear term is u x 1 u).

  5. Linear and nonlinear theory study of Alpha Virginis

    International Nuclear Information System (INIS)

    Cox, A.N.; Hodson, S.W.; Clancy, S.P.

    1981-01-01

    Nonlinear radiation hydrodynamic calculations using a model for α Virginis, a β Cephei star, have been made to see if the cause of the recurrent radial pulsation epochs can be discovered. The basic observed characteristics of β Cephei variables are presented. A review of the various proposals to make these stars pulsate concludes that the excitation mechanism must be in the central convective core or variable composition regions. The envelope damps radial fundamental mode pulsations in 4 years and in even shorter periods for radial overtones. It is proposed here that the mixing of envelope hydrogen into the hydrogen depleted (or even exhausted) core can produce periodic pressure pulses which drive the pulsation amplitude up to the observed value. During the decay of the pulsations, evolution toward higher luminosities enables further episodes of mixing and driving to occur. We predict rapid amplitude increases when mixing occurs and a slow decay of radial (and nonradial modes for other β Cephei variables) between mixing episodes

  6. Controllability for Variational Inequalities of Parabolic Type with Nonlinear Perturbation

    Directory of Open Access Journals (Sweden)

    Jeong Jin-Mun

    2010-01-01

    Full Text Available We deal with the approximate controllability for the nonlinear functional differential equation governed by the variational inequality in Hilbert spaces and present a general theorems under which previous results easily follow. The common research direction is to find conditions on the nonlinear term such that controllability is preserved under perturbation.

  7. Dynamical behaviors of the shock compacton in the nonlinearly Schrödinger equation with a source term

    International Nuclear Information System (INIS)

    Yin, Jiuli; Zhao, Liuwei

    2014-01-01

    In this paper, the dynamics from the shock compacton to chaos in the nonlinearly Schrödinger equation with a source term is investigated in detail. The existence of unclosed homoclinic orbits which are not connected with the saddle point indicates that the system has a discontinuous fiber solution which is a shock compacton. We prove that the shock compacton is a weak solution. The Melnikov technique is used to detect the conditions for the occurrence from the shock compacton to chaos and further analysis of the conditions for chaos suppression. The results show that the system turns to chaos easily under external disturbances. The critical parameter values for chaos appearing are obtained analytically and numerically using the Lyapunov exponents and the bifurcation diagrams

  8. Identifying Method of Drunk Driving Based on Driving Behavior

    Directory of Open Access Journals (Sweden)

    Xiaohua Zhao

    2011-05-01

    Full Text Available Drunk driving is one of the leading causes contributing to traffic crashes. There are numerous issues that need to be resolved with the current method of identifying drunk driving. Driving behavior, with the characteristic of real-time, was extensively researched to identify impaired driving behaviors. In this paper, the drives with BACs above 0.05% were defined as drunk driving state. A detailed comparison was made between normal driving and drunk driving. The experiment in driving simulator was designed to collect the driving performance data of the groups. According to the characteristics analysis for the effect of alcohol on driving performance, seven significant indicators were extracted and the drunk driving was identified by the Fisher Discriminant Method. The discriminant function demonstrated a high accuracy of classification. The optimal critical score to differentiate normal from drinking state was found to be 0. The evaluation result verifies the accuracy of classification method.

  9. Compensation of head-on beam-beam induced resonance driving terms and tune spread in the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    W. Fischer

    2017-09-01

    Full Text Available A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015PRLTAO0031-900710.1103/PhysRevLett.115.264801]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.

  10. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima

    2017-07-10

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.

  11. Fluctuation Reduction in a Si Micromechanical Resonator Tuned to Nonlinear Internal Resonance

    Science.gov (United States)

    Strachan, B. Scott; Czaplewski, David; Chen, Changyao; Dykman, Mark; Lopez, Daniel; Shaw, Steven

    2015-03-01

    We describe experimental and theoretical results on an unusual behavior of fluctuations when the system exhibits internal resonance. We study the fundamental flexural mode (FFM) of a Si microbeam. The FFM is electrically actuated and detected. It is resonantly nonlinearly coupled to another mode, which is not directly accessible and has a frequency nearly three times the FFM frequency. Both the FFM and the passive mode have long lifetimes. We find that the passive mode can be a ``sink'' for fluctuations of the FFM. This explains the recently observed dramatic decrease of these fluctuations at nonlinear resonance. The re-distribution of the vibration amplitudes and the fluctuations is reminiscent of what happens at level anti-crossing in quantum mechanics. However, here it is different because of interplay of the dependence of the vibration frequency of the FFM on its amplitude due to internal nonlinearity and the nonlinear resonance with the passive mode. We study both the response of the system to external resonant driving and also the behavior of the system in the presence of a feedback loop. The experimental and theoretical results are in good agreement.

  12. Views of US drivers about driving safety.

    Science.gov (United States)

    Williams, Allan F

    2003-01-01

    To assess how drivers view dangers on the highway, what motivates them to drive safely, how they say they reduce their crash and injury risk, and how they rate their own driving skills. Most drivers rated their skills as better than average. The biggest motivating factor for safe driving was concern for safety of others in their vehicle, followed by negative outcomes such as being in a crash, increased insurance costs, and fines. The greatest threats to their safety were thought to be other drivers' actions that increase crash risk such as alcohol impairment or running red lights. In terms of reducing crashes and injuries, drivers tended to focus on actions they could take such as driving defensively or using seat belts. There was less recognition of the role of vehicles and vehicle features in crash or injury prevention. Knowing how drivers view themselves and others, their concerns, and their motivations and techniques for staying out of trouble on the roads provides insight into the difficulty of changing driving practices.

  13. Nonlinear State Space Modeling and System Identification for Electrohydraulic Control

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2013-01-01

    Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.

  14. The use of induction linacs with nonlinear magnetic drive as high average power accelerators

    International Nuclear Information System (INIS)

    Birx, D.L.; Cook, E.G.; Hawkins, S.A.; Newton, M.A.; Poor, S.E.; Reginato, L.L.; Schmidt, J.A.; Smith, M.W.

    1985-01-01

    The marriage of induction linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/m, and with power efficiences approaching 50%. A 2 MeV, 5 kA electron accelerator is under construction at Lawrence Livermore National Laboratory (LLNL) to allow us to demonstrate some of these concepts. Progress on this project is reported here. (orig.)

  15. NOLB: Nonlinear Rigid Block Normal Mode Analysis Method

    OpenAIRE

    Hoffmann , Alexandre; Grudinin , Sergei

    2017-01-01

    International audience; We present a new conceptually simple and computationally efficient method for nonlinear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a nonlinear extrapolation of motion out of these veloci...

  16. Nonlinear coupled equations for electrochemical cells as developed by the general equation for nonequilibrium reversible-irreversible coupling.

    Science.gov (United States)

    Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian

    2014-09-28

    We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.

  17. Nonlinear coupled equations for electrochemical cells as developed by the general equation for nonequilibrium reversible-irreversible coupling

    Science.gov (United States)

    Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian

    2014-09-01

    We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.

  18. Universal formats for nonlinear ordinary differential systems

    International Nuclear Information System (INIS)

    Kerner, E.H.

    1981-01-01

    It is shown that very general nonlinear ordinary differential systems (embracing all that arise in practice) may, first, be brought down to polynomial systems (where the nonlinearities occur only as polynomials in the dependent variables) by introducing suitable new variables into the original system; second, that polynomial systems are reducible to ''Riccati systems,'' where the nonlinearities are quadratic at most; third, that Riccati systems may be brought to elemental universal formats containing purely quadratic terms with simple arrays of coefficients that are all zero or unity. The elemental systems have representations as novel types of matrix Riccati equations. Different starting systems and their associated Riccati systems differ from one another, at the final elemental level, in order and in initial data, but not in format

  19. Comparison of three nonlinear models to describe long-term tag shedding by lake trout

    Science.gov (United States)

    Fabrizio, Mary C.; Swanson, Bruce L.; Schram, Stephen T.; Hoff, Michael H.

    1996-01-01

    We estimated long-term tag-shedding rates for lake trout Salvelinus namaycush using two existing models and a model we developed to account for the observed permanence of some tags. Because tag design changed over the course of the study, we examined tag-shedding rates for three types of numbered anchor tags (Floy tags FD-67, FD-67C, and FD-68BC) and an unprinted anchor tag (FD-67F). Lake trout from the Gull Island Shoal region, Lake Superior, were double-tagged, and subsequent recaptures were monitored in annual surveys conducted from 1974 to 1992. We modeled tag-shedding rates, using time at liberty and probabilities of tag shedding estimated from fish released in 1974 and 1978–1983 and later recaptured. Long-term shedding of numbered anchor tags in lake trout was best described by a nonlinear model with two parameters: an instantaneous tag-shedding rate and a constant representing the proportion of tags that were never shed. Although our estimates of annual shedding rates varied with tag type (0.300 for FD-67, 0.441 for FD-67C, and 0.656 for FD-68BC), differences were not significant. About 36% of tags remained permanently affixed to the fish. Of the numbered tags that were shed (about 64%), two mechanisms contributed to tag loss: disintegration and dislodgment. Tags from about 11% of recaptured fish had disintegrated, but most tags were dislodged. Unprinted tags were shed at a significant but low rate immediately after release, but the long-term, annual shedding rate of these tags was only 0.013. Compared with unprinted tags, numbered tags dislodged at higher annual rates; we hypothesized that this was due to the greater frictional drag associated with the larger cross-sectional area of numbered tags.

  20. Grid-forming VSC control in four-wire systems with unbalanced nonlinear loads

    DEFF Research Database (Denmark)

    Lliuyacca, Ruben; Mauricioa, Juan M.; Gomez-Exposito, Antonio

    2017-01-01

    A grid-forming voltage source converter (VSC) is responsible to hold voltage and frequency in autonomous operation of isolated systems. In the presence of unbalanced loads, a fourth leg is added to provide current path for neutral currents. In this paper, a novel control scheme for a four-leg VSC...... feeding unbalanced linear and nonlinear loads is proposed. The control is based on two control blocks. A main control commands the switching sequence to the three-phase VSC ensuring balanced three-phase voltage at the output; and an independent control to the fourth leg drives neutral currents that might...... response during system disturbances and mitigation of harmonics when nonlinear loads are present. Simulations and experimental results are presented to verify the performance of the proposed control strategy....

  1. Highway vehicle electric drive in the United States : 2009 status and issues.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  2. The influence of continuous historical velocity difference information on micro-cooperative driving stability

    Science.gov (United States)

    Yang, Liang-Yi; Sun, Di-Hua; Zhao, Min; Cheng, Sen-Lin; Zhang, Geng; Liu, Hui

    2018-03-01

    In this paper, a new micro-cooperative driving car-following model is proposed to investigate the effect of continuous historical velocity difference information on traffic stability. The linear stability criterion of the new model is derived with linear stability theory and the results show that the unstable region in the headway-sensitivity space will be shrunk by taking the continuous historical velocity difference information into account. Through nonlinear analysis, the mKdV equation is derived to describe the traffic evolution behavior of the new model near the critical point. Via numerical simulations, the theoretical analysis results are verified and the results indicate that the continuous historical velocity difference information can enhance the stability of traffic flow in the micro-cooperative driving process.

  3. Nonlinear Analysis of Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Ottosen, N. S.; Krenk, Steen

    1979-01-01

    The paper covers some material and computational aspects of the rock mechanics of leached cavities in salt. A material model is presented in which the instantaneous stiffness of the salt is obtained by interpolation between the unloaded state and a relevant failure state. The model enables predic...... prediction of short term triaxial behaviour from uniaxial stress-strain curves. Key results from a nonlinear finite element calculation of a gas-filled cavity are given, and the general features are related to a simple nonlinear method of stress evaluation....

  4. Interaction of Lyapunov vectors in the formulation of the nonlinear extension of the Kalman filter.

    Science.gov (United States)

    Palatella, Luigi; Trevisan, Anna

    2015-04-01

    When applied to strongly nonlinear chaotic dynamics the extended Kalman filter (EKF) is prone to divergence due to the difficulty of correctly forecasting the forecast error probability density function. In operational forecasting applications ensemble Kalman filters circumvent this problem with empirical procedures such as covariance inflation. This paper presents an extension of the EKF that includes nonlinear terms in the evolution of the forecast error estimate. This is achieved starting from a particular square-root implementation of the EKF with assimilation confined in the unstable subspace (EKF-AUS), that is, the span of the Lyapunov vectors with non-negative exponents. When the error evolution is nonlinear, the space where it is confined is no more restricted to the unstable and neutral subspace causing filter divergence. The algorithm presented here, denominated EKF-AUS-NL, includes the nonlinear terms in the error dynamics: These result from the nonlinear interaction among the leading Lyapunov vectors and account for all directions where the error growth may take place. Numerical results show that with the nonlinear terms included, filter divergence can be avoided. We test the algorithm on the Lorenz96 model, showing very promising results.

  5. Essentials of nonlinear optics

    CERN Document Server

    Murti, Y V G S

    2014-01-01

    Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.

  6. Compensating amplitude-dependent tune-shift without driving fourth-order resonances

    Science.gov (United States)

    Ögren, J.; Ziemann, V.

    2017-10-01

    If octupoles are used in a ring to correct the amplitude-dependent tune-shift one normally tries to avoid that the octupoles drive additional resonances. Here we consider the optimum placement of octupoles that only affects the amplitude-dependent tune-shift, but does not drive fourth-order resonances. The simplest way turns out to place three equally powered octupoles with 60 ° phase advance between adjacent magnets. Using two such octupole triplets separated by a suitable phase advance cancels all fourth-order resonance driving terms and forms a double triplet we call a six-pack. Using three six-packs at places with different ratios of the beta functions allows to independently control all amplitude-dependent tune-shift terms without exciting additional fourth-order resonances in first order of the octupole excitation.

  7. Efficiency trends in electric machines and drives

    International Nuclear Information System (INIS)

    Mecrow, B.C.; Jack, A.G.

    2008-01-01

    Almost all electricity in the UK is generated by rotating electrical generators, and approximately half of it is used to drive electrical motors. This means that efficiency improvements to electrical machines can have a very large impact on energy consumption. The key challenges to increased efficiency in systems driven by electrical machines lie in three areas: to extend the application of variable-speed electric drives into new areas through reduction of power electronic and control costs; to integrate the drive and the driven load to maximise system efficiency; and to increase the efficiency of the electrical drive itself. In the short to medium term, efficiency gains within electrical machines will result from the development of new materials and construction techniques. Approximately a quarter of new electrical machines are driven by variable-speed drives. These are a less mature product than electrical machines and should see larger efficiency gains over the next 50 years. Advances will occur, with new types of power electronic devices that reduce switching and conduction loss. With variable-speed drives, there is complete freedom to vary the speed of the driven load. Replacing fixed-speed machines with variable-speed drives for a high proportion of industrial loads could mean a 15-30% energy saving. This could save the UK 15 billion kWh of electricity per year which, when combined with motor and drive efficiency gains, would amount to a total annual saving of 24 billion kWh

  8. Initial boundary value problems of nonlinear wave equations in an exterior domain

    International Nuclear Information System (INIS)

    Chen Yunmei.

    1987-06-01

    In this paper, we investigate the existence and uniqueness of the global solutions to the initial boundary value problems of nonlinear wave equations in an exterior domain. When the space dimension n >= 3, the unique global solution of the above problem is obtained for small initial data, even if the nonlinear term is fully nonlinear and contains the unknown function itself. (author). 10 refs

  9. The Drive-Wise Project: Driving Simulator Training increases real driving performance in healthy older drivers

    Directory of Open Access Journals (Sweden)

    Gianclaudio eCasutt

    2014-05-01

    Full Text Available Background: Age-related cognitive decline is often associated with unsafe driving behavior. We hypothesized that 10 active training sessions in a driving simulator increase cognitive and on-road driving performance. In addition, driving simulator training should outperform cognitive training.Methods: Ninety-one healthy active drivers (62 – 87 years were randomly assigned to either (1 a driving simulator training group, (2 an attention training group (vigilance and selective attention, or (3 a control group. The main outcome variables were on-road driving and cognitive performance. Seventy-seven participants (85% completed the training and were included in the analyses. Training gains were analyzed using a multiple regression analysis with planned comparisons.Results: The driving simulator training group showed an improvement in on-road driving performance compared to the attention training group. In addition, both training groups increased cognitive performance compared to the control group. Conclusion: Driving simulator training offers the potential to enhance driving skills in older drivers. Compared to the attention training, the simulator training seems to be a more powerful program for increasing older drivers’ safety on the road.

  10. Modeling and Simulation of Nonlinear Micro-electromechanical Circular Plate

    Directory of Open Access Journals (Sweden)

    Chin-Chia Liu

    2013-09-01

    Full Text Available In the present study, the hybrid differential transformation and finite difference method is applied to analyze the dynamic behavior of the nonlinear micro-electromechanical circular plate actuated by combined DC / AC loading schemes. The analysis takes account of the axial residual stress and hydrostatic pressure acting on micro circular plate upper surface. The dynamic response of the plate as a function of the magnitude of the AC driving voltage is explored. Moreover, the effect of the initial gap height on the pull-in voltage of the plate is systematically explored.

  11. On nonlinear excitation of voids in dusty plasmas

    International Nuclear Information System (INIS)

    Nebbat, E.; Annou, R.; Bharuthram, R.

    2007-01-01

    The void, which is a dust-free region inside the dust cloud in the plasma, results from a balance of the electrostatic force and the ion-drag force on a dust particulate that has numerous forms, some of which are based on models whereas others are driven from first principles. To explain the generation of voids, K. Avinash, A. Bhattacharjee, and S. Hu [Phys. Rev. Lett. 90, 075001 (2003)] proposed a time-dependent nonlinear model that describes the void as a result of an instability. We augment this model by incorporating the grain drift and reintroducing the velocity convective term as well as by replacing the modeled ion-drag force by a more accurate one. The analysis is conducted in a spherical configuration. It is revealed that the void formation is a threshold phenomenon, i.e., it depends on the grain size. Furthermore, the void possesses a sharp boundary beyond which the dust density decreases and may present a corrugated aspect. For big size grains, the use of both ion-drag forces leads to voids of the same dimension, though for grains of small sizes, the Avinash force drives voids of a higher dimension. The model shows good agreement with the experiment

  12. Electrical drives for direct drive renewable energy systems

    CERN Document Server

    Mueller, Markus

    2013-01-01

    Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and a...

  13. On the nucleon-nucleon potential obtained from non-linear coupling

    International Nuclear Information System (INIS)

    El Ghabaty, S.S.

    1975-07-01

    The static limit of a pseudoscalar symmetric meson theory of nuclear forces is examined. The Born-Oppenheimer potential is determined for the case of two very heavy nucleons exchanging pseudoscalar isovector pions with non-linear coupling. It is found that the non-linear terms induced by the γ 5 coupling are cancelled by the additional pion-nucleon coupling of the non-linear sigma model. The nucleon-nucleon potential thus obtained is the same as the Yukava potential except for strength at different separations between the two nucleons

  14. Dynamic nonlinear elasticity in geo materials

    International Nuclear Information System (INIS)

    Ostrovsky, L.A.; Johnson, P.A.

    2001-01-01

    The nonlinear elastic behaviour of earth materials is an extremely rich topic, one that has broad implications to earth and materials sciences, including strong ground motion, rock physics, nondestructive evaluation and materials science. The mechanical properties of rock appear to place it in a broader class of materials, it can be named the Structural nonlinear elasticity class (also Mesoscopic/nano scale elasticity, or MS/NSE class). These terms are in contrast to materials that display classical, Atomic Elasticity, such as most fluids and monocrystalline solids. The difference between these two categories of materials is both in intensity and origin of their nonlinear response. The nonlinearity of atomic elastic materials is due to the atomic/molecular lattice anharmonicity. The latter is relatively small because the intermolecular forces are extremely strong. In contrast, the materials considered below contain small soft features that it is called the bond system (cracks, grain contacts, dislocations, etc.) within a hard matrix and relaxation (slow dynamical effects) are characteristic, non of which appear in atomic elastic materials. The research begins with a brief historical background from nonlinear acoustics to the recent developments in rock nonlinearity. This is followed by an overview of some representative laboratory measurements which serve as primary indicators of nonlinear behaviour, followed by theoretical development, and finally, mention a variety of observations of nonlinearity under field conditions and applications to nondestructive testing of materials. The goal is not to survey all papers published in the are but to demonstrate some experimental and theoretical results and ideas that will the reader to become oriented in this broad and rapidly growing area bridging macro-, meso- and microscale (nano scale) phenomena in physics, materials science, and geophysics

  15. Nonlinear Entanglement and its Application to Generating Cat States

    Science.gov (United States)

    Shen, Y.; Assad, S. M.; Grosse, N. B.; Li, X. Y.; Reid, M. D.; Lam, P. K.

    2015-03-01

    The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.

  16. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a......, for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical...

  17. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1993-07-01

    We obtain the exact Dirac algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. The non-linear terms are computed in closed form. In each Dirac bracket we only find highest order terms (as explained in the paper), defining a saturated algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, containing now a calculable correction of order one unit lower. (author). 22 refs, 5 figs

  18. An exactly solvable three-dimensional nonlinear quantum oscillator

    International Nuclear Information System (INIS)

    Schulze-Halberg, A.; Morris, J. R.

    2013-01-01

    Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states

  19. An exactly solvable three-dimensional nonlinear quantum oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Halberg, A. [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States); Morris, J. R. [Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)

    2013-11-15

    Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states.

  20. Improving Motor and Drive System Performance – A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-01

    This sourcebook outlines opportunities to improve motor and drive systems performance. The sourcebook is divided into four main sections: (1) Motor and Drive System Basics: Summarizes important terms, relationships, and system design considerations relating to motor and drive systems. (2) Performance Opportunity Road Map: Details the key components of well-functioning motor and drive systems and opportunities for energy performance opportunities. (3) Motor System Economics: Offers recommendations on how to propose improvement projects based on corporate priorities, efficiency gains, and financial payback periods. (4) Where to Find Help: Provides a directory of organizations associated with motors and drives, as well as resources for additional information, tools, software, videos, and training opportunities.

  1. Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes

    NARCIS (Netherlands)

    Ayten, B.; Westerhof, E.; ASDEX Upgrade team,

    2014-01-01

    Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived

  2. Robust stabilization of nonlinear systems: The LMI approach

    Directory of Open Access Journals (Sweden)

    Šiljak D. D.

    2000-01-01

    Full Text Available This paper presents a new approach to robust quadratic stabilization of nonlinear systems within the framework of Linear Matrix Inequalities (LMI. The systems are composed of a linear constant part perturbed by an additive nonlinearity which depends discontinuously on both time and state. The only information about the nonlinearity is that it satisfies a quadratic constraint. Our major objective is to show how linear constant feedback laws can be formulated to stabilize this type of systems and, at the same time, maximize the bounds on the nonlinearity which the system can tolerate without going unstable. We shall broaden the new setting to include design of decentralized control laws for robust stabilization of interconnected systems. Again, the LMI methods will be used to maximize the class of uncertain interconnections which leave the overall system connectively stable. It is useful to learn that the proposed LMI formulation “recognizes” the matching conditions by returning a feedback gain matrix for any prescribed bound on the interconnection terms. More importantly, the new formulation provides a suitable setting for robust stabilization of nonlinear systems where the nonlinear perturbations satisfy the generalized matching conditions.

  3. General decay of solutions of a nonlinear system of viscoelastic wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2011-04-16

    This work is concerned with a system of two viscoelastic wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we prove that, for certain class of relaxation functions and for some restrictions on the initial data, the rate of decay of the total energy depends on those of the relaxation functions. This result improves many results in the literature, such as the ones in Messaoudi and Tatar (Appl. Anal. 87(3):247-263, 2008) and Liu (Nonlinear Anal. 71:2257-2267, 2009) in which only the exponential and polynomial decay rates are considered. © 2011 Springer Basel AG.

  4. General decay of solutions of a nonlinear system of viscoelastic wave equations

    KAUST Repository

    Said-Houari, Belkacem; Messaoudi, Salim A.; Guesmia, Aï ssa

    2011-01-01

    This work is concerned with a system of two viscoelastic wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we prove that, for certain class of relaxation functions and for some restrictions on the initial data, the rate of decay of the total energy depends on those of the relaxation functions. This result improves many results in the literature, such as the ones in Messaoudi and Tatar (Appl. Anal. 87(3):247-263, 2008) and Liu (Nonlinear Anal. 71:2257-2267, 2009) in which only the exponential and polynomial decay rates are considered. © 2011 Springer Basel AG.

  5. Linear and non-linear autoregressive models for short-term wind speed forecasting

    International Nuclear Information System (INIS)

    Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.

    2016-01-01

    Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.

  6. Parameterization of Mixed Layer and Deep-Ocean Mesoscales Including Nonlinearity

    Science.gov (United States)

    Canuto, V. M.; Cheng, Y.; Dubovikov, M. S.; Howard, A. M.; Leboissetier, A.

    2018-01-01

    In 2011, Chelton et al. carried out a comprehensive census of mesoscales using altimetry data and reached the following conclusions: "essentially all of the observed mesoscale features are nonlinear" and "mesoscales do not move with the mean velocity but with their own drift velocity," which is "the most germane of all the nonlinear metrics."� Accounting for these results in a mesoscale parameterization presents conceptual and practical challenges since linear analysis is no longer usable and one needs a model of nonlinearity. A mesoscale parameterization is presented that has the following features: 1) it is based on the solutions of the nonlinear mesoscale dynamical equations, 2) it describes arbitrary tracers, 3) it includes adiabatic (A) and diabatic (D) regimes, 4) the eddy-induced velocity is the sum of a Gent and McWilliams (GM) term plus a new term representing the difference between drift and mean velocities, 5) the new term lowers the transfer of mean potential energy to mesoscales, 6) the isopycnal slopes are not as flat as in the GM case, 7) deep-ocean stratification is enhanced compared to previous parameterizations where being more weakly stratified allowed a large heat uptake that is not observed, 8) the strength of the Deacon cell is reduced. The numerical results are from a stand-alone ocean code with Coordinated Ocean-Ice Reference Experiment I (CORE-I) normal-year forcing.

  7. Origin of soft limits from nonlinear supersymmetry in Volkov-Akulov theory

    Energy Technology Data Exchange (ETDEWEB)

    Kallosh, Renata; Karlsson, Anna; Murli, Divyanshu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-03-15

    We apply the background field technique, recently developed for a general class of nonlinear symmetries, at tree level, to the Volkov-Akulov theory with spontaneously broken N=1 supersymmetry. We find that the background field expansion in terms of the free fields to the lowest order reproduces the nonlinear supersymmetry transformation rules. The double soft limit of the background field is, in agreement with the new general identities, defined by the algebra of the nonlinear symmetries.

  8. NONLINEAR REFLECTION PROCESS OF LINEARLY POLARIZED, BROADBAND ALFVÉN WAVES IN THE FAST SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Shoda, M.; Yokoyama, T., E-mail: shoda@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-04-01

    Using one-dimensional numerical simulations, we study the elementary process of Alfvén wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfvén wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave–wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfvén wave. In this study we consider a linearly polarized Alfvén wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from the circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfvén wave to the backscattered one. Such nonlinear reflection explains the observed increasing energy ratio of the sunward to the anti-sunward Alfvénic fluctuations in the solar wind with distance against the dynamical alignment effect.

  9. Nonlinear approximation with general wave packets

    DEFF Research Database (Denmark)

    Borup, Lasse; Nielsen, Morten

    2005-01-01

    We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...

  10. To the Problem of Electromechanical Interaction in Elevators with Controlled Electric Drive and Fuzzy Speed Controller

    Directory of Open Access Journals (Sweden)

    A. S. Koval

    2010-01-01

    Full Text Available The paper considers problems concerning electromechanical interaction in elevators with an adjustable asynchronous electric drive equipped with the vector control systems under direct torque control and direct torque control with pulse-width modulator. A mathematical description of electromechanical elevator system with due account of nonlinearity of the worm gear is given in the paper. The paper presents a simplified circuit design of a control system with a fuzzy speed controller. It has been established that the factor of electromechanical interaction in electromechanical system with the adjustable asynchronous electric drive and an fuzzy speed controller is within the range which corresponds to existence of the essential electromechanical interaction.

  11. Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.

    Science.gov (United States)

    Deng, Xiaogang; Tian, Xuemin; Chen, Sheng; Harris, Chris J

    2018-03-01

    Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification.

  12. Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting

    International Nuclear Information System (INIS)

    Wang Jianzhou; Jia Ruiling; Zhao Weigang; Wu Jie; Dong Yao

    2012-01-01

    Highlights: ► The maximal predictive step size is determined by the largest Lyapunov exponent. ► A proper forecasting step size is applied to load demand forecasting. ► The improved approach is validated by the actual load demand data. ► Non-linear fractal extrapolation method is compared with three forecasting models. ► Performance of the models is evaluated by three different error measures. - Abstract: Precise short-term load forecasting (STLF) plays a key role in unit commitment, maintenance and economic dispatch problems. Employing a subjective and arbitrary predictive step size is one of the most important factors causing the low forecasting accuracy. To solve this problem, the largest Lyapunov exponent is adopted to estimate the maximal predictive step size so that the step size in the forecasting is no more than this maximal one. In addition, in this paper a seldom used forecasting model, which is based on the non-linear fractal extrapolation (NLFE) algorithm, is considered to develop the accuracy of predictions. The suitability and superiority of the two solutions are illustrated through an application to real load forecasting using New South Wales electricity load data from the Australian National Electricity Market. Meanwhile, three forecasting models: the gray model, the seasonal autoregressive integrated moving average approach and the support vector machine method, which received high approval in STLF, are selected to compare with the NLFE algorithm. Comparison results also show that the NLFE model is outstanding, effective, practical and feasible.

  13. The drive laser for the APS LEUTL FEL Rf photoinjector

    International Nuclear Information System (INIS)

    Arnold, N.; Koldenhoven, R.; Travish, G.

    1999-01-01

    The APS LEUTL free-electron laser (FEL) is a high-gain, short-wavelength device requiring a high-current, low-emittance beam. An rf photoinjector driven by a laser is used to provide the requisite beam. The drive laser consists of a diode-pumped Nd:Glass oscillator and a chirped pulse amplification (CPA) system consisting of a grating stretcher, a flashlamp-pumped Nd:Glass regenerative amplifier, and a grating compressor. The system generates 4-mj pulses in the R with a pulse length as short as 2 ps FWHM and a repetition rate of 6 Hz. Nonlinear doubling crystals are used to generate fourth-harmonic output of ∼500 microJ in the UV (263 nm), which is required to exceed the work function of the copper cathode in the gun. This paper describes the drive laser as well as the extensive controls implemented to allow for remote operation and monitoring. Performance measurements as well as the operating experience are presented

  14. Gender differences in alcohol impairment of simulated driving performance and driving-related skills.

    Science.gov (United States)

    Miller, Melissa A; Weafer, Jessica; Fillmore, Mark T

    2009-01-01

    Considerable laboratory research indicates that moderate doses of alcohol impair a broad range of skilled activities related to driving performance in young adults. Although laboratory studies show that the intensity of impairment is generally dependent on the blood alcohol concentration, some reviews of this literature suggest that women might be more sensitive to the impairing effects of alcohol than men. The present study tested this hypothesis. Drawing on data from previous experiments in our laboratory, we compared men and women in terms of the degree to which a challenge dose of alcohol (0.65 g/kg) impaired their simulated driving performance and measures of three separate behavioral and cognitive functions important to driving performance: motor coordination, speed of information processing and information-processing capacity. Alcohol significantly impaired all aspects of performance. Moreover, women displayed greater impairment than men on all behavioral tests and also reported higher levels of subjective intoxication compared with men. Both biological and social-cultural factors have been implicated in gender differences in the behavioral responses to alcohol. The current evidence of heightened sensitivity to alcohol in women highlights the need for better understanding the biological and environmental factors underlying this gender difference.

  15. Nonlinear Prediction Model for Hydrologic Time Series Based on Wavelet Decomposition

    Science.gov (United States)

    Kwon, H.; Khalil, A.; Brown, C.; Lall, U.; Ahn, H.; Moon, Y.

    2005-12-01

    Traditionally forecasting and characterizations of hydrologic systems is performed utilizing many techniques. Stochastic linear methods such as AR and ARIMA and nonlinear ones such as statistical learning theory based tools have been extensively used. The common difficulty to all methods is the determination of sufficient and necessary information and predictors for a successful prediction. Relationships between hydrologic variables are often highly nonlinear and interrelated across the temporal scale. A new hybrid approach is proposed for the simulation of hydrologic time series combining both the wavelet transform and the nonlinear model. The present model employs some merits of wavelet transform and nonlinear time series model. The Wavelet Transform is adopted to decompose a hydrologic nonlinear process into a set of mono-component signals, which are simulated by nonlinear model. The hybrid methodology is formulated in a manner to improve the accuracy of a long term forecasting. The proposed hybrid model yields much better results in terms of capturing and reproducing the time-frequency properties of the system at hand. Prediction results are promising when compared to traditional univariate time series models. An application of the plausibility of the proposed methodology is provided and the results conclude that wavelet based time series model can be utilized for simulating and forecasting of hydrologic variable reasonably well. This will ultimately serve the purpose of integrated water resources planning and management.

  16. Modelling and modal properties of the railway vehicle bogie with two individual wheelset drives

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2007-10-01

    Full Text Available The paper deals with mathematical modelling of vibration and modal analysis of two-axled bogie of a railway vehicle. In comparison with recent publications introducing mathematical models of an individual wheelset drive, this paper is focused on modelling of complex bogie vibration. The bogie frame is linked by primary suspension to the two wheelset drives with hollow shafts and by secondary suspension to the car body. The method is based on the system decomposition into three subsystems – two individual wheelset drives including the mass of the rail and the bogie frame coupled with a half of the car body – and on modelling of couplings among subsystems. The eigenvalues of a linearized autonomous model and stability conditions are investigated in dependence on longitudinal creepage and forward velocity of the railway vehicle. The nonlinear model will be used for investigating the dynamic loading of bogie components caused by different types of excitation.

  17. Improving long term driving comfort by taking breaks - How break activity affects effectiveness.

    Science.gov (United States)

    Sammonds, George M; Mansfield, Neil J; Fray, Mike

    2017-11-01

    During long duration journeys, drivers are encouraged to take regular breaks. The benefits of breaks have been documented for safety; breaks may also be beneficial for comfort. The activity undertaken during a break may influence its effectiveness. Volunteers completed 3 journeys on a driving simulator. Each 130 min journey included a 10 min break after the first hour. During the break volunteers either stayed seated, left the simulator and sat in an adjacent room, or took a walk on a treadmill. The results show a reduction in driver discomfort during the break for all 3 conditions, but the effectiveness of the break was dependent on activity undertaken. Remaining seated in the vehicle provided some improvement in comfort, but more was experienced after leaving the simulator and sitting in an adjacent room. The most effective break occurred when the driver walked for 10 min on a treadmill. The benefits from taking a break continued until the end of the study (after a further hour of driving), such that comfort remained the best after taking a walk and worst for those who remained seated. It is concluded that taking a break and taking a walk is an effective method for relieving driving discomfort. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Nonlinear Analysis and Intelligent Control of Integrated Vehicle Dynamics

    Directory of Open Access Journals (Sweden)

    C. Huang

    2014-01-01

    Full Text Available With increasing and more stringent requirements for advanced vehicle integration, including vehicle dynamics and control, traditional control and optimization strategies may not qualify for many applications. This is because, among other factors, they do not consider the nonlinear characteristics of practical systems. Moreover, the vehicle wheel model has some inadequacies regarding the sideslip angle, road adhesion coefficient, vertical load, and velocity. In this paper, an adaptive neural wheel network is introduced, and the interaction between the lateral and vertical dynamics of the vehicle is analyzed. By means of nonlinear analyses such as the use of a bifurcation diagram and the Lyapunov exponent, the vehicle is shown to exhibit complicated motions with increasing forward speed. Furthermore, electric power steering (EPS and active suspension system (ASS, which are based on intelligent control, are used to reduce the nonlinear effect, and a negotiation algorithm is designed to manage the interdependences and conflicts among handling stability, driving smoothness, and safety. Further, a rapid control prototype was built using the hardware-in-the-loop simulation platform dSPACE and used to conduct a real vehicle test. The results of the test were consistent with those of the simulation, thereby validating the proposed control.

  19. Autonomous driving in urban environments: approaches, lessons and challenges.

    Science.gov (United States)

    Campbell, Mark; Egerstedt, Magnus; How, Jonathan P; Murray, Richard M

    2010-10-13

    The development of autonomous vehicles for urban driving has seen rapid progress in the past 30 years. This paper provides a summary of the current state of the art in autonomous driving in urban environments, based primarily on the experiences of the authors in the 2007 DARPA Urban Challenge (DUC). The paper briefly summarizes the approaches that different teams used in the DUC, with the goal of describing some of the challenges that the teams faced in driving in urban environments. The paper also highlights the long-term research challenges that must be overcome in order to enable autonomous driving and points to opportunities for new technologies to be applied in improving vehicle safety, exploiting intelligent road infrastructure and enabling robotic vehicles operating in human environments.

  20. Automation of the driving using the dynamic programming; Automatisierung des Treibens mittels diskreter dynamischer Programmierung

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zongru; Buerger, Sebastian; Lohmann, Boris [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl fuer Regelungstechnik

    2009-07-01

    Driving is a metal forming process throughout hammering in cold state. It can create almost any 2D and 3D metal sheets using universal tools. During driving, many parameters of the tools and the sheets affect the forming process, which inhibits a complete automation. In this paper, a model based control for a 2D driving process is proposed. The process of stretching L-shaped metal sheets is analytically modelled. Three phases, namely hybrid deformations, material flow as well as springback and inverse bending, describe the deformation process at one stroke. This results in a nonlinear (non-affine), time-discrete state space model. A model predictive controller (MPC) is then designed to determine the optimal control inputs at every time step. Thereby, an objective function that describes the costs from a start angle to an end condition is minimized by means of discrete dynamic programming (DDP). (orig.)

  1. Synthesis of Servo Pneumatic/Hydraulic Drive

    Directory of Open Access Journals (Sweden)

    K D. Efremova

    2017-01-01

    Full Text Available Servo pneumatic and / or hydraulic drives are widely used in modern engineering and process control. The efficiency of using pneumatic / hydraulic drives depends on their parameters and characteristics. To select the optimal drive parameters, various methods are used, based on finding the minimum of the target (target or criteria function.The objective of this paper was to apply one crucial criterion (target function that provides determination of optimal parameters of the pneumatic / hydraulic drive with the translational motion of the end-effector as well as its use in the synthesis of the servo pneumatic cylinder. The article shows the form of the target function representing a set of drive parameters that do not have direct relationships with each other in a dimensionless form for the pneumatic / hydraulic drive with the translational motion of the end-effector. To calculate the parameters of the servo drive close to the optimal ones, a two-criteria LPτ search was used. As criteria, were used the decisive criterion - the proposed target function, and the power developed by the actuator of the pneumatic / hydraulic drive, which were presented in a dimensionless form. It is shown that the criterion for solution optimality is the minimum distance of the selected point in the space of the normalized criteria from the origin. This point was determined. In addition to the proposed criteria, non-formalised requirements were taken into account: actual and mass-produced components of drive, in terms of which its parameters close to the optimal ones were determined, and the maximum relative error of the obtained useful power value of the servo pneumatic drive was estimated. The paper presents design features of two types of the servo pneumatic drive created, taking into account the proposed target function, implemented according to the schemes "hidden" and "spaced apart". The experimental static characteristic of the servo pneumatic drive is

  2. The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber

    Directory of Open Access Journals (Sweden)

    Feng-Tao He

    2013-01-01

    Full Text Available We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton’s dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1 if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton’s width increases, while its amplitude and wave velocity reduce. (2 If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton’s width increases, while its amplitude and the wave velocity reduce.

  3. Gap solitons under competing local and nonlocal nonlinearities

    International Nuclear Information System (INIS)

    Kuo, Kuan-Hsien; Lin Yuanyao; Lee, Ray-Kuang; Malomed, Boris A.

    2011-01-01

    We analyze the existence, bifurcations, and shape transformations of one-dimensional gap solitons (GSs) in the first finite band gap induced by a periodic potential built into materials with local self-focusing and nonlocal self-defocusing nonlinearities. Originally stable on-site GS modes become unstable near the upper edge of the band gap with the introduction of the nonlocal self-defocusing nonlinearity with a small nonlocality radius. Unstable off-site GSs bifurcate into a new branch featuring single-humped, double-humped, and flat-top modes due to the competition between local and nonlocal nonlinearities. The mechanism underlying the complex bifurcation pattern and cutoff effects (termination of some bifurcation branches) is illustrated in terms of the shape transformation under the action of the varying degree of the nonlocality. The results of this work suggest a possibility of optical-signal processing by means of the competing nonlocal and local nonlinearities.

  4. Transitionless driving on adiabatic search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sangchul, E-mail: soh@qf.org.qa [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Kais, Sabre, E-mail: kais@purdue.edu [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-12-14

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.

  5. Distributed Fault Detection for a Class of Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2014-01-01

    Full Text Available A novel distributed fault detection strategy for a class of nonlinear stochastic systems is presented. Different from the existing design procedures for fault detection, a novel fault detection observer, which consists of a nonlinear fault detection filter and a consensus filter, is proposed to detect the nonlinear stochastic systems faults. Firstly, the outputs of the nonlinear stochastic systems act as inputs of a consensus filter. Secondly, a nonlinear fault detection filter is constructed to provide estimation of unmeasurable system states and residual signals using outputs of the consensus filter. Stability analysis of the consensus filter is rigorously investigated. Meanwhile, the design procedures of the nonlinear fault detection filter are given in terms of linear matrix inequalities (LMIs. Taking the influence of the system stochastic noises into consideration, an outstanding feature of the proposed scheme is that false alarms can be reduced dramatically. Finally, simulation results are provided to show the feasibility and effectiveness of the proposed fault detection approach.

  6. MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.

    Science.gov (United States)

    Najjar-Khodabakhsh, Abbas; Soltani, Jafar

    2016-03-01

    In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials

    Directory of Open Access Journals (Sweden)

    Wu Guo-Cheng

    2017-01-01

    Full Text Available A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.

  8. Effect of tailored on-road driving lessons on driving safety in older adults: A randomised controlled trial.

    Science.gov (United States)

    Anstey, Kaarin J; Eramudugolla, Ranmalee; Kiely, Kim M; Price, Jasmine

    2018-06-01

    We evaluated the effectiveness of individually tailored driving lessons compared with a road rules refresher course for improving older driver safety. Two arm parallel randomised controlled trial, involving current drivers aged 65 and older (Mean age 72.0, 47.4% male) residing in Canberra, Australia. The intervention group (n = 28) received a two-hour class-based road rules refresher course, and two one-hour driving lessons tailored to improve poor driving skills and habits identified in a baseline on-road assessment. The control group (n = 29) received the road rules refresher course only. Tests of cognitive performance, and on-road driving were conducted at baseline and at 12-weeks. Main outcome measure was the Driver safety rating (DSR) on the on-road driving test. The number of Critical Errors made during the on-road was also recorded. 55 drivers completed the trial (intervention group: 27, control group: 28). Both groups showed reduction in dangerous/hazardous driver errors that required instructor intervention. From baseline to follow-up there was a greater reduction in the number of critical errors made by the intervention group relative to the control group (IRR = 0.53, SE = 0.1, p = .008). The intervention group improved on the DSR more than the control group (intervention mean change = 1.07 SD = 2.00, control group mean change = 0.32 SD = 1.61). The intervention group had 64% remediation of unsafe driving, where drivers who achieved a score of 'fail' at baseline, 'passed' at follow-up. The control group had 25% remediation. Tailored driving lessons reduced the critical driving errors made by older adults. Longer term follow-up and larger trials are required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Nonlinear vs. linear biasing in Trp-cage folding simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spiwok, Vojtěch, E-mail: spiwokv@vscht.cz; Oborský, Pavel; Králová, Blanka [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28 (Czech Republic); Pazúriková, Jana [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Křenek, Aleš [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Center CERIT-SC, Masaryk Univerzity, Šumavská 416/15, 602 00 Brno (Czech Republic)

    2015-03-21

    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  10. Modeling and non-linear responses of MEMS capacitive accelerometer

    Directory of Open Access Journals (Sweden)

    Sri Harsha C.

    2014-01-01

    Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.

  11. The matrix nonlinear Schrodinger equation in dimension 2

    DEFF Research Database (Denmark)

    Zuhan, L; Pedersen, Michael

    2001-01-01

    In this paper we study the existence of global solutions to the Cauchy problem for the matrix nonlinear Schrodinger equation (MNLS) in 2 space dimensions. A sharp condition for the global existence is obtained for this equation. This condition is in terms of an exact stationary solution...... of a semilinear elliptic equation. In the scalar case, the MNLS reduces to the well-known cubic nonlinear Schrodinger equation for which existence of solutions has been studied by many authors. (C) 2001 Academic Press....

  12. Anti-D3 branes and moduli in non-linear supergravity

    Science.gov (United States)

    Garcia del Moral, Maria P.; Parameswaran, Susha; Quiroz, Norma; Zavala, Ivonne

    2017-10-01

    Anti-D3 branes and non-perturbative effects in flux compactifications spontaneously break supersymmetry and stabilise moduli in a metastable de Sitter vacua. The low energy 4D effective field theory description for such models would be a supergravity theory with non-linearly realised supersymmetry. Guided by string theory modular symmetry, we compute this non-linear supergravity theory, including dependence on all bulk moduli. Using either a constrained chiral superfield or a constrained vector field, the uplifting contribution to the scalar potential from the anti-D3 brane can be parameterised either as an F-term or Fayet-Iliopoulos D-term. Using again the modular symmetry, we show that 4D non-linear supergravities that descend from string theory have an enhanced protection from quantum corrections by non-renormalisation theorems. The superpotential giving rise to metastable de Sitter vacua is robust against perturbative string-loop and α' corrections.

  13. CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL

    KAUST Repository

    CARRILLO, JOSÉ ANTONIO; HITTMEIR, SABINE; JÜ NGEL, ANSGAR

    2012-01-01

    A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy

  14. Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.

    Science.gov (United States)

    Hammi, Oualid

    2014-01-01

    A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.

  15. Dementia & Driving

    Science.gov (United States)

    ... have to give up driving. Many people associate driving with self-reliance and freedom; the loss of driving privileges ... familiar roads and avoid long distances. Avoid heavy traffic and heavily traveled roads. Avoid driving at night and in bad weather. Reduce the ...

  16. Nonlinear System Identification Using Neural Networks Trained with Natural Gradient Descent

    Directory of Open Access Journals (Sweden)

    Ibnkahla Mohamed

    2003-01-01

    Full Text Available We use natural gradient (NG learning neural networks (NNs for modeling and identifying nonlinear systems with memory. The nonlinear system is comprised of a discrete-time linear filter followed by a zero-memory nonlinearity . The NN model is composed of a linear adaptive filter followed by a two-layer memoryless nonlinear NN. A Kalman filter-based technique and a search-and-converge method have been employed for the NG algorithm. It is shown that the NG descent learning significantly outperforms the ordinary gradient descent and the Levenberg-Marquardt (LM procedure in terms of convergence speed and mean squared error (MSE performance.

  17. Long-duration planar direct-drive hydrodynamics experiments on the NIF

    Science.gov (United States)

    Casner, A.; Mailliet, C.; Khan, S. F.; Martinez, D.; Izumi, N.; Kalantar, D.; Di Nicola, P.; Di Nicola, J. M.; Le Bel, E.; Igumenshchev, I.; Tikhonchuk, V. T.; Remington, B. A.; Masse, L.; Smalyuk, V. A.

    2018-01-01

    The advent of high-power lasers facilities such as the National Ignition Facility (NIF) and the laser megajoule provide unique platforms to study the physics of turbulent mixing flows in high energy density plasmas. We report here on the commissioning of a novel planar direct-drive platform on the NIF, which allows the acceleration of targets during 30 ns. Planar plastic samples were directly irradiated by 300-450 kJ of UV laser light (351 nm) and a very good planarity of the laser drive is demonstrated. No detrimental effect of imprint is observed in the case of these thick plastic targets (300 μm), which is beneficial for future academic experiments requesting similar irradiation conditions. The long-duration direct-drive (DD) platform is thereafter harnessed to study the ablative Rayleigh-Taylor instability (RTI) in DD. The growth of two-dimensional pre-imposed perturbations is quantified through time-resolved face-on x-ray radiography and used as a benchmark for radiative hydrocode simulations. The ablative RTI is then quantified in its highly nonlinear stage starting from intentionally large 3D imprinted broadband modulations. Two generations of bubble mergers is observed for the first time in DD, as a result of the unprecedented long laser acceleration.

  18. Nonlinear analysis of field distribution in electric motor with periodicity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stabrowski, M M; Sikora, J

    1981-01-01

    Numerical analysis of electromagnetic field distribution in linear motion tubular electric motor has been performed with the aid of finite element method. Two Fortran programmes for the solution of DBBF and BF large linear symmetric equation systems have been developed for purposes of this analysis. A new iterative algorithm, taking into account iron nonlinearity and periodicity conditions, has been introduced. Final results of the analysis in the form of induction diagrammes and motor driving force are directly useful for motor designers.

  19. Changes in driving behavior and cognitive performance with different breath alcohol concentration levels.

    Science.gov (United States)

    Liu, Yung-Ching; Fu, Shing-Mei

    2007-06-01

    This study examines the changes in driving behavior and cognitive performance of drivers with different breath alcohol concentration (BrAC) levels. Eight licensed drivers, aged between 20 and 30 years, with BrAC levels of 0.00, 0.25, 0.4 and 0.5 mg/l performed simulated driving tests under high- and low-load conditions. Subjects were asked to assess their subjective psychological load at specified intervals and perform various tasks. The outcome was measured in terms of reaction times for task completion, accuracy rates, and driver's driving behavior. The effects of BrAC vary depending on the task. Performance of tasks involving attention shift, information processing, and short-term memory showed significant deterioration with increasing BrAC, while dangerous external vehicle driving behavior occurred only when the BrAC reached 0.4 mg/l and the deterioration was marked. We can conclude that the cognitive faculty is the first to be impaired by drinking resulting in deteriorated performance in tasks related to divided attention, short-term memory, logical reasoning, followed by visual perception. On the other hand, increasing alcohol dose may not pose an immediate impact on the external vehicle driving behavior but may negatively affect the driver's motor behavior even at low BrAC levels. Experience and will power could compensate for the negative influence of alcohol enabling the drivers to remain in full steering control. This lag between alcohol consumption and impaired driving performance may mislead the drivers in thinking that they are still capable of safe steering and cause them to ignore the potential dangers of drunk driving.

  20. A novel auto-tuning PID control mechanism for nonlinear systems.

    Science.gov (United States)

    Cetin, Meric; Iplikci, Serdar

    2015-09-01

    In this paper, a novel Runge-Kutta (RK) discretization-based model-predictive auto-tuning proportional-integral-derivative controller (RK-PID) is introduced for the control of continuous-time nonlinear systems. The parameters of the PID controller are tuned using RK model of the system through prediction error-square minimization where the predicted information of tracking error provides an enhanced tuning of the parameters. Based on the model-predictive control (MPC) approach, the proposed mechanism provides necessary PID parameter adaptations while generating additive correction terms to assist the initially inadequate PID controller. Efficiency of the proposed mechanism has been tested on two experimental real-time systems: an unstable single-input single-output (SISO) nonlinear magnetic-levitation system and a nonlinear multi-input multi-output (MIMO) liquid-level system. RK-PID has been compared to standard PID, standard nonlinear MPC (NMPC), RK-MPC and conventional sliding-mode control (SMC) methods in terms of control performance, robustness, computational complexity and design issue. The proposed mechanism exhibits acceptable tuning and control performance with very small steady-state tracking errors, and provides very short settling time for parameter convergence. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.