Dose-effect relationships, epidemiological analysis and the derivation of low dose risk
Energy Technology Data Exchange (ETDEWEB)
Leenhouts, H P [Bennekom (Netherlands); Chadwick, K H, E-mail: kennethhchadwick@aol.com [Cowan Head, Kendal (United Kingdom)
2011-03-01
This paper expands on our recent comments in a letter to this journal about the analysis of epidemiological studies and the determination of low dose RBE of low LET radiation (Chadwick and Leenhouts 2009 J. Radiol. Prot. 29 445-7). Using the assumption that radiation induced cancer arises from a somatic mutation (Chadwick and Leenhouts 2011 J. Radiol. Prot. 31 41-8) a model equation is derived to describe cancer induction as a function of dose. The model is described briefly, evidence is provided in support of it, and it is applied to a set of experimental animal data. The results are compared with a linear fit to the data as has often been done in epidemiological studies. The article presents arguments to support several related messages which are relevant to epidemiological analysis, the derivation of low dose risk and the weighting factor of sparsely ionising radiations. The messages are: (a) cancer incidence following acute exposure should, in principle, be fitted to a linear-quadratic curve with cell killing using all the data available; (b) the acute data are dominated by the quadratic component of dose; (c) the linear fit of any acute data will essentially be dependent on the quadratic component and will be unrelated to the effectiveness of the radiation at low doses; consequently, (d) the method used by ICRP to derive low dose risk from the atomic bomb survivor data means that it is unrelated to the effectiveness of the hard gamma radiation at low radiation doses; (e) the low dose risk value should, therefore, not be used as if it were representative for hard gamma rays to argue for an increased weighting factor for tritium and soft x-rays even though there are mechanistic reasons to expect this; (f) epidemiological studies of chronically exposed populations supported by appropriate cellular radiobiological studies have the best chance of revealing different RBE values for different sparsely ionising radiations.
Adaptive regression for modeling nonlinear relationships
Knafl, George J
2016-01-01
This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...
Relationship between the magnitude of singular value and nonlinear stability
Institute of Scientific and Technical Information of China (English)
穆穆; 郭欢; 王佳峰; 李勇
2001-01-01
The relationship between the magnitude of singular value and nonlinear stability or instability of the basic flow is investigated. The results show that there is a good corresponding relationship between them. The magnitude of singular value decreases as the stability (or instability) of the basic flow increases (or decreases). In the stable case, the magnitude of the maximum singular value is much smaller than in the unstable case.
Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes
Filstrup, Christopher T.; Wagner, Tyler; Soranno, Patricia A.; Stanley, Emily H.; Stow, Craig A.; Webster, Katherine E.; Downing, John A.
2014-01-01
The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a—TP relationships than traditional log-linear models, whether there were regional differences in the form of the relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105 temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the best-fitting model varied among regions: the maximum and lower Chl aasymptotes were positively and negatively related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a—TP relationship than wetland-rich regions. Interpretation of Chl a—TP relationships depends on regional differences, and theory and management based on a monolithic relationship may be inaccurate.
Structure/property relationships in non-linear optical materials
Energy Technology Data Exchange (ETDEWEB)
Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.
Confidence bounds for nonlinear dose-response relationships.
Baayen, C; Hougaard, P
2015-11-30
An important aim of drug trials is to characterize the dose-response relationship of a new compound. Such a relationship can often be described by a parametric (nonlinear) function that is monotone in dose. If such a model is fitted, it is useful to know the uncertainty of the fitted curve. It is well known that Wald confidence intervals are based on linear approximations and are often unsatisfactory in nonlinear models. Apart from incorrect coverage rates, they can be unreasonable in the sense that the lower confidence limit of the difference to placebo can be negative, even when an overall test shows a significant positive effect. Bootstrap confidence intervals solve many of the problems of the Wald confidence intervals but are computationally intensive and prone to undercoverage for small sample sizes. In this work, we propose a profile likelihood approach to compute confidence intervals for the dose-response curve. These confidence bounds have better coverage than Wald intervals and are more precise and generally faster than bootstrap methods. Moreover, if monotonicity is assumed, the profile likelihood approach takes this automatically into account. The approach is illustrated using a public dataset and simulations based on the Emax and sigmoid Emax models. Copyright © 2015 John Wiley & Sons, Ltd.
Towards modelling of human relationships:nonlinear dynamical systems in relationships
Safarov, I. (Ildar)
2009-01-01
Abstract This study fills an urgent need for qualitative analyses of relationships resulting in human change. It is a result of sixteen years of independent study by the author. It combines postgraduate study of nonlinear methodology, applied research of children’s pretend play, experience in educational psychology and Gestalt-counselling, as well as the practical training of graduate students at the Karelian State Pedagogical University (Petrozavodsk, Russia), and the Kajaani Department ...
Relationships between nonlinear normal modes and response to random inputs
Schoneman, Joseph D.; Allen, Matthew S.; Kuether, Robert J.
2017-02-01
The ability to model nonlinear structures subject to random excitation is of key importance in designing hypersonic aircraft and other advanced aerospace vehicles. When a structure is linear, superposition can be used to construct its response to a known spectrum in terms of its linear modes. Superposition does not hold for a nonlinear system, but several works have shown that a system's dynamics can still be understood qualitatively in terms of its nonlinear normal modes (NNMs). This work investigates the connection between a structure's undamped nonlinear normal modes and the spectrum of its response to high amplitude random forcing. Two examples are investigated: a spring-mass system and a clamped-clamped beam modeled within a geometrically nonlinear finite element package. In both cases, an intimate connection is observed between the smeared peaks in the response spectrum and the frequency-energy dependence of the nonlinear normal modes. In order to understand the role of coupling between the underlying linear modes, reduced order models with and without modal coupling terms are used to separate the effect of each NNM's backbone from the nonlinear couplings that give rise to internal resonances. In the cases shown here, uncoupled, single-degree-of-freedom nonlinear models are found to predict major features in the response with reasonable accuracy; a highly inexpensive approximation such as this could be useful in design and optimization studies. More importantly, the results show that a reduced order model can be expected to give accurate results only if it is also capable of accurately predicting the frequency-energy dependence of the nonlinear modes that are excited.
Structure property relationships for the nonlinear optical response of fullerenes
Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.
1994-11-01
We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.
Energy Technology Data Exchange (ETDEWEB)
Bekiros, Stelios D.; Diks, Cees G.H. [Center for Nonlinear Dynamics in Economics and Finance (CeNDEF), Department of Quantitative Economics, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam (Netherlands)
2008-09-15
The present study investigates the linear and nonlinear causal linkages between daily spot and futures prices for maturities of one, two, three and four months of West Texas Intermediate (WTI) crude oil. The data cover two periods October 1991-October 1999 and November 1999-October 2007, with the latter being significantly more turbulent. Apart from the conventional linear Granger test we apply a new nonparametric test for nonlinear causality by Diks and Panchenko after controlling for cointegration. In addition to the traditional pairwise analysis, we test for causality while correcting for the effects of the other variables. To check if any of the observed causality is strictly nonlinear in nature, we also examine the nonlinear causal relationships of VECM filtered residuals. Finally, we investigate the hypothesis of nonlinear non-causality after controlling for conditional heteroskedasticity in the data using a GARCH-BEKK model. Whilst the linear causal relationships disappear after VECM cointegration filtering, nonlinear causal linkages in some cases persist even after GARCH filtering in both periods. This indicates that spot and futures returns may exhibit asymmetric GARCH effects and/or statistically significant higher order conditional moments. Moreover, the results imply that if nonlinear effects are accounted for, neither market leads or lags the other consistently, videlicet the pattern of leads and lags changes over time. (author)
Confidence bounds for nonlinear dose-response relationships
DEFF Research Database (Denmark)
Baayen, C; Hougaard, P
2015-01-01
. It is well known that Wald confidence intervals are based on linear approximations and are often unsatisfactory in nonlinear models. Apart from incorrect coverage rates, they can be unreasonable in the sense that the lower confidence limit of the difference to placebo can be negative, even when an overall...... test shows a significant positive effect. Bootstrap confidence intervals solve many of the problems of the Wald confidence intervals but are computationally intensive and prone to undercoverage for small sample sizes. In this work, we propose a profile likelihood approach to compute confidence...... intervals for the dose-response curve. These confidence bounds have better coverage than Wald intervals and are more precise and generally faster than bootstrap methods. Moreover, if monotonicity is assumed, the profile likelihood approach takes this automatically into account. The approach is illustrated...
Mulder, Herman A; Hill, William G; Knol, Egbert F
2015-04-01
There is recent evidence from laboratory experiments and analysis of livestock populations that not only the phenotype itself, but also its environmental variance, is under genetic control. Little is known about the relationships between the environmental variance of one trait and mean levels of other traits, however. A genetic covariance between these is expected to lead to nonlinearity between them, for example between birth weight and survival of piglets, where animals of extreme weights have lower survival. The objectives were to derive this nonlinear relationship analytically using multiple regression and apply it to data on piglet birth weight and survival. This study provides a framework to study such nonlinear relationships caused by genetic covariance of environmental variance of one trait and the mean of the other. It is shown that positions of phenotypic and genetic optima may differ and that genetic relationships are likely to be more curvilinear than phenotypic relationships, dependent mainly on the environmental correlation between these traits. Genetic correlations may change if the population means change relative to the optimal phenotypes. Data of piglet birth weight and survival show that the presence of nonlinearity can be partly explained by the genetic covariance between environmental variance of birth weight and survival. The framework developed can be used to assess effects of artificial and natural selection on means and variances of traits and the statistical method presented can be used to estimate trade-offs between environmental variance of one trait and mean levels of others. Copyright © 2015 by the Genetics Society of America.
Nonlinear relationships between individual IEQ factors and overall workspace satisfaction
Kim, Jungsoo; Dear,Richard de
2011-01-01
Despite a paucity of rigorous scientific evidence causally linking Indoor Environmental Quality (IEQ) issues to office occupants’ productivity, there is a widespread belief that such causality exists; excellent or poor IEQ translate into productivity gains or losses respectively. The aim of this study is to better understand relationship between perceived building performance on specific IEQ factors and occupants’ overall satisfaction with their workspace. Kano’s satisfaction model, developed...
On the relationship between nonlinear and linear differential systems
Directory of Open Access Journals (Sweden)
ZHOU Zhengxin
2015-06-01
Full Text Available In this article, we establish the relationship between the quadratic time-varying differential systems and the linear systems, giving the sufficient conditions for the quadratic systems to have the reflecting function in the form of fractional function. We use the obtained results to discuss the qualitative behavior of the solutions of the quadratic differential systems and the time-varying Kolmogrov equations.
Remarks on the relationship between ℒp stability and internal stability of nonlinear systems
Wang, Xu; Grip, H°avard Fjær; Saberi, Ali A.; Stoorvogel, Anton A.; Saberi, Ingmar
2013-01-01
In this paper, we investigate the relationship between ℒp stability and internal stability of nonlinear systems. It is shown that under certain conditions, ℒp stability without finite gain implies attractivity of the equilibrium, and that local ℒp stability with finite gain implies local asymptotic
Remarks on the relationship between ℒp stability and internal stability of nonlinear systems
Wang, Xu; Grip, H°avard Fjær; Saberi, Ali; Stoorvogel, Anton A.; Saberi, Ingmar
2011-01-01
In this paper, we investigate the relationship between ℒp stability and internal stability of nonlinear systems. It is shown that under certain conditions, ℒp stability without finite gain implies attractivity of the equilibrium, and that local ℒp stability with finite gain implies local asymptotic
Is the investment-uncertainty relationship nonlinear? An empirical analysis for the Netherlands
Bo, H; Lensin, R
We examine the investment-uncertainty relationship for a panel of Dutch non-financial firms. The system generalized method of moments (GMM) estimates suggest that the effect of uncertainty on investment is nonlinear: for low levels of uncertainty an increase in uncertainty has a positive effect on
Directory of Open Access Journals (Sweden)
A. Tata
2009-01-01
Full Text Available This paper presents a nonlinear finite element modeling and analysis of rectangular normal-strength reinforced concrete columns confined with transverse steel under axial compressive loading. In this study, the columns were modeled as discrete elements using ANSYS nonlinear finite element software. Concrete was modeled with 8-noded SOLID65 elements that can translate either in the x-, y-, or z-axis directions from ANSYS element library. Longitudinal and transverse steels were modeled as discrete elements using 3D-LINK8 bar elements available in the ANSYS element library. The nonlinear constitutive law of each material was also implemented in the model. The results indicate that the stress-strain relationships obtained from the analytical model using ANSYS are in good agreement with the experimental data. This has been confirmed with the insignificant difference between the analytical and experimental, i.e. 5.65 and 2.80 percent for the peak stress and the strain at the peak stress, respectively. The comparison shows that the ANSYS nonlinear finite element program is capable of modeling and predicting the actual nonlinear behavior of confined concrete column under axial loading. The actual stress-strain relationship, the strength gain and ductility improvement have also been confirmed to be satisfactorily.
The Non-Linear Relationship Between Fiscal Deficits And Inflation: Evidence From Africa
Directory of Open Access Journals (Sweden)
Abu Nurudeen
2015-12-01
Full Text Available Although, there is abundant research on the fiscal deficit-inflation relationship, little has been done to investigate the non-linear association between them, particularly in Africa. This study employs fixed-effects and GMM estimators to examine the non-linear relationship between deficits and inflation from 1999 to 2011 in 51 African economies, which are further grouped into high-inflation/low-income countries and moderate-inflation/middle-income countries. The results indicate that the deficit-inflation relationship is non-linear for the whole sample and sub-groups. For the whole sample, a percentage point increase in deficit results in a 0.25 percentage point increase in inflation rate, while the relationship becomes quantitatively greater once deficits reach 23% of GDP. The subsamples report different relationships. Although our results cannot be used as the base for generalization, we identify importance of grouping African countries according to their levels of inflation and/or income, rather than treating them as a homogeneous entity.
Gencoglu, Muharrem Tuncay; Baskonus, Haci Mehmet; Bulut, Hasan
2017-01-01
The main aim of this manuscript is to obtain numerical solutions for the nonlinear model of interpersonal relationships with time fractional derivative. The variational iteration method is theoretically implemented and numerically conducted only to yield the desired solutions. Numerical simulations of desired solutions are plotted by using Wolfram Mathematica 9. The authors would like to thank the reviewers for their comments that help improve the manuscript.
Directory of Open Access Journals (Sweden)
Jagdev Singh
2017-07-01
Full Text Available In this paper, we propose a new numerical algorithm, namely q-homotopy analysis Sumudu transform method (q-HASTM, to obtain the approximate solution for the nonlinear fractional dynamical model of interpersonal and romantic relationships. The suggested algorithm examines the dynamics of love affairs between couples. The q-HASTM is a creative combination of Sumudu transform technique, q-homotopy analysis method and homotopy polynomials that makes the calculation very easy. To compare the results obtained by using q-HASTM, we solve the same nonlinear problem by Adomian’s decomposition method (ADM. The convergence of the q-HASTM series solution for the model is adapted and controlled by auxiliary parameter ℏ and asymptotic parameter n. The numerical results are demonstrated graphically and in tabular form. The result obtained by employing the proposed scheme reveals that the approach is very accurate, effective, flexible, simple to apply and computationally very nice.
Institute of Scientific and Technical Information of China (English)
ZHAO Li; GAO Pan
2006-01-01
In order to evaluate cycling characters of zeotropic refrigerants in air-conditioning operation, and to reveal distribution rules of temperature difference between refrigerants and heat transfer fluids in condenser and evaporator, theoretical researches were carried out based on nonlinear relationship between temperature and enthalpy in period of refrigerants' phase change. Firstly, a phase changing model of refrigerants was built, and refrigerants state parameters were decided in the air-conditioning operation.Secondly, the state equation of refrigerants was applied for computing relationship between temperature and enthalpy, else based on some suppositions, temperature differences between 15 sorts of refrigerants and heat-transfer fluids were gotten too. Through concluding those temperature differences changing in condenser and evaporator, some rules were found. Lastly, after calculating and comparing the additive exergy loss among15 sorts of refrigerants, which resulted from the changing of temperature difference, their cycling characters evaluation were presented.
Non-linear relationship between combustion kinetic parameters and coal quality
Institute of Scientific and Technical Information of China (English)
Jian-guo YANG; Xiao-long ZHANG; Hong ZHAO; Li SHEN
2012-01-01
Combustion kinetic parameters (i.e.,activation energy and frequency factor) of coal have been proven to relate closely to coal properties; however,the quantitative relationship between them still requires further study.This paper adopts a support vector regression machine (SVR) to generate the models of the non-linear relationship between combustion kinetic parameters and coal quality.Kinetic analyses on the thermo-gravimetry (TG) data of 80 coal samples were performed to prepare training data and testing data for the SVR.The models developed were used in the estimation of the combustion kinetic parameters of ten testing samples.The predicted results showed that the root mean square errors (RMSEs) were 2.571 for the activation energy and 0.565for the frequency factor in logarithmic form,respectively.TG curves defined by predicted kinetic parameters were fitted to the experimental data with a high degree of precision.
Abrams, Peter A; Rueffler, Claus; Dinnage, Russell
2008-10-01
Much previous ecological and evolutionary theory about exploitative competition for a continuous spectrum of resources has used the Lotka-Volterra model with competition coefficients given by a Gaussian function of niche separation. Using explicit consumer-resource models, we show that the Lotka-Volterra model and the assumption of a Gaussian competition-similarity relationship both fail to reflect the impact of strong resource depletion, which typically reduces the influence of the most heavily used resources on the competitive interaction. Taking proper account of resource depletion reveals that strong exploitative competition between efficient consumers is usually a highly nonlinear interaction, implying that a single measure is no longer sufficient to characterize the process. The nonlinearity usually entails weak coupling of competing species when their abundances are high and equal. Rare invaders are likely to have effects on abundant residents much larger than those of the resident on the invader. Asymmetrical utilization curves often produce asymmetrical competition coefficients. Competition coefficients are typically non-Gaussian and are often nonmonotonic functions of niche separation. Utilization curve shape and resource growth functions can have major effects on competition-similarity relationships. A variety of previous theoretical findings need to be reassessed in light of these results.
Wen, Yang; He, Jia; Liu, Xian; Li, Jinjie; Zhao, Yuanhui
2012-09-01
A non-linear relationship (e.g. Gaussian-type) between measured bioconcentration factor (BCF) and octanol/water partition coefficient (K(OW)) was noted many years ago. Many studies have focused on the cause of the breakdown in the log BCF/log K(OW) curve for highly hydrophobic chemicals with log K(OW)>6. However, there has been little investigation on the theoretical background of this feature for highly hydrophilic chemicals. In this paper, the cause of linear and non-linear relationships between log BCF and log K(OW) has been investigated on the basis of the partitioning-based mechanism for classified non-ionic and ionisable compounds. For highly hydrophilic compounds, lipid tissue in fish is not the major storage site of chemicals. Uptake from other tissues/organs plays a much more important role than the lipid content, leading to a variation of measured log BCF around 0.5. For hydrophobic chemicals with 0.56. The main reason for this is attributed to the reduced bioavailability of chemicals in water. A linear solvation energy relationship shows that the bioconcentration increases with increasing molecular size by increasing the dispersion interactions between the chemical and lipid content. Bioconcentration decreases with increasing the basicity of hydrophobic compounds by increasing the H-bonding of chemicals with water. Principal component analysis shows that the octanol/water system is the closest system, but not an ideal surrogate, to describe the bioconcentration for hydrophobic compounds as compared with other solvent/water partition systems.
Directory of Open Access Journals (Sweden)
Jian Yang
2017-09-01
Full Text Available Net primary productivity (NPP is an important component of the terrestrial carbon cycle. In this study, NPP was estimated based on two models and Moderate Resolution Imaging Spaectroradiometer (MODIS data. The spatiotemporal patterns of NPP and the correlations with climate factors and vegetation phenology were then analyzed. Our results showed that NPP derived from MODIS performed well in China. Spatially, NPP decreased from the southeast toward the northwest. Temporally, NPP showed a nonlinear increasing trend at a national scale, but the magnitude became slow after 2004. At a regional scale, NPP in Northern China and the Tibetan Plateau showed a nonlinear increasing trend, while the NPP decreased in most areas of Southern China. The decreases in NPP were more than offset by the increases. At the biome level, all vegetation types displayed an increasing trend, except for shrub and evergreen broad forests (EBF. Moreover, a turning point year occurred for all vegetation types, except for EBF. Generally, climatic factors and Length of Season were all positively correlated with the NPP, while the relationships were much more diverse at a regional level. The direct effect of solar radiation on the NPP was larger (0.31 than precipitation (0.25 and temperature (0.07. Our results indicated that China could mitigate climate warming at a regional and/or global scale to some extent during the time period of 2001–2014.
Schryver, Jack C; Brandt, Craig C; Pfiffner, Susan M; Palumbo, Anthony V; Peacock, Aaron D; White, David C; McKinley, James P; Long, Philip E
2006-02-01
The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.
Energy Technology Data Exchange (ETDEWEB)
Schryver, Jack C.; Brandt, Craig C.; Pfiffner, Susan M.; Palumbo, A V.; Peacock, Aaron D.; White, David C.; McKinley, James P.; Long, Philip E.
2006-02-01
The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.
Relationship between the temperature and the acoustic nonlinearity parameter in biological tissues
Institute of Scientific and Technical Information of China (English)
LU Ying; LIU Xiaozhou; GONG Xiufen; ZHANG Dong
2004-01-01
Recently with the rapid development of the high-intensity focused ultrasound (HIFU) in biomedical ultrasound, much attention has been paid to the noninvasive temperature estimation in biological tissue in order to determine the region and degree of the ultrasound-induced lesions. In ultrasound hyperthermal therapy it is highly desirable to study the real-time noninvasive monitoring of temperature distribution in biological tissue. In this paper, the relationship between the nonlinearity parameter B/A and the temperature in biological tissue is studied and compared with the theoretical model as well as the experimental results from the thermocouple. Results indicated that B/A could be used as an effective tool to monitor the temperature distribution in biological media.
Lokstein, Heiko; Betke, Alexander; Krikunova, Maria; Teuchner, Klaus; Voigt, Bernd
2012-03-01
Conventional linear and time-resolved spectroscopic techniques are often not appropriate to elucidate specific pigment-pigment interactions in light-harvesting pigment-protein complexes (LHCs). Nonlinear (laser-) spectroscopic techniques, including nonlinear polarization spectroscopy in the frequency domain (NLPF) as well as step-wise (resonant) and simultaneous (non-resonant) two-photon excitation spectroscopies may be advantageous in this regard. Nonlinear spectroscopies have been used to elucidate substructure(s) of very complex spectra, including analyses of strong excitonic couplings between chlorophylls and of interactions between (bacterio)chlorophylls and "optically dark" states of carotenoids in LHCs, including the major antenna complex of higher plants, LHC II. This article shortly reviews our previous study and outlines perspectives regarding the application of selected nonlinear laser-spectroscopic techniques to disentangle structure-function relationships in LHCs and other pigment-protein complexes.
Study on Rail Profile Optimization Based on the Nonlinear Relationship between Profile and Wear Rate
Directory of Open Access Journals (Sweden)
Jianxi Wang
2017-01-01
Full Text Available This paper proposes a rail profile optimization method that takes account of wear rate within design cycle so as to minimize rail wear at the curve in heavy haul railway and extend the service life of rail. Taking rail wear rate as the object function, the vertical coordinate of rail profile at range optimization as independent variable, and the geometric characteristics and grinding depth of rail profile as constraint conditions, the support vector machine regression theory was used to fit the nonlinear relationship between rail profile and its wear rate. Then, the profile optimization model was built. Based on the optimization principle of genetic algorithm, the profile optimization model was solved to achieve the optimal rail profile. A multibody dynamics model was used to check the dynamic performance of carriage running on optimal rail profile. The result showed that the average relative error of support vector machine regression model remained less than 10% after a number of training processes. The dynamic performance of carriage running on optimized rail profile met the requirements on safety index and stability. The wear rate of optimized profile was lower than that of standard profile by 5.8%; the allowable carrying gross weight increased by 12.7%.
Fertility Differentials and Educational Attainment in Portugal: A Non-Linear Relationship
Directory of Open Access Journals (Sweden)
Tiago de Oliveira, Isabel
2009-01-01
Full Text Available AbstractThis analysis of the Portuguese case shows a non-linear relationship betweenthe number of children and education in recent years. Using the data from tenyears before this hypothesis was confirmed, and we can see that the generaldecline in Portuguese fertility within the last decade was due to the fertilitydecrease of the less educated people, although partly attenuated by the fertilityincrease of the upper social groups. The reasons for a non-linear relationshipare discussed within the context of female employment rates and salarydifferentials by educational attainment. The main hypothesis is that differencesin fertility are related to an ‘education-work’ effect amongst those in the lesseducated groups and to an ‘education-income’ effect amongst the moreeducated.RésuméL’analyse de cas de la situation au Portugal démontre une relation non linéaireentre le nombre d’enfants et le niveau de scolarité au cours des dernièresannées. Les données recueillies pendant les dix dernières années ont étéétudiées avant de confirmer cette hypothèse ; nous avons pu voir que le déclingénéral dans le taux de fécondité au Portugal pendant la dernière décade étaitcausé par un déclin de fécondité chez les personnes moins éduquées ; ceci a étépartiellement atténué par une hausse dans le taux de fécondité dans les classessupérieures. Les raisons de cette relation non linéaire sont discutées dans lecontexte des taux d’emploi des femmes et les différentiels de salaire selon lesniveaux de scolarité. L’hypothèse majeure est que les différences dans les tauxde fécondité sont reliés à un effet « scolarité-travail » parmi les groupes moinséduqués et à un effet « scolarité-salaire » parmi les classes mieux éduqués.
Modelling long term rockslide displacements with non-linear time-dependent relationships
De Caro, Mattia; Volpi, Giorgio; Castellanza, Riccardo; Crosta, Giovanni; Agliardi, Federico
2015-04-01
Rockslides undergoing rapid changes in behaviour pose major risks in alpine areas, and require careful characterization and monitoring both for civil protection and mitigation activities. In particular, these instabilities can undergo very slow movement with occasional and intermittent acceleration/deceleration stages of motion potentially leading to collapse. Therefore, the analysis of such instabilities remains a challenging issue. Rockslide displacements are strongly conditioned by hydrologic factors as suggested by correlations with groundwater fluctuations, snowmelt, with a frequently observed delay between perturbation and system reaction. The aim of this work is the simulation of the complex time-dependent behaviour of two case studies for which also a 2D transient hydrogeological simulation has been performed: Vajont rockslide (1960 to 1963) and the recent Mt. de La Saxe rockslide (2009 to 2012). Non-linear time-dependent constitutive relationships have been used to describe long-term creep deformation. Analyses have been performed using a "rheological-mechanical" approach that fits idealized models (e.g. viscoelastic, viscoplastic, elasto-viscoplastic, Burgers, nonlinear visco-plastic) to the experimental behaviour of specific materials by means of numerical constants. Bidimensional simulations were carried out using the finite difference code FLAC. Displacements time-series, available for the two landslides, show two superimposed deformation mechanisms: a creep process, leading to movements under "steady state" conditions (e.g. constant groundwater level), and a "dynamic" process, leading to an increase in displacement rate due to changes of external loads (e.g. groundwater level). For both cases sliding mass is considered as an elasto-plastic body subject to its self-weight, inertial and seepage forces varying with time according to water table fluctuation (due to snowmelt or changing in reservoir level) and derived from the previous hydrogeological
Institute of Scientific and Technical Information of China (English)
LIU Chun-Ping; LING Zhi
2005-01-01
By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m → 1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations.
Wu, Jiefeng; Chen, Xingwei; Yao, Huaxia; Gao, Lu; Chen, Ying; Liu, Meibing
2017-08-01
Exploring the relationship between hydrological and meteorological droughts under influence of large reservoirs is crucial for early warning of hydrological drought. This study took Jinjiang River basin in the southeast coastal region of China as an example, where the Shilong hydrometric station is influenced by a large reservoir (Shanmei), and the Anxi hydrological station is not. Based on monthly data of streamflow with precipitation and historical drought records from 1960 to 2010, the Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI) series (representing meteorological drought and hydrological drought, respectively) were each calculated with a 3-month timescale. Run theory was then used to identify the characteristics of meteorological and hydrological drought, including duration and magnitude. The relationship with which hydrological drought responds to meteorological drought was established by a non-linear function model at the Anxi station and Shilong station which reflected the periods of natural condition without reservoir and reservoir-influence condition, respectively. The results indicate that (1) there was a clear non-linear relationship of hydrological drought and meteorological drought, and the threshold within which hydrological drought started to respond to meteorological drought was obtained according to the non-linear function model; (2) the operational activities of the Shanmei reservoir during 1983-2010 have significantly reduced the duration and magnitude of hydrological drought at the Shilong station compared to the natural-influence period of 1960-1982, which, in turn, altered the relationship between the hydrological drought and meteorological drought. The propagation process from meteorological to hydrological droughts was shortened because of the changed relationship.
Research on nonlinear constitutive relationship of permanent deformation in asphalt pavements
Institute of Scientific and Technical Information of China (English)
PENG; Miaojuan; XU; Zhihong
2006-01-01
To predict correctly the rut depths in asphalt pavements,a new nonlinear viscoelastic-elastoplastic constitutive model of permanent deformation in asphalt pavements is presented.The model combines a generalized Maxwell model with an elastoplastic one.Then from the creep theory,the linear and nonlinear constitutive equations of the generalized Maxwell model are obtained.From the nonlinear finite element method for the rutting of the asphalt pavement,the rut depths of 4 asphalt-aggregate mixtures are obtained.And the results are compared with the ones from the finite element method by SHRP and the experiments by SWK/UN.The results in this paper are better than the ones by SHRP,and agree with the ones of the experiment by SWK/UN.This shows that the nonlinear viscoelastic-elastoplastic constitutive model,which is presented in this paper for the rutting of the asphalt pavement,is effective.The properties,such as nonlinear elasticity,plasticity,viscoelasticity and nonlinear viscoelasticity,which affect the rutting of an asphalt pavement,can be shown in the model.And the characteristics of the permanent deformation of the asphalt pavement can be presented entirely in the model.
Magnuski, Mikołaj; Gola, Mateusz
2013-09-01
We have investigated the interplay between face orientation, eye presence, and N170 amplitude by recording Event Related Potentials. To clarify previous reports of nonlinearity in N170 amplitude changes along rotation angle changes, we adopted Itier et al.'s model (Itier et al., 2007) which links N170 face inversion effects with the presence of eyes. Comparison of N170 amplitude and latency for five stimulus categories (Faces-with-eyes, Faces-without-eyes, Eyes, Cars-with-lights, Cars-without-lights) in five different rotations (0, 45, 90, 135, 180) resulted in mixed conclusions. The main findings of this study are as follows: (1) a strong nonlinear relationship between N170 and angle of rotation that is specific to faces, distinguishing face from car category even when no significant differences were observed between these categories for upright and inverted orientations; and (2) the nonlinear relationship between N170 and angle of rotation does not depend on eye presence. We also propose an alternative model according to which N170 amplitude consists of two related aspects of face processing: (A) incompatibility (relative distance of the stimulus pattern from experience-based hypothetical prototype) and (B) integration (degree to which stimulus is integrated into holistic representation), with the former affecting the latter. Moreover, we suggest two possible neural events underlying these two aspects of face processing: neural population size activated by the stimulus, and synchronization within this population.
Energy Technology Data Exchange (ETDEWEB)
López-Téllez, J. M., E-mail: jmlopez@comunidad.unam.mx; Bruce, N. C. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Apdo. Postal 70-186, México D.F., 04510 (Mexico)
2014-03-15
We present a method for using liquid-crystal variable retarders (LCVR’s) with continually varying voltage to measure the Stokes vector of a light beam. The LCVR's are usually employed with fixed retardance values due to the nonlinear voltage-retardance behavior that they show. The nonlinear voltage-retardance relationship is first measured and then a linear fit of the known retardance terms to the detected signal is performed. We use known waveplates (half-wave and quarter-wave) as devices to provide controlled polarization states to the Stokes polarimeter and we use the measured Stokes parameters as functions of the orientation of the axes of the waveplates as an indication of the quality of the polarimeter. Results are compared to a Fourier analysis method that does not take into account the nonlinear voltage-retardance relationship and also to a Fourier analysis method that uses experimental voltage values to give a linear retardance function with time. Also, we present results of simulations for comparison.
López-Téllez, J M; Bruce, N C
2014-03-01
We present a method for using liquid-crystal variable retarders (LCVR's) with continually varying voltage to measure the Stokes vector of a light beam. The LCVR's are usually employed with fixed retardance values due to the nonlinear voltage-retardance behavior that they show. The nonlinear voltage-retardance relationship is first measured and then a linear fit of the known retardance terms to the detected signal is performed. We use known waveplates (half-wave and quarter-wave) as devices to provide controlled polarization states to the Stokes polarimeter and we use the measured Stokes parameters as functions of the orientation of the axes of the waveplates as an indication of the quality of the polarimeter. Results are compared to a Fourier analysis method that does not take into account the nonlinear voltage-retardance relationship and also to a Fourier analysis method that uses experimental voltage values to give a linear retardance function with time. Also, we present results of simulations for comparison.
Wang, Da-ming; Zhu, Bin; Ding, Liang-cai; Liu, Ning; Zhang, Jin-song
2010-06-01
To study the relationship between the resuscitation therapy and intensive insulin therapy on stress-induced hyperglycemia in severe sepsis and septic shock patients, and to evaluate the value on nonlinear viewpoint in the treatment of patients with sepsis. The data of 129 hospitalized patients with severe sepsis and septic shock were analyzed and they were divided into eight groups every 6 hours in ascending order for full recovery. The resuscitation therapy time of each group was compared with insulin dosage in each unit time with nonlinear least square method. The relationship of the exponential function fit very well between the resuscitation therapy time of each group and the insulin dosage in each unit time. The exponential curve equation was y=e0.739 3-0.015 2x2 (a=0.739 3, b=0.015 2) and the curve fit very well (R2=0.976 943 6). It conforms to the nonlinear viewpoint that the resuscitation therapy time is closely correlated with recovery of dysfunction of endocrine system during the treatment for patients with severe sepsis and septic shock. Therefore, the essence of successful treatment is to concentrate on helping the body rebuild the disorganized network and the recovery of physiological harmony rather than to support and repair the damaged organs.
The Nonlinear Dynamic Relationship of Exchange Rates: Parametric and Nonparametric Causality testing
Bekiros, S.D.; Diks, C.
2007-01-01
The present study investigates the long-term linear and nonlinear causal linkages among six currencies, namely EUR/USD, GBP/USD, USD/JPY, USD/CHF, AUD/USD and USD/CAD. The prime motivation for choosing these exchange rates comes from the fact that they are the most liquid and widely traded, covering
Bekiros, S.D.; Diks, C.G.H.
2007-01-01
The present study investigates the linear and nonlinear causal linkages between daily spot and futures prices for maturities of one, two, three and four months of West Texas Intermediate (WTI) crude oil. The data cover two periods October 1991-October 1999 and November 1999-October 2007, with the la
Bekiros, S.D.; Diks, C.G.H.
2008-01-01
The present study investigates the linear and nonlinear causal linkages between daily spot and futures prices for maturities of one, two, three and four months of West Texas Intermediate (WTI) crude oil. The data cover two periods October 1991-October 1999 and November 1999-October 2007, with the la
Bekiros, S.D.; Diks, C.G.H.
2007-01-01
The present study investigates the linear and nonlinear causal linkages between daily spot and futures prices for maturities of one, two, three and four months of West Texas Intermediate (WTI) crude oil. The data cover two periods October 1991-October 1999 and November 1999-October 2007, with the
Bekiros, S.D.; Diks, C.G.H.
2008-01-01
The present study investigates the linear and nonlinear causal linkages between daily spot and futures prices for maturities of one, two, three and four months of West Texas Intermediate (WTI) crude oil. The data cover two periods October 1991-October 1999 and November 1999-October 2007, with the
To Honor Fechner and Obey Stevens: Relationships between Psychophysical and Neural Nonlinearities
Billock, Vincent A.; Tsou, Brian H.
2011-01-01
G. T. Fechner (1860/1966) famously described two kinds of psychophysics: "Outer psychophysics" captures the black box relationship between sensory inputs and perceptual magnitudes, whereas "inner psychophysics" contains the neural transformations that Fechner's outer psychophysics elided. The relationship between the two has never been clear.…
Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression
D.E. Allen (David); A.K. Singh (Abhay); R.J. Powell (Robert); M.J. McAleer (Michael); J. Taylor (James); L. Thomas (Lyn)
2013-01-01
textabstractThe purpose of this paper is to examine the asymmetric relationship between price and implied volatility and the associated extreme quantile dependence using linear and non linear quantile regression approach. Our goal in this paper is to demonstrate that the relationship between the
Wear, Keith A
2015-03-01
Through-transmission measurements were performed on 30 human calcaneus samples in vitro. Nonlinear attenuation and dispersion measurements were investigated by estimating 95% confidence intervals of coefficients of polynomial expansions of log magnitude and phase of transmission coefficients. Bone mineral density (BMD) was measured with dual x-ray absorptiometry. Microarchitecture was measured with microcomputed tomography. Statistically significant nonlinear attenuation and nonzero dispersion were confirmed for a clinical bandwidth of 300-750 kHz in 40%-43% of bone samples. The mean linear coefficient for attenuation was 10.3 dB/cm MHz [95% confidence interval (CI): 9.0-11.6 dB/cm MHz]. The mean quadratic coefficient for attenuation was 1.6 dB/cm MHz(2) (95% CI: 0.4-2.8 dB/cm MHz(2)). Nonlinear attenuation provided little information regarding BMD or microarchitecture. The quadratic coefficient for phase (which is related to dispersion) showed moderate correlations with BMD (r = -0.65; 95% CI: -0.82 to -0.36), bone surface-to-volume ratio (r = 0.47; 95% CI: 0.12-0.72) and trabecular thickness (r = -0.40; 95% CI: -0.67 to -0.03). Dispersion was proportional to bone volume fraction raised to an exponent of 2.1 ± 0.2, which is similar to the value for parallel nylon-wire phantoms (2.4 ± 0.2) and supports a multiple-scattering model for dispersion.
Directory of Open Access Journals (Sweden)
Dimitrios Kourkoutas
2009-04-01
Full Text Available Dimitrios Kourkoutas1,2, Gerasimos Georgopoulos1, Antonios Maragos1, et al1Department of Ophthalmology, Medical School, Athens University, Athens, Greece; 2Department of Ophthalmology, 417 Hellenic Army Shared Fund Hospital, Athens, GreecePurpose: In this paper a new nonlinear multivariable regression method is presented in order to investigate the relationship between the central corneal thickness (CCT and the Heidelberg Retina Tomograph (HRTII optic nerve head (ONH topographic measurements, in patients with established glaucoma.Methods: Forty nine eyes of 49 patients with glaucoma were included in this study. Inclusion criteria were patients with (a HRT II ONH imaging of good quality (SD 30 < μm, (b reliable Humphrey visual field tests (30-2 program, and (c bilateral CCT measurements with ultrasonic contact pachymetry. Patients were classified as glaucomatous based on visual field and/or ONH damage. The relationship between CCT and topographic parameters was analyzed by using the new nonlinear multivariable regression model.Results: In the entire group, CCT was 549.78 ± 33.08 μm (range: 484–636 μm; intraocular pressure (IOP was 16.4 ± 2.67 mmHg (range: 11–23 mmHg; MD was −3.80 ± 4.97 dB (range: 4.04 – [−20.4] dB; refraction was −0.78 ± 2.46 D (range: −6.0 D to +3.0 D. The new nonlinear multivariable regression model we used indicated that CCT was significantly related (R2 = 0.227, p < 0.01 with rim volume nasally and type of diagnosis.Conclusions: By using the new nonlinear multivariable regression model, in patients with established glaucoma, our data showed that there is a statistically significant correlation between CCT and HRTII ONH structural measurements, in glaucoma patients.Keywords: central corneal thickness, glaucoma, optic nerve head, HRT
The Relationship between Tsallis Statistics, the Fourier Transform, and Nonlinear Coupling
Nelson, Kenric P
2008-01-01
Tsallis statistics (or q-statistics) in nonextensive statistical mechanics is a one-parameter description of correlated states. In this paper we use a translated entropic index: $1 - q \\to q$ . The essence of this translation is to improve the mathematical symmetry of the q-algebra and make q directly proportional to the nonlinear coupling. A conjugate transformation is defined $\\hat q \\equiv \\frac{{- 2q}}{{2 + q}}$ which provides a dual mapping between the heavy-tail q-Gaussian distributions, whose translated q parameter is between $ - 2 < q < 0$, and the compact-support q-Gaussians, between $0 < q < \\infty $ . This conjugate transformation is used to extend the definition of the q-Fourier transform to the domain of compact support. A conjugate q-Fourier transform is proposed which transforms a q-Gaussian into a conjugate $\\hat q$ -Gaussian, which has the same exponential decay as the Fourier transform of a power-law function. The nonlinear statistical coupling is defined such that the conjugate ...
Energy Technology Data Exchange (ETDEWEB)
Williams, Paul T.
2004-12-01
The cross-sectional relationships of weekly walking distance to BMI, body circumferences, and bra cup sizes are reported for 27,596 women. The percent reductions between walking 40-50 km/wk and < 10km/wk were greatest for BMI, substantial for waist circumference and cupsize, and least for hip and chest circumferences. The relationships between distance and adiposity were nonlinear with respect to both the independent (quadratic function of distance) and dependent variables(slope and curvilinearity depending upon the percentile of BMI, circumference, or cup size). The slope relating adiposity to km/wk were greatest (most negative) in overweight sedentary women and least in lean active women. For example, compared to women averaging 10 km/wk, the slope of BMI versus km/wk was 43 percent less at 25 km/wk and 87 percent less at 40 km/wk in overweight women (95th BMI percentile), but negligible at all distances in lean women (5th BMI percentile). The greater estimated decrease in BMI per km/wk in walkers than runners was largely accounted for (over 75 percent) by the walkers greater adiposity. Thus classical representations of the relationship between adiposity and moderate physical activity are inadequate for either statistical analyses or descriptive purposes. The clinical implications of these results and their statistical ramifications are discussed.
Noorizadeh, Hadi; Sajjadifar, Sami; Farmany, Abbas
2013-01-01
We performed studies on extended series of 79 HEPT ligands (1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine), inhibitors of HIV reverse-transcriptase with anti-HIV biological activity, using quantitative structure-activity relationship (QSAR) methods that imply analysis of correlations and representation of models. A suitable set of molecular descriptors was calculated, and the genetic algorithm was employed to select those descriptors which resulted in the best-fit models. The kernel partial least square and Levenberg-Marquardt artificial neural network were utilized to construct the nonlinear QSAR models. The proposed methods will be of great significance in this research, and would be expected to apply to other similar research fields.
Mulder, H.A.; Hill, W.G.; Knol, E.F.
2015-01-01
There is recent evidence from laboratory experiments and analysis of livestock populations that not only the phenotype itself, but also its environmental variance, is under genetic control. Little is known about the relationships between the environmental variance of one trait and mean levels of oth
Mulder, H.A.; Hill, W.G.; Knol, E.F.
2015-01-01
There is recent evidence from laboratory experiments and analysis of livestock populations that not only the phenotype itself, but also its environmental variance, is under genetic control. Little is known about the relationships between the environmental variance of one trait and mean levels of
Estimation of land surface evaporation using a generalized nonlinear complementary relationship
Zhang, Lu; Cheng, Lei; Brutsaert, Wilfried
2017-02-01
Evaporation is a key component of the hydrological cycle and affects regional water resources. Although the physics of evaporation is well understood, its estimation in practice remains a challenge. Among available methods for estimating it, the complementary principle of Bouchet has the potential to provide a practical tool for regional water resources assessment. In this study, the generalized nonlinear formulation of this principle by Brutsaert (2015) was tested against evaporation measurements from four flux stations in Australia under different climatic and vegetation conditions. The method was implemented using meteorological data and Class A pan evaporation measurements. After calibration the estimated daily evaporation values were in good agreement with flux station measurements with a mean correlation coefficient of 0.83 and a bias of 4% on average. More accurate estimates of daily evaporation were obtained when the evaporative demand or apparent potential evaporation was determined from the Penman equation instead of from pan evaporation. The obtained parameter values were found to lie well within the ranges of reported values in the literature. Advantages of the method are that only routine meteorological data are required and that it can be used to estimate long-term evaporation trends.
Kar, Swayamsiddha; Adithya, K. S.; Shankar, Pruthvik; Jagadeesh Babu, N.; Srivastava, Sailesh; Nageswara Rao, G.
2017-07-01
Nine chalcones were prepared via Claisen-Schmidt condensation, and characterized by UV-vis, IR, 1H NMR, 13C NMR and mass spectrometry. One of the representative member 4-NDM-TC has been studied via single crystal XRD and the TGA/DTA technique. SHG efficiency and NLO susceptibilities of the chalcones have been evaluated by the Kurtz and Perry method and Degenerate Four Wave Mixing techniques respectively. 3-Cl-4‧-HC was noted to possess SHG efficiency 1.37 times that of urea while 4-NDM-TC returned the highest third order NLO susceptibilities with respect to CS2. In silico studies help evaluate various physical parameters, in correlating the observed activities. In conclusion, the structure-activity relationship was derived based on the in silico and experimental results for the third order NLO susceptibilities.
The Nonlinear Relationship between Bank Credits and Agricultural Employment in Mazandaran Province
Directory of Open Access Journals (Sweden)
Alireza Keikha
2014-12-01
Full Text Available Mazandaran province is one of the most important agricultural areas in Iran. Researches findings show that the role of bank credits is really important due to the lack of available funds in agricultural sector. In this study, the relationship between allocation of Agricultural Bank credits of Iran as professional bank section and agricultural employment was studied in the Mazandaran province based on a threshold error correction model during 1981-2011. The results show that the impact of credits on agricultural employment has been significantly different in upper and lower level of estimated threshold. The estimated threshold is about 44 percent for bank credits. The impact of bank credits on agricultural employment will be significantly negative when they exceeds from the threshold point. The results confirm transfer of capital from agriculture to other sections, resulting in a lack of integrated management for credit allocation system.
Food addiction and body-mass-index: a non-linear relationship.
Meule, Adrian
2012-10-01
Excessive food consumption has been recognized to show similarities with substance dependence. Subsequently, it has been proposed that food addiction might contribute to the obesity epidemic. Recent studies using questionnaires for the assessment of food addiction have found statistically significant, but negligible positive correlations with body-mass-index (BMI). Moreover, group comparisons between food-addicted and non-addicted individuals in normal-weight or obese samples did not show differences in BMI. However, the prevalence of food addiction diagnoses is remarkably increased in obese individuals. In the current article, it is suggested that there might be a cubic relationship between food addiction and BMI. Food addiction symptomatology may remain stable in the under- and normal-weight range, increase in the overweight- and obese range, and level off at severe obesity. Empirical data in support of this view are presented.
Wölfle, Stephanie E; Chaston, Daniel J; Goto, Kenichi; Sandow, Shaun L; Edwards, Frank R; Hill, Caryl E
2011-05-15
Blood flow is adjusted to tissue demand through rapidly ascending vasodilatations resulting from conduction of hyperpolarisation through vascular gap junctions. We investigated how these dilatations can spread without attenuation if mediated by an electrical signal. Cremaster muscle arterioles were studied in vivo by simultaneously measuring membrane potential and vessel diameter. Focal application of acetylcholine elicited hyperpolarisations which decayed passively with distance from the local site,while dilatation spread upstream without attenuation. Analysis of simultaneous recordings at the local site revealed that hyperpolarisation and dilatation were only linearly related over a restricted voltage range to a threshold potential, beyond which dilatation was maximal. Experimental data could be simulated in a computational model with electrotonic decay of hyperpolarisation but imposition of this threshold. The model was tested by reducing the amplitude of the local hyperpolarisation which led to entry into the linear range closer to the local site and decay of dilatation. Serial section electron microscopy and light dye treatment confirmed that the spread of dilatation occurred through the endothelium and that the two cell layers were tightly coupled. Generality of the mechanism was demonstrated by applying the model to the attenuated propagation of dilatation found in larger arteries.We conclude that long distance spread of locally initiated dilatations is not due to a regenerative electrical phenomenon, but rather a restricted linear relationship between voltage and vessel tone, which minimises the impact of electrotonic decay of voltage. Disease-related alterations in endothelial coupling or ion channel expression could therefore decrease the ability to adjust blood flow to meet metabolic demand.
Nonlinear Relationship of Near-Bed Velocity and Growth of Riverbed Periphyton
Directory of Open Access Journals (Sweden)
Mohamed Ateia
2016-10-01
Full Text Available Artificial streams were set up to test the relationship between near-bed water velocity and periphyton growth. Periphyton community samples collected from a Japanese stream were incubated for 44 days under a light intensity of 252 ± 72 μmol·photons/m2·s, a temperature of 20–25 °C, and three near-bed water velocity classes: low (<17.9 cm/s, moderate (17.9–32.8 cm/s, and high (>32.8 cm/s. A logistic model was applied to estimate the maximum net growth rate (μmax and carrying capacity (Bmax. A response surface method was also applied to estimate chlorophyll a (Chl-a and ash-free dry mass (AFDM with respect to the independent variables (i.e., time and water velocity. We detected both the highest μmax (1.99 d−1 and highest Bmax (7.01 mg/m2 for Chl-a at the moderate water velocity. For AFDM, we observed the highest μmax (0.57 d−1 and Bmax (1.47 g/m2 at the low and moderate velocity classes, respectively. The total algae density in the region of moderate velocity at the end of the experiment was 6.47 × 103 cells/cm2, corresponding to levels 1.7 and 1.3 times higher than those at lower and higher velocities, respectively. Our findings indicated that the moderate near-bed water velocity provided favorable conditions for algal growth and corresponding biomass accumulation.
He, Ling-Yun; Chen, Shu-Peng
2011-01-01
Nonlinear dependency between characteristic financial and commodity market quantities (variables) is crucially important, especially between trading volume and market price. Studies on nonlinear dependency between price and volume can provide practical insights into market trading characteristics, as well as the theoretical understanding of market dynamics. Actually, nonlinear dependency and its underlying dynamical mechanisms between price and volume can help researchers and technical analysts in understanding the market dynamics by integrating the market variables, instead of investigating them in the current literature. Therefore, for investigating nonlinear dependency of price-volume relationships in agricultural commodity futures markets in China and the US, we perform a new statistical test to detect cross-correlations and apply a new methodology called Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), which is an efficient algorithm to analyze two spatially or temporally correlated time series. We discuss theoretically the relationship between the bivariate cross-correlation exponent and the generalized Hurst exponents for time series of respective variables. We also perform an empirical study and find that there exists a power-law cross-correlation between them, and that multifractal features are significant in all the analyzed agricultural commodity futures markets.
Edelaar, Lisa M; van Dieën, Jaap H; van der Esch, Martin; Roorda, Leo D; Dekker, Joost; Lems, Willem F; van der Leeden, Marike
2017-07-07
To investigate whether relationships between upper leg muscle strength and activity limitations are non-linear in patients with knee osteoarthritis, and, if so, to determine muscle strength thresholds for limitations in daily activities. Baseline data were used for 562 patients with knee osteoarthritis in the Amsterdam-Osteoarthritis cohort. Upper leg muscle strength (Nm/kg) was measured isokinetically. Activity limitations were measured with the timed Get Up and Go test and timed Stair Climb Test, subdivided into stair-ascent and stair-descent. Linear and non-linear relationships between muscle strength and activity limitations were evaluated, and thresholds were determined. Non-linear models improved model fit compared with linear models. The improvement in percentage variance accounted for was 5.9, 8.2 and 5.2 percentage points for the timed Get Up and Go, stair-ascent and stair-descent times, respectively. Muscle strength thresholds were 0.93 Nm/kg (95% confidence interval (95% CI) 0.82-1.04), 0.89 Nm/kg (95% CI 0.77-1.02) and 0.97 Nm/kg (95% CI 0.85-1.11) for relationships with timed Get Up and Go, stair-ascent and stair-descent times, respectively. In patients with knee osteoarthritis, relationships between muscle strength and activity limitations are non-linear. Patients with muscle strength below the described thresholds might benefit more from muscle strength training to reduce limitations in daily activities than would patients with muscle strength above the thresholds. Further research is needed to assess the clinical value of the thresholds determined.
Directory of Open Access Journals (Sweden)
Mendel Friedman
2013-08-01
Full Text Available Aflatoxin-producing fungi contaminate food and feed during pre-harvest, storage and processing periods. Once consumed, aflatoxins (AFs accumulate in tissues, causing illnesses in animals and humans. Most human exposure to AF seems to be a result of consumption of contaminated plant and animal products. The policy of blending and dilution of grain containing higher levels of aflatoxins with uncontaminated grains for use in animal feed implicitly assumes that the deleterious effects of low levels of the toxins are linearly correlated to concentration. This assumption may not be justified, since it involves extrapolation of these nontoxic levels in feed, which are not of further concern. To develop a better understanding of the significance of low dose effects, in the present study, we developed quantitative methods for the detection of biologically active aflatoxin B1 (AFB1 in Vero cells by two independent assays: the green fluorescent protein (GFP assay, as a measure of protein synthesis by the cells, and the microculture tetrazolium (MTT assay, as a measure of cell viability. The results demonstrate a non-linear dose-response relationship at the cellular level. AFB1 at low concentrations has an opposite biological effect to higher doses that inhibit protein synthesis. Additional studies showed that heat does not affect the stability of AFB1 in milk and that the Vero cell model can be used to determine the presence of bioactive AFB1 in spiked beef, lamb and turkey meat. The implication of the results for the cumulative effects of low amounts of AFB1 in numerous foods is discussed.
Zheng, Dingchang; Murray, Alan
2009-05-29
Arterial wall function is associated with different physiological and clinical factors. Changes in arterial pressure cause major changes in the arterial wall. This study presents a simple non-invasive method to quantify arterial volume distensibility changes with different arterial pressures. The electrocardiogram, finger and ear photoplethysmogram were recorded from 15 subjects with the right arm at five different positions (90 degrees , 45 degrees , 0 degrees , -45 degrees and -90 degrees referred to the horizontal level). Arm pulse propagation time was determined by subtracting ear pulse transit time from finger pulse transit time, and was used to obtain arterial volume distensibility. The mean arterial blood pressure with the arm at the horizontal level was acquired, and changes with position were calculated using the hydrostatic principle that blood pressure in the arm is linearly related to its vertical distance from the horizontal level. The mean arm pulse propagation times for the five different positions were 88, 72, 57, 54 and 52ms, with the corresponding mean arterial volume distensibility of 0.234%, 0.158%, 0.099%, 0.088% and 0.083% per mmHg. For all consecutive changes in arm position, arm pulse propagation time and arterial volume distensibility, were significantly different (all probability Ppressure decreased significantly between each consecutive arm position from 90 degrees to -45 degrees (all Ppressure changes from 101 to 58mmHg. In conclusion, the inverse and non-linear relationship between arterial volume distensibility and arterial pressure has been quantified using a simple arm positioning procedure, with the greatest effect at low pressures. This work is an important step in developing a simple non-invasive technique for assessing peripheral arterial volume distensibility.
Konovalov, I B
2002-01-01
The nonlinear features of the relationships between particulate matter (PM) and volatile organic compounds (VOC) and oxides of nitrogen (NOx) are derived directly from data of long-term routine measurements of NOx, VOC, and total suspended PM. The main idea of the method used for the analysis is creation of special empirical models based on artificial neural networks of the perceptron type. These models which are in essence the nonlinear extension of commonly used linear regression models are believed to provide the best fit for the real nonlinear PM-NOx-VOC relationships under different observed levels of air pollution and various meteorological conditions. It is believed that such models may be useful in context of various scientific and practical problems concerning PM. The method is demonstrated by the example of two empirical models created with independent data-sets collected at two air quality monitoring stations at South Coast Air Basin, California. It is shown that in spite of considerable distance b...
McDonald, Alison C; Sanei, Kia; Keir, Peter J
2013-06-01
Muscle force estimates are important for full understanding of the musculoskeletal system and EMG is a modeling method used to estimate muscle force. The purpose of this investigation was to examine the effect of high pass filtering and non-linear normalization on the EMG-force relationship of sub-maximal finger exertions. Sub-maximal isometric ramp exertions were performed under three conditions (i) extension with restraint at the mid-proximal phalanx, (ii) flexion at the proximal phalanx and (iii) flexion at the distal phalanx. Thirty high pass filter designs were compared to a standardized processing procedure and an exponential fit equation was used for non-linear normalization. High pass filtering significantly reduced the %RMS error and increased the peak cross correlation between EMG and force in the distal flexion condition and in the other two conditions there was a trend towards improving force predictions with high pass filtering. The degree of linearity differed between the three contraction conditions and high pass filtering improved the linearity in all conditions. Non-linear normalization had greater impact on the EMG-force relationship than high pass filtering. The difference in optimal processing parameters suggests that high pass filtering and linearity are dependent on contraction mode as well as the muscle analyzed.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sei-wan [Department of Economics, Ewha Womans University, Seoul (Korea, Republic of); Lee, Kihoon, E-mail: khl@cnu.ac.k [Department of Economics, Chungnam National University, Daejeon (Korea, Republic of); Nam, Kiseok [Sy Syms School of Business, Yeshiva University, New York, NY 10033 (United States)
2010-10-15
Using STAR models, we investigate the nonlinear dynamic properties and the interdependence of CO{sub 2} emissions and economic growth for Korea. The estimation results indicate that the growth rate of both CO{sub 2} emissions and industrial production exhibit a significant nonlinear asymmetric dynamics. While the linear Granger causality test finds no causality in any direction, the results of the nonlinear Granger causality tests show a two-way causality between CO{sub 2} emissions and economic growth. The strong mutual causation between CO{sub 2} emissions and economic activities indicates that the economic impact from CO{sub 2} mitigation is expected to be higher in Korea. This suggests that the appropriate energy and environmental policy be to mitigate CO{sub 2} emissions while having less impact on the economy.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sei-wan [Department of Economics, Ewha Womans University, Seoul (Korea); Lee, Kihoon [Department of Economics, Chungnam National University, Daejeon (Korea); Nam, Kiseok [Sy Syms School of Business, Yeshiva University, New York, NY 10033 (United States)
2010-10-15
Using STAR models, we investigate the nonlinear dynamic properties and the interdependence of CO{sub 2} emissions and economic growth for Korea. The estimation results indicate that the growth rate of both CO{sub 2} emissions and industrial production exhibit a significant nonlinear asymmetric dynamics. While the linear Granger causality test finds no causality in any direction, the results of the nonlinear Granger causality tests show a two-way causality between CO{sub 2} emissions and economic growth. The strong mutual causation between CO{sub 2} emissions and economic activities indicates that the economic impact from CO{sub 2} mitigation is expected to be higher in Korea. This suggests that the appropriate energy and environmental policy be to mitigate CO{sub 2} emissions while having less impact on the economy. (author)
Directory of Open Access Journals (Sweden)
Thiyanga Talagala
2015-12-01
Full Text Available Dengue fever and its more severe deadly complication dengue hemorrhagic fever is an infectious mosquito borne disease. The rise in dengue fever has made a heavy economic burden to the country. Climate variability is considered as the major determinant of dengue transmission. Sri Lanka has a favorable climatic condition for development and transmission of dengue. Hence the aim of this study is to estimate the effect of diverse climatic variables on the transmission of dengue while taking the lag effect and nonlinear effect into account. Weekly data on dengue cases were obtained from January, 2009 to September, 2014. Temperature, precipitation, visibility, humidity, and wind speed were also recorded as weekly averages. Poisson regression combined with distributed lag nonlinear model was used to quantify the impact of climatic factors. Results of DLNM revealed; Mean Temperature 250C – 270C at lag 1 – 8 weeks, Precipitation higher than 70mm at lag 1- 5 weeks and 20- 50mm at lag 10 – 20 weeks, humidity ranged from 65% to 80% at lag 10 – 18 weeks, visibility greater than 14 km have a positive impact on the occurrence of dengue incidence while, mean temperature higher than 280C at lag 6 – 25 weeks, maximum temperature at lag 4 – 6 weeks, precipitation higher than 65mm at lag 15 – 20 weeks, humidity less than 70% at lag 4 – 9 weeks, visibility less than 14km, high wind speed have a negative impact on the occurrence of dengue incidence. These findings can aid the targeting of vector control interventions and the planning for dengue vaccine implementation.
Hemmateenejad, Bahram; Shamsipur, Mojtaba; Miri, Ramin; Elyasi, Maryam; Foroghinia, Farzaneh; Sharghi, Hashem
2008-03-03
A quantitative structure-property relation (QSPR) study was conducted on the solubility in supercritical fluid carbon dioxide (SCF-CO2) of some recently synthesized anthraquinone, anthrone and xanthone derivatives. The data set consisted of 29 molecules in various temperatures and pressures, which form 1190 solubility data. The combined data splitting-feature selection (CDFS) strategy, which previously developed in our research group, was used as descriptor selection and model development method. Modeling of the relationship between selected molecular descriptors and solubility data was achieved by linear (multiple linear regression; MLR) and nonlinear (artificial neural network; ANN) methods. The QSPR models were validated by cross-validation as well as application of the models to predict the solubility of three external set compounds, which did not have contribution in model development steps. Both linear and nonlinear methods resulted in accurate prediction whereas more accurate results were obtained by ANN model. The respective root mean square error of prediction obtained by MLR and ANN models were 0.284 and 0.095 in the term of logarithm of g solute m(-3) of SCF-CO2. A comparison was made between the models selected by CDFS method and the conventional stepwise feature selection method. It was found that the latter produced models with higher number of descriptors and lowered prediction ability, thus it can be considered as an over-fitted model.
Molenaar, P.C.M.; Raijmakers, M.E.J.
2000-01-01
It is shown that the Piagetian model of stagewise cognitive development can be assigned a powerful causal interpretation in terms of self-organizing epigenetic processes. A detailed heuristic explanation is given of self-organizing epigenetics. In addition, the relationships between self-organizing
Gonçalves, M A D; Bello, N M; Dritz, S S; Tokach, M D; DeRouchey, J M; Woodworth, J C; Goodband, R D
2016-05-01
Advanced methods for dose-response assessments are used to estimate the minimum concentrations of a nutrient that maximizes a given outcome of interest, thereby determining nutritional requirements for optimal performance. Contrary to standard modeling assumptions, experimental data often present a design structure that includes correlations between observations (i.e., blocking, nesting, etc.) as well as heterogeneity of error variances; either can mislead inference if disregarded. Our objective is to demonstrate practical implementation of linear and nonlinear mixed models for dose-response relationships accounting for correlated data structure and heterogeneous error variances. To illustrate, we modeled data from a randomized complete block design study to evaluate the standardized ileal digestible (SID) Trp:Lys ratio dose-response on G:F of nursery pigs. A base linear mixed model was fitted to explore the functional form of G:F relative to Trp:Lys ratios and assess model assumptions. Next, we fitted 3 competing dose-response mixed models to G:F, namely a quadratic polynomial (QP) model, a broken-line linear (BLL) ascending model, and a broken-line quadratic (BLQ) ascending model, all of which included heteroskedastic specifications, as dictated by the base model. The GLIMMIX procedure of SAS (version 9.4) was used to fit the base and QP models and the NLMIXED procedure was used to fit the BLL and BLQ models. We further illustrated the use of a grid search of initial parameter values to facilitate convergence and parameter estimation in nonlinear mixed models. Fit between competing dose-response models was compared using a maximum likelihood-based Bayesian information criterion (BIC). The QP, BLL, and BLQ models fitted on G:F of nursery pigs yielded BIC values of 353.7, 343.4, and 345.2, respectively, thus indicating a better fit of the BLL model. The BLL breakpoint estimate of the SID Trp:Lys ratio was 16.5% (95% confidence interval [16.1, 17.0]). Problems with
Sayar, Beyza S; Rüegg, Simon; Schmidt, Enno; Sibilia, Maria; Siffert, Myriam; Suter, Maja M; Galichet, Arnaud; Müller, Eliane J
2014-01-01
Novel insights into intra-cellular signalling involved in pemphigus vulgaris (PV), an autoimmune blistering disease of skin and mucous membranes, are now revealing new therapeutic approaches such as the chemical inhibition of PV-associated signals in conjunction with standard immunosuppressive therapy. However, extensive inhibition of signalling molecules that are required for normal tissue function and integrity may hamper this approach. Using a neonatal PV mouse model, we demonstrate that epidermal blistering can be prevented in a dose-dependent manner by clinically approved EGFR inhibitors erlotinib and lapatinib, but only up to approximately 50% of normal EGFR activity. At lower EGFR activity, blisters again aggravated and were highly exacerbated in mice with a conditional deletion of EGFR. Statistical analysis of the relation between EGFR activity and the extent of skin blistering revealed the best fit with a non-linear, V-shaped curve with a median break point at 52% EGFR activity (P = 0.0005). Moreover, lapatinib (a dual EGFR/ErbB2 inhibitor) but not erlotinib significantly reduced blistering in the oral cavity, suggesting that signalling mechanisms differ between PV predilection sites. Our results demonstrate that future clinical trials evaluating EGFR/ErbB2 inhibitors in PV patients must select treatment doses that retain a specific level of signal molecule activity. These findings may also be of relevance for cancer patients treated with EGFR inhibitors, for whom skin lesions due to extensive EGFR inhibition represent a major threat.
Lokstein, Heiko; Krikunova, Maria; Teuchner, Klaus; Voigt, Bernd
2011-08-15
Photosynthetically active pigments are usually organized into pigment-protein complexes. These include light-harvesting antenna complexes (LHCs) and reaction centers. Site energies of the bound pigments are determined by interactions with their environment, i.e., by pigment-protein as well as pigment-pigment interactions. Thus, resolution of spectral substructures of the pigment-protein complexes may provide valuable insight into structure-function relationships. By means of conventional (linear) and time-resolved spectroscopic techniques, however, it is often difficult to resolve the spectral substructures of complex pigment-protein assemblies. Nonlinear polarization spectroscopy in the frequency domain (NLPF) is shown to be a valuable technique in this regard. Based on initial experimental work with purple bacterial antenna complexes as well as model systems NLPF has been extended to analyse the substructure(s) of very complex spectra, including analyses of interactions between chlorophylls and "optically dark" states of carotenoids in LHCs. The paper reviews previous work and outlines perspectives regarding the application of NLPF spectroscopy to disentangle structure-function relationships in pigment-protein complexes.
Sharifzadeh, Yasamin; Kao, Ming-Chih; Sturgeon, John A; Rico, Thomas J; Mackey, Sean; Darnall, Beth D
2017-07-01
Pain catastrophizing is a maladaptive response to pain that amplifies chronic pain intensity and distress. Few studies have examined how pain catastrophizing relates to opioid prescription in outpatients with chronic pain. The authors conducted a retrospective observational study of the relationships between opioid prescription, pain intensity, and pain catastrophizing in 1,794 adults (1,129 women; 63%) presenting for new evaluation at a large tertiary care pain treatment center. Data were sourced primarily from an open-source, learning health system and pain registry and secondarily from manual review of electronic medical records. A binary opioid prescription variable (yes/no) constituted the dependent variable; independent variables were age, sex, pain intensity, pain catastrophizing, depression, and anxiety. Most patients were prescribed at least one opioid medication (57%; n = 1,020). A significant interaction and main effects of pain intensity and pain catastrophizing on opioid prescription were noted (P < 0.04). Additive modeling revealed sex differences in the relationship between pain catastrophizing, pain intensity, and opioid prescription, such that opioid prescription became more common at lower levels of pain catastrophizing for women than for men. Results supported the conclusion that pain catastrophizing and sex moderate the relationship between pain intensity and opioid prescription. Although men and women patients had similar Pain Catastrophizing Scale scores, historically "subthreshold" levels of pain catastrophizing were significantly associated with opioid prescription only for women patients. These findings suggest that pain intensity and catastrophizing contribute to different patterns of opioid prescription for men and women patients, highlighting a potential need for examination and intervention in future studies.
Belli, Mauro; Ottolenghi, Andrea; Weiss, Wolfgang
2010-08-01
Health effects of exposures at low doses and/or low dose rates are recognized as requiring intensive research activity to answer several questions. To address these issues at a strategic level in Europe, with the perspective of integrating national and EC efforts (in particular those within the Euratom research programmes), a "European High Level and Expert Group (HLEG) on low dose risk research" was formed and carried out its work during 2008. The Group produced a report published by the European Commission in 2009 and available on the website http://www.hleg.de . The more important research issues identified by the HLEG were as follows: (a) the shape of dose-response for cancer; (b) the tissue sensitivities for cancer induction; (c) the individual variability in cancer risk; (d) the effects of radiation quality (type); (e) the risks from internal radiation exposure; and (f) the risks of, and dose response relationships for, non-cancer diseases. In this paper, the radiation quality issues are especially considered, since they are closely linked to health problems and related radioprotection in space and in emerging radiotherapeutic techniques (i.e., hadrontherapy). The peculiar features of low-fluence, high-LET radiation exposures can question in particular the validity of the radiation-weighting factor (w ( R )) approach. Specific strategies are therefore needed to assess such risks. A multi-scale/systems biology approach, based on mechanistic studies coordinated with molecular-epidemiological studies, is considered essential to elucidate differences and similarities between specific effects of low- and high-LET radiation.
Hamiltonian realizations of nonlinear adjoint operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2002-01-01
This paper addresses the issue of state-space realizations for nonlinear adjoint operators. In particular, the relationships between nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are established. Then, characterizations of the adjoints of control
Hamiltonian Realizations of Nonlinear Adjoint Operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2000-01-01
This paper addresses state-space realizations for nonlinear adjoint operators. In particular the relationship among nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are clarified. The characterization of controllability, observability and Hankel ope
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Energy Technology Data Exchange (ETDEWEB)
Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)
2003-05-07
A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.
Energy Technology Data Exchange (ETDEWEB)
Oudalova, Alla; Geras' kin, Stanislav; Dikarev, Vladimir; Dikareva, Nina; Chernonog, Elena [Russian Institute of Agricultural Radiology and Agroecology, RIARAE, 249032 Obninsk (Russian Federation); Copplestone, David [Environment Agency, Millbank Tower, 25th. Floor, 21/24 Millbank, London, SW1P 4XL (United Kingdom); Evseeva, Tatyana [Institute of Biology, Kommunisticheskaya st., 28 Syktyvkar 167610, Komi Republic (Russian Federation)
2006-07-01
Over several decades, modelling the effects of ionizing radiation on biological system has relied on the target principle [Timofeeff-Ressovsky et al., 1935], which assumes that cell damage or modification to genes appear as a direct consequence of the exposure of biological macromolecules to charged particles. Furthermore, it is assumed that there is no threshold for the induction of biological damage and that the effects observed are proportional to the energy absorbed. Following this principle, the average number of hits per target should increase linearly with dose, and the yield of mutations per unit of dose is assumed to be the same at both low and high doses (linearity of response). This principle has served as the scientific background for the linear no-threshold (LNT) concept that forms the basis for the radiological protection for the public and the environment [ICRP, 1990]. It follows from the LNT that there is an additional risk for human health from exposure to any radiation level, even below natural background. Since the mid 50's, however, the scientific basis for the LNT concept has been challenged as experimental data have shown that, at low doses, there was a non linear relationship in the dose response. Luchnik and Timofeeff-Ressovsky were the first who showed a non-linear response to a low dose exposure [Luchnik, 1957; Timofeeff-Ressovsky and Luchnik, 1960]. Since then, many data have been accumulated which contradict the LNT model at low doses and dose rates. However, the hit-effect paradigm has become such a strong and indissoluble fact that it has persisted even under the growing pressure of scientific evidence for phenomena at low dose exposure that can not be successfully accounted for by the LNT concept. In recent years, additional information on non-targeted effects of radiation has been accumulated following the first reports of an adaptive response in human lymphocytes [Olivieri et al., 1984] as well as bystander mutagenic effect of
Directory of Open Access Journals (Sweden)
Tran Ngoc Dang
2016-01-01
Full Text Available Background: The relationship between temperature and mortality has been found to be U-, V-, or J-shaped in developed temperate countries; however, in developing tropical/subtropical cities, it remains unclear. Objectives: Our goal was to investigate the relationship between temperature and mortality in Hue, a subtropical city in Viet Nam. Design: We collected daily mortality data from the Vietnamese A6 mortality reporting system for 6,214 deceased persons between 2009 and 2013. A distributed lag non-linear model was used to examine the temperature effects on all-cause and cause-specific mortality by assuming negative binomial distribution for count data. We developed an objective-oriented model selection with four steps following the Akaike information criterion (AIC rule (i.e. a smaller AIC value indicates a better model. Results: High temperature-related mortality was more strongly associated with short lags, whereas low temperature-related mortality was more strongly associated with long lags. The low temperatures increased risk in all-category mortality compared to high temperatures. We observed elevated temperature-mortality risk in vulnerable groups: elderly people (high temperature effect, relative risk [RR]=1.42, 95% confidence interval [CI]=1.11–1.83; low temperature effect, RR=2.0, 95% CI=1.13–3.52, females (low temperature effect, RR=2.19, 95% CI=1.14–4.21, people with respiratory disease (high temperature effect, RR=2.45, 95% CI=0.91–6.63, and those with cardiovascular disease (high temperature effect, RR=1.6, 95% CI=1.15–2.22; low temperature effect, RR=1.99, 95% CI=0.92–4.28. Conclusions: In Hue, the temperature significantly increased the risk of mortality, especially in vulnerable groups (i.e. elderly, female, people with respiratory and cardiovascular diseases. These findings may provide a foundation for developing adequate policies to address the effects of temperature on health in Hue City.
2016-07-01
Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nanda, Sudarsan
2013-01-01
"Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.
Nonlinear systems in medicine.
Higgins, John P
2002-01-01
Many achievements in medicine have come from applying linear theory to problems. Most current methods of data analysis use linear models, which are based on proportionality between two variables and/or relationships described by linear differential equations. However, nonlinear behavior commonly occurs within human systems due to their complex dynamic nature; this cannot be described adequately by linear models. Nonlinear thinking has grown among physiologists and physicians over the past century, and non-linear system theories are beginning to be applied to assist in interpreting, explaining, and predicting biological phenomena. Chaos theory describes elements manifesting behavior that is extremely sensitive to initial conditions, does not repeat itself and yet is deterministic. Complexity theory goes one step beyond chaos and is attempting to explain complex behavior that emerges within dynamic nonlinear systems. Nonlinear modeling still has not been able to explain all of the complexity present in human systems, and further models still need to be refined and developed. However, nonlinear modeling is helping to explain some system behaviors that linear systems cannot and thus will augment our understanding of the nature of complex dynamic systems within the human body in health and in disease states.
Nonlinearity and nonclassicality in a nanomechanical resonator
Energy Technology Data Exchange (ETDEWEB)
Teklu, Berihu [Clermont Universite, Blaise Pascal University, CNRS, PHOTON-N2, Institut Pascal, Aubiere Cedex (France); Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Paris, Matteo G.A. [Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy)
2015-12-15
We address quantitatively the relationship between the nonlinearity of a mechanical resonator and the nonclassicality of its ground state. In particular, we analyze the nonclassical properties of the nonlinear Duffing oscillator (being driven or not) as a paradigmatic example of a nonlinear nanomechanical resonator. We first discuss how to quantify the nonlinearity of this system and then show that the nonclassicality of the ground state, as measured by the volume occupied by the negative part of the Wigner function, monotonically increases with the nonlinearity in all the working regimes addressed in our study. Our results show quantitatively that nonlinearity is a resource to create nonclassical states in mechanical systems. (orig.)
Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran
2016-01-01
We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Energy Technology Data Exchange (ETDEWEB)
Hoel, D. G.
1998-11-01
The next stage of work has been to examine more closely the A-bomb leukemia data which provides the underpinnings of the risk estimation of CML in the above mentioned manuscript. The paper by Hoel and Li (Health Physics 75:241-50) shows how the linear-quadratic model has basic non-linearities at the low dose region for the leukemias including CML. Pierce et. al., (Radiation Research 123:275-84) have developed distributions for the uncertainty in the estimated exposures of the A-bomb cohort. Kellerer, et. al., (Radiation and Environmental Biophysics 36:73-83) has further considered possible errors in the estimated neutron values and with changing RBE values with dose and has hypothesized that the tumor response due to gamma may not be linear. We have incorporated his neutron model and have constricted new A-bomb doses based on his model adjustments. The Hoel and Li dose response analysis has also been applied using the Kellerer neutron dose adjustments for the leukemias. Finally, both Pierce's dose uncertainties and Kellerer neutron adjustments are combined as well as the varying RBE with dose as suggested by Rossi and Zaider and used for leukemia dose-response analysis. First the results of Hoel and Li showing a significantly improved fit of the linear-quadratic dose response by the inclusion of a threshold (i.e. low-dose nonlinearity) persisted. This work has been complete for both solid tumor as well as leukemia for both mortality as well as incidence data. The results are given in the manuscript described below which has been submitted to Health Physics.
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t
Directory of Open Access Journals (Sweden)
Boštjan Antoncic
2007-06-01
Full Text Available In this paper we propose one possible explanation of the interrelationships between education continuation or avoidance, satisfaction level, and experience (entrepreneurial maturity of potential and practicing entrepreneurs. By using the cusp catastrophe model we propose that relationship between education satisfaction and continuation tends to be linear for less experienced entrepreneurs (pre-entrepreneurs, whereas for more experienced entrepreneurs the relationship is proposed to be positive but non-linear (s-shaped. Data were collected with a structured questionnaire from 122 participants in management and entrepreneurship education and training programs. The proposed model was tested with linear and non-linear regression equations. The relationship between satisfaction and continuation (loyalty was found to be positive for all entrepreneurial and nonentrepreneurial groups. The appropriate functional form for the satisfaction-continuation relationship discovered for non-entrepreneurs and people that are only thinking about entrepreneurship (maybe-entrepreneurs is close to linear and less steep than for more entrepreneurial groups. By contrast, prospective entrepreneurs (people in the process of pre-start up and practicing entrepreneurs tend to be more sensitive to their education satisfaction in their future education continuation decisions. The appropriate functional form for these entrepreneurial groups tends to be cubical, which is close to the s-shaped function proposed in the cusp model. The study provided evidence that the relationships between entrepreneurial maturity, education satisfaction and education continuation may be modeled as a cusp catastrophe model. The proposed model can be helpful for education and for training providers (and marketers in explaining and predicting of education loyalty or the switching behavior of entrepreneurs.
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
Institute of Scientific and Technical Information of China (English)
魏岳嵩; 杜翠真
2014-01-01
确定变量间的因果关系是时间序列分析的重要内容。传统的图模型因果推断算法有着明显的局限性，要求模型是线性的且噪声项服从Gauss分布。本文利用图模型方法辨识非线性结构向量自回归模型变量间的因果关系，给出了一种基于互信息和条件互信息的非线性结构向量自回归因果图模型结构的非参数辨识方法。数值模拟结果验证了方法的有效性。%It is important to detect and clarify the cause-effect relationships among variables in time series analysis. Traditional graphical models causality inference methods have a salient limitation that the model must be linear and with Gaussian noise. In this paper, we apply the graphical models to infer the causal relationships a-mong variables of nonlinear structural vector autoregressive models. We propose a nonparametric method which employs both the mutual information and condi-tional mutual information to identify the causal structure of nonlinear structural vector autoregressive causal graph model. Numerical simulations demonstrate the effectiveness of the method.
Energy Technology Data Exchange (ETDEWEB)
Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)
1989-01-01
Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.
NONLINEAR ELASTICITY OF BLOOD ARTERIAL DUCT
Institute of Scientific and Technical Information of China (English)
黄孟才; 顾忠; 沈俊; 唐复勇
1991-01-01
The paper deals with nonlinear elasticity of blood arterial duct, in which the artery is modeled to bea locally triclinic, transverse isotropic, incorapressible, axisymmetric and thickwalled tube with large deformations, The nonlinear coustitutive relationship of arterial tissues is based on the theorv of Green and Adkins. A nonlinear strain energy density function is introduced for nonlinear stress-strain relationship of second order, in which the coefficient of each term is expressed by means of a Lame’s constant, The elasticity constants are nqcessary to describe such a uonlinear finite strain etastieity of the second order, These constants are determined by means of the stress-strain increment theory.
Seider, Warren D.; Ungar, Lyle H.
1987-01-01
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
Directory of Open Access Journals (Sweden)
Timothy West
2016-10-01
Full Text Available In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN during Parkinson’s disease (PD. We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was no evidence for modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.
Dodrill, Michael J.; Yackulic, Charles B.
2016-01-01
Drift-foraging models offer a mechanistic description of how fish feed in flowing water and the application of drift-foraging bioenergetics models to answer both applied and theoretical questions in aquatic ecology is growing. These models typically include nonlinear descriptions of ecological processes and as a result may be sensitive to how model inputs are summarized because of a mathematical property of nonlinear equations known as Jensen’s inequality. In particular, we show that the way in which continuous size distributions of invertebrate prey are represented within foraging models can lead to biases within the modeling process. We begin by illustrating how different equations common to drift-foraging models are sensitive to invertebrate inputs. We then use two case studies to show how different representations of invertebrate prey can influence predictions of energy intake and lifetime growth. Greater emphasis should be placed on accurate characterizations of invertebrate drift, acknowledging that inferences from drift-foraging models may be influenced by how invertebrate prey are represented.
Liu, Li; Wan, Jieqiu
2012-12-01
This paper explores the co-movement of Shanghai stock market and China Yuan (CNY) exchange rates. First, we find that stock price and exchange rate are significantly cross-correlated. Second, employing a cointegration test allowing for a structural break, we find that the Shanghai Composite Index (SCI) is not cointegrated with the exchange rate of CNY/USD. The so-called “cointegration” found in previous studies is just caused by the shock of the recent financial crisis. Third, using linear and nonlinear Granger causality tests, we find no causality between stock prices and exchange rates during the period before the recent financial crisis. After the financial crisis, a unidirectional causality behavior running from exchange rates to stock index is present.
2015-01-01
From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...
Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy
Energy Technology Data Exchange (ETDEWEB)
Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2017-04-15
The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.
Directory of Open Access Journals (Sweden)
Michael Roerecke
2016-06-01
Conclusions: Alcohol consumption showed a complex association with hepatic steatosis with substantial differences by ethnicity and sex. Low alcohol consumption was beneficial in Japan with good epidemiological evidence, whereas there was no association in other countries. However, heterogeneity was large in countries other than Japan. More and higher quality research in diverse ethnic populations is needed to further clarify this relationship.
A simple approach to nonlinear oscillators
Ren, Zhong-Fu; He, Ji-Huan
2009-10-01
A very simple and effective approach to nonlinear oscillators is suggested. Anyone with basic knowledge of advanced calculus can apply the method to finding approximately the amplitude-frequency relationship of a nonlinear oscillator. Some examples are given to illustrate its extremely simple solution procedure and an acceptable accuracy of the obtained solutions.
Lee, Cameron C.; Sheridan, Scott C.; Barnes, Brian B.; Hu, Chuanmin; Pirhalla, Douglas E.; Ransibrahmanakul, Varis; Shein, Karsten
2016-08-01
The coastal waters of the southeastern USA contain important protected habitats and natural resources that are vulnerable to climate variability and singular weather events. Water clarity, strongly affected by atmospheric events, is linked to substantial environmental impacts throughout the region. To assess this relationship over the long-term, this study uses an artificial neural network-based time series modeling technique known as non-linear autoregressive models with exogenous input (NARX models) to explore the relationship between climate and a water clarity index (KDI) in this area and to reconstruct this index over a 66-year period. Results show that synoptic-scale circulation patterns, weather types, and precipitation all play roles in impacting water clarity to varying degrees in each region of the larger domain. In particular, turbid water is associated with transitional weather and cyclonic circulation in much of the study region. Overall, NARX model performance also varies—regionally, seasonally and interannually—with wintertime estimates of KDI along the West Florida Shelf correlating to the actual KDI at r > 0.70. Periods of extreme (high) KDI in this area coincide with notable El Niño events. An upward trend in extreme KDI events from 1948 to 2013 is also present across much of the Florida Gulf coast.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Institute of Scientific and Technical Information of China (English)
1996-01-01
3.1 A Unified Nonlinear Feedback Functional Method for Study Both Control and Synchronization of Spatiotemporal Chaos Fang Jinqing Ali M. K. (Department of Physics, The University of Lethbridge,Lethbridge, Alberta T1K 3M4,Canada) Two fundamental questions dominate future chaos control theories.The first is the problem of controlling hyperchaos in higher dimensional systems.The second question has yet to be addressed:the problem of controlling spatiotemporal chaos in a spatiotemporal system.In recent years, control and synchronization of spatiotemporal chaos and hyperchaos have became a much more important and challenging subject. The reason for this is the control and synchronism of such behaviours have extensive and great potential of interdisciplinary applications, such as security communication, information processing, medicine and so on. However, this subject is not much known and remains an outstanding open.
Institute of Scientific and Technical Information of China (English)
李颗; 李向辉; 徐西林; 袁哲明
2014-01-01
[Aim] Repellent can protect the users by driving target pests away from them.It is important to establish a nonlinear quantitative structure-activity relationship (QSAR) model with high precision and strong interpretation for designing and synthesizing the new insect repellent with higher bioactivity.[Methods] Based on the repellent activities of 37 aromatic carboxylic acid derivatives against the housefly,Musca domestica,the initial descriptors were generated with stoichiometry software PCLIENT,and then the binary matrix shuffling filter (BMSF) and worst descriptor elimination multi-round method (WDEM) were successively used to conduct the nonlinear selection for initial descriptors.With the reserved descriptors,a support vector regression (SVR) model was established for the QSAR analysis of these 37 repellent derivatives.The influence of reserved descriptors on repellent activities was further analyzed with SVR interpretation system.[Results] The F-score of SVR model with original 1 542 descriptors was 1.2.However,it was 184.6 with the retained six descriptors after feature screening,indicating that feature screening has important effects on the precision of QSAR model.The importance of six molecular descriptors was as follows:p4BCD ＞ GATS7v ＞ T(O..O) ＞ JGI8 ＞ SssO ＞ nArCONR2.[Conclusion] The nonlinear relationship between reserved descriptors and the repellent activities of aromatic carboxylic acid derivatives against M.domestica was remarkable,and a high-performance SVR-QSAR model for repellent derivatives was constructed.%[目的]驱避剂可使害虫不敢接近受用者从而保护受用者免遭其害.建立高精度、可解释性强的非线性定量构效关系(quantitative structure-activity relationship,QSAR)模型对设计合成新的高效昆虫驱避剂有重要意义.[方法]基于37个芳香羧酸类化合物对家蝇Musca domestica的驱避活性,以量子化学计算软件PCLIENT获取每一化合物初始描述符,以二元矩阵重
The Nonlinearity of Sum and Product for Boolean Functions
Directory of Open Access Journals (Sweden)
Huang Jinglian
2016-01-01
Full Text Available In this paper, we study the relationship between the nonlinearity of Boolean function and the nonlinearity of the sum and product of Boolean function, while derivative and e-derivative are used to study the problem further. We obtain that the sum of two functions’ nonlinearity is not less than the nonlinearity of the sum of two functions. The relationship between the nonlinearity of function and the nonlinearity of the sum and product of two functions are also obtained. Furthermore, we also get the relationship between the nonlinearity of the product of functions, and the derivative and e-derivative of function. Moreover, we also deduced some important applications on the basis of the above work.
Nonlinear Materials Characterization Facility
Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...
Nonlinear singular vectors and nonlinear singular values
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A novel concept of nonlinear singular vector and nonlinear singular value is introduced, which is a natural generalization of the classical linear singular vector and linear singular value to the nonlinear category. The optimization problem related to the determination of nonlinear singular vectors and singular values is formulated. The general idea of this approach is demonstrated by a simple two-dimensional quasigeostrophic model in the atmospheric and oceanic sciences. The advantage and its applications of the new method to the predictability, ensemble forecast and finite-time nonlinear instability are discussed. This paper makes a necessary preparation for further theoretical and numerical investigations.
Institute of Scientific and Technical Information of China (English)
张珊珊; 周明洁; 陈爽; 张建新
2012-01-01
Chinese personality traits have unique differences from other cultures due to China's special geography and collectivist cultural background. Therefore, the philosophy of localization was accepted and advocated by more and more Chinese psychologists. Meanwhile, the nonlinear relationships between personality traits and job performance have been found in some studies. These results transformed the traditional top - down strategy into double strategies for the applications of personality tests in the psychology of personnel management. However, there was no research to combine the linear and nonlinear models to examine the relationships between indigenous personality traits and job performance in the Chinese work setting. In the current study, we explored the linear and/or nonlinear reationships between indigenous personality traits and job performance. The participants were 182 service employees from several service industries in Beijing, and the immediate supervisors of the respondents provided ratings of their job performance and returned independently to the interviewers. The ratings of job performance were self - compiled based on job analysis and in - depth interview. Confirmatory factor analysis found that the one - factor performance model had a better fit (χ2 = 27.79, df = 8, CFI = . 95, NF1 = . 93, RMSEA = . 07), and the coefficient alpha was . 85. Meanwhile, the nine subscales from CPAI -2 were selected to assess the indigenous personality traits: face (FAC), family orientation (FAM), defensiveness (DEF), graciousness vs. meanness (G_M), veraciousness vs. slickness (V_S), traditionalism vs. modernity (T_M), renqing (REN), harmony (HAR) and thrift vs. extravagance (T_E). The mean Cronbach's coefficient for the entire set of personality scales was . 70 in the representative normal sample in Chinese mainland and Hong Kong. The data were analyzed with SPSS 15.0, and the main statistical methods were correlation analysis and hierarchical polynomial regression
Institute of Scientific and Technical Information of China (English)
陈爽; 周明洁; 张冠男; 王可欣; 李保滨; 张建新
2015-01-01
Objective To investigate the relationships between time spent on different types of Internet services and mental health,including linear and nonlinear relationship. Methods In December 2013,a five -item version of the mental health inventory(MHI-5)and a self-made questionnaire about time spent on different types of Internet services(including six types of Internet services:social network sites,instant messaging tools,online videos,online games,online shopping,other webpages)were administrated on 152 students. Pearson correlation analysis and hierarchical polynomial regression analysis were conducted to investigate the relationships between time spent on different types of Internet services and mental health. Results There were 139 valid responses(valid return rate was 91. 5%). There was no significant linear relationship between time spent on six types of Internet services and mental health(r= -0. 14~0. 03,P﹥0. 05). The square of time spent on social network sites(SNS)showed statistic significance in its regression coefficient to mental health(β= -0. 25,P﹤0. 05). Besides,time spent on SNS and mental health had a reversed-U curve relationship. Conclusion Time spent on SNS and mental health have a reversed-U curve relationship,which means moderate SNS users have better mental health compared to non SNS users and excessive SNS users.%目的：考察不同类型网络应用使用时间与心理健康的关系，包括线性与非线性关系。方法2013年12月，采用自编网络应用使用时间问卷（包括社交网站、聊天工具、网络视频、网络游戏、购物网站、其他网页6种类型的网络应用）与心理健康问卷（ five-item version of the mental health inventory，MHI-5）对北京某大学的学生152例进行问卷调查。二者关系研究采用皮尔逊相关分析以及分层多项式回归分析。结果回收有效问卷139份，有效率为91.5%。学生心理健康得分为（4.46±0.74）分，所有类型的网
Predicting nonlinear properties of metamaterials from the linear response.
O'Brien, Kevin; Suchowski, Haim; Rho, Junsuk; Salandrino, Alessandro; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang
2015-04-01
The discovery of optical second harmonic generation in 1961 started modern nonlinear optics. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller's Rule, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation, new quasi-phase matching capabilities and large nonlinear susceptibilities. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.
NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS
Institute of Scientific and Technical Information of China (English)
PENG SHIGE
2005-01-01
This paper deals with nonlinear expectations. The author obtains a nonlinear generalization of the well-known Kolmogorov's consistent theorem and then use it to construct filtration-consistent nonlinear expectations via nonlinear Markov chains. Compared to the author's previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probability measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations.The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures.
Rayleigh reflections and nonlinear acoustics of solids
Breazeale, M. A.
1980-10-01
Schlierken studies of ultrasonic waves, and nonlinear acoustics of solids are addressed. A goniometer for use in a Schlieren system for visualization of ultrasonic waves in liquids is described. The goniometer is used to obtain Schlieren photographs of leaky Rayleigh waves excited on an Al2O3 layer on a stainless steel reflector immersed in water, showing that the Rayleigh wave velocity in this case is less than that of either a water Al203 layer or a water stainless steel layer. Also investigated are: (1) nonlinearity parameters and third order elastic constants of copper between 300 and 3 K; (2) measurement of nonlinearity parameters in small solid samples by the harmonic generation technique; (3) relationship between solid nonlinearity parameters and thermodynamic Gruneisen parameters; and (4) quantum mechanical theory of nonlinear interaction of ultrasonic waves.
Energy Technology Data Exchange (ETDEWEB)
Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)
2014-09-25
Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.
Nonlinear modeling of an aerospace object dynamics
Davydov, I. E.; Davydov, E. I.
2017-01-01
Here are presented the scientific results, obtained by motion modeling of complicated technical systems of aerospace equipment with consideration of nonlinearities. Computerized panel that allows to measure mutual influence of the system's motion and stabilization device with consideration of its real characteristics has been developed. Analysis of motion stability of a system in general has been carried out and time relationships of the system's motion taking in account nonlinearities are presented.
Nonlinear predictive control in the LHC accelerator
Blanco, E; Cristea, S; Casas, J
2009-01-01
This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.
Institute of Scientific and Technical Information of China (English)
郑瑞兰; 王旭升; 胡晓农
2016-01-01
位于内蒙古阿拉善盟的巴丹吉林沙漠是中国第二大沙漠,以其存在世界上最高的沙山以及约100个湖泊而著称.现今湖面海拔一般为1150~1200 m,前人研究认为在过去3万年以来的某些时期存在更高的湖面.假设沙丘洼地的形态基本保持不变,可以根据现今湖泊洼地的三维形态来模拟高湖面时期的湖泊群分布特征和总面积.以90 m分辨率的DEM数据为基础,对若干典型洼地等高面面积随高程的变化进行了分析,发现可以用幂函数和多项式2种非线性方程模拟.多数情况下需要多项式,但一般只要达到3阶就可以精确拟合.对于湖泊洼地,由于很少有湖水最大深度的数据,湖底最低高程往往是未知的.利用湖面以上的等高面数据建立拟合程度最佳的非线性函数可以反推最低高程,但仍然存在不确定性.这一点对恢复历史上的高湖面形态并没有影响.%Badain Jaran Desert located on the Alxa Plateau in Inner Mongolia is the second largest desert in China.It is renowned for its tallest sand hills in the world as well as for about 100 lakes.The water level in the lakes ranges from 1150 m and 1200m above the sea level.Previous studies have suggested higher water levels in the past 30 ka.Assuming that shapes of sand dunes and inter-dune depressions do not change,distribution of lakes and total lake area during those high-lake-level periods could be modeled from three-dimensional shape of the landscape.The 90 m-resolution DEM data are used to analyze relationship between area of the plan with an equal height and elevation of the plan in several typical depressions.Relationship is found to be approximated with two kinds of nonlinear equations:power or polynomial functions.In most cases third-order polynomial equation is available.The bottom elevation of a lake basin is usually unknown due to the lack of lake depth data.It can be estimated by nonlinear equations with optimized parameters
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...
Noncommutative Nonlinear Supersymmetry
Nishino, H; Nishino, Hitoshi; Rajpoot, Subhash
2002-01-01
We present noncommutative nonlinear supersymmetric theories. The first example is a non-polynomial Akulov-Volkov-type lagrangian with noncommutative nonlinear global supersymmetry in arbitrary space-time dimensions. The second example is the generalization of this lagrangian to Dirac-Born-Infeld lagrangian with nonlinear supersymmetry realized in dimensions D=2,3,4 and 6 (mod 8).
Fiber Nonlinearities: A Tutorial
Institute of Scientific and Technical Information of China (English)
Govind P. Agrawal
2003-01-01
Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..
Fiber Nonlinearities: A Tutorial
Institute of Scientific and Technical Information of China (English)
Govind; P.; Agrawal
2003-01-01
Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..
Recent advance in nonlinear aeroelastic analysis and control of the aircraft
Xiang Jinwu; Yan Yongju; Li Daochun
2014-01-01
A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretica...
Nonlinear and Stochastic Morphological Segregation
Blanton, M R
1999-01-01
I perform a joint counts-in-cells analysis of galaxies of different spectral types using the Las Campanas Redshift Survey (LCRS). Using a maximum-likelihood technique to fit for the relationship between the density fields of early- and late-type galaxies, I find a relative linear bias of $b=0.76\\pm 0.02$. This technique can probe the nonlinearity and stochasticity of the relationship as well. However, the degree to which nonlinear and stochastic fits improve upon the linear fit turns out to depend on the redshift range in question. In particular, there seems to be a systematic difference between the high- and low-redshift halves of the data (respectively, further than and closer than $cz\\approx 36,000$ km/s); all of the signal of stochasticity and nonlinearity comes from the low-redshift portion. Analysis of mock catalogs shows that the peculiar geometry and variable flux limits of the LCRS do not cause this effect. I speculate that the central surface brightness selection criteria of the LCRS may be responsi...
PBH tests for nonlinear systems
Kawano, Yu; Ohtsuka, Toshiyuki
2017-01-01
Recently, concepts of nonlinear eigenvalues and eigenvectors are introduced. In this paper, we establish connections between the nonlinear eigenvalues and nonlinear accessibility/observability. In particular, we provide a generalization of Popov- Belevitch-Hautus (PBH) test to nonlinear accessibilit
Nonlinear dynamics and complexity
Luo, Albert; Fu, Xilin
2014-01-01
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
Comparing coefficients of nested nonlinear probability models
DEFF Research Database (Denmark)
Kohler, Ulrich; Karlson, Kristian Bernt; Holm, Anders
2011-01-01
In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general decomposi......In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general...... decomposition method that is unaffected by the rescaling or attenuation bias that arise in cross-model comparisons in nonlinear models. It recovers the degree to which a control variable, Z, mediates or explains the relationship between X and a latent outcome variable, Y*, underlying the nonlinear probability...
Effective ac response in weakly nonlinear composites
Energy Technology Data Exchange (ETDEWEB)
Wei Enbo [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Yang Zidong [College of Power Engineering, University of Shanghai Science and Technology, Shanghai 200093 (China); Gu Guoqing [Information College of Science and Technology, East China Normal University, Shanghai 200062 (China)
2004-01-07
The perturbation method is developed to deal with the problem of determining the effective nonlinear conductivity of Kerr-like nonlinear media under an external ac electric field. As an example, we have considered the cylindrical inclusion embedded in a host under the sinusoidal external field E{sub 1} sin (<{omega}t) + E{sub 3} sin (3<{omega}t) with frequencies{omega} and 3{omega}. The potentials of composites at higher harmonics are derived in both local inclusion particle and host regions. The effective responses of bulk nonlinear composites at basic frequency and harmonics are given for cylindrical composites in the dilute limit. Moreover, the relationships between the nonlinear effective responses at the basic frequency and the third harmonics are derived.
Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities
Indian Academy of Sciences (India)
Antonella Fiacca; Nikolaos Matzakos; Nikolaos S Papageorgiou; Raffaella Servadei
2001-11-01
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all $\\mathbb{R}$. Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of $\\mathbb{R}$. This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem).
Nonlinear I-V characteristics of nanoparticle compacts and nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Herth, Simone [Rensselaer Polytechnic Institute, Troy, NY (United States); Bielefeld University, Bielefeld (Germany); Wang, Xiaoping; Hugener, Teresa; Schadler, Linda; Siegel, Richard [Rensselaer Polytechnic Institute, Troy, NY (United States); Hillborg, Henrik; Auletta, Tommaso [ABB AB, Corporate Research, Schweden (Sweden)
2007-07-01
Materials with nonlinear I-V characteristics are commonly used as field grading materials. In many cases, the non-linearity is achieved through the addition of equiaxed fillers to a polymer matrix. These composite field grading materials are optimized in terms of nonlinearity, conductivity, and breakdown strength. One limitation in designing new field grading materials is a robust understanding of the relationship between powder morphology, composition and electrical characteristics of the powder, as well as a robust understanding of the relationship between powder conductivity and non-linearity and composite non-linearity. In this work, treatment of ZnO powder with a SnF{sub 2} solution resulted in a powder that yielded highly non-linear behavior. The highest non-linearity was achieved for powders with at least two different phases and a rough surface, as indicated by transmission electron micrographs. In contrast, the non-linearity of the nanocomposite conductivity is mainly determined by the conductivity of the nanofiller. The electrical behavior of the non-linear powder can be understood by a polarization of the nanoparticles at the interfaces, whereas the nonlinearity of the nanocomposites can be explained by a tunnelling mechanism between two particles.
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Ionescu, Tudor C.; Scherpen, Jacquelien M. A.
We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Hankel operator are studied and yield promising results.
Directory of Open Access Journals (Sweden)
W. L. Fouché
1983-03-01
Full Text Available In this article we discuss some aspects of nonlinear functional analysis. It included reviews of Banach’s contraction theorem, Schauder’s fixed point theorem, globalising techniques and applications of homotopy theory to nonlinear functional analysis. The author emphasises that fundamentally new ideas are required in order to achieve a better understanding of phenomena which contain both nonlinear and definite infinite dimensional features.
Nonlinear Electrodynamics and QED
2003-01-01
The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...
Kono, Mitsuo
2010-01-01
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Nonlinear magnetic metamaterials.
Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S
2008-12-08
We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America
Organic nonlinear optical materials
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Nonlinearity-reduced interferometer
Wu, Chien-ming
2007-12-01
Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.
Lasers for nonlinear microscopy.
Wise, Frank
2013-03-01
Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.
Eaton, D F
1991-07-19
The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.
Billings, S. A.
1988-03-01
Time and frequency domain identification methods for nonlinear systems are reviewed. Parametric methods, prediction error methods, structure detection, model validation, and experiment design are discussed. Identification of a liquid level system, a heat exchanger, and a turbocharge automotive diesel engine are illustrated. Rational models are introduced. Spectral analysis for nonlinear systems is treated. Recursive estimation is mentioned.
Ionescu, T. C.; Scherpen, J. M. A.; Korytowski, A; Malanowski, K; Mitkowski, W; Szymkat, M
2009-01-01
We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.
1999-01-01
We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...
Controllability in nonlinear systems
Hirschorn, R. M.
1975-01-01
An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.
Menon, P. K. A.; Badgett, M. E.; Walker, R. A.
1992-01-01
Trajectory-control laws based on singular-perturbation theory and nonlinear dynamical modeling. Nonlinear maneuver autopilot commands flight-test trajectories of F-15 airplane. Underlying theory of controller enables separation of variables processed in fast and slow control loops, reducing amount of computation required.
State-variable analysis of non-linear circuits with a desk computer
Cohen, E.
1981-01-01
State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.
Nonlinear optics and photonics
He, Guang S
2015-01-01
This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Derivation of an Applied Nonlinear Schroedinger Equation.
Energy Technology Data Exchange (ETDEWEB)
Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens; Rambo, Patrick K.; Karelitz, David B.
2015-01-01
We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release
Derivation of an applied nonlinear Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Pitts, Todd Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Laine, Mark Richard [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schwarz, Jens [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rambo, Patrick K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-01-01
We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release
A spectral characterization of nonlinear normal modes
Cirillo, G. I.; Mauroy, A.; Renson, L.; Kerschen, G.; Sepulchre, R.
2016-09-01
This paper explores the relationship that exists between nonlinear normal modes (NNMs) defined as invariant manifolds in phase space and the spectral expansion of the Koopman operator. Specifically, we demonstrate that NNMs correspond to zero level sets of specific eigenfunctions of the Koopman operator. Thanks to this direct connection, a new, global parametrization of the invariant manifolds is established. Unlike the classical parametrization using a pair of state-space variables, this parametrization remains valid whenever the invariant manifold undergoes folding, which extends the computation of NNMs to regimes of greater energy. The proposed ideas are illustrated using a two-degree-of-freedom system with cubic nonlinearity.
Zweig, George
2016-05-01
An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.
Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dubbert, Dale F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tise, Bertice L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-07-01
Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the relationship of INL to GMTI performance.
Agrawal, Govind P
2001-01-01
The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical
Will Nonlinear Backcalculation Help?
DEFF Research Database (Denmark)
Ullidtz, Per
2000-01-01
demonstrates, that treating the subgrade as a nonlinear elastic material, can result in more realistic moduli and a much better agreement between measured and calculated stresses and strains.The response of nonlinear elastic materials can be calculated using the Finite Element Method (FEM). A much simpler...... approach is to use the Method of Equivalent Thicknesses (MET), modified for a nonlinear subgrade. The paper includes an example where moduli backcalculated using FEM, linear elastic theory and MET are compared. Stresses and strains predicted by the three methods are also compared to measured values...
Nonlinear graphene metamaterial
Nikolaenko, Andrey E; Atmatzakis, Evangelos; Luo, Zhiqiang; Shen, Ze Xiang; De Angelis, Francesco; Boden, Stuart A; Di Fabrizio, Enzo; Zheludev, Nikolay I
2012-01-01
We demonstrate that the broadband nonlinear optical response of graphene can be resonantly enhanced by more than an order of magnitude through hybridization with a plasmonic metamaterial,while retaining an ultrafast nonlinear response time of ~1 ps. Transmission modulation close to ~1% is seen at a pump uence of ~0.03 mJ/cm^2 at the wavelength of ~1600 nm. This approach allows to engineer and enhance graphene's nonlinearity within a broad wavelength range enabling applications in optical switching, mode-locking and pulse shaping.
High resolution 3D nonlinear integrated inversion
Institute of Scientific and Technical Information of China (English)
Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen
2009-01-01
The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.
Energy Technology Data Exchange (ETDEWEB)
Ng, Angela [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Brock, Kristy K.; Sharpe, Michael B. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Moseley, Joanne L. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Craig, Tim [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Hodgson, David C., E-mail: David.Hodgson@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)
2012-11-15
Purpose: Understanding the relationship between normal tissue dose and delayed radiation toxicity is an important component of developing more effective radiation therapy. Late outcome data are generally available only for patients who have undergone 2-dimensional (2D) treatment plans. The purpose of this study was to evaluate the accuracy of 3D normal tissue dosimetry derived from reconstructed 2D treatment plans in Hodgkin's lymphoma (HL) patients. Methods and Materials: Three-dimensional lung, heart, and breast volumes were reconstructed from 2D planning radiographs for HL patients who received mediastinal radiation therapy. For each organ, a reference 3D organ was modified with patient-specific structural information, using deformable image processing software. Radiation therapy plans were reconstructed by applying treatment parameters obtained from patient records to the reconstructed 3D volumes. For each reconstructed organ mean dose (D{sub mean}) and volumes covered by at least 5 Gy (V{sub 5}) and 20Gy (V{sub 20}) were calculated. This process was performed for 15 patients who had both 2D and 3D planning data available to compare the reconstructed normal tissue doses with those derived from the primary CT planning data and also for 10 historically treated patients with only 2D imaging available. Results: For patients with 3D planning data, the normal tissue doses could be reconstructed accurately using 2D planning data. Median differences in D{sub mean} between reconstructed and actual plans were 0.18 Gy (lungs), -0.15 Gy (heart), and 0.30 Gy (breasts). Median difference in V{sub 5} and V{sub 20} were less than 2% for each organ. Reconstructed 3D dosimetry was substantially higher in historical mantle-field treatments than contemporary involved-field mediastinal treatments: average D{sub mean} values were 15.2 Gy vs 10.6 Gy (lungs), 27.0 Gy vs 14.3 Gy (heart), and 8.0 Gy vs 3.2 Gy (breasts). Conclusions: Three-dimensional reconstruction of absorbed dose
Multipolar nonlinear nanophotonics
Smirnova, Daria
2016-01-01
Nonlinear nanophotonics is a rapidly developing field with many useful applications for a design of nonlinear nanoantennas, light sources, nanolasers, sensors, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. Thus, both modal and multipolar analyses are widely exploited for engineering nonlinear scattering from resonant nanoscale elements, in particular for enhancing the near-field interaction, tailoring the far-field multipolar interference, and optimization of the radiation directionality. Here, we review the recent advances in this recently emerged research field ranging from metallic structures exhibiting localized plasmonic resonances to hybrid metal-dielectric and all-dielectric...
Solitons in nonlinear lattices
Kartashov, Yaroslav V; Torner, Lluis
2010-01-01
This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...
Directory of Open Access Journals (Sweden)
Shakeeb Bin Hasan
2014-12-01
Full Text Available Contrary to traditional optical elements, plasmonic antennas made from nanostructured metals permit the localization of electromagnetic fields on length scales much smaller than the wavelength of light. This results in huge amplitudes for the electromagnetic field close to the antenna being conducive for the observation of nonlinear effects already at moderate pump powers. Thus, these antennas exhibit a promising potential to achieve optical frequency conversion and all-optical control of light at the nano-scale. This opens unprecedented opportunities for ultrafast nonlinear spectroscopy, sensing devices, on-chip optical frequency conversion, nonlinear optical metamaterials, and novel photon sources. Here, we review some of the recent advances in exploiting the potential of plasmonic antennas to realize robust nonlinear applications.
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
DEFF Research Database (Denmark)
Nguyen-Duy, Khiem
and remains the prime source of energy in non-terrestrial applications such as those in sky-explorers. However, a renewable energy source is expensive, bulky, and its performance is weather dependent, which make testing of downstream converters very difficult. As a result, a nonlinear source emulator (NSE......) is a good solution to solve the problems associated with the use of real nonlinear sources in testing phases. However, a recent technical survey conducted during this work shows that most existing NSEs have only been concerned with simulating nonlinear systems in terrestrial applications. Furthermore......, their dynamic performance were not fast enough in order to imitate how a real nonlinear energy source would react under extreme conditions and operation modes. Particularly, a system in the sky can experience a step change of sunlight irradiation. Moreover, operation modes may include load step between nominal...
Introduction to nonlinear science
Nicolis, G
1995-01-01
One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...
Nonlinear magnetoinductive transmission lines
Lazarides, Nikos; Tsironis, G P
2011-01-01
Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent cap...
Optimization under Nonlinear Constraints
1982-01-01
In this paper a timesaving method is proposed for maximizing likelihood functions when the parameter space is subject to nonlinear constraints, expressible as second order polynomials. The suggested approach is especially attractive when dealing with systems with many parameters.
Nonlinearity in nanomechanical cantilevers
DEFF Research Database (Denmark)
Villanueva Torrijo, Luis Guillermo; Karabalin, R. B.; Matheny, M. H.
2013-01-01
Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro-and nanocantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite its use in nanoelectromechanical systems development....... These findings underscore the delicate balance between inertial and geometric nonlinear effects in the fundamental mode, and strongly motivate further work to develop theories beyond the Euler-Bernoulli approximation. DOI: 10.1103/PhysRevB.87.024304....... In this article, we report the first highly controlled measurements of the nonlinear response of nanomechanical cantilevers using an ultralinear detection system. This is performed for an extensive range of devices to probe the validity of Euler-Bernoulli theory in the nonlinear regime. We find that its...
Nonlinear Stokes Mueller Polarimetry
Samim, Masood; Barzda, Virginijus
2015-01-01
The Stokes Mueller polarimetry is generalized to include nonlinear optical processes such as second- and third-harmonic generation, sum- and difference-frequency generations. The overall algebraic form of the polarimetry is preserved, where the incoming and outgoing radiations are represented by column vectors and the intervening medium is represented by a matrix. Expressions for the generalized nonlinear Stokes vector and the Mueller matrix are provided in terms of coherency and correlation matrices, expanded by higher-dimensional analogues of Pauli matrices. In all cases, the outgoing radiation is represented by the conventional $4\\times 1$ Stokes vector, while dimensions of the incoming radiation Stokes vector and Mueller matrix depend on the order of the process being examined. In addition, relation between nonlinear susceptibilities and the measured Mueller matrices are explicitly provided. Finally, the approach of combining linear and nonlinear optical elements is discussed within the context of polarim...
Influence of storm magnitude and watershed size on runoff nonlinearity
Lee, Kwan Tun; Huang, Jen-Kuo
2016-06-01
The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude and watershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfall-runoff dynamic process and the second type is with respect to a Power-law relation between peak discharge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was first demonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation of the watershed unit hydrograph (UH) using two linear hydrological models shows that the peak discharge and time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intention of deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast, the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensity without relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity. Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainage area was investigated by analyzing the variation of Power-law exponent. The results demonstrate that the scaling nonlinearity is particularly significant for a watershed having larger area and subjecting to a small-size of storm. For three study watersheds, a large tributary that contributes relatively great drainage area or inflow is found to cause a transition break in scaling relationship and convert the scaling relationship from linearity to nonlinearity.
Adaptive and Nonlinear Control
1992-02-29
in [22], we also applied the concept of zero dynamics to the problem of exact linearization of a nonlinear control system by dynamic feedback. Exact ...nonlinear systems, although it was well-known that the conditions for exact linearization are very stringent and consequently do not apply to a broad...29th IEEE Conference n Decision and Control, Invited Paper delivered by Dr. Gilliam. Exact Linearization of Zero Dynamics, 29th IEEE Conference on
Nonlinear Optics and Turbulence
1992-10-01
currently at Queen Mary College, London Patrick Dunne, (Ph.D., 1987, M.I.T., Hydrodynamic Stability, Nonlinear Waves), 1987-1988. Alecsander Dyachenko...U I I I U I I 3 9 3 V. BIOGRAPHIES A. FACULTY BRUCE BAYLY, 31, Ph.D. 1986, Princeton University. Postdoctoral visiting member 1986-88 at Courant...Caputo, A. C. Newell, and M. Shelley , "Nonlinear Wave Propagation Through a Random Medium and Soliton Tunneling", Integrable Systems and
Yang, Qianli; Pitkow, Xaq
2015-03-01
Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.
Nonlinear Multiantenna Detection Methods
Directory of Open Access Journals (Sweden)
Chen Sheng
2004-01-01
Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.
Handbook of nonlinear optical crystals
Dmitriev, Valentin G; Nikogosyan, David N
1991-01-01
This Handbook of Nonlinear Optical Crystals provides a complete description of the properties and applications of nonlinear crystals In addition, it presents the most important equations for calculating the main parameters of nonlinear frequency converters This comprehensive reference work will be of great value to all scientists and engineers working in nonlinear optics, quantum electronics and laser physics
Evolutionary quantitative genetics of nonlinear developmental systems.
Morrissey, Michael B
2015-08-01
In quantitative genetics, the effects of developmental relationships among traits on microevolution are generally represented by the contribution of pleiotropy to additive genetic covariances. Pleiotropic additive genetic covariances arise only from the average effects of alleles on multiple traits, and therefore the evolutionary importance of nonlinearities in development is generally neglected in quantitative genetic views on evolution. However, nonlinearities in relationships among traits at the level of whole organisms are undeniably important to biology in general, and therefore critical to understanding evolution. I outline a system for characterizing key quantitative parameters in nonlinear developmental systems, which yields expressions for quantities such as trait means and phenotypic and genetic covariance matrices. I then develop a system for quantitative prediction of evolution in nonlinear developmental systems. I apply the system to generating a new hypothesis for why direct stabilizing selection is rarely observed. Other uses will include separation of purely correlative from direct and indirect causal effects in studying mechanisms of selection, generation of predictions of medium-term evolutionary trajectories rather than immediate predictions of evolutionary change over single generation time-steps, and the development of efficient and biologically motivated models for separating additive from epistatic genetic variances and covariances.
Nonlinear Approaches in Engineering Applications
Jazar, Reza
2012-01-01
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...
Properties of GH4169 Superalloy Characterized by Nonlinear Ultrasonic Waves
Directory of Open Access Journals (Sweden)
Hongjuan Yan
2015-01-01
Full Text Available The nonlinear wave motion equation is solved by the perturbation method. The nonlinear ultrasonic coefficients β and δ are related to the fundamental and harmonic amplitudes. The nonlinear ultrasonic testing system is used to detect received signals during tensile testing and bending fatigue testing of GH4169 superalloy. The results show that the curves of nonlinear ultrasonic parameters as a function of tensile stress or fatigue life are approximately saddle. There are two stages in relationship curves of relative nonlinear coefficients β′ and δ′ versus stress and fatigue life. The relative nonlinear coefficients β′ and δ′ increase with tensile stress when tensile stress is lower than 65.8% of the yield strength, and they decrease with tensile stress when tensile stress is higher than 65.8% of the yield strength. The nonlinear coefficients have the extreme values at 53.3% of fatigue life. For the second order relative nonlinear coefficient β′, there is good agreement between the experimental data and the comprehensive model. For the third order relative nonlinear coefficient δ′, however, the experiment data does not accord with the theoretical model.
National Research Council Canada - National Science Library
Boštjan Antoncic; Barbara Hvalic Erzetic; Otmar Zorn; Robert D. Hisrich
2007-01-01
... (entrepreneurial maturity) of potential and practicing entrepreneurs. By using the cusp catastrophe model we propose that relationship between education satisfaction and continuation tends to be linear for less experienced entrepreneurs (pre-entrepreneurs...
Food Addiction: An Evolving Nonlinear Science
2014-01-01
The purpose of this review is to familiarize readers with the role that addiction plays in the formation and treatment of obesity, type 2 diabetes and disorders of eating. We will outline several useful models that integrate metabolism, addiction, and human relationship adaptations to eating. A special effort will be made to demonstrate how the use of simple and straightforward nonlinear models can and are being used to improve our knowledge and treatment of patients suffering from nutrition...
Analysis of nonlinear damping properties of carbon
Kazakova, Olga I.; Smolin, Igor Yu.; Bezmozgiy, Iosif M.
2016-11-01
This paper describes research results of nonlinear damping properties of carbon fiber reinforced plastics. The experimental and computational research is performed on flat composite specimens with the gradual structure complication (from 1 to 12 layers). Specimens are subjected to three types of testing which are modal, harmonic and transient analyses. Relationships between the amplitude response and damping ratio are obtained by means of the analysis of variance as the result of this research.
Higher-order nonlinear effects in a Josephson parametric amplifier
Kochetov, Bogdan A.; Fedorov, Arkady
2015-12-01
Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.
The nonlinear standing wave inside the space of liquid
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Based on the basic equations of hydrodynamics, the nonlinear acoustic wave equation is obtained. By taking into account the boundary condition and properties of nonlinear standing wave, the equation is solved through perturbation method, and the stable expressions of fundamental wave and second harmonic are presented. The sound pressures in an ultrasonic cleaner are measured by hydrophones, and the relationship between the received voltages of hydrophones and the output voltages of the ultrasonic generator is researched. The study shows the existence of the nonlinear effect of liquid and analyzes the frequency spectrum of the received signals by hydrophones, by which the fundamental wave, second and high order harmonics are found coexisting in the bounded space filled with liquids. The theory and experimental results testify the existence of the nonlinear standing wave in liquid. Owing to the restricted applicability of perturbation method, the theoretical results of the fundamental wave and second harmonic are good only for the weak nonlinear phenomenon.
Energy Technology Data Exchange (ETDEWEB)
Davis, C.G.
1990-01-01
The advent of nonlinear pulsation theory really coincides with the development of the large computers after the second world war. Christy and Stobbie were the first to make use of finite difference techniques on computers to model the bumps'' observed in the classical Cepheid light and velocity curves, the so-called Hertzsprung'' sequence. Following this work a more sophisticated analysis of the light and velocity curves from the models was made by Simon and Davis using Fourier techniques. Recently a simpler amplitude equation formalism has been developed that helps explain this resonance mechanism. The determination of Population I Cepheid masses by nonlinear methods will be discussed. For the lower mass objects, such as RR Lyrae and BL Her. stars, we find general agreement using evolutionary masses and nonlinear pulsation theory. An apparent difficulty of nonlinear pulsation theory occurs in the understanding of double'' mode pulsation, which will also be discussed. Recent studies in nonlinear pulsation theory have dealt with the question of mode selection, period doubling and the trends towards chaotic behavior such as is observed in the transition from W Virginis to RV Tauri-like stars. 10 refs., 1 fig., 2 tabs.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Nonlinear Dynamic Force Spectroscopy
Björnham, Oscar
2016-01-01
Dynamic force spectroscopy (DFS) is an experimental technique that is commonly used to assess information of the strength, energy landscape, and lifetime of noncovalent bio-molecular interactions. DFS traditionally requires an applied force that increases linearly with time so that the bio-complex under investigation is exposed to a constant loading rate. However, tethers or polymers can modulate the applied force in a nonlinear regime. For example, bacterial adhesion pili and polymers with worm-like chain properties are examples of structures that show nonlinear force responses. In these situations, the theory for traditional DFS cannot be readily applied. In this work we expand the theory for DFS to also include nonlinear external forces while still maintaining compatibility with the linear DFS theory. To validate the theory we modeled a bio-complex expressed on a stiff, an elastic and a worm-like chain polymer, using Monte Carlo methods, and assessed the corresponding rupture force spectra. It was found th...
Nonlinear optomechanical paddle nanocavities
Kaviani, Hamidreza; Wu, Marcelo; Ghobadi, Roohollah; Barclay, Paul E
2014-01-01
A photonic crystal optomechanical system combining strong nonlinear optomechanical coupling, low effective mass and large optical mode spacing is introduced. This nanoscale "paddle nanocavity" device supports mechanical resonances with effective mass of 300--600 fg which couple nonlinearly to co-localized optical modes with a quadratic optomechanical coupling coefficient $g^{(2)} > 2\\pi\\times400$ MHz/nm$^2$, and a two phonon to single photon optomechanical coupling rate $\\Delta \\omega_0 > 2\\pi\\times 16$ Hz. This coupling relies on strong phonon-photon interactions in a structure whose optical mode spectrum is highly non--degenerate. Simulations indicate that nonlinear optomechanical readout of thermally driven motion in these devices should be observable for T $> 50 $ mK, and that measurement of phonon shot noise is achievable.
Nonlinear dynamics of structures
Oller, Sergio
2014-01-01
This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied, and the theoretical concepts and its programming algorithms are presented.
Nonlinear Photonic Crystal Fibers
DEFF Research Database (Denmark)
Hansen, Kim Per
2004-01-01
, leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...
Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois
2016-01-01
In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...
Nonlinear optomechanics with graphene
Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Vengalattore, Mukund
2016-05-01
To date, studies of cavity optomechanics have been limited to exploiting the linear interactions between the light and mechanics. However, investigations of quantum signal transduction, quantum enhanced metrology and manybody physics with optomechanics each require strong, nonlinear interactions. Graphene nanomembranes are an exciting prospect for realizing such studies due to their inherently nonlinear nature and low mass. We fabricate large graphene nanomembranes and study their mechanical and optical properties. By using dark ground imaging techniques, we correlate their eigenmode shapes with the measured dissipation. We study their hysteretic response present even at low driving amplitudes, and their nonlinear dissipation. Finally, we discuss ongoing efforts to use these resonators for studies of quantum optomechanics and force sensing. This work is supported by the DARPA QuASAR program through a Grant from the ARO.
Nonlinear Analysis of Buckling
Directory of Open Access Journals (Sweden)
Psotný Martin
2014-06-01
Full Text Available The stability analysis of slender web loaded in compression was presented. To solve this problem, a specialized computer program based on FEM was created. The nonlinear finite element method equations were derived from the variational principle of minimum of potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm was used. Corresponding levels of the total potential energy were defined. The peculiarities of the effects of the initial imperfections were investigated. Special attention was focused on the influence of imperfections on the post-critical buckling mode. The stable and unstable paths of the nonlinear solution were separated. Obtained results were compared with those gained using ANSYS system.
Nonlinear Metamaterials for Holography
Almeida, Euclides; Prior, Yehiam
2015-01-01
A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multi-layer metamaterial holograms where by the nonlinear process of Third Harmonic Generation, a background free image is formed at a new frequency which is the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analyzed and prospects for future device applications are discussed.
Multidimensional nonlinear descriptive analysis
Nishisato, Shizuhiko
2006-01-01
Quantification of categorical, or non-numerical, data is a problem that scientists face across a wide range of disciplines. Exploring data analysis in various areas of research, such as the social sciences and biology, Multidimensional Nonlinear Descriptive Analysis presents methods for analyzing categorical data that are not necessarily sampled randomly from a normal population and often involve nonlinear relations. This reference not only provides an overview of multidimensional nonlinear descriptive analysis (MUNDA) of discrete data, it also offers new results in a variety of fields. The first part of the book covers conceptual and technical preliminaries needed to understand the data analysis in subsequent chapters. The next two parts contain applications of MUNDA to diverse data types, with each chapter devoted to one type of categorical data, a brief historical comment, and basic skills peculiar to the data types. The final part examines several problems and then concludes with suggestions for futu...
Virial Theorem for a Class of Quantum Nonlinear Harmonic Oscillators
Institute of Scientific and Technical Information of China (English)
王雪红; 郭军义; 李艳
2012-01-01
In this paper,the Virial Theorem based on a class of quantum nonlinear harmonic oscillators is presented.This relationship has to do with parameter λ and ?/?λ,where the λ is a real number.When λ=0,the nonlinear harmonic oscillator naturally reduces to the usual quantum linear harmonic oscillator,and the Virial Theorem also reduces to the usual Virial Theorem.
Nonlinear airship aeroelasticity
Bessert, N.; Frederich, O.
2005-12-01
The aeroelastic derivatives for today's aircraft are calculated in the concept phase using a standard procedure. This scheme has to be extended for large airships, due to various nonlinearities in structural and aerodynamic behaviour. In general, the structural model of an airship is physically as well as geometrically nonlinear. The main sources of nonlinearity are large deformations and the nonlinear material behaviour of membranes. The aerodynamic solution is also included in the nonlinear problem, because the deformed airship influences the surrounding flow. Due to these nonlinearities, the aeroelastic problem for airships can only be solved by an iterative procedure. As one possibility, the coupled aerodynamic and structural dynamic problem was handled using linked standard solvers. On the structural side, the Finite-Element program package ABAQUS was extended with an interface to the aerodynamic solver VSAERO. VSAERO is based on the aerodynamic panel method using potential flow theory. The equilibrium of the internal structural and the external aerodynamic forces leads to the structural response and a trimmed flight state for the specified flight conditions (e.g. speed, altitude). The application of small perturbations around a trimmed state produces reaction forces and moments. These constraint forces are then transferred into translational and rotational acceleration fields by performing an inertia relief analysis of the disturbed structural model. The change between the trimmed flight state and the disturbed one yields the respective aeroelastic derivatives. By including the calculated derivatives in the linearised equation of motion system, it is possible to judge the stability and controllability of the investigated airship.
Agrawal, Govind
2012-01-01
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o
DEFF Research Database (Denmark)
Mosegaard, Klaus
2012-01-01
For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...
Fundamentals of nonlinear optics
Powers, Peter E
2011-01-01
Peter Powers's rigorous but simple description of a difficult field keeps the reader's attention throughout. … All chapters contain a list of references and large numbers of practice examples to be worked through. … By carefully working through the proposed problems, students will develop a sound understanding of the fundamental principles and applications. … the book serves perfectly for an introductory-level course for second- and third-order nonlinear optical phenomena. The author's writing style is refreshing and original. I expect that Fundamentals of Nonlinear Optics will fast become pop
Tunable nonlinear graphene metasurfaces
Smirnova, Daria A; Kivshar, Yuri S; Khanikaev, Alexander B
2015-01-01
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of structured metamaterial elements ("metamolecules") and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.
Nonlinear Kalman Filtering in Affine Term Structure Models
DEFF Research Database (Denmark)
Christoffersen, Peter; Dorion, Christian; Jacobs, Kris;
2014-01-01
The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... with that of the particle filter. We analyze the cross section of swap rates, which are mildly nonlinear in the states, and cap prices, which are highly nonlinear. When caps are used to filter the states, the unscented Kalman filter significantly outperforms its extended counterpart. The unscented Kalman filter also...
Nonlinear effects in optical fibers
Ferreira, Mario F
2011-01-01
Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber
Daniels, Jonathan S.; Anderson, Erik P.; Lee, Thomas H.; Pourmand, Nader
2009-01-01
Impedance biosensors detect the binding of a target to an immobilized probe by quantifying changes in the impedance of the electrode-electrolyte interface. The interface's I-V relationship is inherently nonlinear, varying with DC bias, and target binding can alter the degree of nonlinearity. We propose and demonstrate a method to simultaneously measure the nonlinearity and conventional small-signal impedance using intermodulation products from a two-tone input. Intermodulation amplitudes accurately reflect the impedance's manually-measured voltage dependence. We demonstrate that changes in nonlinearity can discriminate protein binding. Our measurements suggest that target binding can alter nonlinearity via the voltage dependence of the ionic double layer. PMID:19164024
Influence of storm magnitude and watershed size on runoff nonlinearity
Indian Academy of Sciences (India)
Kwan Tun Lee; Jen-Kuo Huang
2016-06-01
The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude andwatershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfallrunoffdynamic process and the second type is with respect to a Power-law relation between peakdischarge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was firstdemonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation ofthe watershed unit hydrograph (UH) using two linear hydrological models shows that the peak dischargeand time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intentionof deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast,the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensitywithout relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity.Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainagearea was investigated by analyzing the variation of Power-law exponent. The results demonstrate thatthe scaling nonlinearity is particularly significant for a watershed having larger area and subjecting toa small-size of storm. For three study watersheds, a large tributary that contributes relatively greatdrainage area or inflow is found to cause a transition break in scaling relationship and convert the scalingrelationship from linearity to nonlinearity.
Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation
Miller, Steven A. E.
2015-01-01
An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.
Nonlinear elliptic systems with exponential nonlinearities
Directory of Open Access Journals (Sweden)
Said El Manouni
2002-12-01
Full Text Available In this paper we investigate the existence of solutions for {gather*} -mathop{m div}( a(| abla u | ^N| abla u |^{N-2}u = f(x,u,v quad mbox{in } Omega -mathop{m div}(a(| abla v| ^N| abla v |^{N-2}v = g(x,u,v quad mbox{in } Omega u(x = v(x = 0 quad mbox{on }partial Omega. end{gather*} Where $Omega$ is a bounded domain in ${mathbb{R}}^N$, $Ngeq 2$, $f$ and $g$ are nonlinearities having an exponential growth on $Omega$ and $a$ is a continuous function satisfying some conditions which ensure the existence of solutions.
Nonlinearity and disorder: Classification and stability of nonlinear impurity modes
DEFF Research Database (Denmark)
Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole
2001-01-01
We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-10-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
Ritz, Christian; Parmigiani, Giovanni
2009-01-01
R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.
Gorban, A. N.; Karlin, I.V.
2003-01-01
Nonlinear kinetic equations are reviewed for a wide audience of specialists and postgraduate students in physics, mathematical physics, material science, chemical engineering and interdisciplinary research. Contents: The Boltzmann equation, Phenomenology and Quasi-chemical representation of the Boltzmann equation, Kinetic models, Discrete velocity models, Direct simulation, Lattice Gas and Lattice Boltzmann models, Minimal Boltzmann models for flows at low Knudsen number, Other kinetic equati...
Intramolecular and nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Davis, M.J. [Argonne National Laboratory, IL (United States)
1993-12-01
Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.
DEFF Research Database (Denmark)
Jørgensen, Michael Finn
1995-01-01
It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...
Nonlinear phased array imaging
Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.
2016-04-01
A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-11-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
Trirefringence in nonlinear metamaterials
De Lorenci, Vitorio A
2012-01-01
We study the propagation of electromagnetic waves in the limit of geometrical optics for a class of nearly transparent nonlinear uniaxial metamaterials for which their permittivity tensors present a negative principal component. Their permeability are assumed positive and dependent on the electric field. We show that light waves experience triple refraction -- trirefringence. Additionally to the ordinary wave, two extraordinary waves propagate in such media.
Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.
2017-09-01
Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.
Nonlinear fibre optics overview
DEFF Research Database (Denmark)
Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.
2010-01-01
, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...
Tsia, Kevin K.; Jalali, Bahram
2010-05-01
An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.
Leitao, J C; Gerlach, M; Altmann, E G
2016-01-01
One of the most celebrated findings in complex systems in the last decade is that different indexes y (e.g., patents) scale nonlinearly with the population~x of the cities in which they appear, i.e., $y\\sim x^\\beta, \\beta \
Nonlinear Gravitational Lagrangians revisited
Magnano, Guido
2016-01-01
The Legendre transformation method, applied in 1987 to deal with purely metric gravitational Lagrangians with nonlinear dependence on the Ricci tensor, is extended to metric-affine models and is shown to provide a concise and insightful comparison of the dynamical content of the two variational frameworks.
Nonlinearities in Microwave Superconductivity
Ledenyov, Dimitri O.; Ledenyov, Viktor O.
2012-01-01
The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.
Nonlinear tsunami generation mechanism
Directory of Open Access Journals (Sweden)
M. A. Nosov
2001-01-01
Full Text Available The nonlinear mechanism of long gravitational surface water wave generation by high-frequency bottom oscillations in a water layer of constant depth is investigated analytically. The connection between the surface wave amplitude and the parameters of bottom oscillations and source length is investigated.
DEFF Research Database (Denmark)
Mosekilde, Erik
Through a significant number of detailed and realistic examples this book illustrates how the insights gained over the past couple of decades in the fields of nonlinear dynamics and chaos theory can be applied in practice. Aomng the topics considered are microbiological reaction systems, ecological...
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...
Nonlinear Kalman Filtering in Affine Term Structure Models
DEFF Research Database (Denmark)
Christoffersen, Peter; Dorion, Christian; Jacobs, Kris;
When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze...... Monte Carlo experiment demonstrates that the unscented Kalman fi…lter is much more accurate than its extended counterpart in fi…ltering the states and forecasting swap rates and caps. Our fi…ndings suggest that the unscented Kalman fi…lter may prove to be a good approach for a number of other problems...... in fi…xed income pricing with nonlinear relationships between the state vector and the observations, such as the estimation of term structure models using coupon bonds and the estimation of quadratic term structure models....
Nonlinear Optical Terahertz Technology Project
National Aeronautics and Space Administration — Our approach is based on high-Q optical WGM resonators made with a nonlinear crystal. Such resonators have been demonstrated to dramatically enhance nonlinear...
Phase retrieval using nonlinear diversity.
Lu, Chien-Hung; Barsi, Christopher; Williams, Matthew O; Kutz, J Nathan; Fleischer, Jason W
2013-04-01
We extend the Gerchberg-Saxton algorithm to phase retrieval in a nonlinear system. Using a tunable photorefractive crystal, we experimentally demonstrate the noninterferometric technique by reconstructing an unknown phase object from optical intensity measurements taken at different nonlinear strengths.
Strong nonlinear oscillators analytical solutions
Cveticanin, Livija
2017-01-01
This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.
Cubication of Conservative Nonlinear Oscillators
Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…
Terahertz Nonlinear Optics in Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2013-01-01
We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...
Fault Detection for Nonlinear Systems
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, H.H.
1998-01-01
The paper describes a general method for designing fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of methods based...
Nonlinear electrostatic drift Kelvin-Helmholtz instability
Sharma, Avadhesh C.; Srivastava, Krishna M.
1993-01-01
Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.
Optothermal nonlinearity of silica aerogel
Braidotti, Maria Chiara; Fleming, Adam; Samuels, Michiel C; Di Falco, Andrea; Conti, Claudio
2016-01-01
We report on the characterization of silica aerogel thermal optical nonlinearity, obtained by z-scan technique. The results show that typical silica aerogels have nonlinear optical coefficient similar to that of glass $(\\simeq 10^{-12} $m$^2/$W), with negligible optical nonlinear absorption. The non\\-li\\-near coefficient can be increased to values in the range of $10^{-10} $m$^2/$W by embedding an absorbing dye in the aerogel. This value is one order of magnitude higher than that observed in the pure dye and in typical highly nonlinear materials like liquid crystals.
Insights into alkali-silica reaction damage in mortar through acoustic nonlinearity
Rashidi, M.; Kim, J.-Y.; Jacobs, L. J.; Kurtis, K. E.
2016-02-01
The progression of damage as a result of alkali-silica reaction in mortar samples is monitored by using the Nonlinear Impact Resonance Acoustic Spectroscopy (NIRAS) method and expansion measurements, which were performed daily. Results of this study show a strong correlation between the cumulative average nonlinearity parameter and expansion for each sample type, and a strong linear relationship between fourteen-day expansion and the cumulative average nonlinearity of among sample types. In addition to the cumulative average nonlinearity parameter, the standard deviation of average nonlinearity parameter shows strong correlation with the fourteen-day expansion of sample types. Results provide insights to the relationship with the acoustic nonlinearity and damage caused by the ASR.
Essentials of nonlinear optics
Murti, Y V G S
2014-01-01
Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.
Nonlinear metamaterials for holography
Almeida, Euclides; Bitton, Ora; Prior, Yehiam
2016-08-01
A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency--the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed.
Nonlinear metamaterials for holography
Almeida, Euclides; Bitton, Ora
2016-01-01
A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency—the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581
Van Leeuwen, Peter Jan; Reich, Sebastian
2015-01-01
This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.
Nonlinearity without Superluminality
Kent, A
2002-01-01
Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signalling. As Gisin and Polchinski first pointed out, this is not true for general nonlinear modifications of the Schroedinger equation. Excluding superluminal signalling has thus been taken to rule out most nonlinear versions of quantum theory. The no superluminal signalling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by non-relativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which di...
Monte Carlo and nonlinearities
Dauchet, Jérémi; Blanco, Stéphane; Caliot, Cyril; Charon, Julien; Coustet, Christophe; Hafi, Mouna El; Eymet, Vincent; Farges, Olivier; Forest, Vincent; Fournier, Richard; Galtier, Mathieu; Gautrais, Jacques; Khuong, Anaïs; Pelissier, Lionel; Piaud, Benjamin; Roger, Maxime; Terrée, Guillaume; Weitz, Sebastian
2016-01-01
The Monte Carlo method is widely used to numerically predict systems behaviour. However, its powerful incremental design assumes a strong premise which has severely limited application so far: the estimation process must combine linearly over dimensions. Here we show that this premise can be alleviated by projecting nonlinearities on a polynomial basis and increasing the configuration-space dimension. Considering phytoplankton growth in light-limited environments, radiative transfer in planetary atmospheres, electromagnetic scattering by particles and concentrated-solar-power-plant productions, we prove the real world usability of this advance on four test-cases that were so far regarded as impracticable by Monte Carlo approaches. We also illustrate an outstanding feature of our method when applied to sharp problems with interacting particles: handling rare events is now straightforward. Overall, our extension preserves the features that made the method popular: addressing nonlinearities does not compromise o...
Nonlinear Photonics 2014: introduction.
Akhmediev, N; Kartashov, Yaroslav
2015-01-12
International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.
Fourier series expansion for nonlinear Hamiltonian oscillators.
Méndez, Vicenç; Sans, Cristina; Campos, Daniel; Llopis, Isaac
2010-06-01
The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.
Nonlinear optics of astaxanthin thin films
Esser, A.; Fisch, Herbert; Haas, Karl-Heinz; Haedicke, E.; Paust, J.; Schrof, Wolfgang; Ticktin, Anton
1993-02-01
Carotinoids exhibit large nonlinear optical properties due to their extended (pi) -electron system. Compared to other polyenes which show a broad distribution of conjugation lengths, carotinoids exhibit a well defined molecular structure, i.e. a well defined conjugation length. Therefore the carotinoid molecules can serve as model compounds to study the relationship between structure and nonlinear optical properties. In this paper the synthesis of four astaxanthins with C-numbers ranging from 30 to 60, their preparation into thin films, wavelength dispersive Third Harmonic Generation (THG) measurements and some molecular modelling calculations will be presented. Resonant (chi) (3) values reach 1.2(DOT)10-10 esu for C60 astaxanthin. In the nonresonant regime a figure of merit (chi) (3)/(alpha) of several 10-13 esu-cm is demonstrated.
Nonlinear analysis of RED - a comparative study
Energy Technology Data Exchange (ETDEWEB)
Jiang Kai; Wang Xiaofan E-mail: xfwang@sjtu.edu.cn; Xi Yugeng
2004-09-01
Random Early Detection (RED) is an active queue management (AQM) mechanism for routers on the Internet. In this paper, performance of RED and Adaptive RED are compared from the viewpoint of nonlinear dynamics. In particular, we reveal the relationship between the performance of the network and its nonlinear dynamical behavior. We measure the maximal Lyapunov exponent and Hurst parameter of the average queue length of RED and Adaptive RED, as well as the throughput and packet loss rate of the aggregate traffic on the bottleneck link. Our simulation scenarios include FTP flows and Web flows, one-way and two-way traffic. In most situations, Adaptive RED has smaller maximal Lyapunov exponents, lower Hurst parameters, higher throughput and lower packet loss rate than that of RED. This confirms that Adaptive RED has better performance than RED.
Nonlinear fractional relaxation
Indian Academy of Sciences (India)
A Tofighi
2012-04-01
We deﬁne a nonlinear model for fractional relaxation phenomena. We use -expansion method to analyse this model. By studying the fundamental solutions of this model we ﬁnd that when → 0 the model exhibits a fast decay rate and when → ∞ the model exhibits a power-law decay. By analysing the frequency response we ﬁnd a logarithmic enhancement for the relative ratio of susceptibility.
Indian Academy of Sciences (India)
Ramaswamy Jaganathan; Sudeshna Sinha
2005-03-01
Motivated by studies on -deformed physical systems related to quantum group structures, and by the elements of Tsallis statistical mechanics, the concept of -deformed nonlinear maps is introduced. As a specific example, a -deformation procedure is applied to the logistic map. Compared to the canonical logistic map, the resulting family of -logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors – a phenomenon rare in one-dimensional maps.
Controllability of nonlinear systems.
Sussmann, H. J.; Jurdjevic, V.
1972-01-01
Discussion of the controllability of nonlinear systems described by the equation dx/dt - F(x,u). Concepts formulated by Chow (1939) and Lobry (1970) are applied to establish criteria for F and its derivatives to obtain qualitative information on sets which can be obtained from x which denotes a variable of state in an arbitrary, real, analytical manifold. It is shown that controllability implies strong accessibility for a large class of manifolds including Euclidean spaces.-
Stochastic Nonlinear Aeroelasticity
2009-01-01
STOCHASTIC NONLINEAR AEROELASTICITY 5a. CONTRACT NUMBER In- house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0601102 6. AUTHOR(S) Philip S...ABSTRACT This report documents the culmination of in- house work in the area of uncertainty quantification and probabilistic techniques for... coff U∞ cs ea lw cw Figure 6: Wing and store geometry (left), wing box structural model (middle), flutter distribution (right
2007-03-01
IEEE Transactions on Automatic Control , AC- 48, pp. 1712-1723, (2003). [14] C.I. Byrnes, A. Isidori...Nonlinear internal models for output regulation,” IEEE Transactions on Automatic Control , AC-49, pp. 2244-2247, (2004). [15] C.I. Byrnes, F. Celani, A...approach,” IEEE Transactions on Automatic Control , 48 (Dec. 2003), 2172–2190. 2. C. I. Byrnes, “Differential Forms and Dynamical Systems,” to appear
Filamentation with nonlinear Bessel vortices.
Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A
2014-10-20
We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.
Strongly nonlinear oscillators analytical solutions
Cveticanin, Livija
2014-01-01
This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...
Quantum well nonlinear microcavities
Oudar, J. L.; Kuszelewicz, R.; Sfez, B.; Pellat, D.; Azoulay, R.
We report on recent progress in reducing the power threshold of all-optical bistable quantum well vertical microcavities. Significant improvements are achieved through an increase of the cavity finesse, together with a reduction of the device active layer thickness. A critical intensity of 5 μW/μm 2 has been observed on a microcavity of finesse 250, with a nonlinear medium of only 18 GaAs quantum wells of 10 nm thickness. Further improvements of the Bragg mirror quality resulted in a finesse of 700 and a power-lifetime product of 15 fJ/μm 2. Microresonator pixellation allows to obtain 2-dimensional arrays. A thermally-induced alloy-mixing technique is described, which produced a 110 meV carrier confinement energy, together with a refractive index change of -.012, averaged over the 2.6 μm nonlinear medium thickness. The resulting electrical and optical confinement is shown to improve the nonlinear characteristics, by limiting lateral carrier diffusion and light diffraction.
Robust Absolute Stability of General Interval Lur'e Type Nonlinear Control Systems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, Lyapunov function method isused to study the robust absolute stability of general interval Lur'e type nonlinear control systems. As a result, algebraically sufficient conditions with interval matrix inequality form are obtained for the general interval Lur'e type nonlinear control systems, thus the relationship between the stability of symmetrical interval matrix and the robust absolute stability of general interval Lur'e type nonlinear control systems is established.
Geometric and material nonlinear analysis of tensegrity structures
Institute of Scientific and Technical Information of China (English)
Hoang Chi Tran; Jaehong Lee
2011-01-01
A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stressstrain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.
Effective nonlinear AC response to composite with spherical particles
Institute of Scientific and Technical Information of China (English)
Chen Xiao-Gang; Liang Fang-Chu; Wei En-Bo
2005-01-01
An effective nonlinear alternative-current (AC) response to granular nonlinear-composite with spherical inclusions embedded in a host medium under the action of an external AC field is investigated by using a perturbation approach.The local potentials of composite at higher harmonics are derived both in a region of local inclusion particles and in a local host region under the action of a sinusoidal field E1 sinωt + E3sin3ωt. An effective nonlinear-response to composite and the relationship between the effective nonlinear-responses at the fundamental frequency and the third harmonics are also studied for the spherical inclusions in a dilute limit.
Nonlinear oscillations in a unijunction transistor (UJT) circuit
Zielinski, John
2005-10-01
Phenomena such as plasma wavesootnotetextT Tsuru, Nonlinear resonance phenomena of elect. plasma oscillations by beam modulation, J. Phys. Soc. Japan, 40, 548, 1976. and oscillations in electric circuits which employ a plasma componentootnotetextM Wendt, I Axnas, S Torven, Amplitude collapse of nonlinear double-layer oscillations, Phys. Rev. E, 57, 4638, 1998. can be described by a differential equation with nonlinear dissipative and restoring force terms. The UJT oscillator circuit developed by Koepke and HartleyootnotetextME Koepke, DM Hartley, Experimental verification of periodic pulling in a nonlinear electronic oscillator, Phys. Rev. A, 44, 6877, 1991 is also described by a similar equation. During the past year efforts have been made to understand the following aspects of this circuit's operation: 1) Determining conditions which lead to oscillation onset and termination (amplitude collapse). 2) Analytic and numerical modeling. 3) Characterizing the capacitances associated with the emitter-base junctions. 4) Exploring the relationship between this circuit and astable multivibrators.
Approximate Series Solutions for Nonlinear Free Vibration of Suspended Cables
Directory of Open Access Journals (Sweden)
Yaobing Zhao
2014-01-01
Full Text Available This paper presents approximate series solutions for nonlinear free vibration of suspended cables via the Lindstedt-Poincare method and homotopy analysis method, respectively. Firstly, taking into account the geometric nonlinearity of the suspended cable as well as the quasi-static assumption, a mathematical model is presented. Secondly, two analytical methods are introduced to obtain the approximate series solutions in the case of nonlinear free vibration. Moreover, small and large sag-to-span ratios and initial conditions are chosen to study the nonlinear dynamic responses by these two analytical methods. The numerical results indicate that frequency amplitude relationships obtained with different analytical approaches exhibit some quantitative and qualitative differences in the cases of motions, mode shapes, and particular sag-to-span ratios. Finally, a detailed comparison of the differences in the displacement fields and cable axial total tensions is made.
A Boussinesq model with alleviated nonlinearity and dispersion
Institute of Scientific and Technical Information of China (English)
ZHANG Dian-xin; TAO Jian-hua
2008-01-01
The classical Boussinesq equation is a weakly nonlinear and weakly dispersive equation, which has been widely applied to simulate wave propagation in off-coast shallow waters. A new form of the Boussinesq model for an uneven bottoms is derived in this paper. In the new model, nonlinearity is reduced without increasing the order of the highest derivative in the differential equations. Dispersion relationship of the model is improved to the order of Pade (2,2) by adjusting a parameter in the model based on the long wave approximation. Analysis of the linear dispersion, linear shoaling and nonlinearity of the present model shows that the performances in terms of nonlinearity, dispersion and shoaling of this model are improved. Numerical results obtained with the present model are in agreement with experimental data.
Nonlinear robust hierarchical control for nonlinear uncertain systems
Directory of Open Access Journals (Sweden)
Leonessa Alexander
1999-01-01
Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.
Nonlinear scattering in plasmonic nanostructures
Chu, Shi-Wei
2016-09-01
Nonlinear phenomena provide novel light manipulation capabilities and innovative applications. Recently, we discovered nonlinear saturation on single-particle scattering of gold nanospheres by continuous-wave laser excitation and innovatively applied to improve microscopic resolution down to λ/8. However, the nonlinearity was limited to the green-orange plasmonic band of gold nanosphere, and the underlying mechanism has not yet been fully understood. In this work, we demonstrated that nonlinear scattering exists for various material/geometry combinations, thus expanding the applicable wavelength range. For near-infrared, gold nanorod is used, while for blue-violet, silver nanospheres are adopted. In terms of mechanism, the nonlinearity may originate from interband/intraband absorption, hot electron, or hot lattice, which are spectrally mixed in the case of gold nanosphere. For gold nanorod and silver nanosphere, nonlinear scattering occurs at plasmonic resonances, which are spectrally far from interband/intraband absorptions, so they are excluded. We found that the nonlinear index is much larger than possible contributions from hot electrons in literature. Therefore, we conclude that hot lattice is the major mechanism. In addition, we propose that similar to z-scan, which is the standard method to characterize nonlinearity of a thin sample, laser scanning microscopy should be adopted as the standard method to characterize nonlinearity from a nanostructure. Our work not only provides the physical mechanism of the nonlinear scattering, but also paves the way toward multi-color superresolution imaging based on non-bleaching plasmonic scattering.
Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, Kim Ø; Salerno, M.
2006-01-01
A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowi......-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated....
Dichromatic nonlinear eigenmodes in slab waveguide with chi(2) nonlinearity.
Darmanyan, S A; Nevière, M
2001-03-01
The existence of purely nonlinear eigenmodes in a waveguiding structure composed of a slab with quadratic nonlinearity surrounded by (non)linear claddings is reported. Modes having bright and dark solitonlike shapes and consisting of two mutually locked harmonics are identified. Asymmetrical modes are shown to exist in symmetrical environments. Constraints for the existence of the modes are derived in terms of parameters of guiding structure materials.
Linear and Nonlinear Analysis of Brain Dynamics in Children with Cerebral Palsy
Sajedi, Firoozeh; Ahmadlou, Mehran; Vameghi, Roshanak; Gharib, Masoud; Hemmati, Sahel
2013-01-01
This study was carried out to determine linear and nonlinear changes of brain dynamics and their relationships with the motor dysfunctions in CP children. For this purpose power of EEG frequency bands (as a linear analysis) and EEG fractality (as a nonlinear analysis) were computed in eyes-closed resting state and statistically compared between 26…
An Unscented Kalman Filter Approach to the Estimation of Nonlinear Dynamical Systems Models
Chow, Sy-Miin; Ferrer, Emilio; Nesselroade, John R.
2007-01-01
In the past several decades, methodologies used to estimate nonlinear relationships among latent variables have been developed almost exclusively to fit cross-sectional models. We present a relatively new estimation approach, the unscented Kalman filter (UKF), and illustrate its potential as a tool for fitting nonlinear dynamic models in two ways:…
Nonlinear Schrodinger equation with chaotic, random, and nonperiodic nonlinearity
Cardoso, W B; Avelar, A T; Bazeia, D; Hussein, M S
2009-01-01
In this paper we deal with a nonlinear Schr\\"{o}dinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Comparing with a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein Condensates and their collective excitations and transport.
Institute of Scientific and Technical Information of China (English)
张海丘; 高广运; 雷丹
2015-01-01
Most analytical solutions of sand and wick drains are combined with onedimensional consolidationtheory.The soil is considered as a linear poroelastic solid.But researches show that,under the isotropicconsolidation,the average effective stress and permeability coefficient both have semilogarithmic relationships withthe void ratio.At the same time,experiments show that the permeability around PVD in smear zone is distributed inparabolic form.Therefore,to consider the effects of these three nonlinear relationships,the analytical solution tothis problem is derived in this paper.Correctness of this analytical solution is verified through degradation method.In addition,effects of parameters of Cc /Ck and κon consolidation are analyzed.The results show that the rate ofconsolidation under Cc /Ck1 ;and the rate of consolidation decreases with the growthof κ.%大部分砂井及排水板固结解析解理论结合了太沙基一维固结理论，把土体考虑成线弹性问题，而研究发现，软土在等向固结条件下平均有效应力和水平渗透系数与孔隙比成半对数线性关系。同时，实验表明，在塑料排水板周围的涂抹区中水平渗透系数成抛物线状分布。因此，为了充分考虑这些非线性的影响，推导出了该问题的解析解，并通过退化验证了该解析解的正确性。同时，还对参数 Cc／Ck和κ对固结速率的影响进行了分析，结果表明：当 Cc／Ck＜1时，固结速率较快；当Cc／Ck＞1时，固结速率较慢；参数κ增加，固结速率逐渐变小。
Stolz, A; Markey, L; Francs, G Colas des; Bouhelier, A
2013-01-01
We introduce strongly-coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion and demonstrate that a two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
Nonlinear surface electromagnetic phenomena
Ponath, H-E
1991-01-01
In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are
Nonlinear electrodynamics with birefringence
Kruglov, S I
2015-01-01
A new model of nonlinear electrodynamics with three parameters is suggested. The phenomena of vacuum birefringence takes place when there is the external constant magnetic field. We calculate the indices of refraction for two polarizations of electromagnetic waves, parallel and perpendicular to the magnetic induction field. From the Bir\\'{e}fringence Magn\\'{e}tique du Vide (BMV) experiment one of the coefficients, $\\gamma\\approx 10^{-20}$ T$^{-2}$, was estimated. The canonical, symmetrical Belinfante energy-momentum tensors and dilatation current were obtained. The dilatation symmetry and the dual symmetry are broken in the model considered.
Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning
2001-01-01
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which
Nonlinear dynamics in psychology
Directory of Open Access Journals (Sweden)
Stephen J. Guastello
2001-01-01
Full Text Available This article provides a survey of the applications of nonlinear dynamical systems theory to substantive problems encountered in the full scope of psychological science. Applications are organized into three topical areas – cognitive science, social and organizational psychology, and personality and clinical psychology. Both theoretical and empirical studies are considered with an emphasis on works that capture the broadest scope of issues that are of substantive interest to psychological theory. A budding literature on the implications of NDS principles in professional practice is reported also.
2009-11-18
analytic semigroup T(t) ~ eAl is exponentially stable (Notice that it is also a contraction semigroup ). 3. Be 3(U, Z) and P e £(W, 2) are bounded. 4. Ce...quite often in practice, .4 is self-adjoint. We also note that, since we assume (—A) is sectorial, we work with the semigroup exp(.4f) rather than...Uniform Output Regulation of Nonlinear Sys- tems: A convergent Dynamics Approach, Birkhauser, Boston, 2006. 23 135] A. Pazy, Semigroups of Linear
Directory of Open Access Journals (Sweden)
DJAIRO G. DEFIGUEIREDO
2000-12-01
Full Text Available In this paper we treat the question of the existence of solutions of boundary value problems for systems of nonlinear elliptic equations of the form - deltau = f (x, u, v,Ñu,Ñv, - deltav = g(x, u, v, Ñu, Ñv, in omega, We discuss several classes of such systems using both variational and topological methods. The notion of criticality takes into consideration the coupling, which plays important roles in both a priori estimates for the solutions and Palais-Smale conditions for the associated functional in the variational case.
Global Analysis of Nonlinear Dynamics
Luo, Albert
2012-01-01
Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.
Nonlinear evolution of drift instabilities
Energy Technology Data Exchange (ETDEWEB)
Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.
1984-01-01
The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.
Rashidian Vaziri, Mohammad Reza
2013-07-10
In this paper, the Z-scan theory for nonlocal nonlinear media has been further developed when nonlinear absorption and nonlinear refraction appear simultaneously. To this end, the nonlinear photoinduced phase shift between the impinging and outgoing Gaussian beams from a nonlocal nonlinear sample has been generalized. It is shown that this kind of phase shift will reduce correctly to its known counterpart for the case of pure refractive nonlinearity. Using this generalized form of phase shift, the basic formulas for closed- and open-aperture beam transmittances in the far field have been provided, and a simple procedure for interpreting the Z-scan results has been proposed. In this procedure, by separately performing open- and closed-aperture Z-scan experiments and using the represented relations for the far-field transmittances, one can measure the nonlinear absorption coefficient and nonlinear index of refraction as well as the order of nonlocality. Theoretically, it is shown that when the absorptive nonlinearity is present in addition to the refractive nonlinearity, the sample nonlocal response can noticeably suppress the peak and enhance the valley of the Z-scan closed-aperture transmittance curves, which is due to the nonlocal action's ability to change the beam transverse dimensions.
Topics on nonlinear generalized functions
Colombeau, J F
2011-01-01
The aim of this paper is to give the text of a recent introduction to nonlinear generalized functions exposed in my talk in the congress gf2011, which was asked by several participants. Three representative topics were presented: two recalls "Nonlinear generalized functions and their connections with distribution theory", "Examples of applications", and a recent development: "Locally convex topologies and compactness: a functional analysis of nonlinear generalized functions".
Nonlinear Ultrasonic Phased Array Imaging
Potter, J. N.; Croxford, A. J.; Wilcox, P. D.
2014-10-01
This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.
Nonlinear ultrasonic phased array imaging
Potter, J N; Croxford, A.J.; Wilcox, P. D.
2014-01-01
This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging t...
Research on Nonlinear Dynamical Systems.
1983-01-10
investigated fundamental aspects of functional differential equations, including qualitative questions (stability, nonlinear oscillations ), in 142,45,47,52...Bifurcation in the Duffing equation with several parameters, II. Proc. of the Royal Society of Edinburgh, Series A, 79A (1977), pp.317-326. 1I.J (with ;Ibtoas...Lecture Notes in Mathematics, Vol. 730 (1979). [54] Nonlinear oscillations in equations with delays. Proc. at A.M.S. 10th Summer Seminar on Nonlinear
Nonlinear ultrasonic phased array imaging.
Potter, J N; Croxford, A J; Wilcox, P D
2014-10-03
This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.
Remote Atmospheric Nonlinear Optical Magnetometry
2014-04-28
Boyd , Nonlinear Optics (Elsevier, Burlington, MA, 2008). [13] M. Scully and S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6703--14-9548 Remote Atmospheric Nonlinear Optical Magnetometry PhilliP SPrangle...b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Remote Atmospheric Nonlinear Optical Magnetometry Phillip Sprangle, Luke
Applications of nonlinear fiber optics
Agrawal, Govind
2008-01-01
* The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo
Linearization of conservative nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Belendez, A; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E; Pascual, I [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es
2009-03-11
A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for the complete range of oscillation amplitudes. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of the technique.
Problems in nonlinear resistive MHD
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)
1998-12-31
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.
Asymptotics for dissipative nonlinear equations
Hayashi, Nakao; Kaikina, Elena I; Shishmarev, Ilya A
2006-01-01
Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.
Focus issue introduction: nonlinear optics.
Boulanger, Benoît; Cundiff, Steven T; Gauthier, Daniel J; Karlsson, Magnus; Lu, Yan-Qing; Norwood, Robert A; Skryabin, Dmitry; Taira, Takunori
2011-11-07
It is now fifty years since the original observation of second harmonic generation ushered in the field of nonlinear optics, close on the heels of the invention of the laser. This feature issue celebrates this anniversary with papers that span the range from new nonlinear optical materials, through the increasingly novel methods that have been developed for phase matching, to emerging areas such as nonlinear metamaterials and plasmonic enhancement of optical properties. It is clear that the next fifty years of nonlinear optics will witness a proliferation of new applications with increasing technological impact.
Nonlocal homogenization for nonlinear metamaterials
Gorlach, Maxim A; Lapine, Mikhail; Kivshar, Yuri S; Belov, Pavel A
2016-01-01
We present a consistent theoretical approach for calculating effective nonlinear susceptibilities of metamaterials taking into account both frequency and spatial dispersion. Employing the discrete dipole model, we demonstrate that effects of spatial dispersion become especially pronounced in the vicinity of effective permittivity resonance where nonlinear susceptibilities reach their maxima. In that case spatial dispersion may enable simultaneous generation of two harmonic signals with the same frequency and polarization but different wave vectors. We also prove that the derived expressions for nonlinear susceptibilities transform into the known form when spatial dispersion effects are negligible. In addition to revealing new physical phenomena, our results provide useful theoretical tools for analysing resonant nonlinear metamaterials.
Nonlinear Peltier effect in semiconductors
Zebarjadi, Mona; Esfarjani, Keivan; Shakouri, Ali
2007-09-01
Nonlinear Peltier coefficient of a doped InGaAs semiconductor is calculated numerically using the Monte Carlo technique. The Peltier coefficient is also obtained analytically for single parabolic band semiconductors assuming a shifted Fermi-Dirac electronic distribution under an applied bias. Analytical results are in agreement with numerical simulations. Key material parameters affecting the nonlinear behavior are doping concentration, effective mass, and electron-phonon coupling. Current density thresholds at which nonlinear behavior is observable are extracted from numerical data. It is shown that the nonlinear Peltier effect can be used to enhance cooling of thin film microrefrigerator devices especially at low temperatures.
Nonlinearities in Behavioral Macroeconomics.
Gomes, Orlando
2017-07-01
This article undertakes a journey across the literature on behavioral macroeconomics, with attention concentrated on the nonlinearities that the behavioral approach typically suggests or implies. The emphasis is placed on thinking the macro economy as a living organism, composed of many interacting parts, each one having a will of its own, which is in sharp contrast with the mechanism of the orthodox view (well represented by the neoclassical or new Keynesian dynamic stochastic general equilibrium - DSGE - model). The paper advocates that a thorough understanding of individual behavior in collective contexts is the only possible avenue to further explore macroeconomic phenomena and the often observed 'anomalies' that the benchmark DSGE macro framework is unable to explain or justify. After a reflection on the role of behavioral traits as a fundamental component of a new way of thinking the economy, the article proceeds with a debate on some of the most relevant frameworks in the literature that somehow link macro behavior and nonlinearities; covered subjects include macro models with disequilibrium rules, agent-based models that highlight interaction and complexity, evolutionary switching frameworks, and inattention based decision problems. These subjects have, as a fundamental point in common, the use of behavioral elements to transform existing interpretations of the economic reality, making it more evident how irregular fluctuations emerge and unfold on the aggregate.
Improved nonlinear prediction method
Adenan, Nur Hamiza; Md Noorani, Mohd Salmi
2014-06-01
The analysis and prediction of time series data have been addressed by researchers. Many techniques have been developed to be applied in various areas, such as weather forecasting, financial markets and hydrological phenomena involving data that are contaminated by noise. Therefore, various techniques to improve the method have been introduced to analyze and predict time series data. In respect of the importance of analysis and the accuracy of the prediction result, a study was undertaken to test the effectiveness of the improved nonlinear prediction method for data that contain noise. The improved nonlinear prediction method involves the formation of composite serial data based on the successive differences of the time series. Then, the phase space reconstruction was performed on the composite data (one-dimensional) to reconstruct a number of space dimensions. Finally the local linear approximation method was employed to make a prediction based on the phase space. This improved method was tested with data series Logistics that contain 0%, 5%, 10%, 20% and 30% of noise. The results show that by using the improved method, the predictions were found to be in close agreement with the observed ones. The correlation coefficient was close to one when the improved method was applied on data with up to 10% noise. Thus, an improvement to analyze data with noise without involving any noise reduction method was introduced to predict the time series data.
Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies
Emile-Geay, J.; Tingley, M.
2016-01-01
Inferring climate from palaeodata frequently assumes a direct, linear relationship between the two, which is seldom met in practice. Here we simulate an idealized proxy characterized by a nonlinear, thresholded relationship with surface temperature, and we demonstrate the pitfalls of ignoring nonlinearities in the proxy-climate relationship. We explore three approaches to using this idealized proxy to infer past climate: (i) methods commonly used in the palaeoclimate literature, without consideration of nonlinearities; (ii) the same methods, after empirically transforming the data to normality to account for nonlinearities; and (iii) using a Bayesian model to invert the mechanistic relationship between the climate and the proxy. We find that neglecting nonlinearity often exaggerates changes in climate variability between different time intervals and leads to reconstructions with poorly quantified uncertainties. In contrast, explicit recognition of the nonlinear relationship, using either a mechanistic model or an empirical transform, yields significantly better estimates of past climate variations, with more accurate uncertainty quantification. We apply these insights to two palaeoclimate settings. Accounting for nonlinearities in the classical sedimentary record from Laguna Pallcacocha leads to quantitative departures from the results of the original study, and it markedly affects the detection of variance changes over time. A comparison with the Lake Challa record, also a nonlinear proxy for El Niño-Southern Oscillation, illustrates how inter-proxy comparisons may be altered when accounting for nonlinearity. The results hold implications for how univariate, nonlinear recorders of normally distributed climate variables are interpreted, compared to other proxy records, and incorporated into multiproxy reconstructions.
Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion
Directory of Open Access Journals (Sweden)
Jun Wang
2013-01-01
Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.
Nonlinear network coding based on multiplication and exponentiation in GF(2m)
Institute of Scientific and Technical Information of China (English)
JIANG An-you; ZHU Jin-kang
2009-01-01
This article proposes a novel nonlinear network code in the GF(2m) finite field. Different from previous linear network codes that linearly mix multiple input flows, the proposed nonlinear network code mixes input flows through both multiplication and exponentiation in the GF(2m). Three relevant rules for selecting proper parameters for the proposed nonlinear network code are discussed, and the relationship between the power parameter and the coding coefficient K is explored. Further analysis shows that the proposed nonlinear network code is equivalent to a linear network code with deterministic coefficients.
Institute of Scientific and Technical Information of China (English)
张炎涛
2012-01-01
运用Hansen和Seo的两区制阈值协整理论,研究了1953—2010年中国经济增长与碳排放之间的关系及其关系的短期非线性调整。结果表明：经济增长与碳排放之间存在非线性协整关系;当两者的长期均衡关系出现短期偏离时,在正常区制中,主要依靠碳排放的调整使两者间关系恢复到长期均衡状态,在极端区制中,碳排放和经济增长都会向均衡状态做出调整,且碳排放的调整速度更快。%This paper applies the theory of two-regime threshold cointegration developed by Hansen and Seo to investigate the relationship between economic growth and carbon emission during 1953-2010 in China and its short-term nonlinear adjustment.The results show as follows：there exists a threshold co-integration relationship between economic growth and carbon emission;when the deviation from the long-run equilibrium between economic growth and carbon emission,short-run response is mainly executed by the adjustment of carbon emission in typical regime,while both economic growth and carbon emission are all moving toward long-term equilibrium in extreme regime,and the adjustment speed of carbon emission is faster than that of economic growth.
Parametric characteristic of the random vibration response of nonlinear systems
Institute of Scientific and Technical Information of China (English)
Xing-Jian Dong; Zhi-Ke Peng; Wen-Ming Zhang; Guang Meng; Fu-Lei Chu
2013-01-01
Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of non-linear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density (PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.
Nonlinear Evolution of Ferroelectric Domains
Institute of Scientific and Technical Information of China (English)
WeiLU; Dai－NingFANG; 等
1997-01-01
The nonlinear evolution of ferroelectric domains is investigated in the paper and amodel is proposed which can be applied to numerical computation.Numerical results show that the model can accurately predict some nonlinear behavior and consist with those experimental results.
Nonlinear Electrodynamics and black holes
Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo
2007-01-01
It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.
Space curves, anholonomy and nonlinearity
Indian Academy of Sciences (India)
Radha Balakrishnan
2005-04-01
Using classical differential geometry, we discuss the phenomenon of anholonomy that gets associated with a static and a moving curve. We obtain the expressions for the respective geometric phases in the two cases and interpret them. We show that there is a close connection between anholonomy and nonlinearity in a wide class of nonlinear systems.
Balancing for unstable nonlinear systems
Scherpen, J.M.A.
1993-01-01
A previously obtained method of balancing for stable nonlinear systems is extended to unstable nonlinear systems. The similarity invariants obtained by the concept of LQG balancing for an unstable linear system can also be obtained by considering a past and future energy function of the system. By c
Nonlinear diffusion and superconducting hysteresis
Energy Technology Data Exchange (ETDEWEB)
Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States)
1996-12-31
Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.
Energy Technology Data Exchange (ETDEWEB)
Lallart, Mickael; Guyomar, Daniel, E-mail: mickael.lallart@insa-lyon.fr [LGEF, INSA-Lyon, Universite de Lyon, 8 rue de la Physique, F-69621 (France)
2011-10-29
The proliferation of wearable and left-behind devices has raised the issue of powering such systems. While primary batteries have been widely used in order to address this issue, recent trends have focused on energy harvesting products that feature high reliability and low maintenance issues. Among all the ambient sources available for energy harvesting, vibrations and heat have been of significant interest among the research community for small-scale devices. However, the conversion abilities of materials are still limited when dealing with systems featuring small dimensions. The purpose of this paper is to presents an up-to-date view of nonlinear approaches for increasing the efficiency of electromechanical and electrocaloric conversion mechanisms. From the modeling of the operation principles of the different architectures, a comparative analysis will be exposed, emphasizing the advantages and drawbacks of the presented concepts, in terms of maximal output power (under constant vibration magnitude or taking into account the damping effect), load independence, and implementation easiness.
Fainberg, B D
2015-01-01
Purely organic materials with negative and near-zero dielectric permittivity can be easily fabricated. Here we develop a theory of nonlinear non-steady-state organic plasmonics with strong laser pulses. The bistability response of the electron-vibrational model of organic materials in the condensed phase has been demonstrated. Non-steady-state organic plasmonics enable us to obtain near-zero dielectric permittivity during a short time. We have proposed to use non-steady-state organic plasmonics for the enhancement of intersite dipolar energy-transfer interaction in the quantum dot wire that influences on electron transport through nanojunctions. Such interactions can compensate Coulomb repulsions for particular conditions. We propose the exciton control of Coulomb blocking in the quantum dot wire based on the non-steady-state near-zero dielectric permittivity of the organic host medium.
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
Nonlinear estimation and classification
Hansen, Mark; Holmes, Christopher; Mallick, Bani; Yu, Bin
2003-01-01
Researchers in many disciplines face the formidable task of analyzing massive amounts of high-dimensional and highly-structured data This is due in part to recent advances in data collection and computing technologies As a result, fundamental statistical research is being undertaken in a variety of different fields Driven by the complexity of these new problems, and fueled by the explosion of available computer power, highly adaptive, non-linear procedures are now essential components of modern "data analysis," a term that we liberally interpret to include speech and pattern recognition, classification, data compression and signal processing The development of new, flexible methods combines advances from many sources, including approximation theory, numerical analysis, machine learning, signal processing and statistics The proposed workshop intends to bring together eminent experts from these fields in order to exchange ideas and forge directions for the future
Nonlinear transmission sputtering
Bitensky, I. S.; Sigmund, P.
1996-05-01
General expressions have been derived for the nonlinear yield of transmission sputtering for an incident polyatomic ion under the assumption that the molecule breaks up on entering the target and that sputter yields are enhanced due to proximity of atomic trajectories. Special attention is given to the case of negligible Coulomb explosion where projectile atoms penetrate independently. For weakly overlapping trajectories, the yield enhancement factor of a polyatomic molecule can be expressed by that of a diatom, amended with a correction for triple correlations if necessary. This expression is in good agreement with recent experimental findings on phenylalanine targets. Pertinent results on multiple scattering of atomic ions are reviewed and applied to independently-moving fragment atoms. The merits of measurements at variable layer thickness in addition to variable projectile energy are mentioned.
Perspectives on Nonlinear Filtering
Law, Kody
2015-01-07
The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).
Nonlinear rotordynamics analysis
Day, W. B.; Zalik, R. A.
1986-01-01
Three analytic consequences of the nonlinear Jeffcott equations are examined. The primary application of these analyses is directed toward understanding the excessive vibrations recorded in the Liquid Oxygen (LOX) pump of the Space Shuttle Main Engine (SSME) during hot firing ground testing. The first task is to provide bounds on the coefficients of the equations which delimit the two cases of numerical solution as a circle or an annulus. The second task examines the mathematical generalization to multiple forcing functions, which includes the special problems of mass imbalance, side force, rubbing, and combination of these forces. Finally, stability and boundedness of the steady-state solutions is discussed and related to the corresponding linear problem.
Nonlinearities in vegetation functioning
Ceballos-Núñez, Verónika; Müller, Markus; Metzler, Holger; Sierra, Carlos
2016-04-01
Given the current drastic changes in climate and atmospheric CO2 concentrations, and the role of vegetation in the global carbon cycle, there is increasing attention to the carbon allocation component in biosphere terrestrial models. Improving the representation of C allocation in models could be the key to having better predictions of the fate of C once it enters the vegetation and is partitioned to C pools of different residence times. C allocation has often been modeled using systems of ordinary differential equations, and it has been hypothesized that most models can be generalized with a specific form of a linear dynamical system. However, several studies have highlighted discrepancies between empirical observations and model predictions, attributing these differences to problems with model structure. Although efforts have been made to compare different models, the outcome of these qualitative assessments has been a conceptual categorization of them. In this contribution, we introduce a new effort to identify the main properties of groups of models by studying their mathematical structure. For this purpose, we performed a literature research of the relevant models of carbon allocation in vegetation and developed a database with their representation in symbolic mathematics. We used the Python package SymPy for symbolic mathematics as a common language and manipulated the models to calculate their Jacobian matrix at fixed points and their eigenvalues, among other mathematical analyses. Our preliminary results show a tendency of inverse proportionality between model complexity and size of time/space scale; complex interactions between the variables controlling carbon allocation in vegetation tend to operate at shorter time/space scales, and vice-versa. Most importantly, we found that although the linear structure is common, other structures with non-linearities have been also proposed. We, therefore, propose a new General Model that can accommodate these
Nonlinear field space cosmology
Mielczarek, Jakub; Trześniewski, Tomasz
2017-08-01
We consider the FRW cosmological model in which the matter content of the Universe (playing the role of an inflaton or quintessence) is given by a novel generalization of the massive scalar field. The latter is a scalar version of the recently introduced nonlinear field space theory, where the physical phase space of a given field is assumed to be compactified at large energies. For our analysis, we choose the simple case of a field with the spherical phase space and endow it with the generalized Hamiltonian analogous to the XXZ Heisenberg model, normally describing a system of spins in condensed matter physics. Subsequently, we study both the homogenous cosmological sector and linear perturbations of such a test field. In the homogenous sector, we find that nonlinearity of the field phase space is becoming relevant for large volumes of the Universe and can lead to a recollapse, and possibly also at very high energies, leading to the phase of a bounce. Quantization of the field is performed in the limit where the nontrivial nature of its phase space can be neglected, while there is a nonvanishing contribution from the Lorentz symmetry breaking term of the Hamiltonian. As a result, in the leading order of the XXZ anisotropy parameter, we find that the inflationary spectral index remains unmodified with respect to the standard case but the total amplitude of perturbations is subject to a correction. The Bunch-Davies vacuum state also becomes appropriately corrected. The proposed new approach is bringing cosmology and condensed matter physics closer together, which may turn out to be beneficial for both disciplines.
NONLINEAR STABILITY FOR EADY'S MODEL
Institute of Scientific and Technical Information of China (English)
LIU Yong-ming; QIU Ling-cun
2005-01-01
Poincaré type integral inequality plays an important role in the study of nonlinear stability ( in the sense of Arnold's second theorem) for three-dimensional quasigeostophic flow. The nonlinear stability of Eady's model is one of the most important cases in the application of the method. But the best nonlinear stability criterion obtained so far and the linear stability criterion are not coincident. The two criteria coincide only when the period of the channel is infinite.additional conservation law of momentum and by rigorous estimate of integral inequality. So the new nonlinear stability criterion was obtained, which shows that for Eady 's model in the periodic channel, the linear stable implies the nonlinear stable.
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...
Terahertz Nonlinearity in Graphene Plasmons
Jadidi, Mohammad M; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin
2015-01-01
Sub-wavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, sub-wavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a THz pump-THz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by two orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results.
Fast Numerical Nonlinear Fourier Transforms
Wahls, Sander
2014-01-01
The nonlinear Fourier transform, which is also known as the forward scattering transform, decomposes a periodic signal into nonlinearly interacting waves. In contrast to the common Fourier transform, these waves no longer have to be sinusoidal. Physically relevant waveforms are often available for the analysis instead. The details of the transform depend on the waveforms underlying the analysis, which in turn are specified through the implicit assumption that the signal is governed by a certain evolution equation. For example, water waves generated by the Korteweg-de Vries equation can be expressed in terms of cnoidal waves. Light waves in optical fiber governed by the nonlinear Schr\\"dinger equation (NSE) are another example. Nonlinear analogs of classic problems such as spectral analysis and filtering arise in many applications, with information transmission in optical fiber, as proposed by Yousefi and Kschischang, being a very recent one. The nonlinear Fourier transform is eminently suited to address them ...
Properties of Nonlinear Dynamo Waves
Tobias, S. M.
1997-01-01
Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.
Cubication of conservative nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Belendez, Augusto; Alvarez, Mariela L [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, Elena; Pascual, Inmaculada [Departamento de Optica, FarmacologIa y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es
2009-09-15
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.
Nonlinear Oscillators in Space Physics
Lester,Daniel; Thronson, Harley
2011-01-01
We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.
Asymptotic expansions in nonlinear rotordynamics
Day, William B.
1987-01-01
This paper is an examination of special nonlinearities of the Jeffcott equations in rotordynamics. The immediate application of this analysis is directed toward understanding the excessive vibrations recorded in the LOX pump of the SSME during hot-firing ground testing. Deadband, side force, and rubbing are three possible sources of inducing nonlinearity in the Jeffcott equations. The present analysis initially reduces these problems to the same mathematical description. A special frequency, named the nonlinear natural frequency, is defined and used to develop the solutions of the nonlinear Jeffcott equations as singular asymptotic expansions. This nonlinear natural frequency, which is the ratio of the cross-stiffness and the damping, plays a major role in determining response frequencies.
Nonlinear hyperbolic waves in multidimensions
Prasad, Phoolan
2001-01-01
The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...
Analysis of Nonlinear Electromagnetic Metamaterials
Poutrina, Ekaterina; Smith, David R
2010-01-01
We analyze the properties of a nonlinear metamaterial formed by integrating nonlinear components or materials into the capacitive regions of metamaterial elements. A straightforward homogenization procedure leads to general expressions for the nonlinear susceptibilities of the composite metamaterial medium. The expressions are convenient, as they enable inhomogeneous system of scattering elements to be described as a continuous medium using the standard notation of nonlinear optics. We illustrate the validity and accuracy of our theoretical framework by performing measurements on a fabricated metamaterial sample composed of an array of split ring resonators (SRRs) with packaged varactors embedded in the capacitive gaps in a manner similar to that of Wang et al. [Opt. Express 16, 16058 (2008)]. Because the SRRs exhibit a predominant magnetic response to electromagnetic fields, the varactor-loaded SRR composite can be described as a magnetic material with nonlinear terms in its effective magnetic susceptibility...
Institute of Scientific and Technical Information of China (English)
李峰; 卞贺; 郑经堂; 胡燕
2012-01-01
Titanium dioxide (TiO2) is of strong UV absorption and catalytic performance. As a kind of cheap and environment friendly photocatalyst, the TiC>2 particles (especially its nanoparticles) have been considered as potential materials in some fields, such as sewage treatment, air purification and solar cells. Based on the experimental results, RE doping TiO2 was found to enhance the activity of TiO2 for some organic pollutant photodegradations. In order to select proper catalyzer, structure-activity/property relationship for RE-doped TiO2 must be further researched. As a effective data mining method, Nonlinear mapping genetic algorithm was propitious to classification and optimum control, which was firstly used to study the structure-effective relationship of RE-doped TiO2 photocatalysts in this paper. Rare-earth (RE)-doped TiO2 photocatalysts were prepared by doping samarium ions into TiO2 nanoparticles in a sol-gel process. The samples were characterized using X-ray diffraction (XRD). Their photocatalytic activities were evaluated by photodegradation of methyl orange (MO) in water under UV light irradiation. Finally, nonlinear mapping analysis based on XRD parameters was carried out. It was demonstrated that the RE-doped TiO2 photocatalysts had the smaller grain sizes. And the higher the doping concentration, the smaller the grain size. When the doping concentration was 0.05 mol%, it had the highest activity with the sequence of catalytic reactivity Eu > Y> Ce. It was also demonstrated that nonlinear mapping results had a good coincidence with the experimental ones. Nonlinear mapping genetic algorithm maybe a good way to to solve the structure-effective relationship of RE-doped TiO2 photocatalysts. Data mining can help us to develop effective photocatalysts and should gain new respect and application.%TiO2具有很好的紫外吸收和高催化活性.作为一种廉价和环境友好的光催化剂,纳米TiO2在废水处理、空气净化和太阳能电池等方面
The Nonlinear Analytical Envelope Equation in quadratic nonlinear crystals
Bache, Morten
2016-01-01
We here derive the so-called Nonlinear Analytical Envelope Equation (NAEE) inspired by the work of Conforti et al. [M. Conforti, A. Marini, T. X. Tran, D. Faccio, and F. Biancalana, "Interaction between optical fields and their conjugates in nonlinear media," Opt. Express 21, 31239-31252 (2013)], whose notation we follow. We present a complete model that includes $\\chi^{(2)}$ terms [M. Conforti, F. Baronio, and C. De Angelis, "Nonlinear envelope equation for broadband optical pulses in quadratic media," Phys. Rev. A 81, 053841 (2010)], $\\chi^{(3)}$ terms, and then extend the model to delayed Raman effects in the $\\chi^{(3)}$ term. We therefore get a complete model for ultrafast pulse propagation in quadratic nonlinear crystals similar to the Nonlinear Wave Equation in Frequency domain [H. Guo, X. Zeng, B. Zhou, and M. Bache, "Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media," J. Opt. Soc. Am. B 30, 494-504 (2013)], but where the envelope is...
Breatherlike impurity modes in discrete nonlinear lattices
DEFF Research Database (Denmark)
Hennig, D.; Rasmussen, Kim; Tsironis, G. P.
1995-01-01
We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...
Nonlinear elastic behavior of phantom materials for elastography
Energy Technology Data Exchange (ETDEWEB)
Pavan, Theo Z; Madsen, Ernest L; Frank, Gary R; Hall, Timothy J [Medical Physics Department, University of Wisconsin, Room 1005, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705 (United States); Adilton O Carneiro, Antonio, E-mail: tjhall@wisc.ed [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, Sao Paulo (Brazil)
2010-05-07
The development of phantom materials for elasticity imaging is reported in this paper. These materials were specifically designed to provide nonlinear stress/strain relationship that can be controlled independently of the small strain shear modulus of the material. The materials are mixtures of agar and gelatin gels. Oil droplet dispersions in these materials provide further control of the small strain shear modulus and the nonlinear parameter of the material. Since these materials are mostly water, they are assumed to be incompressible under typical experimental conditions in elasticity imaging. The Veronda-Westman model for strain energy density provided a good fit to all materials used in this study. Materials with a constant gelatin concentration (3.0% dry weight) but varying agar concentration (0.6-2.8% dry weight) demonstrated the same power law relationship between elastic modulus and agar concentration found for pure agar (1.89 {+-} 0.02), consistent with percolation theory, and provided a consistent nonlinearity parameter of 4.5 {+-} 0.3. The insights provided by this study will form the basis for stable elastography phantoms with stiffness and nonlinear stress/strain relationships in the background that differ from those in the target.
Nonlinear Optical Response of Conjugated Polymer to Electric Field
Institute of Scientific and Technical Information of China (English)
ZHOU Yu-fang; ZHUANG De-xin; CUI Bin
2005-01-01
The organic π-conjugated polymers are of major interest materials for the use in electro-optical and nonlinear optical devices. In this work, for a selected polyacetylene chain, the optical absorption spectra in UV/Vis regime as well as the linear polarizabilitiy and nonlinear hyperpolarizability are calculated by using quantum chemical ab initio and semiempirical methods. The relationship of its optical property to electric field is obtained. Some physical mechanism of electric field effect on molecular optical property is discussed by means of electron distribution and intramolecular charge transfer.
Cardiovascular Response Identification Based on Nonlinear Support Vector Regression
Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.
This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.
Using genetic programming to discover nonlinear variable interactions.
Westbury, Chris; Buchanan, Lori; Sanderson, Michael; Rhemtulla, Mijke; Phillips, Leah
2003-05-01
Psychology has to deal with many interacting variables. The analyses usually used to uncover such relationships have many constraints that limit their utility. We briefly discuss these and describe recent work that uses genetic programming to evolve equations to combine variables in nonlinear ways in a number of different domains. We focus on four studies of interactions from lexical access experiments and psychometric problems. In all cases, genetic programming described nonlinear combinations of items in a manner that was subsequently independently verified. We discuss the general implications of genetic programming and related computational methods for multivariate problems in psychology.
Solving Nonlinear Partial Differential Equations with Maple and Mathematica
Shingareva, Inna K
2011-01-01
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple an
Third-Order Optical Nonlinearity in Novel Porphyrin Dimers
Institute of Scientific and Technical Information of China (English)
PEI Song-Hao; ZHAO Da-Peng; ZHANG Wei; ZHENG Wen-Qi; WANG Xing-Qiao; PENG Wei-Xian; SHI Guang; SONG Ying-Lin
2008-01-01
@@ We investigate the third-order optical nonlinearities in four novel porphyrin dimers (directs A to I)) and a monomeric porphyrin H2 CPTPP measured by using the single-beam z-scan technique with a pulsed Q-switched Nd:YAG nanosecond laser at 532nm.All the samples show strong excited state absorption (ESA) and high value of X(3) in the ns domain at this wavelength.We perform a comparison between dimer A and its monomer H2 CPTPP in their third-order optical nonlinearity, and discuss the relationships between the values of X(3) and the different bridging groups for all the dimers.
Nonlinear Peltier effect and the nonequilibrium Jonson-Mahan theorem
Freericks, J. K.; Zlatic, V.
2006-01-01
We generalize the many-body formalism for the Peltier effect to the nonlinear/nonequilibrium regime corresponding to large amplitude (spatially uniform but time-dependent) electric fields. We find a relationship between the expectation values for the charge current and for the part of the heat current that reduces to the Jonson-Mahan theorem in the linear-response regime. The nonlinear-response Peltier effect has an extra term in the heat current that is related to Joule heating (we are unabl...
Spatial solitons in nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2000-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....
Recent advance in nonlinear aeroelastic analysis and control of the aircraft
Directory of Open Access Journals (Sweden)
Xiang Jinwu
2014-02-01
Full Text Available A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Various structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are discussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE and fight aircrafts are studied separately. Finally, conclusions and the challenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.
Recent advance in nonlinear aeroelastic analysis and control of the aircraft
Institute of Scientific and Technical Information of China (English)
Xiang Jinwu; Yan Yongju; Li Daochun
2014-01-01
A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different non-linearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Var-ious structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are dis-cussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE) and fight aircrafts are studied separately. Finally, conclusions and the chal-lenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.
Resource Letter NO-1: Nonlinear Optics
Garmire, Elsa
2011-03-01
This Resource Letter provides a guide to the literature on nonlinear optics. Books, journals, and websites are introduced that cover the general subject. Journal articles and websites are cited covering the following topics: second-order nonlinearities in transparent media including second-harmonic generation and optical parametric oscillation, third-order and higher nonlinearities, nonlinear refractive index, absorptive nonlinearities such as saturable absorption and multiphoton absorption, and scattering nonlinearities such as stimulated Raman scattering and stimulated Brillouin scattering. Steady-state and transient phenomena, fiber optics, solitons, nonlinear wave mixing, optical phase conjugation, nonlinear spectroscopy, and multiphoton microscopy are all outlined.
Neurodynamics: nonlinear dynamics and neurobiology.
Abarbanel, H D; Rabinovich, M I
2001-08-01
The use of methods from contemporary nonlinear dynamics in studying neurobiology has been rather limited.Yet, nonlinear dynamics has become a practical tool for analyzing data and verifying models. This has led to productive coupling of nonlinear dynamics with experiments in neurobiology in which the neural circuits are forced with constant stimuli, with slowly varying stimuli, with periodic stimuli, and with more complex information-bearing stimuli. Analysis of these more complex stimuli of neural circuits goes to the heart of how one is to understand the encoding and transmission of information by nervous systems.
Dissipative Nonlinear Dynamics in Holography
Basu, Pallab
2013-01-01
We look at the response of a nonlinearly coupled scalar field in an asymptotically AdS black brane geometry and find a behaviour very similar to that of known dissipative nonlinear systems like the chaotic pendulum. Transition to chaos proceeds through a series of period-doubling bifurcations. The presence of dissipation, crucial to this behaviour, arises naturally in a black hole background from the ingoing conditions imposed at the horizon. AdS/CFT translates our solution to a chaotic response of the operator dual to the scalar field. Our setup can also be used to study quench-like behaviour in strongly coupled nonlinear systems.
Acoustic-gravity nonlinear structures
Directory of Open Access Journals (Sweden)
D. Jovanović
2002-01-01
Full Text Available A catalogue of nonlinear vortex structures associated with acoustic-gravity perturbations in the Earth's atmosphere is presented. Besides the previously known Kelvin-Stewart cat's eyes, dipolar and tripolar structures, new solutions having the form of a row of counter-rotating vortices, and several weakly two-dimensional vortex chains are given. The existence conditions for these nonlinear structures are discussed with respect to the presence of inhomogeneities of the shear flows. The mode-coupling mechanism for the nonlinear generation of shear flows in the presence of linearly unstable acoustic-gravity waves, possibly also leading to intermittency and chaos, is presented.
Nonlinear effects in Thomson backscattering
Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.
2013-03-01
We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.
Nonlinear Dynamic Phenomena in Mechanics
Warminski, Jerzy; Cartmell, Matthew P
2012-01-01
Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear
Nonlinear Optics: Principles and Applications
DEFF Research Database (Denmark)
Rottwitt, Karsten; Tidemand-Lichtenberg, Peter
As nonlinear optics further develops as a field of research in electromagnetic wave propagation, its state-of-the-art technologies will continue to strongly impact real-world applications in a variety of fields useful to the practicing scientist and engineer. From basic principles to examples...... of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
Lin Xiao-Gang; Liu Wen-Jun; Lei Ming
2016-03-01
Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Nonlinear dynamics: Challenges and perspectives
Indian Academy of Sciences (India)
M Lakshmanan
2005-04-01
The study of nonlinear dynamics has been an active area of research since 1960s, after certain path-breaking discoveries, leading to the concepts of solitons, integrability, bifurcations, chaos and spatio-temporal patterns, to name a few. Several new techniques and methods have been developed to understand nonlinear systems at different levels. Along with these, a multitude of potential applications of nonlinear dynamics have also been enunciated. In spite of these developments, several challenges, some of them fundamental and others on the efficacy of these methods in developing cutting edge technologies, remain to be tackled. In this article, a brief personal perspective of these issues is presented.
Femtosecond nonlinear polarization evolution based on cascade quadratic nonlinearities.
Liu, X; Ilday, F O; Beckwitt, K; Wise, F W
2000-09-15
We experimentally demonstrate that one can exploit nonlinear phase shifts produced in type I phase-mismatched second-harmonic generation to produce intensity-dependent polarization evolution with 100-fs pulses. An amplitude modulator based on nonlinear polarization rotation provides passive amplitude-modulation depth of up to ~50%. Applications of the amplitude and phase modulations to mode locking of femtosecond bulk and fiber lasers are promising and are discussed.
Intrinsic nonlinear response of surface plasmon polaritons
Im, Song-Jin; Kim, Gum-Hyok
2015-01-01
We offer a model to describe the intrinsic nonlinear response of surface plasmon polaritons (SPPs). Relation of the complex nonlinear coefficient of SPPs to the third-order nonlinear susceptibility of the metal is provided. As reported in a recent study, gold is highly lossy and simultaneously highly nonlinear due to interband absorption and interband thermo-modulation at a wavelength shorter than 700 nm. The effect of the high loss of the metal on the SPP nonlinear propagation is taken into account in our model. With the model we show difference in sign of real and imaginary parts between the nonlinear propagation coefficient and the nonlinear susceptibility of component material for the first time to our knowledge. Our model could have practical importance in studying plasmonic devices utilizing the nonlinear phase modulation and the nonlinear absorption of SPPs. For example, it allows one to extract the complex nonlinear susceptibility of gold through a measurement of SPP nonlinear propagation at the visib...
Deimling, Klaus
1985-01-01
topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical languag...
Meyer, George
1997-01-01
The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of way points through which the aircraft trajectory must pass. The way points typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory which satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multi-dimensional, multi-axis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of possible operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions must be smooth. The guidance algorithm is based on the inversion of the pure feedback approximations, which is followed by iterative corrections for the effects of zero dynamics. The paper describes the structure and modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.
Whittam, A J
2001-01-01
susceptibility from 26 pm/V (same film without octadecanoic acid) to 40 pm/V. This increase in the second-order susceptibility occurred even though the amount of NLO-active dye was effectively diluted by the addition of the inactive octadecanoic acid. The wavelength of the absorption maximum ranged from 346-440 nm and there was direct correlation between the susceptibilities and the transparency of the films at the harmonic wavelength. Hemicyanine dyes were synthesised, with the general formulae: - (a) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH-C sub 6 H sub 4] sub x -N(CH sub 3) sub 2 I (b) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH] sub y -C sub 6 H sub 4 -N(CH sub 3) sub 2 I where A sup + is a pyridinium or isoquinolinium acceptor, and x = 1 or 2, and y = 1 or 2. The optically nonlinear dyes were investigated via the Langmuir-Blodgett (LB) technique. The dyes all produced isotherm data, with molecular areas of 22-60 A sup 2 per molecule, which are consistent with the cross-sectional areas of the chromo...
Nonlinear helical MHD instability
Energy Technology Data Exchange (ETDEWEB)
Zueva, N.M.; Solov' ev, L.S.
1977-07-01
An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.
Design with Nonlinear Constraints
Tang, Chengcheng
2015-12-10
Most modern industrial and architectural designs need to satisfy the requirements of their targeted performance and respect the limitations of available fabrication technologies. At the same time, they should reflect the artistic considerations and personal taste of the designers, which cannot be simply formulated as optimization goals with single best solutions. This thesis aims at a general, flexible yet e cient computational framework for interactive creation, exploration and discovery of serviceable, constructible, and stylish designs. By formulating nonlinear engineering considerations as linear or quadratic expressions by introducing auxiliary variables, the constrained space could be e ciently accessed by the proposed algorithm Guided Projection, with the guidance of aesthetic formulations. The approach is introduced through applications in different scenarios, its effectiveness is demonstrated by examples that were difficult or even impossible to be computationally designed before. The first application is the design of meshes under both geometric and static constraints, including self-supporting polyhedral meshes that are not height fields. Then, with a formulation bridging mesh based and spline based representations, the application is extended to developable surfaces including origami with curved creases. Finally, general approaches to extend hard constraints and soft energies are discussed, followed by a concluding remark outlooking possible future studies.
Nonlinear Statistical Process Monitoring and Fault Detection Using Kernel ICA
Institute of Scientific and Technical Information of China (English)
ZHANG Xi; YAN Wei-wu; ZHAO Xu; SHAO Hui-he
2007-01-01
A novel nonlinear process monitoring and fault detection method based on kernel independent component analysis (ICA) is proposed. The kernel ICA method is a two-phase algorithm: whitened kernel principal component (KPCA) plus ICA. KPCA spheres data and makes the data structure become as linearly separable as possible by virtue of an implicit nonlinear mapping determined by kernel. ICA seeks the projection directions in the KPCA whitened space, making the distribution of the projected data as non-gaussian as possible. The application to the fluid catalytic cracking unit (FCCU) simulated process indicates that the proposed process monitoring method based on kernel ICA can effectively capture the nonlinear relationship in process variables. Its performance significantly outperforms monitoring method based on ICA or KPCA.
Federated nonlinear predictive filtering for the gyroless attitude determination system
Zhang, Lijun; Qian, Shan; Zhang, Shifeng; Cai, Hong
2016-11-01
This paper presents a federated nonlinear predictive filter (NPF) for the gyroless attitude determination system with star sensor and Global Positioning System (GPS) sensor. This approach combines the good qualities of both the NPF and federated filter. In order to combine them, the equivalence relationship between the NPF and classical Kalman filter (KF) is demonstrated from algorithm structure and estimation criterion. The main features of this approach include a nonlinear predictive filtering algorithm to estimate uncertain model errors and determine the spacecraft attitude by using attitude kinematics and dynamics, and a federated filtering algorithm to process measurement data from multiple attitude sensors. Moreover, a fault detection and isolation algorithm is applied to the proposed federated NPF to improve the estimation accuracy even when one sensor fails. Numerical examples are given to verify the navigation performance and fault-tolerant performance of the proposed federated nonlinear predictive attitude determination algorithm.
Kinetic equation for nonlinear resonant wave-particle interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
Interactions between nonlinear spur gear dynamics and surface wear
Ding, Huali; Kahraman, Ahmet
2007-11-01
In this study, two different dynamic models, a finite elements-based deformable-body model and a simplified discrete model, and a surface wear model are combined to study the interaction between gear surface wear and gear dynamic response. The proposed dynamic gear wear model includes the influence of worn surface profiles on dynamic tooth forces and transmission error as well as the influence of dynamic tooth forces on wear profiles. This paper first introduces the nonlinear dynamic models that include gear backlash and time-varying gear mesh stiffness, and a wear model separately. It presents a comparison to experiments for validation of the dynamic models. The dynamic models are combined with the wear model to study the interaction of surface wear and dynamic behavior in both linear and nonlinear response regimes. At the end, several sets of simulation results are used to demonstrate the two-way relationship between nonlinear gear dynamics and surface wear.
Nonlinear plasmonics at high temperatures
Directory of Open Access Journals (Sweden)
Sivan Yonatan
2017-01-01
Full Text Available We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.
Nonlinear optics and organic materials
Energy Technology Data Exchange (ETDEWEB)
Shen, Y.R.
1994-07-01
We shall consider an interesting topic relating nonlinear optics and organic materials: how nonlinear optics can be used to study organic materials. One of the main differences between linear and nonlinear responses of a medium to incoming radiation is in their symmetries. It leads to the possibility that some properties of the medium could be more sensitively probed by nonlinear, rather than linear, optical means, or vise versa. A well-known example is that some vibrational modes of a medium could be Raman-active but infrared-inactive, and would be more readily observed by Raman scattering, which is a two-photon transition process. In this paper, we shall discuss, with the help of three examples, how we can use second harmonic generation (SHG) and sum frequency generation (SFG) to obtain unique information about a material. We shall focus on thin films, surfaces, and interfaces.
Nonlinear plasmonics at high temperatures
Sivan, Yonatan; Chu, Shi-Wei
2017-01-01
We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.
Nonlinear microstructured polymer optical fibres
DEFF Research Database (Denmark)
Frosz, Michael Henoch
. The combination of a small core size and zero-dispersion wavelength at the operating wavelength of widely available femtosecond Ti:sapphire lasers led to an extensive research in supercontinuum generation and other nonlinear effects in PCFs. It is crucial for the efficiency of many nonlinear mechanisms...... that the pump laser wavelength is close to the zero-dispersion wavelength and that the core size is small. Recently, work in fabricating PCFs from materials other than silica has intensified. One of the advantages of using alternative materials can be a higher inherent material nonlinearity, which...... to accurately obtain a small core size while maintaining small structural variations during fibre drawing. This talk will give a presentation of how the mPOFs are fabricated and the route to obtaining nonlinear effects in them....
Device Applications of Nonlinear Dynamics
Baglio, Salvatore
2006-01-01
This edited book is devoted specifically to the applications of complex nonlinear dynamic phenomena to real systems and device applications. While in the past decades there has been significant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions and preparations, there exist comparatively few devices that actually take this rich behavior into account. "Device Applications of Nonlinear Dynamics" applies and exploits this knowledge to make devices which operate more efficiently and cheaply, while affording the promise of much better performance. Given the current explosion of ideas in areas as diverse as molecular motors, nonlinear filtering theory, noise-enhanced propagation, stochastic resonance and networked systems, the time is right to integrate the progress of complex systems research into real devices.
Nonlinear Inflaton Fragmentation after Preheating
Felder, G N; Felder, Gary N.; Kofman, Lev
2007-01-01
We consider the nonlinear dynamics of inflaton fragmentation during and after preheating in the simplest model of chaotic inflation. While the earlier regime of parametric resonant particle production and the later turbulent regime of interacting fields evolving towards equilibrium are well identified and understood, the short intermediate stage of violent nonlinear dynamics remains less explored. Lattice simulations of fully nonlinear preheating dynamics show specific features of this intermediate stage: occupation numbers of the scalar particles are peaked, scalar fields become significantly non-gaussian and the field dynamics become chaotic and irreversible. Visualization of the field dynamics in configuration space reveals that nonlinear interactions generate non-gaussian inflaton inhomogeneities with very fast growing amplitudes. The peaks of the inflaton inhomogeneities coincide with the peaks of the scalar field(s) produced by parametric resonance. When the inflaton peaks reach their maxima, they stop ...
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
BRST charge for nonlinear algebras
Buchbinder, I L
2007-01-01
We study the construction of the classical nilpotent canonical BRST charge for the nonlinear gauge algebras where a commutator (in terms of Poisson brackets) of the constraints is a finite order polynomial of the constraints.
Nonlinear optics: the next decade.
Kivshar, Yuri S
2008-12-22
This paper concludes the Focus Serial assembled of invited papers in key areas of nonlinear optics (Editors: J.M. Dudley and R.W. Boyd), and it discusses new directions for future research in this field.
Nonlinear opto-mechanical pressure
Conti, Claudio
2014-01-01
A transparent material exhibits ultra-fast optical nonlinearity and is subject to optical pressure if irradiated by a laser beam. However, the effect of nonlinearity on optical pressure is often overlooked, even if a nonlinear optical pressure may be potentially employed in many applications, as optical manipulation, biophysics, cavity optomechanics, quantum optics, optical tractors, and is relevant in fundamental problems as the Abraham-Minkoswky dilemma, or the Casimir effect. Here we show that an ultra-fast nonlinear polarization gives indeed a contribution to the optical pressure that also is negative in certain spectral ranges; the theoretical analysis is confirmed by first-principles simulations. An order of magnitude estimate shows that the effect can be observable by measuring the deflection of a membrane made by graphene.
Nonlinear programming analysis and methods
Avriel, Mordecai
2012-01-01
This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.
Nonlinear optics principles and applications
Li, Chunfei
2017-01-01
This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...
Hilbert complexes of nonlinear elasticity
Angoshtari, Arzhang; Yavari, Arash
2016-12-01
We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.
Sun, S. S.; Yildirim, T.; Wu, Jichu; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.
2017-09-01
In this work, a hybrid nonlinear magnetorheological elastomer (MRE) vibration absorber has been designed, theoretically investigated and experimentally verified. The proposed nonlinear MRE absorber has the dual advantages of a nonlinear force-displacement relationship and variable stiffness technology; the purpose for coupling these two technologies is to achieve a large broadband vibration absorber with controllable capability. To achieve a nonlinear stiffness in the device, two pairs of magnets move at a rotary angle against each other, and the theoretical nonlinear force-displacement relationship has been theoretically calculated. For the experimental investigation, the effects of base excitation, variable currents applied to the device (i.e. variable stiffness of the MRE) and semi-active control have been conducted to determine the enhanced broadband performance of the designed device. It was observed the device was able to change resonance frequency with the applied current; moreover, the hybrid nonlinear MRE absorber displayed a softening-type nonlinear response with clear discontinuous bifurcations observed. Furthermore, the performance of the device under a semi-active control algorithm displayed the optimal performance in attenuating the vibration from a primary system to the absorber over a large frequency bandwidth from 4 to 12 Hz. By coupling nonlinear stiffness attributes with variable stiffness MRE technology, the performance of a vibration absorber is substantially improved.
Studies of Nonlinear Problems. I
Fermi, E.; Pasta, J.; Ulam, S.
1955-05-01
A one-dimensional dynamical system of 64 particles with forces between neighbors containing nonlinear terms has been studied on the Los Alamos computer MANIAC I. The nonlinear terms considered are quadratic, cubic, and broken linear types. The results are analyzed into Fourier components and plotted as a function of time. The results show very little, if any, tendency toward equipartition of energy among the degrees of freedom.
Nonlinear magnetization dynamics in nanosystems
Mayergoyz, Isaak D; Serpico, Claudio
2014-01-01
As data transfer rates increase within the magnetic recording industry, improvements in device performance and reliability crucially depend on the thorough understanding of nonlinear magnetization dynamics at a sub-nanoscale level. This book offers a modern, stimulating approach to the subject of nonlinear magnetization dynamics by discussing important aspects such as the Landau-Lifshitz-Gilbert (LLG) equation, analytical solutions, and the connection between the general topological and structural aspects of dynamics. An advanced reference for the study and understanding of non
Nonlinear Observers for Gyro Calibration
Thienel, Julie; Sanner, Robert M.
2003-01-01
Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The convergence properties of all three observers are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.
Nonlinear dynamics in atom optics
Energy Technology Data Exchange (ETDEWEB)
Chen Wenyu; Dyrting, S.; Milburn, G.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Physics
1996-12-31
In this paper theoretical work on classical and quantum nonlinear dynamics of cold atoms is reported. The basic concepts in nonlinear dynamics are reviewed and then applied to the motion of atoms in time-dependent standing waves and to the atomic bouncer. The quantum dynamics for the cases of regular and chaotic classical dynamics is described. The effect of spontaneous emission and external noise is also discussed. 104 refs., 1 tab., 21 figs.
A Nonlinear Transfer Operator Theorem
Pollicott, Mark
2017-02-01
In recent papers, Kenyon et al. (Ergod Theory Dyn Syst 32:1567-1584 2012), and Fan et al. (C R Math Acad Sci Paris 349:961-964 2011, Adv Math 295:271-333 2016) introduced a form of non-linear thermodynamic formalism based on solutions to a non-linear equation using matrices. In this note we consider the more general setting of Hölder continuous functions.
Nonlinear programming analysis and methods
Avriel, Mordecai
2003-01-01
Comprehensive and complete, this overview provides a single-volume treatment of key algorithms and theories. The author provides clear explanations of all theoretical aspects, with rigorous proof of most results. The two-part treatment begins with the derivation of optimality conditions and discussions of convex programming, duality, generalized convexity, and analysis of selected nonlinear programs. The second part concerns techniques for numerical solutions and unconstrained optimization methods, and it presents commonly used algorithms for constrained nonlinear optimization problems. This g
Nonlinear acoustics in biomedical ultrasound
Cleveland, Robin O.
2015-10-01
Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.
Nonlinear evolution equations in QCD
Stasto, A. M.
2004-01-01
The following lectures are an introduction to the phenomena of partonic saturation and nonlinear evolution equations in Quantum Chromodynamics. After a short introduction to the linear evolution, the problems of unitarity bound and parton saturation are discussed. The nonlinear Balitsky-Kovchegov evolution equation in the high energy limit is introduced, and the progress towards the understanding of the properties of its solution is reviewed. We discuss the concepts of the saturation scale, g...
Institute of Scientific and Technical Information of China (English)
ZHAO Shuang; WU Chong-Qing; WANG Yong-Jun
2009-01-01
Linewidth enhancement factors (LEFs) of the transverse electric mode and the transverse magnetic mode in bulk semiconductor optical amplifiers are measured using the nonlinear optical loop mirror method and the principal state of polarization vector method.The polarization dependence of LEFs plays an important role in the nonlinear polarization rotation.The relationship between the polarization-dependence of LEFs and nonlinear polarization rotation in the Stokes space is demonstrated.
Predictive simulation of nonlinear ultrasonics
Shen, Yanfeng; Giurgiutiu, Victor
2012-04-01
Most of the nonlinear ultrasonic studies to date have been experimental, but few theoretical predictive studies exist, especially for Lamb wave ultrasonic. Compared with nonlinear bulk waves and Rayleigh waves, nonlinear Lamb waves for structural health monitoring become more challenging due to their multi-mode dispersive features. In this paper, predictive study of nonlinear Lamb waves is done with finite element simulation. A pitch-catch method is used to interrogate a plate with a "breathing crack" which opens and closes under tension and compression. Piezoelectric wafer active sensors (PWAS) used as transmitter and receiver are modeled with coupled field elements. The "breathing crack" is simulated via "element birth and death" technique. The ultrasonic waves generated by the transmitter PWAS propagate into the structure, interact with the "breathing crack", acquire nonlinear features, and are picked up by the receiver PWAS. The features of the wave packets at the receiver PWAS are studied and discussed. The received signal is processed with Fast Fourier Transform to show the higher harmonics nonlinear characteristics. A baseline free damage index is introduced to assess the presence and the severity of the crack. The paper finishes with summary, conclusions, and suggestions for future work.
Leslie, Thomas M.
1993-01-01
A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film
World oil and agricultural commodity prices: Evidence from nonlinear causality
Energy Technology Data Exchange (ETDEWEB)
Nazlioglu, Saban, E-mail: snazlioglu@pau.edu.t [Department of Econometrics, Pamukkale University, Denizli (Turkey)
2011-05-15
The increasing co-movements between the world oil and agricultural commodity prices have renewed interest in determining price transmission from oil prices to those of agricultural commodities. This study extends the literature on the oil-agricultural commodity prices nexus, which particularly concentrates on nonlinear causal relationships between the world oil and three key agricultural commodity prices (corn, soybeans, and wheat). To this end, the linear causality approach of Toda-Yamamoto and the nonparametric causality method of Diks-Panchenko are applied to the weekly data spanning from 1994 to 2010. The linear causality analysis indicates that the oil prices and the agricultural commodity prices do not influence each other, which supports evidence on the neutrality hypothesis. In contrast, the nonlinear causality analysis shows that: (i) there are nonlinear feedbacks between the oil and the agricultural prices, and (ii) there is a persistent unidirectional nonlinear causality running from the oil prices to the corn and to the soybeans prices. The findings from the nonlinear causality analysis therefore provide clues for better understanding the recent dynamics of the agricultural commodity prices and some policy implications for policy makers, farmers, and global investors. This study also suggests the directions for future studies. - Research highlights: {yields} This study determines the price transmission mechanisms between the world oil and three key agricultural commodity prices (corn, soybeans, and wheat). {yields} The linear and nonlinear cointegration and causality methods are carried out. {yields} The linear causality analysis supports evidence on the neutrality hypothesis. {yields} The nonlinear causality analysis shows that there is a persistent unidirectional causality from the oil prices to the corn and to the soybeans prices.
Nonlinear ultrasound wave propagation in thermoviscous fluids
DEFF Research Database (Denmark)
Sørensen, Mads Peter
coupled nonlinear partial differential equations, which resembles those of optical chi-2 materials. We think this result makes a remarkable link between nonlinear acoustics and nonlinear optics. Finally our analysis reveal an exact kink solution to the nonlinear acoustic problem. This kink solution...
New nonlinear optical materials based on ferrofluids
Energy Technology Data Exchange (ETDEWEB)
Huang, J P [Department of Physics, Fudan University, Shanghai 200433 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, K W [Department of Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)
2006-01-01
We exploit theoretically a new class of magneto-controlled nonlinear optical material based on ferrofluids in which ferromagnetic nanoparticles are coated with a nonmagnetic metallic nonlinear shell. Such an optical material can have anisotropic nonlinear optical properties and a giant enhancement of nonlinearity, as well as an attractive figure of merit.
Graphene - a rather ordinary nonlinear optical material
khurgin, Jacob B
2014-01-01
An analytical expression for the nonlinear refractive index of graphene has been derived and used to obtain the performance metrics of third order nonlinear devices using graphene as a nonlinear medium. None of the metrics is found to be superior to the existing nonlinear optical materials.
Nonlinear models for autoregressive conditional heteroskedasticity
DEFF Research Database (Denmark)
Teräsvirta, Timo
This paper contains a brief survey of nonlinear models of autore- gressive conditional heteroskedasticity. The models in question are parametric nonlinear extensions of the original model by Engle (1982). After presenting the individual models, linearity testing and parameter estimation...... are discussed. Forecasting volatility with nonlinear models is considered. Finally, parametric nonlinear models based on multi- plicative decomposition of the variance receive attention....
Focus issue introduction: nonlinear optics 2013.
Dadap, Jerry I; Karlsson, Magnus; Panoiu, Nicolae C
2013-12-16
Nonlinear Optics has continued to develop over the last few years at an extremely fast pace, with significant advances being reported in nonlinear optical metamaterials, optical signal processing, quantum optics, nonlinear optics at subwavelength scale, and biophotonics. These exciting new developments have generated significant potential for a broad spectrum of technological applications in which nonlinear-optical processes play a central role.
Standing waves for discrete nonlinear Schrodinger equations
Ming Jia
2016-01-01
The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.
Spatial 3-D nonlinear calibration technique for PSD
Guo, Lifeng; Zhang, Guoxiong; Zheng, Qi; Gong, Qiang; Liu, Wenyao
2006-11-01
A 3-D nonlinear calibration technique for Position sensitive detector (PSD) in long distance laser collimating measurement is proposed. An automatic calibration system was developed to measure the nonlinearity of a 2-D PSD in 3-D space. It is mainly composed of a high accurate 2-D motorized translational stage, a high precision distance measuring device, and a computer-based data acquisition and control system. With the aid of the calibration system, the nonlinear characteristic of 2-D PSD is checked in a long collimating distance up to 78 meters. The calibration experiment was carried out for a series of distance, e.g. every 15 meters. The results showed that the nonlinearity of 2-D PSD is different evidently when the PSD element is at different distance from the laser head. One calculating method is defined to evaluate the nonlinear errors. The spatial 3-D mapping relationship between the actual displacements of the incident light and the coordinates of 2-D PSD outputs is established using a multilayer feedforward neural network.
Online identification of nonlinear spatiotemporal systems using kernel learning approach.
Ning, Hanwen; Jing, Xingjian; Cheng, Li
2011-09-01
The identification of nonlinear spatiotemporal systems is of significance to engineering practice, since it can always provide useful insight into the underlying nonlinear mechanism and physical characteristics under study. In this paper, nonlinear spatiotemporal system models are transformed into a class of multi-input-multi-output (MIMO) partially linear systems (PLSs), and an effective online identification algorithm is therefore proposed by using a pruning error minimization principle and least square support vector machines. It is shown that many benchmark physical and engineering systems can be transformed into MIMO-PLSs which keep some important physical spatiotemporal relationships and are very helpful in the identification and analysis of the underlying system. Compared with several existing methods, the advantages of the proposed method are that it can make full use of some prior structural information about system physical models, can realize online estimation of the system dynamics, and achieve accurate characterization of some important nonlinear physical characteristics of the system. This would provide an important basis for state estimation, control, optimal analysis, and design of nonlinear distributed parameter systems. The proposed algorithm can also be applied to identification problems of stochastic spatiotemporal dynamical systems. Numeral examples and comparisons are given to demonstrate our results.
Geometric nonlinear formulation for thermal-rigid-flexible coupling system
Fan, Wei; Liu, Jin-Yang
2013-10-01
This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal effect. Different from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly, based on nonlinear strain-displacement relationship, variational dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach, and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response between the coupled system and the uncoupled system has revealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of considering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate nonlinear model and the linear model are clarified in detail.
Non-linear calibration models for near infrared spectroscopy.
Ni, Wangdong; Nørgaard, Lars; Mørup, Morten
2014-02-27
Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is also attractive due to its good predictive performance for both linear and nonlinear calibrations.
BOOK REVIEW: Nonlinear Magnetohydrodynamics
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data
Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.
2003-01-01
The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…
Institute of Scientific and Technical Information of China (English)
张天莉; 严继民
2001-01-01
Quantum-chemical AM1 calculations were performed to study the geometries,the electronic structures and the second nonlinear optical properties of phthalocyanine and some asymmetrically substituted phthalocyanines,which include tert-butyl,amino,dimethylamino,nitro,fluoro,chloro,bromo iodo and nitrile substituents. The relationships of the second nonlinear optical coefficients β with dipole moment μ, and β with the energy-gap differences of frontier orbitals ΔEDA were discussed. Two relationships are regular and all ΔEDA-μ show very good linear relationship.
Complex motions and chaos in nonlinear systems
Machado, José; Zhang, Jiazhong
2016-01-01
This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
Food addiction: an evolving nonlinear science.
Shriner, Richard; Gold, Mark
2014-11-21
The purpose of this review is to familiarize readers with the role that addiction plays in the formation and treatment of obesity, type 2 diabetes and disorders of eating. We will outline several useful models that integrate metabolism, addiction, and human relationship adaptations to eating. A special effort will be made to demonstrate how the use of simple and straightforward nonlinear models can and are being used to improve our knowledge and treatment of patients suffering from nutritional pathology. Moving forward, the reader should be able to incorporate some of the findings in this review into their own practice, research, teaching efforts or other interests in the fields of nutrition, diabetes, and/or bariatric (weight) management.
Food Addiction: An Evolving Nonlinear Science
Directory of Open Access Journals (Sweden)
Richard Shriner
2014-11-01
Full Text Available The purpose of this review is to familiarize readers with the role that addiction plays in the formation and treatment of obesity, type 2 diabetes and disorders of eating. We will outline several useful models that integrate metabolism, addiction, and human relationship adaptations to eating. A special effort will be made to demonstrate how the use of simple and straightforward nonlinear models can and are being used to improve our knowledge and treatment of patients suffering from nutritional pathology. Moving forward, the reader should be able to incorporate some of the findings in this review into their own practice, research, teaching efforts or other interests in the fields of nutrition, diabetes, and/or bariatric (weight management.
Nonlinear pushover analysis of infilled concrete frames
Institute of Scientific and Technical Information of China (English)
Chao Hsun Huang; Yungting Alex Tuan; Ruo Yun Hsu
2006-01-01
Six reinforced concrete frames with or without masonry infills were constructed and tested under horizontal cyclic loads. All six frames had identical details in which the transverse reinforcement in columns was provided by rectangular hoops that did not meet current ACI specifications for ductile frames. For comparison purposes, the columns in three of these frames were jacketed by carbon-fiber-reinforced-polymer (CFRP) sheets to avoid possible shear failure. A nonlinear pushover analysis, in which the force-deformation relationships of individual elements were developed based on ACI 318, FEMA 356,and Chen's model, was carried out for these frames and compared to test results. Both the failure mechanisms and impact of infills on the behaviors of these frames were examined in the study. Conclusions from the present analysis provide structural engineers with valuable information for evaluation and design of infilled concrete frame building structures.
Compressed Sensing with Nonlinear Observations and Related Nonlinear Optimisation Problems
Blumensath, Thomas
2012-01-01
Non-convex constraints have recently proven a valuable tool in many optimisation problems. In particular sparsity constraints have had a significant impact on sampling theory, where they are used in Compressed Sensing and allow structured signals to be sampled far below the rate traditionally prescribed. Nearly all of the theory developed for Compressed Sensing signal recovery assumes that samples are taken using linear measurements. In this paper we instead address the Compressed Sensing recovery problem in a setting where the observations are non-linear. We show that, under conditions similar to those required in the linear setting, the Iterative Hard Thresholding algorithm can be used to accurately recover sparse or structured signals from few non-linear observations. Similar ideas can also be developed in a more general non-linear optimisation framework. In the second part of this paper we therefore present related result that show how this can be done under sparsity and union of subspaces constraints, wh...
Input saturation in nonlinear multivariable processes resolved by nonlinear decoupling
Directory of Open Access Journals (Sweden)
Jens G. Balchen
1995-04-01
Full Text Available A new method is presented for the resolution of the problem of input saturation in nonlinear multivariable process control by means of elementary nonlinear decoupling (END. Input saturation can have serious consequences particularly in multivariable control because it may lead to very undesirable system behaviour and quite often system instability. Many authors have searched for systematic techniques for designing multivariable control systems in which saturation may occur in any of the control variables (inputs, manipulated variables. No generally accepted method seems to have been presented so far which gives a solution in closed form. The method of elementary nonlinear decoupling (END can be applied directly to the case of saturation control variables by deriving as many control strategies as there are combinations of saturating control variables. The method is demonstrated by the multivariable control of a simulated Fluidized Catalytic Cracker (FCC with very convincing results.
A COMPUTER PROGRAMME FOR THE NON-LINEAR ANALYSIS OF COMPLETE STRUCTURES
Directory of Open Access Journals (Sweden)
Turgay ÇOŞGUN
2003-02-01
Full Text Available The progress made on the analysis of the structures by using non-linear theory and the significant findings on both theorical and empirical works, enable better understanding of the behaviours of structures under external loads. Determination of the failure load and designing the structures accordingly requires developments of analysis methods, which take both the non-linear behaviour of structural elements and the non-linear effects of geometric changes into consideration. Therefore, in this study, a FORTRAN code, which analyses structures and calculates the failure loads by considering the non-linear behaviour of materials under increasing loads (due to the non-linear relationship of stress-strain and moment-curvature and second-order theory of structural systems is developed.
Short- and long-term variations in non-linear dynamics of heart rate variability
DEFF Research Database (Denmark)
Kanters, J K; Højgaard, M V; Agner, E;
1996-01-01
OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... variability. METHODS: Twelve healthy subjects were investigated by 3-h ambulatory ECG recordings repeated on 3 separate days. Correlation dimension, non-linear predictability, mean heart rate, and heart rate variability in the time and frequency domains were measured and compared with the results from...... corresponding surrogate time series. RESULTS: A small significant amount of non-linear dynamics exists in heart rate variability. Correlation dimensions and non-linear predictability are relatively specific parameters for each individual examined. The correlation dimension is inversely correlated to the heart...
Nonlinear graphene plasmonics (Conference Presentation)
Cox, Joel D.; Marini, Andrea; Garcia de Abajo, Javier F.
2016-09-01
The combination of graphene's intrinsically-high nonlinear optical response with its ability to support long-lived, electrically tunable plasmons that couple strongly with light has generated great expectations for application of the atomically-thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Based on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation, we show that finite-size effects produce large contributions that increase the nonlinear response associated with plasmons in nanostructured graphene to significantly higher levels than previously thought, particularly in the case of Kerr-type optical nonlinearities. Motivated by this finding, we discuss and compare saturable absorption in extended and nanostructured graphene, with or without plasmonic enhancement, within the context of passive mode-locking for ultrafast lasers. We also explore the possibility of high-harmonic generation in doped graphene nanoribbons and nanoislands, where illumination by an infrared pulse of moderate intensity, tuned to a plasmon resonance, is predicted to generate light at harmonics of order 13 or higher, extending over the visible and UV regimes. Our atomistic description of graphene's nonlinear optical response reveals its complex nature in both extended and nanostructured systems, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.
Introduction to nonlinear dispersive equations
Linares, Felipe
2015-01-01
This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introdu...
Nonlinear plasmonics at high temperatures
Sivan, Yonatan
2016-01-01
We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on {\\em experimentally}-measured data for the metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution, and thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modelling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high temperature non...
Nonlinear Multigrid for Reservoir Simulation
DEFF Research Database (Denmark)
Christensen, Max la Cour; Eskildsen, Klaus Langgren; Engsig-Karup, Allan Peter
2016-01-01
A feasibility study is presented on the effectiveness of applying nonlinear multigrid methods for efficient reservoir simulation of subsurface flow in porous media. A conventional strategy modeled after global linearization by means of Newton’s method is compared with an alternative strategy...... modeled after local linearization, leading to a nonlinear multigrid method in the form of the full-approximation scheme (FAS). It is demonstrated through numerical experiments that, without loss of robustness, the FAS method can outperform the conventional techniques in terms of algorithmic and numerical...... efficiency for a black-oil model. Furthermore, the use of the FAS method enables a significant reduction in memory usage compared with conventional techniques, which suggests new possibilities for improved large-scale reservoir simulation and numerical efficiency. Last, nonlinear multilevel preconditioning...
Nonlinear photoacoustic spectroscopy of hemoglobin
Energy Technology Data Exchange (ETDEWEB)
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V., E-mail: LHWANG@WUSTL.EDU [Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130 (United States)
2015-05-18
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...... in Fourier space and equipartition, the role of inhomogeneities and complex geometry and the importance of coupled systems....
Nonlinear dynamics in biological systems
Carballido-Landeira, Jorge
2016-01-01
This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...
Nonlinear microrheology of living cells
Kollmannsberger, Philip; Fabry, Ben
2009-01-01
The linear rheology of adherent cells is characterized by a power-law creep or stress relaxation response, and proportionality between stiffness and internal prestress. It is unknown whether these observations hold in the physiologically relevant nonlinear regime. We used magnetic tweezers microrheology to measure the time- and force-dependent nonlinear creep response of adherent cells. Cell deformations in response to a stepwise increasing force applied to cytoskeletally bound magnetic beads were analyzed with a nonlinear superposition approach. The creep response followed a weak power law regardless of force. Stiffness and power law exponent both increased with force, indicating stress stiffening as well as fluidization of the cytoskeleton. Softer cells showed a more pronounced stress stiffening, which is quantitatively explained by their smaller internal prestress. Stiffer and more elastic cells showed a more pronounced force-induced fluidization, consistent with predictions from soft glassy rheology. Thes...
A NONLINEAR FEASIBILITY PROBLEM HEURISTIC
Directory of Open Access Journals (Sweden)
Sergio Drumond Ventura
2015-04-01
Full Text Available In this work we consider a region S ⊂ given by a finite number of nonlinear smooth convex inequalities and having nonempty interior. We assume a point x 0 is given, which is close in certain norm to the analytic center of S, and that a new nonlinear smooth convex inequality is added to those defining S (perturbed region. It is constructively shown how to obtain a shift of the right-hand side of this inequality such that the point x 0 is still close (in the same norm to the analytic center of this shifted region. Starting from this point and using the theoretical results shown, we develop a heuristic that allows us to obtain the approximate analytic center of the perturbed region. Then, we present a procedure to solve the problem of nonlinear feasibility. The procedure was implemented and we performed some numerical tests for the quadratic (random case.
Nonlinear Deformable-body Dynamics
Luo, Albert C J
2010-01-01
"Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...
EXACT LINEARIZATION BASED MULTIPLE-SUBSPACE ITERATIVE RESOLUTION TO AFFINE NONLINEAR CONTROL SYSTEM
Institute of Scientific and Technical Information of China (English)
XU Zi-xiang; ZHOU De-yun; DENG Zi-chen
2006-01-01
To the optimal control problem of affine nonlinear system, based on differential geometry theory, feedback precise linearization was used. Then starting from the simulative relationship between computational structural mechanics and optimal control,multiple-substructure method was inducted to solve the optimal control problem which was linearized. And finally the solution to the original nonlinear system was found. Compared with the classical linearizational method of Taylor expansion, this one diminishes the abuse of error expansion with the enlargement of used region.
Measurement of the acoustic nonlinearity parameter B/A of lossy medium in a focused field
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
An analytical description for the linear and nonlinear acoustic fields in lossy medium of a focusing source is derived. The relationship of pressure amplitudes at focus for fundamental and the second harmonic waves is discussed. At high linear focusing gain G, a new method using the insert substitution method for measuring the acoustic nonlinear parameter B /A of biological tissues is presented. Results for some biological tissues are experimentally obtained.
BLIND IDENTIFICATION OF A CLASS OF NONLINEAR SYSTEMS WITH CYCLOSTATIONARY INPUT
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
This letter deals with blind identification of nonlinear discrete Hammerstein system under the input signal that is cyclostationary.The first-order moment of the specific input as well as the inverse nonlinear mapping of the Hammerstein model are combined to establish a relationship between the system output and the system parameters,which implies an approach to identifying the system blindly.Simulation results demonstrate the effectiveness of this approach to blind identification of a class of nonUnear systems.
A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY
Institute of Scientific and Technical Information of China (English)
李瑞杰; 李东永
2002-01-01
This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.
Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter
Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling
2017-07-01
The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.
Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter
Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling
2017-08-01
The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.
Nonlinear Resistivity for Magnetohydrodynamical Models
Lingam, Manasvi; Pfefferlé, David; Comisso, Luca; Bhattacharjee, Amitava
2016-01-01
A nonlinear current-dependent resistivity that accurately accounts for the collisional electron-ion momentum transfer rate is derived. It is shown that the Spitzer resistivity overestimates the resistivity in certain observationally relevant regimes. The nonlinear resistivity computed herein is a strictly decreasing function of the current, in contrast to some notable previous proposals. The relative importance of the new expression with respect to the well-established electron inertia and Hall terms is also examined. The subtle implications of this current-dependent resistivity are discussed in the context of plasma systems and phenomena such as magnetic reconnection.
Time Series with Tailored Nonlinearities
Raeth, C
2015-01-01
It is demonstrated how to generate time series with tailored nonlinearities by inducing well- defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncor- related Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for e.g. turbulence and financial data can thus be explained in terms of phase correlations.
Topics in nonlinear functional analysis
Nirenberg, Louis
2001-01-01
Since its first appearance as a set of lecture notes published by the Courant Institute in 1974, this book served as an introduction to various subjects in nonlinear functional analysis. The current edition is a reprint of these notes, with added bibliographic references. Topological and analytic methods are developed for treating nonlinear ordinary and partial differential equations. The first two chapters of the book introduce the notion of topological degree and develop its basic properties. These properties are used in later chapters in the discussion of bifurcation theory (the possible br
Finite elements of nonlinear continua
Oden, J T
2000-01-01
Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s
Nonlinear Control of Heartbeat Models
Directory of Open Access Journals (Sweden)
Witt Thanom
2011-02-01
Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.
Edge detection by nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Wong, Yiu-fai
1994-07-01
We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.
Generation of nonlinear vortex precursors
Chen, Yue-Yue; Liu, Chengpu
2016-01-01
We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex har- monics are generated in the transmitted field due to ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provide a straightforward way of measuring precursors. By the virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical informa- tion and communication fields where controllable loss, large information-carrying capacity and high speed communication are required.
Stability analysis of nonlinear systems
Lakshmikantham, Vangipuram; Martynyuk, Anatoly A
2015-01-01
The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners. Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations.
Higher dimensional nonlinear massive gravity
Do, Tuan Q
2016-01-01
Inspired by a recent ghost-free nonlinear massive gravity in four-dimensional spacetime, we study its higher dimensional scenarios. As a result, we are able to show the constant-like behavior of massive graviton terms for some well-known metrics such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini-(A)dS metrics in a specific five-dimensional nonlinear massive gravity under an assumption that its fiducial metrics are compatible with physical ones. In addition, some simple cosmological solutions of the five-dimensional massive gravity will be figured out consistently.
Wave equation with concentrated nonlinearities
Noja, Diego; Posilicano, Andrea
2004-01-01
In this paper we address the problem of wave dynamics in presence of concentrated nonlinearities. Given a vector field $V$ on an open subset of $\\CO^n$ and a discrete set $Y\\subset\\RE^3$ with $n$ elements, we define a nonlinear operator $\\Delta_{V,Y}$ on $L^2(\\RE^3)$ which coincides with the free Laplacian when restricted to regular functions vanishing at $Y$, and which reduces to the usual Laplacian with point interactions placed at $Y$ when $V$ is linear and is represented by an Hermitean m...
Field guide to nonlinear optics
Powers, Peter E
2013-01-01
Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics
Regarding on the exact solutions for the nonlinear fractional differential equations
Directory of Open Access Journals (Sweden)
Kaplan Melike
2016-01-01
Full Text Available In this work, we have considered the modified simple equation (MSE method for obtaining exact solutions of nonlinear fractional-order differential equations. The space-time fractional equal width (EW and the modified equal width (mEW equation are considered for illustrating the effectiveness of the algorithm. It has been observed that all exact solutions obtained in this paper verify the nonlinear ordinary differential equations which was obtained from nonlinear fractional-order differential equations under the terms of wave transformation relationship. The obtained results are shown graphically.
Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks
Barranca, Victor J.; Zhou, Douglas; Cai, David
2016-06-01
Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical framework for efficiently reconstructing sparse feed-forward connections in a pulse-coupled nonlinear network through its output activities. Using only a small ensemble of random inputs, we solve this inverse problem through the compressive sensing theory based on a hidden linear structure intrinsic to the nonlinear network dynamics. The accuracy of the reconstruction is further verified by the fact that complex inputs can be well recovered using the reconstructed connectivity. We expect this Rapid Communication provides a new perspective for understanding the structure-function relationship as well as compressive sensing principle in nonlinear network dynamics.
Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks.
Barranca, Victor J; Zhou, Douglas; Cai, David
2016-06-01
Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical framework for efficiently reconstructing sparse feed-forward connections in a pulse-coupled nonlinear network through its output activities. Using only a small ensemble of random inputs, we solve this inverse problem through the compressive sensing theory based on a hidden linear structure intrinsic to the nonlinear network dynamics. The accuracy of the reconstruction is further verified by the fact that complex inputs can be well recovered using the reconstructed connectivity. We expect this Rapid Communication provides a new perspective for understanding the structure-function relationship as well as compressive sensing principle in nonlinear network dynamics.
A study on the quintic nonlinear beam vibrations using asymptotic approximate approaches
Sedighi, Hamid M.; Shirazi, Kourosh H.; Attarzadeh, Mohammad A.
2013-10-01
This paper intends to promote the application of modern analytical approaches to the governing equation of transversely vibrating quintic nonlinear beams. Four new studied methods are Stiffness analytical approximation method, Homotopy Perturbation Method with an Auxiliary Term, Max-Min Approach (MMA) and Iteration Perturbation Method (IPM). The powerful analytical approaches are used to obtain the nonlinear frequency-amplitude relationship for dynamic behavior of vibrating beams with quintic nonlinearity. It is demonstrated that the first terms in series expansions of all methods are sufficient to obtain a highly accurate solution. Finally, a numerical example is conducted to verify the integrity of the asymptotic methods.
Stability analysis of nonlinear systems with slope restricted nonlinearities.
Liu, Xian; Du, Jiajia; Gao, Qing
2014-01-01
The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.
Stability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities
Directory of Open Access Journals (Sweden)
Xian Liu
2014-01-01
Full Text Available The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.
Analysis of Wave Nonlinear Dispersion Relation
Institute of Scientific and Technical Information of China (English)
LI Rui-jie; TAO Jian-fu
2005-01-01
The nonlinear dispersion relations and modified relations proposed by Kirby and Hedges have the limitation of intermediate minimum value. To overcome the shortcoming, a new nonlinear dispersion relation is proposed. Based on the summarization and comparison of existing nonlinear dispersion relations, it can be found that the new nonlinear dispersion relation not only keeps the advantages of other nonlinear dispersion relations, but also significantly reduces the relative errors of the nonlinear dispersion relations for a range of the relative water depth of 1＜kh＜1.5 and has sufficient accuracy for practical purposes.
Topology optimization of nonlinear optical devices
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2011-01-01
This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation and an incremen......This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation...
Overall mass-transfer coefficients in non-linear chromatography
DEFF Research Database (Denmark)
Mollerup, Jørgen; Hansen, Ernst
1998-01-01
In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationship...... can be applied, the over-all mass-transfer coefficient will be concentration independent. However, in mass-transfer operations, a linear equilibrium relationship is in most cases not a valid approximation wherefore the over-all mass-transfer coefficient becomes strongly concentration dependent...... as shown in this paper. In this case one has to discard the use of over-all mass-transfer coefficients and calculate the rate of mass transfer from the two film theory using the appropriate non-linear relationship to calculate the equilibrium ratio at the interface between the two films....
Non-linear canonical correlation
van der Burg, Eeke; de Leeuw, Jan
1983-01-01
Non-linear canonical correlation analysis is a method for canonical correlation analysis with optimal scaling features. The method fits many kinds of discrete data. The different parameters are solved for in an alternating least squares way and the corresponding program is called CANALS. An
DEFF Research Database (Denmark)
Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa
2012-01-01
We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...
Impurity solitons with quadratic nonlinearities
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis
1998-01-01
We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton p...
Stochastic nonlinear differential equations. I
Heilmann, O.J.; Kampen, N.G. van
1974-01-01
A solution method is developed for nonlinear differential equations having the following two properties. Their coefficients are stochastic through their dependence on a Markov process. The magnitude of the fluctuations, multiplied with their auto-correlation time, is a small quantity. Under these co
Badikyan, Karen
2016-01-01
The nonlinear theory of relyativistic strophotron is developed. Classical equations of motion are averaged over fast oscillations. The slow motion phase and saturation parameter are found different from usual undulator oscillation parameters. In the strong field approximation the analytical expression of gain is found on higher harmonics of main resonance frequency.
Observation of Nonlinear Compton Scattering
Energy Technology Data Exchange (ETDEWEB)
Kotseroglou, T.
2003-12-19
This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.
Nonlinear Optics of Hexaphenyl Nanofibers
DEFF Research Database (Denmark)
Balzer, Frank; Al-Shamery, Katharina; Neuendorf, Rolf
2003-01-01
measurements reveal that the nonlinear optical transition dipole moment is oriented with an angle of 75° with respect to the needles long axes. The absolute value of the macroscopic second-order susceptibility, averaged over a size distribution of p-6P nanoaggregates, is estimated to be of the order of 6...
Nonlinear intravascular ultrasound contrast imaging
Goertz, David E.; Frijlink, Martijn E.; de Jong, N.; van der Steen, Antonius F.W.
2006-01-01
Nonlinear contrast agent imaging with intravascular ultrasound (IVUS) is investigated using a prototype IVUS system and an experimental small bubble contrast agent. The IVUS system employed a mechanically scanned single element transducer and was operated at a 20 MHz transmit frequency (F20) for
Nonlinear wavetrains in viscous conduits
Maiden, Michelle; Hoefer, Mark
2016-11-01
Viscous fluid conduits provide an ideal system for the study of dissipationless, dispersive hydrodynamics. A dense, viscous fluid serves as the background medium through which a lighter, less viscous fluid buoyantly rises. If the interior fluid is continuously injected, a deformable pipe forms. The long wave interfacial dynamics are well-described by a dispersive nonlinear partial differential equation. In this talk, experiments, numerics, and asymptotics of the viscous fluid conduit system will be presented. Structures at multiple length scales are discussed, including solitons, dispersive shock waves, and periodic waves. Modulations of periodic waves will be explored in the weakly nonlinear regime with the Nonlinear Schrödinger (NLS) equation. Modulational instability (stability) is identified for sufficiently short (long) periodic waves due to a change in dispersion curvature. These asymptotic results are confirmed by numerical simulations of perturbed nonlinear periodic wave solutions. Also, numerically observed are envelope bright and dark solitons well approximated by NLS. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).
Quantum nonlinear optics without photons
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
Cosmological effects of nonlinear electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Novello, M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Goulart, E [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Salim, J M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Bergliaffa, S E Perez [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, R. Sao Francisco Xavier, 524, Maracana, CEP 20559-900, Rio de Janeiro (Brazil)
2007-06-07
It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology.
On Nonlinear Higher Spin Curvature
Manvelyan, Ruben(Yerevan Physics Institute, Alikhanian Br. St. 2, Yerevan, 0036, Armenia); Mkrtchyan, Karapet; Rühl, Werner; Tovmasyan, Murad
2011-01-01
We present the first nonlinear term of the higher spin curvature which is covariant with respect to deformed gauge transformations that are linear in the field. We consider in detail the case of spin 3 after presenting spin 2 as an example, and then construct the general spin s quadratic term of the deWit-Freedman curvature.
On nonlinear higher spin curvature
Energy Technology Data Exchange (ETDEWEB)
Manvelyan, Ruben, E-mail: manvel@physik.uni-kl.d [Department of Physics, Erwin Schroedinger Strasse, Technical University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern (Germany); Yerevan Physics Institute, Alikhanian Br. Str. 2, 0036 Yerevan (Armenia); Mkrtchyan, Karapet, E-mail: karapet@yerphi.a [Department of Physics, Erwin Schroedinger Strasse, Technical University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern (Germany); Yerevan Physics Institute, Alikhanian Br. Str. 2, 0036 Yerevan (Armenia); Ruehl, Werner, E-mail: ruehl@physik.uni-kl.d [Department of Physics, Erwin Schroedinger Strasse, Technical University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern (Germany); Tovmasyan, Murad, E-mail: mtovmasyan@ysu.a [Yerevan Physics Institute, Alikhanian Br. Str. 2, 0036 Yerevan (Armenia)
2011-05-09
We present the first nonlinear term of the higher spin curvature which is covariant with respect to deformed gauge transformations that are linear in the field. We consider the case of spin 3 after presenting spin 2 as an example, and then construct the general spin s quadratic term of the de Wit-Freedman curvature.
Nonlinear smoothing for random fields
Aihara, Shin Ichi; Bagchi, Arunabha
1995-01-01
Stochastic nonlinear elliptic partial differential equations with white noise disturbances are studied in the countably additive measure set up. Introducing the Onsager-Machlup function to the system model, the smoothing problem for maximizing the modified likelihood functional is solved and the exp
Practical stability of nonlinear systems
Lakshmikantham, Vangipuram; Martynyuk, Anatolii Andreevich
1990-01-01
This is the first book that deals with practical stability and its development. It presents a systematic study of the theory of practical stability in terms of two different measures and arbitrary sets and demonstrates the manifestations of general Lyapunov's method by showing how this effective technique can be adapted to investigate various apparently diverse nonlinear problems including control systems and multivalued differential equations.
The virial theorem for nonlinear problems
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima (Mexico); Fernandez, Francisco M [INIFTA (UNLP, CCT La Plata-CONICET), Division Quimica Teorica, Blvd 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)], E-mail: paolo.amore@gmail.com, E-mail: fernande@quimica.unlp.edu.ar
2009-09-15
We show that the virial theorem provides a useful simple tool for approximating nonlinear problems. In particular, we consider conservative nonlinear oscillators and obtain the same main result derived earlier from the expansion in Chebyshev polynomials. (letters and comments)
Nonlinear rheological models for structured interfaces
Sagis, L.M.C.
2010-01-01
The GENERIC formalism is a formulation of nonequilibrium thermodynamics ideally suited to develop nonlinear constitutive equations for the stress–deformation behavior of complex interfaces. Here we develop a GENERIC model for multiphase systems with interfaces displaying nonlinear viscoelastic stres
International Conference on Applications in Nonlinear Dynamics
Longhini, Patrick; Palacios, Antonio
2017-01-01
This book presents collaborative research works carried out by experimentalists and theorists around the world in the field of nonlinear dynamical systems. It provides a forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: Applied Nonlinear Optics, Sensor, Radar & Communication Signal Processing, Nano Devices, Nonlinear Biomedical Applications, Circuits & Systems, Coupled Nonlinear Oscillator, Precision Timing Devices, Networks, and other contemporary topics in the general field of Nonlinear Science. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2016) held in Denver, Colorado, 2016. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.
Nonlinear Least Squares for Inverse Problems
Chavent, Guy
2009-01-01
Presents an introduction into the least squares resolution of nonlinear inverse problems. This title intends to develop a geometrical theory to analyze nonlinear least square (NLS) problems with respect to their quadratic wellposedness, that is, both wellposedness and optimizability
Nonlinear dynamics by mode superposition
Energy Technology Data Exchange (ETDEWEB)
Nickell, R.E.
1976-01-01
A mode superposition technique for approximately solving nonlinear initial-boundary-value problems of structural dynamics is discussed, and results for examples involving large deformation are compared to those obtained with implicit direct integration methods such as the Newmark generalized acceleration and Houbolt backward-difference operators. The initial natural frequencies and mode shapes are found by inverse power iteration with the trial vectors for successively higher modes being swept by Gram-Schmidt orthonormalization at each iteration. The subsequent modal spectrum for nonlinear states is based upon the tangent stiffness of the structure and is calculated by a subspace iteration procedure that involves matrix multiplication only, using the most recently computed spectrum as an initial estimate. Then, a precise time integration algorithm that has no artificial damping or phase velocity error for linear problems is applied to the uncoupled modal equations of motion. Squared-frequency extrapolation is examined for nonlinear problems as a means by which these qualities of accuracy and precision can be maintained when the state of the system (and, thus, the modal spectrum) is changing rapidly. The results indicate that a number of important advantages accrue to nonlinear mode superposition: (a) there is no significant difference in total solution time between mode superposition and implicit direct integration analyses for problems having narrow matric half-bandwidth (in fact, as bandwidth increases, mode superposition becomes more economical), (b) solution accuracy is under better control since the analyst has ready access to modal participation factors and the ratios of time step size to modal period, and (c) physical understanding of nonlinear dynamic response is improved since the analyst is able to observe the changes in the modal spectrum as deformation proceeds.
Interaction nonlinearity in asphalt binders
Motamed, Arash; Bhasin, Amit; Liechti, Kenneth M.
2012-05-01
Asphalt mixtures are complex composites that comprise aggregate, asphalt binder, and air. Several research studies have shown that the mechanical behavior of the asphalt mixture is strongly influenced by the matrix, i.e. the asphalt binder. Characterization and a thorough understanding of the binder behavior is the first and crucial step towards developing an accurate constitutive model for the composite. Accurate constitutive models for the constituent materials are critical to ensure accurate performance predictions at a material and structural level using micromechanics. This paper presents the findings from a systematic investigation into the nature of the linear and nonlinear response of asphalt binders subjected to different types of loading using the Dynamic Shear Rheometer (DSR). Laboratory test data show that a compressive normal force is generated in an axially constrained specimen subjected to torsional shear. This paper investigates the source of this normal force and demonstrates that the asphalt binder can dilate when subjected to shear loads. This paper also presents the findings from a study conducted to investigate the source of the nonlinearity in the asphalt binder. Test results demonstrate that the application of cyclic shear loads results in the development of a normal force and a concomitant reduction in the dynamic shear modulus. This form of nonlinear response is referred to as an "interaction nonlinearity". A combination of experimental and analytical tools is used to demonstrate and verify the presence of this interaction nonlinearity in asphalt binders. The findings from this study highlight the importance of modeling the mechanical behavior of asphalt binders based on the overall stress state of the material.
Frequency Response and Gap Tuning for Nonlinear Electrical Oscillator Networks
Bhat, Harish S.; Vaz, Garnet J.
2013-01-01
We study nonlinear electrical oscillator networks, the smallest example of which consists of a voltage-dependent capacitor, an inductor, and a resistor driven by a pure tone source. By allowing the network topology to be that of any connected graph, such circuits generalize spatially discrete nonlinear transmission lines/lattices that have proven useful in high-frequency analog devices. For such networks, we develop two algorithms to compute the steady-state response when a subset of nodes are driven at the same fixed frequency. The algorithms we devise are orders of magnitude more accurate and efficient than stepping towards the steady-state using a standard numerical integrator. We seek to enhance a given network's nonlinear behavior by altering the eigenvalues of the graph Laplacian, i.e., the resonances of the linearized system. We develop a Newton-type method that solves for the network inductances such that the graph Laplacian achieves a desired set of eigenvalues; this method enables one to move the eigenvalues while keeping the network topology fixed. Running numerical experiments using three different random graph models, we show that shrinking the gap between the graph Laplacian's first two eigenvalues dramatically improves a network's ability to (i) transfer energy to higher harmonics, and (ii) generate large-amplitude signals. Our results shed light on the relationship between a network's structure, encoded by the graph Laplacian, and its function, defined in this case by the presence of strongly nonlinear effects in the frequency response. PMID:24223751
Nonlinear Michelson interferometer for improved quantum metrology
Luis, Alfredo; Rivas, Ángel
2015-08-01
We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the energy resources.
Detecting the Nonlinearity of Fish Acoustic Signals
Institute of Scientific and Technical Information of China (English)
REN Xinmin; YIN Li
2006-01-01
This paper discusses the nonlinearity of fish acoustic signals by using the surrogate data method.We compare the difference of three test statistics - time-irreversibility Trey, correlation dimension D2 and auto mutual information function Ⅰbetween the original data and the surrogate data.We come to the conclusion that there exists nonlinearity in the fish acoustic signals and there exist deterministic nonlinear components; therefore nonlinear dynamic theory can be used to analyze fish acoustic signals.
Nonlinear Markov Control Processes and Games
2012-11-15
further research we indicated possible extensions to state spaces with nontrivial geometry, to the controlled nonlinear quantum dynamic semigroups and...space nonlinear Markov semigroup is a one-parameter semigroup of (possibly nonlinear) transformations of the unit simplex in n-dimensional Euclidean...certain mixing property of nonlinear transition probabilities. In case of the semigroup parametrized by continuous time one defines its generator as the
Nonlinear metrology with a quantum interface
Napolitano, M.; Mitchell, M. W.
2009-01-01
We describe nonlinear quantum atom-light interfaces and nonlinear quantum metrology in the collective continuous variable formalism. We develop a nonlinear effective Hamiltonian in terms of spin and polarization collective variables and show that model Hamiltonians of interest for nonlinear quantum metrology can be produced in $^{87}$Rb ensembles. With these Hamiltonians, metrologically relevant atomic properties, e.g. the collective spin, can be measured better than the "Heisenberg limit" $\\...
Nonlinear Michelson interferometer for improved quantum metrology
Luis Aina, Alfredo; Rivas Vargas, Ángel
2015-01-01
We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the ene...
Standing waves for discrete nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Ming Jia
2016-07-01
Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.
Nonlinear Young integrals via fractional calculus
Hu, Yaozhong (1961-); Le, Khoa
2015-01-01
For H\\"older continuous functions $W(t,x)$ and $\\varphi_t$, we define nonlinear integral $\\int_a^b W(dt, \\varphi_t)$ via fractional calculus. This nonlinear integral arises naturally in the Feynman-Kac formula for stochastic heat equations with random coefficients. We also define iterated nonlinear integrals.
Nonlinear approaches in engineering applications 2
Jazar, Reza N
2013-01-01
Provides updated principles and applications of the nonlinear approaches in solving engineering and physics problems Demonstrates how nonlinear approaches may open avenues to better, safer, cheaper systems with less energy consumption Has a strong emphasis on the application, physical meaning, and methodologies of nonlinear approaches in different engineering and science problems
Nonlinear quasimodes near elliptic periodic geodesics
Albin, Pierre; Marzuola, Jeremy L; Thomann, Laurent
2011-01-01
We consider the nonlinear Schr\\"odinger equation on a compact manifold near an elliptic periodic geodesic. Using a geometric optics construction, we construct quasimodes to a nonlinear stationary problem which are highly localized near the periodic geodesic. We show the nonlinear Schr\\"odinger evolution of such a quasimode remains localized near the geodesic, at least for short times.
Nonlinear time series modelling: an introduction
Simon M. Potter
1999-01-01
Recent developments in nonlinear time series modelling are reviewed. Three main types of nonlinear models are discussed: Markov Switching, Threshold Autoregression and Smooth Transition Autoregression. Classical and Bayesian estimation techniques are described for each model. Parametric tests for nonlinearity are reviewed with examples from the three types of models. Finally, forecasting and impulse response analysis is developed.
Variational principles for nonlinear piezoelectric materials
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Ramos, R.; Guinovart-Diaz, R. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Pobedria, B.E. [Moscow State University M. V. Lomonosov, Composites Department, Moscow (Russian Federation); Padilla, P. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas (IIMAS), Cd. Universitaria, Mexico D.F. (Mexico); Bravo-Castillero, J. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Campus Estado de Mexico. Division de Arquitectura e Ingenieria, Instituto Tecnologico de Estudios Superiores de Monterrey, Atizapan de Zaragoza, Estado de Mexico (Mexico); Maugin, G.A. [Universite Pierre et Marie Curie. Case 162, UMR 7607 CNRS, Laboratoire de Modelisation en Mecanique, Paris Cedex 05 (France)
2004-12-01
In the present paper, we consider the behavior of nonlinear piezoelectric materials by generalization for this case of the Hashin-Shtrikman variational principles. The new general formulation used here differs from others, because, it gives the possibility to evaluate the upper and lower Hashin-Shtrikman bounds for specific physical nonlinearities of piezoelectric materials. Geometrical nonlinearities are not considered. (orig.)
Unsymmetrical squaraines for nonlinear optical materials
Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)
1996-01-01
Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.
Nonlinear parametric instability of wind turbine wings
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2006-01-01
Nonlinear rotor dynamic is characterized by parametric excitation of both linear and nonlinear terms caused by centrifugal and Coriolis forces when formulated in a moving frame of reference. Assuming harmonically varying support point motions from the tower, the nonlinear parametric instability...
On balanced truncation for symmetric nonlinear systems
Fujimoto, K.; Scherpen, Jacqueline M.A.
2014-01-01
This paper is concerned with model order reduction based on balanced realization for symmetric nonlinear systems. A new notion of symmetry for nonlinear systems was characterized recently. It plays an important role in linear systems theory and is expected to provide new insights to nonlinear system
Introducing Nonlinear Pricing into Consumer Choice Theory.
DeSalvo, Joseph S.; Huq, Mobinul
2002-01-01
Describes and contrasts nonlinear and linear pricing in consumer choice theory. Discusses the types of nonlinear pricing: block-declining tariff, two-part tariff, three-part tariff, and quality discounts or premia. States that understanding nonlinear pricing enhances student comprehension of consumer choice theory. Suggests teaching the concept in…
Nonlinear parametric instability of wind turbine wings
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2006-01-01
Nonlinear rotor dynamic is characterized by parametric excitation of both linear and nonlinear terms caused by centrifugal and Coriolis forces when formulated in a moving frame of reference. Assuming harmonically varying support point motions from the tower, the nonlinear parametric instability o...
Solitons in quadratic nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2001-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families...
Common large innovations across nonlinear time series
Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)
2002-01-01
textabstractWe propose a multivariate nonlinear econometric time series model, which can be used to examine if there is common nonlinearity across economic variables. The model is a multivariate censored latent effects autoregression. The key feature of this model is that nonlinearity appears as sep
Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory
DEFF Research Database (Denmark)
Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav
Contraction theory is a recently developed nonlinear analysis tool which may be useful for solving a variety of nonlinear control problems. In this paper, using Contraction theory, a nonlinear observer is designed for a general nonlinear cable/string FEM (Finite Element Method) model. The cable...
Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory
DEFF Research Database (Denmark)
Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav
Contraction theory is a recently developed nonlinear analysis tool which may be useful for solving a variety of nonlinear control problems. In this paper, using Contraction theory, a nonlinear observer is designed for a general nonlinear cable/string FEM (Finite Element Method) model. The cable...
Analytical approach to robust design of nonlinear mechanical systems
Institute of Scientific and Technical Information of China (English)
Jian ZHANG; Nengsheng BAO; Guojun ZHANG; Peihua GU
2009-01-01
The robustness of mechanical systems is influenced by various factors. Their effects must be understood for designing robust systems. This paper proposes a model for describing the relationships among functional requirements, structural characteristics, design parameters and uncontrollable variables of nonlinear systems. With this model, the ensitivity of systems was analyzed to formulate a system sensitivity index and robust sensitivity matrix to determine the importance of the factors in relation to the robustness of systems. Based on the robust design principle, an optimization model was developed. Combining this optimization model and the Taguchi method for robust design, annalysis as carried out to reveal the characteristics of the systems. For a nonlinear mechanical system, relationships among structural characteristics of the system, design parameters, and uncontrollable variables can be formulated as a mathematical function. The characteristics of the system determine how design parameters affect the functional equirements of the system. Consequently, they affect the distribution of system performance functions. Nonlinearity of the system can facilitate the selection of design parameters to achieve the required functional requirements.
Using Space as a Nonlinear Plasma Laboratory
Papadopoulos, Konstantinos
2008-11-01
Ionospheric heaters have been an important tool of plasma physics investigations. The extent that non-linear plasma phenomena can be triggered and observed depends critically on the heater power, its Effective Radiative Power (ERP) and its scanning capability. Increasing these parameters allows us to reach thresholds associated with effects that were not previously observed. The latest entry to ionospheric heating, the HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP) was completed in June 2007. The transmitter consists of 180 antenna elements spanning 30.6 acres and can radiate 3.6 MW of HF power (a factor of almost 4 higher than any previous heater) in the 2.8-10.0 MHz range. With increasing frequency the beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in ERP between 1-5 GW. The antenna can point to any direction in a cone 30 degrees from the vertical, with reposition time of 15 microseconds resulting in superluminal scanning speeds. The transmitter can synthesize essentially any waveform and transmit any polarization. These capabilities far exceed those of any previous heater and allow for new frontier research in non-linear plasma physics. The presentation will focus first on the relationship of the new capabilities of the facility with thresholds of physical processes that had not been achieved previously. It will then present new spectacular results that have been achieved during the last year. They include whistler injection and amplification, injection of shear and magnetosonic waves in the magnetosphere, Langmuir turbulence, upper hybrid waves and thermal instabilities, electron acceleration, optical emissions and formation of artificial ducts for whistler propagation. The presentation will also discuss future experiments made possible for the first time by the new transmitter capabilities, large bandwidth and high ERP.
Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
Institute of Scientific and Technical Information of China (English)
LI Chaokui; ZHU Qing; SONG Chengfang
2003-01-01
This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.
Energy Technology Data Exchange (ETDEWEB)
Zhang, G.M. [China Center of Advanced Science and Technology (CCAST), Beijing, BJ (China)]|[Suzhou Univ. (China). Dept. of Physics
1996-04-01
In this note we consider the geometrical effects of a percolating system on the nonlinear transport properties in a superconductor-normal conductor nonlinear resistor network. For realistic composites, the nonlinearity may play an important role in the electrical transport phenomena. A typical example consists of studying a nonlinear composite medium in which an inclusion with nonlinear current-field (J-E) characteristics is randomly embedded in a host with either linear or nonlinear J-E response. For such a system, substantial progress in studies of the effective nonlinear response has been made in the past few years. 24 refs.
Directory of Open Access Journals (Sweden)
Yang Ning
2016-02-01
Full Text Available The flutter characteristics of folding control fins with freeplay are investigated by numerical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroelastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.
Institute of Scientific and Technical Information of China (English)
Yang Ning; Wang Nan; Zhang Xin; Liu Wei
2016-01-01
The flutter characteristics of folding control fins with freeplay are investigated by numer-ical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0? angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroe-lastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.
Nonlinear acoustic propagation in rectangular ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
The method of multiple scales is used to obtain a second-order uniformly valid expansion for nonlinear acoustic wave propagation in a rectangular duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear materials attenuate sound more than linear materials except at high acoustic frequencies. The nonlinear materials produce higher and combination tones which have higher attenuation rates than the fundamentals. Moreover, the attenuation rates of the fundamentals increase with increasing amplitude.
The Effective AC Response of Nonlinear Composites
Institute of Scientific and Technical Information of China (English)
WEI En-Bo; GU Guo-Qing
2001-01-01
A perturbative approach is used to study the AC response of nonlinear composite media, which obey a current-field relation of the form J = σ E + χ|E|2 E with components having nonlinear response at finite frequencies. For a sinusoidal applied field, we extend the local potential in terms of sinusoidal components at fundamental frequency and high-order harmonic frequencies to treat the nonlinear composites. For nonlinear composite media vith a low concentrations of spherical inclusions, we give the formulae of the nonlinear effective AC susceptibility χ*3ω at the third harmonic frequency.
Nonlinear fiber optics formerly quantum electronics
Agrawal, Govind
1995-01-01
The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is
Nonlinear phononics using atomically thin membranes
Midtvedt, Daniel; Isacsson, Andreas; Croy, Alexander
2014-09-01
Phononic crystals and acoustic metamaterials are used to tailor phonon and sound propagation properties by utilizing artificial, periodic structures. Analogous to photonic crystals, phononic band gaps can be created, which influence wave propagation and, more generally, allow engineering of the acoustic properties of a system. Beyond that, nonlinear phenomena in periodic structures have been extensively studied in photonic crystals and atomic Bose-Einstein condensates in optical lattices. However, creating nonlinear phononic crystals or nonlinear acoustic metamaterials remains challenging and only few examples have been demonstrated. Here, we show that atomically thin and periodically pinned membranes support coupled localized modes with nonlinear dynamics. The proposed system provides a platform for investigating nonlinear phononics.
Advances in nonlinear optical materials and devices
Byer, Robert L.
1991-01-01
The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.
The nonlinear piezoelectric tuned vibration absorber
Soltani, P.; Kerschen, G.
2015-07-01
This paper proposes a piezoelectric vibration absorber, termed the nonlinear piezoelectric tuned vibration absorber (NPTVA), for the mitigation of nonlinear resonances of mechanical systems. The new feature of the NPTVA is that its nonlinear restoring force is designed according to a principle of similarity, i.e., the NPTVA should be an electrical analog of the nonlinear host system. Analytical formulas for the NPTVA parameters are derived using the homotopy perturbation method. Doing so, a nonlinear generalization of Den Hartog’s equal-peak tuning rule is developed for piezoelectric vibration absorbers.
CHAOTIC BELT PHENOMENA IN NONLINEAR ELASTIC BEAM
Institute of Scientific and Technical Information of China (English)
张年梅; 杨桂通
2003-01-01
The chaotic motions of axial compressed nonlinear elastic beam subjected totransverse load were studied. The damping force in the system is nonlinear. Consideringmaterial and geometric nonlinearity, nonlinear governing equation of the system wasderived. By use of nonlinear Galerkin method, differential dynamic system was set up.Melnikov method was used to analyze the characters of the system. The results showed thatchaos may occur in the system when the load parameters P0 and f satisfy some conditions.The zone of chaotic motion was belted. The route from subharmonic bifurcation to chaoswas analyzed. The critical conditions that chaos occurs were determined.
Spin squeezing in nonlinear spin coherent states
Wang, Xiaoguang
2001-01-01
We introduce the nonlinear spin coherent state via its ladder operator formalism and propose a type of nonlinear spin coherent state by the nonlinear time evolution of spin coherent states. By a new version of spectroscopic squeezing criteria we study the spin squeezing in both the spin coherent state and nonlinear spin coherent state. The results show that the spin coherent state is not squeezed in the x, y, and z directions, and the nonlinear spin coherent state may be squeezed in the x and...
Generalized solutions of nonlinear partial differential equations
Rosinger, EE
1987-01-01
During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin
DEFF Research Database (Denmark)
Du, Yigang
without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...
Energy Technology Data Exchange (ETDEWEB)
Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.
2008-11-05
Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).
New approaches to nonlinear waves
2016-01-01
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the app...
Nonlinear ion trap stability analysis
Energy Technology Data Exchange (ETDEWEB)
Mihalcea, Bogdan M; Visan, Gina G, E-mail: bmihal@infim.r [Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomistilor Str. Nr. 409, 077125 Magurele-Bucharest, Jud. Ilfov (Romania)
2010-09-01
This paper investigates the dynamics of an ion confined in a nonlinear Paul trap. The equation of motion for the ion is shown to be consistent with the equation describing a damped, forced Duffing oscillator. All perturbing factors are taken into consideration in the approach. Moreover, the ion is considered to undergo interaction with an external electromagnetic field. The method is based on numerical integration of the equation of motion, as the system under investigation is highly nonlinear. Phase portraits and Poincare sections show that chaos is present in the associated dynamics. The system of interest exhibits fractal properties and strange attractors. The bifurcation diagrams emphasize qualitative changes of the dynamics and the onset of chaos.