Discrete-time nonlinear sliding mode controller
African Journals Online (AJOL)
user
Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Discrete-Time Nonlinear Control of VSC-HVDC System
Directory of Open Access Journals (Sweden)
TianTian Qian
2015-01-01
Full Text Available Because VSC-HVDC is a kind of strong nonlinear, coupling, and multi-input multioutput (MIMO system, its control problem is always attracting much attention from scholars. And a lot of papers have done research on its control strategy in the continuous-time domain. But the control system is implemented through the computer discrete sampling in practical engineering. It is necessary to study the mathematical model and control algorithm in the discrete-time domain. The discrete mathematical model based on output feedback linearization and discrete sliding mode control algorithm is proposed in this paper. And to ensure the effectiveness of the control system in the quasi sliding mode state, the fast output sampling method is used in the output feedback. The results from simulation experiment in MATLAB/SIMULINK prove that the proposed discrete control algorithm can make the VSC-HVDC system have good static, dynamic, and robust characteristics in discrete-time domain.
International Nuclear Information System (INIS)
Chen, S.-F.
2009-01-01
The asymptotic stability problem for discrete-time systems with time-varying delay subject to saturation nonlinearities is addressed in this paper. In terms of linear matrix inequalities (LMIs), a delay-dependent sufficient condition is derived to ensure the asymptotic stability. A numerical example is given to demonstrate the theoretical results.
Stabilization and tracking controller for a class of nonlinear discrete-time systems
International Nuclear Information System (INIS)
Sharma, B.B.; Kar, I.N.
2011-01-01
Highlights: → We present recursive design of stabilizing controller for nonlinear discrete-time systems. → Problem of stabilizing and tracking control of single link manipulator system is addressed. → We extend the proposed results to output tracking problems. → The proposed methodology is applied satisfactorily to discrete-time chaotic maps. - Abstract: In this paper, stabilization and tracking control problem for parametric strict feedback class of discrete time systems is addressed. Recursive design of control function based on contraction theory framework is proposed instead of traditional Lyapunov based method. Explicit structure of controller is derived for the addressed class of nonlinear discrete-time systems. Conditions for exponential stability of system states are derived in terms of controller parameters. At each stage of recursive procedure a specific structure of Jacobian matrix is ensured so as to satisfy conditions of stability. The closed loop dynamics in this case remains nonlinear in nature. The proposed algorithm establishes global stability results in quite a simple manner as it does not require formulation of error dynamics. Problem of stabilization and output tracking control in case of single link manipulator system with actuator dynamics is analyzed using the proposed strategy. The proposed results are further extended to stabilization of discrete time chaotic systems. Numerical simulations presented in the end show the effectiveness of the proposed approach.
Direct Adaptive Control of a Class of Nonlinear Discrete-Time Systems
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon
2004-01-01
In this paper we deal with direct adaptive control of a specific class of discrete-time SISO systems, where the nonlinearities are convex and an upper bound is known. We use a control law based on a linear combination of a set of globally uniformly bounded basis functions with compact support, wh...
Directory of Open Access Journals (Sweden)
Fei Chen
2013-01-01
Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2017-07-01
This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.
Adaptive Neural Tracking Control for Discrete-Time Switched Nonlinear Systems with Dead Zone Inputs
Directory of Open Access Journals (Sweden)
Jidong Wang
2017-01-01
Full Text Available In this paper, the adaptive neural controllers of subsystems are proposed for a class of discrete-time switched nonlinear systems with dead zone inputs under arbitrary switching signals. Due to the complicated framework of the discrete-time switched nonlinear systems and the existence of the dead zone, it brings about difficulties for controlling such a class of systems. In addition, the radial basis function neural networks are employed to approximate the unknown terms of each subsystem. Switched update laws are designed while the parameter estimation is invariable until its corresponding subsystem is active. Then, the closed-loop system is stable and all the signals are bounded. Finally, to illustrate the effectiveness of the proposed method, an example is employed.
Nonlinear Estimation of Discrete-Time Signals Under Random Observation Delay
International Nuclear Information System (INIS)
Caballero-Aguila, R.; Jimenez-Lopez, J. D.; Hermoso-Carazo, A.; Linares-Perez, J.; Nakamori, S.
2008-01-01
This paper presents an approximation to the nonlinear least-squares estimation problem of discrete-time stochastic signals using nonlinear observations with additive white noise which can be randomly delayed by one sampling time. The observation delay is modelled by a sequence of independent Bernoulli random variables whose values, zero or one, indicate that the real observation arrives on time or it is delayed and, hence, the available measurement to estimate the signal is not up-to-date. Assuming that the state-space model generating the signal is unknown and only the covariance functions of the processes involved in the observation equation are ready for use, a filtering algorithm based on linear approximations of the real observations is proposed.
Liu, Yan-Jun; Gao, Ying; Tong, Shaocheng; Chen, C L Philip
2016-01-01
In this paper, an effective adaptive control approach is constructed to stabilize a class of nonlinear discrete-time systems, which contain unknown functions, unknown dead-zone input, and unknown control direction. Different from linear dead zone, the dead zone, in this paper, is a kind of nonlinear dead zone. To overcome the noncausal problem, which leads to the control scheme infeasible, the systems can be transformed into a m -step-ahead predictor. Due to nonlinear dead-zone appearance, the transformed predictor still contains the nonaffine function. In addition, it is assumed that the gain function of dead-zone input and the control direction are unknown. These conditions bring about the difficulties and the complicacy in the controller design. Thus, the implicit function theorem is applied to deal with nonaffine dead-zone appearance, the problem caused by the unknown control direction can be resolved through applying the discrete Nussbaum gain, and the neural networks are used to approximate the unknown function. Based on the Lyapunov theory, all the signals of the resulting closed-loop system are proved to be semiglobal uniformly ultimately bounded. Moreover, the tracking error is proved to be regulated to a small neighborhood around zero. The feasibility of the proposed approach is demonstrated by a simulation example.
Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.
Aftab, Muhammad Saleheen; Shafiq, Muhammad
2015-11-01
This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Robust extended Kalman filter of discrete-time Markovian jump nonlinear system under uncertain noise
International Nuclear Information System (INIS)
Zhu, Jin; Park, Jun Hong; Lee, Kwan Soo; Spiryagin, Maksym
2008-01-01
This paper examines the problem of robust extended Kalman filter design for discrete -time Markovian jump nonlinear systems with noise uncertainty. Because of the existence of stochastic Markovian switching, the state and measurement equations of underlying system are subject to uncertain noise whose covariance matrices are time-varying or un-measurable instead of stationary. First, based on the expression of filtering performance deviation, admissible uncertainty of noise covariance matrix is given. Secondly, two forms of noise uncertainty are taken into account: Non- Structural and Structural. It is proved by applying game theory that this filter design is a robust mini-max filter. A numerical example shows the validity of the method
Nonlinear discrete-time multirate adaptive control of non-linear vibrations of smart beams
Georgiou, Georgios; Foutsitzi, Georgia A.; Stavroulakis, Georgios E.
2018-06-01
The nonlinear adaptive digital control of a smart piezoelectric beam is considered. It is shown that in the case of a sampled-data context, a multirate control strategy provides an appropriate framework in order to achieve vibration regulation, ensuring the stability of the whole control system. Under parametric uncertainties in the model parameters (damping ratios, frequencies, levels of non linearities and cross coupling, control input parameters), the scheme is completed with an adaptation law deduced from hyperstability concepts. This results in the asymptotic satisfaction of the control objectives at the sampling instants. Simulation results are presented.
Sun, Ying; Ding, Derui; Zhang, Sunjie; Wei, Guoliang; Liu, Hongjian
2018-07-01
In this paper, the non-fragile ?-? control problem is investigated for a class of discrete-time stochastic nonlinear systems under event-triggered communication protocols, which determine whether the measurement output should be transmitted to the controller or not. The main purpose of the addressed problem is to design an event-based output feedback controller subject to gain variations guaranteeing the prescribed disturbance attenuation level described by the ?-? performance index. By utilizing the Lyapunov stability theory combined with S-procedure, a sufficient condition is established to guarantee both the exponential mean-square stability and the ?-? performance for the closed-loop system. In addition, with the help of the orthogonal decomposition, the desired controller parameter is obtained in terms of the solution to certain linear matrix inequalities. Finally, a simulation example is exploited to demonstrate the effectiveness of the proposed event-based controller design scheme.
Fast state estimation subject to random data loss in discrete-time nonlinear stochastic systems
Mahdi Alavi, S. M.; Saif, Mehrdad
2013-12-01
This paper focuses on the design of the standard observer in discrete-time nonlinear stochastic systems subject to random data loss. By the assumption that the system response is incrementally bounded, two sufficient conditions are subsequently derived that guarantee exponential mean-square stability and fast convergence of the estimation error for the problem at hand. An efficient algorithm is also presented to obtain the observer gain. Finally, the proposed methodology is employed for monitoring the Continuous Stirred Tank Reactor (CSTR) via a wireless communication network. The effectiveness of the designed observer is extensively assessed by using an experimental tested-bed that has been fabricated for performance evaluation of the over wireless-network estimation techniques under realistic radio channel conditions.
Transformation of nonlinear discrete-time system into the extended observer form
Kaparin, V.; Kotta, Ü.
2018-04-01
The paper addresses the problem of transforming discrete-time single-input single-output nonlinear state equations into the extended observer form, which, besides the input and output, also depends on a finite number of their past values. Necessary and sufficient conditions for the existence of both the extended coordinate and output transformations, solving the problem, are formulated in terms of differential one-forms, associated with the input-output equation, corresponding to the state equations. An algorithm for transformation of state equations into the extended observer form is proposed and illustrated by an example. Moreover, the considered approach is compared with the method of dynamic observer error linearisation, which likewise is intended to enlarge the class of systems transformable into an observer form.
Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.
Kiumarsi, Bahare; Lewis, Frank L
2015-01-01
This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.
International Nuclear Information System (INIS)
Frank, T D; Mongkolsakulvong, S
2015-01-01
In a previous study strongly nonlinear autoregressive (SNAR) models have been introduced as a generalization of the widely-used time-discrete autoregressive models that are known to apply both to Markov and non-Markovian systems. In contrast to conventional autoregressive models, SNAR models depend on process mean values. So far, only linear dependences have been studied. We consider the case in which process mean values can have a nonlinear impact on the processes under consideration. It is shown that such models describe Markov and non-Markovian many-body systems with mean field forces that exhibit a nonlinear impact on single subsystems. We exemplify that such nonlinear dependences can describe order-disorder phase transitions of time-discrete Markovian and non-Markovian many-body systems. The relevant order parameter equations are derived and issues of stability and stationarity are studied. (paper)
Chang, Insu
The objective of the thesis is to introduce a relatively general nonlinear controller/estimator synthesis framework using a special type of the state-dependent Riccati equation technique. The continuous time state-dependent Riccati equation (SDRE) technique is extended to discrete-time under input and state constraints, yielding constrained (C) discrete-time (D) SDRE, referred to as CD-SDRE. For the latter, stability analysis and calculation of a region of attraction are carried out. The derivation of the D-SDRE under state-dependent weights is provided. Stability of the D-SDRE feedback system is established using Lyapunov stability approach. Receding horizon strategy is used to take into account the constraints on D-SDRE controller. Stability condition of the CD-SDRE controller is analyzed by using a switched system. The use of CD-SDRE scheme in the presence of constraints is then systematically demonstrated by applying this scheme to problems of spacecraft formation orbit reconfiguration under limited performance on thrusters. Simulation results demonstrate the efficacy and reliability of the proposed CD-SDRE. The CD-SDRE technique is further investigated in a case where there are uncertainties in nonlinear systems to be controlled. First, the system stability under each of the controllers in the robust CD-SDRE technique is separately established. The stability of the closed-loop system under the robust CD-SDRE controller is then proven based on the stability of each control system comprising switching configuration. A high fidelity dynamical model of spacecraft attitude motion in 3-dimensional space is derived with a partially filled fuel tank, assumed to have the first fuel slosh mode. The proposed robust CD-SDRE controller is then applied to the spacecraft attitude control system to stabilize its motion in the presence of uncertainties characterized by the first fuel slosh mode. The performance of the robust CD-SDRE technique is discussed. Subsequently
International Nuclear Information System (INIS)
Goharrizi, Amin Yazdanpanah; Khaki-Sedigh, Ali; Sepehri, Nariman
2009-01-01
A new approach to adaptive control of chaos in a class of nonlinear discrete-time-varying systems, using a delayed state feedback scheme, is presented. It is discussed that such systems can show chaotic behavior as their parameters change. A strategy is employed for on-line calculation of the Lyapunov exponents that will be used within an adaptive scheme that decides on the control effort to suppress the chaotic behavior once detected. The scheme is further augmented with a nonlinear observer for estimation of the states that are required by the controller but are hard to measure. Simulation results for chaotic control problem of Jin map are provided to show the effectiveness of the proposed scheme.
Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.
Wei, Qinglai; Liu, Derong; Lin, Hanquan
2016-03-01
In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.
Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi
2018-05-01
A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.
Spatially localized, temporally quasiperiodic, discrete nonlinear excitations
International Nuclear Information System (INIS)
Cai, D.; Bishop, A.R.; Gronbech-Jensen, N.
1995-01-01
In contrast to the commonly discussed discrete breather, which is a spatially localized, time-periodic solution, we present an exact solution of a discrete nonlinear Schroedinger breather which is a spatially localized, temporally quasiperiodic nonlinear coherent excitation. This breather is a multiple-soliton solution in the sense of the inverse scattering transform. A discrete breather of multiple frequencies is conceptually important in studies of nonlinear lattice systems. We point out that, for this breather, the incommensurability of its frequencies is a discrete lattice effect and these frequencies become commensurate in the continuum limit. To understand the dynamical properties of the breather, we also discuss its stability and its behavior in the presence of an external potential. Finally, we indicate how to obtain an exact N-soliton breather as a discrete generalization of the continuum multiple-soliton solution
Directory of Open Access Journals (Sweden)
Zongyan Li
2016-01-01
Full Text Available This paper describes an improved global harmony search (IGHS algorithm for identifying the nonlinear discrete-time systems based on second-order Volterra model. The IGHS is an improved version of the novel global harmony search (NGHS algorithm, and it makes two significant improvements on the NGHS. First, the genetic mutation operation is modified by combining normal distribution and Cauchy distribution, which enables the IGHS to fully explore and exploit the solution space. Second, an opposition-based learning (OBL is introduced and modified to improve the quality of harmony vectors. The IGHS algorithm is implemented on two numerical examples, and they are nonlinear discrete-time rational system and the real heat exchanger, respectively. The results of the IGHS are compared with those of the other three methods, and it has been verified to be more effective than the other three methods on solving the above two problems with different input signals and system memory sizes.
A study of discrete nonlinear systems
International Nuclear Information System (INIS)
Dhillon, H.S.
2001-04-01
An investigation of various spatially discrete time-independent nonlinear models was undertaken. These models are generically applicable to many different physical systems including electron-phonon interactions in solids, magnetic multilayers, layered superconductors and classical lattice systems. To characterise the possible magnetic structures created on magnetic multilayers a model has been formulated and studied. The Euler-Lagrange equation for this model is a discrete version of the Sine-Gordon equation. Solutions of this equation are generated by applying the methods of Chaotic Dynamics - treating the space variable associated with the layer number as a discrete time variable. The states found indicate periodic, quasiperiodic and chaotic structures. Analytic solutions to the discrete nonlinear Schroedinger Equation (DNSE) with cubic nonlinearity are presented in the strong coupling limit. Using these as a starting point, a procedure is developed to determine the wave function and the energy eigenvalue for moderate coupling. The energy eigenvalues of the different structures of the wave function are found to be in excellent agreement with the exact strong coupling result. The solutions to the DNSE indicate commensurate and incommensurate spatial structures associated with different localisation patterns of the wave function. The states which arise may be fractal, periodic, quasiperiodic or chaotic. This work is then extended to solve a first order discrete nonlinear equation. The exact solutions for both the first and second order discrete nonlinear equations with cubic nonlinearity suggests that this method of studying discrete nonlinear equations may be applied to solve discrete equations with any order difference and cubic nonlinearity. (author)
Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L
2013-12-01
In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.
Arnold, J.M.; Hon, de B.P.; Graglia, R.D.
2007-01-01
We propose a potential-based form of the FDTD scheme, with potentials driven by sources that are themselves simple dynamical systems. This formulation admits a radiative boundary condition for the discrete-mesh Maxwell's equations in a multiply connected exterior domain, which facilitates
Relan, Rishi; Tiels, Koen; Marconato, Anna; Dreesen, Philippe; Schoukens, Johan
2018-05-01
Many real world systems exhibit a quasi linear or weakly nonlinear behavior during normal operation, and a hard saturation effect for high peaks of the input signal. In this paper, a methodology to identify a parsimonious discrete-time nonlinear state space model (NLSS) for the nonlinear dynamical system with relatively short data record is proposed. The capability of the NLSS model structure is demonstrated by introducing two different initialisation schemes, one of them using multivariate polynomials. In addition, a method using first-order information of the multivariate polynomials and tensor decomposition is employed to obtain the parsimonious decoupled representation of the set of multivariate real polynomials estimated during the identification of NLSS model. Finally, the experimental verification of the model structure is done on the cascaded water-benchmark identification problem.
Liu, Yan-Jun; Tong, Shaocheng
2015-03-01
In the paper, an adaptive tracking control design is studied for a class of nonlinear discrete-time systems with dead-zone input. The considered systems are of the nonaffine pure-feedback form and the dead-zone input appears nonlinearly in the systems. The contributions of the paper are that: 1) it is for the first time to investigate the control problem for this class of discrete-time systems with dead-zone; 2) there are major difficulties for stabilizing such systems and in order to overcome the difficulties, the systems are transformed into an n-step-ahead predictor but nonaffine function is still existent; and 3) an adaptive compensative term is constructed to compensate for the parameters of the dead-zone. The neural networks are used to approximate the unknown functions in the transformed systems. Based on the Lyapunov theory, it is proven that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of zero. Two simulation examples are provided to verify the effectiveness of the control approach in the paper.
Xiao, Mengli; Zhang, Yongbo; Wang, Zhihua; Fu, Huimin
2018-04-01
Considering the performances of conventional Kalman filter may seriously degrade when it suffers stochastic faults and unknown input, which is very common in engineering problems, a new type of adaptive three-stage extended Kalman filter (AThSEKF) is proposed to solve state and fault estimation in nonlinear discrete-time system under these conditions. The three-stage UV transformation and adaptive forgetting factor are introduced for derivation, and by comparing with the adaptive augmented state extended Kalman filter, it is proven to be uniformly asymptotically stable. Furthermore, the adaptive three-stage extended Kalman filter is applied to a two-dimensional radar tracking scenario to illustrate the effect, and the performance is compared with that of conventional three stage extended Kalman filter (ThSEKF) and the adaptive two-stage extended Kalman filter (ATEKF). The results show that the adaptive three-stage extended Kalman filter is more effective than these two filters when facing the nonlinear discrete-time systems with information of unknown inputs not perfectly known. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system
Energy Technology Data Exchange (ETDEWEB)
Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)
2015-11-30
We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solving.
Breatherlike impurity modes in discrete nonlinear lattices
DEFF Research Database (Denmark)
Hennig, D.; Rasmussen, Kim; Tsironis, G. P.
1995-01-01
We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...
Yang, Xiong; Liu, Derong; Wang, Ding; Wei, Qinglai
2014-07-01
In this paper, a reinforcement-learning-based direct adaptive control is developed to deliver a desired tracking performance for a class of discrete-time (DT) nonlinear systems with unknown bounded disturbances. We investigate multi-input-multi-output unknown nonaffine nonlinear DT systems and employ two neural networks (NNs). By using Implicit Function Theorem, an action NN is used to generate the control signal and it is also designed to cancel the nonlinearity of unknown DT systems, for purpose of utilizing feedback linearization methods. On the other hand, a critic NN is applied to estimate the cost function, which satisfies the recursive equations derived from heuristic dynamic programming. The weights of both the action NN and the critic NN are directly updated online instead of offline training. By utilizing Lyapunov's direct method, the closed-loop tracking errors and the NN estimated weights are demonstrated to be uniformly ultimately bounded. Two numerical examples are provided to show the effectiveness of the present approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
Time Discretization Techniques
Gottlieb, S.; Ketcheson, David I.
2016-01-01
The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include
Luo, Biao; Liu, Derong; Wu, Huai-Ning
2018-06-01
Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.
Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, Kim Ø; Salerno, M.
2006-01-01
-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...
Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks
Directory of Open Access Journals (Sweden)
Xiao-Li Li
2014-01-01
Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.
Yang, Qinmin; Jagannathan, Sarangapani
2012-04-01
In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.
Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan
2015-01-01
Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.
Breatherlike excitations in discrete lattices with noise and nonlinear damping
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri B.; Johansson, Magnus
1997-01-01
We discuss the stability of highly localized, ''breatherlike,'' excitations in discrete nonlinear lattices under the influence of thermal fluctuations. The particular model considered is the discrete nonlinear Schrodinger equation in the regime of high nonlinearity, where temperature effects...
Discretization analysis of bifurcation based nonlinear amplifiers
Feldkord, Sven; Reit, Marco; Mathis, Wolfgang
2017-09-01
Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
Memorized discrete systems and time-delay
Luo, Albert C J
2017-01-01
This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.
Indian Academy of Sciences (India)
We also describe discrete-time systems in terms of difference ... A more modern alternative, especially for larger systems, is to convert ... In other words, ..... picture?) State-variable equations are also called state-space equations because the ...
Time Discretization Techniques
Gottlieb, S.
2016-10-12
The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.
Akimenko, Vitalii; Anguelov, Roumen
2017-12-01
In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.
Xie, Xiang-Peng; Yue, Dong; Park, Ju H
2018-02-01
The paper provides relaxed designs of fault estimation observer for nonlinear dynamical plants in the Takagi-Sugeno form. Compared with previous theoretical achievements, a modified version of fuzzy fault estimation observer is implemented with the aid of the so-called maximum-priority-based switching law. Given each activated switching status, the appropriate group of designed matrices can be provided so as to explore certain key properties of the considered plants by means of introducing a set of matrix-valued variables. Owing to the reason that more abundant information of the considered plants can be updated in due course and effectively exploited for each time instant, the conservatism of the obtained result is less than previous theoretical achievements and thus the main defect of those existing methods can be overcome to some extent in practice. Finally, comparative simulation studies on the classical nonlinear truck-trailer model are given to certify the benefits of the theoretic achievement which is obtained in our study. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Topological horseshoes in travelling waves of discretized nonlinear wave equations
International Nuclear Information System (INIS)
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-01-01
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Energy Technology Data Exchange (ETDEWEB)
Chen, Yi-Chiuan, E-mail: YCChen@math.sinica.edu.tw [Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan (China); Chen, Shyan-Shiou, E-mail: sschen@ntnu.edu.tw [Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Yuan, Juan-Ming, E-mail: jmyuan@pu.edu.tw [Department of Financial and Computational Mathematics, Providence University, Shalu, Taichung 43301, Taiwan (China)
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
International Nuclear Information System (INIS)
Pando L, C.L.; Doedel, E.J.
2006-08-01
We investigate the nonlinear dynamics in a trimer, described by the one-dimensional discrete nonlinear Schrodinger equation (DNLSE), with periodic boundary conditions in the presence of a single on-site defect. We make use of numerical continuation to study different families of stationary and periodic solutions, which allows us to consider suitable perturbations. Taking into account a Poincare section, we are able to study the dynamics in both a thin stochastic layer solution and a global stochasticity solution. We find that the time series of the transit times, the time intervals to traverse some suitable sets in phase space, generate 1/f noise for both stochastic solutions. In the case of the thin stochastic layer solution, we find that transport between two almost invariant sets along with intermittency in small and large time scales are relevant features of the dynamics. These results are reflected in the behaviour of the standard map with suitable parameters. In both chaotic solutions, the distribution of transit times has a maximum and a tail with exponential decay in spite of the presence of long-range correlations in the time series. We motivate our study by considering a ring of weakly-coupled Bose-Einstein condensates (BEC) with attractive interactions, where inversion of populations between two spatially symmetric sites and phase locking take place in both chaotic solutions. (author)
Shih, Peter; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A
2009-10-01
A novel reinforcement-learning-based output adaptive neural network (NN) controller, which is also referred to as the adaptive-critic NN controller, is developed to deliver the desired tracking performance for a class of nonlinear discrete-time systems expressed in nonstrict feedback form in the presence of bounded and unknown disturbances. The adaptive-critic NN controller consists of an observer, a critic, and two action NNs. The observer estimates the states and output, and the two action NNs provide virtual and actual control inputs to the nonlinear discrete-time system. The critic approximates a certain strategic utility function, and the action NNs minimize the strategic utility function and control inputs. All NN weights adapt online toward minimization of a performance index, utilizing the gradient-descent-based rule, in contrast with iteration-based adaptive-critic schemes. Lyapunov functions are used to show the stability of the closed-loop tracking error, weights, and observer estimates. Separation and certainty equivalence principles, persistency of excitation condition, and linearity in the unknown parameter assumption are not needed. Experimental results on a spark ignition (SI) engine operating lean at an equivalence ratio of 0.75 show a significant (25%) reduction in cyclic dispersion in heat release with control, while the average fuel input changes by less than 1% compared with the uncontrolled case. Consequently, oxides of nitrogen (NO(x)) drop by 30%, and unburned hydrocarbons drop by 16% with control. Overall, NO(x)'s are reduced by over 80% compared with stoichiometric levels.
Principles of discrete time mechanics
Jaroszkiewicz, George
2014-01-01
Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.
Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer
2013-10-01
The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV
An Integrable Discrete Generalized Nonlinear Schrödinger Equation and Its Reductions
International Nuclear Information System (INIS)
Li Hong-Min; Li Yu-Qi; Chen Yong
2014-01-01
An integrable discrete system obtained by the algebraization of the difference operator is studied. The system is named discrete generalized nonlinear Schrödinger (GNLS) equation, which can be reduced to classical discrete nonlinear Schrödinger (NLS) equation. Furthermore, all of the linear reductions for the discrete GNLS equation are given through the theory of circulant matrices and the discrete NLS equation is obtained by one of the reductions. At the same time, the recursion operator and symmetries of continuous GNLS equation are successfully recovered by its corresponding discrete ones. (general)
Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.
1996-01-01
Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...
Directory of Open Access Journals (Sweden)
Olav Slupphaug
1999-07-01
Full Text Available In this paper a method for nonlinear robust stabilization based on solving a bilinear matrix inequality (BMI feasibility problem is developed. Robustness against model uncertainty is handled. In different non-overlapping regions of the state-space called clusters the plant is assumed to be an element in a polytope which vertices (local models are affine systems. In the clusters containing the origin in their closure, the local models are restricted to be linear systems. The clusters cover the region of interest in the state-space. An affine state-feedback is associated with each cluster. By utilizing the affinity of the local models and the state-feedback, a set of linear matrix inequalities (LMIs combined with a single nonconvex BMI are obtained which, if feasible, guarantee quadratic stability of the origin of the closed-loop. The feasibility problem is attacked by a branch-and-bound based global approach. If the feasibility check is successful, the Liapunov matrix and the piecewise affine state-feedback are given directly by the feasible solution. Control constraints are shown to be representable by LMIs or BMIs, and an application of the control design method to robustify constrained nonlinear model predictive control is presented. Also, the control design method is applied to a simple example.
Correlations and discreteness in nonlinear QCD evolution
International Nuclear Information System (INIS)
Armesto, N.; Milhano, J.
2006-01-01
We consider modifications of the standard nonlinear QCD evolution in an attempt to account for some of the missing ingredients discussed recently, such as correlations, discreteness in gluon emission and Pomeron loops. The evolution is numerically performed using the Balitsky-Kovchegov equation on individual configurations defined by a given initial value of the saturation scale, for reduced rapidities y=(α s N c /π)Y<10. We consider the effects of averaging over configurations as a way to implement correlations, using three types of Gaussian averaging around a mean saturation scale. Further, we heuristically mimic discreteness in gluon emission by considering a modified evolution in which the tails of the gluon distributions are cut off. The approach to scaling and the behavior of the saturation scale with rapidity in these modified evolutions are studied and compared with the standard mean-field results. For the large but finite values of rapidity explored, no strong quantitative difference in scaling for transverse momenta around the saturation scale is observed. At larger transverse momenta, the influence of the modifications in the evolution seems most noticeable in the first steps of the evolution. No influence on the rapidity behavior of the saturation scale due to the averaging procedure is found. In the cutoff evolution the rapidity evolution of the saturation scale is slowed down and strongly depends on the value of the cutoff. Our results stress the need to go beyond simple modifications of evolution by developing proper theoretical tools that implement such recently discussed ingredients
Prolongation Structure of Semi-discrete Nonlinear Evolution Equations
International Nuclear Information System (INIS)
Bai Yongqiang; Wu Ke; Zhao Weizhong; Guo Hanying
2007-01-01
Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schroedinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.
Alfa, Attahiru S
2016-01-01
This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...
On Weakly Singular Versions of Discrete Nonlinear Inequalities and Applications
Directory of Open Access Journals (Sweden)
Kelong Cheng
2014-01-01
Full Text Available Some new weakly singular versions of discrete nonlinear inequalities are established, which generalize some existing weakly singular inequalities and can be used in the analysis of nonlinear Volterra type difference equations with weakly singular kernels. A few applications to the upper bound and the uniqueness of solutions of nonlinear difference equations are also involved.
Energy Technology Data Exchange (ETDEWEB)
Skokos, Ch., E-mail: haris.skokos@uct.ac.za [Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Gerlach, E. [Lohrmann Observatory, Technical University Dresden, D-01062 Dresden (Germany); Bodyfelt, J.D., E-mail: J.Bodyfelt@massey.ac.nz [Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University, Albany, Private Bag 102904, North Shore City, Auckland 0745 (New Zealand); Papamikos, G. [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF (United Kingdom); Eggl, S. [IMCCE, Observatoire de Paris, 77 Avenue Denfert-Rochereau, F-75014 Paris (France)
2014-05-01
While symplectic integration methods based on operator splitting are well established in many branches of science, high order methods for Hamiltonian systems that split in more than two parts have not been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian systems that can be split in exactly three integrable parts. We apply these techniques, as a practical case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic behavior of wave packet spreading in the DDNLS – a hotly debated subject in current scientific literature.
International Nuclear Information System (INIS)
Skokos, Ch.; Gerlach, E.; Bodyfelt, J.D.; Papamikos, G.; Eggl, S.
2014-01-01
While symplectic integration methods based on operator splitting are well established in many branches of science, high order methods for Hamiltonian systems that split in more than two parts have not been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian systems that can be split in exactly three integrable parts. We apply these techniques, as a practical case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic behavior of wave packet spreading in the DDNLS – a hotly debated subject in current scientific literature.
Process algebra with timing : real time and discrete time
Baeten, J.C.M.; Middelburg, C.A.; Bergstra, J.A.; Ponse, A.J.; Smolka, S.A.
2001-01-01
We present real time and discrete time versions of ACP with absolute timing and relative timing. The starting-point is a new real time version with absolute timing, called ACPsat, featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete
Process algebra with timing: Real time and discrete time
Baeten, J.C.M.; Middelburg, C.A.
1999-01-01
We present real time and discrete time versions of ACP with absolute timing and relative timing. The startingpoint is a new real time version with absolute timing, called ACPsat , featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete
Discretization model for nonlinear dynamic analysis of three dimensional structures
International Nuclear Information System (INIS)
Hayashi, Y.
1982-12-01
A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt
Discrete second order trajectory generator with nonlinear constraints
Morselli, R.; Zanasi, R.; Stramigioli, Stefano
2005-01-01
A discrete second order trajectory generator for motion control systems is presented. The considered generator is a nonlinear system which receives as input a raw reference signal and provides as output a smooth reference signal satisfying nonlinear constraints on the output derivatives as UM-(x) ≤
International Nuclear Information System (INIS)
Ding Qing
2007-01-01
We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model
Nonlinear integrodifferential equations as discrete systems
Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.
1999-06-01
We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.
Single-crossover recombination in discrete time.
von Wangenheim, Ute; Baake, Ellen; Baake, Michael
2010-05-01
Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.
Directory of Open Access Journals (Sweden)
Wen-Jer Chang
2014-01-01
Full Text Available For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.
Integrable discretization s of derivative nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Tsuchida, Takayuki
2002-01-01
We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)
Extinction in Two-Species Nonlinear Discrete Competitive System
Directory of Open Access Journals (Sweden)
Liqiong Pu
2016-01-01
Full Text Available We propose a nonlinear discrete system of two species with the effect of toxic substances. By constructing a suitable Lyapunov-type function, we obtain the sufficient conditions which guarantee that one of the components will be driven to extinction while the other will be globally attractive with any positive solution of a discrete equation. Two examples together with their numerical simulations illustrate the feasibility of our main results. The results not only improve but also complement some known results.
Symmetries and discretizations of the O(3) nonlinear sigma model
Energy Technology Data Exchange (ETDEWEB)
Flore, Raphael [TPI, Universitaet Jena (Germany)
2011-07-01
Nonlinear sigma models possess many interesting properties like asymptotic freedom, confinement or dynamical mass generation, and hence serve as toy models for QCD and other theories. We derive a formulation of the N=2 supersymmetric extension of the O(3) nonlinear sigma model in terms of constrained field variables. Starting from this formulation, it is discussed how the model can be discretized in a way that maintains as many symmetries of the theory as possible. Finally, recent numerical results related to these discretizations are presented.
Dynamic nonlinear interaction of elastic plates on discrete supports
International Nuclear Information System (INIS)
Coutinho, A.L.G.A.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.
1984-01-01
A study on the dynamic nonlinear interaction of elastic plates using the finite element method is presented. The elastic plate is discretized by 4-node isoparametric Mindlin elements. The constitutive relation of the discrete supports can be any nonlinear curve given by pairs of force-displacement points. The nonlinear behaviour is represented by the overlay approach. This model also allows the simulation of a progressive decrease on the supports stiffnesses during load cycles. The dynamic nonlinear incremental movement equations are integrated by the Newmark implicit operator. Two alternatives for the incremental-iterative formulation are compared. The paper ends with a discussion of the advantages and limitations of the presented numerical models. (Author) [pt
Dynamics of breathers in discrete nonlinear Schrodinger models
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Johansson, Magnus; Aubry, Serge
1998-01-01
We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized...
Directory of Open Access Journals (Sweden)
Fernando Gómez-Salas
2015-01-01
Full Text Available This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.
Modulational instability and discrete breathers in a nonlinear helicoidal lattice model
Ding, Jinmin; Wu, Tianle; Chang, Xia; Tang, Bing
2018-06-01
We investigate the problem on the discrete modulation instability of plane waves and discrete breather modes in a nonlinear helicoidal lattice model, which is described by a discrete nonlinear Schrödinger equation with the first-, second-, and third-neighbor coupling. By means of the linear stability analysis, we present an analytical expression of the instability growth rate and identify the regions of modulational instability of plane waves. It is shown that the introduction of the third-neighbor coupling will affect the shape of the areas of modulational instability significantly. Based on the results obtained by the modulational instability analysis, we predict the existence conditions for the stationary breather modes. Otherwise, by making use of the semidiscrete multiple-scale method, we obtain analytical solutions of discrete breather modes and analyze their properties for different types of nonlinearities. Our results show that the discrete breathers obtained are stable for a long time only when the system exhibits the repulsive nonlinearity. In addition, it is found that the existence of the stable bright discrete breather closely relates to the presence of the third-neighbor coupling.
Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation
DEFF Research Database (Denmark)
Rasmussen, Kim; Henning, D.; Gabriel, H.
1996-01-01
We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interes...... nonlinear Schrodinger equation. In this way eve are able to construct coherent solitonlike structures of profile determined by the map parameters.......We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...
Discrete breathers for a discrete nonlinear Schrödinger ring coupled to a central site.
Jason, Peter; Johansson, Magnus
2016-01-01
We examine the existence and properties of certain discrete breathers for a discrete nonlinear Schrödinger model where all but one site are placed in a ring and coupled to the additional central site. The discrete breathers we focus on are stationary solutions mainly localized on one or a few of the ring sites and possibly also the central site. By numerical methods, we trace out and study the continuous families the discrete breathers belong to. Our main result is the discovery of a split bifurcation at a critical value of the coupling between neighboring ring sites. Below this critical value, families form closed loops in a certain parameter space, implying that discrete breathers with and without central-site occupation belong to the same family. Above the split bifurcation the families split up into several separate ones, which bifurcate with solutions with constant ring amplitudes. For symmetry reasons, the families have different properties below the split bifurcation for even and odd numbers of sites. It is also determined under which conditions the discrete breathers are linearly stable. The dynamics of some simpler initial conditions that approximate the discrete breathers are also studied and the parameter regimes where the dynamics remain localized close to the initially excited ring site are related to the linear stability of the exact discrete breathers.
Space-Time Discrete KPZ Equation
Cannizzaro, G.; Matetski, K.
2018-03-01
We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.
Discrete-time modelling of musical instruments
International Nuclear Information System (INIS)
Vaelimaeki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti
2006-01-01
This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed
On localization in the discrete nonlinear Schrödinger equation
DEFF Research Database (Denmark)
Bang, O.; Juul Rasmussen, J.; Christiansen, P.L.
1993-01-01
For some values of the grid resolution, depending on the nonlinearity, the discrete nonlinear Schrodinger equation with arbitrary power nonlinearity can be approximated by the corresponding continuum version of the equation. When the discretization becomes too coarse, the discrete equation exhibits...
Galerkin v. discrete-optimal projection in nonlinear model reduction
Energy Technology Data Exchange (ETDEWEB)
Carlberg, Kevin Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antil, Harbir [George Mason Univ., Fairfax, VA (United States)
2015-04-01
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes. We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.
Fermion systems in discrete space-time
International Nuclear Information System (INIS)
Finster, Felix
2007-01-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure
Fermion systems in discrete space-time
Energy Technology Data Exchange (ETDEWEB)
Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)
2007-05-15
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Fermion Systems in Discrete Space-Time
Finster, Felix
2006-01-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Fermion systems in discrete space-time
Finster, Felix
2007-05-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity
2015-08-13
sufficient conditions for the compatibility of displacement gradient and the existence of stress functions on non-contractible bodies. The main...conditions. 15. SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...complex allows one to readily derive the necessary and sufficient conditions for the compatibility of displacement gradient and the existence of stress
Iteration of some discretizations of the nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Ross, K.A.; Thompson, C.J.
1986-01-01
We consider several discretizations of the nonlinear Schroedinger equation which lead naturally to the study of some symmetric difference equations of the form PHIsub(n+1) + PHIsub(n-1) = f(PHIsub(n)). We find a variety of interesting and exotic behaviour from simple closed orbits to intricate patterns of orbits and loops in the (PHIsub(n+1),PHIsub(n)) phase-plane. Some analytical results for a special case are also presented. (orig.)
Averaged multivalued solutions and time discretization for conservation laws
International Nuclear Information System (INIS)
Brenier, Y.
1985-01-01
It is noted that the correct shock solutions can be approximated by averaging in some sense the multivalued solution given by the method of characteristics for the nonlinear scalar conservation law (NSCL). A time discretization for the NSCL equation based on this principle is considered. An equivalent analytical formulation is shown to lead quite easily to a convergence result, and a third formulation is introduced which can be generalized for the systems of conservation laws. Various numerical schemes are constructed from the proposed time discretization. The first family of schemes is obtained by using a spatial grid and projecting the results of the time discretization. Many known schemes are then recognized (mainly schemes by Osher, Roe, and LeVeque). A second way to discretize leads to a particle scheme without space grid, which is very efficient (at least in the scalar case). Finally, a close relationship between the proposed method and the Boltzmann type schemes is established. 14 references
Fully discrete Galerkin schemes for the nonlinear and nonlocal Hartree equation
Directory of Open Access Journals (Sweden)
Walter H. Aschbacher
2009-01-01
Full Text Available We study the time dependent Hartree equation in the continuum, the semidiscrete, and the fully discrete setting. We prove existence-uniqueness, regularity, and approximation properties for the respective schemes, and set the stage for a controlled numerical computation of delicate nonlinear and nonlocal features of the Hartree dynamics in various physical applications.
Quadratic Term Structure Models in Discrete Time
Marco Realdon
2006-01-01
This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...
Nonlinear wave propagation in discrete and continuous systems
Rothos, V. M.
2016-09-01
In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.
Discrete-Time LPV Current Control of an Induction Motor
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, Klaus
2003-01-01
In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well without...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...
Can time be a discrete dynamical variable
International Nuclear Information System (INIS)
Lee, T.D.
1983-01-01
The possibility that time can be regarded as a discrete dynamical variable is examined through all phases of mechanics: from classical mechanics to nonrelativistic quantum mechanics, and to relativistic quantum field theories. (orig.)
Symmetries in discrete-time mechanics
International Nuclear Information System (INIS)
Khorrami, M.
1996-01-01
Based on a general formulation for discrete-time quantum mechanics, introduced by M. Khorrami (Annals Phys. 224 (1995), 101), symmetries in discrete-time quantum mechanics are investigated. It is shown that any classical continuous symmetry leads to a conserved quantity in classical mechanics, as well as quantum mechanics. The transformed wave function, however, has the correct evolution if and only if the symmetry is nonanomalous. Copyright copyright 1996 Academic Press, Inc
On discrete models of space-time
International Nuclear Information System (INIS)
Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.
1992-02-01
Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)
A new extended H∞ filter for discrete nonlinear systems
Institute of Scientific and Technical Information of China (English)
张永安; 周荻; 段广仁
2004-01-01
Nonlinear estimation problem is investigated in this paper. By extension of a linear H∞ estimation with corrector-predictor form to nonlinear cases, a new extended H∞ filter is proposed for time-varying discretetime nonlinear systems. The new filter has a simple observer structure based on a local linearization model, and can be viewed as a general case of the extended Kalman filter (EKF). An example demonstrates that the new filter with a suitable-chosen prescribed H∞ bound performs better than the EKF.
Discrete-Time Biomedical Signal Encryption
Directory of Open Access Journals (Sweden)
Victor Grigoraş
2017-12-01
Full Text Available Chaotic modulation is a strong method of improving communication security. Analog and discrete chaotic systems are presented in actual literature. Due to the expansion of digital communication, discrete-time systems become more efficient and closer to actual technology. The present contribution offers an in-depth analysis of the effects chaos encryption produce on 1D and 2D biomedical signals. The performed simulations show that modulating signals are precisely recovered by the synchronizing receiver if discrete systems are digitally implemented and the coefficients precisely correspond. Channel noise is also applied and its effects on biomedical signal demodulation are highlighted.
A non-linear discrete transform for pattern recognition of discrete chaotic systems
International Nuclear Information System (INIS)
Karanikas, C.; Proios, G.
2003-01-01
It is shown, by an invertible non-linear discrete transform that any finite sequence or any collection of strings of any length can be presented as a random walk on trees. These transforms create the mathematical background for coding any information, for exploring its local variability and diversity. With the underlying computational algorithms, with several examples and applications we propose that these transforms can be used for pattern recognition of immune type. In other words we propose a mathematical platform for detecting self and non-self strings of any alphabet, based on a negative selection algorithms, for scouting data's periodicity and self-similarity and for measuring the diversity of chaotic strings with fractal dimension methods. In particular we estimate successfully the entropy and the ratio of chaotic data with self similarity. Moreover we give some applications of a non-linear denoising filter
A non-linear discrete transform for pattern recognition of discrete chaotic systems
Karanikas, C
2003-01-01
It is shown, by an invertible non-linear discrete transform that any finite sequence or any collection of strings of any length can be presented as a random walk on trees. These transforms create the mathematical background for coding any information, for exploring its local variability and diversity. With the underlying computational algorithms, with several examples and applications we propose that these transforms can be used for pattern recognition of immune type. In other words we propose a mathematical platform for detecting self and non-self strings of any alphabet, based on a negative selection algorithms, for scouting data's periodicity and self-similarity and for measuring the diversity of chaotic strings with fractal dimension methods. In particular we estimate successfully the entropy and the ratio of chaotic data with self similarity. Moreover we give some applications of a non-linear denoising filter.
Modeling discrete time-to-event data
Tutz, Gerhard
2016-01-01
This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are expla...
Discrete time analysis of a repairable machine
Alfa, Attahiru Sule; Castro, I. T.
2002-01-01
We consider, in discrete time, a single machine system that operates for a period of time represented by a general distribution. This machine is subject to failures during operations and the occurrence of these failures depends on how many times the machine has previously failed. Some failures are repairable and the repair times may or may not depend on the number of times the machine was previously repaired. Repair times also have a general distribution. The operating times...
Semiclassical expanding discrete space-times
International Nuclear Information System (INIS)
Cobb, W.K.; Smalley, L.L.
1981-01-01
Given the close ties between general relativity and geometry one might reasonably expect that quantum effects associated with gravitation might also be tied to the geometry of space-time, namely, to some sort of discreteness in space-time itself. In particular it is supposed that space-time consists of a discrete lattice of points rather than the usual continuum. Since astronomical evidence seems to suggest that the universe is expanding, the lattice must also expand. Some of the implications of such a model are that the proton should presently be stable, and the universe should be closed although the mechanism for closure is quantum mechanical. (author)
International Nuclear Information System (INIS)
Bianchi, M.P.
1991-01-01
The discrete Boltzmann equation is a mathematical model in the kinetic theory of gases which defines the time and space evolution of a system of gas particles with a finite number of selected velocities. Discrete kinetic theory is an interesting field of research in mathematical physics and applied mathematics for several reasons. One of the relevant fields of application of the discrete Boltzmann equation is the analysis of nonlinear shock wave phenomena. Here, a new multiple collision regular plane model for binary gas mixtures is proposed within the discrete theory of gases and applied to the analysis of the classical problems of shock wave propagation
Discrete Events as Units of Perceived Time
Liverence, Brandon M.; Scholl, Brian J.
2012-01-01
In visual images, we perceive both space (as a continuous visual medium) and objects (that inhabit space). Similarly, in dynamic visual experience, we perceive both continuous time and discrete events. What is the relationship between these units of experience? The most intuitive answer may be similar to the spatial case: time is perceived as an…
Speeding Up Network Simulations Using Discrete Time
Lucas, Aaron; Armbruster, Benjamin
2013-01-01
We develop a way of simulating disease spread in networks faster at the cost of some accuracy. Instead of a discrete event simulation (DES) we use a discrete time simulation. This aggregates events into time periods. We prove a bound on the accuracy attained. We also discuss the choice of step size and do an analytical comparison of the computational costs. Our error bound concept comes from the theory of numerical methods for SDEs and the basic proof structure comes from the theory of numeri...
Time series with tailored nonlinearities
Räth, C.; Laut, I.
2015-10-01
It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.
Discrete-time rewards model-checked
Larsen, K.G.; Andova, S.; Niebert, Peter; Hermanns, H.; Katoen, Joost P.
2003-01-01
This paper presents a model-checking approach for analyzing discrete-time Markov reward models. For this purpose, the temporal logic probabilistic CTL is extended with reward constraints. This allows to formulate complex measures – involving expected as well as accumulated rewards – in a precise and
Hybrid discrete-time neural networks.
Cao, Hongjun; Ibarz, Borja
2010-11-13
Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.
The spectral transform as a tool for solving nonlinear discrete evolution equations
International Nuclear Information System (INIS)
Levi, D.
1979-01-01
In this contribution we study nonlinear differential difference equations which became important to the description of an increasing number of problems in natural science. Difference equations arise for instance in the study of electrical networks, in statistical problems, in queueing problems, in ecological problems, as computer models for differential equations and as models for wave excitation in plasma or vibrations of particles in an anharmonic lattice. We shall first review the passages necessary to solve linear discrete evolution equations by the discrete Fourier transfrom, then, starting from the Zakharov-Shabat discretized eigenvalue, problem, we shall introduce the spectral transform. In the following part we obtain the correlation between the evolution of the potentials and scattering data through the Wronskian technique, giving at the same time many other properties as, for example, the Baecklund transformations. Finally we recover some of the important equations belonging to this class of nonlinear discrete evolution equations and extend the method to equations with n-dependent coefficients. (HJ)
Guay, M.; Beerens, R.; Nijmeijer, H.
2014-01-01
This paper considers the solution of a real-time optimization problem using adaptive extremum seeking control for a class of unknown discrete-time nonlinear systems. It is assumed that the equations describing the dynamics of the nonlinear system and the cost function to be minimized are unknown and
Modeling of Macroeconomics by a Novel Discrete Nonlinear Fractional Dynamical System
Directory of Open Access Journals (Sweden)
Zhenhua Hu
2013-01-01
Full Text Available We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states.
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation
International Nuclear Information System (INIS)
Yang Qin; Dai Chaoqing; Zhang Jiefang
2005-01-01
Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.
Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong
2015-07-01
This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.
Physical models on discrete space and time
International Nuclear Information System (INIS)
Lorente, M.
1986-01-01
The idea of space and time quantum operators with a discrete spectrum has been proposed frequently since the discovery that some physical quantities exhibit measured values that are multiples of fundamental units. This paper first reviews a number of these physical models. They are: the method of finite elements proposed by Bender et al; the quantum field theory model on discrete space-time proposed by Yamamoto; the finite dimensional quantum mechanics approach proposed by Santhanam et al; the idea of space-time as lattices of n-simplices proposed by Kaplunovsky et al; and the theory of elementary processes proposed by Weizsaecker and his colleagues. The paper then presents a model proposed by the authors and based on the (n+1)-dimensional space-time lattice where fundamental entities interact among themselves 1 to 2n in order to build up a n-dimensional cubic lattice as a ground field where the physical interactions take place. The space-time coordinates are nothing more than the labelling of the ground field and take only discrete values. 11 references
Dense time discretization technique for verification of real time systems
International Nuclear Information System (INIS)
Makackas, Dalius; Miseviciene, Regina
2016-01-01
Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate
Integrals of Motion for Discrete-Time Optimal Control Problems
Torres, Delfim F. M.
2003-01-01
We obtain a discrete time analog of E. Noether's theorem in Optimal Control, asserting that integrals of motion associated to the discrete time Pontryagin Maximum Principle can be computed from the quasi-invariance properties of the discrete time Lagrangian and discrete time control system. As corollaries, results for first-order and higher-order discrete problems of the calculus of variations are obtained.
Discrete-Time LPV Current Control of an Induction Motor
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, Klaus
2001-01-01
In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... without further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as experimentally on the actual induction motor, both in open-loop current control and when an outer...... speed control loop is closed around the current loop...
Discrete-Time LPV Current Control of an Induction Motor
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, Klaus
2003-01-01
In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...... is closed around the current loop....
Time-delay analyzer with continuous discretization
International Nuclear Information System (INIS)
Bayatyan, G.L.; Darbinyan, K.T.; Mkrtchyan, K.K.; Stepanyan, S.S.
1988-01-01
A time-delay analyzer is described which when triggered by a start pulse of adjustable duration performs continuous discretization of the analyzed signal within nearly 22 ns time intervals, the recording in a memory unit with following slow read-out of the information to the computer and its processing. The time-delay analyzer consists of four CAMAC-VECTOR systems of unit width. With its help one can separate comparatively short, small-amplitude rare signals against the background of quasistationary noise processes. 4 refs.; 3 figs
Construction of Discrete Time Shadow Price
International Nuclear Information System (INIS)
Rogala, Tomasz; Stettner, Lukasz
2015-01-01
In the paper expected utility from consumption over finite time horizon for discrete time markets with bid and ask prices and strictly concave utility function is considered. The notion of weak shadow price, i.e. an illiquid price, depending on the portfolio, under which the model without bid and ask price is equivalent to the model with bid and ask price is introduced. Existence and the form of weak shadow price is shown. Using weak shadow price usual (called in the paper strong) shadow price is then constructed
Discrete time modelization of human pilot behavior
Cavalli, D.; Soulatges, D.
1975-01-01
This modelization starts from the following hypotheses: pilot's behavior is a time discrete process, he can perform only one task at a time and his operating mode depends on the considered flight subphase. Pilot's behavior was observed using an electro oculometer and a simulator cockpit. A FORTRAN program has been elaborated using two strategies. The first one is a Markovian process in which the successive instrument readings are governed by a matrix of conditional probabilities. In the second one, strategy is an heuristic process and the concepts of mental load and performance are described. The results of the two aspects have been compared with simulation data.
The Full—Discrete Mixed Finite Element Methods for Nonlinear Hyperbolic Equations
Institute of Scientific and Technical Information of China (English)
YanpingCHEN; YunqingHUANG
1998-01-01
This article treats mixed finite element methods for second order nonlinear hyperbolic equations.A fully discrete scheme is presented and improved L2-error estimates are established.The convergence of both the function value andthe flux is demonstrated.
Discrete coupled derivative nonlinear Schroedinger equations and their quasi-periodic solutions
International Nuclear Information System (INIS)
Geng Xianguo; Su Ting
2007-01-01
A hierarchy of nonlinear differential-difference equations associated with a discrete isospectral problem is proposed, in which a typical differential-difference equation is a discrete coupled derivative nonlinear Schroedinger equation. With the help of the nonlinearization of the Lax pairs, the hierarchy of nonlinear differential-difference equations is decomposed into a new integrable symplectic map and a class of finite-dimensional integrable Hamiltonian systems. Based on the theory of algebraic curve, the Abel-Jacobi coordinates are introduced to straighten out the corresponding flows, from which quasi-periodic solutions for these differential-difference equations are obtained resorting to the Riemann-theta functions. Moreover, a (2+1)-dimensional discrete coupled derivative nonlinear Schroedinger equation is proposed and its quasi-periodic solutions are derived
Nonlinear Delay Discrete Inequalities and Their Applications to Volterra Type Difference Equations
Directory of Open Access Journals (Sweden)
Yu Wu
2010-01-01
Full Text Available Delay discrete inequalities with more than one nonlinear term are discussed, which generalize some known results and can be used in the analysis of various problems in the theory of certain classes of discrete equations. Application examples to show boundedness and uniqueness of solutions of a Volterra type difference equation are also given.
Discrete Bogomolny equations for the nonlinear O(3) σ model in 2+1 dimensions
International Nuclear Information System (INIS)
Leese, R.
1989-01-01
Discrete analogues of the topological charge and of the Bogomolny equations are constructed for the nonlinear O(3) σ model in 2+1 dimensions, subject to the restriction that the energy density be radially symmetric. These are then incorporated into a discretized version of the evolution equations. Using the discrete Bogomolny relations to construct the initial data for numerical simulations removes the ''lattice wobble'' sometimes observed at low kinetic energies. This feature is very important for the delicate question of instanton stability
Synchronization of discrete-time hyperchaotic systems: An application in communications
International Nuclear Information System (INIS)
Aguilar-Bustos, A.Y.; Cruz-Hernandez, C.
2009-01-01
In this paper, the synchronization problem of discrete-time complex dynamics is presented. In particular, we use the model-matching approach from nonlinear control theory to synchronize two unidirectionally coupled discrete-time hyperchaotic systems. A potential application to secure/private communication of confidential information is also given. By using different (hyperchaotic) encryption schemes with a single and two transmission channels, we show that output synchronization of hyperchaotic maps is indeed suitable for encryption, transmission, and decryption of information.
The (G/G)-expansion method for a discrete nonlinear Schrödinger ...
Indian Academy of Sciences (India)
With the aid of symbolic computation, we choose a discrete nonlinear Schrödinger equation to illustrate the validity and advantages of the improved algorithm. As a result ... It is shown that the improved algorithm is effective and can be used for many other nonlinear differential-difference equations in mathematical physics.
Time-Discrete Higher-Order ALE Formulations: Stability
Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.
2013-01-01
on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time
Advanced discrete-time control designs and applications
Abidi, Khalid
2015-01-01
This book covers a wide spectrum of systems such as linear and nonlinear multivariable systems as well as control problems such as disturbance, uncertainty and time-delays. The purpose of this book is to provide researchers and practitioners a manual for the design and application of advanced discrete-time controllers. The book presents six different control approaches depending on the type of system and control problem. The first and second approaches are based on Sliding Mode control (SMC) theory and are intended for linear systems with exogenous disturbances. The third and fourth approaches are based on adaptive control theory and are aimed at linear/nonlinear systems with periodically varying parametric uncertainty or systems with input delay. The fifth approach is based on Iterative learning control (ILC) theory and is aimed at uncertain linear/nonlinear systems with repeatable tasks and the final approach is based on fuzzy logic control (FLC) and is intended for highly uncertain systems with heuristi...
Energy Technology Data Exchange (ETDEWEB)
Arevalo, Edward, E-mail: arevalo@temf.tu-darmstadt.d [Technische Universitaet Darmstadt, Institut fuer Theorie elektromagnetischer Felder, TEMF, Schlossgartenstr. 8, D-64289 Darmstadt (Germany)
2009-09-21
The effect of instability on the propagation of solitary waves along one-dimensional discrete nonlinear Schroedinger equation with cubic nonlinearity is revisited. A self-contained quasicontinuum approximation is developed to derive closed-form expressions for small-amplitude solitary waves. The notion that the existence of nonlinear solitary waves in discrete systems is a signature of the modulation instability is used. With the help of this notion we conjecture that instability effects on moving solitons can be qualitative estimated from the analytical solutions. Results from numerical simulations are presented to support this conjecture.
Existence and multiplicity of solutions for nonlinear discrete inclusions
Directory of Open Access Journals (Sweden)
Nicu Marcu
2012-11-01
Full Text Available A non-smooth abstract result is used for proving the existence of at least one nontrivial solution of an algebraic discrete inclusion. Successively, a multiplicity theorem for the same class of discrete problems is also established by using a locally Lipschitz continuous version of the famous Brezis-Nirenberg theoretical result in presence of splitting. Some applications to tridiagonal, fourth-order and partial difference inclusions are pointed out.
Discrete time and continuous time dynamic mean-variance analysis
Reiss, Ariane
1999-01-01
Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...
Naz, Rehana
2018-01-01
Pontrygin-type maximum principle is extended for the present value Hamiltonian systems and current value Hamiltonian systems of nonlinear difference equations for uniform time step $h$. A new method termed as a discrete time current value Hamiltonian method is established for the construction of first integrals for current value Hamiltonian systems of ordinary difference equations arising in Economic growth theory.
The large discretization step method for time-dependent partial differential equations
Haras, Zigo; Taasan, Shlomo
1995-01-01
A new method for the acceleration of linear and nonlinear time dependent calculations is presented. It is based on the Large Discretization Step (LDS) approximation, defined in this work, which employs an extended system of low accuracy schemes to approximate a high accuracy discrete approximation to a time dependent differential operator. Error bounds on such approximations are derived. These approximations are efficiently implemented in the LDS methods for linear and nonlinear hyperbolic equations, presented here. In these algorithms the high and low accuracy schemes are interpreted as the same discretization of a time dependent operator on fine and coarse grids, respectively. Thus, a system of correction terms and corresponding equations are derived and solved on the coarse grid to yield the fine grid accuracy. These terms are initialized by visiting the fine grid once in many coarse grid time steps. The resulting methods are very general, simple to implement and may be used to accelerate many existing time marching schemes.
Mapping of uncertainty relations between continuous and discrete time.
Chiuchiù, Davide; Pigolotti, Simone
2018-03-01
Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.
Arteaga, Santiago Egido
1998-12-01
The steady-state Navier-Stokes equations are of considerable interest because they are used to model numerous common physical phenomena. The applications encountered in practice often involve small viscosities and complicated domain geometries, and they result in challenging problems in spite of the vast attention that has been dedicated to them. In this thesis we examine methods for computing the numerical solution of the primitive variable formulation of the incompressible equations on distributed memory parallel computers. We use the Galerkin method to discretize the differential equations, although most results are stated so that they apply also to stabilized methods. We also reformulate some classical results in a single framework and discuss some issues frequently dismissed in the literature, such as the implementation of pressure space basis and non- homogeneous boundary values. We consider three nonlinear methods: Newton's method, Oseen's (or Picard) iteration, and sequences of Stokes problems. All these iterative nonlinear methods require solving a linear system at every step. Newton's method has quadratic convergence while that of the others is only linear; however, we obtain theoretical bounds showing that Oseen's iteration is more robust, and we confirm it experimentally. In addition, although Oseen's iteration usually requires more iterations than Newton's method, the linear systems it generates tend to be simpler and its overall costs (in CPU time) are lower. The Stokes problems result in linear systems which are easier to solve, but its convergence is much slower, so that it is competitive only for large viscosities. Inexact versions of these methods are studied, and we explain why the best timings are obtained using relatively modest error tolerances in solving the corresponding linear systems. We also present a new damping optimization strategy based on the quadratic nature of the Navier-Stokes equations, which improves the robustness of all the
Directory of Open Access Journals (Sweden)
Felix Fritzen
2018-02-01
Full Text Available A novel algorithmic discussion of the methodological and numerical differences of competing parametric model reduction techniques for nonlinear problems is presented. First, the Galerkin reduced basis (RB formulation is presented, which fails at providing significant gains with respect to the computational efficiency for nonlinear problems. Renowned methods for the reduction of the computing time of nonlinear reduced order models are the Hyper-Reduction and the (Discrete Empirical Interpolation Method (EIM, DEIM. An algorithmic description and a methodological comparison of both methods are provided. The accuracy of the predictions of the hyper-reduced model and the (DEIM in comparison to the Galerkin RB is investigated. All three approaches are applied to a simple uncertainty quantification of a planar nonlinear thermal conduction problem. The results are compared to computationally intense finite element simulations.
Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong
2018-03-01
We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).
Stationary solutions and self-trapping in discrete quadratic nonlinear systems
DEFF Research Database (Denmark)
Bang, Ole; Christiansen, Peter Leth; Clausen, Carl A. Balslev
1998-01-01
We consider the simplest equations describing coupled quadratic nonlinear (chi((2))) systems, which each consists of a fundamental mode resonantly interacting with its second harmonic. Such discrete equations apply, e.g., to optics, where they can describe arrays of chi((2)) waveguides...... the nonintegrable dimer reduce to the discrete nonlinear Schrodinger (DNLS) equation with two degrees of freedom, which is integrable. We show how the stationary solutions to the two systems correspond to each other and how the self-trapped DNLS solutions gradually develop chaotic dynamics in the chi((2)) system...
Reliable gain-scheduled control of discrete-time systems and its application to CSTR model
Sakthivel, R.; Selvi, S.; Mathiyalagan, K.; Shi, Y.
2016-10-01
This paper is focused on reliable gain-scheduled controller design for a class of discrete-time systems with randomly occurring nonlinearities and actuator fault. Further, the nonlinearity in the system model is assumed to occur randomly according to a Bernoulli distribution with measurable time-varying probability in real time. The main purpose of this paper is to design a gain-scheduled controller by implementing a probability-dependent Lyapunov function and linear matrix inequality (LMI) approach such that the closed-loop discrete-time system is stochastically stable for all admissible randomly occurring nonlinearities. The existence conditions for the reliable controller is formulated in terms of LMI constraints. Finally, the proposed reliable gain-scheduled control scheme is applied on continuously stirred tank reactor model to demonstrate the effectiveness and applicability of the proposed design technique.
A semi-discrete integrable multi-component coherently coupled nonlinear Schrödinger system
International Nuclear Information System (INIS)
Zhao, Hai-qiong; Yuan, Jinyun
2016-01-01
A new integrable semi-discrete version is proposed for the multi-component coherently coupled nonlinear Schrödinger equation. The integrability of the semi-discrete system is confirmed by existence of Lax pair and infinite number of conservation laws. With the aid of gauge transformations, explicit formulas for N -fold Darboux transformations are derived whereby some physically important solutions of the system are presented. Furthermore, the theory of the semi-discrete system including Lax pair, Darboux transformations, exact solutions and infinite number of conservation laws are shown for their continuous counterparts in the continuous limit. (paper)
On discrete maximum principles for nonlinear elliptic problems
Czech Academy of Sciences Publication Activity Database
Karátson, J.; Korotov, S.; Křížek, Michal
2007-01-01
Roč. 76, č. 1 (2007), s. 99-108 ISSN 0378-4754 R&D Projects: GA MŠk 1P05ME749; GA AV ČR IAA1019201 Institutional research plan: CEZ:AV0Z10190503 Keywords : nonlinear elliptic problem * mixed boundary conditions * finite element method Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2007
Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations
Directory of Open Access Journals (Sweden)
E. Messina
2008-01-01
Full Text Available We consider nonlinear difference equations of unbounded order of the form xi=bi−∑j=0iai,jfi−j(xj, i=0,1,2,…, where fj(x (j=0,…,i are suitable functions. We establish sufficient conditions for the boundedness and the convergence of xi as i→+∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.
Discrete oscillator design linear, nonlinear, transient, and noise domains
Rhea, Randall W
2014-01-01
Oscillators are an essential part of all spread spectrum, RF, and wireless systems, and today's engineers in the field need to have a firm grasp on how they are designed. Presenting an easy-to-understand, unified view of the subject, this authoritative resource covers the practical design of high-frequency oscillators with lumped, distributed, dielectric and piezoelectric resonators. Including numerous examples, the book details important linear, nonlinear harmonic balance, transient and noise analysis techniques. Moreover, the book shows you how to apply these techniques to a wide range of os
Chaotic synchronization of symbolic information in the discrete nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Pando L, C.L.
2003-08-01
We have studied the discrete nonlinear Schrodinger equation (DNLSE) with on-site defects and periodic boundary conditions. When the array dynamics becomes chaotic, the otherwise quasiperiodic amplitude correlations between the oscillators are destroyed. However, we show that synchronization of symbolic information of suitable amplitude signals is possible in this hamiltonian system. (author)
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.
1998-01-01
The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...
DEFF Research Database (Denmark)
Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus
1998-01-01
A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exp...
Switching between bistable states in a discrete nonlinear model with long-range dispersion
DEFF Research Database (Denmark)
Johansson, Magnus; Gaididei, Yuri B.; Christiansen, Peter Leth
1998-01-01
In the framework of a discrete nonlinear Schrodinger equation with long-range dispersion, we propose a general mechanism for obtaining a controlled switching between bistable localized excitations. We show that the application of a spatially symmetric kick leads to the excitation of an internal...
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri
2008-01-01
The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...
Discrete- and finite-bandwidth-frequency distributions in nonlinear stability applications
Kuehl, Joseph J.
2017-02-01
A new "wave packet" formulation of the parabolized stability equations method is presented. This method accounts for the influence of finite-bandwidth-frequency distributions on nonlinear stability calculations. The methodology is motivated by convolution integrals and is found to appropriately represent nonlinear energy transfer between primary modes and harmonics, in particular nonlinear feedback, via a "nonlinear coupling coefficient." It is found that traditional discrete mode formulations overestimate nonlinear feedback by approximately 70%. This results in smaller maximum disturbance amplitudes than those observed experimentally. The new formulation corrects this overestimation, accounts for the generation of side lobes responsible for spectral broadening, and results in disturbance representation more consistent with the experiment than traditional formulations. A Mach 6 flared-cone example is presented.
On the application of Discrete Time Optimal Control Concepts to ...
African Journals Online (AJOL)
On the application of Discrete Time Optimal Control Concepts to Economic Problems. ... Journal of the Nigerian Association of Mathematical Physics ... Abstract. An extension of the use of the maximum principle to solve Discrete-time Optimal Control Problems (DTOCP), in which the state equations are in the form of general ...
Study of intermittent bifurcations and chaos in boost PFC converters by nonlinear discrete models
International Nuclear Information System (INIS)
Zhang Hao; Ma Xikui; Xue Bianling; Liu Weizeng
2005-01-01
This paper mainly deals with nonlinear phenomena like intermittent bifurcations and chaos in boost PFC converters under peak-current control mode. Two nonlinear models in the form of discrete maps are derived to describe precisely the nonlinear dynamics of boost PFC converters from two points of view, i.e., low- and high-frequency regimes. Based on the presented discrete models, both the evolution of intermittent behavior and the periodicity of intermittency are investigated in detail from the fast and slow-scale aspects, respectively. Numerical results show that the occurrence of intermittent bifurcations and chaos with half one line period is one of the most distinguished dynamical characteristics. Finally, we make some instructive conclusions, which prove to be helpful in improving the performances of practical circuits
International Nuclear Information System (INIS)
Prykarpatsky, Yarema A.; Bogolubov, Nikolai N. Jr.; Prykarpatsky, Anatoliy K.; Samoylenko, Valeriy H.
2010-12-01
A gradient-holonomic approach for the Lax type integrability analysis of differential-discrete dynamical systems is devised. The asymptotical solutions to the related Lax equation are studied and the related gradient identity is stated. The integrability of a discrete nonlinear Schroedinger type dynamical system is treated in detail. The integrability of a generalized Riemann type discrete hydrodynamical system is discussed. (author)
Discrete-time optimal control and games on large intervals
Zaslavski, Alexander J
2017-01-01
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...
Gui, Tao; Lu, Chao; Lau, Alan Pak Tao; Wai, P K A
2017-08-21
In this paper, we experimentally investigate high-order modulation over a single discrete eigenvalue under the nonlinear Fourier transform (NFT) framework and exploit all degrees of freedom for encoding information. For a fixed eigenvalue, we compare different 4 bit/symbol modulation formats on the spectral amplitude and show that a 2-ring 16-APSK constellation achieves optimal performance. We then study joint spectral phase, spectral magnitude and eigenvalue modulation and found that while modulation on the real part of the eigenvalue induces pulse timing drift and leads to neighboring pulse interactions and nonlinear inter-symbol interference (ISI), it is more bandwidth efficient than modulation on the imaginary part of the eigenvalue in practical settings. We propose a spectral amplitude scaling method to mitigate such nonlinear ISI and demonstrate a record 4 GBaud 16-APSK on the spectral amplitude plus 2-bit eigenvalue modulation (total 6 bit/symbol at 24 Gb/s) transmission over 1000 km.
Mathematical aspects of the discrete space-time hypothesis
International Nuclear Information System (INIS)
Sardanashvili, G.A.
1979-01-01
A hypothesis of a microcosm space discreteness is considered from the theoretical-mathematical point of view. The type of topological spaces, which formalizes representations on the discrete space-time, is determined. It is explained, how these spaces arise in physical models. The physical task, in which the discrete space could arise as a version of its solution, is considered. It is shown that the discrete structure of space can arise with a certain interaction type in the system, for example, with its considerable self-shielding, which can take place, in particular, in the particles or in the cosmological and astrophysical singularities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, K. O.; Samuelsen, Mogens Rugholm
2010-01-01
We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the e...
On synchronized regions of discrete-time complex dynamical networks
International Nuclear Information System (INIS)
Duan Zhisheng; Chen Guanrong
2011-01-01
In this paper, the local synchronization of discrete-time complex networks is studied. First, it is shown that for any natural number n, there exists a discrete-time network which has at least left floor n/2 right floor +1 disconnected synchronized regions for local synchronization, which implies the possibility of intermittent synchronization behaviors. Different from the continuous-time networks, the existence of an unbounded synchronized region is impossible for discrete-time networks. The convexity of the synchronized regions is also characterized based on the stability of a class of matrix pencils, which is useful for enlarging the stability region so as to improve the network synchronizability.
Hybrid upwind discretization of nonlinear two-phase flow with gravity
Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.
2015-08-01
Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit
A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
Yunying Zheng
2011-01-01
Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.
Zeng, Cheng; Liang, Shan; Xiang, Shuwen
2017-05-01
Continuous-time systems are usually modelled by the form of ordinary differential equations arising from physical laws. However, the use of these models in practice and utilizing, analyzing or transmitting these data from such systems must first invariably be discretized. More importantly, for digital control of a continuous-time nonlinear system, a good sampled-data model is required. This paper investigates the new consistency condition which is weaker than the previous similar results presented. Moreover, given the stability of the high-order approximate model with stable zero dynamics, the novel condition presented stabilizes the exact sampled-data model of the nonlinear system for sufficiently small sampling periods. An insightful interpretation of the obtained results can be made in terms of the stable sampling zero dynamics, and the new consistency condition is surprisingly associated with the relative degree of the nonlinear continuous-time system. Our controller design, based on the higher-order approximate discretized model, extends the existing methods which mainly deal with the Euler approximation. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials
N. Stojanovic; N. Stamenkovic; I. Krstic
2016-01-01
A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approx...
Hysteresis, Discrete Memory, and Nonlinear Wave Propagation in Rock: A New Paradigm
International Nuclear Information System (INIS)
Guyer, R.A.; McCall, K.R.; Boitnott, G.N.
1995-01-01
The structural elements in a rock are characterized by their density in Preisach-Mayergoyz space (PM space). This density is found for a Berea sandstone from stress-strain data and used to study the response of the sandstone to elaborate pressure protocols. Hysteresis with discrete memory, in agreement with experiment, is found. The relationship between strain, quasistatic modulus, and dynamic modulus is established. Nonlinear wave propagation, the production of copious harmonics, and nonlinear attenuation are demonstrated. PM space is shown to be the central construct in a new paradigm for the description of the elastic behavior of consolidated materials
Wei, Qinglai; Liu, Derong; Lin, Qiao
In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.
Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach
Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer
2018-02-01
This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.
Mixed Discretization of the Time Domain MFIE at Low Frequencies
Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco Paolo; Bagci, Hakan
2017-01-01
stems from the classical MOT scheme’s failure to predict the correct scaling of the current’s Helmholtz components for large time steps. A recently proposed mixed discretization strategy is used to alleviate the inaccuracy problem by restoring
Cryptanalysis of a discrete-time synchronous chaotic encryption system
International Nuclear Information System (INIS)
Arroyo, David; Alvarez, Gonzalo; Li Shujun; Li Chengqing; Nunez, Juana
2008-01-01
Recently a chaotic cryptosystem based on discrete-time synchronization has been proposed. Some weaknesses of that new encryption system are addressed and exploited in order to successfully cryptanalyze the system
On periodic orbits in discrete-time cascade systems
Directory of Open Access Journals (Sweden)
Huimin Li
2006-01-01
Full Text Available We present some results on existence, minimum period, number of periodic orbits, and stability of periodic orbits in discrete-time cascade systems. Some examples are presented to illustrate these results.
Strong Stability Preserving Property of the Deferred Correction Time Discretization
National Research Council Canada - National Science Library
Liu, Yuan; Shu, Chi-Wang; Zhang, Mengping
2007-01-01
In this paper, we study the strong stability preserving "SSP" property of a class of deferred correction time discretization methods, for solving the method-of-lines schemes approximating hyperbolic...
Inverse periodic problem for the discrete approximation of the Schroedinger nonlinear equation
International Nuclear Information System (INIS)
Bogolyubov, N.N.; Prikarpatskij, A.K.; AN Ukrainskoj SSR, Lvov. Inst. Prikladnykh Problem Mekhaniki i Matematiki)
1982-01-01
The problem of numerical solution of the Schroedinger nonlinear equation (1) iPSIsub(t) = PSIsub(xx)+-2(PSI)sup(2)PSI. The numerical solution of nonlinear differential equation supposes its discrete approximation is required for the realization of the computer calculation process. Tor the equation (1) there exists the following discrete approximation by variable x(2) iPSIsub(n, t) = (PSIsub(n+1)-2PSIsub(n)+PSIsub(n-1))/(Δx)sup(2)+-(PSIsub(n))sup(2)(PSIsub(n+1)+PSIsub(n-1)), n=0, +-1, +-2... where PSIsub(n)(+) is the corresponding value of PSI(x, t) function in the node and divisions with the equilibrium step Δx. The main problem is obtaining analytically exact solutions of the equations (2). The analysis of the equation system (2) is performed on the base of the discrete analogue of the periodic variant of the inverse scattering problem method developed with the aid of nonlinear equations of the Korteweg-de Vries type. Obtained in explicit form are analytical solutions of the equations system (2). The solutions are expressed through the Riemann THETA-function [ru
Some nonlinear dynamic inequalities on time scales
Indian Academy of Sciences (India)
In 1988, Stefan Hilger [10] introduced the calculus on time scales which unifies continuous and discrete analysis. Since then many authors have expounded on various aspects of the theory of dynamic equations on time scales. Recently, there has been much research activity concerning the new theory. For example, we ...
Stabilization of discrete-time LTI positive systems
Directory of Open Access Journals (Sweden)
Krokavec Dušan
2017-12-01
Full Text Available The paper mitigates the existing conditions reported in the previous literature for control design of discrete-time linear positive systems. Incorporating an associated structure of linear matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability of discrete-time positive system structures, new conditions are presented with which the state-feedback controllers and the system state observers can be designed. Associated solutions of the proposed design conditions are illustrated by numerical illustrative examples.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
Energy Technology Data Exchange (ETDEWEB)
Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com [Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris Diderot (France)
2016-12-15
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
International Nuclear Information System (INIS)
Pham, Huyên; Wei, Xiaoli
2016-01-01
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Inan, B.; Lee, S.C.J.; Randel, S.; Neokosmidis, L.; Koonen, A.M.J.; Walewski, J.
2009-01-01
The nonlinear dependence of the optical power from white LEDs on the applied driving current and its impact on discrete-multitone modulation was investigated by use of numerical simulations for the case of optical wireless communications.
Rational solutions of the discrete time Toda lattice and the alternate discrete Painleve II equation
International Nuclear Information System (INIS)
Common, Alan K; Hone, Andrew N W
2008-01-01
The Yablonskii-Vorob'ev polynomials y n (t), which are defined by a second-order bilinear differential-difference equation, provide rational solutions of the Toda lattice. They are also polynomial tau-functions for the rational solutions of the second Painleve equation (P II ). Here we define two-variable polynomials Y n (t, h) on a lattice with spacing h, by considering rational solutions of the discrete time Toda lattice as introduced by Suris. These polynomials are shown to have many properties that are analogous to those of the Yablonskii-Vorob'ev polynomials, to which they reduce when h = 0. They also provide rational solutions for a particular discretization of P II , namely the so-called alternate discrete P II , and this connection leads to an expression in terms of the Umemura polynomials for the third Painleve equation (P III ). It is shown that the Baecklund transformation for the alternate discrete Painleve equation is a symplectic map, and the shift in time is also symplectic. Finally we present a Lax pair for the alternate discrete P II , which recovers Jimbo and Miwa's Lax pair for P II in the continuum limit h → 0
International Nuclear Information System (INIS)
Kaltenbacher, Barbara; Kirchner, Alana; Vexler, Boris
2011-01-01
Parameter identification problems for partial differential equations usually lead to nonlinear inverse problems. A typical property of such problems is their instability, which requires regularization techniques, like, e.g., Tikhonov regularization. The main focus of this paper will be on efficient methods for determining a suitable regularization parameter by using adaptive finite element discretizations based on goal-oriented error estimators. A well-established method for the determination of a regularization parameter is the discrepancy principle where the residual norm, considered as a function i of the regularization parameter, should equal an appropriate multiple of the noise level. We suggest to solve the resulting scalar nonlinear equation by an inexact Newton method, where in each iteration step, a regularized problem is solved at a different discretization level. The proposed algorithm is an extension of the method suggested in Griesbaum A et al (2008 Inverse Problems 24 025025) for linear inverse problems, where goal-oriented error estimators for i and its derivative are used for adaptive refinement strategies in order to keep the discretization level as coarse as possible to save computational effort but fine enough to guarantee global convergence of the inexact Newton method. This concept leads to a highly efficient method for determining the Tikhonov regularization parameter for nonlinear ill-posed problems. Moreover, we prove that with the so-obtained regularization parameter and an also adaptively discretized Tikhonov minimizer, usual convergence and regularization results from the continuous setting can be recovered. As a matter of fact, it is shown that it suffices to use stationary points of the Tikhonov functional. The efficiency of the proposed method is demonstrated by means of numerical experiments. (paper)
International Nuclear Information System (INIS)
Tsuchida, Takayuki
2010-01-01
We propose a new method for discretizing the time variable in integrable lattice systems while maintaining the locality of the equations of motion. The method is based on the zero-curvature (Lax pair) representation and the lowest-order 'conservation laws'. In contrast to the pioneering work of Ablowitz and Ladik, our method allows the auxiliary dependent variables appearing in the stage of time discretization to be expressed locally in terms of the original dependent variables. The time-discretized lattice systems have the same set of conserved quantities and the same structures of the solutions as the continuous-time lattice systems; only the time evolution of the parameters in the solutions that correspond to the angle variables is discretized. The effectiveness of our method is illustrated using examples such as the Toda lattice, the Volterra lattice, the modified Volterra lattice, the Ablowitz-Ladik lattice (an integrable semi-discrete nonlinear Schroedinger system) and the lattice Heisenberg ferromagnet model. For the modified Volterra lattice, we also present its ultradiscrete analogue.
Engineering applications of discrete-time optimal control
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui; Ravn, Hans V.
1990-01-01
Many problems of design and operation of engineering systems can be formulated as optimal control problems where time has been discretisized. This is also true even if 'time' is not involved in the formulation of the problem, but rather another one-dimensional parameter. This paper gives a review...... of some well-known and new results in discrete time optimal control methods applicable to practical problem solving within engineering. Emphasis is placed on dynamic programming, the classical maximum principle and generalized versions of the maximum principle for optimal control of discrete time systems...
A discrete element model for the investigation of the geometrically nonlinear behaviour of solids
Ockelmann, Felix; Dinkler, Dieter
2018-07-01
A three-dimensional discrete element model for elastic solids with large deformations is presented. Therefore, an discontinuum approach is made for solids. The properties of elastic material are transferred analytically into the parameters of a discrete element model. A new and improved octahedron gap-filled face-centred cubic close packing of spheres is split into unit cells, to determine the parameters of the discrete element model. The symmetrical unit cells allow a model with equal shear components in each contact plane and fully isotropic behaviour for Poisson's ratio above 0. To validate and show the broad field of applications of the new model, the pin-pin Euler elastica is presented and investigated. The thin and sensitive structure tends to undergo large deformations and rotations with a highly geometrically nonlinear behaviour. This behaviour of the elastica can be modelled and is compared to reference solutions. Afterwards, an improved more realistic simulation of the elastica is presented which softens secondary buckling phenomena. The model is capable of simulating solids with small strains but large deformations and a strongly geometrically nonlinear behaviour, taking the shear stiffness of the material into account correctly.
Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials
Directory of Open Access Journals (Sweden)
N. Stojanovic
2016-09-01
Full Text Available A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approximations(Chebyshev, Legendre, Butterworth are shown to be a special cases of proposed approximation method.
Nonlinear nano-scale localized breather modes in a discrete weak ferromagnetic spin lattice
International Nuclear Information System (INIS)
Kavitha, L.; Parasuraman, E.; Gopi, D.; Prabhu, A.; Vicencio, Rodrigo A.
2016-01-01
We investigate the propagation dynamics of highly localized discrete breather modes in a weak ferromagnetic spin lattice with on-site easy axis anisotropy due to crystal field effect. We derive the discrete nonlinear equation of motion by employing boson mappings and p-representation. We explore the onset of modulational instability both analytically in the framework of linear stability analysis and numerically by means of molecular dynamics (MD) simulations, and a perfect agreement was demonstrated. It is also explored that how the antisymmetric nature of the canted ferromagnetic lattice supports highly localized discrete breather (DBs) modes as shown in the stability/instability windows. The energy exchange between low amplitude discrete breathers favours the growth of higher amplitude DBs, resulting eventually in the formation of few long-lived high amplitude DBs. - Highlights: • The effects of DM and anisotropy interaction on the DB modes are studied. • The antisymmetric nature of the canted ferromagnetic medium supports the DB modes. • Dynamics of ferromagnetic chain is governed by boson mappings and p-representation.
Forecasting with nonlinear time series models
DEFF Research Database (Denmark)
Kock, Anders Bredahl; Teräsvirta, Timo
In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econo- metrics are presented and some of their properties discussed. This in- cludes two models based on universal approximators: the Kolmogorov- Gabor polynomial model...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...... and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...
Partition-based discrete-time quantum walks
Konno, Norio; Portugal, Renato; Sato, Iwao; Segawa, Etsuo
2018-04-01
We introduce a family of discrete-time quantum walks, called two-partition model, based on two equivalence-class partitions of the computational basis, which establish the notion of local dynamics. This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators studied in literature, such as the coined model, Szegedy's model, and the 2-tessellable staggered model. We also analyze the connection of those models with the two-step coined model, which is driven by the square of the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily equivalent. Then, selecting one specific model among those families is a matter of taste not generality.
Discrete time process algebra and the semantics of SDL
J.A. Bergstra; C.A. Middelburg; Y.S. Usenko (Yaroslav)
1998-01-01
htmlabstractWe present an extension of discrete time process algebra with relative timing where recursion, propositional signals and conditions, a counting process creation operator, and the state operator are combined. Except the counting process creation operator, which subsumes the original
Cycles of a discrete time bipolar artificial neural network
International Nuclear Information System (INIS)
Cheng Suisun; Chen, J.-S.; Yueh, W.-C.
2009-01-01
A discrete time bipolar neural network depending on two parameters is studied. It is observed that its dynamical behaviors can be classified into six cases. For each case, the long time behaviors can be summarized in terms of fixed points, periodic points, basin of attractions, and related initial distributions. Mathematical reasons are supplied for these observations and applications in cellular automata are illustrated.
Analysis of Time Discretization and its Effect on Simulation Processes
Directory of Open Access Journals (Sweden)
Gilbert-Rainer Gillich
2006-10-01
Full Text Available The paper presents the influence of time discretization on the results of simulations of technical systems. In this sense the systems are mod-eled using the SciLab/SCICOS environment, using different time inter-vals. Ulterior the processes are simulated and the results are com-pared.
Nonparametric volatility density estimation for discrete time models
Es, van Bert; Spreij, P.J.C.; Zanten, van J.H.
2005-01-01
We consider discrete time models for asset prices with a stationary volatility process. We aim at estimating the multivariate density of this process at a set of consecutive time instants. A Fourier-type deconvolution kernel density estimator based on the logarithm of the squared process is proposed
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim
1996-01-01
The dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity and point impurities is taken into account. The stability properties...... of the stationary solutions are examined. The essential importance of the existence of stable immobile solitons in the two-dimensional dynamics of the traveling pulses is demonstrated. The typical scenario of the two-dimensional quasicollapse of a moving intense pulse represents the formation of standing trapped...... narrow spikes. The influence of the point impurities on this dynamics is also investigated....
Molkenthin, Nora; Hu, Shuangwei; Niemi, Antti J.
2011-02-01
We introduce a novel generalization of the discrete nonlinear Schrödinger equation. It supports solitons that we utilize to model chiral polymers in the collapsed phase and, in particular, proteins in their native state. As an example we consider the villin headpiece HP35, an archetypal protein for testing both experimental and theoretical approaches to protein folding. We use its backbone as a template to explicitly construct a two-soliton configuration. Each of the two solitons describe well over 7.000 supersecondary structures of folded proteins in the Protein Data Bank with sub-angstrom accuracy suggesting that these solitons are common in nature.
Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems
International Nuclear Information System (INIS)
Haber, E; Horesh, L; Tenorio, L
2010-01-01
Design of experiments for discrete ill-posed problems is a relatively new area of research. While there has been some limited work concerning the linear case, little has been done to study design criteria and numerical methods for ill-posed nonlinear problems. We present an algorithmic framework for nonlinear experimental design with an efficient numerical implementation. The data are modeled as indirect, noisy observations of the model collected via a set of plausible experiments. An inversion estimate based on these data is obtained by a weighted Tikhonov regularization whose weights control the contribution of the different experiments to the data misfit term. These weights are selected by minimization of an empirical estimate of the Bayes risk that is penalized to promote sparsity. This formulation entails a bilevel optimization problem that is solved using a simple descent method. We demonstrate the viability of our design with a problem in electromagnetic imaging based on direct current resistivity and magnetotelluric data
Six-component semi-discrete integrable nonlinear Schrödinger system
Vakhnenko, Oleksiy O.
2018-01-01
We suggest the six-component integrable nonlinear system on a quasi-one-dimensional lattice. Due to its symmetrical form, the general system permits a number of reductions; one of which treated as the semi-discrete integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell is considered in considerable details. Besides six truly independent basic field variables, the system is characterized by four concomitant fields whose background values produce three additional types of inter-site resonant interactions between the basic fields. As a result, the system dynamics becomes associated with the highly nonstandard form of Poisson structure. The elementary Poisson brackets between all field variables are calculated and presented explicitly. The richness of system dynamics is demonstrated on the multi-component soliton solution written in terms of properly parameterized soliton characteristics.
Modeling vector nonlinear time series using POLYMARS
de Gooijer, J.G.; Ray, B.K.
2003-01-01
A modified multivariate adaptive regression splines method for modeling vector nonlinear time series is investigated. The method results in models that can capture certain types of vector self-exciting threshold autoregressive behavior, as well as provide good predictions for more general vector
Some Nonlinear Dynamic Inequalities on Time Scales
Indian Academy of Sciences (India)
The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential ...
Distinct timing mechanisms produce discrete and continuous movements.
Directory of Open Access Journals (Sweden)
Raoul Huys
2008-04-01
Full Text Available The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems to accomplish varying behavioral functions such as speed constraints.
Detecting nonlinear structure in time series
International Nuclear Information System (INIS)
Theiler, J.
1991-01-01
We describe an approach for evaluating the statistical significance of evidence for nonlinearity in a time series. The formal application of our method requires the careful statement of a null hypothesis which characterizes a candidate linear process, the generation of an ensemble of ''surrogate'' data sets which are similar to the original time series but consistent with the null hypothesis, and the computation of a discriminating statistic for the original and for each of the surrogate data sets. The idea is to test the original time series against the null hypothesis by checking whether the discriminating statistic computed for the original time series differs significantly from the statistics computed for each of the surrogate sets. While some data sets very cleanly exhibit low-dimensional chaos, there are many cases where the evidence is sketchy and difficult to evaluate. We hope to provide a framework within which such claims of nonlinearity can be evaluated. 5 refs., 4 figs
Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.
Wei, Qinglai; Li, Benkai; Song, Ruizhuo
2018-04-01
In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.
Discrete and continuous time dynamic mean-variance analysis
Reiss, Ariane
1999-01-01
Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...
Invariant set computation for constrained uncertain discrete-time systems
Athanasopoulos, N.; Bitsoris, G.
2010-01-01
In this article a novel approach to the determination of polytopic invariant sets for constrained discrete-time linear uncertain systems is presented. First, the problem of stabilizing a prespecified initial condition set in the presence of input and state constraints is addressed. Second, the
Cryptanalyzing a discrete-time chaos synchronization secure communication system
International Nuclear Information System (INIS)
Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G.
2004-01-01
This paper describes the security weakness of a recently proposed secure communication method based on discrete-time chaos synchronization. We show that the security is compromised even without precise knowledge of the chaotic system used. We also make many suggestions to improve its security in future versions
Recursive smoothers for hidden discrete-time Markov chains
Directory of Open Access Journals (Sweden)
Lakhdar Aggoun
2005-01-01
Full Text Available We consider a discrete-time Markov chain observed through another Markov chain. The proposed model extends models discussed by Elliott et al. (1995. We propose improved recursive formulae to update smoothed estimates of processes related to the model. These recursive estimates are used to update the parameter of the model via the expectation maximization (EM algorithm.
Discretization of space and time: consequences of modified gravitational law
Roatta , Luca
2017-01-01
Assuming that space and time can only have discrete values, it is shown that the modified law of gravitational attraction implies that the third principle of dynamics is not fully respected and that only bodies with sufficient mass can exert gravitational attraction.
Stable cycling in discrete-time genetic models.
Hastings, A
1981-01-01
Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.
Stable cycling in discrete-time genetic models.
Hastings, A
1981-11-01
Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.
Asymptotical Behaviors of Nonautonomous Discrete Kolmogorov System with Time Lags
Directory of Open Access Journals (Sweden)
Liu Shengqiang
2010-01-01
Full Text Available We discuss a general -species discrete Kolmogorov system with time lags. We build some new results about the sufficient conditions for permanence, extinction, and balancing survival. When applying these results to some Lotka-Volterra systems, we obtain the criteria on harmless delay for the permanence as well as profitless delay for balancing survival.
Asymptotical Behaviors of Nonautonomous Discrete Kolmogorov System with Time Lags
Directory of Open Access Journals (Sweden)
Shengqiang Liu
2010-01-01
Full Text Available We discuss a general n-species discrete Kolmogorov system with time lags. We build some new results about the sufficient conditions for permanence, extinction, and balancing survival. When applying these results to some Lotka-Volterra systems, we obtain the criteria on harmless delay for the permanence as well as profitless delay for balancing survival.
On Nonlinear Prices in Timed Automata
Directory of Open Access Journals (Sweden)
Devendra Bhave
2016-12-01
Full Text Available Priced timed automata provide a natural model for quantitative analysis of real-time systems and have been successfully applied in various scheduling and planning problems. The optimal reachability problem for linearly-priced timed automata is known to be PSPACE-complete. In this paper we investigate priced timed automata with more general prices and show that in the most general setting the optimal reachability problem is undecidable. We adapt and implement the construction of Audemard, Cimatti, Kornilowicz, and Sebastiani for non-linear priced timed automata using state-of-the-art theorem prover Z3 and present some preliminary results.
Equilibrium and response properties of the integrate-and-fire neuron in discrete time
Directory of Open Access Journals (Sweden)
Moritz Helias
2010-01-01
Full Text Available The integrate-and-fire neuron with exponential postsynaptic potentials is a frequently employed model to study neural networks. Simulations in discrete time still have highest performance at moderate numerical errors, which makes them first choice for long-term simulations of plastic networks. Here we extend the population density approach to investigate how the equilibrium and response properties of the leaky integrate-and-fire neuron are affected by time discretization. We present a novel analytical treatment of the boundary condition at threshold, taking both discretization of time and finite synaptic weights into account. We uncover an increased membrane potential density just below threshold as the decisive property that explains the deviations found between simulations and the classical diffusion approximation. Temporal discretization and finite synaptic weights both contribute to this effect. Our treatment improves the standard formula to calculate the neuron’s equilibrium firing rate. Direct solution of the Markov process describing the evolution of the membrane potential density confirms our analysis and yields a method to calculate the firing rate exactly. Knowing the shape of the membrane potential distribution near threshold enables us to devise the transient response properties of the neuron model to synaptic input. We find a pronounced non-linear fast response component that has not been described by the prevailing continuous time theory for Gaussian white noise input.
Direct output feedback control of discrete-time systems
International Nuclear Information System (INIS)
Lin, C.C.; Chung, L.L.; Lu, K.H.
1993-01-01
An optimal direct output feedback control algorithm is developed for discrete-time systems with the consideration of time delay in control force action. Optimal constant output feedback gains are obtained through variational process such that certain prescribed quadratic performance index is minimized. Discrete-time control forces are then calculated from the multiplication of output measurements by these pre-calculated feedback gains. According to the proposed algorithm, structural system is assured to remain stable even in the presence of time delay. The number of sensors and controllers may be very small as compared with the dimension of states. Numerical results show that direct velocity feedback control is more sensitive to time delay than state feedback but, is still quite effective in reducing the dynamic responses under earthquake excitation. (author)
On the Solution of the Eigenvalue Assignment Problem for Discrete-Time Systems
Directory of Open Access Journals (Sweden)
El-Sayed M. E. Mostafa
2017-01-01
Full Text Available The output feedback eigenvalue assignment problem for discrete-time systems is considered. The problem is formulated first as an unconstrained minimization problem, where a three-term nonlinear conjugate gradient method is proposed to find a local solution. In addition, a cut to the objective function is included, yielding an inequality constrained minimization problem, where a logarithmic barrier method is proposed for finding the local solution. The conjugate gradient method is further extended to tackle the eigenvalue assignment problem for the two cases of decentralized control systems and control systems with time delay. The performance of the methods is illustrated through various test examples.
Nonlinear analysis of river flow time sequences
Porporato, Amilcare; Ridolfi, Luca
1997-06-01
Within the field of chaos theory several methods for the analysis of complex dynamical systems have recently been proposed. In light of these ideas we study the dynamics which control the behavior over time of river flow, investigating the existence of a low-dimension deterministic component. The present article follows the research undertaken in the work of Porporato and Ridolfi [1996a] in which some clues as to the existence of chaos were collected. Particular emphasis is given here to the problem of noise and to nonlinear prediction. With regard to the latter, the benefits obtainable by means of the interpolation of the available time series are reported and the remarkable predictive results attained with this nonlinear method are shown.
A mean-variance frontier in discrete and continuous time
Bekker, Paul A.
2004-01-01
The paper presents a mean-variance frontier based on dynamic frictionless investment strategies in continuous time. The result applies to a finite number of risky assets whose price process is given by multivariate geometric Brownian motion with deterministically varying coefficients. The derivation is based on the solution for the frontier in discrete time. Using the same multiperiod framework as Li and Ng (2000), I provide an alternative derivation and an alternative formulation of the solu...
International Nuclear Information System (INIS)
Park, Yujin; Kazantzis, Nikolaos; Parlos, Alexander G.; Chong, Kil To
2013-01-01
Highlights: • Numerical solution for stiff differential equations using matrix exponential method. • The approximation is based on First Order Hold assumption. • Various input examples applied to the point kinetics equations. • The method shows superior useful and effective activity. - Abstract: A system of nonlinear differential equations is derived to model the dynamics of neutron density and the delayed neutron precursors within a point kinetics equation modeling framework for a nuclear reactor. The point kinetic equations are mathematically characterized as stiff, occasionally nonlinear, ordinary differential equations, posing significant challenges when numerical solutions are sought and traditionally resulting in the need for smaller time step intervals within various computational schemes. In light of the above realization, the present paper proposes a new discretization method inspired by system-theoretic notions and technically based on a combination of the matrix exponential method (MEM) and the First-Order Hold (FOH) assumption. Under the proposed time discretization structure, the sampled-data representation of the nonlinear point kinetic system of equations is derived. The performance of the proposed time discretization procedure is evaluated using several case studies with sinusoidal reactivity profiles and multiple input examples (reactivity and neutron source function). It is shown, that by applying the proposed method under a First-Order Hold for the neutron density and the precursor concentrations at each time step interval, the stiffness problem associated with the point kinetic equations can be adequately addressed and resolved. Finally, as evidenced by the aforementioned detailed simulation studies, the proposed method retains its validity and accuracy for a wide range of reactor operating conditions, including large sampling periods dictated by physical and/or technical limitations associated with the current state of sensor and
Discrete time-crystalline order in black diamond
Zhou, Hengyun; Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman; Demler, Eugene; Lukin, Mikhail D.
2017-04-01
The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time-crystalline'' phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of 106 dipolar spin impurities in diamond at room-temperature. We observe long-lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.
A discrete-time adaptive control scheme for robot manipulators
Tarokh, M.
1990-01-01
A discrete-time model reference adaptive control scheme is developed for trajectory tracking of robot manipulators. The scheme utilizes feedback, feedforward, and auxiliary signals, obtained from joint angle measurement through simple expressions. Hyperstability theory is utilized to derive the adaptation laws for the controller gain matrices. It is shown that trajectory tracking is achieved despite gross robot parameter variation and uncertainties. The method offers considerable design flexibility and enables the designer to improve the performance of the control system by adjusting free design parameters. The discrete-time adaptation algorithm is extremely simple and is therefore suitable for real-time implementation. Simulations and experimental results are given to demonstrate the performance of the scheme.
Nonlinear Time-Reversal in a Wave Chaotic System
Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven
2012-02-01
Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)
Evaluation of nonlinearity and validity of nonlinear modeling for complex time series.
Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo
2007-10-01
Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.
Time-Discrete Higher-Order ALE Formulations: Stability
Bonito, Andrea
2013-01-01
Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time-dependent advection-diffusion-model problem in moving domains, and study their stability properties. The analysis hinges on the validity of the Reynold\\'s identity for dG. Exploiting the variational structure and assuming exact integration, we prove that our conservative and nonconservative dG schemes are equivalent and unconditionally stable. The same results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that guarantees the validity of the Reynold\\'s identity. This approach generalizes the so-called geometric conservation law to higher-order methods. We also prove that simpler Runge-Kutta-Radau methods of any order are conditionally stable, that is, subject to a mild ALE constraint on the time steps. Numerical experiments corroborate and complement our theoretical results. © 2013 Society for Industrial and Applied Mathematics.
Discrete-time control system design with applications
Rabbath, C A
2014-01-01
This book presents practical techniques of discrete-time control system design. In general, the design techniques lead to low-order dynamic compensators that ensure satisfactory closed-loop performance for a wide range of sampling rates. The theory is given in the form of theorems, lemmas, and propositions. The design of the control systems is presented as step-by-step procedures and algorithms. The proposed feedback control schemes are applied to well-known dynamic system models. This book also discusses: Closed-loop performance of generic models of mobile robot and airborne pursuer dynamic systems under discrete-time feedback control with limited computing capabilities Concepts of discrete-time models and sampled-data models of continuous-time systems, for both single- and dual-rate operation Local versus global digital redesign Optimal, closed-loop digital redesign methods Plant input mapping design Generalized holds and samplers for use in feedback control loops, Numerical simulation of fixed-point arithm...
A Fully Integrated Discrete-Time Superheterodyne Receiver
Tohidian, M.; Madadi, I.; Staszewski, R.B.
2017-01-01
The zero/low intermediate frequency (IF) receiver (RX) architecture has enabled full CMOS integration. As the technology scales and wireless standards become ever more challenging, the issues related to time-varying dc offsets, the second-order nonlinearity, and flicker noise become more critical.
Nonlinear time heteronymous damping in nonlinear parametric planetary systems
Czech Academy of Sciences Publication Activity Database
Hortel, Milan; Škuderová, Alena
2014-01-01
Roč. 225, č. 7 (2014), s. 2059-2073 ISSN 0001-5970 Institutional support: RVO:61388998 Keywords : nonlinear dynamics * planetary systems * heteronymous damping Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 1.465, year: 2014
Dynamics of Nonlinear Time-Delay Systems
Lakshmanan, Muthusamy
2010-01-01
Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...
Parrondo's game using a discrete-time quantum walk
International Nuclear Information System (INIS)
Chandrashekar, C.M.; Banerjee, Subhashish
2011-01-01
We present a new form of a Parrondo game using discrete-time quantum walk on a line. The two players A and B with different quantum coins operators, individually losing the game can develop a strategy to emerge as joint winners by using their coins alternatively, or in combination for each step of the quantum walk evolution. We also present a strategy for a player A (B) to have a winning probability more than player B (A). Significance of the game strategy in information theory and physical applications are also discussed. - Highlights: → Novel form of Parrondo's game on a single particle discrete-time quantum walk. → Strategies for players to emerge as individual winners or as joint winners. → General framework for controlling and using quantum walk with multiple coins. → Strategies can be used in algorithms and situations involving directed motion.
Disease Extinction Versus Persistence in Discrete-Time Epidemic Models.
van den Driessche, P; Yakubu, Abdul-Aziz
2018-04-12
We focus on discrete-time infectious disease models in populations that are governed by constant, geometric, Beverton-Holt or Ricker demographic equations, and give a method for computing the basic reproduction number, [Formula: see text]. When [Formula: see text] and the demographic population dynamics are asymptotically constant or under geometric growth (non-oscillatory), we prove global asymptotic stability of the disease-free equilibrium of the disease models. Under the same demographic assumption, when [Formula: see text], we prove uniform persistence of the disease. We apply our theoretical results to specific discrete-time epidemic models that are formulated for SEIR infections, cholera in humans and anthrax in animals. Our simulations show that a unique endemic equilibrium of each of the three specific disease models is asymptotically stable whenever [Formula: see text].
International Nuclear Information System (INIS)
Baltacioglu, A.K.; Civalek, O.; Akgoez, B.; Demir, F.
2011-01-01
This paper presents nonlinear static analysis of a rectangular laminated composite thick plate resting on nonlinear two-parameter elastic foundation with cubic nonlinearity. The plate formulation is based on first-order shear deformation theory (FSDT). The governing equation of motion for a rectangular laminated composite thick plate is derived by using the von Karman equation. The nonlinear static deflections of laminated plates on elastic foundation are investigated using the discrete singular convolution method. The effects of foundation and geometric parameters of plates on nonlinear deflections are investigated. The validity of the present method is demonstrated by comparing the present results with those available in the literature. - Highlights: → Large deflection analysis of laminated composite plates are investigated. → As foundation, nonlinear elastic models have been used firstly. → The effects of three-parameter foundation are investigated in detail.
Zak Phase in Discrete-Time Quantum Walks
Puentes, G.; Santillán, O.
2015-01-01
We report on a simple scheme that may present a non-trivial geometric Zak phase ($\\Phi_{Zak}$) structure, which is based on a discrete-time quantum walk architecture. By detecting the Zak phase difference between two trajectories connecting adjacent Dirac points where the quasi-energy gap closes for opposite values of quasi-momentum ($k$), it is possible to identify geometric invariants. These geometric invariants correspond to $|\\Phi_{Zak}^{+(-)}-\\Phi_{Zak}^{-(+)}|=\\pi$ and $|\\Phi_{Zak}^{+(-...
A continuous-time/discrete-time mixed audio-band sigma delta ADC
International Nuclear Information System (INIS)
Liu Yan; Hua Siliang; Wang Donghui; Hou Chaohuan
2011-01-01
This paper introduces a mixed continuous-time/discrete-time, single-loop, fourth-order, 4-bit audio-band sigma delta ADC that combines the benefits of continuous-time and discrete-time circuits, while mitigating the challenges associated with continuous-time design. Measurement results show that the peak SNR of this ADC reaches 100 dB and the total power consumption is less than 30 mW. (semiconductor integrated circuits)
Generalized Synchronization of Time-Delayed Discrete Systems
International Nuclear Information System (INIS)
Jing Jianyi; Min Lequan
2009-01-01
This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve time-delayed generalized synchronization (TDGS). These two theorems uncover the general forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems. (interdisciplinary physics and related areas of science and technology)
Railway capacity and expansion analysis using time discretized paths
DEFF Research Database (Denmark)
Reinhardt, Line Blander; Pisinger, David; Lusby, Richard Martin
2017-01-01
of railway freight transportation on a long term strategic level. The model uses an hourly time discretization and analyses the impact of railway network expansions based on future demand forecasts. It provides an optimal macroscopic freight train schedule and can indicate the time and place of any...... variable penalties for the different passenger busy time slots. As part of a European Union project, all models are applied to a realistic case study that focuses on analyzing the capacity of railway network, in Denmark and Southern Sweden using demand forecasts for 2030. Results suggest that informative...
Mixed Discretization of the Time Domain MFIE at Low Frequencies
Ulku, Huseyin Arda
2017-01-10
Solution of the magnetic field integral equation (MFIE), which is obtained by the classical marching on-in-time (MOT) scheme, becomes inaccurate when the time step is large, i.e., under low-frequency excitation. It is shown here that the inaccuracy stems from the classical MOT scheme’s failure to predict the correct scaling of the current’s Helmholtz components for large time steps. A recently proposed mixed discretization strategy is used to alleviate the inaccuracy problem by restoring the correct scaling of the current’s Helmholtz components under low-frequency excitation.
Decentralized control of discrete-time linear time invariant systems with input saturation
Deliu, Ciprian; Deliu, C.; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij
2009-01-01
We study decentralized stabilization of discrete time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely
Periodic oscillations in linear continuous media coupled with nonlinear discrete systems
International Nuclear Information System (INIS)
Lupini, R.
1998-01-01
A general derivation of partial differential equations with boundary conditions in the form of ordinary differential equations is obtained using the principle of stationary action for a Lagrangian function composed of continuous plus discrete parts in interaction across the boundaries of a 1-dimensional medium. This approach leads directly to the theorem of energy conservation. For linear continuous medium, homogeneous Dirichlet condition at one boundary, and nonlinear oscillator at the other boundary, the entire differential problem reduces to a nonlinear differential-difference equation of neutral type and of the second order. The lag parameter is τ = l/c, where c is the phase speed, l the length of the continuum. The Author investigate the problem of the occurrence of periodic solutions of period integer multiple of the lag (super harmonic solutions) in the case of zero inertia of the boundary system. The problem for such oscillations is shown to reduce to systems of ordinary differential equations with matching conditions in a phase space of lower dimensionality: Phase-plane techniques are used to determine solutions of period 4τ, 8τ and 6τ
Discrete-time nonlinear sliding mode controller | Yadav ...
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 3 (2011) >. Log in or Register to get access to full text downloads.
Robust model predictive control for constrained continuous-time nonlinear systems
Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong
2018-02-01
In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.
Robust performance results for discrete-time systems
Directory of Open Access Journals (Sweden)
Mahmoud Magdi S.
1997-01-01
Full Text Available The problems of robust performance and feedback control synthesis for a class of linear discrete-time systems with time-varying parametric uncertainties are addressed in this paper. The uncertainties are bound and have a linear matrix fractional form. Based on the concept of strongly robust H ∞ -performance criterion, results of robust stability and performance are developed and expressed in easily computable linear matrix inequalities. Synthesis of robust feedback controllers is carried out for several system models of interest.
Discrete-time BAM neural networks with variable delays
Liu, Xin-Ge; Tang, Mei-Lan; Martin, Ralph; Liu, Xin-Bi
2007-07-01
This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development.
Discrete-time BAM neural networks with variable delays
International Nuclear Information System (INIS)
Liu Xinge; Tang Meilan; Martin, Ralph; Liu Xinbi
2007-01-01
This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development
A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers
Bagci, Hakan
2015-01-01
Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability
A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers
Bagci, Hakan
2015-01-07
Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability
A geometric renormalization group in discrete quantum space-time
International Nuclear Information System (INIS)
Requardt, Manfred
2003-01-01
We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalization group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that this process may generate a fixed limit phase, representing our continuous space-time on a mesoscopic or macroscopic scale, provided that the underlying discrete geometry is critical in a specific sense (geometric long range order). Our point of view is corroborated by a series of analytic and numerical results, which allow us to keep track of the geometric changes, taking place on the various scales of the resolution of space-time. Of particular conceptual importance are the notions of dimension of such random systems on the various scales and the notion of geometric criticality
Hofstede, ter F.; Wedel, M.
1998-01-01
This study investigates the effects of time aggregation in discrete and continuous-time hazard models. A Monte Carlo study is conducted in which data are generated according to various continuous and discrete-time processes, and aggregated into daily, weekly and monthly intervals. These data are
Essential uncontrollability of discrete linear, time-invariant, dynamical systems
Cliff, E. M.
1975-01-01
The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.
Real-Time Exponential Curve Fits Using Discrete Calculus
Rowe, Geoffrey
2010-01-01
An improved solution for curve fitting data to an exponential equation (y = Ae(exp Bt) + C) has been developed. This improvement is in four areas -- speed, stability, determinant processing time, and the removal of limits. The solution presented avoids iterative techniques and their stability errors by using three mathematical ideas: discrete calculus, a special relationship (be tween exponential curves and the Mean Value Theorem for Derivatives), and a simple linear curve fit algorithm. This method can also be applied to fitting data to the general power law equation y = Ax(exp B) + C and the general geometric growth equation y = Ak(exp Bt) + C.
Global consensus for discrete-time competitive systems
International Nuclear Information System (INIS)
Shih, C.-W.; Tseng, J.-P.
2009-01-01
Grossberg established a remarkable convergence theorem for a class of competitive systems without knowing and using Lyapunov function for the systems. We present the parallel investigations for the discrete-time version of the Grossberg's model. Through developing an extended component-competing analysis for the coupled system, without knowing a Lyapunov function and applying the LaSalle's invariance principle, the global pattern formation or the so-called global consensus for the system can be achieved. A numerical simulation is performed to illustrate the present theory.
Sampling rare fluctuations of discrete-time Markov chains
Whitelam, Stephen
2018-03-01
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.
Optimal Robust Fault Detection for Linear Discrete Time Systems
Directory of Open Access Journals (Sweden)
Nike Liu
2008-01-01
Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.
Canonical quantization of general relativity in discrete space-times.
Gambini, Rodolfo; Pullin, Jorge
2003-01-17
It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.
A parametric LTR solution for discrete-time systems
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Jannerup, Ole Erik
1989-01-01
A parametric LTR (loop transfer recovery) solution for discrete-time compensators incorporating filtering observers which achieve exact recovery is presented for both minimum- and non-minimum-phase systems. First the recovery error, which defines the difference between the target loop transfer...... and the full loop transfer function, is manipulated into a general form involving the target loop transfer matrix and the fundamental recovery matrix. A parametric LTR solution based on the recovery matrix is developed. It is shown that the LQR/LTR (linear quadratic Gaussian/loop transfer recovery) solution...
Frequency interval balanced truncation of discrete-time bilinear systems
DEFF Research Database (Denmark)
Jazlan, Ahmad; Sreeram, Victor; Shaker, Hamid Reza
2016-01-01
This paper presents the development of a new model reduction method for discrete-time bilinear systems based on the balanced truncation framework. In many model reduction applications, it is advantageous to analyze the characteristics of the system with emphasis on particular frequency intervals...... are the solution to a pair of new generalized Lyapunov equations. The conditions for solvability of these new generalized Lyapunov equations are derived and a numerical solution method for solving these generalized Lyapunov equations is presented. Numerical examples which illustrate the usage of the new...... generalized frequency interval controllability and observability gramians as part of the balanced truncation framework are provided to demonstrate the performance of the proposed method....
The problem with time in mixed continuous/discrete time modelling
Rovers, K.C.; Kuper, Jan; Smit, Gerardus Johannes Maria
The design of cyber-physical systems requires the use of mixed continuous time and discrete time models. Current modelling tools have problems with time transformations (such as a time delay) or multi-rate systems. We will present a novel approach that implements signals as functions of time,
Adaptive Control and Function Projective Synchronization in 2D Discrete-Time Chaotic Systems
International Nuclear Information System (INIS)
Li Yin; Chen Yong; Li Biao
2009-01-01
This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discrete-time chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.
Continuous-time quantum random walks require discrete space
International Nuclear Information System (INIS)
Manouchehri, K; Wang, J B
2007-01-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks
Continuous-time quantum random walks require discrete space
Manouchehri, K.; Wang, J. B.
2007-11-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.
Performance analysis of chi models using discrete-time probabilistic reward graphs
Trcka, N.; Georgievska, S.; Markovski, J.; Andova, S.; Vink, de E.P.
2008-01-01
We propose the model of discrete-time probabilistic reward graphs (DTPRGs) for performance analysis of systems exhibiting discrete deterministic time delays and probabilistic behavior, via their interpretation as discrete-time Markov reward chains, full-fledged platform for qualitative and
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2014-07-01
Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Soundness of Timed-Arc Workflow Nets in Discrete and Continuous-Time Semantics
DEFF Research Database (Denmark)
Mateo, Jose Antonio; Srba, Jiri; Sørensen, Mathias Grund
2015-01-01
Analysis of workflow processes with quantitative aspectslike timing is of interest in numerous time-critical applications. We suggest a workflow model based on timed-arc Petri nets and studythe foundational problems of soundness and strong (time-bounded) soundness.We first consider the discrete-t...
Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator
Directory of Open Access Journals (Sweden)
Zhiqiang Wang
2018-05-01
Full Text Available In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator’s frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL. In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.
Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator.
Wang, Zhiqiang; Li, Xiaolong; Xie, Yunde; Long, Zhiqiang
2018-05-24
In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator's frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.
DEFF Research Database (Denmark)
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...
DEFF Research Database (Denmark)
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities......) and cuts....
International Nuclear Information System (INIS)
Liang Jinling; Cao Jinde
2004-01-01
First, convergence of continuous-time Bidirectional Associative Memory (BAM) neural networks are studied. By using Lyapunov functionals and some analysis technique, the delay-independent sufficient conditions are obtained for the networks to converge exponentially toward the equilibrium associated with the constant input sources. Second, discrete-time analogues of the continuous-time BAM networks are formulated and studied. It is shown that the convergence characteristics of the continuous-time systems are preserved by the discrete-time analogues without any restriction imposed on the uniform discretionary step size. An illustrative example is given to demonstrate the effectiveness of the obtained results
Hopf Bifurcation in a Cobweb Model with Discrete Time Delays
Directory of Open Access Journals (Sweden)
Luca Gori
2014-01-01
Full Text Available We develop a cobweb model with discrete time delays that characterise the length of production cycle. We assume a market comprised of homogeneous producers that operate as adapters by taking the (expected profit-maximising quantity as a target to adjust production and consumers with a marginal willingness to pay captured by an isoelastic demand. The dynamics of the economy is characterised by a one-dimensional delay differential equation. In this context, we show that (1 if the elasticity of market demand is sufficiently high, the steady-state equilibrium is locally asymptotically stable and (2 if the elasticity of market demand is sufficiently low, quasiperiodic oscillations emerge when the time lag (that represents the length of production cycle is high enough.
Quantum field theory on discrete space-time. II
International Nuclear Information System (INIS)
Yamamoto, H.
1985-01-01
A quantum field theory of bosons and fermions is formulated on discrete Lorentz space-time of four dimensions. The minimum intervals of space and time are assumed to have different values in this paper. As a result the difficulties encountered in the previous paper (complex energy, incompleteness of solutions, and inequivalence between phase representation and momentum representation) are removed. The problem in formulating a field theory of fermions is solved by introducing a new operator and considering a theorem of translation invariance. Any matrix element given by a Feynman diagram is calculated in this theory to give a finite value regardless of the kinds of particles concerned (massive and/or massless bosons and/or fermions)
Time Variance of the Suspension Nonlinearity
DEFF Research Database (Denmark)
Agerkvist, Finn T.; Pedersen, Bo Rohde
2008-01-01
but recovers quickly. The the high power and long term measurements affect the non-linearity of the speaker, by incresing the compliance value for all values of displacement. This level dependency is validated with distortion measurements and it is demonstrated how improved accuracy of the non-linear model can...
Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk
International Nuclear Information System (INIS)
Schmitz, A.T.; Schwalm, W.A.
2016-01-01
Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain. - Highlights: • A discrete-time quantum walk is purposed which approximates a continuous-time quantum walk. • The purposed quantum walk could be used to simulate Hamiltonian dynamics on a quantum computer. • Given the spectra decomposition of the Hamiltonian, the quantum walk is solved explicitly. • The method is demonstrated and connected to previous work done on the 1D chain.
Discretization of space and time in wave mechanics: the validity limit
Roatta , Luca
2017-01-01
Assuming that space and time can only have discrete values, it is shown that wave mechanics must necessarily have a specific applicability limit: in a discrete context, unlike in a continuous one, frequencies can not have arbitrarily high values.
Discretization of space and time: determining the values of minimum length and minimum time
Roatta , Luca
2017-01-01
Assuming that space and time can only have discrete values, we obtain the expression of the minimum length and the minimum time interval. These values are found to be exactly coincident with the Planck's length and the Planck's time but for the presence of h instead of ħ .
Blow-Up Time for Nonlinear Heat Equations with Transcendental Nonlinearity
Directory of Open Access Journals (Sweden)
Hee Chul Pak
2012-01-01
Full Text Available A blow-up time for nonlinear heat equations with transcendental nonlinearity is investigated. An upper bound of the first blow-up time is presented. It is pointed out that the upper bound of the first blow-up time depends on the support of the initial datum.
Discrete random walk models for space-time fractional diffusion
International Nuclear Information System (INIS)
Gorenflo, Rudolf; Mainardi, Francesco; Moretti, Daniele; Pagnini, Gianni; Paradisi, Paolo
2002-01-01
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order α is part of (0,2] and skewness θ (moduleθ≤{α,2-α}), and the first-order time derivative with a Caputo derivative of order β is part of (0,1]. Such evolution equation implies for the flux a fractional Fick's law which accounts for spatial and temporal non-locality. The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation
Neutrino oscillations in discrete-time quantum walk framework
Energy Technology Data Exchange (ETDEWEB)
Mallick, Arindam; Mandal, Sanjoy; Chandrashekar, C.M. [C. I. T. Campus, The Institute of Mathematical Sciences, Chennai (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India)
2017-02-15
Here we present neutrino oscillation in the framework of quantum walks. Starting from a one spatial dimensional discrete-time quantum walk we present a scheme of evolutions that will simulate neutrino oscillation. The set of quantum walk parameters which is required to reproduce the oscillation probability profile obtained in both, long range and short range neutrino experiment is explicitly presented. Our scheme to simulate three-generation neutrino oscillation from quantum walk evolution operators can be physically realized in any low energy experimental set-up with access to control a single six-level system, a multiparticle three-qubit or a qubit-qutrit system. We also present the entanglement between spins and position space, during neutrino propagation that will quantify the wave function delocalization around instantaneous average position of the neutrino. This work will contribute towards understanding neutrino oscillation in the framework of the quantum information perspective. (orig.)
Formal methods for discrete-time dynamical systems
Belta, Calin; Aydin Gol, Ebru
2017-01-01
This book bridges fundamental gaps between control theory and formal methods. Although it focuses on discrete-time linear and piecewise affine systems, it also provides general frameworks for abstraction, analysis, and control of more general models. The book is self-contained, and while some mathematical knowledge is necessary, readers are not expected to have a background in formal methods or control theory. It rigorously defines concepts from formal methods, such as transition systems, temporal logics, model checking and synthesis. It then links these to the infinite state dynamical systems through abstractions that are intuitive and only require basic convex-analysis and control-theory terminology, which is provided in the appendix. Several examples and illustrations help readers understand and visualize the concepts introduced throughout the book.
Coordination Frictions and Job Heterogeneity: A Discrete Time Analysis
DEFF Research Database (Denmark)
Kennes, John; Le Maire, Christian Daniel
This paper develops and extends a dynamic, discrete time, job to worker matching model in which jobs are heterogeneous in equilibrium. The key assumptions of this economic environment are (i) matching is directed and (ii) coordination frictions lead to heterogeneous local labor markets. We de- rive...... a number of new theoretical results, which are essential for the empirical application of this type of model to matched employer-employee microdata. First, we o¤er a robust equilibrium concept in which there is a continu- ous dispersion of job productivities and wages. Second, we show that our model can...... of these results preserve the essential tractability of the baseline model with aggregate shocks. Therefore, we o¤er a parsimonious, general equilibrium framework in which to study the process by which the contin- uous dispersion of wages and productivities varies over the business cycle for a large population...
Directory of Open Access Journals (Sweden)
Olav Slupphaug
2001-01-01
Full Text Available We present a mathematical programming approach to robust control of nonlinear systems with uncertain, possibly time-varying, parameters. The uncertain system is given by different local affine parameter dependent models in different parts of the state space. It is shown how this representation can be obtained from a nonlinear uncertain system by solving a set of continuous linear semi-infinite programming problems, and how each of these problems can be solved as a (finite series of ordinary linear programs. Additionally, the system representation includes control- and state constraints. The controller design method is derived from Lyapunov stability arguments and utilizes an affine parameter dependent quadratic Lyapunov function. The controller has a piecewise affine output feedback structure, and the design amounts to finding a feasible solution to a set of linear matrix inequalities combined with one spectral radius constraint on the product of two positive definite matrices. A local solution approach to this nonconvex feasibility problem is proposed. Complexity of the design method and some special cases such as state- feedback are discussed. Finally, an application of the results is given by proposing an on-line computationally feasible algorithm for constrained nonlinear state- feedback model predictive control with robust stability.
Ulku, Huseyin Arda
2014-07-06
Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half
Fisher, Travis C.; Carpenter, Mark H.; Nordstroem, Jan; Yamaleev, Nail K.; Swanson, R. Charles
2011-01-01
Simulations of nonlinear conservation laws that admit discontinuous solutions are typically restricted to discretizations of equations that are explicitly written in divergence form. This restriction is, however, unnecessary. Herein, linear combinations of divergence and product rule forms that have been discretized using diagonal-norm skew-symmetric summation-by-parts (SBP) operators, are shown to satisfy the sufficient conditions of the Lax-Wendroff theorem and thus are appropriate for simulations of discontinuous physical phenomena. Furthermore, special treatments are not required at the points that are near physical boundaries (i.e., discrete conservation is achieved throughout the entire computational domain, including the boundaries). Examples are presented of a fourth-order, SBP finite-difference operator with second-order boundary closures. Sixth- and eighth-order constructions are derived, and included in E. Narrow-stencil difference operators for linear viscous terms are also derived; these guarantee the conservative form of the combined operator.
Hopf Bifurcation Analysis for a Stochastic Discrete-Time Hyperchaotic System
Directory of Open Access Journals (Sweden)
Jie Ran
2015-01-01
Full Text Available The dynamics of a discrete-time hyperchaotic system and the amplitude control of Hopf bifurcation for a stochastic discrete-time hyperchaotic system are investigated in this paper. Numerical simulations are presented to exhibit the complex dynamical behaviors in the discrete-time hyperchaotic system. Furthermore, the stochastic discrete-time hyperchaotic system with random parameters is transformed into its equivalent deterministic system with the orthogonal polynomial theory of discrete random function. In addition, the dynamical features of the discrete-time hyperchaotic system with random disturbances are obtained through its equivalent deterministic system. By using the Hopf bifurcation conditions of the deterministic discrete-time system, the specific conditions for the existence of Hopf bifurcation in the equivalent deterministic system are derived. And the amplitude control with random intensity is discussed in detail. Finally, the feasibility of the control method is demonstrated by numerical simulations.
Stochastic ℋ∞ Finite-Time Control of Discrete-Time Systems with Packet Loss
Directory of Open Access Journals (Sweden)
Yingqi Zhang
2012-01-01
Full Text Available This paper investigates the stochastic finite-time stabilization and ℋ∞ control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochastic ℋ∞ finite-time boundedness and then state feedback controllers are designed to guarantee stochastic ℋ∞ finite-time stabilization of the class of stochastic systems. The stochastic ℋ∞ finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme.
Time-Dependent Mean-Field Games with Logarithmic Nonlinearities
Gomes, Diogo A.; Pimentel, Edgard
2015-01-01
In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.
Time-Dependent Mean-Field Games with Logarithmic Nonlinearities
Gomes, Diogo A.
2015-10-06
In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.
Constant pressure and temperature discrete-time Langevin molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Grønbech-Jensen, Niels [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Department of Mathematics, University of California, Davis, California 95616 (United States); Farago, Oded [Department of Biomedical Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel)
2014-11-21
We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.
Modeling of Volatility with Non-linear Time Series Model
Kim Song Yon; Kim Mun Chol
2013-01-01
In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.
From discrete-time models to continuous-time, asynchronous modeling of financial markets
Boer, Katalin; Kaymak, Uzay; Spiering, Jaap
2007-01-01
Most agent-based simulation models of financial markets are discrete-time in nature. In this paper, we investigate to what degree such models are extensible to continuous-time, asynchronous modeling of financial markets. We study the behavior of a learning market maker in a market with information
From Discrete-Time Models to Continuous-Time, Asynchronous Models of Financial Markets
K. Boer-Sorban (Katalin); U. Kaymak (Uzay); J. Spiering (Jaap)
2006-01-01
textabstractMost agent-based simulation models of financial markets are discrete-time in nature. In this paper, we investigate to what degree such models are extensible to continuous-time, asynchronous modelling of financial markets. We study the behaviour of a learning market maker in a market with
A theory of Markovian time-inconsistent stochastic control in discrete time
DEFF Research Database (Denmark)
Bjork, Tomas; Murgoci, Agatha
2014-01-01
We develop a theory for a general class of discrete-time stochastic control problems that, in various ways, are time-inconsistent in the sense that they do not admit a Bellman optimality principle. We attack these problems by viewing them within a game theoretic framework, and we look for subgame...
Decentralized control of discrete-time linear time invariant systems with input saturation
Deliu, C.; Deliu, Ciprian; Malek, Babak; Roy, Sandip; Saberi, Ali; Stoorvogel, Antonie Arij
We study decentralized stabilization of discrete-time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely
International Nuclear Information System (INIS)
Brito, P.E. de; Nazareno, H.N.
2012-01-01
The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.
International Nuclear Information System (INIS)
Raza, K.S.M.
2004-01-01
This paper demonstrates that if a complicated nonlinear, non-square, state-coupled multi variable system is smartly linearized and subjected to a thorough stability analysis then we can achieve our design objectives via a controller which will be quite simple (in term of resource usage and execution time) and very efficient (in terms of robustness). Further the aim is to implement this controller via computer in a real time environment. Therefore first a nonlinear mathematical model of the system is achieved. An intelligent work is done to decouple the multivariable system. Linearization and stability analysis techniques are employed for the development of a linearized and mathematically sound control law. Nonlinearities like the saturation in actuators are also been catered. The controller is then discretized using Runge-Kutta integration. Finally the discretized control law is programmed in a computer in a real time environment. The programme is done in RT -Linux using GNU C for the real time realization of the control scheme. The real time processes, like sampling and controlled actuation, and the non real time processes, like graphical user interface and display, are programmed as different tasks. The issue of inter process communication, between real time and non real time task is addressed quite carefully. The results of this research pursuit are presented graphically. (author)
On Stochastic Finite-Time Control of Discrete-Time Fuzzy Systems with Packet Dropout
Directory of Open Access Journals (Sweden)
Yingqi Zhang
2012-01-01
Full Text Available This paper is concerned with the stochastic finite-time stability and stochastic finite-time boundedness problems for one family of fuzzy discrete-time systems over networks with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, we present the dynamic model description studied, in which the discrete-time fuzzy T-S systems with packet loss can be described by one class of fuzzy Markovian jump systems. Then, the concepts of stochastic finite-time stability and stochastic finite-time boundedness and problem formulation are given. Based on Lyapunov function approach, sufficient conditions on stochastic finite-time stability and stochastic finite-time boundedness are established for the resulting closed-loop fuzzy discrete-time system with Markovian jumps, and state-feedback controllers are designed to ensure stochastic finite-time stability and stochastic finite-time boundedness of the class of fuzzy systems. The stochastic finite-time stability and stochastic finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the stochastic stability of the class of fuzzy T-S systems with packet loss. Finally, two illustrative examples are presented to show the validity of the developed methodology.
International Nuclear Information System (INIS)
Kobayashi, T.; Yoshikawa, K.; Takaoka, E.; Nakazawa, M.; Shikama, Y.
2002-01-01
A time history nonlinear earthquake response analysis method was proposed and applied to earthquake response prediction analysis for a Large Scale Seismic Test (LSST) Program in Hualien, Taiwan, in which a 1/4 scale model of a nuclear reactor containment structure was constructed on sandy gravel layer. In the analysis both of strain-dependent material nonlinearity, and geometrical nonlinearity by base mat uplift, were considered. The 'Lattice Model' for the soil-structure interaction model was employed. An earthquake record on soil surface at the site was used as control motion, and deconvoluted to the input motion of the analysis model at GL-52 m with 300 Gal of maximum acceleration. The following two analyses were considered: (A) time history nonlinear, (B) equivalent linear, and the advantage of time history nonlinear earthquake response analysis method is discussed
International Nuclear Information System (INIS)
Belmonte-Beitia, Juan; Calvo, Gabriel F.
2009-01-01
In this Letter, by means of similarity transformations, we construct explicit solutions to the quintic nonlinear Schroedinger equation with potentials and nonlinearities depending both on time and on the spatial coordinates. We present the general approach and use it to study some examples and find nontrivial explicit solutions such as periodic (breathers), quasiperiodic and bright and dark soliton solutions
Multiple Estimation Architecture in Discrete-Time Adaptive Mixing Control
Directory of Open Access Journals (Sweden)
Simone Baldi
2013-05-01
Full Text Available Adaptive mixing control (AMC is a recently developed control scheme for uncertain plants, where the control action coming from a bank of precomputed controller is mixed based on the parameter estimates generated by an on-line parameter estimator. Even if the stability of the control scheme, also in the presence of modeling errors and disturbances, has been shown analytically, its transient performance might be sensitive to the initial conditions of the parameter estimator. In particular, for some initial conditions, transient oscillations may not be acceptable in practical applications. In order to account for such a possible phenomenon and to improve the learning capability of the adaptive scheme, in this paper a new mixing architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each one working on a small subset of the uncertainty set. A supervisory logic, using performance signals based on the past and present estimation error, selects the parameter estimate to determine the mixing of the controllers. The stability and robustness properties of the resulting approach, referred to as multi-estimator adaptive mixing control (Multi-AMC, are analytically established. Besides, extensive simulations demonstrate that the scheme improves the transient performance of the original AMC with a single estimator. The control scheme and the analysis are carried out in a discrete-time framework, for easier implementation of the method in digital control.
Conservative fourth-order time integration of non-linear dynamic systems
DEFF Research Database (Denmark)
Krenk, Steen
2015-01-01
An energy conserving time integration algorithm with fourth-order accuracy is developed for dynamic systems with nonlinear stiffness. The discrete formulation is derived by integrating the differential state-space equations of motion over the integration time increment, and then evaluating...... the resulting time integrals of the inertia and stiffness terms via integration by parts. This process introduces the time derivatives of the state space variables, and these are then substituted from the original state-space differential equations. The resulting discrete form of the state-space equations...... is a direct fourth-order accurate representation of the original differential equations. This fourth-order form is energy conserving for systems with force potential in the form of a quartic polynomial in the displacement components. Energy conservation for a force potential of general form is obtained...
Delsing, M.J.M.H.; Oud, J.H.L.; Bruyn, E.E.J. De
2005-01-01
In family research, bidirectional influences between the family and the individual are usually analyzed in discrete time. Results from discrete time analysis, however, have been shown to be highly dependent on the length of the observation interval. Continuous time analysis using stochastic
DEFF Research Database (Denmark)
Jimenez, M.J.; Madsen, Henrik; Bloem, J.J.
2008-01-01
This paper focuses on a method for linear or non-linear continuous time modelling of physical systems using discrete time data. This approach facilitates a more appropriate modelling of more realistic non-linear systems. Particularly concerning advanced building components, convective and radiati...... that a description of the non-linear heat transfer is essential. The resulting model is a non-linear first order stochastic differential equation for the heat transfer of the PV component....... heat interchanges are non-linear effects and represent significant contributions in a variety of components such as photovoltaic integrated facades or roofs and those using these effects as passive cooling strategies, etc. Since models are approximations of the physical system and data is encumbered...
Guaranteed Cost Finite-Time Control of Discrete-Time Positive Impulsive Switched Systems
Directory of Open Access Journals (Sweden)
Leipo Liu
2018-01-01
Full Text Available This paper considers the guaranteed cost finite-time boundedness of discrete-time positive impulsive switched systems. Firstly, the definition of guaranteed cost finite-time boundedness is introduced. By using the multiple linear copositive Lyapunov function (MLCLF and average dwell time (ADT approach, a state feedback controller is designed and sufficient conditions are obtained to guarantee that the corresponding closed-loop system is guaranteed cost finite-time boundedness (GCFTB. Such conditions can be solved by linear programming. Finally, a numerical example is provided to show the effectiveness of the proposed method.
Staggered and short-period solutions of the saturable discrete nonlinear Schrodinger equation
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, K.O.; Samuelsen, Mogens Rugholm
2009-01-01
We point out that the nonlinear Schrodinger lattice with a saturable nonlinearity also admits staggered periodic aswell as localized pulse-like solutions. Further, the same model also admits solutions with a short period. We examine the stability of these solutions and find that the staggered as ...
DEFF Research Database (Denmark)
Fuhrmann, David R.; Bingham, Harry B.; Madsen, Per A.
2004-01-01
of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water nonlinearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into into the numerical behavior of this rather complicated system of nonlinear PDEs....
Time-aggregation effects on the baseline of continuous-time and discrete-time hazard models
ter Hofstede, F.; Wedel, M.
In this study we reinvestigate the effect of time-aggregation for discrete- and continuous-time hazard models. We reanalyze the results of a previous Monte Carlo study by ter Hofstede and Wedel (1998), in which the effects of time-aggregation on the parameter estimates of hazard models were
Discrete time duration models with group-level heterogeneity
DEFF Research Database (Denmark)
Frederiksen, Anders; Honoré, Bo; Hu, Loujia
2007-01-01
Dynamic discrete choice panel data models have received a great deal of attention. In those models, the dynamics is usually handled by including the lagged outcome as an explanatory variable. In this paper we consider an alternative model in which the dynamics is handled by using the duration...
Discrete Emotion Effects on Lexical Decision Response Times
Briesemeister, Benny B.; Kuchinke, Lars; Jacobs, Arthur M.
2011-01-01
Our knowledge about affective processes, especially concerning effects on cognitive demands like word processing, is increasing steadily. Several studies consistently document valence and arousal effects, and although there is some debate on possible interactions and different notions of valence, broad agreement on a two dimensional model of affective space has been achieved. Alternative models like the discrete emotion theory have received little interest in word recognition research so far. Using backward elimination and multiple regression analyses, we show that five discrete emotions (i.e., happiness, disgust, fear, anger and sadness) explain as much variance as two published dimensional models assuming continuous or categorical valence, with the variables happiness, disgust and fear significantly contributing to this account. Moreover, these effects even persist in an experiment with discrete emotion conditions when the stimuli are controlled for emotional valence and arousal levels. We interpret this result as evidence for discrete emotion effects in visual word recognition that cannot be explained by the two dimensional affective space account. PMID:21887307
Discrete emotion effects on lexical decision response times.
Briesemeister, Benny B; Kuchinke, Lars; Jacobs, Arthur M
2011-01-01
Our knowledge about affective processes, especially concerning effects on cognitive demands like word processing, is increasing steadily. Several studies consistently document valence and arousal effects, and although there is some debate on possible interactions and different notions of valence, broad agreement on a two dimensional model of affective space has been achieved. Alternative models like the discrete emotion theory have received little interest in word recognition research so far. Using backward elimination and multiple regression analyses, we show that five discrete emotions (i.e., happiness, disgust, fear, anger and sadness) explain as much variance as two published dimensional models assuming continuous or categorical valence, with the variables happiness, disgust and fear significantly contributing to this account. Moreover, these effects even persist in an experiment with discrete emotion conditions when the stimuli are controlled for emotional valence and arousal levels. We interpret this result as evidence for discrete emotion effects in visual word recognition that cannot be explained by the two dimensional affective space account.
Discrete emotion effects on lexical decision response times.
Directory of Open Access Journals (Sweden)
Benny B Briesemeister
Full Text Available Our knowledge about affective processes, especially concerning effects on cognitive demands like word processing, is increasing steadily. Several studies consistently document valence and arousal effects, and although there is some debate on possible interactions and different notions of valence, broad agreement on a two dimensional model of affective space has been achieved. Alternative models like the discrete emotion theory have received little interest in word recognition research so far. Using backward elimination and multiple regression analyses, we show that five discrete emotions (i.e., happiness, disgust, fear, anger and sadness explain as much variance as two published dimensional models assuming continuous or categorical valence, with the variables happiness, disgust and fear significantly contributing to this account. Moreover, these effects even persist in an experiment with discrete emotion conditions when the stimuli are controlled for emotional valence and arousal levels. We interpret this result as evidence for discrete emotion effects in visual word recognition that cannot be explained by the two dimensional affective space account.
On the mixed discretization of the time domain magnetic field integral equation
Ulku, Huseyin Arda
2012-09-01
Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed discretization scheme, unlike the classical scheme which uses RWG functions as both basis and testing functions, is proper: Testing functions belong to dual space of the basis functions. Numerical results demonstrate that the marching on-in-time (MOT) solution of the mixed discretized MFIE yields more accurate results than that of classically discretized MFIE. © 2012 IEEE.
forecasting with nonlinear time series model: a monte-carlo
African Journals Online (AJOL)
PUBLICATIONS1
Carlo method of forecasting using a special nonlinear time series model, called logistic smooth transition ... We illustrate this new method using some simulation ..... in MATLAB 7.5.0. ... process (DGP) using the logistic smooth transi-.
Integrating Continuous-Time and Discrete-Event Concepts in Process Modelling, Simulation and Control
Beek, van D.A.; Gordijn, S.H.F.; Rooda, J.E.; Ertas, A.
1995-01-01
Currently, modelling of systems in the process industry requires the use of different specification languages for the specification of the discrete-event and continuous-time subsystems. In this way, models are restricted to individual subsystems of either a continuous-time or discrete-event nature.
Time Span of Discretion and Administrative Work in School Systems: Results of a Pilot Study.
Allison, Derek J.; Morfitt, Grace
This paper presents findings of a study that utilized Elliott Jaques' theories of organizational depth structure and time span of discretion in administrative work to examine administrators' responsibilities in two Ontario (Canada) school systems. The theory predicts that the time-span of discretion associated with the administrative tasks will…
Energy Technology Data Exchange (ETDEWEB)
Zhang Yu, E-mail: yuzhang@xmu.edu.cn [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Sprecher, Alicia J. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States); Zhao Zongxi [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Jiang, Jack J. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States)
2011-09-15
Highlights: > The VWK method effectively detects the nonlinearity of a discrete map. > The method describes the chaotic time series of a biomechanical vocal fold model. > Nonlinearity in laryngeal pathology is detected from short and noisy time series. - Abstract: In this paper, we apply the Volterra-Wiener-Korenberg (VWK) model method to detect nonlinearity in disordered voice productions. The VWK method effectively describes the nonlinearity of a third-order nonlinear map. It allows for the analysis of short and noisy data sets. The extracted VWK model parameters show an agreement with the original nonlinear map parameters. Furthermore, the VWK mode method is applied to successfully assess the nonlinearity of a biomechanical voice production model simulating irregular vibratory dynamics of vocal folds with a unilateral vocal polyp. Finally, we show the clinical applicability of this nonlinear detection method to analyze the electroglottographic data generated by 14 patients with vocal nodules or polyps. The VWK model method shows potential in describing the nonlinearity inherent in disordered voice productions from short and noisy time series that are common in the clinical setting.
International Nuclear Information System (INIS)
Zhang Yu; Sprecher, Alicia J.; Zhao Zongxi; Jiang, Jack J.
2011-01-01
Highlights: → The VWK method effectively detects the nonlinearity of a discrete map. → The method describes the chaotic time series of a biomechanical vocal fold model. → Nonlinearity in laryngeal pathology is detected from short and noisy time series. - Abstract: In this paper, we apply the Volterra-Wiener-Korenberg (VWK) model method to detect nonlinearity in disordered voice productions. The VWK method effectively describes the nonlinearity of a third-order nonlinear map. It allows for the analysis of short and noisy data sets. The extracted VWK model parameters show an agreement with the original nonlinear map parameters. Furthermore, the VWK mode method is applied to successfully assess the nonlinearity of a biomechanical voice production model simulating irregular vibratory dynamics of vocal folds with a unilateral vocal polyp. Finally, we show the clinical applicability of this nonlinear detection method to analyze the electroglottographic data generated by 14 patients with vocal nodules or polyps. The VWK model method shows potential in describing the nonlinearity inherent in disordered voice productions from short and noisy time series that are common in the clinical setting.
Directory of Open Access Journals (Sweden)
Fengxia Xu
2014-01-01
Full Text Available U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.
Directory of Open Access Journals (Sweden)
H. O. Bakodah
2013-01-01
Full Text Available A method of lines approach to the numerical solution of nonlinear wave equations typified by the regularized long wave (RLW is presented. The method developed uses a finite differences discretization to the space. Solution of the resulting system was obtained by applying fourth Runge-Kutta time discretization method. Using Von Neumann stability analysis, it is shown that the proposed method is marginally stable. To test the accuracy of the method some numerical experiments on test problems are presented. Test problems including solitary wave motion, two-solitary wave interaction, and the temporal evaluation of a Maxwellian initial pulse are studied. The accuracy of the present method is tested with and error norms and the conservation properties of mass, energy, and momentum under the RLW equation.
International Nuclear Information System (INIS)
Huang Zhenkun; Wang Xinghua; Gao Feng
2006-01-01
In this Letter, we discuss discrete-time analogue of a continuous-time cellular neural network. Sufficient conditions are obtained for the existence of a unique almost periodic sequence solution which is globally attractive. Our results demonstrate dynamics of the formulated discrete-time analogue as mathematical models for the continuous-time cellular neural network in almost periodic case. Finally, a computer simulation illustrates the suitability of our discrete-time analogue as numerical algorithms in simulating the continuous-time cellular neural network conveniently
Directory of Open Access Journals (Sweden)
Pablo Soto-Quiros
2015-01-01
Full Text Available This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT: the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase.
Discrete Emotion Effects on Lexical Decision Response Times
Briesemeister, Benny B.; Kuchinke, Lars; Jacobs, Arthur M.
2018-01-01
Our knowledge about affective processes, especially concerning effects on cognitive demands like word processing, is increasing steadily. Several studies consistently document valence and arousal effects, and although there is some debate on possible interactions and different notions of valence, broad agreement on a two dimensional model of affective space has been achieved. Alternative models like the discrete emotion theory have received little interest in word recognition research so far....
Theory and computation of disturbance invariant sets for discrete-time linear systems
Directory of Open Access Journals (Sweden)
Kolmanovsky Ilya
1998-01-01
Full Text Available This paper considers the characterization and computation of invariant sets for discrete-time, time-invariant, linear systems with disturbance inputs whose values are confined to a specified compact set but are otherwise unknown. The emphasis is on determining maximal disturbance-invariant sets X that belong to a specified subset Γ of the state space. Such d-invariant sets have important applications in control problems where there are pointwise-in-time state constraints of the form χ ( t ∈ Γ . One purpose of the paper is to unite and extend in a rigorous way disparate results from the prior literature. In addition there are entirely new results. Specific contributions include: exploitation of the Pontryagin set difference to clarify conceptual matters and simplify mathematical developments, special properties of maximal invariant sets and conditions for their finite determination, algorithms for generating concrete representations of maximal invariant sets, practical computational questions, extension of the main results to general Lyapunov stable systems, applications of the computational techniques to the bounding of state and output response. Results on Lyapunov stable systems are applied to the implementation of a logic-based, nonlinear multimode regulator. For plants with disturbance inputs and state-control constraints it enlarges the constraint-admissible domain of attraction. Numerical examples illustrate the various theoretical and computational results.
Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.
Energy Technology Data Exchange (ETDEWEB)
Choi, Youngsoo [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carlberg, Kevin Thomas [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.
2017-09-01
Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over all space and time in a weighted ℓ^{2}-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.
Directory of Open Access Journals (Sweden)
Il Young Song
2015-01-01
Full Text Available This paper focuses on estimation of a nonlinear function of state vector (NFS in discrete-time linear systems with time-delays and model uncertainties. The NFS represents a multivariate nonlinear function of state variables, which can indicate useful information of a target system for control. The optimal nonlinear estimator of an NFS (in mean square sense represents a function of the receding horizon estimate and its error covariance. The proposed receding horizon filter represents the standard Kalman filter with time-delays and special initial horizon conditions described by the Lyapunov-like equations. In general case to calculate an optimal estimator of an NFS we propose using the unscented transformation. Important class of polynomial NFS is considered in detail. In the case of polynomial NFS an optimal estimator has a closed-form computational procedure. The subsequent application of the proposed receding horizon filter and nonlinear estimator to a linear stochastic system with time-delays and uncertainties demonstrates their effectiveness.
Improvements on nonlinear gyrokinetic particle simulations based on δf-discretization scheme
International Nuclear Information System (INIS)
Zorat, R.; Tessarotto, M.
1998-01-01
In this work various issues regarding the definition of improved theoretical models appropriate to describe the dynamics of confined magnetoplasmas by particle simulation methods are proposed. These concern in particular an improved non linear δf discretization scheme and the treatment of binary, i.e. Coulomb, and collective interactions. (orig.)
Multigrid Reduction in Time for Nonlinear Parabolic Problems
Energy Technology Data Exchange (ETDEWEB)
Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Univ. of Colorado, Boulder, CO (United States); O' Neill, B. [Univ. of Colorado, Boulder, CO (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-01-04
The need for parallel-in-time is being driven by changes in computer architectures, where future speed-ups will be available through greater concurrency, but not faster clock speeds, which are stagnant.This leads to a bottleneck for sequential time marching schemes, because they lack parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with MGRIT, where efficient is defined as achieving similar performance when compared to a corresponding linear problem. As our benchmark, we use the p-Laplacian, where p = 4 corresponds to a well-known nonlinear diffusion equation and p = 2 corresponds to our benchmark linear diffusion problem. When considering linear problems and implicit methods, the use of optimal spatial solvers such as spatial multigrid imply that the cost of one time step evaluation is fixed across temporal levels, which have a large variation in time step sizes. This is not the case for nonlinear problems, where the work required increases dramatically on coarser time grids, where relatively large time steps lead to worse conditioned nonlinear solves and increased nonlinear iteration counts per time step evaluation. This is the key difficulty explored by this paper. We show that by using a variety of strategies, most importantly, spatial coarsening and an alternate initial guess to the nonlinear time-step solver, we can reduce the work per time step evaluation over all temporal levels to a range similar with the corresponding linear problem. This allows for parallel scaling behavior comparable to the corresponding linear problem.
Robust Stabilization of Discrete-Time Systems with Time-Varying Delay: An LMI Approach
Directory of Open Access Journals (Sweden)
Valter J. S. Leite
2008-01-01
Full Text Available Sufficient linear matrix inequality (LMI conditions to verify the robust stability and to design robust state feedback gains for the class of linear discrete-time systems with time-varying delay and polytopic uncertainties are presented. The conditions are obtained through parameter-dependent Lyapunov-Krasovskii functionals and use some extra variables, which yield less conservative LMI conditions. Both problems, robust stability analysis and robust synthesis, are formulated as convex problems where all system matrices can be affected by uncertainty. Some numerical examples are presented to illustrate the advantages of the proposed LMI conditions.
Finite-Time Stability Analysis of Discrete-Time Linear Singular Systems
Directory of Open Access Journals (Sweden)
Songlin Wo
2014-01-01
Full Text Available The finite-time stability (FTS problem of discrete-time linear singular systems (DTLSS is considered in this paper. A necessary and sufficient condition for FTS is obtained, which can be expressed in terms of matrix inequalities. Then, another form of the necessary and sufficient condition for FTS is also given by using matrix-null space technology. In order to solve the stability problem expediently, a sufficient condition for FTS is given via linear matrix inequality (LMI approach; this condition can be expressed in terms of LMIs. Finally, an illustrating example is also given to show the effectiveness of the proposed method.
Real-time frequency-to-time mapping based on spectrally-discrete chromatic dispersion.
Dai, Yitang; Li, Jilong; Zhang, Ziping; Yin, Feifei; Li, Wangzhe; Xu, Kun
2017-07-10
Traditional photonics-assisted real-time Fourier transform (RTFT) usually suffers from limited chromatic dispersion, huge volume, or large time delay and attendant loss. In this paper we propose frequency-to-time mapping (FTM) by spectrally-discrete dispersion to increase frequency sensitivity greatly. The novel media has periodic ON/OFF intensity frequency response while quadratic phase distribution along disconnected channels, which de-chirps matched optical input to repeated Fourier-transform-limited output. Real-time FTM is then obtained within each period. Since only discrete phase retardation rather than continuously-changed true time delay is required, huge equivalent dispersion is then available by compact device. Such FTM is theoretically analyzed, and implementation by cascaded optical ring resonators is proposed. After a numerical example, our theory is demonstrated by a proof-of-concept experiment, where a single loop containing 0.5-meters-long fiber is used. FTM under 400-MHz unambiguous bandwidth and 25-MHz resolution is reported. Highly-sensitive and linear mapping is achieved with 6.25 ps/MHz, equivalent to ~4.6 × 10 4 -km standard single mode fiber. Extended instantaneous bandwidth is expected by ring cascading. Our proposal may provide a promising method for real-time, low-latency Fourier transform.
Long-time predictions in nonlinear dynamics
Szebehely, V.
1980-01-01
It is known that nonintegrable dynamical systems do not allow precise predictions concerning their behavior for arbitrary long times. The available series solutions are not uniformly convergent according to Poincare's theorem and numerical integrations lose their meaningfulness after the elapse of arbitrary long times. Two approaches are the use of existing global integrals and statistical methods. This paper presents a generalized method along the first approach. As examples long-time predictions in the classical gravitational satellite and planetary problems are treated.
Physics constrained nonlinear regression models for time series
International Nuclear Information System (INIS)
Majda, Andrew J; Harlim, John
2013-01-01
A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)
Parisian ruin for the dual risk process in discrete-time
Palmowski, Zbigniew; Ramsden, Lewis; Papaioannou, Apostolos D.
2017-01-01
In this paper we consider the Parisian ruin probabilities for the dual risk model in a discrete-time setting. By exploiting the strong Markov property of the risk process we derive a recursive expression for the fnite-time Parisian ruin probability, in terms of classic discrete-time dual ruin probabilities. Moreover, we obtain an explicit expression for the corresponding infnite-time Parisian ruin probability as a limiting case. In order to obtain more analytic results, we employ a conditioni...
Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong
2018-07-01
This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.
Time-dependent switched discrete-time linear systems control and filtering
Zhang, Lixian; Shi, Peng; Lu, Qiugang
2016-01-01
This book focuses on the basic control and filtering synthesis problems for discrete-time switched linear systems under time-dependent switching signals. Chapter 1, as an introduction of the book, gives the backgrounds and motivations of switched systems, the definitions of the typical time-dependent switching signals, the differences and links to other types of systems with hybrid characteristics and a literature review mainly on the control and filtering for the underlying systems. By summarizing the multiple Lyapunov-like functions (MLFs) approach in which different requirements on comparisons of Lyapunov function values at switching instants, a series of methodologies are developed for the issues on stability and stabilization, and l2-gain performance or tube-based robustness for l∞ disturbance, respectively, in Chapters 2 and 3. Chapters 4 and 5 are devoted to the control and filtering problems for the time-dependent switched linear systems with either polytopic uncertainties or measurable time-varying...
Long-time behaviour of discretizations of the simple pendulum equation
Energy Technology Data Exchange (ETDEWEB)
Cieslinski, Jan L [Uniwersytet w Bialymstoku, Wydzial Fizyki, ul. Lipowa 41, 15-424 Bialystok (Poland); Ratkiewicz, Boguslaw [Doctoral Studies, Wydzial Fizyki, Uniwersytet Adama Mickiewicza, Poznan (Poland)], E-mail: janek@alpha.uwb.edu.pl, E-mail: bograt@poczta.onet.pl
2009-03-13
We compare several discretizations of the simple pendulum equation in a series of numerical experiments. The stress is put on the long-time behaviour. The chosen numerical schemes are either symplectic maps or integrable (energy-preserving) maps, or both. Therefore, they preserve qualitative features of solutions (such as periodicity). We describe characteristic periodic time dependences of numerical estimates of the period and the amplitude, and explain them as systematic numerical by-effects produced by any method. Finally, we propose a new numerical scheme which is a modification of the discrete gradient method. This modified discrete gradient method preserves (almost exactly) the period of small oscillations for any time step.
Long-time behaviour of discretizations of the simple pendulum equation
International Nuclear Information System (INIS)
Cieslinski, Jan L; Ratkiewicz, Boguslaw
2009-01-01
We compare several discretizations of the simple pendulum equation in a series of numerical experiments. The stress is put on the long-time behaviour. The chosen numerical schemes are either symplectic maps or integrable (energy-preserving) maps, or both. Therefore, they preserve qualitative features of solutions (such as periodicity). We describe characteristic periodic time dependences of numerical estimates of the period and the amplitude, and explain them as systematic numerical by-effects produced by any method. Finally, we propose a new numerical scheme which is a modification of the discrete gradient method. This modified discrete gradient method preserves (almost exactly) the period of small oscillations for any time step
Nonlinear Time Series Analysis via Neural Networks
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Jiang, Guangli; Liu, Leibo; Zhu, Wenping; Yin, Shouyi; Wei, Shaojun
2015-09-04
This paper proposes a real-time feature extraction VLSI architecture for high-resolution images based on the accelerated KAZE algorithm. Firstly, a new system architecture is proposed. It increases the system throughput, provides flexibility in image resolution, and offers trade-offs between speed and scaling robustness. The architecture consists of a two-dimensional pipeline array that fully utilizes computational similarities in octaves. Secondly, a substructure (block-serial discrete-time cellular neural network) that can realize a nonlinear filter is proposed. This structure decreases the memory demand through the removal of data dependency. Thirdly, a hardware-friendly descriptor is introduced in order to overcome the hardware design bottleneck through the polar sample pattern; a simplified method to realize rotation invariance is also presented. Finally, the proposed architecture is designed in TSMC 65 nm CMOS technology. The experimental results show a performance of 127 fps in full HD resolution at 200 MHz frequency. The peak performance reaches 181 GOPS and the throughput is double the speed of other state-of-the-art architectures.
Directory of Open Access Journals (Sweden)
Guangli Jiang
2015-09-01
Full Text Available This paper proposes a real-time feature extraction VLSI architecture for high-resolution images based on the accelerated KAZE algorithm. Firstly, a new system architecture is proposed. It increases the system throughput, provides flexibility in image resolution, and offers trade-offs between speed and scaling robustness. The architecture consists of a two-dimensional pipeline array that fully utilizes computational similarities in octaves. Secondly, a substructure (block-serial discrete-time cellular neural network that can realize a nonlinear filter is proposed. This structure decreases the memory demand through the removal of data dependency. Thirdly, a hardware-friendly descriptor is introduced in order to overcome the hardware design bottleneck through the polar sample pattern; a simplified method to realize rotation invariance is also presented. Finally, the proposed architecture is designed in TSMC 65 nm CMOS technology. The experimental results show a performance of 127 fps in full HD resolution at 200 MHz frequency. The peak performance reaches 181 GOPS and the throughput is double the speed of other state-of-the-art architectures.
Fermion Systems in Discrete Space-Time Exemplifying the Spontaneous Generation of a Causal Structure
Diethert, A.; Finster, F.; Schiefeneder, D.
As toy models for space-time at the Planck scale, we consider examples of fermion systems in discrete space-time which are composed of one or two particles defined on two up to nine space-time points. We study the self-organization of the particles as described by a variational principle both analytically and numerically. We find an effect of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure.
A Derivation of a Microscopic Entropy and Time Irreversibility From the Discreteness of Time
Directory of Open Access Journals (Sweden)
Roland Riek
2014-06-01
Full Text Available The basic microsopic physical laws are time reversible. In contrast, the second law of thermodynamics, which is a macroscopic physical representation of the world, is able to describe irreversible processes in an isolated system through the change of entropy ΔS > 0. It is the attempt of the present manuscript to bridge the microscopic physical world with its macrosocpic one with an alternative approach than the statistical mechanics theory of Gibbs and Boltzmann. It is proposed that time is discrete with constant step size. Its consequence is the presence of time irreversibility at the microscopic level if the present force is of complex nature (F(r ≠ const. In order to compare this discrete time irreversible mechamics (for simplicity a “classical”, single particle in a one dimensional space is selected with its classical Newton analog, time reversibility is reintroduced by scaling the time steps for any given time step n by the variable sn leading to the Nosé-Hoover Lagrangian. The corresponding Nos´e-Hoover Hamiltonian comprises a term Ndf kB T ln sn (kB the Boltzmann constant, T the temperature, and Ndf the number of degrees of freedom which is defined as the microscopic entropy Sn at time point n multiplied by T. Upon ensemble averaging this microscopic entropy Sn in equilibrium for a system which does not have fast changing forces approximates its macroscopic counterpart known from thermodynamics. The presented derivation with the resulting analogy between the ensemble averaged microscopic entropy and its thermodynamic analog suggests that the original description of the entropy by Boltzmann and Gibbs is just an ensemble averaging of the time scaling variable sn which is in equilibrium close to 1, but that the entropy
Nonlinear time series analysis with R
Huffaker, Ray; Rosa, Rodolfo
2017-01-01
In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjec...
Persistence versus extinction for a class of discrete-time structured population models.
Jin, Wen; Smith, Hal L; Thieme, Horst R
2016-03-01
We provide sharp conditions distinguishing persistence and extinction for a class of discrete-time dynamical systems on the positive cone of an ordered Banach space generated by a map which is the sum of a positive linear contraction A and a nonlinear perturbation G that is compact and differentiable at zero in the direction of the cone. Such maps arise as year-to-year projections of population age, stage, or size-structure distributions in population biology where typically A has to do with survival and individual development and G captures the effects of reproduction. The threshold distinguishing persistence and extinction is the principal eigenvalue of (II−A)(−1)G'(0) provided by the Krein-Rutman Theorem, and persistence is described in terms of associated eigenfunctionals. Our results significantly extend earlier persistence results of the last two authors which required more restrictive conditions on G. They are illustrated by application of the results to a plant model with a seed bank.
Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games.
Wei, Qinglai; Liu, Derong; Lin, Qiao; Song, Ruizhuo
2018-04-01
In this paper, a novel adaptive dynamic programming (ADP) algorithm, called "iterative zero-sum ADP algorithm," is developed to solve infinite-horizon discrete-time two-player zero-sum games of nonlinear systems. The present iterative zero-sum ADP algorithm permits arbitrary positive semidefinite functions to initialize the upper and lower iterations. A novel convergence analysis is developed to guarantee the upper and lower iterative value functions to converge to the upper and lower optimums, respectively. When the saddle-point equilibrium exists, it is emphasized that both the upper and lower iterative value functions are proved to converge to the optimal solution of the zero-sum game, where the existence criteria of the saddle-point equilibrium are not required. If the saddle-point equilibrium does not exist, the upper and lower optimal performance index functions are obtained, respectively, where the upper and lower performance index functions are proved to be not equivalent. Finally, simulation results and comparisons are shown to illustrate the performance of the present method.
forecasting with nonlinear time series model: a monte-carlo
African Journals Online (AJOL)
PUBLICATIONS1
erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.
The Photoplethismographic Signal Processed with Nonlinear Time Series Analysis Tools
International Nuclear Information System (INIS)
Hernandez Caceres, Jose Luis; Hong, Rolando; Garcia Lanz, Abel; Garcia Dominguez, Luis; Cabannas, Karelia
2001-01-01
Finger photoplethismography (PPG) signals were submitted to nonlinear time series analysis. The applied analytical techniques were: (i) High degree polynomial fitting for baseline estimation; (ii) FFT analysis for estimating power spectra; (iii) fractal dimension estimation via the Higuchi's time-domain method, and (iv) kernel nonparametric estimation for reconstructing noise free-attractors and also for estimating signal's stochastic components
Global Format for Conservative Time Integration in Nonlinear Dynamics
DEFF Research Database (Denmark)
Krenk, Steen
2014-01-01
The widely used classic collocation-based time integration procedures like Newmark, Generalized-alpha etc. generally work well within a framework of linear problems, but typically may encounter problems, when used in connection with essentially nonlinear structures. These problems are overcome....... In the present paper a conservative time integration algorithm is developed in a format using only the internal forces and the associated tangent stiffness at the specific time integration points. Thus, the procedure is computationally very similar to a collocation method, consisting of a series of nonlinear...... equivalent static load steps, easily implemented in existing computer codes. The paper considers two aspects: representation of nonlinear internal forces in a form that implies energy conservation, and the option of an algorithmic damping with the purpose of extracting energy from undesirable high...
Space and time evolution of two nonlinearly coupled variables
International Nuclear Information System (INIS)
Obayashi, H.; Totsuji, H.; Wilhelmsson, H.
1976-12-01
The system of two coupled linear differential equations are studied assuming that the coupling terms are proportional to the product of the dependent variables, representing e.g. intensities or populations. It is furthermore assumed that these variables experience different linear dissipation or growth. The derivations account for space as well as time dependence of the variables. It is found that certain particular solutions can be obtained to this system, whereas a full solution in space and time as an initial value problem is outside the scope of the present paper. The system has a nonlinear equilibrium solution for which the nonlinear coupling terms balance the terms of linear dissipation. The case of space and time evolution of a small perturbation of the nonlinear equilibrium state, given the initial one-dimensional spatial distribution of the perturbation, is also considered in some detail. (auth.)
Nonlinear time series analysis of the human electrocardiogram
International Nuclear Information System (INIS)
Perc, Matjaz
2005-01-01
We analyse the human electrocardiogram with simple nonlinear time series analysis methods that are appropriate for graduate as well as undergraduate courses. In particular, attention is devoted to the notions of determinism and stationarity in physiological data. We emphasize that methods of nonlinear time series analysis can be successfully applied only if the studied data set originates from a deterministic stationary system. After positively establishing the presence of determinism and stationarity in the studied electrocardiogram, we calculate the maximal Lyapunov exponent, thus providing interesting insights into the dynamics of the human heart. Moreover, to facilitate interest and enable the integration of nonlinear time series analysis methods into the curriculum at an early stage of the educational process, we also provide user-friendly programs for each implemented method
A discrete homotopy perturbation method for non-linear Schrodinger equation
Directory of Open Access Journals (Sweden)
H. A. Wahab
2015-12-01
Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.
On the mixed discretization of the time domain magnetic field integral equation
Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan
2012-01-01
Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed
Time-discrete higher order ALE formulations: a priori error analysis
Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.
2013-01-01
We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our
Bosch, Jessica; Stoll, Martin; Benner, Peter
2014-01-01
We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton
Data-Driven Process Discovery: A Discrete Time Algebra for Relational Signal Analysis
National Research Council Canada - National Science Library
Conrad, David
1996-01-01
.... Proposed is a time series transformation that encodes and compresses real-valued data into a well defined, discrete-space of 13 primitive elements where comparative evaluation between variables...
A discrete-time queueing system with changes in the vacation times
Directory of Open Access Journals (Sweden)
Atencia Ivan
2016-06-01
Full Text Available This paper considers a discrete-time queueing system in which an arriving customer can decide to follow a last come first served (LCFS service discipline or to become a negative customer that eliminates the one at service, if any. After service completion, the server can opt for a vacation time or it can remain on duty. Changes in the vacation times as well as their associated distribution are thoroughly studied. An extensive analysis of the system is carried out and, using a probability generating function approach, steady-state performance measures such as the first moments of the busy period of the queue content and of customers delay are obtained. Finally, some numerical examples to show the influence of the parameters on several performance characteristics are given.
Stability Analysis and H∞ Model Reduction for Switched Discrete-Time Time-Delay Systems
Directory of Open Access Journals (Sweden)
Zheng-Fan Liu
2014-01-01
Full Text Available This paper is concerned with the problem of exponential stability and H∞ model reduction of a class of switched discrete-time systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-Krasovskii functional (LKF approach, sufficient conditions for exponential stability with H∞ performance of such systems are derived in terms of linear matrix inequalities (LMIs. For the high-order systems, sufficient conditions for the existence of reduced-order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and an H∞ error performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the obtained results.
Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis
International Nuclear Information System (INIS)
Liu, Yurong; Wang, Zidong; Serrano, Alan; Liu, Xiaohui
2007-01-01
This Letter is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the equilibrium point. Then, by employing a Lyapunov-Krasovskii functional, a unified linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition
Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case
Raja, R.; Marshal Anthoni, S.
2011-02-01
This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.
Function Projective Synchronization in Discrete-Time Chaotic System with Uncertain Parameters
International Nuclear Information System (INIS)
Chen Yong; Li Xin
2009-01-01
The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme. (general)
Control of the formation of projective synchronisation in lower-dimensional discrete-time systems
International Nuclear Information System (INIS)
Chee, C.Y.; Xu Daolin
2003-01-01
Projective synchronisation was recently observed in partially linear discrete-time systems. The scaling factor that characterises the behaviour of projective synchronisation is however unpredictable. In order to manipulate the ultimate state of the synchronisation, a control algorithm based on Schur-Chon stability criteria is proposed to direct the scaling factor onto any predestined value. In the numerical experiment, we illustrate the application on two chaotic discrete-time systems
Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity
Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.
2018-03-01
The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.
From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives
Finster, Felix
This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.
Discrete time population dynamics of a two-stage species with recruitment and capture
International Nuclear Information System (INIS)
Ladino, Lilia M.; Mammana, Cristiana; Michetti, Elisabetta; Valverde, Jose C.
2016-01-01
This work models and analyzes the dynamics of a two-stage species with recruitment and capture factors. It arises from the discretization of a previous model developed by Ladino and Valverde (2013), which represents a progress in the knowledge of the dynamics of exploited populations. Although the methods used here are related to the study of discrete-time systems and are different from those related to continuous version, the results are similar in both the discrete and the continuous case what confirm the skill in the selection of the factors to design the model. Unlike for the continuous-time case, for the discrete-time one some (non-negative) parametric constraints are derived from the biological significance of the model and become fundamental for the proofs of such results. Finally, numerical simulations show different scenarios of dynamics related to the analytical results which confirm the validity of the model.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
International Nuclear Information System (INIS)
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
2016-01-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Linear time heteronymous damping in nonlinear parametric systems
Czech Academy of Sciences Publication Activity Database
Hortel, Milan; Škuderová, Alena; Houfek, Martin
2016-01-01
Roč. 40, 23-24 (2016), s. 10038-10051 ISSN 0307-904X Institutional support: RVO:61388998 Keywords : nonlinear dynamics of systems * parametric systems * time heteronymous damping * gears Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 2.350, year: 2016
Hybrid time/frequency domain modeling of nonlinear components
DEFF Research Database (Denmark)
Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth
2007-01-01
This paper presents a novel, three-phase hybrid time/frequency methodology for modelling of nonlinear components. The algorithm has been implemented in the DIgSILENT PowerFactory software using the DIgSILENT Programming Language (DPL), as a part of the work described in [1]. Modified HVDC benchmark...
Soliton solutions of some nonlinear evolution equations with time ...
Indian Academy of Sciences (India)
Abstract. In this paper, we obtain exact soliton solutions of the modified KdV equation, inho- mogeneous nonlinear Schrödinger equation and G(m, n) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the ...
Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?
International Nuclear Information System (INIS)
Penney, Mark D; Koh, Dax Enshan; Spekkens, Robert W
2017-01-01
It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits. (paper)
Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?
Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.
2017-07-01
It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.
Nonlinear Time Series Prediction Using Chaotic Neural Networks
Li, Ke-Ping; Chen, Tian-Lun
2001-06-01
A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting, we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation. By selecting the suitable feedback term, the system can escape from the local minima and converge to the global minimum or its approximate solutions, and the forecasting results are better than those of backpropagation algorithm. The project supported by National Basic Research Project "Nonlinear Science" and National Natural Science Foundation of China under Grant No. 60074020
International Nuclear Information System (INIS)
Huo Haifeng; Li Wantong
2009-01-01
This paper is concerned with the global stability characteristics of a system of equations modelling the dynamics of continuous-time bidirectional associative memory neural networks with impulses. Sufficient conditions which guarantee the existence of a unique equilibrium and its exponential stability of the networks are obtained. For the goal of computation, discrete-time analogues of the corresponding continuous-time bidirectional associative memory neural networks with impulses are also formulated and studied. Our results show that the above continuous-time and discrete-time systems with impulses preserve the dynamics of the networks without impulses when we make some modifications and impose some additional conditions on the systems, the convergence characteristics dynamics of the networks are preserved by both continuous-time and discrete-time systems with some restriction imposed on the impulse effect.
Directory of Open Access Journals (Sweden)
Rafael Cisneros-Magaña
2018-06-01
Full Text Available This paper proposes a time-domain methodology based on the unscented Kalman filter to estimate voltage sags and their characteristics, such as magnitude and duration in power systems represented by nonlinear models. Partial and noisy measurements from the electrical network with nonlinear loads, used as data, are assumed. The characteristics of voltage sags can be calculated in a discrete form with the unscented Kalman filter to estimate all the busbar voltages; being possible to determine the rms voltage magnitude and the voltage sag starting and ending time, respectively. Voltage sag state estimation results can be used to obtain the power quality indices for monitored and unmonitored busbars in the power grid and to design adequate mitigating techniques. The proposed methodology is successfully validated against the results obtained with the time-domain system simulation for the power system with nonlinear components, being the normalized root mean square error less than 3%.
Globally asymptotically stable analysis in a discrete time eco-epidemiological system
International Nuclear Information System (INIS)
Hu, Zengyun; Teng, Zhidong; Zhang, Tailei; Zhou, Qiming; Chen, Xi
2017-01-01
Highlights: • Dynamical behaviors of a discrete time eco-epidemiological system are discussed. • Global asymptotical stability of this system is obtained by an iteration scheme which can be expended to general dimensional discrete system. • More complex dynamical behaviors are obtained by numerical simulations. - Abstract: In this study, the dynamical behaviors of a discrete time eco-epidemiological system are discussed. The local stability, bifurcation and chaos are obtained. Moreover, the global asymptotical stability of this system is explored by an iteration scheme. The numerical simulations illustrate the theoretical results and exhibit the complex dynamical behaviors such as flip bifurcation, Hopf bifurcation and chaotic dynamical behaviors. Our main results provide an efficient method to analyze the global asymptotical stability for general three dimensional discrete systems.
Elements of nonlinear time series analysis and forecasting
De Gooijer, Jan G
2017-01-01
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible...
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-07-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
Consensus of discrete-time multi-agent systems with adversaries and time delays
Wu, Yiming; He, Xiongxiong; Liu, Shuai; Xie, Lihua
2014-05-01
This paper studies the resilient asymptotic consensus problem for discrete-time multi-agent systems in the presence of adversaries and transmission delays. The network is assumed to have ? loyal agents and ? adversarial agents, and each loyal agent in the network has no knowledge of the network topology other than an upper bound on the number of adversarial agents in its neighborhood. For the considered networked system, only locally delayed information is available for each loyal agent, and also the information flow is directed and a control protocol using only local information is designed to guarantee the realization of consensus with respect to communication graph, which satisfies a featured network robustness. Numerical examples are finally given to demonstrate the effectiveness of theoretical results.
Time domain simulation of the response of geometrically nonlinear panels subjected to random loading
Moyer, E. Thomas, Jr.
1988-01-01
The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.
Continuous and Discrete-Time Optimal Controls for an Isolated Signalized Intersection
Directory of Open Access Journals (Sweden)
Jiyuan Tan
2017-01-01
Full Text Available A classical control problem for an isolated oversaturated intersection is revisited with a focus on the optimal control policy to minimize total delay. The difference and connection between existing continuous-time planning models and recently proposed discrete-time planning models are studied. A gradient descent algorithm is proposed to convert the optimal control plan of the continuous-time model to the plan of the discrete-time model in many cases. Analytic proof and numerical tests for the algorithm are also presented. The findings shed light on the links between two kinds of models.
Time dependence linear transport III convergence of the discrete ordinate method
International Nuclear Information System (INIS)
Wilson, D.G.
1983-01-01
In this paper the uniform pointwise convergence of the discrete ordinate method for weak and strong solutions of the time dependent, linear transport equation posed in a multidimensional, rectangular parallelepiped with partially reflecting walls is established. The first result is that a sequence of discrete ordinate solutions converges uniformly on the quadrature points to a solution of the continuous problem provided that the corresponding sequence of truncation errors for the solution of the continuous problem converges to zero in the same manner. The second result is that continuity of the solution with respect to the velocity variables guarantees that the truncation erros in the quadrature formula go the zero and hence that the discrete ordinate approximations converge to the solution of the continuous problem as the discrete ordinate become dense. An existence theory for strong solutions of the the continuous problem follows as a result
Spinor Field Nonlinearity and Space-Time Geometry
Saha, Bijan
2018-03-01
Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time
Sampled-data and discrete-time H2 optimal control
Trentelman, Harry L.; Stoorvogel, Anton A.
1993-01-01
This paper deals with the sampled-data H2 optimal control problem. Given a linear time-invariant continuous-time system, the problem of minimizing the H2 performance over all sampled-data controllers with a fixed sampling period can be reduced to a pure discrete-time H2 optimal control problem. This
Discrete Analysis of Portfolio Selection with Optimal Stopping Time
Directory of Open Access Journals (Sweden)
Jianfeng Liang
2009-01-01
Full Text Available Most of the investments in practice are carried out without certain horizons. There are many factors to drive investment to a stop. In this paper, we consider a portfolio selection policy with market-related stopping time. Particularly, we assume that the investor exits the market once his wealth reaches a given investment target or falls below a bankruptcy threshold. Our objective is to minimize the expected time when the investment target is obtained, at the same time, we guarantee the probability that bankruptcy happens is no larger than a given level. We formulate the problem as a mix integer linear programming model and make analysis of the model by using a numerical example.
Closed form solutions of two time fractional nonlinear wave equations
Directory of Open Access Journals (Sweden)
M. Ali Akbar
2018-06-01
Full Text Available In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G′/G-expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics. Keywords: Traveling wave solution, Soliton, Generalized (G′/G-expansion method, Time fractional Duffing equation, Time fractional Riccati equation
A mean-variance frontier in discrete and continuous time
Bekker, Paul A.
2004-01-01
The paper presents a mean-variance frontier based on dynamic frictionless investment strategies in continuous time. The result applies to a finite number of risky assets whose price process is given by multivariate geometric Brownian motion with deterministically varying coefficients. The derivation
Discrete-time Calogero-Moser system and Lagrangian 1-form structure
International Nuclear Information System (INIS)
Yoo-Kong, Sikarin; Lobb, Sarah; Nijhoff, Frank
2011-01-01
We study the Lagrange formalism of the (rational) Calogero-Moser (CM) system, both in discrete time and continuous time, as a first example of a Lagrangian 1-form structure in the sense of the recent paper (Lobb and Nijhoff 2009 J. Phys. A: Math. Theor.42 454013). The discrete-time model of the CM system was established some time ago arising as a pole reduction of a semi-discrete version of the Kadomtsev-Petviashvili (KP) equation, and was shown to lead to an exactly integrable correspondence (multivalued map). In this paper, we present the full KP solution based on the commutativity of the discrete-time flows in the two discrete KP variables. The compatibility of the corresponding Lax matrices is shown to lead directly to the relevant closure relation on the level of the Lagrangians. Performing successive continuum limits on both the level of the KP equation and the level of the CM system, we establish the proper Lagrangian 1-form structure for the continuum case of the CM model. We use the example of the three-particle case to elucidate the implementation of the novel least-action principle, which was presented in Lobb and Nijhoff (2009), for the simpler case of Lagrangian 1-forms. (paper)
Particle Swarm Based Approach of a Real-Time Discrete Neural Identifier for Linear Induction Motors
Directory of Open Access Journals (Sweden)
Alma Y. Alanis
2013-01-01
Full Text Available This paper focusses on a discrete-time neural identifier applied to a linear induction motor (LIM model, whose model is assumed to be unknown. This neural identifier is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high-order neural network (RHONN trained with a novel algorithm based on extended Kalman filter (EKF and particle swarm optimization (PSO, using an online series-parallel con figuration. Real-time results are included in order to illustrate the applicability of the proposed scheme.
Displacement in the parameter space versus spurious solution of discretization with large time step
International Nuclear Information System (INIS)
Mendes, Eduardo; Letellier, Christophe
2004-01-01
In order to investigate a possible correspondence between differential and difference equations, it is important to possess discretization of ordinary differential equations. It is well known that when differential equations are discretized, the solution thus obtained depends on the time step used. In the majority of cases, such a solution is considered spurious when it does not resemble the expected solution of the differential equation. This often happens when the time step taken into consideration is too large. In this work, we show that, even for quite large time steps, some solutions which do not correspond to the expected ones are still topologically equivalent to solutions of the original continuous system if a displacement in the parameter space is considered. To reduce such a displacement, a judicious choice of the discretization scheme should be made. To this end, a recent discretization scheme, based on the Lie expansion of the original differential equations, proposed by Monaco and Normand-Cyrot will be analysed. Such a scheme will be shown to be sufficient for providing an adequate discretization for quite large time steps compared to the pseudo-period of the underlying dynamics
Directory of Open Access Journals (Sweden)
Maode Yan
2008-01-01
Full Text Available This paper considers the problem of robust discrete-time sliding-mode control (DT-SMC design for a class of uncertain linear systems with time-varying delays. By applying a descriptor model transformation and Moon's inequality for bounding cross terms, a delay-dependent sufficient condition for the existence of stable sliding surface is given in terms of linear matrix inequalities (LMIs. Based on this existence condition, the synthesized sliding mode controller can guarantee the sliding-mode reaching condition of the specified discrete-time sliding surface for all admissible uncertainties and time-varying delays. An illustrative example verifies the effectiveness of the proposed method.
Definition of distance for nonlinear time series analysis of marked point process data
Energy Technology Data Exchange (ETDEWEB)
Iwayama, Koji, E-mail: koji@sat.t.u-tokyo.ac.jp [Research Institute for Food and Agriculture, Ryukoku Univeristy, 1-5 Yokotani, Seta Oe-cho, Otsu-Shi, Shiga 520-2194 (Japan); Hirata, Yoshito; Aihara, Kazuyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)
2017-01-30
Marked point process data are time series of discrete events accompanied with some values, such as economic trades, earthquakes, and lightnings. A distance for marked point process data allows us to apply nonlinear time series analysis to such data. We propose a distance for marked point process data which can be calculated much faster than the existing distance when the number of marks is small. Furthermore, under some assumptions, the Kullback–Leibler divergences between posterior distributions for neighbors defined by this distance are small. We performed some numerical simulations showing that analysis based on the proposed distance is effective. - Highlights: • A new distance for marked point process data is proposed. • The distance can be computed fast enough for a small number of marks. • The method to optimize parameter values of the distance is also proposed. • Numerical simulations indicate that the analysis based on the distance is effective.
Non-linear time reversal ultrasonic pseudo-tomography
Czech Academy of Sciences Publication Activity Database
Převorovský, Zdeněk; Vejvodová, Šárka; Krofta, Josef; Převorovský, David
2011-01-01
Roč. 6, 3/4 (2011), s. 206-213 ISSN 1741-8410. [NDT in Progress. Praha, 05.11.2007-07.11.2007] R&D Projects: GA MPO(CZ) FR-TI1/274 Institutional research plan: CEZ:AV0Z20760514 Keywords : NDT * nonlinear elastic wave spectroscopy * time reversal mirrors * ultrasonic pseudo-tomography Subject RIV: BI - Acoustics http://www.inderscience.com/offer.php?id=43216
Discrete-time sliding mode control for MR vehicle suspension system
Energy Technology Data Exchange (ETDEWEB)
Sohn, J W; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Wereley, N M [Smart Structures Laboratory, Department of Aerospace Engineering, University of Maryland, College Park, MD 20742 (United States)], E-mail: seungbok@inha.ac.kr
2009-02-01
This paper presents control performance of a full-vehicle suspension system featuring magnetorheological (MR) dampers via a discrete-time sliding mode control algorithm (DSMC). A cylindrical MR damper is designed by incorporating Bingham model of the MR fluid and the field-dependent damping characteristics of the MR damper are evaluated. A full-vehicle suspension model installed with independent four MR dampers is constructed and the governing equations which include vertical, pitch and roll motion are derived. A discrete-time control model is established with considering system uncertainties and a discrete-time sliding mode controller which has inherent robustness to model uncertainty and external disturbance is formulated. Vibration control performances under bump excitation are evaluated and presented.
Directory of Open Access Journals (Sweden)
Chellaboina Vijaysekhar
2005-01-01
Full Text Available We develop thermodynamic models for discrete-time large-scale dynamical systems. Specifically, using compartmental dynamical system theory, we develop energy flow models possessing energy conservation, energy equipartition, temperature equipartition, and entropy nonconservation principles for discrete-time, large-scale dynamical systems. Furthermore, we introduce a new and dual notion to entropy; namely, ectropy, as a measure of the tendency of a dynamical system to do useful work and grow more organized, and show that conservation of energy in an isolated thermodynamic system necessarily leads to nonconservation of ectropy and entropy. In addition, using the system ectropy as a Lyapunov function candidate, we show that our discrete-time, large-scale thermodynamic energy flow model has convergent trajectories to Lyapunov stable equilibria determined by the system initial subsystem energies.
Discrete-time sliding mode control for MR vehicle suspension system
International Nuclear Information System (INIS)
Sohn, J W; Choi, S B; Wereley, N M
2009-01-01
This paper presents control performance of a full-vehicle suspension system featuring magnetorheological (MR) dampers via a discrete-time sliding mode control algorithm (DSMC). A cylindrical MR damper is designed by incorporating Bingham model of the MR fluid and the field-dependent damping characteristics of the MR damper are evaluated. A full-vehicle suspension model installed with independent four MR dampers is constructed and the governing equations which include vertical, pitch and roll motion are derived. A discrete-time control model is established with considering system uncertainties and a discrete-time sliding mode controller which has inherent robustness to model uncertainty and external disturbance is formulated. Vibration control performances under bump excitation are evaluated and presented.
Zhang, Huaguang; Jiang, He; Luo, Chaomin; Xiao, Geyang
2017-10-01
In this paper, we investigate the nonzero-sum games for a class of discrete-time (DT) nonlinear systems by using a novel policy iteration (PI) adaptive dynamic programming (ADP) method. The main idea of our proposed PI scheme is to utilize the iterative ADP algorithm to obtain the iterative control policies, which not only ensure the system to achieve stability but also minimize the performance index function for each player. This paper integrates game theory, optimal control theory, and reinforcement learning technique to formulate and handle the DT nonzero-sum games for multiplayer. First, we design three actor-critic algorithms, an offline one and two online ones, for the PI scheme. Subsequently, neural networks are employed to implement these algorithms and the corresponding stability analysis is also provided via the Lyapunov theory. Finally, a numerical simulation example is presented to demonstrate the effectiveness of our proposed approach.
International Nuclear Information System (INIS)
Tadmor, E.
1988-07-01
A convergence theory for semi-discrete approximations to nonlinear systems of conservation laws is developed. It is shown, by a series of scalar counter-examples, that consistency with the conservation law alone does not guarantee convergence. Instead, a notion of consistency which takes into account both the conservation law and its augmenting entropy condition is introduced. In this context it is concluded that consistency and L(infinity)-stability guarantee for a relevant class of admissible entropy functions, that their entropy production rate belongs to a compact subset of H(loc)sup -1 (x,t). One can now use compensated compactness arguments in order to turn this conclusion into a convergence proof. The current state of the art for these arguments includes the scalar and a wide class of 2 x 2 systems of conservation laws. The general framework of the vanishing viscosity method is studied as an effective way to meet the consistency and L(infinity)-stability requirements. How this method is utilized to enforce consistency and stability for scalar conservation laws is shown. In this context we prove, under the appropriate assumptions, the convergence of finite difference approximations (e.g., the high resolution TVD and UNO methods), finite element approximations (e.g., the Streamline-Diffusion methods) and spectral and pseudospectral approximations (e.g., the Spectral Viscosity methods)
International Nuclear Information System (INIS)
Liu Yurong; Wang Zidong; Liu Xiaohui
2008-01-01
In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions
Nonparametric Estimation of Interval Reliability for Discrete-Time Semi-Markov Systems
DEFF Research Database (Denmark)
Georgiadis, Stylianos; Limnios, Nikolaos
2016-01-01
In this article, we consider a repairable discrete-time semi-Markov system with finite state space. The measure of the interval reliability is given as the probability of the system being operational over a given finite-length time interval. A nonparametric estimator is proposed for the interval...
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.
2009-01-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
Quasi-stationary distributions for reducible absorbing Markov chains in discrete time
van Doorn, Erik A.; Pollett, P.K.
2009-01-01
We consider discrete-time Markov chains with one coffin state and a finite set $S$ of transient states, and are interested in the limiting behaviour of such a chain as time $n \\to \\infty,$ conditional on survival up to $n$. It is known that, when $S$ is irreducible, the limiting conditional
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffery D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Lowrie, Robert B [Los Alamos National Laboratory; Morel, Jim E [TEXAS A& M UNIV
2008-01-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
Density perturbations due to the inhomogeneous discrete spatial structure of space-time
International Nuclear Information System (INIS)
Wolf, C.
1998-01-01
For the case that space-time permits an inhomogeneous discrete spatial structure due to varying gravitational fields or a foam-like structure of space-time, it is demonstrated that thermodynamic reasoning implies that matter-density perturbations will arise in the early universe
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.
2009-09-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
A Model of Discrete-Continuum Time for a Simple Physical System
Directory of Open Access Journals (Sweden)
Karimov A. R.
2008-04-01
Full Text Available Proceeding from the assumption that the time flow of an individual object is a real physical value, in the framework of a physical kinetics approach we propose an analogy between time and temperature. The use of such an analogy makes it possible to work out a discrete-continuum model of time for a simple physical system. The possible physical properties of time for the single object and time for the whole system are discussed.
Ecological monitoring in a discrete-time prey-predator model.
Gámez, M; López, I; Rodríguez, C; Varga, Z; Garay, J
2017-09-21
The paper is aimed at the methodological development of ecological monitoring in discrete-time dynamic models. In earlier papers, in the framework of continuous-time models, we have shown how a systems-theoretical methodology can be applied to the monitoring of the state process of a system of interacting populations, also estimating certain abiotic environmental changes such as pollution, climatic or seasonal changes. In practice, however, there may be good reasons to use discrete-time models. (For instance, there may be discrete cycles in the development of the populations, or observations can be made only at discrete time steps.) Therefore the present paper is devoted to the development of the monitoring methodology in the framework of discrete-time models of population ecology. By monitoring we mean that, observing only certain component(s) of the system, we reconstruct the whole state process. This may be necessary, e.g., when in a complex ecosystem the observation of the densities of certain species is impossible, or too expensive. For the first presentation of the offered methodology, we have chosen a discrete-time version of the classical Lotka-Volterra prey-predator model. This is a minimal but not trivial system where the methodology can still be presented. We also show how this methodology can be applied to estimate the effect of an abiotic environmental change, using a component of the population system as an environmental indicator. Although this approach is illustrated in a simplest possible case, it can be easily extended to larger ecosystems with several interacting populations and different types of abiotic environmental effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Novel Analytic Technique for the Service Station Reliability in a Discrete-Time Repairable Queue
Directory of Open Access Journals (Sweden)
Renbin Liu
2013-01-01
Full Text Available This paper presents a decomposition technique for the service station reliability in a discrete-time repairable GeomX/G/1 queueing system, in which the server takes exhaustive service and multiple adaptive delayed vacation discipline. Using such a novel analytic technique, some important reliability indices and reliability relation equations of the service station are derived. Furthermore, the structures of the service station indices are also found. Finally, special cases and numerical examples validate the derived results and show that our analytic technique is applicable to reliability analysis of some complex discrete-time repairable bulk arrival queueing systems.
Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System
Rovny, Jared; Blum, Robert L.; Barrett, Sean E.
2018-05-01
A discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic resonance observations of DTC signatures in a third, strikingly different system: an ordered spatial crystal. We use a novel DTC echo experiment to probe the coherence of the driven system. Finally, we show that interactions during the pulse of the DTC sequence contribute to the decay of the signal, complicating attempts to measure the intrinsic lifetime of the DTC.
Discrete-time bidirectional associative memory neural networks with variable delays
International Nuclear Information System (INIS)
Liang Jinling; Cao Jinde; Ho, Daniel W.C.
2005-01-01
Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks
Discrete-time bidirectional associative memory neural networks with variable delays
Liang, variable delays [rapid communication] J.; Cao, J.; Ho, D. W. C.
2005-02-01
Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks.
Adaptive control of discrete-time chaotic systems: a fuzzy control approach
International Nuclear Information System (INIS)
Feng Gang; Chen Guanrong
2005-01-01
This paper discusses adaptive control of a class of discrete-time chaotic systems from a fuzzy control approach. Using the T-S model of discrete-time chaotic systems, an adaptive control algorithm is developed based on some conventional adaptive control techniques. The resulting adaptively controlled chaotic system is shown to be globally stable, and its robustness is discussed. A simulation example of the chaotic Henon map control is finally presented, to illustrate an application and the performance of the proposed control algorithm
Directory of Open Access Journals (Sweden)
Tao Wang
2013-01-01
Full Text Available To obtain reliable transient auditory evoked potentials (AEPs from EEGs recorded using high stimulus rate (HSR paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm.
Local and global dynamics of Ramsey model: From continuous to discrete time.
Guzowska, Malgorzata; Michetti, Elisabetta
2018-05-01
The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.
A New Approach to Rational Discrete-Time Approximations to Continuous-Time Fractional-Order Systems
Matos , Carlos; Ortigueira , Manuel ,
2012-01-01
Part 10: Signal Processing; International audience; In this paper a new approach to rational discrete-time approximations to continuous fractional-order systems of the form 1/(sα+p) is proposed. We will show that such fractional-order LTI system can be decomposed into sub-systems. One has the classic behavior and the other is similar to a Finite Impulse Response (FIR) system. The conversion from continuous-time to discrete-time systems will be done using the Laplace transform inversion integr...
Closed form solutions of two time fractional nonlinear wave equations
Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan
2018-06-01
In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.
Wu, Guo-Cheng; Baleanu, Dumitru; Zeng, Sheng-Da
2018-04-01
This study investigates finite-time stability of Caputo delta fractional difference equations. A generalized Gronwall inequality is given on a finite time domain. A finite-time stability criterion is proposed for fractional differential equations. Then the idea is extended to the discrete fractional case. A linear fractional difference equation with constant delays is considered and finite-time stable conditions are provided. One example is numerically illustrated to support the theoretical result.
Nonlinear triple-point problems on time scales
Directory of Open Access Journals (Sweden)
Douglas R. Anderson
2004-04-01
Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0
Sivak, David A; Chodera, John D; Crooks, Gavin E
2014-06-19
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.
Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng
2018-03-01
In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.
International Nuclear Information System (INIS)
Zhu Xunlin; Wang Youyi
2009-01-01
This Letter studies the exponential stability for a class of neural networks (NNs) with both discrete and distributed time-varying delays. Under weaker assumptions on the activation functions, by defining a more general type of Lyapunov functionals and developing a new convex combination technique, new less conservative and less complex stability criteria are established to guarantee the global exponential stability of the discussed NNs. The obtained conditions are dependent on both discrete and distributed delays, are expressed in terms of linear matrix inequalities (LMIs), and contain fewer decision variables. Numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed conditions.
TDTORT: Time-Dependent, 3-D, Discrete Ordinates, Neutron Transport Code System with Delayed Neutrons
International Nuclear Information System (INIS)
2002-01-01
and Linear Characteristic methods in TORT to treat spatial variables. Energy dependence is treated using a multigroup formulation. Starting in one corner of a mesh, at the highest energy, and with starting guesses for implicit sources, boundary conditions and recursion relationships are used to sweep into the mesh for each discrete direction independently. Integral quantities such as scalar flux are obtained from weighted sums of the directional results. The calculation then proceeds to lower energy groups, one at a time. Iterations are used to resolve implicitness caused by scattering between directions within a single energy group, by scattering from an energy group to another group previously calculated, by fission, and by certain types of boundary conditions. Methods are available to accelerate convergence of both inner and outer iterations. Anisotropic scattering is represented by a Legendre expansion of arbitrary order, and methods are available to mitigate the effect of negative scattering source estimates resulting from finite truncation of the expansion. Direction sets can be biased, concentrating work into directions of particular interest. Fixed sources can be specified at either external or internal mesh boundaries, or distributed within mesh cells. 3 - Restrictions on the complexity of the problem: TORT's limitations for solving a three-dimensional, fixed source problem apply (i.e., geometry, convergence, non-linear effects, etc.). External forces and nonlinear physical effects cannot be treated. Penetration through large, non-scattering regions may become inaccurate due to ray effects. Problems with scattering ratios near unity or eigenvalue calculations with closely spaced eigenvalues may be quite time-consuming. Although flexible dimensioning is used in TORT so that no fixed limits on group, problem size, etc., are applicable, TDTORT uses a fixed size container array, which may not be big enough for very large problems. The user should change the value
Passive Fault-tolerant Control of Discrete-time Piecewise Affine Systems against Actuator Faults
DEFF Research Database (Denmark)
Tabatabaeipour, Seyed Mojtaba; Izadi-Zamanabadi, Roozbeh; Bak, Thomas
2012-01-01
In this paper, we propose a new method for passive fault-tolerant control of discrete time piecewise affine systems. Actuator faults are considered. A reliable piecewise linear quadratic regulator (LQR) state feedback is designed such that it can tolerate actuator faults. A sufficient condition f...... is illustrated on a numerical example and a two degree of freedom helicopter....
A new criterion for global robust stability of interval neural networks with discrete time delays
International Nuclear Information System (INIS)
Li Chuandong; Chen Jinyu; Huang Tingwen
2007-01-01
This paper further studies global robust stability of a class of interval neural networks with discrete time delays. By introducing an equivalent transformation of interval matrices, a new criterion on global robust stability is established. In comparison with the results reported in the literature, the proposed approach leads to results with less restrictive conditions. Numerical examples are also worked through to illustrate our results
Property - preserving convergent sequences of invariant sets for linear discrete - time systems
Athanasopoulos, N.; Lazar, M.; Bitsoris, G.
2014-01-01
Abstract: New sequences of monotonically increasing sets are introduced, for linear discrete-time systems subject to input and state constraints. The elements of the set sequences are controlled invariant and admissible regions of stabilizability. They are generated from the iterative application of
Directory of Open Access Journals (Sweden)
Xinggui Liu
2011-01-01
Full Text Available In this paper, by using Mawhin's continuation theorem of coincidence degree theory, we establish the existence of at least four positive periodic solutions for a discrete time Lotka-Volterra competitive system with harvesting terms. An example is given to illustrate the effectiveness of our results.
The ruin probability of a discrete time risk model under constant interest rate with heavy tails
Tang, Q.
2004-01-01
This paper investigates the ultimate ruin probability of a discrete time risk model with a positive constant interest rate. Under the assumption that the gross loss of the company within one year is subexponentially distributed, a simple asymptotic relation for the ruin probability is derived and
DEFF Research Database (Denmark)
Tabatabaeipour, Seyed Mojtaba; Bak, Thomas
2012-01-01
In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then, the es...
Statistical inference for discrete-time samples from affine stochastic delay differential equations
DEFF Research Database (Denmark)
Küchler, Uwe; Sørensen, Michael
2013-01-01
Statistical inference for discrete time observations of an affine stochastic delay differential equation is considered. The main focus is on maximum pseudo-likelihood estimators, which are easy to calculate in practice. A more general class of prediction-based estimating functions is investigated...
Discrete-Time Mixing Receiver Architecture for RF-Sampling Software-Defined Radio
Ru, Z.; Klumperink, Eric A.M.; Nauta, Bram
2010-01-01
Abstract—A discrete-time (DT) mixing architecture for RF-sampling receivers is presented. This architecture makes RF sampling more suitable for software-defined radio (SDR) as it achieves wideband quadrature demodulation and wideband harmonic rejection. The paper consists of two parts. In the first
Global stability of discrete-time recurrent neural networks with impulse effects
International Nuclear Information System (INIS)
Zhou, L; Li, C; Wan, J
2008-01-01
This paper formulates and studies a class of discrete-time recurrent neural networks with impulse effects. A stability criterion, which characterizes the effects of impulse and stability property of the corresponding impulse-free networks on the stability of the impulsive networks in an aggregate form, is established. Two simplified and numerically tractable criteria are also provided
Controllability of a Class of Bimodal Discrete-Time Piecewise Linear Systems
Yurtseven, E.; Camlibel, M.K.; Heemels, W.P.M.H.
2013-01-01
In this paper we will provide algebraic necessary and sufficient conditions for the controllability/reachability/null controllability of a class of bimodal discrete-time piecewise linear systems including several instances of interest that are not covered by existing works which focus primarily on
Discrete-Time receivers for software-defined radio: challenges and solutions
Ru, Z.; Klumperink, Eric A.M.; Nauta, Bram
2007-01-01
Abstract—CMOS radio receiver architectures, based on radio frequency (RF) sampling followed by discrete-time (DT) signal processing via switched-capacitor circuits, have recently been proposed for dedicated radio standards. This paper explores the suitability of such DT receivers for highly flexible
On the Suitability of Discrete-Time Receivers for Software-Defined Radio
Ru, Z.; Klumperink, Eric A.M.; Nauta, Bram
2007-01-01
Abstract—CMOS radio receiver architectures, based on radio frequency (RF) sampling followed by discrete-time (D-T) signal processing via switched-capacitor circuits, have recently been proposed for dedicated radio standards. This paper explores the suitability of such D-T receivers for highly
Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes
Janssen, A.J.E.M.; Veldhuis, R.N.J.; Vries, L.B.
1986-01-01
The authors present an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive processes. The only restrictions are that the positions of the unknown samples should be known and that they should be embedded in a
Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes
Janssen, A.J.E.M.; Veldhuis, Raymond N.J.; Vries, Lodewijk B.
1986-01-01
This paper presents an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive processes. The only restrictions are that the positions of the unknown samples should be known and that they should be embedded in a
Homogeneous Discrete Time Alternating Compound Renewal Process: A Disability Insurance Application
Directory of Open Access Journals (Sweden)
Guglielmo D’Amico
2015-01-01
Full Text Available Discrete time alternating renewal process is a very simple tool that permits solving many real life problems. This paper, after the presentation of this tool, introduces the compound environment in the alternating process giving a systematization to this important tool. The claim costs for a temporary disability insurance contract are presented. The algorithm and an example of application are also provided.
ON THE ANISOTROPIC NORM OF DISCRETE TIME STOCHASTIC SYSTEMS WITH STATE DEPENDENT NOISE
Directory of Open Access Journals (Sweden)
Isaac Yaesh
2013-01-01
Full Text Available The purpose of this paper is to determine conditions for the bound-edness of the anisotropic norm of discrete-time linear stochastic sys-tems with state dependent noise. It is proved that these conditions canbe expressed in terms of the feasibility of a specific system of matrixinequalities.
Scaled Bilateral Teleoperation Using Discrete-Time Sliding-Mode Controller
Khan, S.; Sabanovic, A.; Nergiz, A.O.
2009-01-01
In this paper, the design of a discrete-time sliding-mode controller based on Lyapunov theory is presented along with a robust disturbance observer and is applied to a piezostage for high-precision motion. A linear model of a piezostage was used with nominal parameters to compensate the disturbance
Broadband time domain acoustic holography based on the discrete orthonormal S-transform
Zhou, H.; Lopez Arteaga, I.; Nijmeijer, H.; Lim, Kian Meng
2015-01-01
The purpose of this paper is to deal with the problem of nonstationary broadband sound fields more efficiently. A basis function of the discrete orthonormal S-transform (DOST) is used to analyze the measured signal. With respect to the time domain signal in a certain band, DOST leads to a
Less Conservative ℋ∞ Fuzzy Control for Discrete-Time Takagi-Sugeno Systems
Directory of Open Access Journals (Sweden)
Leonardo Amaral Mozelli
2011-01-01
Full Text Available New analysis and control design conditions of discrete-time fuzzy systems are proposed. Using fuzzy Lyapunov's functions and introducing slack variables, less conservative conditions are obtained. The controller guarantees system stabilization and ℋ∞ performance. Numerical tests and a practical experiment in Chua's circuit are presented to show the effectiveness.
Communication scheduling in robust self-triggered MPC for linear discrete-time systems
Brunner, F.D.; Gommans, T.M.P.; Heemels, W.P.M.H.; Allgöwer, F.
2015-01-01
We consider a networked control system consisting of a physical plant, an actuator, a sensor, and a controller that is connected to the actuator and sensor via a communication network. The plant is described by a linear discrete-time system subject to additive disturbances. In order to reduce the
Geometric ergodicity and quasi-stationarity in discrete-time birth-death processes
van Doorn, Erik A.; Schrijner, Pauline
1995-01-01
We study two aspects of discrete-time birth-death processes, the common feature of which is the central role played by the decay parameter of the process. First, conditions for geometric ergodicity and bounds for the decay parameter are obtained. Then the existence and structure of quasi-stationary
It's Deja Vu All over Again: Using Multiple-Spell Discrete-Time Survival Analysis.
Willett, John B.; Singer, Judith D.
1995-01-01
The multiple-spell discrete-time survival analysis method is introduced and illustrated using longitudinal data on exit from and reentry into the teaching profession. The method is applicable to many educational problems involving the sequential occurrence of disparate events or episodes. (SLD)
Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems
Opmeer, MR; Curtain, RF
2004-01-01
In this paper, we study the existence of linear quadratic Gaussian (LQG)-balanced realizations for discrete-time infinite-dimensional systems. LQG-balanced realizations are those for which the smallest nonnegative self-adjoint solutions of the control and filter Riccati equations are equal. We show
van Rosmalen, Joost; Toy, Mehlika; O'Mahony, James F
2013-08-01
Markov models are a simple and powerful tool for analyzing the health and economic effects of health care interventions. These models are usually evaluated in discrete time using cohort analysis. The use of discrete time assumes that changes in health states occur only at the end of a cycle period. Discrete-time Markov models only approximate the process of disease progression, as clinical events typically occur in continuous time. The approximation can yield biased cost-effectiveness estimates for Markov models with long cycle periods and if no half-cycle correction is made. The purpose of this article is to present an overview of methods for evaluating Markov models in continuous time. These methods use mathematical results from stochastic process theory and control theory. The methods are illustrated using an applied example on the cost-effectiveness of antiviral therapy for chronic hepatitis B. The main result is a mathematical solution for the expected time spent in each state in a continuous-time Markov model. It is shown how this solution can account for age-dependent transition rates and discounting of costs and health effects, and how the concept of tunnel states can be used to account for transition rates that depend on the time spent in a state. The applied example shows that the continuous-time model yields more accurate results than the discrete-time model but does not require much computation time and is easily implemented. In conclusion, continuous-time Markov models are a feasible alternative to cohort analysis and can offer several theoretical and practical advantages.
Santos, Serge Dos; Farova, Zuzana; Kus, Vaclav; Prevorovsky, Zdenek
2012-05-01
This paper examines possibilities of using Nonlinear Elastic Wave Spectroscopy (NEWS) methods in dental investigations. Themain task consisted in imaging cracks or other degradation signatures located in dentin close to the Enamel-Dentine Junction (EDJ). NEWS approach was investigated experimentally with a new bi-modal acousto-optic set-up based on the chirp-coded nonlinear ultrasonic time reversal (TR) concepts. Complex internal structure of the tooth is analyzed by the TR-NEWS procedure adapted to tomography-like imaging of the tooth damages. Ultrasonic instrumentation with 10 MHz bandwidth has been set together including laser vibrometer used to detect responses of the tooth on its excitation carried out by a contact piezoelectric transducer. Bi-modal TR-NEWS images of the tooth were created before and after focusing, which resulted from the time compression. The polar B-scan of the tooth realized with TR-NEWS procedure is suggested to be applied as a new echodentography imaging.
Gorbunkov, M. V.; Maslova, Yu Ya; Petukhov, V. A.; Semenov, M. A.; Shabalin, Yu V.; Tunkin, V. G.
2018-03-01
Harmonic mode-locking in a solid state laser due to optoelectronic control is studied numerically on the basis of two methods. The first one is detailed numeric simulation taking into account laser radiation fine time structure. It is shown that optimally chosen feedback delay leads to self-started mode-locking with generation of desired number of pulses in the laser cavity. The second method is based on discrete maps for short laser pulse energy. Both methods show that the application of combination of positive and negative feedback loops allows to reduce the period of regular nonlinear dynamics down to a fraction of a laser cavity round trip time.
Time-dependent nonlinear cosmic ray shocks confirming abstract
International Nuclear Information System (INIS)
Dorfi, E.A.
1985-01-01
Numerical studies of time dependent cosmic ray shock structures in planar geometry are interesting because analytical time-independent solutions are available which include the non-linear reactions on the plasma flow. A feature of these time asymptotic solutions is that for higher Mach numbers (M approximately 5) and for a low cosmic ray upstream pressure the solution is not uniquely determined by the usual conservation laws of mass, momentum and energy. These numerical solutions clearly indicate that much work needs to be done before we understand shock acceleration as a time dependent process. The slowness of the process is possibly due to the fact that there is a diffusive flux into the downstream region in addition to the usual advective losses. Analytic investigations of this phenomenon are required
A discrete classical space-time could require 6 extra-dimensions
Guillemant, Philippe; Medale, Marc; Abid, Cherifa
2018-01-01
We consider a discrete space-time in which conservation laws are computed in such a way that the density of information is kept bounded. We use a 2D billiard as a toy model to compute the uncertainty propagation in ball positions after every shock and the corresponding loss of phase information. Our main result is the computation of a critical time step above which billiard calculations are no longer deterministic, meaning that a multiverse of distinct billiard histories begins to appear, caused by the lack of information. Then, we highlight unexpected properties of this critical time step and the subsequent exponential evolution of the number of histories with time, to observe that after certain duration all billiard states could become possible final states, independent of initial conditions. We conclude that if our space-time is really a discrete one, one would need to introduce extra-dimensions in order to provide supplementary constraints that specify which history should be played.
Directory of Open Access Journals (Sweden)
Adailton S. Borges
Full Text Available Abstract A broad class of engineering systems can be satisfactory modeled under the assumptions of small deformations and linear material properties. However, many mechanical systems used in modern applications, like structural elements typical of aerospace and petroleum industries, have been characterized by increased slenderness and high static and dynamic loads. In such situations, it becomes indispensable to consider the nonlinear geometric effects and/or material nonlinear behavior. At the same time, in many cases involving dynamic loads, there comes the need for attenuation of vibration levels. In this context, this paper describes the development and validation of numerical models of viscoelastic slender beam-like structures undergoing large displacements. The numerical approach is based on the combination of the nonlinear Cosserat beam theory and a viscoelastic model based on Fractional Derivatives. Such combination enables to derive nonlinear equations of motion that, upon finite element discretization, can be used for predicting the dynamic behavior of the structure in the time domain, accounting for geometric nonlinearity and viscoelastic damping. The modeling methodology is illustrated and validated by numerical simulations, the results of which are compared to others available in the literature.
Zhou, Ji; Castellanos, Michelle
2013-01-01
Utilizing longitudinal data of 3477 students from 28 institutions, we examine the effects of structural diversity and quality of interracial relation on students' persistence towards graduation within six years. We utilize multilevel discrete-time survival analysis to account for the longitudinal persistence patterns as well as the nested…
A Discrete-Time Geo/G/1 Retrial Queue with Two Different Types of Vacations
Directory of Open Access Journals (Sweden)
Feng Zhang
2015-01-01
Full Text Available We analyze a discrete-time Geo/G/1 retrial queue with two different types of vacations and general retrial times. Two different types of vacation policies are investigated in this model, one of which is nonexhaustive urgent vacation during serving and the other is normal exhaustive vacation. For this model, we give the steady-state analysis for the considered queueing system. Firstly, we obtain the generating functions of the number of customers in our model. Then, we obtain the closed-form expressions of some performance measures and also give a stochastic decomposition result for the system size. Moreover, the relationship between this discrete-time model and the corresponding continuous-time model is also investigated. Finally, some numerical results are provided to illustrate the effect of nonexhaustive urgent vacation on some performance characteristics of the system.
Autonomous learning by simple dynamical systems with a discrete-time formulation
Bilen, Agustín M.; Kaluza, Pablo
2017-05-01
We present a discrete-time formulation for the autonomous learning conjecture. The main feature of this formulation is the possibility to apply the autonomous learning scheme to systems in which the errors with respect to target functions are not well-defined for all times. This restriction for the evaluation of functionality is a typical feature in systems that need a finite time interval to process a unit piece of information. We illustrate its application on an artificial neural network with feed-forward architecture for classification and a phase oscillator system with synchronization properties. The main characteristics of the discrete-time formulation are shown by constructing these systems with predefined functions.
Bürger, Raimund; Diehl, Stefan; Mejías, Camilo
2016-01-01
The main purpose of the recently introduced Bürger-Diehl simulation model for secondary settling tanks was to resolve spatial discretization problems when both hindered settling and the phenomena of compression and dispersion are included. Straightforward time integration unfortunately means long computational times. The next step in the development is to introduce and investigate time-integration methods for more efficient simulations, but where other aspects such as implementation complexity and robustness are equally considered. This is done for batch settling simulations. The key findings are partly a new time-discretization method and partly its comparison with other specially tailored and standard methods. Several advantages and disadvantages for each method are given. One conclusion is that the new linearly implicit method is easier to implement than another one (semi-implicit method), but less efficient based on two types of batch sedimentation tests.
Time-discrete higher order ALE formulations: a priori error analysis
Bonito, Andrea
2013-03-16
We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our estimates hold without any restrictions on the time steps for dG with exact integration or Reynolds\\' quadrature. They involve a mild restriction on the time steps for the practical Runge-Kutta-Radau methods of any order. The key ingredients are the stability results shown earlier in Bonito et al. (Time-discrete higher order ALE formulations: stability, 2013) along with a novel ALE projection. Numerical experiments illustrate and complement our theoretical results. © 2013 Springer-Verlag Berlin Heidelberg.
Nonlinear time-dependent simulation of helix traveling wave tubes
International Nuclear Information System (INIS)
Peng Wei-Feng; Yang Zhong-Hai; Hu Yu-Lu; Li Jian-Qing; Lu Qi-Ru; Li Bin
2011-01-01
A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of the high frequency structure, such as the pitch taper and the effect of harmonics, the spatial average over a wavelength is substituted by a time average over a wave period in the equation of the radio frequency field. Under this assumption, the space charge field of the electron beam can be treated by a space charge wave model along with the space charge coefficient. The effects of the radio frequency and the space charge fields on the electrons are presented by the equations of the electron energy and the electron phase. The time-dependent simulation is compared with the frequency-domain simulation for a helix TWT, which validates the availability of this theory. (interdisciplinary physics and related areas of science and technology)
CROSAT: A digital computer program for statistical-spectral analysis of two discrete time series
International Nuclear Information System (INIS)
Antonopoulos Domis, M.
1978-03-01
The program CROSAT computes directly from two discrete time series auto- and cross-spectra, transfer and coherence functions, using a Fast Fourier Transform subroutine. Statistical analysis of the time series is optional. While of general use the program is constructed to be immediately compatible with the ICL 4-70 and H316 computers at AEE Winfrith, and perhaps with minor modifications, with any other hardware system. (author)
Arbitrary Dimension Convection-Diffusion Schemes for Space-Time Discretizations
Energy Technology Data Exchange (ETDEWEB)
Bank, Randolph E. [Univ. of California, San Diego, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zikatanov, Ludmil T. [Bulgarian Academy of Sciences, Sofia (Bulgaria)
2016-01-20
This note proposes embedding a time dependent PDE into a convection-diffusion type PDE (in one space dimension higher) with singularity, for which two discretization schemes, the classical streamline-diffusion and the EAFE (edge average finite element) one, are investigated in terms of stability and error analysis. The EAFE scheme, in particular, is extended to be arbitrary order which is of interest on its own. Numerical results, in combined space-time domain demonstrate the feasibility of the proposed approach.
Empirical intrinsic geometry for nonlinear modeling and time series filtering.
Talmon, Ronen; Coifman, Ronald R
2013-07-30
In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.
Linear and nonlinear dynamic systems in financial time series prediction
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-10-01
Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.
Choi, Hyun Duck; Ahn, Choon Ki; Karimi, Hamid Reza; Lim, Myo Taeg
2017-10-01
This paper studies delay-dependent exponential dissipative and l 2 - l ∞ filtering problems for discrete-time switched neural networks (DSNNs) including time-delayed states. By introducing a novel discrete-time inequality, which is a discrete-time version of the continuous-time Wirtinger-type inequality, we establish new sets of linear matrix inequality (LMI) criteria such that discrete-time filtering error systems are exponentially stable with guaranteed performances in the exponential dissipative and l 2 - l ∞ senses. The design of the desired exponential dissipative and l 2 - l ∞ filters for DSNNs can be achieved by solving the proposed sets of LMI conditions. Via numerical simulation results, we show the validity of the desired discrete-time filter design approach.
El-Amin, Mohamed F.; Kou, Jisheng; Sun, Shuyu
2017-01-01
Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy's law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.
Exponential stability result for discrete-time stochastic fuzzy uncertain neural networks
International Nuclear Information System (INIS)
Mathiyalagan, K.; Sakthivel, R.; Marshal Anthoni, S.
2012-01-01
This Letter addresses the stability analysis problem for a class of uncertain discrete-time stochastic fuzzy neural networks (DSFNNs) with time-varying delays. By constructing a new Lyapunov–Krasovskii functional combined with the free weighting matrix technique, a new set of delay-dependent sufficient conditions for the robust exponential stability of the considered DSFNNs is established in terms of Linear Matrix Inequalities (LMIs). Finally, numerical examples with simulation results are provided to illustrate the applicability and usefulness of the obtained theory. -- Highlights: ► Applications of neural networks require the knowledge of dynamic behaviors. ► Exponential stability of discrete-time stochastic fuzzy neural networks is studied. ► Linear matrix inequality optimization approach is used to obtain the result. ► Delay-dependent stability criterion is established in terms of LMIs. ► Examples with simulation are provided to show the effectiveness of the result.
El-Amin, Mohamed F.
2017-06-06
Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.
Analysis of Streamline Separation at Infinity Using Time-Discrete Markov Chains.
Reich, W; Scheuermann, G
2012-12-01
Existing methods for analyzing separation of streamlines are often restricted to a finite time or a local area. In our paper we introduce a new method that complements them by allowing an infinite-time-evaluation of steady planar vector fields. Our algorithm unifies combinatorial and probabilistic methods and introduces the concept of separation in time-discrete Markov-Chains. We compute particle distributions instead of the streamlines of single particles. We encode the flow into a map and then into a transition matrix for each time direction. Finally, we compare the results of our grid-independent algorithm to the popular Finite-Time-Lyapunov-Exponents and discuss the discrepancies.
One-Time Pad as a nonlinear dynamical system
Nagaraj, Nithin
2012-11-01
The One-Time Pad (OTP) is the only known unbreakable cipher, proved mathematically by Shannon in 1949. In spite of several practical drawbacks of using the OTP, it continues to be used in quantum cryptography, DNA cryptography and even in classical cryptography when the highest form of security is desired (other popular algorithms like RSA, ECC, AES are not even proven to be computationally secure). In this work, we prove that the OTP encryption and decryption is equivalent to finding the initial condition on a pair of binary maps (Bernoulli shift). The binary map belongs to a family of 1D nonlinear chaotic and ergodic dynamical systems known as Generalized Luröth Series (GLS). Having established these interesting connections, we construct other perfect secrecy systems on the GLS that are equivalent to the One-Time Pad, generalizing for larger alphabets. We further show that OTP encryption is related to Randomized Arithmetic Coding - a scheme for joint compression and encryption.
Nonlinear MHD dynamics of tokamak plasmas on multiple time scales
International Nuclear Information System (INIS)
Kruger, S.E.; Schnack, D.D.; Brennan, D.P.; Gianakon, T.A.; Sovinec, C.R.
2003-01-01
Two types of numerical, nonlinear simulations using the NIMROD code are presented. In the first simulation, we model the disruption occurring in DIII-D discharge 87009 as an ideal MHD instability driven unstable by neutral-beam heating. The mode grows faster than exponential, but on a time scale that is a hybrid of the heating rate and the ideal MHD growth rate as predicted by analytic theory. The second type of simulations, which occur on a much longer time scale, focus on the seeding of tearing modes by sawteeth. Pressure effects play a role both in the exterior region solutions and in the neoclassical drive terms. The results of both simulations are reviewed and their implications for experimental analysis is discussed. (author)
Recurrence Density Enhanced Complex Networks for Nonlinear Time Series Analysis
Costa, Diego G. De B.; Reis, Barbara M. Da F.; Zou, Yong; Quiles, Marcos G.; Macau, Elbert E. N.
We introduce a new method, which is entitled Recurrence Density Enhanced Complex Network (RDE-CN), to properly analyze nonlinear time series. Our method first transforms a recurrence plot into a figure of a reduced number of points yet preserving the main and fundamental recurrence properties of the original plot. This resulting figure is then reinterpreted as a complex network, which is further characterized by network statistical measures. We illustrate the computational power of RDE-CN approach by time series by both the logistic map and experimental fluid flows, which show that our method distinguishes different dynamics sufficiently well as the traditional recurrence analysis. Therefore, the proposed methodology characterizes the recurrence matrix adequately, while using a reduced set of points from the original recurrence plots.
Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand
2014-01-01
In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays
Directory of Open Access Journals (Sweden)
F. Yıldız Tascikaraoglu
2014-01-01
Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.
Roatta , Luca
2017-01-01
Assuming that space and time can only have discrete values, it is shown how deformed space and time cause gravitational attraction, whose law in a discrete context is slightly different from the Newtonian, but to it exactly coincident at large distance. This difference is directly connected to the existence of black holes, which result to have the structure of a hollow sphere.
Nonlinear Aerodynamics-Structure Time Simulation for HALE Aircraft Design/Analysis, Phase I
National Aeronautics and Space Administration — Time simulation of a nonlinear aerodynamics model (NA) developed at Virginia Tech coupled with a nonlinear structure model (NS) is proposed as a design/analysis...
Delay-Dependent Exponential Stability for Discrete-Time BAM Neural Networks with Time-Varying Delays
Directory of Open Access Journals (Sweden)
Yonggang Chen
2008-01-01
Full Text Available This paper considers the delay-dependent exponential stability for discrete-time BAM neural networks with time-varying delays. By constructing the new Lyapunov functional, the improved delay-dependent exponential stability criterion is derived in terms of linear matrix inequality (LMI. Moreover, in order to reduce the conservativeness, some slack matrices are introduced in this paper. Two numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.
Directory of Open Access Journals (Sweden)
Hamid Reza Karimi
2009-01-01
Full Text Available The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range-dependent, and distributed-delay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method.
Bifurcations in a discrete time model composed of Beverton-Holt function and Ricker function.
Shang, Jin; Li, Bingtuan; Barnard, Michael R
2015-05-01
We provide rigorous analysis for a discrete-time model composed of the Ricker function and Beverton-Holt function. This model was proposed by Lewis and Li [Bull. Math. Biol. 74 (2012) 2383-2402] in the study of a population in which reproduction occurs at a discrete instant of time whereas death and competition take place continuously during the season. We show analytically that there exists a period-doubling bifurcation curve in the model. The bifurcation curve divides the parameter space into the region of stability and the region of instability. We demonstrate through numerical bifurcation diagrams that the regions of periodic cycles are intermixed with the regions of chaos. We also study the global stability of the model. Copyright © 2015 Elsevier Inc. All rights reserved.
A simple method of chaos control for a class of chaotic discrete-time systems
International Nuclear Information System (INIS)
Jiang Guoping; Zheng Weixing
2005-01-01
In this paper, a simple method is proposed for chaos control for a class of discrete-time chaotic systems. The proposed method is built upon the state feedback control and the characteristic of ergodicity of chaos. The feedback gain matrix of the controller is designed using a simple criterion, so that control parameters can be selected via the pole placement technique of linear control theory. The new controller has a feature that it only uses the state variable for control and does not require the target equilibrium point in the feedback path. Moreover, the proposed control method cannot only overcome the so-called 'odd eigenvalues number limitation' of delayed feedback control, but also control the chaotic systems to the specified equilibrium points. The effectiveness of the proposed method is demonstrated by a two-dimensional discrete-time chaotic system
Sliding mode control-based linear functional observers for discrete-time stochastic systems
Singh, Satnesh; Janardhanan, Sivaramakrishnan
2017-11-01
Sliding mode control (SMC) is one of the most popular techniques to stabilise linear discrete-time stochastic systems. However, application of SMC becomes difficult when the system states are not available for feedback. This paper presents a new approach to design a SMC-based functional observer for discrete-time stochastic systems. The functional observer is based on the Kronecker product approach. Existence conditions and stability analysis of the proposed observer are given. The control input is estimated by a novel linear functional observer. This approach leads to a non-switching type of control, thereby eliminating the fundamental cause of chatter. Furthermore, the functional observer is designed in such a way that the effect of process and measurement noise is minimised. Simulation example is given to illustrate and validate the proposed design method.
2014-01-01
Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295
Directory of Open Access Journals (Sweden)
Shih-Wei Lin
2014-01-01
Full Text Available Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP, which aims to minimize total service time, and proposes an iterated greedy (IG algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set.
Limitations of discrete-time quantum walk on a one-dimensional infinite chain
Lin, Jia-Yi; Zhu, Xuanmin; Wu, Shengjun
2018-04-01
How well can we manipulate the state of a particle via a discrete-time quantum walk? We show that the discrete-time quantum walk on a one-dimensional infinite chain with coin operators that are independent of the position can only realize product operators of the form eiξ A ⊗1p, which cannot change the position state of the walker. We present a scheme to construct all possible realizations of all the product operators of the form eiξ A ⊗1p. When the coin operators are dependent on the position, we show that the translation operators on the position can not be realized via a DTQW with coin operators that are either the identity operator 1 or the Pauli operator σx.
Discrete-Slots Models of Visual Working-Memory Response Times
Donkin, Christopher; Nosofsky, Robert M.; Gold, Jason M.; Shiffrin, Richard M.
2014-01-01
Much recent research has aimed to establish whether visual working memory (WM) is better characterized by a limited number of discrete all-or-none slots or by a continuous sharing of memory resources. To date, however, researchers have not considered the response-time (RT) predictions of discrete-slots versus shared-resources models. To complement the past research in this field, we formalize a family of mixed-state, discrete-slots models for explaining choice and RTs in tasks of visual WM change detection. In the tasks under investigation, a small set of visual items is presented, followed by a test item in 1 of the studied positions for which a change judgment must be made. According to the models, if the studied item in that position is retained in 1 of the discrete slots, then a memory-based evidence-accumulation process determines the choice and the RT; if the studied item in that position is missing, then a guessing-based accumulation process operates. Observed RT distributions are therefore theorized to arise as probabilistic mixtures of the memory-based and guessing distributions. We formalize an analogous set of continuous shared-resources models. The model classes are tested on individual subjects with both qualitative contrasts and quantitative fits to RT-distribution data. The discrete-slots models provide much better qualitative and quantitative accounts of the RT and choice data than do the shared-resources models, although there is some evidence for “slots plus resources” when memory set size is very small. PMID:24015956
Output-Feedback Control for Discrete-Time Spreading Models in Complex Networks
Directory of Open Access Journals (Sweden)
Luis A. Alarcón Ramos
2018-03-01
Full Text Available The problem of stabilizing the spreading process to a prescribed probability distribution over a complex network is considered, where the dynamics of the nodes in the network is given by discrete-time Markov-chain processes. Conditions for the positioning and identification of actuators and sensors are provided, and sufficient conditions for the exponential stability of the desired distribution are derived. Simulations results for a network of N = 10 6 corroborate our theoretical findings.
Improved result on stability analysis of discrete stochastic neural networks with time delay
International Nuclear Information System (INIS)
Wu Zhengguang; Su Hongye; Chu Jian; Zhou Wuneng
2009-01-01
This Letter investigates the problem of exponential stability for discrete stochastic time-delay neural networks. By defining a novel Lyapunov functional, an improved delay-dependent exponential stability criterion is established in terms of linear matrix inequality (LMI) approach. Meanwhile, the computational complexity of the newly established stability condition is reduced because less variables are involved. Numerical example is given to illustrate the effectiveness and the benefits of the proposed method.
Robust Active MPC Synchronization for Two Discrete-Time Chaotic Systems with Bounded Disturbance
Directory of Open Access Journals (Sweden)
Longge Zhang
2017-01-01
Full Text Available This paper proposes a synchronization scheme for two discrete-time chaotic systems with bounded disturbance. By using active control method and imposing some restriction on the error state, the computation of controller’s feedback matrix is converted to the min-max optimization problem. The theoretical results are derived with the aid of predictive model predictive paradigm and linear matrix inequality technique. Two example simulations are performed to show the effectiveness of the designed control method.
Czech Academy of Sciences Publication Activity Database
Fiala, Zdeněk
2015-01-01
Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1
Discrete time motion model for guiding people in urban areas using multiple robots
Garrell Zulueta, Anais; Sanfeliu Cortés, Alberto; Moreno-Noguer, Francesc
2009-01-01
We present a new model for people guidance in urban settings using several mobile robots, that overcomes the limitations of existing approaches, which are either tailored to tightly bounded environments, or based on unrealistic human behaviors. Although the robots motion is controlled by means of a standard particle filter formulation, the novelty of our approach resides in how the environment and human and robot motions are modeled. In particular we define a “Discrete-Time-Motion” model, whi...
Period-doubling bifurcation and chaos control in a discrete-time mosquito model
Directory of Open Access Journals (Sweden)
Qamar Din
2017-12-01
Full Text Available This article deals with the study of some qualitative properties of a discrete-time mosquito Model. It is shown that there exists period-doubling bifurcation for wide range of bifurcation parameter for the unique positive steady-state of given system. In order to control the bifurcation we introduced a feedback strategy. For further confirmation of complexity and chaotic behavior largest Lyapunov exponents are plotted.
Non-linear shape functions over time in the space-time finite element method
Directory of Open Access Journals (Sweden)
Kacprzyk Zbigniew
2017-01-01
Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.
Estimation of system parameters in discrete dynamical systems from time series
International Nuclear Information System (INIS)
Palaniyandi, P.; Lakshmanan, M.
2005-01-01
We propose a simple method to estimate the parameters involved in discrete dynamical systems from time series. The method is based on the concept of controlling chaos by constant feedback. The major advantages of the method are that it needs a minimal number of time series data (either vector or scalar) and is applicable to dynamical systems of any dimension. The method also works extremely well even in the presence of noise in the time series. The method is specifically illustrated by means of logistic and Henon maps
A Spectral Analysis of Discrete-Time Quantum Walks Related to the Birth and Death Chains
Ho, Choon-Lin; Ide, Yusuke; Konno, Norio; Segawa, Etsuo; Takumi, Kentaro
2018-04-01
In this paper, we consider a spectral analysis of discrete time quantum walks on the path. For isospectral coin cases, we show that the time averaged distribution and stationary distributions of the quantum walks are described by the pair of eigenvalues of the coins as well as the eigenvalues and eigenvectors of the corresponding random walks which are usually referred as the birth and death chains. As an example of the results, we derive the time averaged distribution of so-called Szegedy's walk which is related to the Ehrenfest model. It is represented by Krawtchouk polynomials which is the eigenvectors of the model and includes the arcsine law.
Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control
Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo
2017-02-01
The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.
Evaluation of time integration methods for transient response analysis of nonlinear structures
International Nuclear Information System (INIS)
Park, K.C.
1975-01-01
Recent developments in the evaluation of direct time integration methods for the transient response analysis of nonlinear structures are presented. These developments, which are based on local stability considerations of an integrator, show that the interaction between temporal step size and nonlinearities of structural systems has a pronounced effect on both accuracy and stability of a given time integration method. The resulting evaluation technique is applied to a model nonlinear problem, in order to: 1) demonstrate that it eliminates the present costly process of evaluating time integrator for nonlinear structural systems via extensive numerical experiments; 2) identify the desirable characteristics of time integration methods for nonlinear structural problems; 3) develop improved stiffly-stable methods for application to nonlinear structures. Extension of the methodology for examination of the interaction between a time integrator and the approximate treatment of nonlinearities (such as due to pseudo-force or incremental solution procedures) is also discussed. (Auth.)
Directory of Open Access Journals (Sweden)
Albert Corominas
Full Text Available A non-linear discrete-time mathematical program model is proposed to determining the optimal extraction policy for a single primary supplier of a durable non-renewable resource, such as gemstones or some metals. Karush, Kuhn and Tucker conditions allow obtaining analytic solutions and general properties of them in some specific settings. Moreover, provided that the objective function (i.e., the discounted value of the incomes throughout the planning horizon is concave, the model can be easily solved, even using standard commercial solver. However, the analysis of the solutions obtained for different assumptions of the values of the parameters show that the optimal extraction policies and the corresponding prices do not exhibit a general shape. Keywords: Durable non-renewable resources, Single primary supplier, Non-linear programming
Directory of Open Access Journals (Sweden)
Mengjuan Cao
2014-01-01
Full Text Available The linear discrete-time descriptor noncausal multirate system is considered for the presentation of a new design approach for optimal preview control. First, according to the characteristics of causal controllability and causal observability, the descriptor noncausal system is constructed into a descriptor causal closed-loop system. Second, by using the characteristics of the causal system and elementary transformation, the descriptor causal closed-loop system is transformed into a normal system. Then, taking advantage of the discrete lifting technique, the normal multirate system is converted to a single-rate system. By making use of the standard preview control method, we construct the descriptor augmented error system. The quadratic performance index for the multirate system is given, which can be changed into one for the single-rate system. In addition, a new single-rate system is obtained, the optimal control law of which is given. Returning to the original system, the optimal preview controller for linear discrete-time descriptor noncausal multirate systems is derived. The stabilizability and detectability of the lifted single-rate system are discussed in detail. The optimal preview control design techniques are illustrated by simulation results for a simple example.
Design of an optimal preview controller for linear discrete-time descriptor systems with state delay
Cao, Mengjuan; Liao, Fucheng
2015-04-01
In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.
Optical force on a discrete invisibility cloak in time-dependent fields
International Nuclear Information System (INIS)
Chaumet, Patrick C.; Zolla, Frederic; Nicolet, Andre; Belkebir, Kamal; Rahmani, Adel
2011-01-01
We study, in time domain, the exchange of momentum between an electromagnetic pulse and a three-dimensional, discrete, spherical invisibility cloak. We find that a discrete cloak, initially at rest, would experience an electromagnetic force due to the pulse but would acquire zero net momentum and net displacement. On the other hand, we find that while the cloak may manage to conceal an object and shroud it from the electromagnetic forces associated with the pulse, the cloak itself can experience optomechanical stress on a scale much larger than the object would in the absence of the cloak. We also consider the effects of material dispersion and losses on the electromagnetic forces experienced by the cloak and show that they lead to a transfer of momentum from the pulse to the cloak.
Consensus of Discrete Multiagent System with Various Time Delays and Environmental Disturbances
Directory of Open Access Journals (Sweden)
Zheping Yan
2014-12-01
Full Text Available In this paper, the consensus problem of discrete multiagent systems with time varying sampling periods is studied. Firstly, with thorough analysis of various delays among agents, the control input of each agent is designed with consideration of sending delay and receiving delay. With construction of discrete dynamics of state error vector, it is proved by applying Halanay inequality that consensus of the system can be reached. Further, the definition of bounded consensus is proposed in the situation where environmental disturbances exist. In order to handle this problem, the Halanay inequality is extended into a more general one with boundedness property. Based on the new Halanay inequality obtained, the boundedness of consensus error is guaranteed. At last, simulation examples are presented to demonstrate the theoretical conclusions.
Bifurcation and complex dynamics of a discrete-time predator-prey system involving group defense
Directory of Open Access Journals (Sweden)
S. M. Sohel Rana
2015-09-01
Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system involving group defense. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamical behaviors, including phase portraits, period-7, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors.
Discrete conservation laws and the convergence of long time simulations of the mkdv equation
Gorria, C.; Alejo, M. A.; Vega, L.
2013-02-01
Pseudospectral collocation methods and finite difference methods have been used for approximating an important family of soliton like solutions of the mKdV equation. These solutions present a structural instability which make difficult to approximate their evolution in long time intervals with enough accuracy. The standard numerical methods do not guarantee the convergence to the proper solution of the initial value problem and often fail by approaching solutions associated to different initial conditions. In this frame the numerical schemes that preserve the discrete invariants related to some conservation laws of this equation produce better results than the methods which only take care of a high consistency order. Pseudospectral spatial discretization appear as the most robust of the numerical methods, but finite difference schemes are useful in order to analyze the rule played by the conservation of the invariants in the convergence.
Directory of Open Access Journals (Sweden)
Yiming Jiang
2016-01-01
Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.
Lorente, M.
2003-01-01
We explore the mathematical consequences of the assumption of a discrete space-time. The fundamental laws of physics have to be translated into the language of discrete mathematics. We find integral transformations that leave the lattice of any dimension invariant and apply these transformations to field equations.
DEFF Research Database (Denmark)
Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.
2004-01-01
of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water non-linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into the numerical behaviour of this rather complicated system of non-linear PDEs....
Modelling and real-time simulation of continuous-discrete systems in mechatronics
Energy Technology Data Exchange (ETDEWEB)
Lindow, H. [Rostocker, Magdeburg (Germany)
1996-12-31
This work presents a methodology for simulation and modelling of systems with continuous - discrete dynamics. It derives hybrid discrete event models from Lagrange`s equations of motion. This method combines continuous mechanical, electrical and thermodynamical submodels on one hand with discrete event models an the other hand into a hybrid discrete event model. This straight forward software development avoids numeric overhead.
Nonlinear time-domain modeling of balanced-armature receivers
DEFF Research Database (Denmark)
Jensen, Joe; Agerkvist, Finn T.; Harte, James
2011-01-01
Nonlinear distortion added by the loudspeaker in a hearing aid lowers the signal-to-noise ratio and may degrade the hearing aid user's ability to understand speech. The balancedarmature- type loudspeakers, predominantly used in hearing aids, are inherently nonlinear devices, as any displacement...
Directory of Open Access Journals (Sweden)
John Cortés-Romero
2013-01-01
Full Text Available The problem of active disturbance rejection control of induction motors is tackled by means of a generalized PI observer based discrete-time control, using the delta operator approach as the methodology of analyzing the sampled time process. In this scheme, model uncertainties and external disturbances are included in a general additive disturbance input which is to be online estimated and subsequently rejected via the controller actions. The observer carries out the disturbance estimation, thus reducing the complexity of the controller design. The controller efficiency is tested via some experimental results, performing a trajectory tracking task under load variations.
Observer-based hyperchaos synchronization in cascaded discrete-time systems
International Nuclear Information System (INIS)
Grassi, Giuseppe
2009-01-01
This paper deals with the observer-based synchronization in a cascade connection of hyperchaotic discrete-time systems. The paper demonstrates that exact synchronization in finite time is achievable between pairs of drive-response systems using only a scalar synchronizing signal. This 'propagated synchronization' starts from the innermost drive-response system pair and propagates toward the outermost drive-system pair. Choosing the drive-system input to be an information signal (encrypted via an arbitrary encryption function) yields a potential application of this architecture in chaos-based communications.
Nonlinear systems time-varying parameter estimation: Application to induction motors
Energy Technology Data Exchange (ETDEWEB)
Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, IUT FOTSO Victor, Universite de Dschang, B.P. 134 Bandjoun (Cameroon); Ahmed-Ali, Tarek [Ecole Nationale Superieure des Ingenieurs des Etudes et Techniques d' Armement (ENSIETA), 2 Rue Francois Verny, 29806 Brest Cedex 9 (France); Lamnabhi-Lagarrigue, F. [Laboratoire des Signaux et Systemes (L2S), C.N.R.S-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Arzande, Amir [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)
2008-11-15
In this paper, an algorithm for time-varying parameter estimation for a large class of nonlinear systems is presented. The proof of the convergence of the estimates to their true values is achieved using Lyapunov theories and does not require that the classical persistent excitation condition be satisfied by the input signal. Since the induction motor (IM) is widely used in several industrial sectors, the algorithm developed is potentially useful for adjusting the controller parameters of variable speed drives. The method proposed is simple and easily implementable in real-time. The application of this approach to on-line estimation of the rotor resistance of IM shows a rapidly converging estimate in spite of measurement noise, discretization effects, parameter uncertainties (e.g. inaccuracies on motor inductance values) and modeling inaccuracies. The robustness analysis for this IM application also revealed that the proposed scheme is insensitive to the stator resistance variations within a wide range. The merits of the proposed algorithm in the case of on-line time-varying rotor resistance estimation are demonstrated via experimental results in various operating conditions of the induction motor. The experimental results obtained demonstrate that the application of the proposed algorithm to update on-line the parameters of an adaptive controller (e.g. IM and synchronous machines adaptive control) can improve the efficiency of the industrial process. The other interesting features of the proposed method include fault detection/estimation and adaptive control of IM and synchronous machines. (author)
An analytical nodal method for time-dependent one-dimensional discrete ordinates problems
International Nuclear Information System (INIS)
Barros, R.C. de
1992-01-01
In recent years, relatively little work has been done in developing time-dependent discrete ordinates (S N ) computer codes. Therefore, the topic of time integration methods certainly deserves further attention. In this paper, we describe a new coarse-mesh method for time-dependent monoenergetic S N transport problesm in slab geometry. This numerical method preserves the analytic solution of the transverse-integrated S N nodal equations by constants, so we call our method the analytical constant nodal (ACN) method. For time-independent S N problems in finite slab geometry and for time-dependent infinite-medium S N problems, the ACN method generates numerical solutions that are completely free of truncation errors. Bsed on this positive feature, we expect the ACN method to be more accurate than conventional numerical methods for S N transport calculations on coarse space-time grids