Nonlinear theory of diffusive acceleration of particles by shock waves
Energy Technology Data Exchange (ETDEWEB)
Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)
2001-04-01
Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)
An artificial nonlinear diffusivity method for supersonic reacting flows with shocks
Fiorina, B.; Lele, S. K.
2007-03-01
A computational approach for modeling interactions between shocks waves, contact discontinuities and reactions zones with a high-order compact scheme is investigated. To prevent the formation of spurious oscillations around shocks, artificial nonlinear viscosity [A.W. Cook, W.H. Cabot, A high-wavenumber viscosity for high resolution numerical method, J. Comput. Phys. 195 (2004) 594-601] based on high-order derivative of the strain rate tensor is used. To capture temperature and species discontinuities a nonlinear diffusivity based on the entropy gradient is added. It is shown that the damping of 'wiggles' is controlled by the model constants and is largely independent of the mesh size and the shock strength. The same holds for the numerical shock thickness and allows a determination of the L2 error. In the shock tube problem, with fluids of different initial entropy separated by the diaphragm, an artificial diffusivity is required to accurately capture the contact surface. Finally, the method is applied to a shock wave propagating into a medium with non-uniform density/entropy and to a CJ detonation wave. Multi-dimensional formulation of the model is presented and is illustrated by a 2D oblique wave reflection from an inviscid wall, by a 2D supersonic blunt body flow and by a Mach reflection problem.
Energy Technology Data Exchange (ETDEWEB)
Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.
2008-07-02
We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Nonlinearity, Conservation Law and Shocks
Indian Academy of Sciences (India)
Almost all natural phenomena, and social and economic changes, .... reference moving with velocity c also by the same symbol x and ... abstract as can be seen from the publication of the book Shock Waves and Reaction Diffusion Equation.
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
Nonlinearity, Conservation Law and Shocks
Indian Academy of Sciences (India)
However, genuine nonlinearity is always present in an ideal gas. The conservation form of the equation (25) brings in shocks which cut off the growing part of the amplitUde as shown in. Figure 15. Acknowledgements. The author sincerely thanks the two referees whose valuable comments led to an improvement of the ...
Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning
2001-01-01
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which
Reaction effects in diffusive shock acceleration
International Nuclear Information System (INIS)
Drury, L.Oc.
1984-01-01
The effects of the reaction of accelerated particles back on the shock wave in the diffusive-shock-acceleration model of cosmic-ray generation are investigated theoretically. Effects examined include changes in the shock structure, modifications of the input and output spectra, scattering effects, and possible instabilities in the small-scale structure. It is pointed out that the latter two effects are applicable to any spatially localized acceleration mechanism. 14 references
Nonlinear Diffusion and Transient Osmosis
International Nuclear Information System (INIS)
Igarashi, Akira; Rondoni, Lamberto; Botrugno, Antonio; Pizzi, Marco
2011-01-01
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call ''transient osmosis . We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Nonlinear Cross-Diffusion with Size Exclusion
Burger, Martin; Di Francesco, Marco; Pietschmann, Jan-Frederik; Schlake, Bä rbel
2010-01-01
The aim of this paper is to investigate the mathematical properties of a continuum model for diffusion of multiple species incorporating size exclusion effects. The system for two species leads to nonlinear cross-diffusion terms with double
Role of drifts in diffusive shock acceleration
International Nuclear Information System (INIS)
Decker, R.B.
1988-01-01
The role played by shock-associated drifts during the diffusive acceleration of charged particles at collisionless MHD shocks is evaluated. In the rest frame of the shock, the total energy gained by a particle is shown to result from two coupled acceleration mechanisms, the usual first-order Fermi mechanism and the drift mechanism. When averaged over a distribution of particles, the ratio of the drift-associated energy gain to the total energy is found to be independent of the total energy at a given theta1 (the angle between the shock normal and the unperturbed upstream magnetic field) in agreement with theoretical predictions. No evidence is found for drift-associated deceleration, suggesting that drifts always augment acceleration. 35 references
Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model
Energy Technology Data Exchange (ETDEWEB)
Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand); Fichtner, Horst; Walter, Dominik [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum (Germany)
2017-05-20
We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatment of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.
Time-dependent nonlinear cosmic ray shocks confirming abstract
International Nuclear Information System (INIS)
Dorfi, E.A.
1985-01-01
Numerical studies of time dependent cosmic ray shock structures in planar geometry are interesting because analytical time-independent solutions are available which include the non-linear reactions on the plasma flow. A feature of these time asymptotic solutions is that for higher Mach numbers (M approximately 5) and for a low cosmic ray upstream pressure the solution is not uniquely determined by the usual conservation laws of mass, momentum and energy. These numerical solutions clearly indicate that much work needs to be done before we understand shock acceleration as a time dependent process. The slowness of the process is possibly due to the fact that there is a diffusive flux into the downstream region in addition to the usual advective losses. Analytic investigations of this phenomenon are required
Diffusive Shock Acceleration and Turbulent Reconnection
Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos
2018-05-01
Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.
On Maximally Dissipative Shock Waves in Nonlinear Elasticity
Knowles, James K.
2010-01-01
Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximizes the rate of dissipation? We find that the answer to this question depends strongly on the qualitative nature of the stress-strain relation characteristic of the given material. When maximally dissipative shocks do occur, they propagate according t...
Turing instability in reaction-diffusion systems with nonlinear diffusion
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)
2013-10-15
The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.
Nonlinear diffusion problem arising in plasma physics
International Nuclear Information System (INIS)
Berryman, J.G.; Holland, C.J.
1978-01-01
In earlier studies of plasma diffusion with Okuda-Dawson scaling (D approx. n/sup -1/2/), perturbation theory indicated that arbitrary initial data should evolve rapidly toward the separation solution of the relevant nonlinear diffusion equation. Now a Lyapunov functional has been found which is strictly decreasing in time and bounded below. The rigorous proof that arbitrary initial data evolve toeard the separable solution is summarized. Rigorous bounds on the decay time are also presented
Shocks, singularities and oscillations in nonlinear optics and fluid mechanics
Santo, Daniele; Lannes, David
2017-01-01
The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .
Nonlinear reflection of shock shear waves in soft elastic media.
Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël
2010-02-01
For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.
Nonlinear Cross-Diffusion with Size Exclusion
Burger, Martin
2010-01-01
The aim of this paper is to investigate the mathematical properties of a continuum model for diffusion of multiple species incorporating size exclusion effects. The system for two species leads to nonlinear cross-diffusion terms with double degeneracy, which creates significant novel challenges in the analysis of the system. We prove global existence of weak solutions and well-posedness of strong solutions close to equilibrium. We further study some asymptotics of the model, and in particular we characterize the large-time behavior of solutions. 2010 © Society for Industrial and Applied Mathematics.
Experimental observation of azimuthal shock waves on nonlinear acoustical vortices
International Nuclear Information System (INIS)
Brunet, Thomas; Thomas, Jean-Louis; Marchiano, Regis; Coulouvrat, Francois
2009-01-01
Thanks to a new focused array of piezoelectric transducers, experimental results are reported here to evidence helical acoustical shock waves resulting from the nonlinear propagation of acoustical vortices (AVs). These shock waves have a three-dimensional spiral shape, from which both the longitudinal and azimuthal components are studied. The inverse filter technique used to synthesize AVs allows various parameters to be varied, especially the topological charge which is the key parameter describing screw dislocations. Firstly, an analysis of the longitudinal modes in the frequency domain reveals a wide cascade of harmonics (up to the 60th order) leading to the formation of the shock waves. Then, an original measurement in the transverse plane exhibits azimuthal behaviour which has never been observed until now for acoustical shock waves. Finally, these new experimental results suggest interesting potential applications of nonlinear effects in terms of acoustics spanners in order to manipulate small objects.
A radiating shock evaluated using Implicit Monte Carlo Diffusion
International Nuclear Information System (INIS)
Cleveland, M.; Gentile, N.
2013-01-01
Implicit Monte Carlo [1] (IMC) has been shown to be very expensive when used to evaluate a radiation field in opaque media. Implicit Monte Carlo Diffusion (IMD) [2], which evaluates a spatial discretized diffusion equation using a Monte Carlo algorithm, can be used to reduce the cost of evaluating the radiation field in opaque media [2]. This work couples IMD to the hydrodynamics equations to evaluate opaque diffusive radiating shocks. The Lowrie semi-analytic diffusive radiating shock benchmark[a] is used to verify our implementation of the coupled system of equations. (authors)
Nonlinear diffuse scattering of the random-phased wave
International Nuclear Information System (INIS)
Kato, Yoshiaki; Arinaga, Shinji; Mima, Kunioki.
1983-01-01
First experimental observation of the nonlinear diffuse scattering is reported. This new effect was observed in the propagation of the random-phased wave through a nonlinear dielectric medium. This effect is ascribed to the diffusion of the wavevector of the electro-magnetic wave to the lateral direction due to the randomly distributed nonlinear increase in the refractive index. (author)
Double shock dynamics induced by the saturation of defocusing nonlinearities
Crosta, Matteo
2012-01-01
We show that the saturation of defocusing nonlinearities leads to qualitative changes in the onset of wave breaking, determining double shock formation whose regularization occurs in terms of antidark solitons. In a given material, the crossover between different regimes can be controlled by changing the input intensity. © 2012 Optical Society of America.
Nonlinear analysis of a reaction-diffusion system: Amplitude equations
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)
2012-10-15
A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.
Rogue and shock waves in nonlinear dispersive media
Resitori, Stefania; Baronio, Fabio
2016-01-01
This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...
Dispersive shock waves in nonlinear and atomic optics
Directory of Open Access Journals (Sweden)
Kamchatnov Anatoly
2017-01-01
Full Text Available A brief review is given of dispersive shock waves observed in nonlinear optics and dynamics of Bose-Einstein condensates. The theory of dispersive shock waves is developed on the basis of Whitham modulation theory for various situations taking place in these two fields. In particular, the full classification is established for types of wave structures evolving from initial discontinuities for propagation of long light pulses in fibers with account of steepening effect and for dynamics of the polarization mode in two-component Bose-Einstein condensates.
Nonlinear Weibel Instability and Turbulence in Strong Collisionless Shocks
International Nuclear Information System (INIS)
Medvedev, Mikhail M.
2008-01-01
This research project was devoted to studies of collisionless shocks, their properties, microphysics and plasma physics of underlying phenomena, such as Weibel instability and generation of small-scale fields at shocks, particle acceleration and transport in the generated random fields, radiation mechanisms from these fields in application to astrophysical phenomena and laboratory experiments (e.g., laser-plasma and beam-plasma interactions, the fast ignition and inertial confinement, etc.). Thus, this study is highly relevant to astrophysical sciences, the inertial confinement program and, in particular, the Fast Ignition concept, etc. It makes valuable contributions to the shock physics, nonlinear plasma theory, as well as to the basic plasma science, in general
Parker, L. N.; Zank, G. P.
2013-12-01
Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).
Exact analytical solutions for nonlinear reaction-diffusion equations
International Nuclear Information System (INIS)
Liu Chunping
2003-01-01
By using a direct method via the computer algebraic system of Mathematica, some exact analytical solutions to a class of nonlinear reaction-diffusion equations are presented in closed form. Subsequently, the hyperbolic function solutions and the triangular function solutions of the coupled nonlinear reaction-diffusion equations are obtained in a unified way
Multi-shocks generation and collapsing instabilities induced by competing nonlinearities
Crosta, Matteo; Trillo, Stefano; Fratalocchi, Andrea
2012-01-01
We investigate dispersive shock dynamics in materials with competing cubic-quintic nonlinearities. Whitham theory of modulation, hydrodynamic analysis and numerics demonstrate a rich physical scenario, ranging from multi-shock generation to collapse.
Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks
Kang, Hyesung; Ryu, Dongsu
2018-03-01
Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.
Differential constraints and exact solutions of nonlinear diffusion equations
International Nuclear Information System (INIS)
Kaptsov, Oleg V; Verevkin, Igor V
2003-01-01
The differential constraints are applied to obtain explicit solutions of nonlinear diffusion equations. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the determining equations used in the search for classical Lie symmetries
CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL
CARRILLO, JOSÉ ANTONIO; HITTMEIR, SABINE; JÜ NGEL, ANSGAR
2012-01-01
A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy
Time-dependent diffusive acceleration of test particles at shocks
Energy Technology Data Exchange (ETDEWEB)
Drury, L.O' C. (Dublin Inst. for Advanced Studies (Ireland))
1991-07-15
The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author).
Time-dependent diffusive acceleration of test particles at shocks
International Nuclear Information System (INIS)
Drury, L.O'C.
1991-01-01
The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author)
INJECTION TO RAPID DIFFUSIVE SHOCK ACCELERATION AT PERPENDICULAR SHOCKS IN PARTIALLY IONIZED PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Ohira, Yutaka, E-mail: ohira@phys.aoyama.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258 (Japan)
2016-08-10
We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v {sub sh} ≈ 1333 km s{sup −1} and f {sub i} ∼ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ∼ 100 v {sub sh} ∼ 0.3 c within ∼100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 10{sup 15.5} eV (the knee) during the Sedov phase.
Dispersive shock mediated resonant radiations in defocused nonlinear medium
Bose, Surajit; Chattopadhyay, Rik; Bhadra, Shyamal Kumar
2018-04-01
We report the evolution of resonant radiation (RR) in a self-defocused nonlinear medium with two zero dispersion wavelengths. RR is generated from dispersive shock wave (DSW) front when the pump pulse is in non-solitonic regime close to first zero dispersion wavelength (ZDW). DSW is responsible for pulse splitting resulting in the generation of blue solitons when leading edge of the pump pulse hits the first ZDW. DSW also generates a red shifted dispersive wave (DW) in the presence of higher order dispersion coefficients. Further, DSW through cross-phase modulation with red shifted dispersive wave (DW) excites a localized radiation. The presence of zero nonlinearity point in the system restricts red-shift of RR and enhances the red shifting of DW. It also helps in the formation of DSW at shorter distance and squeezes the solitonic region beyond second zero dispersion point. Predicted results indicate that the spectral evolution depends on the product of Kerr nonlinearity and group velocity dispersion.
Nonlinear degenerate cross-diffusion systems with nonlocal interaction
Di Francesco, M.; Esposito, A.; Fagioli, S.
2017-01-01
We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform "coerciveness" assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove g...
The Whitham approach to dispersive shocks in systems with cubic–quintic nonlinearities
Crosta, M
2012-09-12
By employing a rigorous approach based on the Whitham modulation theory, we investigate dispersive shock waves arising in a high-order nonlinear Schrödinger equation with competing cubic and quintic nonlinear responses. This model finds important applications in both nonlinear optics and Bose–Einstein condensates. Our theory predicts the formation of dispersive shocks with totally controllable properties, encompassing both steering and compression effects. Numerical simulations confirm these results perfectly. Quite remarkably, shock tuning can be achieved in the regime of a very small high order, i.e. quintic, nonlinearity.
The Whitham approach to dispersive shocks in systems with cubic–quintic nonlinearities
Crosta, M; Trillo, S; Fratalocchi, Andrea
2012-01-01
By employing a rigorous approach based on the Whitham modulation theory, we investigate dispersive shock waves arising in a high-order nonlinear Schrödinger equation with competing cubic and quintic nonlinear responses. This model finds important applications in both nonlinear optics and Bose–Einstein condensates. Our theory predicts the formation of dispersive shocks with totally controllable properties, encompassing both steering and compression effects. Numerical simulations confirm these results perfectly. Quite remarkably, shock tuning can be achieved in the regime of a very small high order, i.e. quintic, nonlinearity.
Nonlinear Dynamics of a Diffusing Interface
Duval, Walter M. B.
2001-01-01
Excitation of two miscible-viscous liquids inside a bounded enclosure in a microgravity environment has shown the evolution of quasi-stationary waves of various modes for a range of parameters. We examine computationally the nonlinear dynamics of the system as the interface breakup and bifurcates to resonance structures typified by the Rayleigh-Taylor instability mechanism. Results show that when the mean steady field is much smaller than the amplitude of the sinusoidal excitation, the system behaves linearly, and growth of quasi-stationary waves occurs through the Kelvin-Helmholtz instability mechanism. However, as the amplitude of excitation increases, nonlinearity occurs through subharmonic bifurcation prior to broadband chaos.
Intermittent Motion, Nonlinear Diffusion Equation and Tsallis Formalism
Directory of Open Access Journals (Sweden)
Ervin K. Lenzi
2017-01-01
Full Text Available We investigate an intermittent process obtained from the combination of a nonlinear diffusion equation and pauses. We consider the porous media equation with reaction terms related to the rate of switching the particles from the diffusive mode to the resting mode or switching them from the resting to the movement. The results show that in the asymptotic limit of small and long times, the spreading of the system is essentially governed by the diffusive term. The behavior exhibited for intermediate times depends on the rates present in the reaction terms. In this scenario, we show that, in the asymptotic limits, the distributions for this process are given by in terms of power laws which may be related to the q-exponential present in the Tsallis statistics. Furthermore, we also analyze a situation characterized by different diffusive regimes, which emerges when the diffusive term is a mixing of linear and nonlinear terms.
Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation
International Nuclear Information System (INIS)
Bonnet, M.; Meurant, G.
1978-01-01
Different methods of solution of linear and nonlinear algebraic systems are applied to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems, methods in general use of alternating directions type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method on nonlinear conjugate gradient is studied as also Newton's method and some of its variants. It should be noted, however that Newton's method is found to be more efficient when coupled with a good method for solution of the linear system. To conclude, such methods are used to solve a nonlinear diffusion problem and the numerical results obtained are to be compared [fr
Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation
International Nuclear Information System (INIS)
Bonnet, M.; Meurant, G.
1978-01-01
The object of this study is to compare different methods of solving linear and nonlinear algebraic systems and to apply them to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems the conventional methods of alternating direction type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method of nonlinear conjugate gradient is studied together with Newton's method and some of its variants. It should be noted, however, that Newton's method is found to be more efficient when coupled with a good method for solving the linear system. As a conclusion, these methods are used to solve a nonlinear diffusion problem and the numerical results obtained are compared [fr
Pattern formation due to non-linear vortex diffusion
Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.
Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 traveling wave front as well as the existence and instability of a standing pulse solution if 0 traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Analytic study of 1D diffusive relativistic shock acceleration
Energy Technology Data Exchange (ETDEWEB)
Keshet, Uri, E-mail: ukeshet@bgu.ac.il [Physics Department, Ben-Gurion University of the Negev, POB 653, Be' er-Sheva 84105 (Israel)
2017-10-01
Diffusive shock acceleration (DSA) by relativistic shocks is thought to generate the dN / dE ∝ E{sup −p} spectra of charged particles in various astronomical relativistic flows. We show that for test particles in one dimension (1D), p {sup −1}=1−ln[γ{sub d}(1+β{sub d})]/ln[γ{sub u}(1+β{sub u})], where β{sub u}(β{sub d}) is the upstream (downstream) normalized velocity, and γ is the respective Lorentz factor. This analytically captures the main properties of relativistic DSA in higher dimensions, with no assumptions on the diffusion mechanism. Unlike 2D and 3D, here the spectrum is sensitive to the equation of state even in the ultra-relativistic limit, and (for a J(üttner-Synge equation of state) noticeably hardens with increasing 1<γ{sub u}<57, before logarithmically converging back to p (γ{sub u→∞})=2. The 1D spectrum is sensitive to drifts, but only in the downstream, and not in the ultra-relativistic limit.
Coupled diffusion systems with localized nonlinear reactions
DEFF Research Database (Denmark)
Pedersen, M.; Lin, Zhigui
2001-01-01
This paper deals with the blowup rate and profile near the blowup time for the system of diffusion equations uit - Î´ui = ui+1Pi(x0, t), (i = 1,...,k, uk+1 := uu) in Î© Ã— (0, T) with boundary conditions ui = 0 on âˆ‚Î© Ã— [0, T). We show that the solution has a global blowup. The exact rate...
Exact solutions of some coupled nonlinear diffusion-reaction ...
Indian Academy of Sciences (India)
certain coupled diffusion-reaction (D-R) equations of very general nature. In recent years, various direct methods have been proposed to find the exact solu- tions not only of nonlinear partial differential equations but also of their coupled versions. These methods include unified ansatz approach [3], extended hyperbolic func ...
Exact solutions of certain nonlinear chemotaxis diffusion reaction ...
Indian Academy of Sciences (India)
constructed coupled differential equations. The results obtained ... Nonlinear diffusion reaction equation; chemotaxis; auxiliary equation method; solitary wave solutions. ..... fact limits the scope of applications of the derived results. ... Research Fellowship and AP acknowledges DU and DST for PURSE grant for financial.
CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL
CARRILLO, JOSÉ ANTONIO
2012-12-01
A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical concentration. For arbitrarily small cross-diffusion coefficients and for suitable exponents of the nonlinear diffusion terms, the global-in-time existence of weak solutions is proved, thus preventing finite-time blow up of the cell density. The global existence result also holds for linear and fast diffusion of the cell density in a certain parameter range in three dimensions. Furthermore, we show L∞ bounds for the solutions to the parabolic-elliptic system. Sufficient conditions leading to the asymptotic stability of the constant steady state are given for a particular choice of the nonlinear diffusion exponents. Numerical experiments in two and three space dimensions illustrate the theoretical results. © 2012 World Scientific Publishing Company.
Nonlinear simulation of electromagnetic current diffusive interchange mode turbulence
International Nuclear Information System (INIS)
Yagi, M.; Itoh, S.I.; Fukuyama, A.
1998-01-01
The anomalous transport in toroidal plasmas has been investigated extensively. It is pointed out that the nonlinear instability is important in driving the microturbulence[1], i.e., the self-sustained plasma turbulence. This concept is explained as follows; when the electron motion along the magnetic field line is resisted by the background turbulence, it gives rise to the effective resistivity and enhances the level of the turbulence. The nonlinear simulation of the electrostatic current diffusive interchange mode (CDIM) in the two dimensional sheared slab geometry has been performed as an example. The occurrence of the nonlinear instability and the self-sustainment of the plasma turbulence were confirmed by this simulation[2]. On the other hand, the electromagnetic turbulence is sustained in the high pressure limit. The possibility of the self-organization with more variety has been pointed out[3]. It is important to study the electromagnetic turbulence based on the nonlinear simulation. In this paper, the model equation for the electrostatic CDIM turbulence[2] is extended for both electrostatic and electromagnetic turbulence. (1) Not only E x B convective nonlinearity but also the electromagnetic nonlinearity which is related to the parallel flow are incorporated into the model equation. (2) The electron and ion pressure evolution equations are solved separately, making it possible to distinguish the electron and ion thermal diffusivities. The two dimensional nonlinear simulation of the electromagnetic CDIM is performed based on the extended fluid model. This paper is organized as follows. The model equation is explained in section II. The result of simulation is shown in section III. The conclusion and discussion are given in section IV. (author)
International Nuclear Information System (INIS)
Lieu, R.; Quenby, J.J.
1990-01-01
Computational and analytical methods have been used in a study of particle acceleration by MHD shocks. Numerical simulations of single-particle trajectories indicate that magnetic moment is conserved quite accurately for an encounter with a near-perpendicular shock, and for all pitch angles except the very small ones. Acceleration is most effective for particles which are reflected by the shock at small pitch angles. If future encounters with the shock are possible, large acceleration will be repeated only for relativistic plasma flow velocities. Results for the pure MHD shock are then considered within the context of a diffusion model (hence a diffusive MHD shock). The microscopic approach is employed whereby one follows the history of a test particle and explicitly takes into account the possibility of reflection by the shock. Exact analytical solutions are currently available to order V/c, where V is the plasma flow speed, and are found to be in complete agreement with diffusion theory. More specifically, the presence of electromagnetic effects leads to a shortening of acceleration time scale but does not change the steady state spectrum of energetic particles. 7 refs
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
International Nuclear Information System (INIS)
Indekeu, Joseph O; Smets, Ruben
2017-01-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically. (paper)
Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations
Indekeu, Joseph O.; Smets, Ruben
2017-08-01
Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.
New variable separation approach: application to nonlinear diffusion equations
International Nuclear Information System (INIS)
Zhang Shunli; Lou, S Y; Qu Changzheng
2003-01-01
The concept of the derivative-dependent functional separable solution (DDFSS), as a generalization to the functional separable solution, is proposed. As an application, it is used to discuss the generalized nonlinear diffusion equations based on the generalized conditional symmetry approach. As a consequence, a complete list of canonical forms for such equations which admit the DDFSS is obtained and some exact solutions to the resulting equations are described
Nonlocal Symmetries to Systems of Nonlinear Diffusion Equations
International Nuclear Information System (INIS)
Qu Changzheng; Kang Jing
2008-01-01
In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Those systems have physical applications in soil science, mathematical biology, and invariant curve flows in R 3 . Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.
Super Nonlinear Electrodeposition-Diffusion-Controlled Thin-Film Selector.
Ji, Xinglong; Song, Li; He, Wei; Huang, Kejie; Yan, Zhiyuan; Zhong, Shuai; Zhang, Yishu; Zhao, Rong
2018-03-28
Selector elements with high nonlinearity are an indispensable part in constructing high density, large-scale, 3D stackable emerging nonvolatile memory and neuromorphic network. Although significant efforts have been devoted to developing novel thin-film selectors, it remains a great challenge in achieving good switching performance in the selectors to satisfy the stringent electrical criteria of diverse memory elements. In this work, we utilized high-defect-density chalcogenide glass (Ge 2 Sb 2 Te 5 ) in conjunction with high mobility Ag element (Ag-GST) to achieve a super nonlinear selective switching. A novel electrodeposition-diffusion dynamic selector based on Ag-GST exhibits superior selecting performance including excellent nonlinearity (<5 mV/dev), ultra-low leakage (<10 fA), and bidirectional operation. With the solid microstructure evidence and dynamic analyses, we attributed the selective switching to the competition between the electrodeposition and diffusion of Ag atoms in the glassy GST matrix under electric field. A switching model is proposed, and the in-depth understanding of the selective switching mechanism offers an insight of switching dynamics for the electrodeposition-diffusion-controlled thin-film selector. This work opens a new direction of selector designs by combining high mobility elements and high-defect-density chalcogenide glasses, which can be extended to other materials with similar properties.
Multi-diffusive nonlinear Fokker–Planck equation
International Nuclear Information System (INIS)
Ribeiro, Mauricio S; Casas, Gabriela A; Nobre, Fernando D
2017-01-01
Nonlinear Fokker–Planck equations, characterized by more than one diffusion term, have appeared recently in literature. Here, it is shown that these equations may be derived either from approximations in a master equation, or from a Langevin-type approach. An H-theorem is proven, relating these Fokker–Planck equations to an entropy composed by a sum of contributions, each of them associated with a given diffusion term. Moreover, the stationary state of the Fokker–Planck equation is shown to coincide with the equilibrium state, obtained by extremization of the entropy, in the sense that both procedures yield precisely the same equation. Due to the nonlinear character of this equation, the equilibrium probability may be obtained, in most cases, only by means of numerical approaches. Some examples are worked out, where the equilibrium probability distribution is computed for nonlinear Fokker–Planck equations presenting two diffusion terms, corresponding to an entropy characterized by a sum of two contributions. It is shown that the resulting equilibrium distribution, in general, presents a form that differs from a sum of the equilibrium distributions that maximizes each entropic contribution separately, although in some cases one may construct such a linear combination as a good approximation for the equilibrium distribution. (paper)
Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion.
Feng, Wensen; Qiao, Peng; Chen, Yunjin; Wensen Feng; Peng Qiao; Yunjin Chen; Feng, Wensen; Chen, Yunjin; Qiao, Peng
2018-06-01
The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision, and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this paper we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly developed trainable nonlinear reaction diffusion (TNRD) model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. However, the straightforward direct gradient descent employed in the original TNRD-based denoising task is not applicable in this paper. To solve this problem, we resort to the proximal gradient descent method. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with a well-trained nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on graphics processing units (GPUs). For images of size , our GPU implementation takes less than 0.1 s to produce state-of-the-art Poisson denoising performance.
A mixed finite element method for nonlinear diffusion equations
Burger, Martin; Carrillo, José
2010-01-01
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.
Numerical solution of non-linear diffusion problems
International Nuclear Information System (INIS)
Carmen, A. del; Ferreri, J.C.
1998-01-01
This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs
Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Cathignol, Dominique
2004-05-01
A classical effect of nonlinear acoustics is that a plane sinusoidal acoustic wave propagating in a nonlinear medium transforms to a sawtooth wave with one shock per cycle. However, the waveform evolution can be quite different in the near field of a plane source due to diffraction. Previous numerical simulations of nonlinear acoustic waves in the near field of a circular piston source predict the development of two shocks per wave cycle [Khokhlova et al., J. Acoust. Soc. Am. 110, 95-108 (2001)]. Moreover, at some locations the peak pressure may be up to 4 times the source amplitude. The motivation of this work was to experimentally verify and further explain the phenomena of the nonlinear waveform distortion. Measurements were conducted in water with a 47-mm-diameter unfocused transducer, working at 1-MHz frequency. For pressure amplitudes higher than 0.5 MPa, two shocks per cycle were observed in the waveform beyond the last minimum of the fundamental harmonic amplitude. With the increase of the observation distance, these two shocks collided and formed one shock (per cycle), i.e., the waveform developed into the classical sawtooth wave. The experimental results were in a very good agreement with the modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.
Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification
Bykov, Andrei M.; Ellison, Donald C.; Osipov, Sergei M.
2017-03-01
Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles. This anisotropy is determined by fast particle transport, making the problem strongly nonlinear and multiscale. Here, we present a nonlinear Monte Carlo model of collisionless shock structure with superdiffusive propagation of high-energy Fermi accelerated particles coupled to particle acceleration and MFA, which affords a consistent description of strong shocks. A distinctive feature of the Monte Carlo technique is that it includes the full angular anisotropy of the particle distribution at all precursor positions. The model reveals that the superdiffusive transport of energetic particles (i.e., Lévy-walk propagation) generates a strong quadruple anisotropy in the precursor particle distribution. The resultant pressure anisotropy of the high-energy particles produces a nonresonant mirror-type instability that amplifies compressible wave modes with wavelengths longer than the gyroradii of the highest-energy protons produced by the shock.
Moderately nonlinear diffuse-charge dynamics under an ac voltage.
Stout, Robert F; Khair, Aditya S
2015-09-01
The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.
Moderately nonlinear diffuse-charge dynamics under an ac voltage
Stout, Robert F.; Khair, Aditya S.
2015-09-01
The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of Vo/(kBT /e ) , where Vo is the amplitude of the driving voltage and kBT /e is the thermal voltage with kB as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D /λDL , where D is the ion diffusivity, λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O (Vo3) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.
Preisach hysteresis model for non-linear 2D heat diffusion
International Nuclear Information System (INIS)
Jancskar, Ildiko; Ivanyi, Amalia
2006-01-01
This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way
Self-oscillations of aircraft landing gear shock-strut at considerable non-linear friction
Directory of Open Access Journals (Sweden)
Б.М. Шифрин
2004-01-01
Full Text Available The report considers self-oscillations at ε >1. The previous works were dedicated to the elastic frictional L.G. shock strut oscillations, the mathematical model of which is a non-linear differential equation with low ε parameter of its right-hand part.
First-order Fermi acceleration of the diffuse ion population near the earth's bow shock
Forman, M. A.
1981-01-01
The flux of 30-65 keV particles observed by the ISEE-3 200 earth radii upstream is shown to be an upstream escape of the energetic ions in the earth's bow shock. A formal solution to the transport equation for the distribution function of energetic particles upstream from an isotropic monoenergetic source of particles/sq cm at a plane shock where the plasma changes speed is found, and escape conditions are defined. The efficiency of the acceleration is calculated to depend on the charge/particle, and fluxes near and far upstream of the shock are described analytically. Any model which takes into account shock acceleration by diffusive scattering with significant escape losses produces the observed spectrum close to the shock. The escape loss upstream is demonstrated to control the spectrum and the variation of flux and anisotropy with distance from the shock.
International Nuclear Information System (INIS)
Ferreri, J. C.; Carmen, A. del
1998-01-01
A numerical study of the dynamics of pattern evolution in reaction-diffusion systems is performed, although limited to one spatial dimension. The diffusion coefficients are nonlinear, based on powers of the scalar variables. The system keeps the dynamics of previous studies in the literature, but the presence of nonlinear diffusion generates a field of strong nonlinear interactions due to the presence of receding travelling waves. This field is limited by the plane of symmetry of the space domain and the last born outgoing travelling wave. These effects are discussed. (author). 10 refs., 7 figs
Nonlinear analysis of shock absorbers with amplitude-dependent damping
Łuczko, Jan; Ferdek, Urszula; Łatas, Waldemar
2018-01-01
This paper contains an analysis of a quarter-car model representing a vehicle equipped with a hydraulic damper whose characteristics are dependent on the piston stroke. The damper, compared to a classical mono-tube damper, has additional internal chambers. Oil flow in those chambers is controlled by relative piston displacement. The proposed nonlinear model of the system is aimed to test the effect of key design parameters of the damper on the quality indices representing ride comfort and driving safety. Numerical methods were used to determine the characteristic curves of the damper and responses of the system to harmonic excitations with their amplitude decreasing as the values of frequency increase.
Robust and fast nonlinear optimization of diffusion MRI microstructure models.
Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A
2017-07-15
Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of
Modeling of ion acceleration through drift and diffusion at interplanetary shocks
Decker, R. B.; Vlahos, L.
1986-01-01
A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2010-01-01
A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. The equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non dissipative limit. An exact...... thermoviscous shock solution is derived. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation, the model equation considered here is capable to describe waves propagating in opposite directions. Studies of head...
Non-linear diffusion and pattern formation in vortex matter
Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Griessen, R.; Einfeld, J.; Woerdenweber, R.
2000-03-01
Penetration of magnetic flux in YBa_2Cu_3O7 superconducting thin films and crystals in externally applied magnetic fields is visualized with a magneto-optical technique. A variety of flux patterns due to non-linear vortex behavior is observed: 1. Roughening of the flux front^1 with scaling exponents identical to those observed in burning paper^2. Two regimes are found where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. 2. Roughening of the flux profile similar to the Oslo model for rice-piles. 3. Fractal penetration of flux^3 with Hausdorff dimension depending on the critical current anisotropy. 4. Penetration as 'flux-rivers'. 5. The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori^4. By comparison with numerical simulations, it is shown that most of the observed behavior can be explained in terms of non-linear diffusion of vortices. ^1R. Surdeanu, R.J. Wijngaarden, E. Visser, J.M. Huijbregtse, J.H. Rector, B. Dam and R. Griessen, Phys.Rev. Lett. 83 (1999) 2054 ^2J. Maunuksela, M. Myllys, O.-P. Kähkönen, J. Timonen, N. Provatas, M.J. Alava, T. Ala-Nissila, Phys. Rev. Lett. 79, 1515 (1997) ^3R. Surdeanu, R.J. Wijngaarden, B. Dam, J. Rector, R. Griessen, C. Rossel, Z.F. Ren and J.H. Wang, Phys Rev B 58 (1998) 12467 ^4C. Reichhardt, C.J. Olson and F. Nori, Phys. Rev. B 58, 6534 (1998)
Liu, Ping; Shi, Junping
2018-01-01
The bifurcation of non-trivial steady state solutions of a scalar reaction-diffusion equation with nonlinear boundary conditions is considered using several new abstract bifurcation theorems. The existence and stability of positive steady state solutions are proved using a unified approach. The general results are applied to a Laplace equation with nonlinear boundary condition and bistable nonlinearity, and an elliptic equation with superlinear nonlinearity and sublinear boundary conditions.
On the integrability of the generalized Fisher-type nonlinear diffusion equations
International Nuclear Information System (INIS)
Wang Dengshan; Zhang Zhifei
2009-01-01
In this paper, the geometric integrability and Lax integrability of the generalized Fisher-type nonlinear diffusion equations with modified diffusion in (1+1) and (2+1) dimensions are studied by the pseudo-spherical surface geometry method and prolongation technique. It is shown that the (1+1)-dimensional Fisher-type nonlinear diffusion equation is geometrically integrable in the sense of describing a pseudo-spherical surface of constant curvature -1 only for m = 2, and the generalized Fisher-type nonlinear diffusion equations in (1+1) and (2+1) dimensions are Lax integrable only for m = 2. This paper extends the results in Bindu et al 2001 (J. Phys. A: Math. Gen. 34 L689) and further provides the integrability information of (1+1)- and (2+1)-dimensional Fisher-type nonlinear diffusion equations for m = 2
Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials
Directory of Open Access Journals (Sweden)
Wu Guo-Cheng
2017-01-01
Full Text Available A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.
Cosmic ray acceleration by shock waves in a diffusion medium. Research of high energies
International Nuclear Information System (INIS)
Lagage, P.O.
1982-06-01
The problem of galactic cosmic-ray acceleration is presented with the study of a new acceleration mechanism by supernova shock waves in a diffusive medium. The question is: do supernova shocks have enough time to accelerate cosmic rays beyond 10 4 -10 5 GeV. A firm upper limit to the energy that can be acquired by particles is established and it is considered that the mean free path of the particle has its lowest possible value and the most favorable model of supernova evolution. The diffusion coefficients which are relevant for the determination of the high energy cut off are investigated. The effect of the spatial dependence of the diffusion coefficient on the rate of acceleration of particles is examined. A more realistic cut off energy is calculated. We find E max = 2 10 4 GeV [fr
Frank, T. D.
2008-02-01
We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.
Asymptotic behaviour of a nonlinear model for the geographic diffusion of infections diseases
International Nuclear Information System (INIS)
Kirane, M.; Kouachi, S.
1994-01-01
In this paper a nonlinear diffusion model for the geographical spread of infective diseases is studied. In addition to proving well-posedness of the associated initial-boundary value problem, the large time behaviour is analyzed. (author). 4 refs
International Nuclear Information System (INIS)
Drury, L.O'C.
1983-01-01
The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalised Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed. (author)
Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas
Energy Technology Data Exchange (ETDEWEB)
Drury, L.O. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))
1983-08-01
The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed.
Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas
Energy Technology Data Exchange (ETDEWEB)
Drury, L.Oc.
1983-08-01
The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints applied to reactionless test particles in a steady plane shock. The mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks. The possible time dependence is briefly discussed. 75 references.
Energetic particle diffusion coefficients upstream of quasi-parallel interplanetary shocks
Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.
1989-01-01
The properties of about 30 to 130-keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE 3 spacecraft during 1978-1979 were analyzed, and the values for the upstream energegic particle diffusion coefficient, kappa, in these six events were deduced for a number of energies and upstream positions. These observations were compared with predictions of Lee's (1983) theory of shock acceleration. It was found that the observations verified the prediction of the A/Q dependence (where A and Q are the particle atomic mass and ionization state, respectively) of kappa for alpha and proton particles upstream of the quasi-parallel shocks.
International Nuclear Information System (INIS)
Wen, Zijuan; Fu, Shengmao
2016-01-01
This paper deals with a strongly coupled reaction-diffusion system modeling a competitor-competitor-mutualist three-species model with diffusion, self-diffusion and nonlinear cross-diffusion and subject to Neumann boundary conditions. First, we establish the persistence of a corresponding reaction-diffusion system without self- and cross-diffusion. Second, the global asymptotic stability of the unique positive equilibrium for weakly coupled PDE system is established by using a comparison method. Moreover, under certain conditions about the intra- and inter-species effects, we prove that the uniform positive steady state is linearly unstable for the cross-diffusion system when one of the cross-diffusions is large enough. The results indicate that Turing instability can be driven solely from strong diffusion effect of the first species (or the second species or the third species) due to the pressure of the second species (or the first species).
Directory of Open Access Journals (Sweden)
Md. Nur Alam
2016-06-01
Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.
Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles
Silveira, M.; Pontes, B. R.; Balthazar, J. M.
2014-03-01
In this study the behaviour of two different types of shock absorbers, symmetrical (linear) and asymmetrical (nonlinear) is compared for use on passenger vehicles. The analyses use different standard road inputs and include variation of the severity parameter, the asymmetry ratio and the velocity of the vehicle. Performance indices and acceleration values are used to assess the efficacy of the asymmetrical systems. The comparisons show that the asymmetrical system, with nonlinear characteristics, tends to have a smoother and more progressive performance, both for vertical and angular movements. The half-car front asymmetrical system was introduced, and the simulation results show that the use of the asymmetrical system only at the front of the vehicle can further diminish the angular oscillations. As lower levels of acceleration are essential for improved ride comfort, the use of asymmetrical systems for vibrations and impact absorption can be a more advantageous choice for passenger vehicles.
An approximate method for nonlinear diffusion applied to enzyme inactivation during drying
Liou, J.K.
1982-01-01
An approximate model was developed for nonlinear diffusion with a power-function variation of the diffusion coefficient with concentration. This model may serve for the computation of desorption times and concentration profiles in non-shrinking or shrinking slabs, cylinders or spheres, under
Nonlinear diffusion in the presence of a time-dependent external electric field
International Nuclear Information System (INIS)
Lima e Silva, T. de; Galvao, R.M.O.
1987-09-01
The influence of a time-dependent external electric field on the nonlinear diffusion process of weakly ionized plasmas is investigated. A new solution of the diffusion equation is obtained for the case when electron-ion collisions can be neglected. (author) [pt
Polyanin, A. D.; Sorokin, V. G.
2017-12-01
The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.
Energy Technology Data Exchange (ETDEWEB)
Han, Jiu-Ning, E-mail: hanjiuning@126.com; He, Yong-Lin; Luo, Jun-Hua; Nan, Ya-Gong; Han, Zhen-Hai; Dong, Guang-Xing [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China); Duan, Wen-Shan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Li, Jun-Xiu [College of Civil Engineering, Hexi University, Zhangye 734000 (China)
2014-01-15
With the consideration of the superthermal electron distribution, we present a theoretical investigation about the nonlinear propagation of electron-acoustic solitary and shock waves in a dissipative, nonplanar non-Maxwellian plasma comprised of cold electrons, superthermal hot electrons, and stationary ions. The reductive perturbation technique is used to obtain a modified Korteweg-de Vries Burgers equation for nonlinear waves in this plasma. We discuss the effects of various plasma parameters on the time evolution of nonplanar solitary waves, the profile of shock waves, and the nonlinear structure induced by the collision between planar solitary waves. It is found that these parameters have significant effects on the properties of nonlinear waves and collision-induced nonlinear structure.
Investigation of Shock Diffusers at Mach Number 1.85. 1 - Projecting Single Shock Cones
1947-06-17
cylindrical simulated combustion chamber was used to vary the outlet area of the flow through the diffuser. The pitot -static rake, located as shown in the...and II. Proc. Roy. Soc. (London), ser. A, vol. 139, no 838, Feb. 1, 1933, pp. 278-311. 5. Wyatt, DeMarquis D., and Hunczak, Henry R.: An...Simulated combustion u chamber A 90° W •—Conical damper S Static-pressure orifice ps pitot -static ""rake’ NATIONAL ADVISORY
Malkyarenko, Dariya I; Chenevert, Thomas L
2014-12-01
To describe an efficient procedure to empirically characterize gradient nonlinearity and correct for the corresponding apparent diffusion coefficient (ADC) bias on a clinical magnetic resonance imaging (MRI) scanner. Spatial nonlinearity scalars for individual gradient coils along superior and right directions were estimated via diffusion measurements of an isotropicic e-water phantom. Digital nonlinearity model from an independent scanner, described in the literature, was rescaled by system-specific scalars to approximate 3D bias correction maps. Correction efficacy was assessed by comparison to unbiased ADC values measured at isocenter. Empirically estimated nonlinearity scalars were confirmed by geometric distortion measurements of a regular grid phantom. The applied nonlinearity correction for arbitrarily oriented diffusion gradients reduced ADC bias from 20% down to 2% at clinically relevant offsets both for isotropic and anisotropic media. Identical performance was achieved using either corrected diffusion-weighted imaging (DWI) intensities or corrected b-values for each direction in brain and ice-water. Direction-average trace image correction was adequate only for isotropic medium. Empiric scalar adjustment of an independent gradient nonlinearity model adequately described DWI bias for a clinical scanner. Observed efficiency of implemented ADC bias correction quantitatively agreed with previous theoretical predictions and numerical simulations. The described procedure provides an independent benchmark for nonlinearity bias correction of clinical MRI scanners.
Effect of losses on acceleration of energetic particles by diffusive scattering through shock waves
International Nuclear Information System (INIS)
Voelk, H.J.; Morfill, G.E.; Forman, M.A.
1981-01-01
The effect of local losses on the acceleration of energetic particles by shocks is discussed considering both energy losses of individual particles and damping processes for the scattering hydromagnetic waves. The calculations are all time asymptotic and steady state. For locally plane and infinitely extended shocks, the requirement for acceleration is that the loss time exceed the acceleration time. The resulting modifications of the spatial structure and of the momentum dependence of the cosmic-ray distribution are described. For acceleration to be a local effect within the Galaxy, the local scattering mean free path must be small compared to the effective overall galactic mean free path as deduced from the cosmic-ray escape time. The required strengths of the scattering wave fields are such that neutral molecular clouds do not allow acceleration; in a partially ionized, warm interstellar medium, quite large shock strengths are needed. Such strong shock discontinuities are surrounded by an ionization layer within which Alfven wave damping is presumably negligible. Given the spatial extent of the layer for strong shocks propagating into neutral interstellar clouds, the possibility of localized diffusive acceleration is investigated. The estimated strength and extent of the scattering region is not large enough to confine acceleration within the layer. Rather, it will extend across the whole cloud, whose integrated losses then determine the efficiency
Nonlinear variational models for reaction and diffusion systems
International Nuclear Information System (INIS)
Tanyi, G.E.
1983-08-01
There exists a natural metric w.r.t. which the density dependent diffusion operator is harmonic in the sense of Eells and Sampson. A physical corollary of this statement is the property that any two regular points on the orbit of a reaction or diffusion operator can be connected by a path along which the reaction rate is constant. (author)
SHOCK, Nonlinear Dynamic Structure Analysis, Spring and Mass Model, Runge-Kutta-Gill Method
International Nuclear Information System (INIS)
Gabrielson, V. K.
1981-01-01
1 - Description of problem or function: SHOCK calculates the dynamic response of a structure modeled as a spring-mass system having one or two degrees of freedom for each mass when subjected to specified environments. The code determines the behavior of each lumped mass (displacement, velocity, and acceleration for each degree of freedom) and the behavior of each spring or coupling (force, shear, moment, and displacement) as a function of time. Two types of models, axial, having one degree of freedom, and lateral, having two degrees of freedom at each mass can be processed. Damping can be included in all models and shock spectrums of responses can be obtained. 2 - Method of solution: Two methods of numerical integration of the second-order dynamic equations are provided: the Runge-Kutta-Gill method with variable step-size is recommended for highly nonlinear problems, and a variation of the Newmark-Beta method is available for use with large linear problems. 3 - Restrictions on the complexity of the problem: Maxima of: 100 masses, 200 springs or couplings. Complex arrangements of nonlinear options must be carefully checked by the user
Directory of Open Access Journals (Sweden)
MENKA PETKOVSKA
2000-12-01
Full Text Available The concept of higher order frequency response functions (FRFs is used for the analysis of non-linear adsorption kinetics on a particle scale, for the case of non-isothermal micropore diffusion with variable diffusivity. Six series of FRFs are defined for the general non-isothermal case. A non-linerar mathematical model is postulated and the first and second order FRFs derived and simulated. A variable diffusivity influences the shapes of the second order FRFs relating the sorbate concentration in the solid phase and t he gas pressure significantly, but they still keep their characteristics which can be used for discrimination of this from other kinetic mechanisms. It is also shown that first and second order particle FRFs offter sufficient information for an easy and fast estimation of all model parameters, including those defining the system non-linearity.
Yuldashev, Petr V; Ollivier, Sébastien; Karzova, Maria M; Khokhlova, Vera A; Blanc-Benon, Philippe
2017-12-01
Linear and nonlinear propagation of high amplitude acoustic pulses through a turbulent layer in air is investigated using a two-dimensional KZK-type (Khokhlov-Zabolotskaya-Kuznetsov) equation. Initial waves are symmetrical N-waves with shock fronts of finite width. A modified von Kármán spectrum model is used to generate random wind velocity fluctuations associated with the turbulence. Physical parameters in simulations correspond to previous laboratory scale experiments where N-waves with 1.4 cm wavelength propagated through a turbulence layer with the outer scale of about 16 cm. Mean value and standard deviation of peak overpressure and shock steepness, as well as cumulative probabilities to observe amplified peak overpressure and shock steepness, are analyzed. Nonlinear propagation effects are shown to enhance pressure level in random foci for moderate initial amplitudes of N-waves thus increasing the probability to observe highly peaked waveforms. Saturation of the pressure level is observed for stronger nonlinear effects. It is shown that in the linear propagation regime, the turbulence mainly leads to the smearing of shock fronts, thus decreasing the probability to observe high values of steepness, whereas nonlinear effects dramatically increase the probability to observe steep shocks.
A Nonlinear Diffusion Equation-Based Model for Ultrasound Speckle Noise Removal
Zhou, Zhenyu; Guo, Zhichang; Zhang, Dazhi; Wu, Boying
2018-04-01
Ultrasound images are contaminated by speckle noise, which brings difficulties in further image analysis and clinical diagnosis. In this paper, we address this problem in the view of nonlinear diffusion equation theories. We develop a nonlinear diffusion equation-based model by taking into account not only the gradient information of the image, but also the information of the gray levels of the image. By utilizing the region indicator as the variable exponent, we can adaptively control the diffusion type which alternates between the Perona-Malik diffusion and the Charbonnier diffusion according to the image gray levels. Furthermore, we analyze the proposed model with respect to the theoretical and numerical properties. Experiments show that the proposed method achieves much better speckle suppression and edge preservation when compared with the traditional despeckling methods, especially in the low gray level and low-contrast regions.
Malyarenko, Dariya I; Ross, Brian D; Chenevert, Thomas L
2014-03-01
Gradient nonlinearity of MRI systems leads to spatially dependent b-values and consequently high non-uniformity errors (10-20%) in apparent diffusion coefficient (ADC) measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Spatial dependence of nonlinearity correction terms accounts for the bulk (75-95%) of ADC bias for FA = 0.3-0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. Copyright © 2013 Wiley Periodicals, Inc.
A family of analytical solutions of a nonlinear diffusion-convection equation
Hayek, Mohamed
2018-01-01
Despite its popularity in many engineering fields, the nonlinear diffusion-convection equation has no general analytical solutions. This work presents a family of closed-form analytical traveling wave solutions for the nonlinear diffusion-convection equation with power law nonlinearities. This kind of equations typically appears in nonlinear problems of flow and transport in porous media. The solutions that are addressed are simple and fully analytical. Three classes of analytical solutions are presented depending on the type of the nonlinear diffusion coefficient (increasing, decreasing or constant). It has shown that the structure of the traveling wave solution is strongly related to the diffusion term. The main advantage of the proposed solutions is that they are presented in a unified form contrary to existing solutions in the literature where the derivation of each solution depends on the specific values of the diffusion and convection parameters. The proposed closed-form solutions are simple to use, do not require any numerical implementation, and may be implemented in a simple spreadsheet. The analytical expressions are also useful to mathematically analyze the structure and properties of the solutions.
Chaotic behaviour of nonlinear coupled reaction–diffusion system in ...
Indian Academy of Sciences (India)
chaos in four-dimensional space by the generalized definitions of spatial ... according to nonlinear noise in the real physical world, f(φ(x),ψ(x)) and g(φ(x) ... tion in ecological system, where φm,n(s) is the host density in generations s and s + 1,.
A mixed-order nonlinear diffusion compressed sensing MR image reconstruction.
Joy, Ajin; Paul, Joseph Suresh
2018-03-07
Avoid formation of staircase artifacts in nonlinear diffusion-based MR image reconstruction without compromising computational speed. Whereas second-order diffusion encourages the evolution of pixel neighborhood with uniform intensities, fourth-order diffusion considers smooth region to be not necessarily a uniform intensity region but also a planar region. Therefore, a controlled application of fourth-order diffusivity function is used to encourage second-order diffusion to reconstruct the smooth regions of the image as a plane rather than a group of blocks, while not being strong enough to introduce the undesirable speckle effect. Proposed method is compared with second- and fourth-order nonlinear diffusion reconstruction, total variation (TV), total generalized variation, and higher degree TV using in vivo data sets for different undersampling levels with application to dictionary learning-based reconstruction. It is observed that the proposed technique preserves sharp boundaries in the image while preventing the formation of staircase artifacts in the regions of smoothly varying pixel intensities. It also shows reduced error measures compared with second-order nonlinear diffusion reconstruction or TV and converges faster than TV-based methods. Because nonlinear diffusion is known to be an effective alternative to TV for edge-preserving reconstruction, the crucial aspect of staircase artifact removal is addressed. Reconstruction is found to be stable for the experimentally determined range of fourth-order regularization parameter, and therefore not does not introduce a parameter search. Hence, the computational simplicity of second-order diffusion is retained. © 2018 International Society for Magnetic Resonance in Medicine.
Ground state solutions for diffusion system with superlinear nonlinearity
Directory of Open Access Journals (Sweden)
Zhiming Luo
2015-03-01
where $z=(u,v\\colon\\mathbb{R}\\times\\mathbb{R}^{N}\\rightarrow\\mathbb{R}^{2}$, $b\\in C^{1}(\\mathbb{R}\\times\\mathbb{R}^{N}, \\mathbb{R}^{N}$ and $V(x\\in C(\\mathbb{R}^{N},\\mathbb{R}$. Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.
Solitary wave solutions of selective nonlinear diffusion-reaction ...
Indian Academy of Sciences (India)
An auto-Bäcklund transformation derived in the homogeneous balance method is employed to obtain several new exact solutions of certain kinds of nonlin- ear diffusion-reaction (D-R) equations. These equations arise in a variety of problems in physical, chemical, biological, social and ecological sciences. Keywords.
Climate shocks and rural-urban migration in Mexico: Exploring nonlinearities and thresholds
Nawrotzki, Raphael J.; DeWaard, Jack; Bakhtsiyarava, Maryia; Ha, Jasmine Trang
2016-01-01
Adverse climatic conditions may differentially drive human migration patterns between rural and urban areas, with implications for changes in population composition and density, access to infrastructure and resources, and the delivery of essential goods and services. However, there is little empirical evidence to support this notion. In this study, we investigate the relationship between climate shocks and migration between rural and urban areas within Mexico. We combine individual records from the 2000 and 2010 Mexican censuses (n=683,518) with high-resolution climate data from Terra Populus that are linked to census data at the municipality level (n=2,321). We measure climate shocks as monthly deviation from a 30-year (1961-1990) long-term climate normal period, and uncover important nonlinearities using quadratic and cubic specifications. Satellite-based measures of urban extents allow us to classify migrant-sending and migrant-receiving municipalities as rural or urban to examine four internal migration patterns: rural-urban, rural-rural, urban-urban, and urban-rural. Among our key findings, results from multilevel models reveal that each additional drought month increases the odds of rural-urban migration by 3.6%. In contrast, the relationship between heat months and rural-urban migration is nonlinear. After a threshold of ~34 heat months is surpassed, the relationship between heat months and rural-urban migration becomes positive and progressively increases in strength. Policy and programmatic interventions may therefore reduce climate induced rural-urban migration in Mexico through rural climate change adaptation initiatives, while also assisting rural migrants in finding employment and housing in urban areas to offset population impacts. PMID:28435176
Diffusion Geometry Based Nonlinear Methods for Hyperspectral Change Detection
2010-05-12
for matching biological spectra across a data base of hyperspectral pathology slides acquires with different instruments in different conditions, as...generalizing wavelets and similar scaling mechanisms. Plain Sight Systems, Inc. -7- Proprietary and Confidential To be specific, let the bi-Markov...remarkably well. Conventional nearest neighbor search , compared with a diffusion search. The data is a pathology slide ,each pixel is a digital
Cherniha, Roman
2017-01-01
This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems and those developing the theoretical aspects of conditional symmetry conception,...
Reflected and diffuse ions backstreaming from the earth's bow shock 2. Origin
International Nuclear Information System (INIS)
Bonifazi, C.; Moreno, G.
1981-01-01
The morphology of the foreshock region and the origin of the 'reflected' and 'diffuse' ion populations are investigated for the first time through an extended statistical analysis. Data are supplied by the solar wind experiment on the satellite ISEE 2 in the period November 5 to December 20, 1977. It is confirmed, on a statistical basis, that quasi-perpendicular shock structures generate beams of reflected ions which propagate along the interplanetary magnetic field lines against the incoming solar wind. Diffuse ions are at least in part originated by the disruption of the reflected beams due to some plasma instability, having a growth time of the order of a few tens of seconds. A preliminary energy balance appears to be consistent with the proposed picture of the phenomena occurring in the foreshock region
Interesting features of nonlinear shock equations in dissipative pair-ion-electron plasmas
International Nuclear Information System (INIS)
Masood, W.; Rizvi, H.
2011-01-01
Two dimensional nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion-electron plasmas in the presence of weak transverse perturbation. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions. In the linear case, a biquadratic dispersion relation is obtained, which yields the fast and slow modes in a pair-ion-electron plasma. It is shown that the limiting cases of electron-ion and pair-ion can be retrieved from the general biquadratic dispersion relation, and the differences in the characters of the waves propagating in both the cases are also highlighted. Using the small amplitude approximation method, the nonlinear Kadomtsev Petviashvili Burgers as well as Burgers-Kadomtsev Petviashvili equations are derived and their applicability for pair-ion-electron plasma is explained in detail. The present study may have relevance to understand the formation of two dimensional electrostatic shocks in laboratory produced pair-ion-electron plasmas.
International Nuclear Information System (INIS)
Yin, Jiuli; Zhao, Liuwei
2014-01-01
In this paper, the dynamics from the shock compacton to chaos in the nonlinearly Schrödinger equation with a source term is investigated in detail. The existence of unclosed homoclinic orbits which are not connected with the saddle point indicates that the system has a discontinuous fiber solution which is a shock compacton. We prove that the shock compacton is a weak solution. The Melnikov technique is used to detect the conditions for the occurrence from the shock compacton to chaos and further analysis of the conditions for chaos suppression. The results show that the system turns to chaos easily under external disturbances. The critical parameter values for chaos appearing are obtained analytically and numerically using the Lyapunov exponents and the bifurcation diagrams
A numerical study of shock-acceleration of a diffuse helium cylinder. Revision 1
International Nuclear Information System (INIS)
Greenough, J.A.; Jacobs, J.W.
1995-08-01
The development of a shock-accelerated diffuse Helium cylindrical inhomogeneity is investigated using a new numerical method. The new algorithm is a higher-order Godunov implementation of the so-called multi-fluid equations. This system correctly models multiple component mixtures by accounting for differential compressibility effects. This base integrator is embedded in an implementation of adaptive mesh refinement (AMR) that allows efficient increase in resolution by concentrating the computational effort where high accuracy, or increased resolution, are required. Qualitative and quantitative comparison with previous experimental data is excellent. The simulations show that counter-sign vortex blobs are deposited in the jet core by baroclinic generation of the curved shock wave as it traverses the jet. This vorticity deposition occurs over timescales that scale with the shock passage time (∼ 10microsec). Three phases of development are identified and characterized. The first is the weak deformation (WD) phase, where there is weak distortion of the Helium jet due to weak vorticity induced velocity effects. The second phase is the strong deformation (SD) phase where there is large distortion for the jet and the vortex blobs due to large induced velocity effects. The last is a relaxation/reorganization (RR) phase where the vorticity field is reorganized into point-like vortex pair. This class of problem has applications in such disparate fields as inertial confinement fusion (ICF) and high-speed combustion
A numerical study of shock-acceleration of a diffuse helium cylinder
International Nuclear Information System (INIS)
Greenough, J.A.; Bell, J.; Colella, P.
1995-08-01
The development of a shock-accelerated diffuse Helium cylindrical inhomogeneity is investigated using a new numerical method. The new algorithm is a higher-order Godunov implementation of the so-called multi-fluid equations. This system correctly models multiple component mixtures by accounting for differential compressibility effects. This base integrator is embedded in an implementation of adaptive mesh refinement (AMR) that allows efficient increase in resolution where the computational effort is concentrated where high accuracy, or increased resolution, are required. Qualitative and quantitative comparison with previous experimental data is excellent. The simulations show that counter-sign vortex blobs are deposited in the jet core by baroclinic generation of the curved shock wave as it traverses the jet. This vorticity deposition occurs over timescales that scale with the shock passage time (∼ 10μsec). Three phases of development are identified and characterized. The first is the weak deformation (WD) phase, where there is weak distortion of the Helium jet due to weak vorticity induced velocity effects. The second phase is the strong deformation (SD) phase where there is large distortion for the jet and the vortex blobs due to large induced velocity effects. The last is a relaxation/reorganization (RR) phase where the vorticity field reorganizes into point-like vortex pair
Energy Technology Data Exchange (ETDEWEB)
Schunert, Sebastian; Hammer, Hans; Lou, Jijie; Wang, Yaqi; Ortensi, Javier; Gleicher, Frederick; Baker, Benjamin; DeHart, Mark; Martineau, Richard
2016-11-01
The common definition of the diffusion coeffcient as the inverse of three times the transport cross section is not compat- ible with voids. Morel introduced a non-local tensor diffusion coeffcient that remains finite in voids[1]. It can be obtained by solving an auxiliary transport problem without scattering or fission. Larsen and Trahan successfully applied this diffusion coeffcient for enhancing the accuracy of diffusion solutions of very high temperature reactor (VHTR) problems that feature large, optically thin channels in the z-direction [2]. It is demonstrated that a significant reduction of error can be achieved in particular in the optically thin region. Along the same line of thought, non-local diffusion tensors are applied modeling the TREAT reactor confirming the findings of Larsen and Trahan [3]. Previous work of the authors have introduced a flexible Nonlinear-Diffusion Acceleration (NDA) method for the first order S N equations discretized with the discontinuous finite element method (DFEM), [4], [5], [6]. This NDA method uses a scalar diffusion coeffcient in the low-order system that is obtained as the flux weighted average of the inverse transport cross section. Hence, it su?ers from very large and potentially unbounded diffusion coeffcients in the low order problem. However, it was noted that the choice of the diffusion coeffcient does not influence consistency of the method at convergence and hence the di?usion coeffcient is essentially a free parameter. The choice of the di?usion coeffcient does, however, affect the convergence behavior of the nonlinear di?usion iterations. Within this work we use Morel’s non-local di?usion coef- ficient in the aforementioned NDA formulation in lieu of the flux weighted inverse of three times the transport cross section. The goal of this paper is to demonstrate that significant en- hancement of the spectral properties of NDA can be achieved in near void regions. For testing the spectral properties of the NDA
Reflected and diffuse ions backstreaming from the earth's bow shock 1. Basic properties
International Nuclear Information System (INIS)
Bonifazi, C.; Moreno, G.
1981-01-01
Plasma data supplied by the ISEE 2 solar wind experiment are used to perform the first extended statistical analysis of the basic moments of the ions backstream from the earth's bow shock. The analysis is based on 3253 ion spectra, corresponding to a total observation time of approx. =87 hours. It turns out that the density and total energy density of the backstream ions are, on the average, equal to approx. =1% and approx. =10% of those of the solar wind, respectively. The distinction between the 'reflected' and 'diffuse' populations has been confirmed and put on a quantitive basis using the ratio A = V /sub B/P/w/sub B/P between the bulk velocity and the rms thermal speed of the ions. The reflected ions are characterized by a bulk velocity V/sub B/P of the order of 2 times the solar wind velocity and by a temperature of approx.7 x 10 6 K. In contrast, the diffuse ions have, on the average, a bulk velocity 1.2 times the solar wind velocity and a temperature of 40 x 10 6 K. Therefore the total energy density of the diffuse ions is approx. =30% larger than that of the reflected ions. Finally, the kinetic and thermal energy densities are distributed quite differently in the two ion populations: in fact, approx. =70% of the total energy density is kinetic for the reflected ions, while this percentage decreases to approx. =20% for the diffuse ions
Anti-diffusive radiation flow in the cooling layer of a radiating shock
International Nuclear Information System (INIS)
McClarren, Ryan G.; Paul Drake, R.
2010-01-01
This paper shows that for systems with optically thin, hot layers, such as those that occur in radiating shocks, radiation will flow uphill: radiation will flow from low to high radiation energy density. These are systems in which the angular distribution of the radiation intensity changes rapidly in space, and in which the radiation in some region has a pancaked structure, whose effect on the mean intensity will be much larger than the effect on the scalar radiation pressure. The salient feature of the solution to the radiative transfer equation in these circumstances is that the gradient of the radiation energy density is in the same direction as the radiation flux, i.e. radiation energy is flowing uphill. Such an anti-diffusive flow of energy cannot be captured by a model where the spatial variation of the Eddington factor is not accounted for, as in flux-limited diffusion models or the P 1 equations. The qualitative difference between the two models leads to a monotonic mean intensity for the diffusion model whereas the transport mean intensity has a global maximum in the hot layer. Mathematical analysis shows that the discrepancy between the diffusion model and the transport solution is due to an approximation of exponential integrals using a simple exponential.
Characteristics of reflected and diffuse ions upstream from the earth's bow shock
International Nuclear Information System (INIS)
Paschmann, G.; Sckopke, N.; Papamastorakis, I.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.
1981-01-01
The distinction between two types of upstream ion populations has been made on the basis of pronounced differences in their distribution functions. The 'reflected' ions represent a fast beam with temperatures typically 1 to 5 times 10 6 K and speeds up to five times the solar wind speed. An important feature of the reflected ion distributions in their strong temperature anisotropy, with T/sub perpendicular/ exceeding T/sub parallel/ by a factor of two to three. In contrast, the 'diffuse' ions occupy a much larger region of phase space, both in energy and angle; their distribution function generally has the form roughly of a circular ridge in 2 dimensions and a spherical shell in 3 dimensions. Accordingly, their temperature is much larger (> or approx. =10 7 K), and their bulk speed typically is smaller than the solar wind speed. Both ion populations have densities of the order of 0.1 cm -3 . At times transitions between the two extremes, represented by the reflected and diffuse ion populations, are observed. These 'intermediate' distributions are cresent shaped, with the center of curvature near the solar wind velocity. This property suggests that the intermediate distributions result from pitch angle scattering of the reflected beams in the solar wind frame and supports the idea that the reflected ions are the origin of the diffuse ions. At times the diffuse ion distributions exhibit considerable structure and rapid temporal variations. Reflected and diffuse ions can also be distinguished by their occurrence as a function of the angle theta between the local shock normal and the interplanetary magnetic field. Whereas the diffuse ions occur predominantly for small theta, the reflected ions are observed most frequently for theta> or approx. =45 0
Some applications of nonlinear diffusion to processing of dynamic evolution images
International Nuclear Information System (INIS)
Goltsov, Alexey N.; Nikishov, Sergey A.
1997-01-01
Model nonlinear diffusion equation with the most simple Landau-Ginzburg free energy functional was applied to locate boundaries between meaningful regions of low-level images. The method is oriented to processing images of objects that are a result of dynamic evolution: images of different organs and tissues obtained by radiography and NMR methods, electron microscope images of morphogenesis fields, etc. In the methods developed by us, parameters of the nonlinear diffusion model are chosen on the basis of the preliminary treatment of the images. The parameters of the Landau-Ginzburg free energy functional are extracted from the structure factor of the images. Owing to such a choice of the model parameters, the image to be processed is located in the vicinity of the steady-state of the diffusion equation. The suggested method allows one to separate distinct structures having specific space characteristics from the whole image. The method was applied to processing X-ray images of the lung
International Nuclear Information System (INIS)
Bianchi, M.P.
1991-01-01
The discrete Boltzmann equation is a mathematical model in the kinetic theory of gases which defines the time and space evolution of a system of gas particles with a finite number of selected velocities. Discrete kinetic theory is an interesting field of research in mathematical physics and applied mathematics for several reasons. One of the relevant fields of application of the discrete Boltzmann equation is the analysis of nonlinear shock wave phenomena. Here, a new multiple collision regular plane model for binary gas mixtures is proposed within the discrete theory of gases and applied to the analysis of the classical problems of shock wave propagation
Hoefer, Mark A.
This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued
Enhanced Scattering of Diffuse Ions on Front of the Earth's Quasi-Parallel Bow Shock: a Case Study
Kis, A.; Matsukiyo, S.; Otsuka, F.; Hada, T.; Lemperger, I.; Dandouras, I. S.; Barta, V.; Facsko, G. I.
2017-12-01
In the analysis we present a case study of three energetic upstream ion events at the Earth's quasi-parallel bow shock based on multi-spacecraft data recorded by Cluster. The CIS-HIA instrument onboard Cluster provides partial energetic ion densities in 4 energy channels between 10 and 32 keV.The difference of the partial ion densities recorded by the individual spacecraft at various distances from the bow shock surface makes possible the determination of the spatial gradient of energetic ions.Using the gradient values we determined the spatial profile of the energetic ion partial densities as a function of distance from the bow shock and we calculated the e-folding distance and the diffusion coefficient for each event and each ion energy range. Results show that in two cases the scattering of diffuse ions takes place in a normal way, as "by the book", and the e-folding distance and diffusion coefficient values are comparable with previous results. On the other hand, in the third case the e-folding distance and the diffusion coefficient values are significantly lower, which suggests that in this case the scattering process -and therefore the diffusive shock acceleration (DSA) mechanism also- is much more efficient. Our analysis provides an explanation for this "enhanced" scattering process recorded in the third case.
Shock Dynamics in Stellar Outbursts. I. Shock Formation
Energy Technology Data Exchange (ETDEWEB)
Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)
2017-05-20
Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.
A nonlinear equation for ionic diffusion in a strong binary electrolyte
Ghosal, Sandip; Chen, Zhen
2010-01-01
The problem of the one-dimensional electro-diffusion of ions in a strong binary electrolyte is considered. The mathematical description, known as the Poisson–Nernst–Planck (PNP) system, consists of a diffusion equation for each species augmented by transport owing to a self-consistent electrostatic field determined by the Poisson equation. This description is also relevant to other important problems in physics, such as electron and hole diffusion across semiconductor junctions and the diffusion of ions in plasmas. If concentrations do not vary appreciably over distances of the order of the Debye length, the Poisson equation can be replaced by the condition of local charge neutrality first introduced by Planck. It can then be shown that both species diffuse at the same rate with a common diffusivity that is intermediate between that of the slow and fast species (ambipolar diffusion). Here, we derive a more general theory by exploiting the ratio of the Debye length to a characteristic length scale as a small asymptotic parameter. It is shown that the concentration of either species may be described by a nonlinear partial differential equation that provides a better approximation than the classical linear equation for ambipolar diffusion, but reduces to it in the appropriate limit. PMID:21818176
Nonlinear waves in reaction-diffusion systems: The effect of transport memory
International Nuclear Information System (INIS)
Manne, K. K.; Hurd, A. J.; Kenkre, V. M.
2000-01-01
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity. (c) 2000 The American Physical Society
Nonlinear waves in reaction-diffusion systems: The effect of transport memory
Manne, K. K.; Hurd, A. J.; Kenkre, V. M.
2000-04-01
Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.
2016 CIME Course on Nonlocal and Nonlinear Diffusions and Interactions : New Methods and Directions
Grillo, Gabriele
2017-01-01
Presenting a selection of topics in the area of nonlocal and nonlinear diffusions, this book places a particular emphasis on new emerging subjects such as nonlocal operators in stationary and evolutionary problems and their applications, swarming models and applications to biology and mathematical physics, and nonlocal variational problems. The authors are some of the most well-known mathematicians in this innovative field, which is presently undergoing rapid development. The intended audience includes experts in elliptic and parabolic equations who are interested in extending their expertise to the nonlinear setting, as well as Ph.D. or postdoctoral students who want to enter into the most promising research topics in the field.
Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.
2018-07-01
We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.
A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation
Directory of Open Access Journals (Sweden)
Yunying Zheng
2011-01-01
Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.
Analysis of nonlinear parabolic equations modeling plasma diffusion across a magnetic field
International Nuclear Information System (INIS)
Hyman, J.M.; Rosenau, P.
1984-01-01
We analyse the evolutionary behavior of the solution of a pair of coupled quasilinear parabolic equations modeling the diffusion of heat and mass of a magnetically confined plasma. The solutions's behavior, due to the nonlinear diffusion coefficients, exhibits many new phenomena. In short time, the solution converges into a highly organized symmetric pattern that is almost completely independent of initial data. The asymptotic dynamics then become very simple and take place in a finite dimensional space. These conclusions are backed by extensive numerical experimentation
Fagioli, Simone; Radici, Emanuela
2018-01-01
We investigate the existence of weak type solutions for a class of aggregation-diffusion PDEs with nonlinear mobility obtained as large particle limit of a suitable nonlocal version of the follow-the-leader scheme, which is interpreted as the discrete Lagrangian approximation of the target continuity equation. We restrict the analysis to nonnegative initial data in $L^{\\infty} \\cap BV$ away from vacuum and supported in a closed interval with zero-velocity boundary conditions. The main novelti...
A strongly nonlinear reaction-diffusion model for a deterministic diffusive epidemic
International Nuclear Information System (INIS)
Kirane, M.; Kouachi, S.
1992-10-01
In the present paper the mathematical validity of a model on the spread of an infectious disease is proved. This model was proposed by Bailey. The mathematical validity is proved by means of a positivity, uniqueness and existence theorem. In spite of the apparent simplicity of the problem, the solution requires a delicate set of techniques. It seems very difficult to extend these techniques to a model in more than one dimension without imposing conditions on the diffusivities. (author). 7 refs
Nonlinear wave-particle interaction upstream from the Earth's bow shock
Directory of Open Access Journals (Sweden)
C. Mazelle
2000-01-01
Full Text Available Well-defined ring-like backstreaming ion distributions have been recently reported from observations made by the 3DP/PESA-High analyzer onboard the WIND spacecraft in the Earth's foreshock at large distances from the bow shock, which suggests a local production mechanism. The maximum phase space density for these distributions remains localized at a nearly constant pitch-angle value for a large number of gyroperiods while the shape of the distribution remains very steady. These distributions are also observed in association with quasi-monochromatic low frequency (~ 50 mHz waves with substantial amplitude (δB/B>0.2. The analysis of the magnetic field data has shown that the waves are propagating parallel to the background field in the right-hand mode. Parallel ion beams are also often observed in the same region before the observation of both the ring-like distributions and the waves. The waves appear in cyclotron resonance with the ion parallel beams. We investigate first the possibility that the ion beams could provide the free energy source for driving an ion/ion instability responsible for the ULF wave occurrence. For that, we solve the wave dispersion relation with the observed parameters. Second, we show that the ring-like distributions could then be produced by a coherent nonlinear wave-particle interaction. It tends to trap the ions into narrow cells in velocity space centered on a well-defined pitch-angle, directly related to the saturation wave amplitude in the analytical theory. The theoretical predictions are in good quantitative agreement with the observations
Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?
International Nuclear Information System (INIS)
Hillas, A M
2005-01-01
Diffusive shock acceleration at the outer front of expanding supernova remnants has provided by far the most popular model for the origin of galactic cosmic rays, and has been the subject of intensive theoretical investigation. But several problems loomed at high energies-how to explain the smooth continuation of the cosmic-ray spectrum far beyond 10 14 eV, the very low level of TeV gamma-ray emission from several supernova remnants, and the very low anisotropy of cosmic rays (seeming to conflict with the short trapping times needed to convert a E -2 source spectrum into the observed E -2.7 spectrum of cosmic rays). However, recent work on the cosmic ray spectrum (especially at KASCADE) strongly indicates that about half of the flux does turn down rather sharply near 3 x 10 15 V rigidity, with a distinct tail extending to just beyond 10 17 V rigidity; whilst a plausible description (Bell and Lucek) of the level of self-generated magnetic fields at the shock fronts of young supernova remnants implies that many SNRs in varying environments might very well generate spectra extending smoothly to just this 'knee' position, and a portion of the exploding red supergiants could extend the spectrum approximately as needed. At low energies, recent progress in relating cosmic ray compositional details to modified shock structure also adds weight to the belief that the model is working on the right lines, converting energy into cosmic rays very efficiently where injection can occur. The low level of TeV gamma-ray flux from many young SNRs is a serious challenge, though it may relate to variations in particle injection efficiency with time. The clear detection of TeV gamma rays from SNRs has now just begun, and predictions of a characteristic curved particle spectrum give a target for new tests by TeV observations. However, the isotropy seriously challenges the assumed cosmic-ray trapping time and hence the shape of the spectrum of particles released from SNRs. There is
Selfsimilar time dependent shock structures
International Nuclear Information System (INIS)
Beck, R.; Drury, L.O.
1985-01-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions
Selfsimilar time dependent shock structures
Beck, R.; Drury, L. O.
1985-01-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
A clutter removal method for the Doppler ultrasound signal based on a nonlinear diffusion equation
International Nuclear Information System (INIS)
Li Peng; Xin Pengcheng; Bian Zhengzhong; Yu Gang
2008-01-01
Strong clutter components produced by stationary and slow-moving tissue structures render the lower frequency part of the spectrogram useless and degrade the accuracy of clinical ultrasound indices. An adaptive method based on the nonlinear forward-and-backward diffusion equation (FAB-DE) is proposed to remove strong clutter components from the contaminated Doppler signal. The clutter signal is extracted first by the FAB-DE accurately, in which the nonlinear diffusion coefficient function of the FAB-DE locally adjusts according to signal features and the diffusion adaptively switches between forward and backward mode. The present method has been validated by simulated and realistic pulse wave Doppler signals, and compared with the conventional high pass filter and the matching pursuit method. The simulation results, including spectrogram, mean velocity error, standard deviation of mean velocity and signal-to-clutter ratio of a decontaminated signal, demonstrate that the present FAB-DE method can remove clutter sufficiently and retain more low blood components simultaneously as compared with the other two methods. Results of the realistic Doppler blood signal, including spectrogram and low-frequency part of the spectrum, support the conclusion drawn from simulation cases
Directory of Open Access Journals (Sweden)
Vijay Barethiye
2017-12-01
Full Text Available Modeling dynamic characteristics of an automotive shock absorber is a challenging task due to its complex behavior. In the present paper, the nonparametric and hybrid approach is proposed to represent the nonlinear and hysteresis characteristics of the shock absorber. An experiment is carried out on a car damper utilizing INSTRON to obtain force-velocity characteristics of the shock absorber. The experimental data is used to devise two different models, namely, piecewise linear model and hysteresis model, to capture the damping properties of the absorber and for consequent use in simulations. The complexity involved due to certain physical phenomenon such as oil compressibility, gas entrapment etc. gives rise to hysteresis behavior and the present paper tries to model such behavior with the help of Neural Networks. Finally, a combined (hybrid shock absorber model (including the characteristics of both piecewise linear and hysteresis behavior is developed in Simulink and integrated into a quarter car simulation to verify its feasibility. The results generated by the combined (hybrid model are compared with linear as well as piecewise linear model and the comparison shows that the proposed model substantially a better option to study the vehicle characteristics more accurately and precisely.
On the Nonlinear Dynamics of a Tunable Shock Micro-switch
Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa
2016-12-01
A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.
Existence of weak solutions to a nonlinear reaction-diffusion system with singular sources
Directory of Open Access Journals (Sweden)
Ida de Bonis
2017-09-01
Full Text Available We discuss the existence of a class of weak solutions to a nonlinear parabolic system of reaction-diffusion type endowed with singular production terms by reaction. The singularity is due to a potential occurrence of quenching localized to the domain boundary. The kind of quenching we have in mind is due to a twofold contribution: (i the choice of boundary conditions, modeling in our case the contact with an infinite reservoir filled with ready-to-react chemicals and (ii the use of a particular nonlinear, non-Lipschitz structure of the reaction kinetics. Our working techniques use fine energy estimates for approximating non-singular problems and uniform control on the set where singularities are localizing.
International Nuclear Information System (INIS)
Liu, Y.; Ecke, R.E.
1999-01-01
We present experimental measurements of a sidewall traveling wave in rotating Rayleigh-Bacute enard convection. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with radius-to-height ratio Γ=5. We used simultaneous optical-shadowgraph, heat-transport, and local temperature measurements to determine the stability and characteristics of the traveling-wave state for dimensionless rotation rates 60<Ω<420. The state is well described by the one-dimensional complex Ginzburg-Landau (CGL) equation for which the linear and nonlinear coefficients were determined for Ω=274. The Eckhaus-Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also investigated. copyright 1999 The American Physical Society
Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J
2005-09-01
Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.
Multi-level nonlinear diffusion acceleration method for multigroup transport k-Eigenvalue problems
International Nuclear Information System (INIS)
Anistratov, Dmitriy Y.
2011-01-01
The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in 1D slab geometry. The proposed method is defined by a multi-level system of equations that includes multigroup and effective one-group low-order NDA equations. The Eigenvalue is evaluated in the exact projected solution space of smallest dimensionality, namely, by solving the effective one- group eigenvalue transport problem. Numerical results that illustrate performance of the new algorithm are demonstrated. (author)
Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel
2017-05-01
The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.
Hu, Weiming; Hu, Ruiguang; Xie, Nianhua; Ling, Haibin; Maybank, Stephen
2014-04-01
In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.
Wilber, A.; Brüggen, M.; Bonafede, A.; Rafferty, D.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Botteon, A.; Cassano, R.; Brunetti, G.; De Gasperin, F.; Wittor, D.; Hoeft, M.; Birzan, L.
2018-05-01
Merging galaxy clusters produce low-Mach-number shocks in the intracluster medium. These shocks can accelerate electrons to relativistic energies that are detectable at radio frequencies. MACS J0744.9+3927 is a massive [M500 = (11.8 ± 2.8) × 1014 M⊙], high-redshift (z = 0.6976) cluster where a Bullet-type merger is presumed to have taken place. Sunyaev-Zel'dovich maps from MUSTANG indicate that a shock, with Mach number M = 1.0-2.9 and an extension of ˜200 kpc, sits near the centre of the cluster. The shock is also detected as a brightness and temperature discontinuity in X-ray observations. To search for diffuse radio emission associated with the merger, we have imaged the cluster with the LOw Frequency ARray (LOFAR) at 120-165 MHz. Our LOFAR radio images reveal previously undetected AGN emission, but do not show clear cluster-scale diffuse emission in the form of a radio relic nor a radio halo. The region of the shock is on the western edge of AGN lobe emission from the brightest cluster galaxy. Correlating the flux of known shock-induced radio relics versus their size, we find that the radio emission overlapping the shocked region in MACS J0744.9+3927 is likely of AGN origin. We argue against the presence of a relic caused by diffusive shock acceleration and suggest that the shock is too weak to accelerate electrons from the intracluster medium.
International Nuclear Information System (INIS)
Maldonado, G.I.; Turinsky, P.J.
1995-01-01
The determination of the family of optimum core loading patterns for pressurized water reactors (PWRs) involves the assessment of the core attributes for thousands of candidate loading patterns. For this reason, the computational capability to efficiently and accurately evaluate a reactor core's eigenvalue and power distribution versus burnup using a nodal diffusion generalized perturbation theory (GPT) model is developed. The GPT model is derived from the forward nonlinear iterative nodal expansion method (NEM) to explicitly enable the preservation of the finite difference matrix structure. This key feature considerably simplifies the mathematical formulation of NEM GPT and results in reduced memory storage and CPU time requirements versus the traditional response-matrix approach to NEM. In addition, a treatment within NEM GPT can account for localized nonlinear feedbacks, such as that due to fission product buildup and thermal-hydraulic effects. When compared with a standard nonlinear iterative NEM forward flux solve with feedbacks, the NEM GPT model can execute between 8 and 12 times faster. These developments are implemented within the PWR in-core nuclear fuel management optimization code FORMOSA-P, combining the robustness of its adaptive simulated annealing stochastic optimization algorithm with an NEM GPT neutronics model that efficiently and accurately evaluates core attributes associated with objective functions and constraints of candidate loading patterns
International Nuclear Information System (INIS)
Potemki, Valeri G.; Borisevich, Valentine D.; Yupatov, Sergei V.
1996-01-01
This paper describes the the next evolution step in development of the direct method for solving systems of Nonlinear Algebraic Equations (SNAE). These equations arise from the finite difference approximation of original nonlinear partial differential equations (PDE). This method has been extended on the SNAE with three variables. The solving SNAE bases on Reiterating General Singular Value Decomposition of rectangular matrix pencils (RGSVD-algorithm). In contrast to the computer algebra algorithm in integer arithmetic based on the reduction to the Groebner's basis that algorithm is working in floating point arithmetic and realizes the reduction to the Kronecker's form. The possibilities of the method are illustrated on the example of solving the one-dimensional diffusion equation for 3-component model isotope mixture in a ga centrifuge. The implicit scheme for the finite difference equations without simplifying the nonlinear properties of the original equations is realized. The technique offered provides convergence to the solution for the single run. The Toolbox SNAE is developed in the framework of the high performance numeric computation and visualization software MATLAB. It includes more than 30 modules in MATLAB language for solving SNAE with two and three variables. (author)
1982-03-01
NUMB9ER 00 AU THOR(s) 8. CON7RACT OR GRANT .%Uv3ERHj) Frederick Bloom AFOSR-81-0171 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PrOGRAK ELEMAE:NT...material coff -iceret which may be associated with a particular nonlinear dielectric substance. For most common nonlinear dielectric substance, e
Basko, D M
2014-02-01
We study the discrete nonlinear Schröinger equation with weak disorder, focusing on the regime when the nonlinearity is, on the one hand, weak enough for the normal modes of the linear problem to remain well resolved but, on the other, strong enough for the dynamics of the normal mode amplitudes to be chaotic for almost all modes. We show that in this regime and in the limit of high temperature, the macroscopic density ρ satisfies the nonlinear diffusion equation with a density-dependent diffusion coefficient, D(ρ) = D(0)ρ(2). An explicit expression for D(0) is obtained in terms of the eigenfunctions and eigenvalues of the linear problem, which is then evaluated numerically. The role of the second conserved quantity (energy) in the transport is also quantitatively discussed.
Hydromagnetic shock structure in the presence of cosmic rays
International Nuclear Information System (INIS)
Drury, L.O.; Voelk, H.J.
1981-01-01
The time asymptotic structure of a shock significantly modified by the back-reaction from the diffusive acceleration of cosmic rays is investigated. Making a physically plausible assumption about the diffusion, it is shown that for given upstream conditions and shock speed only a finite odd number of shock structures are possible; an explicit method of determining these is given (in many cases the solution is unique). The results of this nonlinear study are contrasted with those of the linear test-particle theory and shown to confirm the possibility of efficient particle acceleration in shocks
The asymmetric effects of oil price and monetary policy shocks. A nonlinear VAR approach
International Nuclear Information System (INIS)
Rahman, Sajjadur; Serletis, Apostolos
2010-01-01
In this paper we investigate the asymmetric effects of oil price shocks and monetary policy on macroeconomic activity, using monthly data for the United States, over the period from 1983:1 to 2008:12. In doing so, we use a logistic smooth transition vector autoregression (VAR), as detailed in Terasvirta and Anderson (1992) and Weise (1999), and make a distinction between two oil price volatility regimes (high and low), using the realized oil price volatility as a switching variable. We isolate the effects of oil price and monetary policy shocks and their asymmetry on output growth and, following Koop et al. (1996) and Weise (1999), we employ simulation methods to calculate Generalized Impulse Response Functions (GIRFs) to trace the effects of independent shocks on the conditional means of the variables. Our results suggest that in addition to the price of oil, oil price volatility has an impact on macroeconomic activity and that monetary policy is not only reinforcing the effects of oil price shocks on output, it is also contributing to the asymmetric response of output to oil price shocks. (author)
Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo
2009-02-01
The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.
Energy Technology Data Exchange (ETDEWEB)
Osada, Takashi; Endo, Youichi [Graduate Student, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Kanazawa, Chikara [Undergraduate, Chiba University 1-33 Yayoi, Inage, Chiba, 63-8522 (Japan); Ota, Masanori; Maeno, Kazuo, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)
2009-02-01
The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N{sub 2} are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.
The asymmetric effects of oil price and monetary policy shocks. A nonlinear VAR approach
Energy Technology Data Exchange (ETDEWEB)
Rahman, Sajjadur [Department of Economics, University of Saskatchewan, Saskatoon (Canada); Serletis, Apostolos [Department of Economics, University of Calgary, Calgary (Canada)
2010-11-15
In this paper we investigate the asymmetric effects of oil price shocks and monetary policy on macroeconomic activity, using monthly data for the United States, over the period from 1983:1 to 2008:12. In doing so, we use a logistic smooth transition vector autoregression (VAR), as detailed in Terasvirta and Anderson (1992) and Weise (1999), and make a distinction between two oil price volatility regimes (high and low), using the realized oil price volatility as a switching variable. We isolate the effects of oil price and monetary policy shocks and their asymmetry on output growth and, following Koop et al. (1996) and Weise (1999), we employ simulation methods to calculate Generalized Impulse Response Functions (GIRFs) to trace the effects of independent shocks on the conditional means of the variables. Our results suggest that in addition to the price of oil, oil price volatility has an impact on macroeconomic activity and that monetary policy is not only reinforcing the effects of oil price shocks on output, it is also contributing to the asymmetric response of output to oil price shocks. (author)
International Nuclear Information System (INIS)
Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo
2009-01-01
The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N 2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.
Chouvion, B.; McWilliam, S.; Popov, A. A.
2018-06-01
This paper investigates the dynamic behaviour of capacitive ring-based Coriolis Vibrating Gyroscopes (CVGs) under severe shock conditions. A general analytical model is developed for a multi-supported ring resonator by describing the in-plane ring response as a finite sum of modes of a perfect ring and the electrostatic force as a Taylor series expansion. It is shown that the supports can induce mode coupling and that mode coupling occurs when the shock is severe and the electrostatic forces are nonlinear. The influence of electrostatic nonlinearity is investigated by numerically simulating the governing equations of motion. For the severe shock cases investigated, when the electrode gap reduces by ∼ 60 % , it is found that three ring modes of vibration (1 θ, 2 θ and 3 θ) and a 9th order force expansion are needed to obtain converged results for the global shock behaviour. Numerical results when the 2 θ mode is driven at resonance indicate that electrostatic nonlinearity introduces mode coupling which has potential to reduce sensor performance under operating conditions. Under some circumstances it is also found that severe shocks can cause the vibrating response to jump to another stable state with much lower vibration amplitude. This behaviour is mainly a function of shock amplitude and rigid-body motion damping.
Directory of Open Access Journals (Sweden)
Shahid Hasnain
2017-07-01
Full Text Available This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Carrillo, J. A.; Desvillettes, L.; Fellner, K.
2009-01-01
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [5], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters. © Taylor & Francis Group, LLC.
Carrillo, J. A.
2009-10-30
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [5], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters. © Taylor & Francis Group, LLC.
Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique
El-Beltagy, Mohamed A.; Al-Mulla, Noah
2014-01-01
Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.
Nonlinear drift-diffusion model of gating in K and nACh ion channels
Energy Technology Data Exchange (ETDEWEB)
Vaccaro, S.R. [Department of Physics, University of Adelaide, Adelaide, South Australia 5005 (Australia)], E-mail: svaccaro@physics.adelaide.edu.au
2007-09-03
The configuration of a sensor regulates the transition between the closed and open states of both voltage and ligand gated channels. The closed state dwell-time distribution f{sub c}(t) derived from a Fokker-Planck equation with a nonlinear diffusion coefficient is in good agreement with experimental data and can account for the power law approximation to f{sub c}(t) for a delayed rectifier K channel and a nicotinic acetylcholine (nACh) ion channel. The solution of a master equation which approximates the Fokker-Planck equation provides a better description of the small time behaviour of the dwell-time distribution and can account for the empirical rate-amplitude correlation for these ion channels.
Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique
El-Beltagy, Mohamed A.
2014-01-06
Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.
A synchrotron radiation study of nonlinear diffusion in Cu-Au
International Nuclear Information System (INIS)
Menon, E.S.K.; Huang, P.; Kraitchman, M.; deFontaine, D.; Hoyt, J.J.; Chow, P.
1992-01-01
This paper reports a study in which alternate layers of pure copper and gold were vapor deposited on a sodium chloride substrate, the average concentration of the films being Cu-16 at% Au and the layering periodicity (modulation wavelength) being 3.31 nm. The composition modulation gives rise to satellite diffraction peaks around the (200) Bragg reelections. Synchrotron radiation at SSRL was able to detect u to third order satellite intensity the evolution of which was measured as a function of annealing time at 515 K. although the first order satellite intensity decayed as expected exponentially with time, intensities of both second and third order satellites decreased very rapidly at first, then increased before decaying exponentially. These results are in conformity with theoretical models of satellite evolution during annealing in a one-dimensional modulated system governed by a nonlinear diffusion equation
Umari, P; Marzari, Nicola
2009-09-07
We calculate the linear and nonlinear susceptibilities of periodic longitudinal chains of hydrogen dimers with different bond-length alternations using a diffusion quantum Monte Carlo approach. These quantities are derived from the changes in electronic polarization as a function of applied finite electric field--an approach we recently introduced and made possible by the use of a Berry-phase, many-body electric-enthalpy functional. Calculated susceptibilities and hypersusceptibilities are found to be in excellent agreement with the best estimates available from quantum chemistry--usually extrapolations to the infinite-chain limit of calculations for chains of finite length. It is found that while exchange effects dominate the proper description of the susceptibilities, second hypersusceptibilities are greatly affected by electronic correlations. We also assess how different approximations to the nodal surface of the many-body wave function affect the accuracy of the calculated susceptibilities.
International Nuclear Information System (INIS)
Leaf, G.K.; Minkoff, M.
1982-01-01
1 - Description of problem or function: DISPL1 is a software package for solving second-order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types. The package is designed primarily for chemical kinetics- diffusion problems, although not limited to these problems. Fairly general nonlinear boundary conditions are allowed as well as inter- face conditions for problems in an inhomogeneous medium. The spatial domain is one- or two-dimensional with rectangular Cartesian, cylindrical, or spherical (in one dimension only) geometry. 2 - Method of solution: The numerical method is based on the use of Galerkin's procedure combined with the use of B-Splines (C.W.R. de-Boor's B-spline package) to generate a system of ordinary differential equations. These equations are solved by a sophisticated ODE software package which is a modified version of Hindmarsh's GEAR package, NESC Abstract 592. 3 - Restrictions on the complexity of the problem: The spatial domain must be rectangular with sides parallel to the coordinate geometry. Cross derivative terms are not permitted in the PDE. The order of the B-Splines is at most 12. Other parameters such as the number of mesh points in each coordinate direction, the number of PDE's etc. are set in a macro table used by the MORTRAn2 preprocessor in generating the object code
Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.
Andres, Jeanne Therese H; Cardoso, Silvana S S
2012-09-01
We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.
Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis
Rahman, M. A.; Ahmed, U.; Uddin, M. S.
2013-08-01
A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement
Markowich, Peter
2010-06-01
We study the system ct + u · ∇c = ∇c -nf(c) nt + u · ∇n = ∇n m - ∇ · (n×(c) ∇c) ut + u·∇u + ∇P - η∇u + n∇φ/ = 0 ∇·u = 0. arising in the modelling of the motion of swimming bacteria under the effect of diffusion, oxygen-taxis and transport through an incompressible fluid. The novelty with respect to previous papers in the literature lies in the presence of nonlinear porous-medium-like diffusion in the equation for the density n of the bacteria, motivated by a finite size effect. We prove that, under the constraint m ε (3/2, 2] for the adiabatic exponent, such system features global in time solutions in two space dimensions for large data. Moreover, in the case m = 2 we prove that solutions converge to constant states in the large-time limit. The proofs rely on standard energy methods and on a basic entropy estimate which cannot be achieved in the case m = 1. The case m = 2 is very special as we can provide a Lyapounov functional. We generalize our results to the three-dimensional case and obtain a smaller range of exponents m ε (m*, 2] with m* > 3/2, due to the use of classical Sobolev inequalities.
Saito, Takahiro; Takahashi, Hiromi; Komatsu, Takashi
2006-02-01
The Retinex theory was first proposed by Land, and deals with separation of irradiance from reflectance in an observed image. The separation problem is an ill-posed problem. Land and others proposed various Retinex separation algorithms. Recently, Kimmel and others proposed a variational framework that unifies the previous Retinex algorithms such as the Poisson-equation-type Retinex algorithms developed by Horn and others, and presented a Retinex separation algorithm with the time-evolution of a linear diffusion process. However, the Kimmel's separation algorithm cannot achieve physically rational separation, if true irradiance varies among color channels. To cope with this problem, we introduce a nonlinear diffusion process into the time-evolution. Moreover, as to its extension to color images, we present two approaches to treat color channels: the independent approach to treat each color channel separately and the collective approach to treat all color channels collectively. The latter approach outperforms the former. Furthermore, we apply our separation algorithm to a high quality chroma key in which before combining a foreground frame and a background frame into an output image a color of each pixel in the foreground frame are spatially adaptively corrected through transformation of the separated irradiance. Experiments demonstrate superiority of our separation algorithm over the Kimmel's separation algorithm.
Fellner, Klemens; Tang, Bao Quoc
2018-06-01
The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.
International Nuclear Information System (INIS)
Zuo, Zhifeng; Maekawa, Hiroshi
2014-01-01
The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier–Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex–wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock–vortex interaction; (ii) a dipolar sound source due to the vortex–wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock–vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock–vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2–vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex–wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field. (paper)
Directory of Open Access Journals (Sweden)
Pratibha Joshi
2014-12-01
Full Text Available In this paper, we have achieved high order solution of a three dimensional nonlinear diffusive-convective problem using modified variational iteration method. The efficiency of this approach has been shown by solving two examples. All computational work has been performed in MATHEMATICA.
International Nuclear Information System (INIS)
Thenint, Th.
2011-01-01
The steam generator is a heat exchanger and participates to the nuclear safety. Energy is transferred from the primary to the secondary fluid through many U-tubes maintained vertically by support plates. A sludge deposit tends to modify the boundary conditions and the secondary fluid flow. A fluid-elastic instability can then occur and lead to quick tube ruin. This thesis seeks a better understanding of the effect of contact nonlinearity on the dynamics of a tube in-air intermittently impacting the support plates and its consequences in regards with instability. The use of discretized contact conditions with circular obstacles distributed over the thickness of the plates and the use of enriched reduction bases allow quick and relevant nonlinear numerical simulations. These simulations are well correlated with experimental measurements and valid even with strong nonlinearity or negative modal damping. The evolution of power spectral densities (PSD) with growing excitation amplitude is analyzed: padding of the anti-resonances, peak shift and spread. It is then shown that an apparent stiffness associated with a permanent bilateral contact is pertinent to describe these transitions. In the case of an unstable linear system, one demonstrates that the nonlinearity keeps the responses bounded or stabilised, thus paving the way for future work with real or simulated fluid flows. (author)
Experimental validation for calcul methods of structures having shock non-linearity
International Nuclear Information System (INIS)
Brochard, D.; Buland, P.
1987-01-01
For the seismic analysis of non-linear structures, numerical methods have been developed which need to be validated on experimental results. The aim of this paper is to present the design method of a test program which results will be used for this purpose. Some applications to nuclear components will illustrate this presentation [fr
How Non-Gaussian Shocks Affect Risk Premia in Non-Linear DSGE Models
DEFF Research Database (Denmark)
Andreasen, Martin Møller
This paper studies how non-Gaussian shocks affect risk premia in DSGE models approximated to second and third order. Based on an extension of the results in Schmitt-Grohé & Uribe (2004) to third order, we derive propositions for how rare disasters, stochastic volatility, and GARCH affect any risk...... premia in a wide class of DSGE models. To quantify these effects, we then set up a standard New Keynesian DSGE model where total factor productivity includes rare disasters, stochastic volatility, and GARCH. We …find that rare disasters increase the mean level of the 10-year nominal term premium, whereas...
Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid
2018-06-01
Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.
Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well
Das, T.; Panda, S.; Panda, B. K.
2018-05-01
Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.
Stability, diffusion and interactions of nonlinear excitations in a many body system
Coste, Christophe; Jean, Michel Saint; Dessup, Tommy
2017-04-01
When repelling particles are confined in a quasi-one-dimensional trap by a transverse potential, a configurational phase transition happens. All particles are aligned along the trap axis at large confinement, but below a critical transverse confinement they adopt a staggered row configuration (zigzag phase). This zigzag transition is a subcritical pitchfork bifurcation in extended systems and in systems with cyclic boundary conditions in the longitudinal direction. Among many evidences, phase coexistence is exhibited by localized nonlinear patterns made of a zigzag phase embedded in otherwise aligned particles. We give the normal form at the bifurcation and we show that these patterns can be described as solitary wave envelopes that we call bubbles. They are stable in a large temperature range and can diffuse as quasi-particles, with a diffusion coefficient that may be deduced from the normal form. The potential energy of a bubble is found to be lower than that of the homogeneous bifurcated phase, which explains their stability. We observe also metastable states, that are pairs of solitary wave envelopes which spontaneously evolve toward a stable single bubble. We evidence a strong effect of the discreteness of the underlying particles system and introduce the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive so that the bubbles come closer and eventually merge as a single bubble. In contrast, the bubbles interaction is found to be repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: it is attractive for NF-systems, repulsive for F-systems, and decreases exponentially with the bubbles distance.
Application of nonlinear nodal diffusion method for a small research reactor
International Nuclear Information System (INIS)
Jaradat, Mustafa K.; Alawneh, Luay M.; Park, Chang Je; Lee, Byungchul
2014-01-01
Highlights: • We applied nonlinear unified nodal method for 10 MW IAEA MTR benchmark problem. • TRITION–NEWT system was used to obtain two-group burnup dependent cross sections. • The criticality and power distribution compared with reference (IAEA-TECDOC-233). • Comparison between different fuel materials was conducted. • Satisfactory results were provided using UNM for MTR core calculations. - Abstract: Nodal diffusion methods are usually used for LWR calculations and rarely used for research reactor calculations. A unified nodal method with an implementation of the coarse mesh finite difference acceleration was developed for use in plate type research reactor calculations. It was validated for two PWR benchmark problems and then applied for IAEA MTR benchmark problem for static calculations to check the validity and accuracy of the method. This work was conducted to investigate the unified nodal method capability to treat material testing reactor cores. A 10 MW research reactor core is considered with three calculation cases for low enriched uranium fuel depending on the core burnup status of fresh, beginning-of-life, and end-of-life cores. The validation work included criticality calculations, flux distribution, and power distribution; in addition, a comparison between different fuel materials with the same uranium content was conducted. The homogenized two-group cross sections were generated using the TRITON–NEWT system. The results were compared with a reference, which was taken from IAEA-TECDOC-233. The unified nodal method provides satisfactory results for an all-rod out case, and the three-dimensional, two-group diffusion model can be considered accurate enough for MTR core calculations
International Nuclear Information System (INIS)
Basko, D.M.
2011-01-01
Research highlights: → In a one-dimensional disordered chain of oscillators all normal modes are localized. → Nonlinearity leads to chaotic dynamics. → Chaos is concentrated on rare chaotic spots. → Chaotic spots drive energy exchange between oscillators. → Macroscopic transport coefficients are obtained. - Abstract: The subject of this study is the long-time equilibration dynamics of a strongly disordered one-dimensional chain of coupled weakly anharmonic classical oscillators. It is shown that chaos in this system has a very particular spatial structure: it can be viewed as a dilute gas of chaotic spots. Each chaotic spot corresponds to a stochastic pump which drives the Arnold diffusion of the oscillators surrounding it, thus leading to their relaxation and thermalization. The most important mechanism of equilibration at long distances is provided by random migration of the chaotic spots along the chain, which bears analogy with variable-range hopping of electrons in strongly disordered solids. The corresponding macroscopic transport equations are obtained.
Directory of Open Access Journals (Sweden)
Inci Cilingir Sungu
2015-01-01
Full Text Available A new application of the hybrid generalized differential transform and finite difference method is proposed by solving time fractional nonlinear reaction-diffusion equations. This method is a combination of the multi-time-stepping temporal generalized differential transform and the spatial finite difference methods. The procedure first converts the time-evolutionary equations into Poisson equations which are then solved using the central difference method. The temporal differential transform method as used in the paper takes care of stability and the finite difference method on the resulting equation results in a system of diagonally dominant linear algebraic equations. The Gauss-Seidel iterative procedure then used to solve the linear system thus has assured convergence. To have optimized convergence rate, numerical experiments were done by using a combination of factors involving multi-time-stepping, spatial step size, and degree of the polynomial fit in time. It is shown that the hybrid technique is reliable, accurate, and easy to apply.
International Nuclear Information System (INIS)
Kontorovich, V.M.; Kochanov, A.E.
1980-01-01
It is demonstrated that in the case of hard injection of relativistic electrons accompanied by the joint action of synchrotron (Compton) losses and energy-dependent spatial diffusion, a spectrum with 'breaks' is formed containing universal (with index γ = 2) and diffusion regions, both independent of the injection spectrum. The effect from non-linearity of the electron spectrum is considered in averaged electromagnetic spectra for various geometries of sources (sphere, disk, arm). It is shown that an universal region (with index α = 0.5) can occur in the radiation spectrum. (orig.)
Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng
2018-03-01
In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.
Directory of Open Access Journals (Sweden)
Evgeny G. Bugaev
2011-01-01
Full Text Available Geological, geophysical and seismogeological studies are now conducted in a more detail and thus provide for determining seismic sources with higher accuracy, from the first meters to first dozens of meters [Waldhauser, Schaff, 2008]. It is now possible to consider uncertainty ellipses of earthquake hypocenters, that are recorded in the updated Earthquake Catalogue, as surfaces of earthquake focus generators. In our article, it is accepted that a maximum horizontal size of an uncertainty ellipse corresponds to an area of a focus generator, and seismic events are thus classified into two groups, earthquakes with nonstiff and stiff foci. Criteria of such a classification are two limits of elastic strain and brittle strain in case of uniaxial (3⋅10–5 or omnidirectional (10–6 compression. The criteria are established from results of analyses of parameters of seismic dislocations and earthquake foci with regard to studies of surface parameters and deformation parameters of fault zones. It is recommendable that the uniaxial compression criterion shall be applied to zones of interaction between tectonic plates, and the unilateral compression criterion shall be applied to low active (interplate areas. Sample cases demonstrate the use of data sets on nonstiff and stiff foci for separate evaluation of magnitude reoccurrence curves, analyses of structured and dissipated seismicity, review of the physical nature of nonlinearity of recurrence curves and conditions of preparation of strong earthquakes. Changes of parameters of the recurrence curves with changes of data collection square areas are considered. Reviewed are changes of parameters of the recurrence curves during preparation for the Japan major earthquake of 11 March 2011 prior to and after the major shock. It is emphasized that it is important to conduct even more detailed geological and geophysical studies and to improve precision and sensitivity of local seismological monitoring networks
International Nuclear Information System (INIS)
Boutin, B.
2009-11-01
This thesis concerns the mathematical and numerical study of nonlinear hyperbolic partial differential equations. A first part deals with an emergent problematic: the coupling of hyperbolic equations. The pursued applications are linked with the mathematical coupling of computing platforms, dedicated to an adaptative simulation of multi-scale phenomena. We propose and analyze a new coupling formalism based on extended PDE systems avoiding the geometric treatment of the interfaces. In addition, it allows to formulate the problem in a multidimensional setting, with possible covering of the coupled models. This formalism allows in particular to equip the coupling procedure with viscous regularization mechanisms, useful in the selection of natural discontinuous solutions. We analyze existence and uniqueness in the framework of a parabolic regularization a la Dafermos. Existence of a solution holds true under very general conditions but failure of uniqueness may naturally arise as soon as resonance occurs at the interfaces. Next, we highlight that our extended PDE framework gives rise to another regularization strategy based on thick interfaces. In this setting, we prove existence and uniqueness of the solutions of the Cauchy problem for initial data in L ∞ . The main tool consists in the derivation of a flexible and robust finite volume method for general triangulation which is analyzed in the setting of entropy measure-valued solutions by DiPerna. The second part is devoted to the definition of a finite volume scheme for the computing of nonclassical solutions of a scalar conservation law based on a kinetic relation. This scheme offers the feature to be stricto sensu conservative, in opposition to a Glimm approach that is only statistically conservative. The validity of our approach is illustrated through numerical examples. (author)
International Nuclear Information System (INIS)
Kubaschewski, O.
1983-01-01
The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes
International Nuclear Information System (INIS)
Chambarel, A.; Pumborios, M.
1992-01-01
This paper reports that many engineering problems concern the determination of a steady state solution in the case with strong thermal gradients, and results obtained using the finite-element technique are sometimes inaccurate, particularly for nonlinear problems with unadapted meshes. Building on previous results in linear problems, we propose an autoadaptive technique for nonlinear cases that uses quasi-Newtonian iterations to reevaluate an interpolation error estimation. The authors perfected an automatic refinement technique to solve the nonlinear thermal problem of temperature calculus in a cast-iron cylinder head of a diesel engine
Malyarenko, Dariya I; Pang, Yuxi; Senegas, Julien; Ivancevic, Marko K; Ross, Brian D; Chenevert, Thomas L
2015-12-01
Spatially non-uniform diffusion weighting bias due to gradient nonlinearity (GNL) causes substantial errors in apparent diffusion coefficient (ADC) maps for anatomical regions imaged distant from magnet isocenter. Our previously-described approach allowed effective removal of spatial ADC bias from three orthogonal DWI measurements for mono-exponential media of arbitrary anisotropy. The present work evaluates correction feasibility and performance for quantitative diffusion parameters of the two-component IVIM model for well-perfused and nearly isotropic renal tissue. Sagittal kidney DWI scans of a volunteer were performed on a clinical 3T MRI scanner near isocenter and offset superiorly. Spatially non-uniform diffusion weighting due to GNL resulted both in shift and broadening of perfusion-suppressed ADC histograms for off-center DWI relative to unbiased measurements close to isocenter. Direction-average DW-bias correctors were computed based on the known gradient design provided by vendor. The computed bias maps were empirically confirmed by coronal DWI measurements for an isotropic gel-flood phantom. Both phantom and renal tissue ADC bias for off-center measurements was effectively removed by applying pre-computed 3D correction maps. Comparable ADC accuracy was achieved for corrections of both b -maps and DWI intensities in presence of IVIM perfusion. No significant bias impact was observed for IVIM perfusion fraction.
Improvement of nonlinear diffusion equation using relaxed geometric mean filter for low PSNR images
DEFF Research Database (Denmark)
Nadernejad, Ehsan
2013-01-01
A new method to improve the performance of low PSNR image denoising is presented. The proposed scheme estimates edge gradient from an image that is regularised with a relaxed geometric mean filter. The proposed method consists of two stages; the first stage consists of a second order nonlinear an...
Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin
2017-02-01
The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized "n-diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K 0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.
Tredenick, Eloise C; Farrell, Troy W; Forster, W Alison; Psaltis, Steven T P
2017-01-01
The agricultural industry requires improved efficacy of sprays being applied to crops and weeds in order to reduce their environmental impact and deliver improved financial returns. Enhanced foliar uptake is one means of improving efficacy. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The usefulness of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted previously in the literature, as the results of each uptake experiment are specific to each formulation of active ingredient, plant species and environmental conditions. In this work we develop a mathematical model and numerical simulation for the uptake of hydrophilic ionic agrochemicals through aqueous pores in plant cuticles. We propose a novel, nonlinear, porous diffusion model for ionic agrochemicals in isolated cuticles, which extends simple diffusion through the incorporation of parameters capable of simulating: plant species variations, evaporation of surface droplet solutions, ion binding effects on the cuticle surface and swelling of the aqueous pores with water. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms. Major influencing factors have been found to be cuticle structure, including tortuosity and density of the aqueous pores, and to a lesser extent humidity and cuticle surface ion binding effects.
Directory of Open Access Journals (Sweden)
Eloise C. Tredenick
2017-05-01
Full Text Available The agricultural industry requires improved efficacy of sprays being applied to crops and weeds in order to reduce their environmental impact and deliver improved financial returns. Enhanced foliar uptake is one means of improving efficacy. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The usefulness of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted previously in the literature, as the results of each uptake experiment are specific to each formulation of active ingredient, plant species and environmental conditions. In this work we develop a mathematical model and numerical simulation for the uptake of hydrophilic ionic agrochemicals through aqueous pores in plant cuticles. We propose a novel, nonlinear, porous diffusion model for ionic agrochemicals in isolated cuticles, which extends simple diffusion through the incorporation of parameters capable of simulating: plant species variations, evaporation of surface droplet solutions, ion binding effects on the cuticle surface and swelling of the aqueous pores with water. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms. Major influencing factors have been found to be cuticle structure, including tortuosity and density of the aqueous pores, and to a lesser extent humidity and cuticle surface ion binding effects.
Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach
Aminzare, Zahra; Dey, Biswadip; Davison, Elizabeth N.; Leonard, Naomi Ehrich
2018-04-01
Finding the conditions that foster synchronization in networked nonlinear systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with FitzHugh-Nagumo dynamics, we show that our new sufficient condition is tighter than those found in previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex networked systems.
Concentration fluctuations in non-isothermal reaction-diffusion systems. II. The nonlinear case
Bedeaux, D.; Ortiz de Zárate, J.M.; Pagonabarraga, I.; Sengers, J.V.; Kjelstrup, S.
2011-01-01
In this paper, we consider a simple reaction-diffusion system, namely, a binary fluid mixture with an association-dissociation reaction between two species. We study fluctuations at hydrodynamic spatiotemporal scales when this mixture is driven out of equilibrium by the presence of a temperature
Duval, J.F.L.
2005-01-01
In a previous study (Langmuir 2004, 20, 10324), the electrokinetic properties of diffuse soft layers were theoretically investigated within the framework of the Debye-H¿ckel approximation valid in the limit of sufficiently low values for the Donnan potential. In the current paper, the
International Nuclear Information System (INIS)
Paraschiv, I.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.
2010-01-01
The effect of sheared axial flow on the Z-pinch sausage instability has been examined with two-dimensional magnetohydrodynamic simulations. Diffuse Bennett equilibria in the presence of axial flows with parabolic and linear radial profiles have been considered, and a detailed study of the linear and nonlinear development of small perturbations from these equilibria has been performed. The consequences of both single-wavelength and random-seed perturbations were calculated. It was found that sheared flows changed the internal m=0 mode development by reducing the linear growth rates, decreasing the saturation amplitude, and modifying the instability spectrum. High spatial frequency modes were stabilized to small amplitudes and only long wavelengths continued to grow. Full stability was obtained for supersonic plasma flows.
Non-linear diffusion of charged particles due to stochastic electromagnetic fields
International Nuclear Information System (INIS)
Martins, A.M.; Balescu, R.; Mendonca, J.T.
1989-01-01
It is well known that the energy confinement times observed in tokamak cannot be explained by the classical or neo-classical transport theory. The alternative explanations are based on the existence of various kinds of micro-instabilities, or on the stochastic destruction of the magnetic surfaces, due to the interaction of magnetic islands of different helicities. In the absence of a well established theory of anomalous transport it is perhaps important to study in some detail the diffusion coefficient of single charged particles in the presence of electromagnetic fluctuation, because it can provide the physical grounds for more complete and self-consistent calculations. In the present work we derive a general expression for the transverse diffusion coefficient of electrons and ions in a constant magnetic field and in the presence of space and time dependent electromagnetic fluctuation. We neglect macroscopic drifts due to inhomogeneity and field curvatures, but retain finite Larmor radius effects. (author) 3 refs
Markowich, Peter; Lorz, Alexander; Francesco, Marco
2010-01-01
We study the system ct + u · ∇c = ∇c -nf(c) nt + u · ∇n = ∇n m - ∇ · (n×(c) ∇c) ut + u·∇u + ∇P - η∇u + n∇φ/ = 0 ∇·u = 0. arising in the modelling of the motion of swimming bacteria under the effect of diffusion, oxygen-taxis and transport through
National Aeronautics and Space Administration — Techsburg is teaming with the Vibration and Acoustics Laboratory of Virginia Tech to propose a non-linear analytical tool for designing Herschel-Quincke (HQ)...
Fukao, Takeshi; Kurima, Shunsuke; Yokota, Tomomi
2018-05-01
This paper develops an abstract theory for subdifferential operators to give existence and uniqueness of solutions to the initial-boundary problem (P) for the nonlinear diffusion equation in an unbounded domain $\\Omega\\subset\\mathbb{R}^N$ ($N\\in{\\mathbb N}$), written as \\[ \\frac{\\partial u}{\\partial t} + (-\\Delta+1)\\beta(u) = g \\quad \\mbox{in}\\ \\Omega\\times(0, T), \\] which represents the porous media, the fast diffusion equations, etc., where $\\beta$ is a single-valued maximal monotone function on $\\mathbb{R}$, and $T>0$. Existence and uniqueness for (P) were directly proved under a growth condition for $\\beta$ even though the Stefan problem was excluded from examples of (P). This paper completely removes the growth condition for $\\beta$ by confirming Cauchy's criterion for solutions of the following approximate problem (P)$_{\\varepsilon}$ with approximate parameter $\\varepsilon>0$: \\[ \\frac{\\partial u_{\\varepsilon}}{\\partial t} + (-\\Delta+1)(\\varepsilon(-\\Delta+1)u_{\\varepsilon} + \\beta(u_{\\varepsilon}) + \\pi_{\\varepsilon}(u_{\\varepsilon})) = g \\quad \\mbox{in}\\ \\Omega\\times(0, T), \\] which is called the Cahn--Hilliard system, even if $\\Omega \\subset \\mathbb{R}^N$ ($N \\in \\mathbb{N}$) is an unbounded domain. Moreover, it can be seen that the Stefan problem is covered in the framework of this paper.
On an adaptive time stepping strategy for solving nonlinear diffusion equations
International Nuclear Information System (INIS)
Chen, K.; Baines, M.J.; Sweby, P.K.
1993-01-01
A new time step selection procedure is proposed for solving non- linear diffusion equations. It has been implemented in the ASWR finite element code of Lorenz and Svoboda [10] for 2D semiconductor process modelling diffusion equations. The strategy is based on equi-distributing the local truncation errors of the numerical scheme. The use of B-splines for interpolation (as well as for the trial space) results in a banded and diagonally dominant matrix. The approximate inverse of such a matrix can be provided to a high degree of accuracy by another banded matrix, which in turn can be used to work out the approximate finite difference scheme corresponding to the ASWR finite element method, and further to calculate estimates of the local truncation errors of the numerical scheme. Numerical experiments on six full simulation problems arising in semiconductor process modelling have been carried out. Results show that our proposed strategy is more efficient and better conserves the total mass. 18 refs., 6 figs., 2 tabs
International Nuclear Information System (INIS)
Malkov, M.A.; Kennel, C.F.; Wu, C.C.; Pellat, R.; Shapiro, V.D.
1991-01-01
The Cohen--Kulsrud--Burgers equation (CKB) is used to consider the nonlinear evolution of resistive, quasiparallel Alfven waves subject to a long-wavelength, plane-polarized, monochromatic instability. The instability saturates by nonlinear steepening, which proceeds until the periodic waveform develops an interior scale length comparable to the dissipation length; a fast or an intermediate shock then forms. The result is a periodic train of Alfven shocks of one or the other type. For propagation strictly parallel to the magnetic field, there will be two shocks per instability wavelength. Numerical integration of the time-dependent CKB equation shows that an initial, small-amplitude growing wave asymptotes to a stable, periodic stationary wave whose analytic solution specifies how the type of shock embedded in the shock train, and the amplitude and speed of the shock train, depend on the strength and phase of the instability. Waveforms observed upstream of the Earth's bowshock and cometary shocks resemble those calculated here
Directory of Open Access Journals (Sweden)
Xuehui Yin
2015-01-01
Full Text Available The traditional integer-order partial differential equations and gradient regularization based image denoising techniques often suffer from staircase effect, speckle artifacts, and the loss of image contrast and texture details. To address these issues, in this paper, a difference curvature driven fractional anisotropic diffusion for image noise removal is presented, which uses two new techniques, fractional calculus and difference curvature, to describe the intensity variations in images. The fractional-order derivatives information of an image can deal well with the textures of the image and achieve a good tradeoff between eliminating speckle artifacts and restraining staircase effect. The difference curvature constructed by the second order derivatives along the direction of gradient of an image and perpendicular to the gradient can effectively distinguish between ramps and edges. Fourier transform technique is also proposed to compute the fractional-order derivative. Experimental results demonstrate that the proposed denoising model can avoid speckle artifacts and staircase effect and preserve important features such as curvy edges, straight edges, ramps, corners, and textures. They are obviously superior to those of traditional integral based methods. The experimental results also reveal that our proposed model yields a good visual effect and better values of MSSIM and PSNR.
Malyarenko, Dariya I; Wilmes, Lisa J; Arlinghaus, Lori R; Jacobs, Michael A; Huang, Wei; Helmer, Karl G; Taouli, Bachir; Yankeelov, Thomas E; Newitt, David; Chenevert, Thomas L
2016-12-01
Previous research has shown that system-dependent gradient nonlinearity (GNL) introduces a significant spatial bias (nonuniformity) in apparent diffusion coefficient (ADC) maps. Here, the feasibility of centralized retrospective system-specific correction of GNL bias for quantitative diffusion-weighted imaging (DWI) in multisite clinical trials is demonstrated across diverse scanners independent of the scanned object. Using corrector maps generated from system characterization by ice-water phantom measurement completed in the previous project phase, GNL bias correction was performed for test ADC measurements from an independent DWI phantom (room temperature agar) at two offset locations in the bore. The precomputed three-dimensional GNL correctors were retrospectively applied to test DWI scans by the central analysis site. The correction was blinded to reference DWI of the agar phantom at magnet isocenter where the GNL bias is negligible. The performance was evaluated from changes in ADC region of interest histogram statistics before and after correction with respect to the unbiased reference ADC values provided by sites. Both absolute error and nonuniformity of the ADC map induced by GNL (median, 12%; range, -35% to +10%) were substantially reduced by correction (7-fold in median and 3-fold in range). The residual ADC nonuniformity errors were attributed to measurement noise and other non-GNL sources. Correction of systematic GNL bias resulted in a 2-fold decrease in technical variability across scanners (down to site temperature range). The described validation of GNL bias correction marks progress toward implementation of this technology in multicenter trials that utilize quantitative DWI.
Diffuse ions produced by electromagnetic ion beam instabilities
International Nuclear Information System (INIS)
Winske, D.; Leroy, M.M.
1984-01-01
The evolution of the electromagnetic ions beam instability driven by the reflected ion component backstreaming away from the earth's how shock into the foreshock region is studied by means computer simulation. The linear the quasi-linear states of the instability are found to be in good agreement with known results for the resonant model propagating parallel to the beam along the magnetic field and with theory developed in this paper for the nonresonant mode, which propagates antiparallel to the beam direction. The quasi-linear stage, which produces large amplitude 8Bapprox.B, sinusoidal transverse waves and ''intermediate'' ion distribution, is terminated by a nonlinear phase in which strongly nonlinear, compressive waves and ''diffuse'' ion distributions are produced. Additional processes by which the diffuse ions are accelerated to observed high energies are not addressed. The results are discussed in terms of the ion distributions and hydromagnetic waves observed in the foreshock of the earth's bow shock and of interplanetary shocks
Fractional Diffusion Equations and Anomalous Diffusion
Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin
2018-01-01
Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.
On the stability of shocks modified by particle acceleration
Energy Technology Data Exchange (ETDEWEB)
Drury, L.O' C.; Falle, S.A.E.G.
1986-11-15
It is shown, using a two-fluid approximation, that sound waves in a gas containing cosmic rays can be amplified if the scale height of the cosmic rays is less than a critical scale of order of the ratio of the cosmic-ray diffusion coefficient to the gas sound speed. The non-linear development has been calculated numerically and it is found that sound waves can grow into strong gas shocks. The instability is likely to have important effects on cosmic-ray modified shocks.
On the stability of shocks modified by particle acceleration
International Nuclear Information System (INIS)
Drury, L.O'C.; Falle, S.A.E.G.
1986-01-01
It is shown, using a two-fluid approximation, that sound waves in a gas containing cosmic rays can be amplified if the scale height of the cosmic rays is less than a critical scale of order of the ratio of the cosmic-ray diffusion coefficient to the gas sound speed. The non-linear development has been calculated numerically and it is found that sound waves can grow into strong gas shocks. The instability is likely to have important effects on cosmic-ray modified shocks. (author)
International Nuclear Information System (INIS)
Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Dobrodumov, Anatolii V.; Marchenko, Yaroslav Y.; Margulis, Boris A.; Pitkin, Emil; Guzhova, Irina V.
2015-01-01
Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M 2 ). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T 2 -weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M 2 measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M 2 ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates effectively target the
Hocaoglu, Elif; Inci, Ercan; Aydin, Sibel; Cesme, Dilek Hacer; Kalfazade, Nadir
2015-01-01
Objective The aim of this study was to evaluate the capability and the reliability of diffusion-weighted imaging (DWI) in the changes of kidneys occurring after extracorporeal shock wave lithotripsy (ESWL) treatment for renal stones. Materials and Methods A total of 32 patients who underwent ESWL treatment for renal stone disease between June and December 2011 were enrolled in this prospective study. Color Doppler ultrasonography (CDUS) and DWI were performed before and within 24 hours after ESWL. DWI was obtained with b factors of 0, 500 and 1000 s/mm2 at 1.5 T MRI. Each of Resistive index (RI) and ADC values were calculated from the three regions of renal upper, middle and lower zones for both of the affected and contralateral kidneys. Paired sample t test was used for statistical analyses. Results After ESWL, the treated kidneys had statistically significant lower ADC values in all different regions compared with previous renal images. The best discriminative parameter was signal intensity with a b value of 1000 s/mm2. The changes of DWI after ESWL were noteworthy in the middle of the treated kidney (pESWL (p>0.05). Conclusion DWI is a valuable technique enables the detection of changes in DWI after ESWL treatment that may provide useful information in prediction of renal damage by shock waves, even CDUS is normal. PMID:25928520
Geometrical shock dynamics for magnetohydrodynamic fast shocks
Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.
2016-01-01
We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press
Geometrical shock dynamics for magnetohydrodynamic fast shocks
Mostert, W.
2016-12-12
We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press
Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo
2012-02-01
Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.
Particle acceleration and injection problem in relativistic and nonrelativistic shocks
International Nuclear Information System (INIS)
Hoshino, M.
2008-01-01
Acceleration of charged particles at the collisionless shock is believed to be responsible for production of cosmic rays in a variety of astrophysical objects such as supernova, AGN jet, and GRB etc., and the diffusive shock acceleration model is widely accepted as a key process for generating cosmic rays with non-thermal, power-law energy spectrum. Yet it is not well understood how the collisionless shock can produce such high energy particles. Among several unresolved issues, two major problems are the so-called '' injection '' problem of the supra-thermal particles and the generation of plasma waves and turbulence in and around the shock front. With recent advance of computer simulations, however, it is now possible to discuss those issues together with dynamical evolution of the kinetic shock structure. A wealth of modern astrophysical observations also inspires the dynamical shock structure and acceleration processes along with the theoretical and computational studies on shock. In this presentation, we focus on the plasma wave generation and the associated particle energization that directly links to the injection problem by taking into account the kinetic plasma processes of both non-relativistic and relativistic shocks by using a particle-in-cell simulation. We will also discuss some new particle acceleration mechanisms such as stochastic surfing acceleration and wakefield acceleration by the action of nonlinear electrostatic fields. (author)
Directory of Open Access Journals (Sweden)
K. A. Eftaxias
2006-01-01
Full Text Available An important question in geophysics is whether earthquakes (EQs can be anticipated prior to their occurrence. Pre-seismic electromagnetic (EM emissions provide a promising window through which the dynamics of EQ preparation can be investigated. However, the existence of precursory features in pre-seismic EM emissions is still debatable: in principle, it is difficult to prove associations between events separated in time, such as EQs and their EM precursors. The scope of this paper is the investigation of the pre-seismic EM activity in terms of complexity. A basic reason for our interest in complexity is the striking similarity in behavior close to irreversible phase transitions among systems that are otherwise quite different in nature. Interestingly, theoretical studies (Hopfield, 1994; Herz and Hopfield 1995; Rundle et al., 1995; Corral et al., 1997 suggest that the EQ dynamics at the final stage and neural seizure dynamics should have many similar features and can be analyzed within similar mathematical frameworks. Motivated by this hypothesis, we evaluate the capability of linear and non-linear techniques to extract common features from brain electrical activities and pre-seismic EM emissions predictive of epileptic seizures and EQs respectively. The results suggest that a unified theory may exist for the ways in which firing neurons and opening cracks organize themselves to produce a large crisis, while the preparation of an epileptic shock or a large EQ can be studied in terms of ''Intermittent Criticality''.
Unlimited Relativistic Shock Surfing Acceleration
International Nuclear Information System (INIS)
Ucer, D.; Shapiro, V. D.
2001-01-01
Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing
Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E
2013-12-01
In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Brito, P.E. de; Nazareno, H.N.
2012-01-01
The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.
Directory of Open Access Journals (Sweden)
Roman Cherniha
2018-04-01
Full Text Available This review is devoted to search for Lie and Q-conditional (nonclassical symmetries and exact solutions of a class of reaction-diffusion-convection equations with exponential nonlinearities. A complete Lie symmetry classification of the class is derived via two different algorithms in order to show that the result depends essentially on the type of equivalence transformations used for the classification. Moreover, a complete description of Q-conditional symmetries for PDEs from the class in question is also presented. It is shown that all the well-known results for reaction-diffusion equations with exponential nonlinearities follow as particular cases from the results derived for this class of reaction-diffusion-convection equations. The symmetries obtained for constructing exact solutions of the relevant equations are successfully applied. The exact solutions are compared with those found by means of different techniques. Finally, an application of the exact solutions for solving boundary-value problems arising in population dynamics is presented.
Energy Technology Data Exchange (ETDEWEB)
Shevtsov, Maxim A., E-mail: shevtsov-max@mail.ru [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); A.L. Polenov Russian Research Scientific Institute of Neurosurgery, Mayakovsky str. 12, St. Petersburg 191014 (Russian Federation); Nikolaev, Boris P. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Ryzhov, Vyacheslav A. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina 188300 (Russian Federation); Yakovleva, Ludmila Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Dobrodumov, Anatolii V. [Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), Bolshoi pr. 31, St. Petersburg 199004 (Russian Federation); Marchenko, Yaroslav Y. [Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg 197110 (Russian Federation); Margulis, Boris A. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation); Pitkin, Emil [The Wharton School, University of Pennsylvania, 3730 Walnut St., Philadelphia, PA 19104 (United States); Guzhova, Irina V. [Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, St. Petersburg 194064 (Russian Federation)
2015-08-15
Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION–Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M{sub 2}). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T{sub 2}-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION–Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M{sub 2} measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors. - Highlights: • Second-harmonic nonlinear magnetic response is used for biodistribution analysis. • NLR-M{sub 2} ensures high sensibility in detection of SPIONs in tissue. • SPION–Hsp70 conjugates
Directory of Open Access Journals (Sweden)
Z. Abbas
Full Text Available An analysis is carried out to study the generalized slip condition and MHD flow of a nanofluid due to a contracting cylinder in the presence of non-linear radiative heat transfer using Buongiorno’s model. The Navier-Stokes along with energy and nanoparticle concentration equations is transformed to highly nonlinear ordinary differential equations using similarity transformations. These similar differential equations are then solved numerically by employing a shooting technique with Runge–Kutta–Fehlberg method. Dual solutions exist for a particular range of the unsteadiness parameter. The physical influence of the several important fluid parameters on the flow velocity, temperature and nanoparticle volume fraction is discussed and shown through graphs and table in detail. The present study indicates that as increase of Brownian motion parameter and slip velocity is to decrease the nanoparticle volume fraction. Keywords: Nanofluid, Contracting cylinder, Nonlinear thermal radiation, Generalized slip condition, Numerical solution
Vitelli, Vincenzo
2012-02-01
Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.
Shock Geometry and Spectral Breaks in Large SEP Events
Li, G.; Zank, G. P.; Verkhoglyadova, Olga; Mewaldt, R. A.; Cohen, C. M. S.; Mason, G. M.; Desai, M. I.
2009-09-01
Solar energetic particle (SEP) events are traditionally classified as "impulsive" or "gradual." It is now widely accepted that in gradual SEP events, particles are accelerated at coronal mass ejection-driven (CME-driven) shocks. In many of these large SEP events, particle spectra exhibit double power law or exponential rollover features, with the break energy or rollover energy ordered as (Q/A)α, with Q being the ion charge in e and A the ion mass in units of proton mass mp . This Q/A dependence of the spectral breaks provides an opportunity to study the underlying acceleration mechanism. In this paper, we examine how the Q/A dependence may depend on shock geometry. Using the nonlinear guiding center theory, we show that α ~ 1/5 for a quasi-perpendicular shock. Such a weak Q/A dependence is in contrast to the quasi-parallel shock case where α can reach 2. This difference in α reflects the difference of the underlying parallel and perpendicular diffusion coefficients κ|| and κbottom. We also examine the Q/A dependence of the break energy for the most general oblique shock case. Our analysis offers a possible way to remotely examine the geometry of a CME-driven shock when it is close to the Sun, where the acceleration of particle to high energies occurs.
Particle acceleration in modified shocks
International Nuclear Information System (INIS)
Drury, L.O'C.; Axford, W.I.; Summers, D.
1982-01-01
Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed. (author)
Particle acceleration in modified shocks
Energy Technology Data Exchange (ETDEWEB)
Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.)); Axford, W.I. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany, F.R.)); Summers, D. (Memorial Univ. of Newfoundland, St. John' s (Canada))
1982-03-01
Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed.
Keyes, Joseph T; Simon, Bruce R; Vande Geest, Jonathan P
2013-04-01
Arterial wall mass transport properties dictate local distribution of biomolecules or locally delivered dugs. Knowing how these properties vary between coronary artery locations could provide insight into how therapy efficacy is altered between arterial locations. We introduced an indocarbocyanine drug surrogate to the lumens of left anterior descending and right coronary (LADC; RC) arteries from pigs with or without a pressure gradient. Interstitial fluorescent intensity was measured on live samples with multiphoton microscopy. We also measured binding to porcine coronary SMCs in monoculture. Diffusive transport constants peaked in the middle sections of the LADC and RC arteries by 2.09 and 2.04 times, respectively, compared to the proximal and distal segments. There was no statistical difference between the average diffusivity value between LADC and RC arteries. The convection coefficients had an upward trend down each artery, with the RC being higher than the LADC by 3.89 times. This study demonstrates that the convective and diffusive transport of lipophilic molecules changes between the LADC and the RC arteries as well as along their length. These results may have important implications in optimizing drug delivery for the treatment of coronary artery disease.
Nguyen, Bao H.
This thesis is a collection of five self contained empirical macroeconomic papers on the asymmetric effects of energy price shocks on various economies. Chapter 1 formally determines the number of regime changes in the US natural gas market by employing a MS-VAR model. Estimated using Bayesian methods, three regimes are identified for the period 1980 - 2016, namely, before the Decontrol Act, after the Decontrol Act and the Recession. The results show that the natural gas market tends to be much more sensitive to market fundamental shocks occurring in a Recession regime than in the other regimes. Augmenting the model by incorporating the price of crude oil, the results reveal that the impacts of oil price shocks on natural gas prices are relatively small. Chapter 2 provides new empirical evidence on the asymmetric reactions of the U.S. natural gas market and the U.S. economy to its market fundamental shocks in different phases of the business cycle. To this end, we employ a ST-VAR model to capture the asymmetric responses depending on economic conditions. Our results indicate that in contrast to the prediction made by a linear VAR model, the STVAR model provides a plausible explanation to the behavior of the U.S. natural gas market, which asymmetrically reacts in bad times and good times. Chapter 3 examines the relationship between China's economic growth and global oil market fluctuations between 1992Q1 and 2015Q3. We find that: (1) the time varying parameter VAR with stochastic volatility provides a better fit as compared to it's constant counterparts; (2) the impacts of intertemporal global oil price shocks on China's output are often small and temporary in nature; (3) oil supply and specific oil demand shocks generally produce negative movements in China's GDP growth whilst oil demand shocks tend to have positive effects; (4) domestic output shocks have no significant impact on price or quantity movements within the global oil market. Chapter 4 examines the
Barber, Jared; Tanase, Roxana; Yotov, Ivan
2016-06-01
Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion. Copyright © 2016 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Sameh E. Ahmed
2017-12-01
Full Text Available The present paper deals with the effects of slip boundary conditions and chemical reaction on the heat and mass transfer by mixed convective boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. First order chemical reactions are considered. Similar solutions are used to convert the partial differential equations governing the problem to ordinary differential equations. The velocity, temperature and concentration profiles are obtained, numerically, using the MATLAB function bvp4c and those are used to compute the entropy generation number. The effect of increasing values of the Casson parameter is found to suppress the velocity field and temperature distribution. But the concentration is enhanced with the increasing of Casson parameter. The viscous dissipation, temperature and concentration irreversibility are determined and discussed in details.
Asymptotic behavior of the nonlinear diffusion equation n/sub t/ = (n-1n/sub x/)/sub x/
International Nuclear Information System (INIS)
Berryman, J.G.; Holland, C.J.
1982-01-01
The asymptotic behavior of the equation n/sub t/ = (ln n)/sub x/x is studied on the finite interval 0 0 and initial data n(x,0)> or =n 0 . We prove that asymptotically ln[n(x,t)/n 0 ]→A exp(-π 2 t/n 0 )2/sup 1/2/ sin πx and also provide rigorous upper and lower bounds on the asymptotic amplitude A in terms of integrals of nonlinear functions of the initial data. The rigorous bounds are compared to values of A obtained from computer experiments. The lower bound L = (2/sup 3/2//π)exp[li(1+Q)-γ], where li is the logarithmic integral, γ is Euler's constant, and Q = (π/2)∫[n(x,0)/n 0 -1]sin πx dx, is found to be the best known estimate of A
Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter
2014-12-29
Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.
International Nuclear Information System (INIS)
Shah, Asif; Saeed, R
2011-01-01
The ion-acoustic shock waves are studied in electron-positron-ion plasma. The plasma system is composed of three components, specifically relativistic adiabatic ions, kappa distributed electrons and positrons. The Korteweg-de Vries-Burger equation is derived, solved analytically. The effects of plasma parameters on the shock strength and steepness are investigated. The numerical results are presented graphically for illustration. The results may have importance in non-thermal and relativistic plasmas of pulsar magnetosphere (Arons 2009 Astrophys. Space Sci. Library 357 373; Blasi and Amato arXiv:1007.4745V1 [astro-Ph.HE]).
Radiation- and pair-loaded shocks
Lyutikov, Maxim
2018-06-01
We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).
Nonlinear hyperbolic waves in multidimensions
Prasad, Phoolan
2001-01-01
The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...
Energy Technology Data Exchange (ETDEWEB)
Arons, J.
1988-08-15
I outline particle simulations and theory of relativistic shock waves in an e/sup +-/ plasma. Magnetic reflection of particles is an essential role in the shock structure. Instability of the reflected particles in the shock front produces intense extraordinary mode radiation. Such shocks are candidates for the particle accelerator in plerions and in extragalactic jets only if the upstream Poynting flux composes no more than 10% of the total. I summarize analytical and numerical studies of radiation dominated accretion onto the magnetic poles of neutron stars. The upper limit to the photon luminosity depends upon magnetic confinement, not upon the dragging of photons into the star. Numerical solutions show the plasma forms large scale ''photon bubbles.'' I suggest the percolative loss of radiation controls the pressure and therefore the limits of magnetic confinement. Loss of magnetic confinement through resistive interchange instability is suggested as a means of generating TeV to PeV voltage drops along the magnetic field. 34 refs., 6 figs., 1 tab.
International Nuclear Information System (INIS)
Arons, J.
1988-01-01
I outline particle simulations and theory of relativistic shock waves in an e/sup +-/ plasma. Magnetic reflection of particles is an essential role in the shock structure. Instability of the reflected particles in the shock front produces intense extraordinary mode radiation. Such shocks are candidates for the particle accelerator in plerions and in extragalactic jets only if the upstream Poynting flux composes no more than 10% of the total. I summarize analytical and numerical studies of radiation dominated accretion onto the magnetic poles of neutron stars. The upper limit to the photon luminosity depends upon magnetic confinement, not upon the dragging of photons into the star. Numerical solutions show the plasma forms large scale ''photon bubbles.'' I suggest the percolative loss of radiation controls the pressure and therefore the limits of magnetic confinement. Loss of magnetic confinement through resistive interchange instability is suggested as a means of generating TeV to PeV voltage drops along the magnetic field. 34 refs., 6 figs., 1 tab
Shock waves in weakly compressed granular media.
van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin
2013-11-22
We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.
Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco
2018-01-01
Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.
Directory of Open Access Journals (Sweden)
I.L. Animasaun
2016-06-01
Full Text Available This article presents the effects of nonlinear thermal radiation and induced magnetic field on viscoelastic fluid flow toward a stagnation point. It is assumed that there exists a kind of chemical reaction between chemical species A and B. The diffusion coefficients of the two chemical species in the viscoelastic fluid flow are unequal. Since chemical species B is a catalyst at the horizontal surface, hence homogeneous and heterogeneous schemes are of the isothermal cubic autocatalytic reaction and first order reaction respectively. The transformed governing equations are solved numerically using Runge–Kutta integration scheme along with Newton’s method. Good agreement is obtained between present and published numerical results for a limiting case. The influence of some pertinent parameters on skin friction coefficient, local heat transfer rate, together with velocity, induced magnetic field, temperature, and concentration profiles is illustrated graphically and discussed. Based on all of these assumptions, results indicate that the effects of induced magnetic and viscoelastic parameters on velocity, transverse velocity and velocity of induced magnetic field are almost the same but opposite in nature. The strength of heterogeneous reaction parameter is very helpful to reduce the concentration of bulk fluid and increase the concentration of catalyst at the surface.
Ledenyov, Dimitri O.; Ledenyov, Viktor O.
2014-01-01
The authors perform an original research on the fundamentals of winning virtuous strategies creation toward the leveraged buyout transactions implementation during the private equity investment in the conditions of the resonant absorption of discrete information in the diffusion - type financial system with the induced nonlinearities at the influences by the Schumpeterian creative disruption processes in the free market economy. We propose that the money is a financial computing process, whic...
Shock dynamics in layered periodic media
Ketcheson, David I.
2012-01-01
Solutions of constant-coeffcient nonlinear hyperbolic PDEs generically develop shocks, even if the initial data is smooth. Solutions of hyperbolic PDEs with variable coeffcients can behave very differently. We investigate formation and stability of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation, no shock formation is detected even after times much greater than the time of shock formation in a homogeneous medium. Furthermore, weak shocks are observed to be dynamically unstable in the sense that they do not lead to significant long-term entropy decay. We propose a characteristic condition for admissibility of shocks in heterogeneous media that generalizes the classical Lax entropy condition and accurately predicts the formation or absence of shocks in these media.
Directory of Open Access Journals (Sweden)
B. T. Tsurutani
2005-01-01
Full Text Available Alfvén waves, discontinuities, proton perpendicular acceleration and magnetic decreases (MDs in interplanetary space are shown to be interrelated. Discontinuities are the phase-steepened edges of Alfvén waves. Magnetic decreases are caused by a diamagnetic effect from perpendicularly accelerated (to the magnetic field protons. The ion acceleration is associated with the dissipation of phase-steepened Alfvén waves, presumably through the Ponderomotive Force. Proton perpendicular heating, through instabilities, lead to the generation of both proton cyclotron waves and mirror mode structures. Electromagnetic and electrostatic electron waves are detected as well. The Alfvén waves are thus found to be both dispersive and dissipative, conditions indicting that they may be intermediate shocks. The resultant 'turbulence' created by the Alfvén wave dissipation is quite complex. There are both propagating (waves and nonpropagating (mirror mode structures and MDs byproducts. Arguments are presented to indicate that similar processes associated with Alfvén waves are occurring in the magnetosphere. In the magnetosphere, the 'turbulence' is even further complicated by the damping of obliquely propagating proton cyclotron waves and the formation of electron holes, a form of solitary waves. Interplanetary Alfvén waves are shown to rapidly phase-steepen at a distance of 1AU from the Sun. A steepening rate of ~35 times per wavelength is indicated by Cluster-ACE measurements. Interplanetary (reverse shock compression of Alfvén waves is noted to cause the rapid formation of MDs on the sunward side of corotating interaction regions (CIRs. Although much has been learned about the Alfvén wave phase-steepening processfrom space plasma observations, many facets are still not understood. Several of these topics are discussed for the interested researcher. Computer simulations and theoretical developments will be particularly useful in making further progress in
The cosmic-ray shock structure problem for relativistic shocks
Webb, G. M.
1985-01-01
The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.
Dust acoustic solitary and shock waves in strongly coupled dusty ...
Indian Academy of Sciences (India)
between nonlinear and dispersion effects can result in the formation of symmetrical solitary waves. Also shock ... et al have studied the effect of nonadiabatic dust charge variation on the nonlinear dust acoustic wave with ..... Figure 5 presents the border between oscillatory- and monotonic-type shock waves as functions of ...
International Nuclear Information System (INIS)
Nemeth, J.D.
1981-01-01
A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)
A shock absorber model for structure-borne noise analyses
Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice
2015-08-01
Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.
Peppin, Stephen S. L.
2009-01-01
concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements
Do oil shocks predict economic policy uncertainty?
Rehman, Mobeen Ur
2018-05-01
Oil price fluctuations have influential role in global economic policies for developed as well as emerging countries. I investigate the role of international oil prices disintegrated into structural (i) oil supply shock, (ii) aggregate demand shock and (iii) oil market specific demand shocks, based on the work of Kilian (2009) using structural VAR framework on economic policies uncertainty of sampled markets. Economic policy uncertainty, due to its non-linear behavior is modeled in a regime switching framework with disintegrated structural oil shocks. Our results highlight that Indian, Spain and Japanese economic policy uncertainty responds to the global oil price shocks, however aggregate demand shocks fail to induce any change. Oil specific demand shocks are significant only for China and India in high volatility state.
Perpendicular relativistic shocks in magnetized pair plasma
Plotnikov, Illya; Grassi, Anna; Grech, Mickael
2018-04-01
Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.
Nonthermal Radiation from Supernova Remnant Shocks
Directory of Open Access Journals (Sweden)
Hyesung Kang
2013-09-01
Full Text Available Most of high energy cosmic rays (CRs are thought to be produced by diffusive shock acceleration (DSA at supernova remnants (SNRs within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the timedependent evolution of the self-amplified magnetic fields, Alfvénic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and γ-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.
demystifying the shock of shocking
African Journals Online (AJOL)
(with a pulse), atrial fibrillation and atrial flutter. The energy dose in cardioversion is less (0.5. - 2 J/kg) than in defibrillation (2 - 4 J/kg). In cardioversion the shock is discharged synchronously with the native R wave of the patient. Without synchronisation,. VF can be induced if a shock is delivered during the refractory period ...
Introduction to nonlinear acoustics
Bjørnø, Leif
2010-01-01
A brief review of the basic principles of fluid mechanics needed for development of linear and nonlinear ultrasonic concepts will be given. The fundamental equations of nonlinear ultrasonics will be derived and their physical properties explained. It will be shown how an originally monochromatic finite-amplitude ultrasonic wave, due to nonlinear effects, will distort during its propagation in time and space to form higher harmonics to its fundamental frequency. The concepts of shock formation will be presented. The material nonlinearity, described by the nonlinearity parameter B/A of the material, and the convective nonlinearity, described by the ultrasonic Mach Number, will be explained. Two procedures for determination of B/A will briefly be described and some B/A-values characterizing biological materials will be presented. Shock formation, described by use of the Goldberg Number,and Ultrasonic Saturation will be discussed.. An introduction to focused ultrasonic fields will be given and it will be shown how the ultrasonic intensity will vary axially and laterally in and near the focal region and how the field parameters of interest to biomedical applications may be described by use of the KZK-Model. Finally, an introduction will be given to the parametric acoustic array formed by mixing and interaction of two monochromatic, finite-amplitude ultrasonic waves in a liquid and the potentials of this mixing process in biomedical ultrasound will briefly be mentioned.
Energy Technology Data Exchange (ETDEWEB)
Garcia Velarde, M
1977-07-01
Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs.
International Nuclear Information System (INIS)
Garcia Velarde, M.
1977-01-01
Thermoconvective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Benard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (author) [es
International Nuclear Information System (INIS)
Garcia Velarde, M.
1977-01-01
Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs
Shock and vibration technology with applications to electrical systems
Eshleman, R. L.
1972-01-01
A survey is presented of shock and vibration technology for electrical systems developed by the aerospace programs. The shock environment is surveyed along with new techniques for modeling, computer simulation, damping, and response analysis. Design techniques based on the use of analog computers, shock spectra, optimization, and nonlinear isolation are discussed. Shock mounting of rotors for performance and survival, and vibration isolation techniques are reviewed.
Remarks on stability of magneto-elastic shocks
Directory of Open Access Journals (Sweden)
Włodzimierz Domański
2015-12-01
Full Text Available The problem of stability of plane shock waves for a model of perfect magnetoelasticityis investigated. Important mathematical properties, like loss of strict hyperbolicityand loss of genuine nonlinearity, and their consequences for the stability ofmagneto-elastic shocks are discussed. It is shown that some of these shocks do not satisfyclassical Lax stability conditions. Both compressible and incompressible models ofmagneto-elasticity are discussed.[b]Keywords[/b]: perfect magneto-elasticity, shock waves, stability conditions
International Nuclear Information System (INIS)
Pediconi, M.F.; Rodriguez de Turco, E.B.; Bazan, N.G.
1982-01-01
[2- 3 H]Glycerol and [1- 14 C]arachidonic acid were injected into the region of the frontal horn of the left ventricle of mice and were distributed rapidly throughout the brain. After 10 sec, most of the radioactive fatty acid was found in the hemisphere near the injection site; after 10 min, it was recovered in similar proportions in the cerebellum and brain stem. [2- 3 H]Glycerol showed a heterogeneous distribution, with most of the label remaining in the left hemisphere even after 10 min. On a fresh weight basis, cerebrum, cerebellum, and brain stem were found to contain similar amounts of labeled glycerol. However, the amount of [1- 14 C]arachidonate in cerebrum was only 50% of that recovered from cerebellum or brain stem. Brain ischemia or a single electroconvulsive shock reduced the spread of the label, producing an accumulation of radioactivity in the injected hemisphere, except for an increase in [2- 3 H]glycerol in the brain stem during ischemia. Despite the significant decrease in available precursor in the cerebellum and brain stem after electroshock, the amount of label incorporated into lipids was not altered in these areas and only slightly diminished in the cerebrum
... the person's position unless they are in immediate danger. Do not give fluids by mouth. If person ... the patient with shock. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...
Shock Wave Dynamics in Weakly Ionized Plasmas
Johnson, Joseph A., III
1999-01-01
An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.
International Nuclear Information System (INIS)
Housman, J.J.
1978-01-01
A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading
Numerical Study of Richtmyer-Meshkov Instability with Re-Shock
Wong, Man Long; Livescu, Daniel; Lele, Sanjiva
2017-11-01
The interaction of a Mach 1.45 shock wave with a perturbed planar interface between two gases with an Atwood number 0.68 is studied through 2D and 3D shock-capturing adaptive mesh refinement (AMR) simulations with physical diffusive and viscous terms. The simulations have initial conditions similar to those in the actual experiment conducted by Poggi et al. [1998]. The development of the flow and evolution of mixing due to the interactions with the first shock and the re-shock are studied together with the sensitivity of various global parameters to the properties of the initial perturbation. Grid resolutions needed for fully resolved and 2D and 3D simulations are also evaluated. Simulations are conducted with an in-house AMR solver HAMeRS built on the SAMRAI library. The code utilizes the high-order localized dissipation weighted compact nonlinear scheme [Wong and Lele, 2017] for shock-capturing and different sensors including the wavelet sensor [Wong and Lele, 2016] to identify regions for grid refinement. First and third authors acknowledge the project sponsor LANL.
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon
2007-01-01
. To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon
2006-01-01
. To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....
Superdiffusion of relativistic electrons at supernova remnant shocks
Perri, Silvia
2018-01-01
Anomalous transport has been observed in various systems as nonlinear systems, numerical simulations of plasma turbulence, in laboratory plasmas, and recently in the propagation of energetic particles in the interplanetary space. Thanks to in situ observations it has been possible to deduce transport properties directly from spacecraft data. This technique has further found applicability to remote observations of relativistic electrons accelerated at supernova remnants (SNRs) shocks, pointing out that far upstream of the blast waves, the x-ray synchrotron emission, as captured by the Chandra spacecraft, is consistent with models of superdiffusive transport (i.e., transport faster than normal diffusive). Here we present and summarize evidences of superdiffusion both in the interplanetary space and upstream of SNRs shock fronts, in particular by analyzing, for the first time in the framework of superdiffusion, the transport properties of electrons accelerated at the young G1.9+0.3 SNR. We also briefly describe how this new model can be used to interpret radio emissions from electrons accelerated at shocks forming during galaxy cluster mergers.
Energy Technology Data Exchange (ETDEWEB)
Gammon, M.; Shalchi, A., E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)
2017-10-01
In several astrophysical applications one needs analytical forms of cosmic-ray diffusion parameters. Some examples are studies of diffusive shock acceleration and solar modulation. In the current article we explore perpendicular diffusion based on the unified nonlinear transport theory. While we focused on magnetostatic turbulence in Paper I, we included the effect of dynamical turbulence in Paper II of the series. In the latter paper we assumed that the temporal correlation time does not depend on the wavenumber. More realistic models have been proposed in the past, such as the so-called damping model of dynamical turbulence. In the present paper we derive analytical forms for the perpendicular diffusion coefficient of energetic particles in two-component turbulence for this type of time-dependent turbulence. We present new formulas for the perpendicular diffusion coefficient and we derive a condition for which the magnetostatic result is recovered.
International Nuclear Information System (INIS)
Le Roux, J. A.; Webb, G. M.
2012-01-01
Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock
Nonlinear acceleration of transport criticality problems
International Nuclear Information System (INIS)
Park, H.; Knoll, D.A.; Newman, C.K.
2011-01-01
We present a nonlinear acceleration algorithm for the transport criticality problem. The algorithm combines the well-known nonlinear diffusion acceleration (NDA) with a recently developed, Newton-based, nonlinear criticality acceleration (NCA) algorithm. The algorithm first employs the NDA to reduce the system to scalar flux, then the NCA is applied to the resulting drift-diffusion system. We apply a nonlinear elimination technique to eliminate the eigenvalue from the Jacobian matrix. Numerical results show that the algorithm reduces the CPU time a factor of 400 in a very diffusive system, and a factor of 5 in a non-diffusive system. (author)
International Nuclear Information System (INIS)
Habib, S.
1994-01-01
We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ''quantum diffusion'' terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source
Cosmic ray acceleration by large scale galactic shocks
International Nuclear Information System (INIS)
Cesarsky, C.J.; Lagage, P.O.
1987-01-01
The mechanism of diffusive shock acceleration may account for the existence of galactic cosmic rays detailed application to stellar wind shocks and especially to supernova shocks have been developed. Existing models can usually deal with the energetics or the spectral slope, but the observed energy range of cosmic rays is not explained. Therefore it seems worthwhile to examine the effect that large scale, long-lived galactic shocks may have on galactic cosmic rays, in the frame of the diffusive shock acceleration mechanism. Large scale fast shocks can only be expected to exist in the galactic halo. We consider three situations where they may arise: expansion of a supernova shock in the halo, galactic wind, galactic infall; and discuss the possible existence of these shocks and their role in accelerating cosmic rays
Computations of slowly moving shocks
International Nuclear Information System (INIS)
Karni, S.; Canic, S.
1997-01-01
Computations of slowly moving shocks by shock capturing schemes may generate oscillations are generated already by first-order schemes, but become more pronounced in higher-order schemes which seem to exhibit different behaviors: (i) the first-order upwind (UW) scheme which generates strong oscillations and (ii) the Lax-Friedrichs scheme which appears not to generate any disturbances at all. A key observation is that in the UW case, the numerical viscosity in the shock family vanishes inside the slow shock layer. Simple scaling arguments show the third-order effects on the solution may no longer be neglected. We derive the third-order modified equation for the UW scheme and regard the oscillatory solution as a traveling wave solution of the parabolic modified equation for the perturbation. We then look at the governing equation for the perturbation, which points to a plausible mechanism by which postshock oscillations are generated. It contains a third-order source term that becomes significant inside the shock layer, and a nonlinear coupling term which projects the perturbation on all characteristic fields, including those not associated with the shock family. 5 refs., 8 figs
Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks
Mai, Chuhong; Desch, Steven J.; Boley, Aaron C.; Weiss, Benjamin P.
2018-04-01
Recent laboratory efforts have constrained the remanent magnetizations of chondrules and the magnetic field strengths to which the chondrules were exposed as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors of ∼10–30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.
Line emission processes in atomic and molecular shocks
International Nuclear Information System (INIS)
Shull, J.M.
1988-01-01
The review discusses the observations and theoretical models of interstellar shock waves in diffuse and molecular clouds. After summarizing the relevant gas dynamics, atomic, molecular and grain processes, and physics of radiative and magnetic precursors, the author describes observational diagnostics of shocks. This paper concludes with a discussion of two topics: unstable or non-steady shocks and thermal conduction in metal-rich shocks
Staphylococcal toxic shock syndrome; Toxic shock-like syndrome; TSLS ... Toxic shock syndrome is caused by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock- ...
Treumann, R. A.; Jaroschek, C. H.
2008-01-01
1. Introduction, 2. The (quasi-parallel) foreshock; Ion foreshock, Ion foreshock boundary region; Diffuse ions;Low-frequency upstream waves; Ion beam waves; The expected wave modes; Observations; Diffuse ion waves; Electron foreshock; Electron beams; Langmuir waves; stability of the electron beam; Electron foreshock boundary waves; Nature of electron foreshock waves; Radiation; Observations; Interpretation; 3. Quasi-parallel shock reformation; Low-Mach number quasi-parallel shocks; Turbulent ...
Particle acceleration at shocks in the inner heliosphere
Parker, Linda Neergaard
This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A
Derivation of an applied nonlinear Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Pitts, Todd Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Laine, Mark Richard [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schwarz, Jens [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rambo, Patrick K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-01-01
We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release
Particle Acceleration in Two Converging Shocks
Energy Technology Data Exchange (ETDEWEB)
Wang, Xin; Wang, Na; Shan, Hao [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011 (China); Giacalone, Joe [Lunar and Planetary Laboratory, University of Arizona, Tucson AZ 85721 (United States); Yan, Yihua [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Ding, Mingde, E-mail: wangxin@xao.ac.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) Ministry of Education, Nanjing 210093 (China)
2017-06-20
Observations by spacecraft such as ACE , STEREO , and others show that there are proton spectral “breaks” with energy E {sub br} at 1–10 MeV in some large CME-driven shocks. Generally, a single shock with the diffusive acceleration mechanism would not predict the “broken” energy spectrum. The present paper focuses on two converging shocks to identify this energy spectral feature. In this case, the converging shocks comprise one forward CME-driven shock on 2006 December 13 and another backward Earth bow shock. We simulate the detailed particle acceleration processes in the region of the converging shocks using the Monte Carlo method. As a result, we not only obtain an extended energy spectrum with an energy “tail” up to a few 10 MeV higher than that in previous single shock model, but also we find an energy spectral “break” occurring on ∼5.5 MeV. The predicted energy spectral shape is consistent with observations from multiple spacecraft. The spectral “break,” then, in this case is caused by the interaction between the CME shock and Earth’s bow shock, and otherwise would not be present if Earth were not in the path of the CME.
Recent oil price shock and Tunisian economy
International Nuclear Information System (INIS)
Jbir, Rafik; Zouari-Ghorbel, Sonia
2009-01-01
The objective of this paper is to study the oil prices-macroeconomy relationship by the analysis of the role of subsidy policy. The vector autoregression (VAR) method was employed to analyze the data over the period 1993 Q1 - 2007 Q3. The results of the model using both linear and non-linear specifications indicate that there is no direct impact of oil price shock on the economic activity. The shock of oil prices affects economic activity indirectly. The most significant channel by which the effects of the shock are transmitted is the government's spending. (author)
The ''injection problem'' for quasiparallel shocks
International Nuclear Information System (INIS)
Zank, G. P.; Rice, W. K. M.; le Roux, J. A.; Cairns, I. H.; Webb, G. M.
2001-01-01
For a particle to be accelerated diffusively at a shock by the first-order Fermi acceleration mechanism, the particle must be sufficiently energetic that it can scatter across all the micro- and macrostructure of the shock, experiencing compression between the converging upstream and downstream states. This is the well-known ''injection problem.'' Here the interaction of ions with the ramp of a quasiparallel shock is investigated. Some ions incident on the shock experience specular reflection, caused either by the cross-shock electrostatic potential or by mirroring as the magnetic field is bent and compressed through the ramp. Scattering of reflected ions by self-generated and pre-existing turbulence in the region upstream of the shock then acts to trap backstreaming ions and return them to the ramp, where some experience further reflections. Such repeated reflections and scattering energize a subpopulation of ions up to energies sufficiently large that they can be diffusively shock accelerated. Two ion distributions are considered: pickup ions which are assumed to be described by a shell distribution, are thermal solar wind ions which may be described by a kappa distribution. Injection efficiencies are found analytically to be very high for pickup ions and much lower for thermal solar wind ions, suggesting that this injection mechanism, stochastic reflected ion or SRI acceleration, is a natural precursor for the acceleration of the anomalous cosmic ray component at a quasiparallel shock. While significantly less efficient, SRI acceleration is also viable for thermal solar wind ions described by a kappa distribution
Acceleration of cosmic rays in SNR shock waves
International Nuclear Information System (INIS)
Drury, L.O'C.; Markiewicz, W.J.; Voelk, H.J.
1988-01-01
The time dependence of the energy density of cosmic rays accelerated in the outer shock of a supernova is studied in simple nonlinear models. The solutions are classified in their dependence on the parameters of the system. (orig.)
Jiang, Z
2005-01-01
The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.
International Nuclear Information System (INIS)
Arthur, Aaron D.; Le Roux, Jakobus A.
2013-01-01
Observations by the plasma and magnetic field instruments on board the Voyager 2 spacecraft suggest that the termination shock is weak with a compression ratio of ∼2. However, this is contrary to the observations of accelerated particle spectra at the termination shock, where standard diffusive shock acceleration theory predicts a compression ratio closer to ∼2.9. Using our focused transport model, we investigate pickup proton acceleration at a stationary spherical termination shock with a moderately strong compression ratio of 2.8 to include both the subshock and precursor. We show that for the particle energies observed by the Voyager 2 Low Energy Charged Particle (LECP) instrument, pickup protons will have effective length scales of diffusion that are larger than the combined subshock and precursor termination shock structure observed. As a result, the particles will experience a total effective termination shock compression ratio that is larger than values inferred by the plasma and magnetic field instruments for the subshock and similar to the value predicted by diffusive shock acceleration theory. Furthermore, using a stochastically varying magnetic field angle, we are able to qualitatively reproduce the multiple power-law structure observed for the LECP spectra downstream of the termination shock
Sachdev, PL
2004-01-01
Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...
Directory of Open Access Journals (Sweden)
Mohammed Almakki
2017-07-01
Full Text Available The entropy generation in unsteady three-dimensional axisymmetric magnetohydrodynamics (MHD nanofluid flow over a non-linearly stretching sheet is investigated. The flow is subject to thermal radiation and a chemical reaction. The conservation equations are solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasi-linearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account. The nanofluid particle volume fraction on the boundary is passively controlled. The results show that as the Hartmann number increases, both the Nusselt number and the Sherwood number decrease, whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with respect to some physical parameters.
Shock wave propagation in neutral and ionized gases
International Nuclear Information System (INIS)
Podder, N. K.; Wilson IV, R. B.; Bletzinger, P.
2008-01-01
Preliminary measurements on a recently built shock tube are presented. Planar shock waves are excited by the spark discharge of a capacitor, and launched into the neutral argon or nitrogen gas as well as its ionized glow discharge in the pressure region 1-17 Torr. For the shock wave propagation in the neutral argon at fixed capacitor charging voltage, the shock wave velocity is found to increase nonlinearly at the lower pressures, reach a maximum at an intermediate pressure, and then decrease almost linearly at the higher pressures, whereas the shock wave strength continues to increase at a nonlinear rate over the entire range of pressure. However, at fixed gas pressure the shock wave velocity increases almost monotonically as the capacitor charging voltage is increased. For the shock wave propagation in the ionized argon glow, the shock wave is found to be most influenced by the glow discharge plasma current. As the plasma current is increased, both the shock wave propagation velocity and the dispersion width are observed to increase nonlinearly
Turbulent energy generated by accelerations and shocks
International Nuclear Information System (INIS)
Mikaelian, K.O.
1986-01-01
The turbulent energy generated at the interface between two fluids undergoing a constant acceleration or a shock is calculated. Assuming linear density profiles in the mixed region we find E/sub turbulent//E/sub directed/ = 2.3A 2 % (constant acceleration) and 9.3A 2 % (shock), where A is the Atwood number. Diffusion models predict somewhat less turbulent energy and a density profile with a tail extending into the lower density fluid. Eddy sizes are approximately 27% (constant acceleration) and 17% (shock) of the mixing depth into the heavier fluid. 6 refs., 3 figs
1978-01-01
The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.
Amplitude equations for a sub-diffusive reaction-diffusion system
International Nuclear Information System (INIS)
Nec, Y; Nepomnyashchy, A A
2008-01-01
A sub-diffusive reaction-diffusion system with a positive definite memory operator and a nonlinear reaction term is analysed. Amplitude equations (Ginzburg-Landau type) are derived for short wave (Turing) and long wave (Hopf) bifurcation points
Uniform shock waves in disordered granular matter.
Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo
2012-10-01
The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.
Application of nonlinear Krylov acceleration to radiative transfer problems
International Nuclear Information System (INIS)
Till, A. T.; Adams, M. L.; Morel, J. E.
2013-01-01
The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)
Dust acoustic shock wave at high dust density
International Nuclear Information System (INIS)
Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.
2003-01-01
Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak
Formation, structure, and stability of MHD intermediate shocks
International Nuclear Information System (INIS)
Wu, C.C.
1990-01-01
Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field
International Nuclear Information System (INIS)
Boyd, R.W.
1992-01-01
Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics
International Nuclear Information System (INIS)
Mundy, J.N.; Rothman, S.J.; Lam, N.Q.; Nowicki, L.J.; Hoff, H.A.
1978-01-01
The lack of understanding of self-diffusion in Group VI metals together with the wide scatter in the measured values of tungsten self-diffusion has prompted the present measurements to be made over a wide temperature range (1/2Tsub(m) to Tsub(m)). The diffusion coefficients have been measured in the temperature range 1430-2630 0 C. The present measurements show non-linear Arrhenius behavior but a reliable two-exponential fit of the data should await further measurements. (Auth.)
Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model
Ong, L.; Melosh, H. J.
2012-12-01
Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole
2008-01-01
. To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...
The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?
International Nuclear Information System (INIS)
Wu, C.C.
1988-01-01
Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models
Kasimov, Aslan R.
2013-03-08
We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Recent topics in non-linear partial differential equations 4
Mimura, M
1989-01-01
This fourth volume concerns the theory and applications of nonlinear PDEs in mathematical physics, reaction-diffusion theory, biomathematics, and in other applied sciences. Twelve papers present recent work in analysis, computational analysis of nonlinear PDEs and their applications.
Periodic and solitary wave solutions of cubic–quintic nonlinear ...
Indian Academy of Sciences (India)
Hence, most of the real nonlinear physical equations possess variable ... evolution of the system with time and second term represents the convective flux term. The ... Travelling wave solutions of nonlinear reaction-diffusion equations are.
Cosmic ray diffusion: report of the workshop in cosmic ray diffusion theory
International Nuclear Information System (INIS)
Birmingham, T.J.; Jones, F.C.
1975-02-01
A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory. (auth)
The acceleration of cosmic ray by shock waves
International Nuclear Information System (INIS)
Axford, W.I.; Leer, E.; Skadron, G.
1977-01-01
The acceleration of cosmic rays in flows involving shocks and other compressional waves is considered in terms of one-dimensionl, steady flows and the diffusion approximation. The results suggest that very substantial energy conversion can occur. (author)
Cosmic Rays Accelerated at Cosmological Shock Waves Renyi Ma1 ...
Indian Academy of Sciences (India)
Cosmic Rays Accelerated at Cosmological Shock Waves. Renyi Ma1,2,∗ ... ratio of CR to thermal energy in the ICM and WHIM based on numerical simulations and diffusive shock ... Hence, the nonthermal radiation of CRs may provide us a.
Model of anisotropic nonlinearity in self-defocusing photorefractive media.
Barsi, C; Fleischer, J W
2015-09-21
We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.
Thermoviscous Model Equations in Nonlinear Acoustics
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne
Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....
The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory
Parker, L. Neergaard; Zank, G. P.
2015-01-01
The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.
Collisionless electrostatic shocks
DEFF Research Database (Denmark)
Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla
1970-01-01
An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...
Kasimov, Aslan R; Faria, Luiz M; Rosales, Rodolfo R
2013-03-08
We propose the following model equation, u(t) + 1/2(u(2)-uu(s))x = f(x,u(s)) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, xorder partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
On some applications of diffusion processes for image processing
International Nuclear Information System (INIS)
Morfu, S.
2009-01-01
We propose a new algorithm inspired by the properties of diffusion processes for image filtering. We show that purely nonlinear diffusion processes ruled by Fisher equation allows contrast enhancement and noise filtering, but involves a blurry image. By contrast, anisotropic diffusion, described by Perona and Malik algorithm, allows noise filtering and preserves the edges. We show that combining the properties of anisotropic diffusion with those of nonlinear diffusion provides a better processing tool which enables noise filtering, contrast enhancement and edge preserving.
EXPERIMENTAL STUDY OF SHOCK WAVE DYNAMICS IN MAGNETIZED PLASMAS
International Nuclear Information System (INIS)
Podder, Nirmol K.
2009-01-01
In this four-year project (including one-year extension), the project director and his research team built a shock-wave-plasma apparatus to study shock wave dynamics in glow discharge plasmas in nitrogen and argon at medium pressure (1-20 Torr), carried out various plasma and shock diagnostics and measurements that lead to increased understanding of the shock wave acceleration phenomena in plasmas. The measurements clearly show that in the steady-state dc glow discharge plasma, at fixed gas pressure the shock wave velocity increases, its amplitude decreases, and the shock wave disperses non-linearly as a function of the plasma current. In the pulsed discharge plasma, at fixed gas pressure the shock wave dispersion width and velocity increase as a function of the delay between the switch-on of the plasma and shock-launch. In the afterglow plasma, at fixed gas pressure the shock wave dispersion width and velocity decrease as a function of the delay between the plasma switch-off and shock-launch. These changes are found to be opposite and reversing towards the room temperature value which is the initial condition for plasma ignition case. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Peppin, Stephen S. L.
2009-01-01
Diffusion and permeation are discussed within the context of irreversible thermodynamics. A new expression for the generalized Stokes-Einstein equation is obtained which links the permeability to the diffusivity of a two-component solution and contains the poroelastic Biot-Willis coefficient. The theory is illustrated by predicting the concentration and pressure profiles during the filtration of a protein solution. At low concentrations the proteins diffuse independently while at higher concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements. © 2009 Walter de Gruyter, Berlin, New York.
Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús
2018-01-01
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...
A pictorial review of hypovolaemic shock in adults.
LENUS (Irish Health Repository)
Tarrant, A M
2012-02-03
Hypovolaemic shock is an infrequently encountered entity found on CT of victims of severe trauma. Early abdominal and pelvic CT can show diffuse abnormalities owing to hypovolaemia that may alert radiologists to the presence of hypovolaemic shock. In this pictorial review, we present the imaging findings of hypovolaemic shock, as seen on CT of the abdomen. A spectrum of vascular and visceral CT signs is described. Vascular signs include diminished inferior vena cava diameter, diminished aortic diameter and abnormal vascular enhancement. Hollow visceral abnormalities include diffuse increased mucosal enhancement of both the small and large bowel, diffuse thickening of the small bowel wall, and small bowel dilatation. Solid visceral abnormalities include both decreased and increased end organ enhancement. This report should increase radiologists\\' awareness of the CT manifestations of hypovolaemic shock.
International Nuclear Information System (INIS)
Bykov, Andrei M.; Osipov, Sergei M.; Uvarov, Yury A.; Ellison, Donald C.; Pavlov, George G.
2011-01-01
High-resolution Chandra observations of Tycho's supernova remnant (SNR) have revealed several sets of quasi-steady, high-emissivity, nearly parallel X-ray stripes in some localized regions of the SNR. These stripes are most likely the result of cosmic-ray (CR) generated magnetic turbulence at the SNR blast wave. However, for the amazingly regular pattern of these stripes to appear, simultaneous action of a number of shock-plasma phenomena is required, which is not predicted by most models of magnetic field amplification. A consistent explanation of these stripes yields information on the complex nonlinear plasma processes connecting efficient CR acceleration and magnetic field fluctuations in strong collisionless shocks. The nonlinear diffusive shock acceleration (NL-DSA) model described here, which includes magnetic field amplification from a CR-current-driven instability, does predict stripes consistent with the synchrotron observations of Tycho's SNR. We argue that the local ambient mean magnetic field geometry determines the orientation of the stripes and therefore it can be reconstructed with the high-resolution X-ray imaging. The estimated maximum energy of the CR protons responsible for the stripes is ∼10 15 eV. Furthermore, the model predicts that a specific X-ray polarization pattern, with a polarized fraction ∼50%, accompanies the stripes, which can be tested with future X-ray polarimeter missions.
International Nuclear Information System (INIS)
Abraham-shrauner, B.
1975-01-01
The development of solar wind shock models with tensor plasma pressure and the comparison of some of the shock models with the satellite data from Pioneer 6 through Pioneer 9 are reported. Theoretically, difficulties were found in non-turbulent fluid shock models for tensor pressure plasmas. For microscopic shock theories nonlinear growth caused by plasma instabilities was frequently not clearly demonstrated to lead to the formation of a shock. As a result no clear choice for a shock model for the bow shock or interplanetary tensor pressure shocks emerged
Cascaded nonlinearities for ultrafast nonlinear optical science and applications
DEFF Research Database (Denmark)
Bache, Morten
the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...
Application of holographic interferometric studies of underwater shock-wave focusing to medicine
Takayama, Kazuyoshi; Nagoya, H.; Obara, Tetsuro; Kuwahara, M.
1993-01-01
Holographic interferometric flow visualization was successfully applied to underwater shock wave focusing and its application to extracorporeal shock wave lithotripsy (ESWL). Real time diffuse holograms revealed the shock wave focusing process in an ellipsoidal reflector made from PMMA and double exposure holographic interferometry also clarified quantitatively the shock focusing process. Disintegration of urinary tract stones and gallbladder stones was observed by high speed photogrammetry. Tissue damage associated with the ESWL treatment is discussed in some detail.
Saturation at Low X and Nonlinear Evolution
International Nuclear Information System (INIS)
Stasto, A.M.
2002-01-01
In this talk the results of the analytical and numerical analysis of the nonlinear Balitsky-Kovchegov equation are presented. The characteristic BFKL diffusion into infrared regime is suppressed by the generation of the saturation scale Q s . We identify the scaling and linear regimes for the solution. We also study the impact of subleading corrections onto the nonlinear evolution. (author)
Diffusion Influenced Adsorption Kinetics.
Miura, Toshiaki; Seki, Kazuhiko
2015-08-27
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
International Nuclear Information System (INIS)
Silva, T.L. da.
1987-01-01
Is this thesis, a numerical method for the solution of the linear diffusion equation for a plasma containing two types of ions, with the possibility of charge exchange, has been developed. It has been shown that the decay time of the electron and ion densities is much smaller than that in a plasma containing only a single type of ion. A non-linear diffusion equation, which includes the effects of an external electric field varying linearly in time, to describe a slightly ionized plasma has also been developed. It has been verified that the decay of the electron density in the presence of such an electric field is very slow. (author)
Miniature shock tube for laser driven shocks.
Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel
2010-02-01
We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."
Are Credit Shocks Supply or Demand Shocks?
Bijapur, Mohan
2013-01-01
This paper provides new insights into the relationship between the supply of credit and the macroeconomy. We present evidence that credit shocks constitute shocks to aggregate supply in that they have a permanent effect on output and cause inflation to rise in the short term. Our results also suggest that the effects on aggregate supply have grown stronger in recent decades.
International Nuclear Information System (INIS)
Kojima, Naoki; Matsushita, Kazuo.
1992-01-01
Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)
Melting under shock compression
International Nuclear Information System (INIS)
Bennett, B.I.
1980-10-01
A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.
2014-07-01
Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.
Relativistic Shock Acceleration
International Nuclear Information System (INIS)
Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.
1999-01-01
In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)
On ion injection at quasiparallel shocks
International Nuclear Information System (INIS)
Scholer, M.; Kucharek, H.; Kato, C.
2002-01-01
A large number of numerical experiments has been performed in order to study the interaction of interstellar pickup protons and helium ions with quasiparallel collisionless shocks. The shocks are modeled by a one-dimensional hybrid simulation method which treats the ions as macroparticles and the electrons as a massless fluid. Solar wind alpha particles and pickup protons are included self-consistently. In addition, the particle splitting method is used for the solar wind ions so that the distribution function can be followed over more than 10 orders of magnitude. A large part of the pickup ion distribution is reflected; the reflection efficiency is very high, and can reach in cases where the pickup ion density is low as much as 50%-60%. The reflection efficiency is almost independent of magnetic field-shock normal angle. This indicates that magnetic mirroring is unimportant and does not lead to larger reflection efficiencies. The reflection efficiency of pickup protons rapidly decreases when the pickup ion density exceeds a few percent of the solar wind density. An addition of 25% pickup protons decreases the reflection coefficient for these ions to ∼10%. This represents the fact that a quasiparallel shock cannot be considered as being uncoupled from the upstream region: at high additions of pickup ions the shock structure is changed in such a way as to reflect less pickup ions. The intensity of diffuse ions upstream of a quasiparallel shock does not depend on the temperature of the core distribution. Within the framework of the present model even solar wind distributions with a hard power law tail do not produce higher intensities of diffuse ions. It is argued that this can be understood by the fact that the intrinsic self-consistency between the processes in the upstream region and at the shock transition determines the injection and reflection properties of the core solar wind distribution
National Research Council Canada - National Science Library
Drazin, P. G
1992-01-01
This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...
Gasinski, Leszek
2005-01-01
Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.
Nonlinear differential equations
Energy Technology Data Exchange (ETDEWEB)
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.
Nonlinear differential equations
International Nuclear Information System (INIS)
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics
Nonlinear calculations for BL Her stars
International Nuclear Information System (INIS)
Hodson, S.W.; Cox, A.N.; King, D.S.
1980-01-01
From the linear and nonlinear calculations it is evident that bumps occur in the velocity and light curves when there is a near resonance between π 0 and π 2 . In addition, these resonance bumps do not seem to depend on the limit cycle amplitude, and cannot be attributed to the surface shock encountered when models are driven to excessively high amplitudes
Stability of Gradient Field Corrections for Quantitative Diffusion MRI
Rogers, Baxter P.; Blaber, Justin; Welch, E. Brian; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.
2017-01-01
In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fie...
International Nuclear Information System (INIS)
Krasnoselskikh, V.V.; Lembege, B.; Savoini, P.; Lobzin, V.V.
2002-01-01
Whistler waves are an intrinsic feature of the oblique quasiperpendicular collisionless shock waves. For supercritical shock waves, the ramp region, where an abrupt increase of the magnetic field occurs, can be treated as a nonlinear whistler wave of large amplitude. In addition, oblique shock waves can possess a linear whistler precursor. There exist two critical Mach numbers related to the whistler components of the shock wave, the first is known as a whistler critical Mach number and the second can be referred to as a nonlinear whistler critical Mach number. When the whistler critical Much number is exceeded, a stationary linear wave train cannot stand ahead of the ramp. Above the nonlinear whistler critical Mach number, the stationary nonlinear wave train cannot exist anymore within the shock front. This happens when the nonlinear wave steepening cannot be balanced by the effects of the dispersion and dissipation. In this case nonlinear wave train becomes unstable with respect to overturning. In the present paper it is shown that the nonlinear whistler critical Mach number corresponds to the transition between stationary and nonstationary dynamical behavior of the shock wave. The results of the computer simulations making use of the 1D full particle electromagnetic code demonstrate that the transition to the nonstationarity of the shock front structure is always accompanied by the disappearance of the whistler wave train within the shock front. Using the two-fluid MHD equations, the structure of nonlinear whistler waves in plasmas with finite beta is investigated and the nonlinear whistler critical Mach number is determined. It is suggested a new more general proof of the criteria for small amplitude linear precursor or wake wave trains to exist
DEFF Research Database (Denmark)
Mosekilde, Erik
Through a significant number of detailed and realistic examples this book illustrates how the insights gained over the past couple of decades in the fields of nonlinear dynamics and chaos theory can be applied in practice. Aomng the topics considered are microbiological reaction systems, ecological...... food-web systems, nephron pressure and flow regulation, pulsatile secretion of hormones, thermostatically controlled radiator systems, post-stall maneuvering of aircrafts, transfer electron devices for microwave generation, economic long waves, human decision making behavior, and pattern formation...... in chemical reaction-diffusion systems....
International Nuclear Information System (INIS)
Lenain, Roland
2015-01-01
This thesis is devoted to the implementation of a domain decomposition method applied to the neutron transport equation. The objective of this work is to access high-fidelity deterministic solutions to properly handle heterogeneities located in nuclear reactor cores, for problems' size ranging from color-sets of assemblies to large reactor cores configurations in 2D and 3D. The innovative algorithm developed during the thesis intends to optimize the use of parallelism and memory. The approach also aims to minimize the influence of the parallel implementation on the performances. These goals match the needs of APOLLO3 project, developed at CEA and supported by EDF and AREVA, which must be a portable code (no optimization on a specific architecture) in order to achieve best estimate modeling with resources ranging from personal computer to compute cluster available for engineers analyses. The proposed algorithm is a Parallel Multigroup-Block Jacobi one. Each sub-domain is considered as a multi-group fixed-source problem with volume-sources (fission) and surface-sources (interface flux between the sub-domains). The multi-group problem is solved in each sub-domain and a single communication of the interface flux is required at each power iteration. The spectral radius of the resolution algorithm is made similar to the one of a classical resolution algorithm with a nonlinear diffusion acceleration method: the well-known Coarse Mesh Finite Difference. In this way an ideal scalability is achievable when the calculation is parallelized. The memory organization, taking advantage of shared memory parallelism, optimizes the resources by avoiding redundant copies of the data shared between the sub-domains. Distributed memory architectures are made available by a hybrid parallel method that combines both paradigms of shared memory parallelism and distributed memory parallelism. For large problems, these architectures provide a greater number of processors and the amount of
Nonrelativistic grey Sn-transport radiative-shock solutions
International Nuclear Information System (INIS)
Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.
2017-01-01
We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.
Shock wave interaction with pulsed glow discharge and afterglow plasmas
International Nuclear Information System (INIS)
Podder, N.K.; LoCascio, A.C.
2009-01-01
Acoustic shock waves are launched by the spark-discharge of a high voltage capacitor in pulsed glow discharge and afterglow plasmas. The glow discharge section of the shock tube is switched on for a period of less than one second at a time, during which a shock wave is launched starting with a large delay between the plasma switch-on and the shock-launch. In the subsequent runs this delay is decremented in equal time intervals up to the plasma switch-on time. A photo acoustic deflection method sensitive to the density gradient of the shock wave is used to study the propagating shock structure and velocity in the igniting plasma. A similar set of measurements are also performed at the plasma switch-off, in which the delay time is incremented in equal time intervals from the plasma switch-off time until the afterglow plasma fully neutralizes itself into the room-temperature gas. Thus, complete time histories of the shock wave propagation in the igniting plasma, as well as in the afterglow plasma, are produced. In the igniting plasma, the changes in the shock-front velocity and dispersion are found to be a strong non-linear function of delay until a saturation point is reached. On the other hand, in the afterglow plasma the trend has been opposite and reversing towards the room temperature values. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas
Discontinuity and complexity in nonlinear physical systems
Baleanu, Dumitru; Luo, Albert
2014-01-01
This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....
System Shock: The Archetype of Operational Shock
2017-05-25
the battle space. They can also facilitate a much greater understanding of the variables involved in each party’s decision - making process. However...system shock nests within current US Army Unified Land Operations doctrine. In order to test the utility of system shock theory to Gray Zone...23 Neil E. Harrison, “Thinking about the World We Make ” in Chaos Theory in the Social Sciences: Foundations and Applications
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...
Shock circle model for ejector performance evaluation
International Nuclear Information System (INIS)
Zhu, Yinhai; Cai, Wenjian; Wen, Changyun; Li, Yanzhong
2007-01-01
In this paper, a novel shock circle model for the prediction of ejector performance at the critical mode operation is proposed. By introducing the 'shock circle' at the entrance of the constant area chamber, a 2D exponential expression for velocity distribution is adopted to approximate the viscosity flow near the ejector inner wall. The advantage of the 'shock circle' analysis is that the calculation of ejector performance is independent of the flows in the constant area chamber and diffuser. Consequently, the calculation is even simpler than many 1D modeling methods and can predict the performance of critical mode operation ejectors much more accurately. The effectiveness of the method is validated by two experimental results reported earlier. The proposed modeling method using two coefficients is shown to produce entrainment ratio, efficiency and coefficient of performance (COP) accurately and much closer to experimental results than those of 1D analysis methods
Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects
International Nuclear Information System (INIS)
Anand, R K
2013-01-01
The author (Anand 2012 Astrophys. Space Sci. 342 377–88) recently obtained jump relations across a shock front in non-ideal gas flow taking into consideration the equation of state for a non-ideal gas as given by Landau and Lifshitz. In this paper an analytical solution for one-dimensional adiabatic flow behind weak converging shock waves propagating in a non-ideal gas is obtained by using Whitham's (1974 Linear and Nonlinear Waves (New York: Wiley)) geometrical shock dynamics approach. The effects of an increase in (i) the propagation distance from the centre of convergence, (ii) the non-idealness parameter and (iii) the adiabatic index of the gas, on the shock velocity, pressure, density, particle velocity, adiabatic compressibility and the change in entropy across the shock front, are analyzed. The results provided a clear picture of whether and how the non-idealness parameter and the adiabatic index affect the flow field behind the imploding shock front. (paper)
Shock compression parameters for a boron-loaded, silicone-rubber composite
International Nuclear Information System (INIS)
Gust, W.H.; Van Thiel, M.; Gathers, G.R.
1975-01-01
Hugoniot parameters under uniaxial-shock-wave-loading from 0.03 to 0.6 Mbar are presented for a composite with 70 wt percent boron loaded in a silicone-rubber matrix. The plot of shock velocity vs particle velocity was found to be nonlinear. Equations that describe fits of the data are presented. (U.S.)
Shock drift acceleration in the presence of waves
Decker, R. B.; Vlahos, L.
1985-01-01
Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.
Cosmic ray diffusion in a violent interstellar medium
International Nuclear Information System (INIS)
Bykov, A.M.; Toptygin, I.N.
1985-01-01
A variety of the avaiable observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM
Development of non-linear TWB parts
Energy Technology Data Exchange (ETDEWEB)
Lee, J.; Yoon, C.S.; Lim, J.D. [Hyundai Motor Company and Kia Motors Corp. (Korea). Advanced Technology Center; Park, H.C. [Hyundai Hysco (Korea). Technical Research Lab.
2005-07-01
New manufacturing methods have applied for automotive parts to reduce total weight of car, resulting in improvement of fuel efficiency. TWB technique is applied to auto body parts, especially door inner, side inner and outer panel, and center floor panel to accomplish this goal. We applied non-linear (circular welded) TWB to shock absorber housing (to reduce total weight of shock absorber housing assembly). Welding line and shape of blank were determined by FEM analysis. High formability steel sheet and 440MPa grade high strength steel sheet were laser welded and press formed to final shock absorber housing (S/ABS HSG) panel and assembled with other sub parts. As a result, more than 10% of total weight of shock absorber housing assembly could be reduced compared with the mass of same part manufactured by conventional method. Also circular welding technique made it possible to design optimum welding line of TWB part. This paper is about result of FEM analysis and development procedure of non-linear TWB part (shock absorber housing assembly). (orig.)
Hydrogen-Helium shock Radiation tests for Saturn Entry Probes
Cruden, Brett A.
2016-01-01
This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.
International Nuclear Information System (INIS)
Thatcher, G.; Davidson, D. F.
1984-01-01
A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods
DEFF Research Database (Denmark)
Willerslev, Rane; Suhr, Christian
2014-01-01
The modern medium of film has long been hailed for its capacity for producing shocks of an entertaining, thought-provoking, or even politically emancipative nature. But what is a shock, how and when does it occur, how long does it last, and are there particular techniques for producing cinematic...
Papaioannou, Kostadis J.
2016-01-01
This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation
International Nuclear Information System (INIS)
Johnsen, Eric; Larsson, Johan; Bhagatwala, Ankit V.; Cabot, William H.; Moin, Parviz; Olson, Britton J.; Rawat, Pradeep S.; Shankar, Santhosh K.; Sjoegreen, Bjoern; Yee, H.C.; Zhong Xiaolin; Lele, Sanjiva K.
2010-01-01
Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.
International Nuclear Information System (INIS)
Michaud, Georges; Montmerle, Thierry
1977-01-01
This paper is dealing with the origin of the elements in the universe. The scheme of nucleosynthesis is kept to explain the stellar generation of helium, carbon, etc... from the initial hydrogen; but a nonlinear theory is then elaborated to account for the anomalous abundances which were observed. The chemical elements would diffuse throughout the outer layers of a star under the action of the opposite forces of gravitation and radiation. This theory, with completing the nucleosynthesis, would contribute to give a consistent scheme of the elemental origin and abundances [fr
Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities
Indian Academy of Sciences (India)
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...
Lee, Shiu-Hang; Maeda, Keiichi; Kawanaka, Norita
2018-05-01
Neutron star mergers (NSMs) eject energetic subrelativistic dynamical ejecta into circumbinary media. Analogous to supernovae and supernova remnants, the NSM dynamical ejecta are expected to produce nonthermal emission by electrons accelerated at a shock wave. In this paper, we present the expected radio and X-ray signals by this mechanism, taking into account nonlinear diffusive shock acceleration (DSA) and magnetic field amplification. We suggest that the NSM is unique as a DSA site, where the seed relativistic electrons are abundantly provided by the decays of r-process elements. The signal is predicted to peak at a few 100–1000 days after the merger, determined by the balance between the decrease of the number of seed electrons and the increase of the dissipated kinetic energy, due to the shock expansion. While the resulting flux can ideally reach the maximum flux expected from near-equipartition, the available kinetic energy dissipation rate of the NSM ejecta limits the detectability of such a signal. It is likely that the radio and X-ray emission are overwhelmed by other mechanisms (e.g., an off-axis jet) for an observer placed in a jet direction (i.e., for GW170817). However, for an off-axis observer, to be discovered once a number of NSMs are identified, the dynamical ejecta component is predicted to dominate the nonthermal emission. While the detection of this signal is challenging even with near-future facilities, this potentially provides a robust probe of the creation of r-process elements in NSMs.
Fault Detection for Automotive Shock Absorber
Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis
2015-11-01
Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.
Shock waves in binary oxides memristors
Tesler, Federico; Tang, Shao; Dobrosavljević, Vladimir; Rozenberg, Marcelo
2017-09-01
Progress of silicon based technology is nearing its physical limit, as minimum feature size of components is reaching a mere 5 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next generation electronics. Significant progress has already been made in the past decade and devices are beginning to hit the market; however, it has been mainly the result of empirical trial and error. Hence, gaining theoretical insight is of essence. In the present work we report a new connection between the resistive switching and shock wave formation, a classic topic of non-linear dynamics. We argue that the profile of oxygen ions that migrate during the commutation in insulating binary oxides may form a shock wave, which propagates through a poorly conductive region of the device. We validate the scenario by means of model simulations.
International Nuclear Information System (INIS)
Sagdeev, R.Z.; Kennel, C.F.
1991-01-01
Collisionless shocks cannot occur naturally on the earth, because nearly all matter here consists of electrically neutral atoms and molecules. In space, however, high temperatures and ultraviolet radiation from hot stars decompose atoms into their constituent nuclei and electrons, producing a soup of electrically charged particles known as a plasma. Plasma physicists proposed that the collective electrical and magnetic properties of plasmas could produce interactions that take the place of collisions and permit shocks to form. In 1964 the theoretical work found its first experimental confirmation. Norman F. Ness and his colleagues at the Goddard Space Flight Center, using data collected from the iMP-1 spacecraft, detected clear signs that a collisionless shock exists where the solar wind encounters the earth's magnetic field. More recent research has demonstrated that collisionless shocks appear in a dazzling array of astronomical settings. For example, shocks have been found in the solar wind upstream (sunward) of all the planet and comets that have been visited by spacecraft. Violent flares on the sun generate shocks that propagate to the far reaches of the solar system; tremendous galactic outbursts create disruptions in the intergalactic medium that are trillions of times larger. In addition, many astrophysicists think that shocks from supernova explosions in our galaxy accelerate cosmic rays, a class of extraordinarily energetic elementary particles and atomic nuclei that rain down on the earth from all directions
Structure of fast shocks in the presence of heat conduction
International Nuclear Information System (INIS)
Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.
2007-01-01
There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity V d in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K 0 , the ratio of upstream plasma pressure to magnetic pressure β 1 , Alfven Mach number M A1 , and the angle θ 1 between shock normal and magnetic field. It is found that as the upstream shock parameters K 0 , β 1 , and M A1 increase or θ 1 decreases, the width of foreshock L d increases. The present results can be applied to fast shocks in the solar corona, solar wind, and magnetosphere, in which the heat conduction effects are
Advanced Computational Modeling Approaches for Shock Response Prediction
Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee
2015-01-01
Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.
Pediatric Toxic Shock Syndrome
Directory of Open Access Journals (Sweden)
Jennifer Yee
2017-09-01
Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the diagnosis and management of a pediatric patient with toxic shock syndrome. The case is also appropriate for teaching of medical students and advanced practice providers, as well as a review of the principles of crisis resource management, teamwork, and communication. Introduction: Toxic shock syndrome is a low-frequency, high-acuity scenario requiring timely identification and aggressive management. If patients suffering from this condition are managed incorrectly, they may progress into multi-organ dysfunction and potentially death. Toxic shock syndrome has been associated with Streptococcus and Staphylococcus aureus (Staph. Approximately half of Staph cases are associated with menstruation, which was first described in the 1970s-1980s and was associated with the use of absorbent tampons.1 Group A Streptococcus may cause complications such as necrotizing fasciitis and gangrenous myositis.2 Pediatric patients may present critically ill from toxic shock syndrome. Providers need to perform a thorough history and physical exam to discern the source of infection. Management requires aggressive care with antibiotics and IV fluids. Objectives: By the end of this simulation session, the learner will be able to: 1 Recognize toxic shock syndrome. 2 Review the importance of a thorough physical exam. 3 Discuss management of toxic shock syndrome, including supportive care and the difference in antibiotic choices for streptococcal and staphylococcal toxic shock syndrome. 4 Appropriately disposition a patient suffering from toxic shock syndrome. 5 Communicate effectively with team members and nursing staff during a resuscitation of a critically ill patient. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on toxic shock syndrome.
A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems
Directory of Open Access Journals (Sweden)
Ran Zhang
2018-05-01
Full Text Available In this paper, the current technologies of the regenerative shock absorber systems have been categorized and evaluated. Three drive modes of the regenerative shock absorber systems, namely the direct drive mode, the indirect drive mode and hybrid drive mode are reviewed for their readiness to be implemented. The damping performances of the three different modes are listed and compared. Electrical circuit and control algorithms have also been evaluated to maximize the power output and to deliver the premium ride comfort and handling performance. Different types of parameterized road excitations have been applied to vehicle suspension systems to investigate the performance of the regenerative shock absorbers. The potential of incorporating nonlinearity into the regenerative shock absorber design analysis is discussed. The research gaps for the comparison of the different drive modes and the nonlinearity analysis of the regenerative shock absorbers are identified and, the corresponding research questions have been proposed for future work.
International Nuclear Information System (INIS)
Vrillon, Bernard.
1973-01-01
The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr
International Nuclear Information System (INIS)
Elitzur, M.
1983-01-01
It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO + relative abundance, in agreement with previous results by Iglesias and Silk. The shock enhancement of HCO + detected in the supernova remnant IC 443 by Dickenson et al. is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model
SHOCK-JR: a computer program to analyze impact response of shipping container
International Nuclear Information System (INIS)
Ikushima, Takeshi; Nakazato, Chikara; Shimoda, Osamu; Uchino, Mamoru.
1983-02-01
The report is provided for using a computer program, SHOCK-JR, which is used to analyze the impact response of shipping containers. Descriptions are the mathematical model, method of analysis, structures of the program and the input and output variables. The program solves the equations of motion for a one-dimensional, lumped mass and nonlinear spring model. The solution procedure uses Runge-Kutta-Gill and Newmark-β methods. SHOCK-JR is a revised version of SHOCK, which was developed by ORNL. In SHOCK-JR, SI dimension is used and graphical output is available. (author)
The shock formation distance in a bounded sound beam of finite amplitude.
Tao, Chao; Ma, Jian; Zhu, Zhemin; Du, Gonghuan; Ping, Zihong
2003-07-01
This paper investigates the shock formation distance in a bounded sound beam of finite amplitude by solving the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation using frequency-domain numerical method. Simulation results reveal that, besides the nonlinearity and absorption, the diffraction is another important factor that affects the shock formation of a bounded sound beam. More detailed discussions of the shock formation in a bounded sound beam, such as the waveform of sound pressure and the spatial distribution of shock formation, are also presented and compared for different parameters.
Curved Radio Spectra of Weak Cluster Shocks
Kang, Hyesung; Ryu, Dongsu
2015-08-01
In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.
International Nuclear Information System (INIS)
Carlen, E.A.
1984-01-01
In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions. These diffusions are formally given by stochastic differential equations with extremely singular coefficients. Using PDE methods, we prove the existence of solutions. This reult provides a rigorous basis for stochastic mechanics. (orig.)
Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.
SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.
Scaling of chaos in strongly nonlinear lattices.
Mulansky, Mario
2014-06-01
Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.
Particle injection and cosmic ray acceleration at collisionless parallel shocks
International Nuclear Information System (INIS)
Quest, K.B.
1987-01-01
The structure of collisionless parallel shocks is studied using one-dimensional hybrid simulations, with emphasis on particle injection into the first-order Fermi acceleration process. It is argued that for sufficiently high Mach number shocks, and in the absence of wave turbulence, the fluid firehose marginal stability condition will be exceeded at the interface between the upstream, unshocked, plasma and the heated plasma downstream. As a consequence, nonlinear, low-frequency, electromagnetic waves are generated and act to slow the plasma and provide dissipation for the shock. It is shown that large amplitude waves at the shock ramp scatter a small fraction of the upstream ions back into the upstream medium. These ions, in turn, resonantly generate the electromagnetic waves that are swept back into the shock. As these waves propagate through the shock they are compressed and amplified, allowing them to non-resonantly scatter the bulk of the plasma. Moreover, the compressed waves back-scatter a small fraction of the upstream ions, maintaining the shock structure in a quasi-steady state. The back-scattered ions are accelerated during the wave generation process to 2 to 4 times the ram energy and provide a likely seed population for cosmic rays. 49 refs., 7 figs
Morgan, Lewis B.
1974-01-01
In this article the author looks at some of the searing prophecies made by Alvin Toffler in his book Future Shock and relates them to the world of the professional counselor and the clientele the counselor attempts to serve. (Author)
Curtis, Marah A; Corman, Hope; Noonan, Kelly; Reichman, Nancy E
2013-12-01
We exploited an exogenous health shock-namely, the birth of a child with a severe health condition-to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide.
Nonlinear lattice waves in heterogeneous media
International Nuclear Information System (INIS)
Laptyeva, T V; Ivanchenko, M V; Flach, S
2014-01-01
We discuss recent advances in the understanding of the dynamics of nonlinear lattice waves in heterogeneous media, which enforce complete wave localization in the linear wave equation limit, especially Anderson localization for random potentials, and Aubry–André localization for quasiperiodic potentials. Additional nonlinear terms in the wave equations can either preserve the phase-coherent localization of waves, or destroy it through nonintegrability and deterministic chaos. Spreading wave packets are observed to show universal features in their dynamics which are related to properties of nonlinear diffusion equations. (topical review)
Models of diffuse solar radiation
Energy Technology Data Exchange (ETDEWEB)
Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)
2008-04-15
For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)
Jonas D. M. Fisher
2002-01-01
This paper uses the neoclassical growth model to identify the effects of technological change on the US business cycle. In the model there are two sources of technological change: neutral, which effects the production of all goods homogeneously, and investment-specific. Investment-specific shocks are the unique source of the secular trend in the real price of investment goods, while shocks to both kinds of technology are the only factors which affect labor productivity in the long run. Consis...
Spectral theory and nonlinear functional analysis
Lopez-Gomez, Julian
2001-01-01
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.
Energy sector pricing: On the role of neglected nonlinearity
International Nuclear Information System (INIS)
Kyrtsou, Catherine; Malliaris, Anastasios G.; Serletis, Apostolos
2009-01-01
Modern economies have been subjected to a number of shocks during the past several years such as the burst of the Internet bubble, terrorist attacks, corporate scandals, the war in Iraq, the uncertainty about energy prices, and the recent subprime mortgage crisis. In particular, during the last few years, the energy shock has caused concerns for potential stagflation for both the United States and numerous other countries. We perform numerous univariate tests for non-linearity and chaotic structure using price data from the energy sector to resolve whether the sector's fundamentals or exogenous shocks drive these prices.
Energy sector pricing: On the role of neglected nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Kyrtsou, Catherine [University of Macedonia (Greece); Malliaris, Anastasios G. [Loyola University Chicago (United States); Serletis, Apostolos [University of Calgary (Canada)], E-mail: Serletis@ucalgary.ca
2009-05-15
Modern economies have been subjected to a number of shocks during the past several years such as the burst of the Internet bubble, terrorist attacks, corporate scandals, the war in Iraq, the uncertainty about energy prices, and the recent subprime mortgage crisis. In particular, during the last few years, the energy shock has caused concerns for potential stagflation for both the United States and numerous other countries. We perform numerous univariate tests for non-linearity and chaotic structure using price data from the energy sector to resolve whether the sector's fundamentals or exogenous shocks drive these prices.
Energy sector pricing. On the role of neglected nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Kyrtsou, Catherine [University of Macedonia (Greece); Malliaris, Anastasios G. [Loyola University Chicago (United States); Serletis, Apostolos [University of Calgary (Canada)
2009-05-15
Modern economies have been subjected to a number of shocks during the past several years such as the burst of the Internet bubble, terrorist attacks, corporate scandals, the war in Iraq, the uncertainty about energy prices, and the recent subprime mortgage crisis. In particular, during the last few years, the energy shock has caused concerns for potential stagflation for both the United States and numerous other countries. We perform numerous univariate tests for non-linearity and chaotic structure using price data from the energy sector to resolve whether the sector's fundamentals or exogenous shocks drive these prices. (author)
The Heliospheric Termination Shock
Jokipii, J. R.
2013-06-01
The heliospheric termination shock is a vast, spheroidal shock wave marking the transition from the supersonic solar wind to the slower flow in the heliosheath, in response to the pressure of the interstellar medium. It is one of the most-important boundaries in the outer heliosphere. It affects energetic particles strongly and for this reason is a significant factor in the effects of the Sun on Galactic cosmic rays. This paper summarizes the general properties and overall large-scale structure and motions of the termination shock. Observations over the past several years, both in situ and remote, have dramatically revised our understanding of the shock. The consensus now is that the shock is quite blunt, is with the front, blunt side canted at an angle to the flow direction of the local interstellar plasma relative to the Sun, and is dynamical and turbulent. Much of this new understanding has come from remote observations of energetic charged particles interacting with the shock, radio waves and radiation backscattered from interstellar neutral atoms. The observations and the implications are discussed.
Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali
2016-09-01
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.
Energy Technology Data Exchange (ETDEWEB)
Masood, W. [COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan); National Centre for Physics, Shahdara Valley Road, Islamabad (Pakistan); Zahoor, Sara [COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan); Gul-e-Ali [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, Ali, E-mail: aliahmad79@hotmail.com [National Centre for Physics, Shahdara Valley Road, Islamabad (Pakistan)
2016-09-15
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.
Particle Acceleration and Radiative Losses at Relativistic Shocks
Dempsey, P.; Duffy, P.
A semi-analytic approach to the relativistic transport equation with isotropic diffusion and consistent radiative losses is presented. It is based on the eigenvalue method first introduced in Kirk & Schneider [5]and Heavens & Drury [3]. We demonstrate the pitch-angle dependence of the cut-off in relativistic shocks.
Fu, Y. B.; Ogden, R. W.
2001-05-01
This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
BOOK REVIEW: Nonlinear Magnetohydrodynamics
Shafranov, V.
1998-08-01
storms' on the earth, and the theory of rather dangerous disruptive instabilities in tokamaks. After a discussion of the Sweet-Parker model of the diffusive current sheet, two models of the ideally conducting plasma flow generating such a sheet are considered in detail: the Petchek slow shock model (1964) and the Syrovatskii current sheet solution (1971). The first, introduced with a hypothesis about the geometry of the current sheet, has been dominant for more than two decades (at least, as the author writes, in the western hemisphere). It has been superseded by (accepted, mainly, in the eastern hemisphere) Syrovatskii's model with an external potential flow, compressing the hyperbolic branches of the magnetic field lines about an X point. This model quite naturally results in the necessity of introducing an extended singular current sheet, which is quite consistent with the later Biskamp numerical simulation (1986). In Chapter 6 the results are presented of 2-D simulations of the formation of a current sheet with details of the edge structure and with repeated generation of plasmoids at the edge, caused by tearing instability. Results on the coalescence of two identical magnetic islands, on the development of a kink island at a tearing instability of a primarily cylindrical plasma and on the generation of plasmoids in a model of the geomagnetic tail are described. At the end of Chapter 6 the topology of a 3-D configuration with a magnetic zero is briefly discussed. Finally, in the last section a way of explaning the explosive development of the reconnection process, based on the hypothesis of the growth of turbulent resistivity at an excess of the threshold value of current density is presented. In Chapter 7 which covers MHD turbulence the classical spectral approach to the description of the turbulence of ideal non-dissipative systems is presented. The dynamically important invariants, which are quadratic in the magnetic and velocity fields, are introduced: the total
The acceleration of particles at propagating interplanetary shocks
Prinsloo, P. L.; Strauss, R. D. T.
2017-12-01
Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.
Percolation-enhanced nonlinear scattering from semicontinuous metal films
Breit, M.; von Plessen, G.; Feldmann, J.; Podolskiy, V. A.; Sarychev, A. K.; Shalaev, V. M.; Gresillon, S.; Rivoal, J. C.; Gadenne, P.
2001-03-01
Strongly enhanced second-harmonic generation (SHG), which is characterized by nearly isotropic distribution, is observed for gold-glass films near the percolation threshold. The diffuse-like SHG scattering, which can be thought of as nonlinear critical opalescence, is in sharp contrast with highly collimated linear reflection and transmission from these nanostructured semicontinuous metal films. Our observations, which can be explained by giant fluctuations of local nonlinear sources for SHG, verify recent predictions of percolation-enhanced nonlinear scattering.
Nonlinear Conservation Laws and Finite Volume Methods
Leveque, Randall J.
Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References
Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion
International Nuclear Information System (INIS)
Vallet, Alexandra
2014-01-01
. That significant pressure enhancement is explained by contribution of hot-electrons generated by non-linear laser/plasma interaction in the corona. The proposed analytical models allow to optimize the shock ignition scheme, including the influence of the implosion parameters. Analytical, numerical and experimental results are mutually consistent. (author) [fr
Hemorrhagic shock impairs myocardial cell volume regulation and membrane integrity in dogs
International Nuclear Information System (INIS)
Horton, J.W.
1987-01-01
An in vitro myocardial slice technique was used to quantitate alterations in cell volume regulation and membrane integrity after 2 h or hemorrhagic shock. After in vitro incubation in Krebs-Ringer-phosphate medium containing trace [ 14 C]inulin, values (ml H 2 O/g dry wt) for control nonshocked myocardial slices were 4.03 /plus minus/ 0.11 (SE) for total water, 2.16 /plus minus/ 0.07 for inulin impermeable space, and 1.76 /plus minus/ 0.15 for inulin diffusible space. Shocked myocardial slices showed impaired response to cold incubation. After 2 h of in vivo shock, total tissue water, inulin diffusible space, and inulin impermeable space increased significantly for subendocardium, whereas changes in subepicardium parameters were minimal. Shock-induced cellular swelling was accompanied by an increased total tissue sodium, but no change in tissue potassium. Calcium entry blockade in vivo significantly reduced subendocardial total tissue water as compared with shock-untreated dogs. In addition, calcium entry blockade reduced shock-induced increases in inulin diffusible space. In vitro myocardial slice studies confirm alterations in subendocardial membrane integrity after 2 h of in vivo hemorrhagic shock. Shock-induced abnormalities in myocardial cell volume regulation are reduced by calcium entry blockade in vivo
Boundary fluxes for nonlocal diffusion
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
The generalized Airy diffusion equation
Directory of Open Access Journals (Sweden)
Frank M. Cholewinski
2003-08-01
Full Text Available Solutions of a generalized Airy diffusion equation and an associated nonlinear partial differential equation are obtained. Trigonometric type functions are derived for a third order generalized radial Euler type operator. An associated complex variable theory and generalized Cauchy-Euler equations are obtained. Further, it is shown that the Airy expansions can be mapped onto the Bessel Calculus of Bochner, Cholewinski and Haimo.
Study of ODE limit problems for reaction-diffusion equations
Directory of Open Access Journals (Sweden)
Jacson Simsen
2018-01-01
Full Text Available In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in \\(L^{\\infty}(\\Omega\\ and the diffusion coefficients go to infinity.
[Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
1994-01-01
Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile
Physics of Collisionless Shocks Space Plasma Shock Waves
Balogh, André
2013-01-01
The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...
Corman, Hope; Noonan, Kelly; Reichman, Nancy E.
2014-01-01
We exploited an exogenous health shock—namely, the birth of a child with a severe health condition—to investigate the effect of a life shock on homelessness in large cities in the United States as well as the interactive effects of the shock with housing market characteristics. We considered a traditional measure of homelessness, two measures of housing instability thought to be precursors to homelessness, and a combined measure that approximates the broadened conceptualization of homelessness under the 2009 Homeless Emergency Assistance and Rapid Transition to Housing Act (2010). We found that the shock substantially increases the likelihood of family homelessness, particularly in cities with high housing costs. The findings are consistent with the economic theory of homelessness, which posits that homelessness results from a conjunction of adverse circumstances in which housing markets and individual characteristics collide. PMID:23868747
DEFF Research Database (Denmark)
Datta Gupta, Nabanita; Larsen, Mona
We investigate the effect of an acute health shock on retirement among elderly male workers in Denmark, 1991-1999, and in particular whether various welfare state programs and institutions impinge on the retirement effect. The results show that an acute health event increases the retirement chances...... significant. For the most part, the retirement effect following a health shock seems to be immune to the availability of a multitude of government programs for older workers in Denmark....... benefits in Denmark nor by the promotion of corporate social responsibility initiatives since the mid-1990s. In the late 1990s, however, the retirement rate following a health shock is reduced to 3% with the introduction of the subsidized employment program (fleksjob) but this effect is not strongly...
The Nonlinear Dynamical and Shock Mitigation Properties of Tapered Chains
2008-06-01
How fast does a spider shrivel up when placed in liquid NO2? Fast. And in regard to the infamous all-you-can- eat student farewell party, no one...no...one I say can eat 14 slices of meat and cheese lover’s pan pizza for lunch and keep it down. Thanks are extended to Pepsi for inventing Mountain Dew...1982), 977–981. 45. Hertz, H. ’́ Uber die beŕ’urung fester elastischer ḱ’orper (on the behavior of solid elastic bodies). J. Reine Angew. Math 92 (1882
Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities
van Rooij, A.C.L.M.
2017-01-01
Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities
DEFF Research Database (Denmark)
van Hooren, Franca; Kaasch, Alexandra; Starke, Peter
2014-01-01
in Australia, Belgium, the Netherlands and Sweden over the course of four global economic shocks, we ask whether the notion of critical junctures is useful in understanding the nature of change triggered by crisis. The main empirical finding is that fundamental change in the aftermath of an exogenous shock...... is the exception rather than the rule. Instead, incremental ‘crisis routines’ based on existing policy instruments are overwhelmingly used to deal with economic hardship. We discuss these findings in the light of the psychological ‘threat-rigidity’ effect and reflect on their consequences for theories...
Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study
Szabo, Adam; Koval, A
2008-01-01
The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.
Laboratory Observations of Self-Excited Dust Acoustic Shocks
Heinrich, J.; Kim, S.-H.; Merlino, R. L.
2009-09-01
Repeated, self-excited dust acoustic shock waves (DASWs) have been observed in a dc glow discharge dusty plasma using high-speed video imaging. Two major observations are reported: (1) The self-steepening of a nonlinear dust acoustic wave (DAW) into a saw-tooth wave with sharp gradient in dust density, very similar to those found in numerical solutions of the fully nonlinear fluid equations for a nondispersive DAW [B. Eliasson and P. K. Shukla, Phys. Rev. E 69, 067401 (2004)], and (2) the collision and confluence of two DASWs.
Shock absorber in Ignalina NPP
International Nuclear Information System (INIS)
Bulavas, A.; Muralis, J.
1996-09-01
Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs
Shock Response of Boron Carbide
National Research Council Canada - National Science Library
Dandekar, D. P. (Dattatraya Purushottam)
2001-01-01
.... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...
Fascinating World of Shock Waves
Indian Academy of Sciences (India)
Srimath
travelling at supersonic speeds (more than the sound speed at ... actual earth- quake, travel at supersonic speeds. .... The time scale of the shock wave is also important ..... real lithotripsy where a shock wave is used shatter the kidney stones!
INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-05-01
Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.
Westra, H.J.R.
2012-01-01
In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like
Shock-wave structure formation in a dusty plasma
International Nuclear Information System (INIS)
Popel', S.I.; Golub', A.P.; Loseva, T.V.; Bingkhem, R.; Benkadda, S.
2001-01-01
Nonstationary problem on evolution perturbation and its transformation into nonlinear wave structure is considered. The method developed permits finding solution to the system of nonlinear evolution equations describing dust particles with variable charge, Boltzmann electron and inertia ions. An accurate stationary solution as ion-sonic wave structures explained by anomalous dissipation due to electric discharge of dust particles was found. Evolution of two types of initial perturbations was studied, i.e.: soliton and immobile region with increased density of ions - a step. Soliton evolution in plasma with variable charge of dust particles results in the appearance on nonstationary shock-wave structure, whereas the step evolution gives rise to appearance of a shock wave similar to the stationary one along with rarefaction wave [ru
Khokhlova, V. A.; Bessonova, O. V.; Soneson, J. E.; Canney, M. S.; Bailey, M. R.; Crum, L. A.
2010-03-01
Nonlinear propagation effects result in the formation of weak shocks in high intensity focused ultrasound (HIFU) fields. When shocks are present, the wave spectrum consists of hundreds of harmonics. In practice, shock waves are modeled using a finite number of harmonics and measured with hydrophones that have limited bandwidths. The goal of this work was to determine how many harmonics are necessary to model or measure peak pressures, intensity, and heat deposition rates of the HIFU fields. Numerical solutions of the Khokhlov-Zabolotskaya-Kuznetzov-type (KZK) nonlinear parabolic equation were obtained using two independent algorithms, compared, and analyzed for nonlinear propagation in water, in gel phantom, and in tissue. Measurements were performed in the focus of the HIFU field in the same media using fiber optic probe hydrophones of various bandwidths. Experimental data were compared to the simulation results.
Shock tube Multiphase Experiments
Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob
2017-11-01
Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.
Teleconnected food supply shocks
Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix
2016-03-01
The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.
PROMINENCE ACTIVATION BY CORONAL FAST MODE SHOCK
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Takuya [Department of Astronomy, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shibata, Kazunari, E-mail: takahashi@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)
2015-03-01
An X5.4 class flare occurred in active region NOAA11429 on 2012 March 7. The flare was associated with a very fast coronal mass ejection (CME) with a velocity of over 2500 km s{sup −1}. In the images taken with the Solar Terrestrial Relations Observatory-B/COR1, a dome-like disturbance was seen to detach from an expanding CME bubble and propagated further. A Type-II radio burst was also observed at the same time. On the other hand, in extreme ultraviolet images obtained by the Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA), the expanding dome-like structure and its footprint propagating to the north were observed. The footprint propagated with an average speed of about 670 km s{sup −1} and hit a prominence located at the north pole and activated it. During the activation, the prominence was strongly brightened. On the basis of some observational evidence, we concluded that the footprint in AIA images and the ones in COR1 images are the same, that is, the MHD fast mode shock front. With the help of a linear theory, the fast mode Mach number of the coronal shock is estimated to be between 1.11 and 1.29 using the initial velocity of the activated prominence. Also, the plasma compression ratio of the shock is enhanced to be between 1.18 and 2.11 in the prominence material, which we consider to be the reason for the strong brightening of the activated prominence. The applicability of linear theory to the shock problem is tested with a nonlinear MHD simulation.
STEREO interplanetary shocks and foreshocks
International Nuclear Information System (INIS)
Blanco-Cano, X.; Kajdič, P.; Aguilar-Rodríguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.
2013-01-01
We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and θ Bn ∼20-86°. We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr ≤0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at ∼1 AU and have been producing suprathermal particles for a shorter time.
STEREO interplanetary shocks and foreshocks
Energy Technology Data Exchange (ETDEWEB)
Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)
2013-06-13
We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.
Nonlinear stability of supersonic jets
Tiwari, S. N. (Principal Investigator); Bhat, T. R. S. (Principal Investigator)
1996-01-01
The stability calculations made for a shock-free supersonic jet using the model based on parabolized stability equations are presented. In this analysis the large scale structures, which play a dominant role in the mixing as well as the noise radiated, are modeled as instability waves. This model takes into consideration non-parallel flow effects and also nonlinear interaction of the instability waves. The stability calculations have been performed for different frequencies and mode numbers over a range of jet operating temperatures. Comparisons are made, where appropriate, with the solutions to Rayleigh's equation (linear, inviscid analysis with the assumption of parallel flow). The comparison of the solutions obtained using the two approaches show very good agreement.
Non-linear partial differential equations an algebraic view of generalized solutions
Rosinger, Elemer E
1990-01-01
A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen
Nonstationarity of a two-dimensional perpendicular shock: Competing mechanisms
Czech Academy of Sciences Publication Activity Database
Lembège, B.; Savoini, P.; Hellinger, Petr; Trávníček, Pavel M.
2009-01-01
Roč. 114, A03217 (2009), A03217/1-A03217/21 ISSN 0148-0227 R&D Pro jects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Institutional research plan: CEZ:AV0Z30420517 Keywords : Collisionless shocks * self-reformation * nonlinear waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.082, year: 2009
Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.
Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin
2016-07-01
Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diffusion of Finite-Size Particles in Confined Geometries
Bruna, Maria
2013-05-10
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.
Diffusion of Finite-Size Particles in Confined Geometries
Bruna, Maria; Chapman, S. Jonathan
2013-01-01
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle's dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.
Stationary Shock Waves with Oscillating Front in Dislocation Systems of Semiconductors
Gestrin, S. G.; Shchukina, E. V.
2018-05-01
The paper presents a study of weakly nonlinear wave processes in the cylindrical region of a hole gas surrounding a negatively charged dislocation in an n-type semiconductor crystal. It is shown that shock waves propagating along the dislocation are the solutions of the Korteweg-de Vries-Burgers equation when the dispersion and dissipation of medium are taken into account. Estimates are obtained for the basic physical parameters characterizing the shock wave and the region inside the Reed cylinder.
On Diffusive Climatological Models.
Griffel, D. H.; Drazin, P. G.
1981-11-01
A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.
Grain destruction in interstellar shocks
International Nuclear Information System (INIS)
Seab, C.G.; Shull, J.M.
1984-01-01
One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)
Analysis of the computational methods on the equipment shock response based on ANSYS environments
International Nuclear Information System (INIS)
Wang Yu; Li Zhaojun
2005-01-01
With the developments and completions of equipment shock vibration theory, math calculation method simulation technique and other aspects, equipment shock calculation methods are gradually developing form static development to dynamic and from linearity to non-linearity. Now, the equipment shock calculation methods applied worldwide in engineering practices mostly include equivalent static force method, Dynamic Design Analysis Method (abbreviated to DDAM) and real-time simulation method. The DDAM is a method based on the modal analysis theory, which inputs the shock design spectrum as shock load and gets hold of the shock response of the integrated system by applying separate cross-modal integrating method within the frequency domain. The real-time simulation method is to carry through the computational analysis of the equipment shock response within the time domain, use the time-history curves obtained from real-time measurement or spectrum transformation as the equipment shock load and find an iterative solution of a differential equation of the system movement by using the computational procedure within the time domain. Conclusions: Using the separate DDAM and Real-time Simulation Method, this paper carried through the shock analysis of a three-dimensional frame floating raft in ANSYS environments, analyzed the result, and drew the following conclusion: Because DDAM does not calculate damping, non-linear effect and phase difference between mode responses, the result is much bigger than that of real-time simulation method. The coupling response is much complex when the mode result of 3-dimension structure is being calculated, and the coupling response of non-shock direction is also much bigger than that of real-time simulation method when DDAM is applied. Both DDAM and real-time simulation method has its good points and scope of application. The designers should select the design method that is economic and in point according to the features and anti-shock
Nonlinear analysis on power reactor dynamics
International Nuclear Information System (INIS)
Konno, H.; Hayashi, K.
1997-01-01
We have shown that the origin of intermittent oscillation observed in a BWR can be ascribed to the couplings among the spatial modes starting from a non-linear center manifold equation with a delay-time and a spatial diffusion. We can reduce the problem to the stochastic coupled van der Pol oscillators with non-linear coupling term. This non-linear coupling term plays an important role to break the symmetry of the system and the non-linear damping of the system. The phenomenological generalization of van der Pol oscillator coupled by the linear diffusion term is not appropriate for describing the nuclear power reactors. However, one must start from the coupled partial differential equations by taking into account the two energy group neutrons, the thermo-hydraulic equations including two-phase flow. In this case, the diffusion constant must be a complex number as is demonstrated in a previous paper. The results will be reported in the near future. (J.P.N.)
Bubble Dynamics and Shock Waves
2013-01-01
This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa, M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz), shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...
International Nuclear Information System (INIS)
Anderson, R.C.
1976-01-01
A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions
A multigrid Newton-Krylov method for flux-limited radiation diffusion
International Nuclear Information System (INIS)
Rider, W.J.; Knoll, D.A.; Olson, G.L.
1998-01-01
The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques
International Nuclear Information System (INIS)
Lalis, A.; Rouviere, R.; Simon, G.
1976-01-01
A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture
Side-Pinch Effect of a Magnetically Driven Shock Tube with Parallel Plate Electrodes
DEFF Research Database (Denmark)
Chang, C. T.; Korsbech, Uffe C C; Mondrup, K.
1969-01-01
To study the possible effect of the side pinch on the steady-state current and the steady-state shock speed of a magnetically driven shock tube, a semiempirical model is formulated. The time history of the current, the radial and the translational motion of the current-carrying region are expressed...... by three interacting nonlinear equations with five adjustable parameters describing the variation of the electric circuit elements, the geometry of the shock tube, and the initial running conditions. Within the range of practical interest for values of the parameters investigated, computational results...
Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves
Grava, T.; Klein, C.; Pitton, G.
2018-02-01
A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.
Adamiec, Radek
2012-01-01
Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...
Radiative relativistic shock adiabate
International Nuclear Information System (INIS)
Tsintsadze, L.N.; Nishikawa, K.
1997-01-01
The influences of thermal radiation on the state equation of shock waves, derived in the previous paper [L. N. Tsintsadze, Phys. Plasmas 2, 4462 (1995)], are studied and a series of relations of thermodynamic quantities that hold for shock waves are derived. It is shown that the presence of radiation can strongly change the compressibility of the plasma. It is well known that for polytropic gases the compressibility cannot change more than four times the initial value in the case of nonrelativistic temperatures. The numerical calculations show that there are no such restrictions, when the radiation energy exceeds the kinetic energy of the plasma. The ultrarelativistic temperature range is also covered in our numerical calculations. Also studied are the influences of the radiation on the PT and the TV diagrams. A significant modification due to radiation is found in every case studied. copyright 1997 American Institute of Physics
Wilkening, Ralph L.; Knauer, John; Larson, Roger K.
1955-01-01
Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983
Zipf, Edward C.; Erdman, Peeter W.
1994-08-01
The University of Pittsburgh Space Physics Group in collaboration with the Army Research Office (ARO) modeling team has completed a systematic organization of the shock and plume spectral data and the electron temperature and density measurements obtained during the BowShock I and II rocket flights which have been submitted to the AEDC Data Center, has verified the presence of CO Cameron band emission during the Antares engine burn and for an extended period of time in the post-burn plume, and have adapted 3-D radiation entrapment codes developed by the University of Pittsburgh to study aurora and other atmospheric phenomena that involve significant spatial effects to investigate the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) envelope surrounding the re-entry that create an extensive plasma cloud by photoionization.
Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock
Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.
2018-05-01
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
Shock formation in small-data solutions to 3D quasilinear wave equations
Speck, Jared
2016-01-01
In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is extended to two classes of wave equations in three spatial dimensions. It is shown that if the nonlinear terms fail to satisfy the null condition, then for small data, shocks are the only possible singularities that can develop. Moreover, the author exhibits an open set of small data whose solutions form a shock, and he prov...
SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.
International Nuclear Information System (INIS)
Pouard, M.
1984-03-01
In the framework of mechanical tests and to answer the different requests for tests, the T.C.R (Transport Conditionnement et Retraitement) laboratory got test facilities. These installations allow to carry out tests of resistance to shocks, mainly at the safety level of components of nuclear power plants, mockups of transport casks for fuel elements and transport containers for radioactive materials. They include a tower and a catapult. This paper give a decription of the facilities and explain their operation way [fr
Dorofeenko, Victor; Lee, Gabriel; Salyer, Kevin; Strobel, Johannes
2016-01-01
Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture Normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (relatively small second moment for productivity) and high-risk (relatively large second moment for productivity) and the fraction of both types is...
Dionysios K. Solomos; Dimitrios N. Koumparoulis
2011-01-01
Naomi Klein attempts to redefine the economic history discovering the historical continuities and to reveal the neoliberal theory which functions via the utilization of specific “tools”. The state of shock is the key for the opponents of Chicago School and Milton Friedman in order for them to establish neoliberal policies and to promote the deregulated capitalism which includes less welfare state, less public sector, less regulation, weakened labor unions, privatizations and laissez-faire. Th...
Symmetry properties of fractional diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Gazizov, R K; Kasatkin, A A; Lukashchuk, S Yu [Ufa State Aviation Technical University, Karl Marx strausse 12, Ufa (Russian Federation)], E-mail: gazizov@mail.rb.ru, E-mail: alexei_kasatkin@mail.ru, E-mail: lsu@mail.rb.ru
2009-10-15
In this paper, nonlinear anomalous diffusion equations with time fractional derivatives (Riemann-Liouville and Caputo) of the order of 0-2 are considered. Lie point symmetries of these equations are investigated and compared. Examples of using the obtained symmetries for constructing exact solutions of the equations under consideration are presented.
Characterization of shocked beryllium
Directory of Open Access Journals (Sweden)
Papin P.A.
2012-08-01
Full Text Available While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity models, the Preston-Tonks-Wallace (PTW and Mechanical Threshold Stress (MTS models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional “arrested” drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.
Reserves and Trade Jointly Determine Exposure to Food Supply Shocks
Marchand, Philippe; Carr, Joel A.; Dell'Angelo, Jampel; Fader, Marianela; Gephart, Jessica A.; Kummu, Matti; Magliocca, Nicholas; Porkka, Miina; Puma, Michael J.; Zak, Ratajczak
2016-01-01
While a growing proportion of global food consumption is obtained through international trade, there is an ongoing debate on whether this increased reliance on trade benefits or hinders food security, and specifically, the ability of global food systems to absorb shocks due to local or regional losses of production. This paper introduces a model that simulates the short-term response to a food supply shock originating in a single country, which is partly absorbed through decreases in domestic reserves and consumption, and partly transmitted through the adjustment of trade flows. By applying the model to publicly-available data for the cereals commodity group over a 17 year period, we find that differential outcomes of supply shocks simulated through this time period are driven not only by the intensification of trade, but as importantly by changes in the distribution of reserves. Our analysis also identifies countries where trade dependency may accentuate the risk of food shortages from foreign production shocks; such risk could be reduced by increasing domestic reserves or importing food from a diversity of suppliers that possess their own reserves. This simulation-based model provides a framework to study the short-term, nonlinear and out-of-equilibrium response of trade networks to supply shocks, and could be applied to specific scenarios of environmental or economic perturbations.
Low-frequency electromagnetic solitary and shock waves in an inhomogeneous dusty magnetoplasma
International Nuclear Information System (INIS)
Shukla, P.K.
2003-01-01
It is shown that the nonlinear dynamics of one-dimensional Shukla mode [Phys. Lett. A 316, 238 (2003)] is governed by a modified Kortweg-de Vries-Burgers equation. The latter admits stationary solutions in the form of either a solitary wave or a monotonic/oscillatory shock. The present nonlinear waves may help to understand the salient features of localized density and magnetic field structures in molecular dusty clouds as well as in low-temperature laboratory dusty plasma discharges
Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.
Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A
2017-02-01
Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.
On Poisson Nonlinear Transformations
Directory of Open Access Journals (Sweden)
Nasir Ganikhodjaev
2014-01-01
Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.
Hereditary Diffuse Gastric Cancer
... Hereditary Diffuse Gastric Cancer Request Permissions Hereditary Diffuse Gastric Cancer Approved by the Cancer.Net Editorial Board , 10/2017 What is hereditary diffuse gastric cancer? Hereditary diffuse gastric cancer (HDGC) is a rare ...
Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources
D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale
2018-02-01
The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
Excluded-volume effects in the diffusion of hard spheres
Bruna, Maria
2012-01-03
Excluded-volume effects can play an important role in determining transport properties in diffusion of particles. Here, the diffusion of finite-sized hard-core interacting particles in two or three dimensions is considered systematically using the method of matched asymptotic expansions. The result is a nonlinear diffusion equation for the one-particle distribution function, with excluded-volume effects enhancing the overall collective diffusion rate. An expression for the effective (collective) diffusion coefficient is obtained. Stochastic simulations of the full particle system are shown to compare well with the solution of this equation for two examples. © 2012 American Physical Society.
Fractal diffusion equations: Microscopic models with anomalous diffusion and its generalizations
International Nuclear Information System (INIS)
Arkhincheev, V.E.
2001-04-01
To describe the ''anomalous'' diffusion the generalized diffusion equations of fractal order are deduced from microscopic models with anomalous diffusion as Comb model and Levy flights. It is shown that two types of equations are possible: with fractional temporal and fractional spatial derivatives. The solutions of these equations are obtained and the physical sense of these fractional equations is discussed. The relation between diffusion and conductivity is studied and the well-known Einstein relation is generalized for the anomalous diffusion case. It is shown that for Levy flight diffusion the Ohm's law is not applied and the current depends on electric field in a nonlinear way due to the anomalous character of Levy flights. The results of numerical simulations, which confirmed this conclusion, are also presented. (author)
Risk shocks and housing markets
Dorofeenko, Viktor; Lee, Gabriel S.; Salyer, Kevin D.
2010-01-01
Abstract: This paper analyzes the role of uncertainty in a multi-sector housing model with financial frictions. We include time varying uncertainty (i.e. risk shocks) in the technology shocks that affect housing production. The analysis demonstratesthat risk shocks to the housing production sector are a quantitatively important impulse mechanism for the business cycle. Also, we demonstrate that bankruptcy costs act as an endogenous markup factor in housing prices; as a consequence, the volati...
Periodic solutions in reaction–diffusion equations with time delay
International Nuclear Information System (INIS)
Li, Li
2015-01-01
Spatial diffusion and time delay are two main factors in biological and chemical systems. However, the combined effects of them on diffusion systems are not well studied. As a result, we investigate a nonlinear diffusion system with delay and obtain the existence of the periodic solutions using coincidence degree theory. Moreover, two numerical examples confirm our theoretical results. The obtained results can also be applied in other related fields
Shock Response of Lightweight Adobe Masonry
Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.
2018-04-01
The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.
Health shocks and risk aversion.
Decker, Simon; Schmitz, Hendrik
2016-12-01
We empirically assess whether a health shock influences individual risk aversion. We use grip strength data to obtain an objective health shock indicator. In order to account for the non-random nature of our data regression-adjusted matching is employed. Risk preferences are traditionally assumed to be constant. However, we find that a health shock increases individual risk aversion. The finding is robust to a series of sensitivity analyses and persists for at least four years after the shock. Income changes do not seem to be the driving mechanism. Copyright Â© 2016 Elsevier B.V. All rights reserved.
Shock in the emergency department
DEFF Research Database (Denmark)
Holler, Jon Gitz; Henriksen, Daniel Pilsgaard; Mikkelsen, Søren
2016-01-01
BACKGROUND: The knowledge of the frequency and associated mortality of shock in the emergency department (ED) is limited. The aim of this study was to describe the incidence, all-cause mortality and factors associated with death among patients suffering shock in the ED. METHODS: Population...... failures. Outcomes were annual incidence per 100,000 person-years at risk (pyar), all-cause mortality at 0-7, and 8-90 days and risk factors associated with death. RESULTS: We identified 1646 of 438,191 (0.4 %) ED patients with shock at arrival. Incidence of shock increased from 53.8 to 80.6 cases per 100...
Shock compression of diamond crystal
Kondo, Ken-ichi; Ahrens, Thomas J.
1983-01-01
Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...
Special discontinuities in nonlinearly elastic media
Chugainova, A. P.
2017-06-01
Solutions of a nonlinear hyperbolic system of equations describing weakly nonlinear quasitransverse waves in a weakly anisotropic elastic medium are studied. The influence of small-scale processes of dissipation and dispersion is investigated. The small-scale processes determine the structure of discontinuities (shocks) and a set of discontinuities with a stationary structure. Among the discontinuities with a stationary structure, there are special ones that, in addition to relations following from conservation laws, satisfy additional relations required for the existence of their structure. In the phase plane, the structure of such discontinuities is represented by an integral curve joining two saddles. Special discontinuities lead to nonunique self-similar solutions of the Riemann problem. Asymptotics of non-self-similar problems for equations with dissipation and dispersion are found numerically. These asymptotics correspond to self-similar solutions of the problems.
Nonlinear dynamic interrelationships between real activity and stock returns
DEFF Research Database (Denmark)
Lanne, Markku; Nyberg, Henri
We explore the differences between the causal and noncausal vector autoregressive (VAR) models in capturing the real activity-stock return-relationship. Unlike the conventional linear VAR model, the noncausal VAR model is capable of accommodating various nonlinear characteristics of the data....... In quarterly U.S. data, we find strong evidence in favor of noncausality, and the best causal and noncausal VAR models imply quite different dynamics. In particular, the linear VAR model appears to underestimate the importance of the stock return shock for the real activity, and the real activity shock...
Electron dynamics with radiation and nonlinear wigglers
International Nuclear Information System (INIS)
Jowett, J.M.
1986-06-01
The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches
Liffman, Kurt
2009-01-01
It has been suggested that shock waves in the solar nebula formed the high temperature materials observed in meteorites and comets. It is shown that the temperatures at the inner rim of the solar nebula could have been high enough over a sufficient length of time to produce chondrules, CAIs, refractory dust grains and other high-temperature materials observed in comets and meteorites. The solar bipolar jet flow may have produced an enrichment of 16O in the solar nebula over time and the chond...
Fink, M
1977-09-01
The author discusses the myths of the ECT process--that shock and the convulsion are essential, memory loss and brain damage are inescapable, and little is known of the process--and assesses the fallacies in these ideas. Present views of the ECT process suggest that its mode of action in depression may best be described as a prolonged form of diencephalic stimulation, particularly useful to affect the hypothalamic dysfunctions that characterize depressive illness. The author emphasizes the need for further study of this treatment modality and for self-regulation by the profession.
Hanamura, Eiichi; Yamanaka, Akio
2007-01-01
This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.
Nonlinear dynamics and complexity
Luo, Albert; Fu, Xilin
2014-01-01
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
Do dividend shocks affect excess returns? An experimental study
Directory of Open Access Journals (Sweden)
Draganac Dragana
2017-01-01
Full Text Available The dividend announcement of a company is an informational event that can cause underreaction, momentum, overreaction, post-dividend announcement drift, and mean reversion. It is the uncertainty surrounding dividend announcements that leads to such behavioural phenomena. Most authors consider that underreaction occurs after dividend shocks because new information about the dividend is being slowly and gradually built into the stock price. The effect of dividend shocks is often reflected in excess returns, which can last up to one year after the shock. The experiment described in this paper tests whether statistically significant excess returns are realized after a shock dividend announcement. Participants trade with the stocks of two companies, which only differ by dividend-generating stochastic process. The dividend process of Company 2 is a Merton-style jump-diffusion process (consisting of two parts: Brownian motion and Poisson jump, while the dividend process of Company 1 contains only the Brownian motion component. Statistically significant excess returns are expected when trading with Company 2 stocks. An autoregressive model is applied in order to test this hypothesis. The conclusion is that a dividend shock is followed by statistically significant excess returns in 20 of the 22 experiments, which implies that markets are inefficient after sudden and large changes in dividends. Underreaction and discount rate effects are identified.
Shock velocity in weakly ionized nitrogen, air, and argon
International Nuclear Information System (INIS)
Siefert, Nicholas S.
2007-01-01
The goal of this research was to determine the principal mechanism(s) for the shock velocity increase in weakly ionized gases. This paper reports experimental data on the propagation of spark-generated shock waves (1< Mach<3) into weakly ionized nitrogen, air, and argon glow discharges (1 < p<20 Torr). In order to distinguish between effects due solely to the presence of electrons and effects due to heating of the background gas via elastic collisions with electrons, the weakly ionized discharge was pulsed on/off. Laser deflection methods determined the shock velocity, and the electron number density was collected using a microwave hairpin resonator. In the afterglow of nitrogen, air, and argon discharges, the shock velocity first decreased, not at the characteristic time for electrons to diffuse to the walls, but rather at the characteristic time for the centerline gas temperature to equilibrate with the wall temperature. These data support the conclusion that the principal mechanism for the increase in shock velocity in weakly ionized gases is thermal heating of the neutral gas species via elastic collisions with electrons
Intermittency and Topology of Shock Induced Mixing
Tellez, Jackson; Redondo, Jose M.; Ben Mahjoub, Otman; Malik, Nadeem; Vila, Teresa
2016-04-01
, University of Cambridge. Cambridge [3] Redondo J.M. (1996) Vertical microstructure and mixing in stratified flows. Advances in Turbulence VI. Eds. S. Gavrilakis et al. 605-608. [4] Redondo J.M.,M.A. Sanchez y R. Castilla (2000) Vortical structures in stratified turbulent flows, Turbulent diffusion in the environment. Eds. Redondo J.M. and Babiano A. 113-120. [5] Mahjoub, O. B., Babiano A. and Redondo, J. M.: Structure functions in complex flows, Flow, Turbulence and Combustion, 59,299-313, 1998. [6] Malik, N.A. Vassilicos, J.C. 1999 A Lagrangian model of turbulent dispersion with turbulent-like flow structure: comparison with direct numerical simulation for two-particle statistics. Phys. Fluids, 11, 1572-1580. [7] Fung, J.C.H., Hunt, J.C.R., Malik, N.A. and Perkins, R.J.(1992. Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech.236-281. [8] Tarquis, A. M., Platonov, A., Matulka, A., Grau, J., Sekula, E., Diez, M., & Redondo, J. M. (2014). Application of multifractal analysis to the study of SAR features and oil spills on the ocean surface. Nonlinear Processes in Geophysics, 21(2), 439-450. [9] Fraunie, P., Berreba, S., Chashechkin, Y. D., Velasco, D., & Redondo, J. M. (2008). Large eddy simulation and laboratory experiments on the decay of grid wakes in strongly stratified flows. Nuovo Cimento C, 31, 909-930.
Gravitational shock waves and extreme magnetomaterial shock waves
International Nuclear Information System (INIS)
Lichnerowicz, Andre.
1975-01-01
Within an astrophysical context corresponding to high densities, a self-gravitating model is studied, which is the set of an extreme material medium of infinite conductivity and of a magnetic field. Corresponding shock waves generate necessarily, in general, gravitational shock waves [fr
Shock Producers and Shock Absorbers in the Crisis
Sinn, Hans-Werner
2009-01-01
It is not surprising that the U.S. has been by far the world’s largest shock producer in this crisis. The big shock absorbers on the other hand were Japan, Russia and Germany, whose exports shrank more than their imports.
Simulations of Converging Shock Collisions for Shock Ignition
Sauppe, Joshua; Dodd, Evan; Loomis, Eric
2016-10-01
Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
of bound states of out of phase bright solitons and dark solitons. Also, the newly introduced analogy between the nonlocal cubic nonlinear and the quadratic nonlinear media, presented in paper B and Chapter 3 is discussed. In particular it supplies intuitive physical meaning of the formation of solitons...... in quadratic nonlinear media. In the second part of the report (Chapter 4), the possibility to obtain light with ultrabroad spectrum due to the interplay of many nonlinear effects based on cubic nonlinearity is investigated thoroughly. The contribution of stimulated Raman scattering, a delayed nonlinear...... a modified nonlinear Schroedinger model equation. Chapter 4 and papers D and E are dedicated to this part of the research....
Pineyro, B.; Snively, J. B.
2017-12-01
Recent 1D and 2D nonlinear atmospheric models have provided important insight into acoustic waves generated by seismic events, which may steepen into shocks or saw-tooth trains while also dissipating strongly in the thermosphere [e.g., Chum et al., JGR, 121, 2016; Zettergren et al., JGR, 122, 2017]. Although they have yield results that agree with with observations of ionospheric perturbations, dynamical models for the diffusive and stratified lower thermosphere [e.g., Snively and Pasko, JGR, 113, 2008] often use single gas approximations with height-dependent physical properties (e.g. mean molecular weight, specific heats) that do not vary with time (fixed composition). This approximation is simpler and less computationally expensive than a true multi-fluid model, yet captures the important physical transition between molecular and atomic gases in the lower thermosphere. Models with time-dependent composition and properties have been shown to outperform commonly used models with fixed properties; these time-dependent effects have been included in a one-gas model by adding an advection equation for the molecular weight, finding closer agreement to a true binary-gas model [Walterscheid and Hickey, JGR, 106, 2001 and JGR, 117, 2012]. Here, a one-dimensional nonlinear mass fraction approach to multi-constituent gas modeling, motivated by the results of Walterscheid and Hickey [2001, 2012], is presented. The finite volume method of Bale et al. [SIAM JSC, 24, 2002] is implemented in Clawpack [http://www.clawpack.org; LeVeque, 2002] with a Riemann Solver to solve the Euler Equations including multiple species, defined by their mass fractions, as they undergo advection. Viscous dissipation and thermal conduction are applied via a fractional step method. The model is validated with shock tube problems for two species, and then applied to investigate propagating nonlinear acoustic waves from ground to thermosphere, such as following the 2011 Tohoku Earthquake [e
Nonlinear growth of strongly unstable tearing modes
International Nuclear Information System (INIS)
Waelbroeck, F.L.
1993-11-01
Rutherford's theory of the tearing instability is extended to cases where current nonlinearities are important, such as long wavelength modes in current slabs and the m = 1 instability in tokamaks with moderately large aspect-ratios. Of particular interest is the possibility that the associated magnetic islands, as a result of secondary instabilities, have a singular response to the Ohmic diffusion of the current. A family of islands is used to test this possibility; it is found that the response remains bounded
Nonlinear longitudinal dynamics studies at the ALS
International Nuclear Information System (INIS)
Byrd, J.M.; Cheng, W.-H.; De Santis, S.; Li, D.; Stupakov, G.; Zimmermann, F.
1999-01-01
We present a summary of results for a variety of studies of nonlinear longitudinal dynamics in the Advanced Light Source, an electron storage ring. These include observation of decoherence at injection, decay of an injected beam, forced synchrotron oscillations and diffusion from one bunch to the next. All of the measurements were made using a dual-scan streak camera which allowed the real-time observation of the longitudinal distribution of the electron beam
Nonlinear flow model for well production in an underground formation
Directory of Open Access Journals (Sweden)
J. C. Guo
2013-05-01
Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.
Shock waves and rarefaction waves in magnetohydrodynamics. Pt. 1: A model system
International Nuclear Information System (INIS)
Myong, R.S.; Roe, P.L.
1997-01-01
The present study consists of two parts. Here in Part I, a model set of conservation laws exactly preserving the MHD hyperbolic singularities is investigated to develop the general theory of the nonlinear evolution of MHD shock waves. Great emphasis is placed on shock admissibility conditions. By developing the viscosity admissibility condition, it is shown that the intermediate shocks are necessary to ensure that the planar Riemann problem is well-posed. In contrast, it turns out that the evolutionary condition is inappropriate for determining physically relevant MHD, shocks. In the general non-planar case, by studying canonical cases, we show that the solution of the Riemann problem is not necessarily unique - in particular, that it depends not only on reference states but also on the associated internal structure. Finally, the stability of intermediate shocks is discussed, and a theory of their nonlinear evolution is proposed. In Part 2, the theory of nonlinear waves developed for the model is applied to the MHD problem. It is shown that the topology of the MHD Hugoniot and wave curves is identical to that of the model problem. (Author)
Shocks in coupled socio-ecological systems: what are they and how can we model them?
Filatova, Tatiana; Polhill, Gary; Seppelt, R.; Voinov, A.A.; Lange, S.; Bankamp, D.
2012-01-01
Coupled socio-ecological systems (SES) are complex systems characterized by self-organization, non-linearities, interactions among heterogeneous elements within each subsystem, and feedbacks across scales and among subsystems. When such a system experiences a shock or a crisis, the consequences are
Nonlinear coherent structures in granular crystals
Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.
2017-10-01
The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.
30th International Symposium on Shock Waves
Sadot, Oren; Igra, Ozer
2017-01-01
These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...
Dust ion-acoustic shock waves in magnetized pair-ion plasma with kappa distributed electrons
Kaur, B.; Singh, M.; Saini, N. S.
2018-01-01
We have performed a theoretical and numerical analysis of the three dimensional dynamics of nonlinear dust ion-acoustic shock waves (DIASWs) in a magnetized plasma, consisting of positive and negative ion fluids, kappa distributed electrons, immobile dust particulates along with positive and negative ion kinematic viscosity. By employing the reductive perturbation technique, we have derived the nonlinear Zakharov-Kuznetsov-Burgers (ZKB) equation, in which the nonlinear forces are balanced by dissipative forces (associated with kinematic viscosity). It is observed that the characteristics of DIASWs are significantly affected by superthermality of electrons, magnetic field strength, direction cosines, dust concentration, positive to negative ions mass ratio and viscosity of positive and negative ions.
Characteristics of shock propagation in high-strength cement mortar
Wang, Zhanjiang; Li, Xiaolan; Zhang, Ruoqi
2001-06-01
Planar impact experiments have been performed on high-strength cement mortar to determine characteristics of shock propagation.The experiments were conducted on a light-gas gun,and permanent-magnet particle velocity gages were used to obtain the sand of 0.5 3.5mm size.A bulk density of 2.31g/cm^3,and a compressive and tensile strength of 82MPa and 7.8MPa,respectively,were determined.Three kinds of experimental techniques were used,including the reverse ballistic configuration.These techniques effectively averaged the measured dynamic compression state over a sensibly large volume of the test sample.The impact velocities were controlled over a range of approximately 80m/s to 0.83km/s.Hugoniot equation of state data were obtained for the material over a pressure range of approximately 0.2 2.0GPa,and its nonlinear constitutive relation were analyzed.The experiment results show that,in higher pressure range provided in the experiment,the shock wave in the material splits into two components of an elastic and a plastic,with the Hugoniot elastic limit 0.4 0.5GPa and the precursor velocity about 4.7km/s,and the material presents a very strong nonlinear dynamic response,and its shock amplitude will greatly decrease in propagation.
Molecular diagnostics of interstellar shocks
International Nuclear Information System (INIS)
Hartquist, T.W.; Oppenheimer, M.; Dalgarno, A.
1980-01-01
The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km s -1 Substantial enhancements are predicted in the concentrations of the molecules H 2 S, SO, and SiO compared to those anticipated in cold interstellar clouds
Molecular diagnostics of interstellar shocks
Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.
1980-02-01
The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.
How Culture Shock Affects Communication.
Barna, LaRay M.
The paper defines the term "culture shock" and discusses the changes that this state can make in a person's behavior. Culture shock refers to the emotional and physiological reaction of high activation that is brought about by sudden immersion in a new culture. Because one's own culture shields one from the unknown and reduces the need to make…
Molecular diagnostics of interstellar shocks
Hartquist, T. W.; Dalgarno, A.; Oppenheimer, M.
1980-01-01
The chemistry of molecules in shocked regions of the interstellar gas is considered and calculations are carried out for a region subjected to a shock at a velocity of 8 km/sec. Substantial enhancements are predicted in the concentrations of the molecules H2S, SO, and SiO compared to those anticipated in cold interstellar clouds.
Shock wave treatment in medicine
Indian Academy of Sciences (India)
Home; Journals; Journal of Biosciences; Volume 30; Issue 2 ... In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones. This is a ...
Shock wave treatment in medicine
Indian Academy of Sciences (India)
Unknown
to open surgery, the cost of the ESWT is very reasonable. But nevertheless it is necessary to improve the basic un ... In second group, shock waves are used to measure distances because of the low energy loss over large distances ... pared to a piezoelectric hydrophone. The rise time of an electrohydraulic generated shock ...
Numerical modeling of slow shocks
International Nuclear Information System (INIS)
Winske, D.
1987-01-01
This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs