Nonlinear theory of magnetic Landau damping
Energy Technology Data Exchange (ETDEWEB)
Kirpichnikov, A.P.; Yusupov, I.U.
1978-05-01
The nonlinear Cerenkov damping of helical electromagnetic waves in a magnetized plasma is analyzed. The nonlinear mechanism which leads to oscillations in the wave amplitude and limits the damping is the trapping of resonant particles in the potential well of the wave, as in the O'Neil problem. The factors of the type exp (-..cap alpha..t/sup 2/) in the expression for the nonlinear damping rate for a Maxwellian particle distribution lead to a damping of the amplitude oscillations of the helical wave which is much more rapid than for a plasma wave.
Nonlinear damping identification from transient data
Smith, Clifford B.; Wereley, Norman M.
1999-06-01
To study new damping augmentation methods for helicopter rotor systems, accurate and reliable nonlinear damping identification techniques are needed. For example, current studies on applications of magnetorheological (MR) dampers for rotor stability augmentation suggest that a strong Coulomb damping characteristic will be manifested as the field applied to the MR fluid is maximized. Therefore, in this work, a single degree of freedom (SDOF) system having either nonlinear Coulomb or quadratic damping is considered. This paper evaluates three analyses for identifying damping from transient test data; an FFT-based moving block analysis, an analysis based on a periodic Fourier series decomposition, and a Hilbert transform based technique. Analytical studies are used to determine the effects of block length, noise, and error in identified modal frequency on the accuracy of the identified damping level. The FFT-based moving block has unacceptable performance for systems with nonlinear damping. These problems were remedied in the Fourier series based analysis and acceptable performance is obtained for nonlinear damping identification from both this technique and the Hilbert transform based method. To more closely simulate a helicopter rotor system test, these techniques were then applied to a signal composed of two closely spaced modes. This data was developed to simulate a response containing the first lag and 1/rev modes. The primary mode of interest (simulated lag mode) had either Coulomb or quadratic damping, and the close mode (1/rev) was either undamped or had a specified viscous damping level. A comprehensive evaluation of the effects of close mode amplitude, frequency, and damping level was performed. A classifier was also developed to identify the dominant damping mechanism in a signal of 'unknown' composition. This classifier is based on the LMS error of a fit of the analytical envelope expression to the experimentally identified envelope signal. In most
Simplified Model of Nonlinear Landau Damping
Energy Technology Data Exchange (ETDEWEB)
N. A. Yampolsky and N. J. Fisch
2009-07-16
The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.
Analysis of nonlinear damping properties of carbon
Kazakova, Olga I.; Smolin, Igor Yu.; Bezmozgiy, Iosif M.
2016-11-01
This paper describes research results of nonlinear damping properties of carbon fiber reinforced plastics. The experimental and computational research is performed on flat composite specimens with the gradual structure complication (from 1 to 12 layers). Specimens are subjected to three types of testing which are modal, harmonic and transient analyses. Relationships between the amplitude response and damping ratio are obtained by means of the analysis of variance as the result of this research.
Nonlinear Landau damping of Alfven waves.
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
The Nonlinear Spatial Damping Rate in QGP
Jiarong, L
1998-01-01
The derivative expansion method has been used to solve the semiclassical kinetic equations of quark-gluon plasma (QGP). The nonlinear spatial damping rate, the imaginary part of the wave vector, for the longitudinal secondary color waves in the long wavelength limit has been calculated numerically.
Nonlinear Landau damping and Alfven wave dissipation
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Nonlinear Landau damping in quark-gluon plasma
Xiaofei, Zhang; Jiarong, Li
1995-08-01
The semiclassical kinetic equations for the quark-gluon plasma (QGP) are discussed by the multiple time-scale method. The mechanism of nonlinear Landau damping owing to non-Abelian and nonlinear wave-particle interactions in QGP is investigated, and the nonlinear Landau damping rate for the longitudinal color eigenwaves in the long-wavelength limit is calculated.
Nonlinear Landau damping in the ionosphere
Kiwamoto, Y.; Benson, R. F.
1979-01-01
A model which explains the nonresonant waves which produce the diffuse resonance observed near 3/2 f(H) by the Alouette and Isis topside sounders, where f(H) is the ambient electron cyclotron frequency, is presented. These waves are the result of plasma wave instabilities driven by anisotropic electron velocity distributions initiated by the high-power short-duration sounder pulse. Calculations of the nonlinear wave-particle coupling coefficients show that the diffuse resonance wave can be maintained by nonlinear Landau damping of the sounder-stimulated 2f(H) wave which is observed with a time duration longer than that of the diffuse resonance wave. The time duration of the diffuse resonance is determined by the transit time of the instability-generated and nonlinearly maintained diffuse resonance wave from the remote short-lived hot region back to the antenna. The model is consistent with the Alouette/Isis observations and it demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.
Notes on the nonlinear beam dynamics with strong damping in the CLIC Damping Ring
Levichev, Eugene; Shatilov, Dmitry
2010-01-01
The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear dependence of the betatron tune on the amplitude. This nonlinearity is produced by the strong chromatic sextupoles, wiggler nonlinear field components and, again, by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping for the original lattice of the CLIC DR (May 2005). Geneva, Switzerland June 2010 CLIC – Note – 850
Nonlinear damped Schrodinger equation in two space dimensions
Directory of Open Access Journals (Sweden)
Tarek Saanouni
2015-04-01
Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.
Uniform Stability of Damped Nonlinear Vibrations of an Elastic String
Indian Academy of Sciences (India)
Ganesh C Gorain; Sujit K Bose
2003-11-01
Here we are concerned about uniform stability of damped nonlinear transverse vibrations of an elastic string fixed at its two ends. The vibrations governed by nonlinear integro-differential equation of Kirchoff type, is shown to possess energy uniformly bounded by exponentially decaying function of time. The result is achieved by considering an energy-like Lyapunov functional for the system.
Inverse design of nonlinearity in energy harvesters for optimum damping
Ghandchi Tehrani, Maryam; Elliott, S. J.
2016-09-01
This paper presents the inverse design method for the nonlinearity in an energy harvester in order to achieve an optimum damping. A single degree-of-freedom electromechanical oscillator is considered as an energy harvester, which is subjected to a harmonic base excitation. The harvester has a limited throw due to the physical constraint of the device, which means that the amplitude of the relative displacement between the mass of the harvester and the base cannot exceed a threshold when the device is driven at resonance and beyond a particular amplitude. This physical constraint requires the damping of the harvester to be adjusted for different excitation amplitudes, such that the relative displacement is controlled and maintained below the limit. For example, the damping can be increased to reduce the amplitude of the relative displacement. For high excitation amplitudes, the optimum damping is, therefore, dependent on the amplitude of the base excitation, and can be synthesised by a nonlinear function. In this paper, a nonlinear function in the form of a bilinear is considered to represent the damping model of the device. A numerical optimisation using Matlab is carried out to fit a curve to the amplitude-dependent damping in order to determine the optimum bilinear model. The nonlinear damping is then used in the time-domain simulations and the relative displacement and the average harvested power are obtained. It is demonstrated that the proposed nonlinear damping can maintain the relative displacement of the harvester at its maximum level for a wide range of excitation, therefore providing the optimum condition for power harvesting.
Nonlinear damping calculation in cylindrical gear dynamic modeling
Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc
2012-04-01
The nonlinear dynamic problem posed by cylindrical gear systems has been extensively covered in the literature. Nonetheless, a significant proportion of the mechanisms involved in damping generation remains to be investigated and described. The main objective of this study is to contribute to this task. Overall, damping is assumed to consist of three sources: surrounding element contribution, hysteresis of the teeth, and oil squeeze damping. The first two contributions are considered to be commensurate with the supported load; for its part however, squeeze damping is formulated using expressions developed from the Reynolds equation. A lubricated impact analysis between the teeth is introduced in this study for the minimum film thickness calculation during contact losses. The dynamic transmission error (DTE) obtained from the final model showed close agreement with experimental measurements available in the literature. The nonlinear damping ratio calculated at different mesh frequencies and torque amplitudes presented average values between 5.3 percent and 8 percent, which is comparable to the constant 8 percent ratio used in published numerical simulations of an equivalent gear pair. A close analysis of the oil squeeze damping evidenced the inverse relationship between this damping effect and the applied load.
Nonlinear Dynamics of A Damped Magnetic Oscillator
Kim, S Y
1999-01-01
We consider a damped magnetic oscillator, consisting of a permanent magnet in a periodically oscillating magnetic field. A detailed investigation of the dynamics of this dissipative magnetic system is made by varying the field amplitude $A$. As $A$ is increased, the damped magnetic oscillator, albeit simple looking, exhibits rich dynamical behaviors such as symmetry-breaking pitchfork bifurcations, period-doubling transitions to chaos, symmetry-restoring attractor-merging crises, and saddle-node bifurcations giving rise to new periodic attractors. Besides these familiar behaviors, a cascade of ``resurrections'' (i.e., an infinite sequence of alternating restabilizations and destabilizations) of the stationary points also occurs. It is found that the stationary points restabilize (destabilize) through alternating subcritical (supercritical) period-doubling and pitchfork bifurcations. We also discuss the critical behaviors in the period-doubling cascades.
Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach
2012-01-01
The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the...
Quantum corrections to nonlinear ion acoustic wave with Landau damping
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)
2014-07-15
Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.
The Nonlinear Landau Damping Rate of a Driven Plasma Wave
Energy Technology Data Exchange (ETDEWEB)
Benisti, D; Strozzi, D J; Gremillet, L; Morice, O
2009-08-04
In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
Nonlinear echoes and Landau damping with insufficient regularity
Bedrossian, Jacob
2016-01-01
We prove that the theorem of Mouhot and Villani on Landau damping near equilibrium for the Vlasov-Poisson equations on $\\mathbb T \\times \\mathbb R$ cannot, in general, be extended to Sobolev spaces. This is demonstrated by constructing a sequence of homogeneous background distributions and arbitrarily small perturbations in $H^s$ which deviate arbitrarily far from free transport for long times (in a sense to be made precise). The density experiences a sequence of nonlinear oscillations that damp at a rate which is arbitrarily slow compared to the predictions of the linearized Vlasov equations. The nonlinear instability is due to the repeated re-excitation of a resonance known as a plasma echo. The results hold for a specific, small background distribution, but include both electrostatic and gravitational interactions.
Damping of nonlinear standing kink oscillations: a numerical study
Magyar, N
2016-01-01
We aim to study the standing fundamental kink mode of coronal loops in the nonlinear regime, investigating the changes in energy evolution in the cross-section and oscillation amplitude of the loop which are related to nonlinear effects, in particular to the development of the Kelvin-Helmholtz instability (KHI). We run idea, high-resolution three-dimensional (3D) magnetohydrodynamics (MHD) simulations, studying the influence of the initial velocity amplitude and the inhomogeneous layer thickness. We model the coronal loop as a straight, homogeneous magnetic flux tube with an outer inhomogeneous layer, embedded in a straight, homogeneous magnetic field. We find that, for low amplitudes which do not allow for the KHI to develop during the simulated time, the damping time agrees with the theory of resonant absorption. However, for higher amplitudes, the presence of KHI around the oscillating loop can alter the loop's evolution, resulting in a significantly faster damping than predicted by the linear theory in so...
Quadratic and Cubic Nonlinear Oscillators with Damping and Their Applications
Li, Jibin; Feng, Zhaosheng
We apply the qualitative theory of dynamical systems to study exact solutions and the dynamics of quadratic and cubic nonlinear oscillators with damping. Under certain parametric conditions, we also consider the van der Waals normal form, Chaffee-Infante equation, compound Burgers-KdV equation and Burgers-KdV equation for explicit representations of kink-profile wave solutions and unbounded traveling wave solutions.
Conservation laws of inviscid Burgers equation with nonlinear damping
Abdulwahhab, Muhammad Alim
2014-06-01
In this paper, the new conservation theorem presented in Ibragimov (2007) [14] is used to find conservation laws of the inviscid Burgers equation with nonlinear damping ut+g(u)ux+λh(u)=0. We show that this equation is both quasi self-adjoint and self-adjoint, and use these concepts to simplify conserved quantities for various choices of g(u) and h(u).
Oscillation criteria for nonlinear fractional differential equation with damping term
Directory of Open Access Journals (Sweden)
Bayram Mustafa
2016-01-01
Full Text Available In this paper, we study the oscillation of solutions to a non-linear fractional differential equation with damping term. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. By using a variable transformation, a generalized Riccati transformation, inequalities, and integration average techniquewe establish new oscillation criteria for the fractional differential equation. Several illustrative examples are also given.
Estimation on nonlinear damping in second order distributed parameter systems
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1989-01-01
An approximation and convergence theory for the identification of nonlinear damping in abstract wave equations is developed. It is assumed that the unknown dissipation mechanism to be identified can be described by a maximal monotone operator acting on the generalized velocity. The stiffness is assumed to be linear and symmetric. Functional analytic techniques are used to establish that solutions to a sequence of finite dimensional (Galerkin) approximating identification problems in some sense approximate a solution to the original infinite dimensional inverse problem.
Nonlinear-damping continuation of the nonlinear Schr\\"odinger equation - a numerical study
Fibich, G
2011-01-01
We study the nonlinear-damping continuation of singular solutions of the critical and supercritical NLS. Our simulations suggest that for generic initial conditions that lead to collapse in the undamped NLS, the solution of the weakly-damped NLS $$ i\\psi_t(t,\\X)+\\Delta\\psi+|\\psi|^{p-1}\\psi+i\\delta|\\psi|^{q-1}\\psi=0,\\qquad0<\\delta \\ll 1, $$ is highly asymmetric with respect to the singularity time, and the post-collapse defocusing velocity of the singular core goes to infinity as the damping coefficient $\\delta$ goes to zero. In the special case of the minimal-power blowup solutions of the critical NLS, the continuation is a minimal-power solution with a higher (but finite) defocusing velocity, whose magnitude increases monotonically with the nonlinear damping exponent $q$.
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim
1996-01-01
We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schrodinger equation (NLS). Using a collective approach, we find that for initial conditions where total collapse occurs in the unperturbed NLS, the presence of the damping term will instead in an exponenti......We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schrodinger equation (NLS). Using a collective approach, we find that for initial conditions where total collapse occurs in the unperturbed NLS, the presence of the damping term will instead...
Critical exponent for damped wave equations with nonlinear memory
Fino, Ahmad
2010-01-01
We consider the Cauchy problem in $\\mathbb{R}^n,$ $n\\geq 1,$ for a semilinear damped wave equation with nonlinear memory. Global existence and asymptotic behavior as $t\\to\\infty$ of small data solutions have been established in the case when $1\\leq n\\leq3.$ Moreover, we derive a blow-up result under some positive data for in any dimensional space. It turns out that the critical exponent indeed coincides with the one to the corresponding semilinear heat equation.
Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach
Directory of Open Access Journals (Sweden)
S. L. Han
2012-01-01
Full Text Available The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the information insufficiency in parameter of interests or errors in measurement. The probability space is estimated using Markov chain Monte Carlo (MCMC. The applicability of the proposed method is demonstrated through numerical experiment and particular application to a realistic problem related to ship roll motion.
Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene
Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A.
2011-06-01
The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes and graphene sheets. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.
A new method to solve the damped nonlinear Klein-Gordon equation
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper discusses a damped nonlinear Klein-Gordon equation in the reproducing kernel space and provides a new method for solving the damped nonlinear Klein-Gordon equation based on the reproducing kernel space.Two numerical examples are given for illustrating the feasibility and accuracy of the method.
Landau damping and steepening of interplanetary nonlinear hydromagnetic waves
Barnes, A.; Chao, J. K.
1977-01-01
According to collisionless shock theories, the thickness of a shock front should be of the order of the characteristic lengths of the plasmas (the Debye length, the proton and Larmor radii, etc.). Chao and Lepping (1974), found, however, that 30% of the observed interplanetary shocks at 1 AU have thicknesses much larger than these characteristic lengths. It is the objective of the present paper to investigate whether the competition between nonlinear steepening and Landau damping can result in a wave of finite width that does not steepen into a shock. A heuristic model of such a wave is developed and tested by the examples of two structures that are qualitatively shocklike, but thicker than expected from theory. It is found that both events are in the process of steepening and their limiting thicknesses due to Landau damping are greater than the corresponding proton Larmor radius for both structures as observed at Mariner 5 (nearer the sun than 1 AU) but are comparable to the proton Larmor radius for Explorer (near 1 AU) observations.
Validation of a Hertzian contact model with nonlinear damping
Sierakowski, Adam
2015-11-01
Due to limited spatial resolution, most disperse particle simulation methods rely on simplified models for incorporating short-range particle interactions. In this presentation, we introduce a contact model that combines the Hertz elastic restoring force with a nonlinear damping force, requiring only material properties and no tunable parameters. We have implemented the model in a resolved-particle flow solver that implements the Physalis method, which accurately captures hydrodynamic interactions by analytically enforcing the no-slip condition on the particle surface. We summarize the results of a few numerical studies that suggest the validity of the contact model over a range of particle interaction intensities (i.e., collision Stokes numbers) when compared with experimental data. This work was supported by the National Science Foundation under Grant Number CBET1335965 and the Johns Hopkins University Modeling Complex Systems IGERT program.
Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping
Directory of Open Access Journals (Sweden)
Jieqiong Wu
2015-09-01
Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.
Asymptotic stability for a class of boundary control systems with non-linear damping
Zwart, Heiko J.; Ramirez, Hector; Le Gorrec, Yann
2016-01-01
The asymptotic stability of boundary controlled port-Hamiltonian systems defined on a 1D spatial domain interconnected to a class of non-linear boundary damping is addressed. It is shown that if the port-Hamiltonian system is approximately observable, then any boundary damping which behaves linear
Asymptotic stability for a class of boundary control systems with non-linear damping
Zwart, Heiko J.; Ramirez, Hector; Le Gorrec, Yann
2016-01-01
The asymptotic stability of boundary controlled port-Hamiltonian systems defined on a 1D spatial domain interconnected to a class of non-linear boundary damping is addressed. It is shown that if the port-Hamiltonian system is approximately observable, then any boundary damping which behaves linear for small velocities asymptotically stabilizes the system.
Equivalent Representation Form of Oscillators with Elastic and Damping Nonlinear Terms
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
Full Text Available In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others.
Chen, Shao-Tuan; Du, Sijun; Arroyo, Emmanuelle; Jia, Yu; Seshia, Ashwin
2017-10-01
This paper presents a novel application of utilising nonlinear air damping as a soft mechanical stopper to increase the shock reliability for microelectromechanical systems (MEMS) vibration energy harvesters. The theoretical framework for nonlinear air damping is constructed for MEMS vibration energy harvesters operating in different air pressure levels, and characterisation experiments are conducted to establish the relationship between air pressure and nonlinear air damping coefficient for rectangular cantilever MEMS micro cantilevers with different proof masses. Design guidelines on choosing the optimal air pressure level for different MEMS vibration energy harvesters based on the trade-off between harvestable energy and the device robustness are presented, and random excitation experiments are performed to verify the robustness of MEMS vibration energy harvesters with nonlinear air damping as soft stoppers to limit the maximum deflection distance and increase the shock reliability of the device.
Yang, Zhijian; Liu, Zhiming
2017-03-01
The paper investigates the well-posedness and the longtime dynamics of the quasilinear wave equations with structural damping and supercritical nonlinearities: {{u}tt}- Δ u+{{≤ft(- Δ \\right)}α}{{u}t}-\
EXISTENCE OF TIME PERIODIC SOLUTIONS FOR A DAMPED GENERALIZED COUPLED NONLINEAR WAVE EQUATIONS
Institute of Scientific and Technical Information of China (English)
房少梅; 郭柏灵
2003-01-01
The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time periodic solutions, a priori estimate and Laray-Schauder fixed point theorem to prove the convergence of the approximate solutions, the existence of time periodic solutions for a damped generalized coupled nonlinear wave equations can be obtained.
Equivalent Mathematical Representation of Second-Order Damped, Driven Nonlinear Oscillators
Alex Elías-Zúñiga; Oscar Martínez-Romero
2013-01-01
The aim of this paper focuses on applying a nonlinearization method to transform forced, damped nonlinear equations of motion of oscillatory systems into the well-known forced, damped Duffing equation. The accuracy obtained from the derived equivalent equations of motion is evaluated by studying the amplitude-time, the phase portraits, and the continuous wavelet transform diagrams of the cubic-quintic Duffing equation, the generalized pendulum equation, the power-form elastic term oscillator,...
NONLINEAR DYNAMICS OF LATERAL MICRO-RESONATOR INCLUDING VISCOUS AIR DAMPING
Institute of Scientific and Technical Information of China (English)
GAO Rong; WANG Xiaojing; WANG Min; YU Maohua; XIE Mingchun
2007-01-01
The nonlinear dynamics of the lateral micro-resonator including the air damping effect is researched. The air damping force is varied periodically during the resonator oscillating, and the air damp coefficient can not be fixed as a constant. Therefore the linear dynamic analysis which used the constant air damping coefficient can not describe the actual dynamic characteristics of the micro-resonator. The nonlinear dynamic model including the air damping force is established. On the base of Navier-Stokes equation and nonlinear dynamical equation, a coupled fluid-solid numerical simulation method is developed and demonstrates that damping force is a vital factor in micro-comb structures. Compared with existing experimental result, the nonlinear numerical value has quite good agreement with it. The differences of the amplitudes (peak) between the experimental data and the results by the linear model and the nonlinear model are 74.5% and 6% respectively. Nonlinear numerical value is more exact than linear value and the method can be applied in other micro-electro-mechanical systeme (MEMS) structures to simulate the dynamic performance.
Lp-decay rates to nonlinear diffusion waves for p-system with nonlinear damping
Institute of Scientific and Technical Information of China (English)
ZHU Changjiang; JIANG Mina
2006-01-01
In this paper, we study the Lp (2 ≤ p ≤ +∞) convergence rates of the solutions to the Cauchy problem of the so-called p-system with nonlinear damping. Precisely, we show that the corresponding Cauchy problem admits a unique global solution (v(x,t),u(x,t)) and such a solution tends time-asymptotically to the corresponding nonlinear diffusion wave (-v(x, t), -u(x, t)) governed by the classical Darcy's law provided that the corresponding prescribed initial error function (w0(x), z0(x))lies in (H3 × H2) (R) and |v+ - v-| + ‖w0‖3 + ‖z0‖2 is sufficiently small.Furthermore, the Lp (2 ≤ p ≤ +∞) convergence rates of the solutions are also obtained.
An analytical solution to the equation of motion for the damped nonlinear pendulum
DEFF Research Database (Denmark)
Johannessen, Kim
2014-01-01
An analytical approximation of the solution to the differential equation describing the oscillations of the damped nonlinear pendulum at large angles is presented. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical...... of the damped nonlinear pendulum is presented, and it is shown that the period of oscillation is dependent on time. It is established that, in general, the period is longer than that of a linearized model, asymptotically approaching the period of oscillation of a damped linear pendulum....
Effect of joint damping and joint nonlinearity on the dynamics of space structures
Bowden, Mary; Dugundji, John
1988-01-01
Analyses of the effect of linear joint characteristics on the vibrations of a free-free, three-joint beam model show that increasing joint damping increases resonant frequencies and increases modal damping but only to the point where the joint gets 'locked up' by damping. This behavior is different from that predicted by modeling joint damping as proportional damping. Nonlinear analyses of the three-joint model with cubic springs at the joints show all the classical single DOF nonlinear response behavior at each resonance of the multiple DOF system: nondoubling of response for a doubling of forcing amplitude, multiple solutions, jump behavior, and resonant frequency shifts. These properties can be concisely quantified by characteristic backbone curves, which show the locus of resonant peaks for increasing forcing amplitude.
Breatherlike excitations in discrete lattices with noise and nonlinear damping
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri B.; Johansson, Magnus
1997-01-01
We discuss the stability of highly localized, ''breatherlike,'' excitations in discrete nonlinear lattices under the influence of thermal fluctuations. The particular model considered is the discrete nonlinear Schrodinger equation in the regime of high nonlinearity, where temperature effects...
Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping
Directory of Open Access Journals (Sweden)
Eleni Bisognin
2007-01-01
Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Institute of Scientific and Technical Information of China (English)
Z.-K.Peng; Z.-Q.Lang; G.Meng; S.A.Billings
2012-01-01
In the present study,the Volterra series theory is adopted to theoretically investigate the force transmissibility of multiple degrees of freedom (MDOF) structures,in which an isolator with nonlinear anti-symmetric viscous damping is assembled.The results reveal that the anti-symmetric nonlinear viscous damping can significantly reduce the force transmissibility over all resonance regions for MDOF structures with little effect on the transmissibility over non-resonant and isolation regions.The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to solve the dilemma occurring in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant frequencies but increases the transmissibility over non-resonant frequency regions.This work is an extension of a previous study in which MDOF structures installed on the mount through an isolator with cubic nonlinear damping are considered.The theoretical analysis results are also verified by simulation studies.
Nonlinear evolution of the modulational instability under weak forcing and damping
Directory of Open Access Journals (Sweden)
J. Touboul
2010-12-01
Full Text Available The evolution of modulational instability, or Benjamin-Feir instability is investigated within the framework of the two-dimensional fully nonlinear potential equations, modified to include wind forcing and viscous dissipation. The wind model corresponds to the Miles' theory. The introduction of dissipation in the equations is briefly discussed. Evolution of this instability in the presence of damping was considered by Segur et al. (2005a and Wu et al. (2006. Their results were extended theoretically by Kharif et al. (2010 who considered wind forcing and viscous dissipation within the framework of a forced and damped nonlinear Schrödinger equation. The marginal stability curve derived from the fully nonlinear numerical simulations coincides with the curve obtained by Kharif et al. (2010 from a linear stability analysis. Furthermore, it is found that the presence of wind forcing promotes the occurrence of a permanent frequency-downshifting without invoking damping due to breaking wave phenomenon.
Acceleration Control in Nonlinear Vibrating Systems based on Damped Least Squares
Pilipchuk, V N
2011-01-01
A discrete time control algorithm using the damped least squares is introduced for acceleration and energy exchange controls in nonlinear vibrating systems. It is shown that the damping constant of least squares and sampling time step of the controller must be inversely related to insure that vanishing the time step has little effect on the results. The algorithm is illustrated on two linearly coupled Duffing oscillators near the 1:1 internal resonance. In particular, it is shown that varying the dissipation ratio of one of the two oscillators can significantly suppress the nonlinear beat phenomenon.
Analytical investigation of machining chatter by considering the nonlinearity of process damping
Ahmadi, Keivan
2017-04-01
In this paper, the well-established problem of self-excited vibrations in machining is revisited to include the nonlinearity of process damping at the tool and workpiece interface. Machining dynamics is modeled using a time-delayed system with nonlinear damping, and the method of averaging is used to obtain the amplitude of the resulting limit cycles. As a result, an analytical relationship is presented to establish the stability charts corresponding with arbitrary limit cycles in machining systems. The presented analytical solutions are verified using experiments and numerical solutions.
Energy Technology Data Exchange (ETDEWEB)
Rajkumar, V. [ABB Transmission Technology Institute, Raleigh, NC (United States); Mohler, R.R. [Oregon State Univ., Corvallis, OR (United States)
1994-12-31
This paper presents a framework for the development of discrete-time, nonlinear predictive controllers using thyristor-controlled-series-capacitors and phasor measurements of bus voltage magnitude and angle, for the stabilization and rapid damping of multimachine power systems which are subjected to large disturbances. When the faults of concern are large, the nonlinear predictive controllers are used to return the power system state to a small region about the post-fault equilibrium. In this region, linear controllers provide local asymptotic stability and rapid damping. Simulation results are provided on a sample four-machine power system.
Global Well-Posedness for Cubic NLS with Nonlinear Damping
Antonelli, Paolo
2010-11-04
We study the Cauchy problem for the cubic nonlinear Schrödinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions. © Taylor & Francis Group, LLC.
Chen, D
The $\\textbf{DA}$rk $\\textbf{M}$atter $\\textbf{P}$article $\\textbf{E}$xplorer (DAMPE) experiment is a high-energy astroparticle physics satellite mission to search for Dark Matter signatures in space, study the cosmic ray spectrum and composition up to 100 TeV, and perform high-energy gamma astronomy. The launch is planned for end 2015, initially for 3 years, to compliment existing space missions FERMI, AMS and CALET.
Chortis, Dimitris I
2013-01-01
This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...
The Effect of Nonlinear Landau Damping on Ultrarelativistic Beam Plasma Instabilities
Chang, Philip; Lamberts, Astrid
2014-01-01
Very-high energy gamma-rays from extragalactic sources pair-produce off of the extragalactic background light, yielding an electron-positron pair beam. This pair beam is unstable to various plasma instabilities, especially the "oblique" instability, which can be the dominant cooling mechanism for the beam. However, recently, it has been claimed that nonlinear Landau damping renders it physically irrelevant by reducing the effective damping rate to a low level. Here, we show with numerical calculations that the effective damping rate is $8\\times 10^{-4}$ of the growth rate of the linear instability, which is sufficient for the "oblique" instability to be the dominant cooling mechanism of these pair beams. In particular, we show that previous estimates of this rate ignored the exponential cutoff in the scattering amplitude at large wavenumber and assumed that the damping of scattered waves entirely depends on collisions, ignoring collisionless processes. We find that the total wave energy eventually grows to ap...
Solutions, bifurcations and chaos of the nonlinear Schrodinger equation with weak damping
Institute of Scientific and Technical Information of China (English)
彭解华; 唐驾时; 于德介; 颜家壬; 海文华
2002-01-01
Using the wave packet theory, we obtain all the solutions of the weakly damped nonlinear Schrodinger equation.These solutions are the static solution, and solutions of planar wave, solitary wave, shock wave and elliptic functionwave and chaos. The bifurcation phenomenon exists in both steady and non-steady solutions. The chaotic and periodicmotions can coexist in a certain parametric space region.
Global well-posedness for nonlinear Schrodinger equations with energy-critical damping
Directory of Open Access Journals (Sweden)
Binhua Feng
2015-01-01
Full Text Available We consider the Cauchy problem for the nonlinear Schrodinger equations with energy-critical damping. We prove the existence of global in-time solutions for general initial data in the energy space. Our results extend some results from [1,2].
On Landau damping of dipole modes by non-linear space charge and octupoles
Möhl, D
1995-01-01
The joint effect of space-charge non-linearities and octupole lenses is important for Landau damping of coherent instabilities. The octupole strength required for stabilisation can depend strongly on the sign of the excitation current of the lenses. This note tries to extend results, previously obtained for coasting beams and rigid bunches, to more general head--tail modes.
Nonlinear damped oscillators on Riemannian manifolds: Numerical simulation
Fiori, Simone
2017-06-01
Nonlinear oscillators are ubiquitous in sciences, being able to model the behavior of complex nonlinear phenomena, as well as in engineering, being able to generate repeating (i.e., periodic) or non-repeating (i.e., chaotic) reference signals. The state of the classical oscillators known from the literature evolves in the space Rn , typically with n = 1 (e.g., the famous van der Pol vacuum-tube model), n = 2 (e.g., the FitzHugh-Nagumo model of spiking neurons) or n = 3 (e.g., the Lorenz simplified model of turbulence). The aim of the current paper is to present a general scheme for the numerical differential-geometry-based integration of a general second-order, nonlinear oscillator model on Riemannian manifolds and to present several instances of such model on manifolds of interest in sciences and engineering, such as the Stiefel manifold and the space of symmetric, positive-definite matrices.
Reliability optimization of friction-damped systems using nonlinear modes
Krack, Malte; Tatzko, Sebastian; Panning-von Scheidt, Lars; Wallaschek, Jörg
2014-06-01
A novel probabilistic approach for the design of mechanical structures with friction interfaces is proposed. The objective function is defined as the probability that a specified performance measure of the forced vibration response is achieved subject to parameter uncertainties. The practicability of the approach regarding the extensive amount of required design evaluations is strictly related to the computational efficiency of the nonlinear dynamic analysis. Therefore, it is proposed to employ a recently developed parametric reduced order model (ROM) based on nonlinear modes of vibration, which can facilitate a decrease of the computational burden by several orders of magnitude.
Analysis of Dynamic Model of a Structure with Nonlinear Damped Behavior
Directory of Open Access Journals (Sweden)
G. Domairry
2010-04-01
Full Text Available In this work, it has been attempted to analytically treat the nonlinear behavior of structures. Since analysing nonlinear problems is of great difficulty, different numerical methods and software are advised to treat such problems. Despite the increasing expenses of building structures to maintain their linear behavior, nonlinearity has been inevitable, and therefore, nonlinear analysis has beenof great importance to the scientists in the field. As structures confront lateral forces and intense earthquakes especially near fault regions, a part of the structure remains linear, but some part of itbehaves nonlinearly for example dampers, columns and beams. This is simulated by a damped in nonlinear oscillator. In this paper, the nonlinear equation of oscillator with damping which has nonlinear behavior is representative of the dynamic behavior of a structure has been solved analytically. In the end, the obtained results are compared with numerical ones and shown in graphs and in tables;analytical solutions are in good agreement with those of the numerical method.
INITIAL BOUNDARY VALUE PROBLEM FOR A DAMPED NONLINEAR HYPERBOLIC EQUATION
Institute of Scientific and Technical Information of China (English)
陈国旺
2003-01-01
In the paper, the existence and uniqueness of the generalized global solution and the classical global solution of the initial boundary value problems for the nonlinear hyperbolic equationare proved by Galerkin method and the sufficient conditions of blow-up of solution in finite time are given.
Attractor of Beam Equation with Structural Damping under Nonlinear Boundary Conditions
Directory of Open Access Journals (Sweden)
Danxia Wang
2015-01-01
Full Text Available Simultaneously, considering the viscous effect of material, damping of medium, and rotational inertia, we study a kind of more general Kirchhoff-type extensible beam equation utt-uxxtt+uxxxx-σ(∫0l(ux2dxuxx-ϕ(∫0l(ux2dxuxxt=q(x, in [0,L]×R+ with the structural damping and the rotational inertia term. Little attention is paid to the longtime behavior of the beam equation under nonlinear boundary conditions. In this paper, under nonlinear boundary conditions, we prove not only the existence and uniqueness of global solutions by prior estimates combined with some inequality skills, but also the existence of a global attractor by the existence of an absorbing set and asymptotic compactness of corresponding solution semigroup. In addition, the same results also can be proved under the other nonlinear boundary conditions.
NONLINEAR FLUID DAMPING IN STRUCTURE-WAKE OSCILLATORS IN MODELING VORTEX-INDUCED VIBRATIONS
Institute of Scientific and Technical Information of China (English)
LIN Li-ming; LING Guo-can; WU Ying-xiang; ZENG Xiao-hui
2009-01-01
A Nonlinear Fluid Damping(NFD)in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations(VIV).Its nonlinear hydrodynamic effects on the coupled wake and structure oscillators are investigated.A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics,such as the amplification of body displacement at lock-in and frequency lock-in,both at high and low mass ratios.Particularly,the predicted peak amplitude of the body in the Griffin plot is in good agreement with experimental data and empirical equation,indicating the significant effect of the NFD on the structure motion.
On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams
Energy Technology Data Exchange (ETDEWEB)
Alexahin, Y. [Fermilab; Gianfelice-Wendt, E. [Fermilab; Lebedev, V. [Fermilab; Valishev, A. [Fermilab
2016-09-30
Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift can be created without destroying the dynamic aperture.
Directory of Open Access Journals (Sweden)
S. L. Han
2012-01-01
Full Text Available The nonlinear responses of ship rolling motion characterized by a roll damping moment are of great interest to naval architects and ocean engineers. Modeling and identification of the nonlinear damping moment are essential to incorporate the inherent nonlinearity in design, analysis, and control of a ship. A stochastic nonparametric approach for identification of nonlinear damping in the general mechanical system has been presented in the literature (Han and Kinoshits 2012. The method has been also applied to identification of the nonlinear damping moment of a ship at zero-forward speed (Han and Kinoshits 2013. In the presence of forward speed, however, the characteristic of roll damping moment of a ship is significantly changed due to the lift effect. In this paper, the stochastic inverse method is applied to identification of the nonlinear damping moment of a ship moving at nonzero-forward speed. The workability and validity of the method are verified with laboratory tests under controlled conditions. In experimental trials, two different types of ship rolling motion are considered: time-dependent transient motion and frequency-dependent periodic motion. It is shown that this method enables the inherent nonlinearity in damping moment to be estimated, including its reliability analysis.
Global attractors for damped abstract nonlinear hyperbolic systems
Pinter, Gabriella Agnes
1997-12-01
This dissertation is concerned with the long time dynamics of a class of damped abstract hyperbolic systems that arise in the study of certain smart material structures, namely elastomers. The term smart material refers to a material capable of both sensing and responding actively to outside excitation. These properties make smart materials a prime canditate for actuation and sensing in next generation control systems. However, modeling and numerically simulating their behavior poses several difficulties. In this work we consider a model for elastomers developed by H. T. Banks, N. J. Lybeck, B. C. Munoz, L. C. Yanyo, formulate this model as an abstract evolution system, and study the long time behavior of its solutions. We remark that the question of existence and uniqueness of solutions for this class of systems is a challenging problem and was only recently solved by H. T. Banks, D. S. Gilliam and V. I. Shubov. Concerning the long time dynamics of the problem, we first prove that the system generates a weak dynamical system, and possesses a weak global attractor. Our main result is the existence of a "strong" dynamical system which has a compact global attractor. With the help of a Lyapunov function we are able to characterize the structure of this attractor. We also give a theorem that guarantees the stability of the global attractor with respect to varying parameters in the system. Our last result concerns the uniform differentiability of the dynamical system.
Passamonti, A
2011-01-01
We study the damping of the gravitational radiation-driven f-mode instability in ro- tating neutron stars by nonlinear bulk viscosity in the so-called supra-thermal regime. In this regime the dissipative action of bulk viscosity is known to be enhanced as a result of nonlinear contributions with respect to the oscillation amplitude. Our anal- ysis of the f-mode instability is based on a time-domain code that evolves linear perturbations of rapidly rotating polytropic neutron star models. The extracted mode frequency and eigenfunctions are subsequently used in standard energy integrals for the gravitational wave growth and viscous damping. We find that nonlinear bulk vis- cosity has a moderate impact on the size of the f-mode instability window, becoming an important factor and saturating the mode's growth at a relatively large oscillation amplitude. We show that a similar result holds for the damping of the inertial r-mode instability by nonlinear bulk viscosity. In addition, we show that the action of bulk v...
Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects
Directory of Open Access Journals (Sweden)
Jie-Yu Chen
2009-05-01
Full Text Available In Atomic force microscope (AFM examination of a vibrating microcantilever, the nonlinear tip-sample interaction would greatly influence the dynamics of the cantilever. In this paper, the nonlinear dynamics and chaos of a tip-sample dynamic system being run in the tapping mode (TM were investigated by considering the effects of hydrodynamic loading and squeeze film damping. The microcantilever was modeled as a spring-mass-damping system and the interaction between the tip and the sample was described by the Lennard-Jones (LJ potential. The fundamental frequency and quality factor were calculated from the transient oscillations of the microcantilever vibrating in air. Numerical simulations were carried out to study the coupled nonlinear dynamic system using the bifurcation diagram, Poincaré maps, largest Lyapunov exponent, phase portraits and time histories. Results indicated the occurrence of periodic and chaotic motions and provided a comprehensive understanding of the hydrodynamic loading of microcantilevers. It was demonstrated that the coupled dynamic system will experience complex nonlinear oscillation as the system parameters change and the effect of squeeze film damping is not negligible on the micro-scale.
Institute of Scientific and Technical Information of China (English)
Xiang LI; Wei-guo ZHANG; Zheng-ming LI
2014-01-01
This paper aims at analyzing the shapes of the bounded traveling wave solu-tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi-tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi-mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so-lutions. It can be seen that the error is infinitesimal decreasing in the exponential form.
Institute of Scientific and Technical Information of China (English)
Mai Tong; Thomas Liebner
2007-01-01
In a viscous damping device under cyclic loading, after the piston reaches a peak stroke, the reserve movement that follows may sometimes experience a short period of delayed or significantly reduced device force output. A similar delay or reduced device force output may also occur at the damper's initial stroke as it moves away from its neutral position.This phenomenon is referred to as the effect of "deadzone". The deadzone can cause a loss of energy dissipation capacity and less efficient vibration control. It is prominent in small amplitude vibrations. Although there are many potential causes of deadzone such as environmental factors, construction, material aging, and manufacture quality, in this paper, its general effect in linear and nonlinear viscous damping devices is analyzed. Based on classical dynamics and damping theory, a simple model is developed to capture the effect of deadzone in terms of the loss of energy dissipation capacity. The model provides several methods to estimate the loss of energy dissipation within the deadzone in linear and sublinear viscous fluid dampers.An empirical equation of loss of energy dissipation capacity versus deadzone size is formulated, and the equivalent reduction of effective damping in SDOF systems has been obtained. A laboratory experimental evaluation is carried out to verify the effect of deadzone and its numerical approximation. Based on the analysis, a modification is suggested to the corresponding formulas in FEMA 356 for calculation of equivalent damping ifa deadzone is to be considered.
Nonlinear damping of a finite amplitude whistler wave due to modified two stream instability
Energy Technology Data Exchange (ETDEWEB)
Saito, Shinji, E-mail: saito@stelab.nagoya-u.ac.jp [Graduate School of Science, Nagoya University, Nagoya (Japan); Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya (Japan); Nariyuki, Yasuhiro, E-mail: nariyuki@edu.u-toyama.ac.jp [Faculty of Human Development, University of Toyama, Toyama (Japan); Umeda, Takayuki, E-mail: umeda@stelab.nagoya-u.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya (Japan)
2015-07-15
A two-dimensional, fully kinetic, particle-in-cell simulation is used to investigate the nonlinear development of a parallel propagating finite amplitude whistler wave (parent wave) with a wavelength longer than an ion inertial length. The cross field current of the parent wave generates short-scale whistler waves propagating highly oblique directions to the ambient magnetic field through the modified two-stream instability (MTSI) which scatters electrons and ions parallel and perpendicular to the magnetic field, respectively. The parent wave is largely damped during a time comparable to the wave period. The MTSI-driven damping process is proposed as a cause of nonlinear dissipation of kinetic turbulence in the solar wind.
Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties
de Ceglia, Domenico; Campione, Salvatore; Vincenti, Maria Antonietta; Capolino, Filippo; Scalora, Michael
2013-01-01
We investigate second harmonic generation, low-threshold multistability, all-optical switching, and inherently nonlocal effects due to the free-electron gas pressure in an epsilon-near-zero (ENZ) metamaterial slab made of cylindrical, plasmonic nanoshells illuminated by TM-polarized light. Damping compensation in the ENZ frequency region, achieved by using gain medium inside the shells' dielectric cores, enhances the nonlinear properties. Reflection is inhibited and the electric field compone...
A note on a strongly damped wave equation with fast growing nonlinearities
2015-01-01
A note on a strongly damped wave equation with fast growing nonlinearities Varga Kalantarov and Sergey Zelik Citation: Journal of Mathematical Physics 56, 011501 (2015); doi: 10.1063/1.4905234 View online: http://dx.doi.org/10.1063/1.4905234 View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/56/1?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Local well-posedness for nonlinear Klein-Gordon equation with weak and strong d...
Wind farm non-linear control for damping electromechanical oscillations of power systems
Energy Technology Data Exchange (ETDEWEB)
Fernandez, R.D. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Laboratorio de Electronica. Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000 Comodoro Rivadavia (Argentina); Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Mantz, R.J. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, CICpba, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina)
2008-10-15
This paper deals with the non-linear control of wind farms equipped with doubly fed induction generators (DFIGs). Both active and reactive wind farm powers are employed in two non-linear control laws in order to increase the damping of the oscillation modes of a power system. The proposed strategy is derived from the Lyapunov Theory and is independent of the network topology. In this way, the strategy can be added to the central controller as another added control function. Finally, some simulations, showing the oscillation modes of a power system, are presented in order to support the theoretical considerations demonstrating the potential contributions of both control laws. (author)
Directory of Open Access Journals (Sweden)
H. M. Abdelhafez
2016-03-01
Full Text Available The modified differential transform method (MDTM, Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared with the result by the MDTM and plotted in a long time domain.
Nonlinear damping effects in spin torque dynamics of magnetic tunnel junctions
Barsukov, Igor; Chen, Yu-Jin; Lee, Han Kyu; Goncalves, Alexandre; Katine, Jordan; Arias, Rodrigo; Ivanov, Boris; Krivorotov, Ilya
2015-03-01
Performance of nanoscale spin torque devices such as memory (STT-MRAM) and auto-oscillators critically depends on magnetic relaxation. It is commonly assumed that magnetization dynamics in the presence of spin torque can be understood as simple competition between antidamping arising from spin torque and Gilbert damping of the free layer. However our experiments reveal that the situation is more complex and that nonlinear damping processes in the free layer of magnetic tunnel junction (MTJ) nanopillars can strongly alter spin torque driven dynamics. We study elliptical MTJ nanopillars with in-plane magnetizations of the free layer and SAF layers by spin torque ferromagnetic resonance. We find an excitation spectrum associated with standing spin waves of the free layer. By varying the external field, the energy of a higher-order spin wave mode becomes twice the energy of the main mode. This opens up a nonlinear, resonant relaxation channel, giving rise to a damping increase of approximately 20 percent. With increasing spin torque provided by a DC bias current, we find that this relaxation channel competes with antidamping in a nonlinear manner, increasingly contributing to and even dominating the relaxation at subcritical currents.
Chatterjee, Debjani; Misra, A P
2015-12-01
The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' q-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Saberian and Esfandyari-Kalejahi, Phys. Rev. E 87, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schrödinger (NLS) equation with a nonlocal nonlinear term ∝P∫|ϕ(ξ',τ)|(2)dξ'ϕ/(ξ-ξ') [where P denotes the Cauchy principal value, ϕ is the small-amplitude electrostatic (complex) potential, and ξ and τ are the stretched coordinates in MST], which appears due to the wave-particle resonance. It is found that a subregion 1/3Landau damping) due to the nonlocal nonlinearity in the NLS equation. Furthermore, the effect of the nonlinear Landau damping is to slow down the amplitude of the wave envelope, and the corresponding decay rate can be faster the larger is the number of superthermal particles in pair plasmas.
Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties
de Ceglia, Domenico; Vincenti, Maria Antonietta; Capolino, Filippo; Scalora, Michael
2013-01-01
We investigate second harmonic generation, low-threshold multistability, all-optical switching, and inherently nonlocal effects due to the free-electron gas pressure in an epsilon-near-zero (ENZ) metamaterial slab made of cylindrical, plasmonic nanoshells illuminated by TM-polarized light. Damping compensation in the ENZ frequency region, achieved by using gain medium inside the shells' dielectric cores, enhances the nonlinear properties. Reflection is inhibited and the electric field component normal to the slab interface is enhanced near the effective pseudo-Brewster angle, where the effective \\epsilon-near-zero condition triggers a non-resonant, impedance-matching phenomenon. We show that the slab displays a strong effective, spatial nonlocality associated with leaky modes that are mediated by the compensation of damping. The presence of these leaky modes then induces further spectral and angular conditions where the local fields are enhanced, thus opening new windows of opportunity for the enhancement of ...
Conformal structure-preserving method for damped nonlinear Schrödinger equation
Fu, Hao; Zhou, Wei-En; Qian, Xu; Song, Song-He; Zhang, Li-Ying
2016-11-01
In this paper, we propose a conformal momentum-preserving method to solve a damped nonlinear Schrödinger (DNLS) equation. Based on its damped multi-symplectic formulation, the DNLS system can be split into a Hamiltonian part and a dissipative part. For the Hamiltonian part, the average vector field (AVF) method and implicit midpoint method are employed in spatial and temporal discretizations, respectively. For the dissipative part, we can solve it exactly. The proposed method conserves the conformal momentum conservation law in any local time-space region. With periodic boundary conditions, this method also preserves the total conformal momentum and the dissipation rate of momentum exactly. Numerical experiments are presented to demonstrate the conservative properties of the proposed method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11571366, 11501570, and 11601514) and the Open Foundation of State Key Laboratory of High Performance Computing of China (Grant No. JC15-02-02).
THE EFFECT OF NONLINEAR LANDAU DAMPING ON ULTRARELATIVISTIC BEAM PLASMA INSTABILITIES
Energy Technology Data Exchange (ETDEWEB)
Chang, Philip; Lamberts, Astrid [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Broderick, Avery E.; Shalaby, Mohamad [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Pfrommer, Christoph [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Puchwein, Ewald, E-mail: chang65@uwm.edu [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)
2014-12-20
Very high energy gamma-rays from extragalactic sources produce pairs from the extragalactic background light, yielding an electron-positron pair beam. This pair beam is unstable to various plasma instabilities, especially the ''oblique'' instability, which can be the dominant cooling mechanism for the beam. However, recently, it has been claimed that nonlinear Landau damping renders it physically irrelevant by reducing the effective damping rate to a low level. Here we show with numerical calculations that the effective damping rate is 8 × 10{sup –4} the growth rate of the linear instability, which is sufficient for the ''oblique'' instability to be the dominant cooling mechanism of these pair beams. In particular, we show that previous estimates of this rate ignored the exponential cutoff in the scattering amplitude at large wave numbers and assumed that the damping of scattered waves entirely depends on collisions, ignoring collisionless processes. We find that the total wave energy eventually grows to approximate equipartition with the beam by increasingly depositing energy into long-wavelength modes. As we have not included the effect of nonlinear wave-wave interactions on these long-wavelength modes, this scenario represents the ''worst case'' scenario for the oblique instability. As it continues to drain energy from the beam at a faster rate than other processes, we conclude that the ''oblique'' instability is sufficiently strong to make it the physically dominant cooling mechanism for high-energy pair beams in the intergalactic medium.
Yang, Pengju; Guo, Lixin
2016-11-01
Based on the Lombardini et al. model that can predict the hydrodynamic damping of rough sea surfaces in the presence of monomolecular slicks and the "choppy wave" model (CWM) that can describe the nonlinear interactions between ocean waves, the modeling of time-varying nonlinear sea surfaces damped by natural or organic sea slicks is presented in this paper. The polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence is utilized for evaluating co- and cross-polarized backscattered echoes from clean and contaminated CWM nonlinear sea surfaces. The influence of natural sea slicks on Doppler shift and spectral bandwidth of radar sea echoes is investigated in detail by comparing the polarimetric Doppler spectra of contaminated sea surfaces with those of clean sea surfaces. A narrowing of Doppler spectra in the presence of oil slicks is observed for both co- and cross-polarization, which is qualitatively consistent with wave-tank measurements. Simulation results also show that the Doppler shifts in slicks can increase or decrease, depending on incidence angles and polarizations.
Energy Technology Data Exchange (ETDEWEB)
Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190, Toyama City, Toyama 930-8555 (Japan); Hada, T. [Department of Earth System Science and Technology, Kyushu University, 6-1, Kasuga City, Fukuoka 816-8580 (Japan); Tsubouchi, K., E-mail: nariyuki@edu.u-toyama.ac.jp [Graduate School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)
2014-10-01
The damping process of field-aligned, low-frequency right-handed polarized nonlinear Alfvén waves (NAWs) in solar wind plasmas with and without proton beams is studied by using a two-dimensional ion hybrid code. The numerical results show that the obliquely propagating kinetic Alfvén waves (KAWs) excited by beam protons affect the damping of the low-frequency NAW in low beta plasmas, while the nonlinear wave-wave interaction between parallel propagating waves and nonlinear Landau damping due to the envelope modulation are the dominant damping process in high beta plasmas. The nonlinear interaction between the NAWs and KAWs does not cause effective energy transfer to the perpendicular direction. Numerical results suggest that while the collisionless damping due to the compressibility of the envelope-modulated NAW plays an important role in the damping of the field-aligned NAW, the effect of the beam instabilities may not be negligible in low beta solar wind plasmas.
The transition from the classical to the quantum regime in nonlinear Landau damping
Brodin, G; Mendonca, J T
2015-01-01
Starting from the Wigner-Moyal equation coupled to Poisson's equation, a simplified set of equations describing nonlinear Landau damping of Langmuir waves is derived. This system is studied numerically, with a particular focus on the transition from the classical to the quantum regime. In the quantum regime several new features are found. This includes a quantum modified bounce frequency, and the discovery that bounce-like amplitude oscillations can take place even in the absence of trapped particles. The implications of our results are discussed.
Hu, Weipeng; Deng, Zichen; Yin, Tingting
2017-01-01
Exploring the dynamic behaviors of the damping nonlinear Schrödinger equation (NLSE) with periodic perturbation is a challenge in the field of nonlinear science, because the numerical approaches available for damping-driven dynamic systems may exhibit the artificial dissipation in different degree. In this paper, based on the generalized multi-symplectic idea, the local energy/momentum loss expressions as well as the approximate symmetric form of the linearly damping NLSE with periodic perturbation are deduced firstly. And then, the local energy/momentum losses are separated from the simulation results of the NLSE with small linear damping rate less than the threshold to insure structure-preserving properties of the scheme. Finally, the breakup process of the multisoliton state is simulated and the bifurcation of the discrete eigenvalues of the associated Zakharov-Shabat spectral problem is obtained to investigate the variation of the velocity as well as the amplitude of the solitons during the splitting process.
Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions
Jameson Graber, P.; Shomberg, Joseph L.
2016-04-01
We establish the well-posedness of a strongly damped semilinear wave equation equipped with nonlinear hyperbolic dynamic boundary conditions. Results are carried out with the presence of a parameter distinguishing whether the underlying operator is analytic, α >0 , or only of Gevrey class, α =0 . We establish the existence of a global attractor for each α \\in ≤ft[0,1\\right], and we show that the family of global attractors is upper-semicontinuous as α \\to 0. Furthermore, for each α \\in ≤ft[0,1\\right] , we show the existence of a weak exponential attractor. A weak exponential attractor is a finite dimensional compact set in the weak topology of the phase space. This result ensures the corresponding global attractor also possesses finite fractal dimension in the weak topology; moreover, the dimension is independent of the perturbation parameter α. In both settings, attractors are found under minimal assumptions on the nonlinear terms.
Said-Houari, Belkacem
2012-09-01
The goal of this work is to study a model of the viscoelastic wave equation with nonlinear boundary/interior sources and a nonlinear interior damping. First, applying the Faedo-Galerkin approximations combined with the compactness method to obtain existence of regular global solutions to an auxiliary problem with globally Lipschitz source terms and with initial data in the potential well. It is important to emphasize that it is not possible to consider density arguments to pass from regular to weak solutions if one considers regular solutions of our problem where the source terms are locally Lipschitz functions. To overcome this difficulty, we use an approximation method involving truncated sources and adapting the ideas in [13] to show that the existence of weak solutions can still be obtained for our problem. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term, then the solution ceases to exist and blows up in finite time provided that the initial data are large enough.
Nonlinear Vibration Characteristics of a Flexible Blade with Friction Damping due to Tip-Rub
Directory of Open Access Journals (Sweden)
Dengqing Cao
2011-01-01
Full Text Available An approximate approach is proposed in this paper for analyzing the two-dimensional friction contact problem so as to compute the dynamic response of a structure constrained by friction interfaces due to tip-rub. The dynamical equation of motion for a rotational cantilever blade in a centrifugal force field is established. Flow-induced distributed periodic forces and the internal material damping in the blade are accounted for in the governing equation of motion. The Galerkin method is employed to obtain a three-degree-of-freedom oscillator with friction damping due to tip-rub. The combined motion of impact and friction due to tip-rub produced a piecewise linear vibration which is actually nonlinear. Thus, a complete vibration cycle is divided into successive intervals. The system possesses linear vibration characteristic during each of these intervals, which can be determined using analytical solution forms. Numerical simulation shows that the parameters such as gap of the tip and the rotational speed of the blades have significant effects on the dynamical responses of the system. Finally, the nonlinear vibration characteristics of the blade are investigated in terms of the Poincare graph, and the frequency spectrum of the responses and the amplitude-frequency curves.
Saviz, M. R.
2015-11-01
In this paper a nonlinear approach to studying the vibration characteristic of laminated composite plate with surface-bonded piezoelectric layer/patch is formulated, based on the Green Lagrange type of strain-displacements relations, by incorporating higher-order terms arising from nonlinear relations of kinematics into mathematical formulations. The equations of motion are obtained through the energy method, based on Lagrange equations and by using higher-order shear deformation theories with von Karman-type nonlinearities, so that transverse shear strains vanish at the top and bottom surfaces of the plate. An isoparametric finite element model is provided to model the nonlinear dynamics of the smart plate with piezoelectric layer/ patch. Different boundary conditions are investigated. Optimal locations of piezoelectric patches are found using a genetic algorithm to maximize spatial controllability/observability and considering the effect of residual modes to reduce spillover effect. Active attenuation of vibration of laminated composite plate is achieved through an optimal control law with inequality constraint, which is related to the maximum and minimum values of allowable voltage in the piezoelectric elements. To keep the voltages of actuator pairs in an allowable limit, the Pontryagin’s minimum principle is implemented in a system with multi-inequality constraint of control inputs. The results are compared with similar ones, proving the accuracy of the model especially for the structures undergoing large deformations. The convergence is studied and nonlinear frequencies are obtained for different thickness ratios. The structural coupling between plate and piezoelectric actuators is analyzed. Some examples with new features are presented, indicating that the piezo-patches significantly improve the damping characteristics of the plate for suppressing the geometrically nonlinear transient vibrations.
Oscillation criteria for third order nonlinear delay differential equations with damping
Directory of Open Access Journals (Sweden)
Said R. Grace
2015-01-01
Full Text Available This note is concerned with the oscillation of third order nonlinear delay differential equations of the form \\[\\label{*} \\left( r_{2}(t\\left( r_{1}(ty^{\\prime}(t\\right^{\\prime}\\right^{\\prime}+p(ty^{\\prime}(t+q(tf(y(g(t=0.\\tag{\\(\\ast\\}\\] In the papers [A. Tiryaki, M. F. Aktas, Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl. 325 (2007, 54-68] and [M. F. Aktas, A. Tiryaki, A. Zafer, Oscillation criteria for third order nonlinear functional differential equations, Applied Math. Letters 23 (2010, 756-762], the authors established some sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates or converges to zero, provided that the second order equation \\[\\left( r_{2}(tz^{\\prime }(t\\right^{\\prime}+\\left(p(t/r_{1}(t\\right z(t=0\\tag{\\(\\ast\\ast\\}\\] is nonoscillatory. Here, we shall improve and unify the results given in the above mentioned papers and present some new sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates if equation (\\(\\ast\\ast\\ is nonoscillatory. We also establish results for the oscillation of equation (\\(\\ast\\ when equation (\\(\\ast\\ast\\ is oscillatory.
Non-linear signal detection improvement by radiation damping in single-pulse NMR spectra.
Schlagnitweit, Judith; Morgan, Steven W; Nausner, Martin; Müller, Norbert; Desvaux, Hervé
2012-02-01
When NMR lines overlap and at least one of them is affected by radiation damping, the resonance line shapes of all lines are no longer Lorentzian. We report the appearance of narrow signal distortions, which resemble hole-burnt spectra. This new experimental phenomenon facilitates the detection of tiny signals hidden below the main resonance. Theoretical analysis based on modified Maxwell-Bloch equations shows that the presence of strong transverse magnetization creates a feedback through the coil, which influences the magnetization of all spins with overlapping resonance lines. In the time domain this leads to cross-precession terms between magnetization densities, which ultimately cause non-linear behavior. Numerical simulations corroborate this interpretation.
Non-linear collisionless damping of Weibel turbulence in relativistic blast waves
Lemoine, Martin
2014-01-01
The Weibel/filamentation instability is known to play a key role in the physics of weakly magnetized collisionless shock waves. From the point of view of high energy astrophysics, this instability also plays a crucial role because its development in the shock precursor populates the downstream with a small-scale magneto-static turbulence which shapes the acceleration and radiative processes of suprathermal particles. The present work discusses the physics of the dissipation of this Weibel-generated turbulence downstream of relativistic collisionless shock waves. It calculates explicitly the first-order non-linear terms associated to the diffusive nature of the particle trajectories. These corrections are found to systematically increase the damping rate, assuming that the scattering length remains larger than the coherence length of the magnetic fluctuations. The relevance of such corrections is discussed in a broader astrophysical perspective, in particular regarding the physics of the external relativistic ...
Directory of Open Access Journals (Sweden)
Yan Zhao
2014-01-01
Full Text Available This paper is focused on studying approximate damped oscillatory solutions of the compound KdV-Burgers-type equation with nonlinear terms of any order. By the theory and method of planar dynamical systems, existence conditions and number of bounded traveling wave solutions including damped oscillatory solutions are obtained. Utilizing the undetermined coefficients method, the approximate solutions of damped oscillatory solutions traveling to the left are presented. Error estimates of these approximate solutions are given by the thought of homogeneous principle. The results indicate that errors between implicit exact damped oscillatory solutions and approximate damped oscillatory solutions are infinitesimal decreasing in the exponential form.
DEFF Research Database (Denmark)
Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit
2015-01-01
Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilit......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... studied in the numerical simulation. It is shown that the one-mode model is able to predict the sloshing force and the damped structural response accurately, since the primary damping effect on the structure is achieved by the first sloshing mode of the fluid. Although it is unable to predict the fluid...
DEFF Research Database (Denmark)
Yao, Wei; Fang, Jiakun; Zhao, Ping
2013-01-01
the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency...... oscillations under different operating conditions and is superior to the lead-lag damping controller tuned by EA....
Jang, Jae K.; Erkintalo, Miro; Luo, Kathy; Oppo, Gian-Luca; Coen, Stéphane; Murdoch, Stuart G.
2016-03-01
We report studies of controlled interactions of localised dissipative structures in a system described by the AC-driven damped nonlinear Schrödinger equation (equivalent to the Lugiato-Lefever model). Extensive numerical simulations reveal a variety of interaction scenarios that are governed by the properties of the system driver, notably its gradients. In our experiments, performed with a nonlinear optical fibre (Kerr) resonator, the phase profile of the driver is used to induce interactions of the dissipative structures on demand. We observe both merging and annihilation of localised structures, i.e. interactions governed by the dissipative, out-of-equilibrium nature of the system. These interactions fundamentally differ from those typically found for conventional conservative solitons.
Energy Technology Data Exchange (ETDEWEB)
Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.; Ebels, U. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); Delaët, B. [CEA-LETI, MINATEC, DRT/LETI/DIHS, 38054 Grenoble (France)
2015-05-11
The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currents and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.
Phase-locking phenomena and excitation of damped and driven nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Shagalov, A G [Institute of Metal Physics, Ekaterinburg 620041 (Russian Federation); Rasmussen, J Juul; Naulin, V [Risoe-DTU, Building 128, PO Box 49, DK-4000 Roskilde (Denmark)], E-mail: shagalov@imp.uran.ru, E-mail: jens.juul.rasmussen@risoe.dk, E-mail: volker.naulin@risoe.dk
2009-01-30
Resonant phase-locking phenomena ('autoresonance') in the van der Pol-Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi-stable states. We find the range of parameters of the oscillator, the thresholds and the appropriate control paths where autoresonant excitation of high amplitude oscillations is possible.
Phase-locking phenomena and excitation of damped and driven nonlinear oscillators
DEFF Research Database (Denmark)
Shagalov, A.G.; Juul Rasmussen, Jens; Naulin, Volker
2009-01-01
Resonant phase-locking phenomena ('autoresonance') in the van der Pol Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi......-stable states. We find the range of parameters of the oscillator, the thresholds and the appropriate control paths where autoresonant excitation of high amplitude oscillations is possible....
Antoniou, F.
2014-06-23
The theoretical minimum emittance cells are the optimal configurations for achieving the absolute minimum emittance, if specific optics constraints are satisfied at the middle of the cell's dipole. Linear lattice design options based on an analytical approach for the theoretical minimum emittance cells are presented in this paper. In particular the parametrization of the quadrupole strengths and optics functions with respect to the emittance and drift lengths is derived. A multi-parametric space can be then created with all the cell parameters, from which one can chose any of them to be optimized. An application of this approach are finally presented for the linear and non-linear optimization of the CLIC Pre-damping rings.
Institute of Scientific and Technical Information of China (English)
JIANG Tie-zheng; CHEN Chen; CAO Guo-yun
2006-01-01
The main objectives of this paper are to simultaneously improve power system damping and to maintain voltage at the static var compensator (SVC) location bus simultaneously.A new controller for SVC with closed-form analytic solution nonlinear optimal predictive control (NOPC) law was presented.The controller does not require online optimization and the huge calculation burden can be avoided,so that the demand of real-time control can be satisfied.In addition,there are only two design parameters,which are the predictive period and control order;so it is easy to implement and test in practical use.Simulation results have shown that the controller can not only attenuate power system oscillation effectively but can also maintain voltage at the SVC bus location.
Institute of Scientific and Technical Information of China (English)
Fa-yong Zhang
2004-01-01
The three-dimensional nonlinear Schrodinger equation with weakly damped that possesses a global attractor are considered. The dynamical properties of the discrete dynamical system which generate by a class of finite difference scheme are analysed. The existence of global attractor is proved for the discrete dynamical system.
A study of nonlinear radiation damping by matching analytic and numerical solutions
Anderson, J. L.; Hobill, D. W.
1988-04-01
In the present use of a mixed analytic-numerical matching scheme to study a linear oscillator that is coupled to a nonlinear field, the approximate causal solution constructed in the radiation zone was matched to a finite-differencing scheme-derived numerical solution in the inner zone. The required agreement of the two solutions in the overlap region permitted the extension of the numerical scheme arbitrarily into the future. The late time behavior of the system in all studied cases was independent of initial conditions. The linearized 'monopole energy loss' formula breaks down in cases of either fast motions or strong nonlinearities.
Jeltsema, Dimitri; Ortega, Romeo; Scherpen, Jacquelien M.A.
2004-01-01
Stabilization of nonlinear feedback passive systems is achieved assigning a storage function with a minimum at the desired equilibrium. For physical systems a natural candidate storage function is the difference between the stored and the supplied energies—leading to the so-called energy-balancing c
Torres Cedillo, Sergio G.; Bonello, Philip
2016-01-01
The high pressure (HP) rotor in an aero-engine assembly cannot be accessed under operational conditions because of the restricted space for instrumentation and high temperatures. This motivates the development of a non-invasive inverse problem approach for unbalance identification and balancing, requiring prior knowledge of the structure. Most such methods in the literature necessitate linear bearing models, making them unsuitable for aero-engine applications which use nonlinear squeeze-film damper (SFD) bearings. A previously proposed inverse method for nonlinear rotating systems was highly limited in its application (e.g. assumed circular centered SFD orbits). The methodology proposed in this paper overcomes such limitations. It uses the Receptance Harmonic Balance Method (RHBM) to generate the backward operator using measurements of the vibration at the engine casing, provided there is at least one linear connection between rotor and casing, apart from the nonlinear connections. A least-squares solution yields the equivalent unbalance distribution in prescribed planes of the rotor, which is consequently used to balance it. The method is validated on distinct rotordynamic systems using simulated casing vibration readings. The method is shown to provide effective balancing under hitherto unconsidered practical conditions. The repeatability of the method, as well as its robustness to noise, model uncertainty and balancing errors, are satisfactorily demonstrated and the limitations of the process discussed.
Chatterjee, D
2015-01-01
The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' $q$-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Phys. Rev. E {\\bf87}, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schr{\\"o}dinger (NLS) equation with a nonlocal nonlinear term $\\propto {\\cal{P}}\\int|\\phi(\\xi',\\tau)|^2d\\xi'\\phi/(\\xi-\\xi') $ [where ${\\cal P}$ denotes the Cauchy principal value, $\\phi$ is the small-amplitude electrostatic (complex) potential, and $\\xi$ and $\\tau$ are the stretched coordinates in MST] which appears due to the wave-particle resonance. It is found that a subregion $1/3
Nonlinear wave propagation through a ferromagnet with damping in (2+1) dimensions
Indian Academy of Sciences (India)
S G Bindu; V C Kuriakose
2000-02-01
We investigate how dissipation and nonlinearity can affect the electromagnetic wave propagating through a saturated ferromagnet in the presence of an external magnetic ﬁeld in (2+1) dimensions. The propagation of electromagnetic waves through a ferromagnet under an external magnetic ﬁeld in the presence of dissipative effect has been studied using reductive perturbation method. It is found that to the lowest order of perturbation the system of equations for the electromagnetic waves in a ferromagnet can be reduced to an integro-differential equation.
Ottander, John A.; Hall, Robert A., Jr.; Powers, Joseph F.
2017-01-01
One of the challenges of developing flight control systems for liquid-propelled space vehicles is ensuring stability and performance in the presence of parasitic minimally damped slosh dynamics in the liquid propellants. This can be especially difficult when the fundamental frequencies of the slosh motions are in proximity to the frequency used for vehicle control. The challenge is partially alleviated since the energy dissipation and effective damping in the slosh modes increases with amplitude. However, traditional launch vehicle control design methodology is performed with linearized systems using a fixed slosh damping corresponding to a slosh motion amplitude based on heritage values. This papers presents a method for performing the control design and analysis using damping at slosh amplitudes chosen based on the resulting limit cycle amplitude of the vehicle thrust vector system due to a control-slosh interaction under degraded phase and gain margin conditions.
Gómez-Estern, F.; Schaft, A.J. van der
2004-01-01
Energy shaping and passivity-based control designs have proven to be effective in solving control problems for underactuated mechanical systems. In recent works, Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) has been successfully applied to open loop conservative models, i
一类具阻尼的非线性双曲方程解的blow-up%The blow-up of solutions of a class of nonlinear damped hyperbolic equation
Institute of Scientific and Technical Information of China (English)
呼青英; 陆军
2003-01-01
The blow-up property of a nonlinear damped hyperbolic equation,which describes the motion of the neo-Hookean elastomer rod,is proven.%本文讨论了一类描述新胡克弹性杆运动的具阻尼的非线性双曲方程解的blow up性质.
Directory of Open Access Journals (Sweden)
Hassan A. Agwa
2016-01-01
Full Text Available We are concerned with the interval oscillation of general type of forced second-order nonlinear dynamic equation with oscillatory potential of the form rtg1xt,xΔtΔ+p(tg2(x(t,xΔ(txΔ(t+q(tf(x(τ(t=e(t, on a time scale T. We will use a unified approach on time scales and employ the Riccati technique to establish some oscillation criteria for this type of equations. Our results are more general and extend the oscillation criteria of Erbe et al. (2010. Also our results unify the oscillation of the forced second-order nonlinear delay differential equation and the forced second-order nonlinear delay difference equation. Finally, we give some examples to illustrate our results.
Energy Technology Data Exchange (ETDEWEB)
Macias-Diaz, J.E. [Departamento de Matematicas y Fisica, Universidad Autonoma de Aguascalientes, Aguascalientes, Ags. 20100 (Mexico) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: jemacias@correo.uaa.mx; Puri, A. [Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: apuri@uno.edu
2007-07-02
In the present Letter, we simulate the propagation of binary signals in semi-infinite, mechanical chains of coupled oscillators harmonically driven at the end, by making use of the recently discovered process of nonlinear supratransmission. Our numerical results-which are based on a brand-new computational technique with energy-invariant properties-show an efficient and reliable transmission of information.
The Duffing oscillator with damping
DEFF Research Database (Denmark)
Johannessen, Kim
2015-01-01
An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....
Liang Fei; Gao Hongjun
2011-01-01
Abstract In this paper, we consider the system of nonlinear viscoelastic equations u t t - Δ u + ∫ 0 t g 1 ( t - τ ) Δ u ( τ ) d τ - Δ u t = f 1 ( u , v ) , ( x , t ) ∈ Ω × ( 0 , T ) , v t t - Δ v + ∫ 0 t g 2 ( t - τ ) Δ v ( τ ) d τ - Δ v t = f 2 ( u , v ) , ( x , t ) ∈ Ω...
Directory of Open Access Journals (Sweden)
Liang Fei
2011-01-01
Full Text Available Abstract In this paper, we consider the system of nonlinear viscoelastic equations u t t - Δ u + ∫ 0 t g 1 ( t - τ Δ u ( τ d τ - Δ u t = f 1 ( u , v , ( x , t ∈ Ω × ( 0 , T , v t t - Δ v + ∫ 0 t g 2 ( t - τ Δ v ( τ d τ - Δ v t = f 2 ( u , v , ( x , t ∈ Ω × ( 0 , T with initial and Dirichlet boundary conditions. We prove that, under suitable assumptions on the functions gi , fi (i = 1, 2 and certain initial data in the stable set, the decay rate of the solution energy is exponential. Conversely, for certain initial data in the unstable set, there are solutions with positive initial energy that blow up in finite time. 2000 Mathematics Subject Classifications: 35L05; 35L55; 35L70.
Institute of Scientific and Technical Information of China (English)
Chang Jiang ZHU; Zhi Yong ZHANG; Hui YIN
2006-01-01
In this paper, we consider the global existence and the asymptotic behavior of solutions to the Cauchy problem for the following nonlinear evolution equations with ellipticity and dissipative effects:{ψt = -(1 - α)ψ - θx + αψxx, (E)θt = -(1 - α)θ + vψx + (χθ)x + αθxx,with initial data(ψ,θ)(x, 0) = (ψ0(x),θ0(x)) → (χ±,θ±) as x →±∞, (Ⅰ)where α and v are positive constants such that α＜ 1, v ＜ 4α(1 - α). Under the assumption that|ψ+ - ψ-| + |θ+ - θ-| is sufficiently small, we show the global existence of the solutions to Cauchy problem (E) and (I) if the initial data is a small perturbation. And the decay rates of the solutions with exponential rates also are obtained. The analysis is based on the energy method.
Mouhot, Clément
2011-09-01
Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.
Damping Undulators vs Damping Wigglers
Muchnoi, Nickolai
2016-01-01
Use of damping wigglers is a common technique for beam emittance reduction in the electron storage rings. The general approach to estimate damping effect is based on evaluation of several radiation integrals for a storage ring itself as well as for insertion devices. In this letter we show that a wiggler radiation integrals should be tweaked to account for the impact of lower harmonics of undulator radiation, which is an equivalent of Thomson scattering. Under certain conditions, these amendments play a decisive role in a formation of equilibrium emittance.
Modelling of Dampers and Damping in Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Riess
2006-01-01
The present thesis consists of an extended summary and four papers concerning damping of structures and algorithmic damping in numerical analysis. The first part of the thesis deals with the efficiency and the tuning of external collocated dampers acting on flexible structures. The dynamics...... and the maximum attainable damping are found by maximizing the expression for the damping ratio. The theory is formulated for linear damper models, but may also be applied for non-linear dampers in terms of equivalent linear parameters for stiffness and damping, respectively. The format of the expressions...... only realizable by means of active control. The present thesis demonstrates how stiffness affects both the performance and the tuning of the damper. The final part of the thesis considers algorithmic damping in connection with Newmark time integration. The damping characteristics of the Newmark method...
The next linear collider damping ring lattices
Energy Technology Data Exchange (ETDEWEB)
Wolski, Andrzej; Corlett, John N.
2001-06-20
We report on the lattice design of the Next Linear Collider (NLC) damping rings. The damping rings are required to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. We present an optical design, based on a theoretical minimum emittance (TME) lattice, to produce the required normalized extracted beam emittances gex = 3 mm-mrad and gey = 0.02 mm mrad. An assessment of dynamic aperture and non-linear effects is given. The positron pre-damping ring, required to reduce the emittance of the positron beam such that it may be accepted by a main damping ring, is also described.
Identification of Light Damping in Structures
DEFF Research Database (Denmark)
Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders
Different methods to identification of linear and nonlinear damping in lightly damped structures are discussed in this paper. The discussion is based on experiments with a 4 meter high monopile. Two alternative methods have been used for experimental cases of linear and nonlinear damping. Method 1...... is identification by ARMA models assuming a white noise input. Method 2 is identification by simulation of a free decay response. Experimental data on the free decay response has been obtained directly by measurement as well as by the random decrement technique. Two experimental cases has been considered. The first...
Hofmann, A
2006-01-01
Abstract Landau damping is the suppression of an instability by a spread of frequencies in the beam. It is treated here from an experimental point of view. To introduce the concept we consider a set of oscillators having a spread in resonant frequencies !r and calculate the response of their there center-of-mass to an external driving force. A pulse excitation gives each oscillator the same initial velocity but, due to their different frequencies, the center-of-mass motion will decay with time. A harmonic excitation with a frequency ! being inside the distribution in !r results in oscillators responding with different phases and only a few of them having !r ! will grow to large amplitudes and absorb energy. The oscillator response to a pulse excitation, called Green function, and the one to a harmonic excitation, called transfer function, serve as a basis to calculate Landau damping which suppresses an instability at infinitesimal level before any large amplitudes are reached. This is illustrated by a negativ...
Institute of Scientific and Technical Information of China (English)
刘松山; 王庆年; 王伟华
2014-01-01
A nonlinear damping characteristic for regenerative suspension based on the torque-speed char-acteristic of regenerative motor and traditional linear damping characteristic is proposed and the influences of opening speed and the initial speed of inadequate damping interval on vibration attenuation performance are analyzed. By an-alyzing the sprung mass acceleration response of single DOF linear suspension model, the effect of initial opening speed on vibration attenuation performance is obtained. For suppressing the peak acceleration response caused by entering constant damping interval, the relative speed transfer characteristic of linear suspension model is investiga-ted, with the adjustment coefficient for initial opening speed obtained. The results of simulation show that reasonable opening speed can greatly improve the transfer characteristic of regenerative damper, while the initial speed of inad-equate damping interval has no much effect on peak response for harmonic excitation.%提出了一种基于馈能电机转矩转速特性和传统线性阻尼特性的馈能悬架非线性阻尼特性，分析开启速度和阻尼不足区初始速度对减振性能的影响。通过对传统的单自由度线性悬架模型的簧载质量加速度响应分析，得出初始开启速度对其减振性能的影响。为了抑制进入恒阻尼区后导致的加速度响应峰值，对线性模型中的相对速度传递特性的研究，得出初始开启速度的调整系数。仿真结果表明，合理的开启速度能极大地改善馈能减振器的传递特性，阻尼不足区初始速度对谐波激励时的响应峰值影响并不大。
Yanggang Feng; Jinying Zhu; Qining Wang
2016-08-01
Recent advances in robotic technology are facilitating the development of robotic prostheses. Our previous studies proposed a lightweight robotic transtibial prosthesis with a damping control strategy. To improve the performance of power assistance, in this paper, we redesign the prosthesis and improve the control strategy by supplying extra push-off power. A male transtibial amputee subject volunteered to participate in the study. Preliminary experimental results show that the proposed prosthesis with push-off control improves energy expenditure by a percentage ranged from 9.72 % to 14.99 % for level-ground walking compared with the one using non-push-off control.
Optimal constrained layer damping with partial coverage
Marcelin, J.-L.; Trompette, Ph.; Smati, A.
1992-12-01
This paper deals with the optimal damping of beams constrained by viscoelastic layers when only one or several portions of the beam are covered. An efficient finite element model for dynamic analysis of such beams is used. The design variables are the dimensions and prescribed locations of the viscoelastic layers and the objective is the maximum viscoelastic damping factor. The method for nonlinear programming in structural optimization is the so-called method of moving asymptotes.
Energy Technology Data Exchange (ETDEWEB)
Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)
2003-05-07
A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.
Power oscillation damping controller
DEFF Research Database (Denmark)
2012-01-01
A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...
Simple model with damping of the mode-coupling instability
Energy Technology Data Exchange (ETDEWEB)
Pestrikov, D.V. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki
1996-08-01
In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)
Damping by branching: a bioinspiration from trees
Theckes, Benoit; Boutillon, Xavier
2011-01-01
Man-made slender structures are known to be sensitive to high levels of vibration, due to their flexibility, which often cause irreversible damage. In nature, trees repeatedly endure large amplitudes of motion, mostly caused by strong climatic events, yet with minor or no damage in most cases. A new damping mechanism inspired by the architecture of trees is here identified and characterized in the simplest tree-like structure, a Y-shape branched structure. Through analytical and numerical analyses of a simple two-degree-of-freedom model, branching is shown to be the key ingredient in this protective mechanism that we call damping-by-branching. It originates in the geometrical nonlinearities so that it is specifically efficient to damp out large amplitudes of motion. A more realistic model, using flexible beam approximation, shows that the mechanism is robust. Finally, two bioinspired architectures are analyzed, showing significant levels of damping achieved via branching with typically 30% of the energy being...
Introduction to Landau Damping
Herr, W
2014-01-01
The mechanism of Landau damping is observed in various systems from plasma oscillations to accelerators. Despite its widespread use, some confusion has been created, partly because of the different mechanisms producing the damping but also due to the mathematical subtleties treating the effects. In this article the origin of Landau damping is demonstrated for the damping of plasma oscillations. In the second part it is applied to the damping of coherent oscillations in particle accelerators. The physical origin, the mathematical treatment leading to the concept of stability diagrams and the applications are discussed.
Passive damping technology demonstration
Holman, Robert E.; Spencer, Susan M.; Austin, Eric M.; Johnson, Conor D.
1995-05-01
A Hughes Space Company study was undertaken to (1) acquire the analytical capability to design effective passive damping treatments and to predict the damped dynamic performance with reasonable accuracy; (2) demonstrate reasonable test and analysis agreement for both baseline and damped baseline hardware; and (3) achieve a 75% reduction in peak transmissibility and 50% reduction in rms random vibration response. Hughes Space Company teamed with CSA Engineering to learn how to apply passive damping technology to their products successfully in a cost-effective manner. Existing hardware was selected for the demonstration because (1) previous designs were lightly damped and had difficulty in vibration test; (2) multiple damping concepts could be investigated; (3) the finite element model, hardware, and test fixture would be available; and (4) damping devices could be easily implemented. Bracket, strut, and sandwich panel damping treatments that met the performance goals were developed by analysis. The baseline, baseline with damped bracket, and baseline with damped strut designs were built and tested. The test results were in reasonable agreement with the analytical predictions and demonstrated that the desired reduction in dynamic response could be achieved. Having successfully demonstrated this approach, it can now be used with confidence for future designs as a means for reducing weight and enhancing reliability.
The next linear collider damping ring complex
Energy Technology Data Exchange (ETDEWEB)
Corlett,J.; Atkinson,D.; De Santis,S.; Hartman, N.; Kennedy, K.; Li, D.; Marks, S.; Minamihara, Y.; Nishimura, H.; Pivi, M.; Reavill, D.; Rimmer, R.; Schlueter, R.; Wolski, A.; Anderson,S.; McKee,B.; Raubenheimer, T.; Ross, M.; Sheppard, J.C.
2001-06-12
We report progress on the design of the Next Linear Collider (NLC) Damping Rings complexes. The purpose of the damping rings is to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. As an option to operate at the higher rate of 180 Hz, two 1.98 GeV main damping rings per beam are proposed, and one positron pre-damping ring. The main damping rings store up to 0.8 amp in 3 trains of 190 bunches each and have normalized extracted beam emittances {gamma}{var_epsilon}x = 3 mm-mrad and {gamma}{var_epsilon}y = 0.02 mm-mrad. The optical designs, based on a theoretical minimum emittance lattice (TME), are described, with an analysis of dynamic aperture and non-linear effects. Key subsystems and components are described, including the wiggler, the vacuum systems and photon stop design, and the higher-order-mode damped RF cavities. Impedance and instabilities are discussed.
Critically damped quantum search.
Mizel, Ari
2009-04-17
Although measurement and unitary processes can accomplish any quantum evolution in principle, thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover's algorithm in which the idea of damping plays a natural role. Remarkably, we find that there is a critical damping value that divides between the quantum O(sqrt[N]) and classical O(N) search regimes. In addition, by allowing the damping to vary in a fashion we describe, one obtains a fixed-point quantum search algorithm in which ignorance of the number of targets increases the number of oracle queries only by a factor of 1.5.
Critically damped quantum search
Mizel, Ari
2008-01-01
Although measurement and unitary processes can accomplish any quantum evolution in principle, thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover's algorithm in which the idea of damping plays a natural role. Remarkably, we have found that there is a critical damping value that divides between the quantum $O(\\sqrt{N})$ and classical O(N) search regimes. In addition, by allowing the damping to vary in a fashion we describe, one obtains a fixed-poin...
Whistler damping at oblique propagation - Laminar shock precursors
Gary, S. P.; Mellott, M. M.
1985-01-01
This paper addresses the collisionless damping of whistlers observed as precursors standing upstream of oblique, low-Mach number terrestrial bow shocks. The linear theory of electromagnetic waves in a homogeneous Vlasov plasma with Maxwellian distribution functions and a magnetic field is considered. Numerical solutions of the full dispersion equation are presented for whistlers propagating at an arbitrary angle with respect to the magnetic field. It is demonstrated that electron Landau damping attenuates oblique whistlers and that the parameter which determines this damping is beta-e. In a well-defined range of parameters, this theory provides damping lengths which are the same order of magnitude as those observed. Thus electron Landau damping is a plausible process in the dissipation of upstream whistlers. Nonlinear plasma processes which may contribute to precursor damping are also discussed, and criteria for distinguishing among these are described.
Dynamic analyses of viscoelastic dielectric elastomers incorporating viscous damping effect
Zhang, Junshi; Zhao, Jianwen; Chen, Hualing; Li, Dichen
2017-01-01
In this paper, based on the standard linear solid rheological model, a dynamics model of viscoelastic dielectric elastomers (DEs) is developed with incorporation of viscous damping effect. Numerical calculations are employed to predict the damping effect on the dynamic performance of DEs. With increase of damping force, the DEs show weak nonlinearity and vibration strength. Phase diagrams and Poincaré maps are utilized to detect the dynamic stability of DEs, and the results indicate that a transition from aperiodic vibration to quasi-periodic vibration occurs with enlargement of damping force. The resonance properties of DEs including damping effect are subsequently analyzed, demonstrating a reduction of resonant frequency and resonance peak with increase of damping force.
Nonlinear and linear timescales near kinetic scales in solar wind turbulence
Energy Technology Data Exchange (ETDEWEB)
Matthaeus, W. H.; Wan, M.; Shay, M. A. [Department of Physics and Astronomy, University of Delaware, DE 19716 (United States); Oughton, S. [Department of Mathematics, University of Waikato, Hamilton (New Zealand); Osman, K. T.; Chapman, S. C. [Centre for Fusion, Space, and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Servidio, S.; Valentini, F. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Gary, S. P. [Space Sciences Institute, Boulder, CO 80301 (United States); Roytershteyn, V.; Karimabadi, H., E-mail: whm@udel.edu [Sciberquest, Inc., Del Mar, CA 92014 (United States)
2014-08-01
The application of linear kinetic treatments to plasma waves, damping, and instability requires favorable inequalities between the associated linear timescales and timescales for nonlinear (e.g., turbulence) evolution. In the solar wind these two types of timescales may be directly compared using standard Kolmogorov-style analysis and observational data. The estimated local (in scale) nonlinear magnetohydrodynamic cascade times, evaluated as relevant kinetic scales are approached, remain slower than the cyclotron period, but comparable to or faster than the typical timescales of instabilities, anisotropic waves, and wave damping. The variation with length scale of the turbulence timescales is supported by observations and simulations. On this basis the use of linear theory—which assumes constant parameters to calculate the associated kinetic rates—may be questioned. It is suggested that the product of proton gyrofrequency and nonlinear time at the ion gyroscales provides a simple measure of turbulence influence on proton kinetic behavior.
Nonlinear and Linear Timescales near Kinetic Scales in Solar Wind Turbulence
Matthaeus, W H; Osman, K T; Servidio, S; Wan, M; Gary, S P; Shay, M A; Valentini, F; Roytershteyn, V; Karimabadi, H; Chapman, S C
2014-01-01
The application of linear kinetic treatments to plasma waves, damping, and instability requires favorable inequalities between the associated linear timescales and timescales for nonlinear (e.g., turbulence) evolution. In the solar wind these two types of timescales may be directly compared using standard Kolmogorov-style analysis and observational data. The estimated local nonlinear magnetohydrodynamic cascade times, evaluated as relevant kinetic scales are approached, remain slower than the cyclotron period, but comparable to, or faster than, the typical timescales of instabilities, anisotropic waves, and wave damping. The variation with length scale of the turbulence timescales is supported by observations and simulations. On this basis the use of linear theory - which assumes constant parameters to calculate the associated kinetic rates - may be questioned. It is suggested that the product of proton gyrofrequency and nonlinear time at the ion gyroscales provides a simple measure of turbulence influence on...
Occurrence of stable periodic modes in a pendulum with cubic damping
Indian Academy of Sciences (India)
K I Thomas; G Ambika
2002-09-01
Dynamical systems with nonlinear damping show interesting behavior in the periodic and chaotic phases. The Froude pendulum with cubical and linear damping is a paradigm for such a system. In this work the driven Froude pendulum is studied by the harmonic balancing method; the resulting nonlinear response curves are studied further for resonance and stability of symmetric oscillations with relatively low damping. The stability analysis is carried out by transforming the system of equations to the linear Mathieu equation.
Energy Technology Data Exchange (ETDEWEB)
Palmer, R.B.
1988-07-01
Structures with slots to strongly damp higher order longitudinal and transverse modes should allow the use, in linear colliders, of multiple bunches, and thus attain luminosities of over 10/sup 34/cm/sup /minus/2/sec/sup /minus/1/. Preliminary measurements on model structures suggest that such damping can be achieved. 10 refs., 9 figs.
Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions
Energy Technology Data Exchange (ETDEWEB)
Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)
2014-12-15
The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.
Chortis, Dimitris I.; Chrysochoidis, Nikos A.; Varelis, Dimitris S.; Saravanos, Dimitris A.
2011-11-01
A theoretical framework is presented for predicting the nonlinear damping and damped vibration of laminated composite strips due to large in-plane forces. Nonlinear Green-Lagrange axial strains are introduced in the governing equations of a viscoelastic composite and new nonlinear damping and stiffness matrices are formulated including initial stress effects. Building upon the nonlinear laminate mechanics, a damped beam finite element is developed. Finite element stiffness and damping matrices are synthesized and the static equilibrium is predicted using a Newton-Raphson solver. The corresponding linearized damped free-vibration response is predicted and modal frequencies and damping of the in-plane deflected strip are calculated. Numerical results quantify the nonlinear effect of in-plane loads on structural modal damping of various laminated composite strips. The modal loss-factors and natural frequencies of cross-ply Glass/Epoxy beams subject to in-plane loading are measured and correlated with numerical results.
Energy Technology Data Exchange (ETDEWEB)
Rees, John; Chao, Alexander; /SLAC
2008-12-01
Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread.
Unwrapped phase inversion with an exponential damping
Choi, Yun Seok
2015-07-28
Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.
Barotropic FRW cosmologies with Chiellini damping
Energy Technology Data Exchange (ETDEWEB)
Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico); Mancas, Stefan C., E-mail: stefan.mancas@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)
2015-05-08
It is known that barotropic FRW equations written in the conformal time variable can be reduced to simple linear equations for an exponential function involving the conformal Hubble rate. Here, we show that an interesting class of barotropic universes can be obtained in the linear limit of a special type of nonlinear dissipative Ermakov–Pinney equations with the nonlinear dissipation built from Chiellini's integrability condition. These cosmologies, which evolutionary are similar to the standard ones, correspond to barotropic fluids with adiabatic indices rescaled by a particular factor and have amplitudes of the scale factors inverse proportional to the adiabatic index. - Highlights: • Chiellini-damped Ermakov–Pinney equations are used in barotropic FRW cosmological context. • Chiellini-damped scale factors of the barotropic FRW universes are introduced. • These scale factors are similar to the undamped ones.
Control System Damps Vibrations
Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.
1983-01-01
New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.
DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.
Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin
2015-11-01
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Anisotropic Internal Friction Damping
Peters, R D
2003-01-01
The mechanical damping properties of sheet polaroid material have been studied with a physical pendulum. The polaroid samples were placed under the knife-edges of the pendulum, which was operated in free-decay at a period in the vicinity of 10 s. With the edges oriented parallel to the direction of the long molecular chains in the polaroid, it was found that the damping was more than 10% smaller than when oriented perpendicular to the chains.
Cost damping and functional form in transport models
DEFF Research Database (Denmark)
Rich, Jeppe; Mabit, Stefan Lindhard
2015-01-01
take different forms and be represented as a non-linear-in-parameter form such as the well-known Box–Cox function. However, it could also be specified as non-linear-in-cost but linear-in-parameter forms, which are easier to estimate and improve model fit without increasing the number of parameters....... The specific contributions of the paper are as follows. Firstly, we discuss the phenomenon of cost damping in details and specifically why it occurs. Secondly, we provide a test of damping and an easy assessment of the (linear) damping rate for any variable by estimating two auxiliary linear models. This turns......Transport models allowing for cost damping are characterised by marginally decreasing cost sensitivities in demand. As a result, cost damping is a model extension of the simple linear-in-cost model requiring an appropriate non-linear link function between utility and cost. The link function may...
Cost damping and functional form in transport models
DEFF Research Database (Denmark)
Rich, Jeppe; Mabit, Stefan Lindhard
2016-01-01
Transport models allowing for cost damping are characterised by marginally decreasing cost sensitivities in demand. As a result, cost damping is a model extension of the simple linear-in-cost model requiring an appropriate non-linear link function between utility and cost. The link function may...... take different forms and be represented as a non-linear-in-parameter form such as the well-known Box–Cox function. However, it could also be specified as non-linear-in-cost but linear-in-parameter forms, which are easier to estimate and improve model fit without increasing the number of parameters....... The specific contributions of the paper are as follows. Firstly, we discuss the phenomenon of cost damping in details and specifically why it occurs. Secondly, we provide a test of damping and an easy assessment of the (linear) damping rate for any variable by estimating two auxiliary linear models. This turns...
Institute of Scientific and Technical Information of China (English)
洪峰
2002-01-01
In this paper, existing damping theories are briefly reviewed. On the basis of the existing damping theories, a new kind of damping theory, i.e., the time-delay damping theory, is developed. In the time-delay damping theory, the damping force is considered to be directly proportional to the increment of displacement. The response analysis of an SDOF time-delay damping system is carried out, and the methods for obtaining the solution for a time-delay damping system in the time domain as well as the frequency domain are given. The comparison between results from different damping theories shows that the time-delay damping theory is both reasonable and convenient.
Institute of Scientific and Technical Information of China (English)
张伟斌; 向新民
2002-01-01
The initial boundary value problem of nonlinear Schrodinger-Boussinesq equation with weak damping is discretized by finite difference method. The error-estimate of numerical solution is established, and the existence of the approximate attractor and its upper-semicontinuity are proved.%用差分法对非线性Schrodinger-Boussinesq方程的初边值问题构造了近似计算格式,并得到了近似解的误差估计,还进一步论证了近似吸引子的存在性和关于原问题吸引子的上半连续性.
Damping modeling in Timoshenko beams
Banks, H. T.; Wang, Y.
1992-01-01
Theoretical and numerical results of damping model studies for composite material beams using the Timoshenko theory is presented. Based on the damping models developed for Euler-Bernoulli beams, the authors develop damping methods for both bending and shear in investigation of Timoshenko beams. A computational method for the estimation of the damping parameters is given. Experimental data with high-frequency excitation were used to test Timoshenko beam equations with different types of damping models for bending and shear in various combinations.
Damping capacity in shape memory alloy honeycomb structures
Boucher, M.-A.; Smith, C. W.; Scarpa, F.; Miller, W.; Hassan, M. R.
2010-04-01
SMA honeycombs have been recently developed by several Authors [1, 2] as innovative cellular structures with selfhealing capability following mechanical indentation, unusual deformation (negative Poisson's ratio [3]), and possible enhanced damping capacity due to the natural vibration dissipation characteristics of SMAs under pseudoelastic and superelastic regime. In this work we describe the nonlinear damping effects of novel shape memory alloy honeycomb assemblies subjected to combine mechanical sinusoidal and thermal loading. The SMA honeycomb structures made with Ni48Ti46Cu6 are designed with single and two-phase polymeric components (epoxy), to enhance the damping characteristics of the base SMA for broadband frequency vibration.
Damping and Frequency Shift of Large Amplitude Electron Plasma Waves
DEFF Research Database (Denmark)
Thomsen, Kenneth; Juul Rasmussen, Jens
1983-01-01
The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...... damping rate γ(t) shows that it increases with time within the initial phase of propagation, t≲π/ωB (ωB is the bounce frequency), whereafter it decreases and changes sign implying a regrowth of the wave. The shift in the wave frequency δω is observed to be positive for t≲π/ωB; then δω changes sign...
Radiation Damping in a Focusing Channel
Ruth, Ronald D.
1996-05-01
In electron storage rings synchrotron radiation leads to the damping of the three degrees of freedom of the particle trajectory towards a stable closed orbit transversely and a fixed stable phase longitudinally. At the same time, the emission of discrete quanta leads to diffusion in all three degrees of freedom. These two competing effects result in an equilibrium beam emittance that depends upon the parameters of the storage ring. In the case above, the radiation in the bending fields dominates, and the radiation due to the focusing fields is either neglected or taken into account perturbatively. In this talk we study the opposite case, a continuous focusing channel in which the radiation and its reaction are dominated by the strong focusing field. If there is a bending field, it is much weaker than the focusing field. In such focusing systems, we find that the radiation is synchrotron-like for larger betatron oscillation amplitudes and undulator-like for smaller amplitudes. However, quantum excitation is absent for any oscillation amplitude, and the damping exhibits asymmetry in favor of the transverse degree of freedom as the amplitude becomes smaller. In the undulator regime, the damping turns into exponential in the transverse direction, much faster than the total energy damping in this system. In principle, the particle could damp to the transverse ground state of the harmonic oscillator, reaching a minimum normalized emittance, γ ɛ_min = hbar/2mc, limited only by the uncertainty principle. In the case of a bent focusing system, we find that the lack of quantum excitation and asymmetric damping still hold provided that the bending field is sufficiently weak.
A single-ion nonlinear mechanical oscillator
Akerman, Nitzan; Glickamn, Yinnon; Dallal, Yehonatan; Keselman, Anna; Ozeri, Roee
2010-01-01
We study the steady state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser-cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate a unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the cooling laser parameters. Our observations open a way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.
Predictive Dynamic Stimulation of Structures with Non-Smooth Nonlinearities
2005-06-30
bang- bang, dead band, and Duffing type nonlinearity. Nonlinear damping has been considered in the form of Coulomb damping, velocity-squared damping...or 2,000 DOF reduced to 5 or 10 DOF) of simple oscillator systems capture the free oscillation decay and the steady state response to harmonic...smooth or non-smooth), the linear based reduced model tends to overestimate the change in oscillation frequency due to the nonlinearity. Specifically
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of
Radiation damping on cryoprobes.
Shishmarev, Dmitry; Otting, Gottfried
2011-12-01
Radiation damping on 600 and 800 MHz cryoprobes was investigated. The phase angle β between a vector 90° phase shifted to the precessing magnetization and the rf field induced in the coil was found to depend markedly on whether an FID was being acquired or not. The magnitude of the radiation damping field was sufficiently strong to restore 95% of the equilibrium water magnetization of a 90% H2O sample in a 5 mm sample tube within about 5 ms following a 165° pulse. This can be exploited in water flip-back versions of NOESY and TOCSY experiments of proteins, but care must be taken to limit the effect of the radiation damping field from the water on the Ha protons. Long water-selective pulses can be applied only following corrections. We developed a program for correcting pulse shapes if β is non-zero. The WATERGATE scheme is shown to be insensitive to imperfections introduced by radiation damping.
Burns, J. A.; Sharma, I.
2000-10-01
Motivated by the recent detection of complex rotational states for several asteroids and comets, as well as by the ongoing and planned spacecraft missions to such bodies, which should allow their rotational states to be accurately determined, we revisit the problem of the nutational damping of small solar system bodies. The nutational damping of asteroids has been approximately analyzed by Prendergast (1958), Burns and Safronov (1973), and Efroimsky and Lazarian (2000). Many other similar dynamical studies concern planetary wobble decay (e.g., Peale 1973; Yoder and Ward 1979), interstellar dust grain alignment (e.g., Purcell 1979; Lazarian and Efroimsky 1999) and damping of Earth's Chandler wobble (Lambeck 1980). Recall that rotational energy loss for an isolated body aligns the body's angular momentum vector with its axis of maximum inertia. Assuming anelastic dissipation, simple dimensional analysis determines a functional form of the damping timescale, on which all the above authors agree. However, the numerical coefficients of published results are claimed to differ by orders of magnitude. Differences have been ascribed to absent physics, to solutions that fail to satisfy boundary conditions perfectly, and to unphysical choices for the Q parameter. The true reasons for the discrepancy are unclear since, despite contrary claims, the full 3D problem (nutational damping of an anelastic ellipsoid) is analytically intractable so far. To move the debate forward, we compare the solution of a related 2D problem to the expressions found previously, and we present results from a finite element model. On this basis, we feel that previous rates for the decay of asteroidal tumbling (Harris 1994), derived from Burns and Safronov (1973), are likely to be accurate, at least to a factor of a few. Funded by NASA.
Study on damping properties of magnetorheological damper
Institute of Scientific and Technical Information of China (English)
ZHOU Yu-feng; CHEN Hua-ling
2006-01-01
To research the properties of a new kind of smart controllable MR (magnetorheological) fluid,in this paper,the rheological models are discussed.On the basis of analyzing the structural forms of MR dampers,an improved structure of the MR damper is introduced;the properties of the novel MR damper are then tested.The experimental resuits reveal that the Herschel-Bulkley model predicts the force-velocity well;the damping properties of the ameliorated structure of the MR damper have improved;when the excitation is a trigonal signal,the MR damper reveals a thinning effect at high velocity;and when the excitation is a sinusoidal signal,the MR damper reveals a nonlinear hysteretic property between the damping force and relative velocity.Finally,the main unsolved problems have been put forward.
Damping-off and seed rot is an important disease of alfalfa, severely affecting stand establishment when conditions favor the disease. Globally, 15 Pythium species are reported to cause damping-off and seed rot of alfalfa, although surveys of species causing disease on alfalfa in Minnesota are lacki...
Proceedings of Damping , Held in San Diego, California on 13 - 15 February 1991. Volume 3
1991-08-01
and Fluids The Vibration Damping Effect of an Electrorheological Fluid GAB Stephen A. Austin Modelling of Nonlinear Dilatation Response of Fluids...Control of a Flexible Planar Truss Using A Reaction Mass GBC Actuator Capt. Steven G. Webb and LL David R. Lee SESSION GC - Damping Indentification A
Landau damping dynamic aperture and octupole in LHC
Gareyte, Jacques; Ruggiero, F
1997-01-01
Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...
Lian, Yeda; Zhang, Xunan; Sheldon, Cherry
2007-06-01
Based on energy dissipation and structural control principle, a new structural configuration, called the mega-sub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
Institute of Scientific and Technical Information of China (English)
Lian Yeda; Zhang Xunan; Sheldon Cherry
2007-01-01
Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
Measurement of Resonance driving terms in the ATF Damping Ring
Tomás, R; Kuroda, S; Naito, T; Okugi, T; Urakawa, J; Zimmermann, F
2008-01-01
The measurement of resonance driving terms in the Damping Ring of the Accelerator Test Facility in KEK could help finding possible machine imperfections and even to optimize single particle stability through the minimization of non-linearities. The first experimental attempts of this enterprise are reported in this note.
Institute of Scientific and Technical Information of China (English)
林洪文; 马强; 唐文彦; 王军; 张晓琳
2014-01-01
为减小传统扭摆振动数学模型在大尺寸板状物体转动惯量测量中的误差，建立扭摆振动一般形式的非线性数学模型，利用弱非线性条件下平均值方法将其线性化获得扭摆振动线性化方程。导出转动惯量新的数学表达式并计算转动惯量，其结果的重复性误差减小、精度提高，实现转动惯量的精确测量。%Here,a general nonlinear mathematical model of torsional pendulum vibration was built to reduce the error of the traditional torsional pendulum vibration model in measuring moment of inertia for large scaled plate-like objects.The average value method under a weak nonlinear damping condition was adopted to linearize the nonlinear model to get a linear equation of torsional pendulum vibration.The new mathematical expression for the moment of inertia to be measured was deduced and calculated.The results obtained with the new model showed higher repeatability and accuracy in measurement of moment of inertia of large scaled plate-liked objects.
Atomistic Mechanisms for Viscoelastic Damping in Inorganic Solids
Ranganathan, Raghavan
the microstructural length-scale of the composite. The second class of materials consist of structurally heterogeneous binary alloys that are either ordered, random or glassy. Vastly different mechanisms for viscoelastic damping arise for the three structures - random alloy and glass are observed to exhibit significant damping owing to large anharmonicity in the coupling between vibrational modes, which is a direct consequence of the chemical heterogeneity. Additionally, at low shear frequencies, glass exhibits significant long-time scale structural relaxation that results in persistent damping over a large range of frequencies. Finally, a critical analysis of various factors that affect damping in inorganic glasses is made. We show that damping in glasses exhibits a striking commonality - at high frequencies, vibrational anharmonicity leads to a peak in damping for all glasses commensurate with the range of vibrational frequencies of the glass; at intermediate and low frequencies, structural relaxation leads to persistent, nearly-constant damping. The frequency-dependent damping mechanisms and structure-property relations observed with respect to damping are expected to enable the design of novel structures with favorable damping characteristics.
Magnetically Damped Furnace (MDF)
1998-01-01
The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.
Active Damping of Vibrations in High-Precision Motion Systems
Babakhani, B.
2012-01-01
Technology advancements feed the need for ever faster and more accurate industrial machines. Vibration is a significant source of inaccuracy of such machines. A light-weight design in favor of the speed, and avoiding the use of energy-dissipating materials from the structure to omit any source of inaccuracy, contribute to a low structural damping. The goal of this research is to investigate the addition of damping to the rotational vibration mode of a linearly actuated motion system to •achie...
Quantifying acoustic damping using flame chemiluminescence
Boujo, E.; Denisov, A.; Schuermans, B.; Noiray, N.
2016-12-01
Thermoacoustic instabilities in gas turbines and aeroengine combustors falls within the category of complex systems. They can be described phenomenologically using nonlinear stochastic differential equations, which constitute the grounds for output-only model-based system identification. It has been shown recently that one can extract the governing parameters of the instabilities, namely the linear growth rate and the nonlinear component of the thermoacoustic feedback, using dynamic pressure time series only. This is highly relevant for practical systems, which cannot be actively controlled due to a lack of cost-effective actuators. The thermoacoustic stability is given by the linear growth rate, which results from the combination of the acoustic damping and the coherent feedback from the flame. In this paper, it is shown that it is possible to quantify the acoustic damping of the system, and thus to separate its contribution to the linear growth rate from the one of the flame. This is achieved by post-processing in a simple way simultaneously acquired chemiluminescence and acoustic pressure data. It provides an additional approach to further unravel from observed time series the key mechanisms governing the system dynamics. This straightforward method is illustrated here using experimental data from a combustion chamber operated at several linearly stable and unstable operating conditions.
Exact linearization of the radiation-damped spin system
Rourke; Augustine
2000-02-21
Nonlinear evolution of the Landau-Lifshitz type can be exactly linearized. Special cases include the radiation-damped spin system and the superradiant system in the semiclassical regime, in the presence of time-varying driving fields. For these, the resultant linear system is simply that of a spin 1 / 2 particle, with the radiation damping rate, or superradiant characteristic time, manifested as an imaginary addition to the spin's resonance frequency. Consequently, methods from inverse scattering theory can be used to design driving fields. The behavior of these systems under stochastic excitation can be determined exactly.
Study on damping effect of damping ditch by using LS-DYNA%基于LS-DYNA的减震沟减震效应研究
Institute of Scientific and Technical Information of China (English)
张袁娟; 王公忠
2015-01-01
为了研究减震沟的减震作用，运用大型动力分析软件LS-DYNA，基于具体工况分别对有减震沟和无减震沟的露天矿台阶爆破进行数值模拟。结果表明，减震沟距离爆源越近，减震效果越好，减震率最高可达77%，为减震沟的减震效应研究和类似工况提供了理论支持。%In order to study the damping effect of damping ditch,the explicit nonlinear dynamic analysis finite element program LS-DYNA is used based on the specific conditions. The two different numerical models with damping ditch and without damping ditch are made respectively to study the damping effect of open-pit blasting. Numerical simulation results show that the nearer the damping ditch from the explosion source is,the better the damping effect will be,and the biggest decreasing amplitude ratio can reach to about 77%,it provides the theoretical support for the research of damping effect of damping ditch and similar conditions.
Bullock, Jack C.; Kelly, Benjamin E.
1980-01-01
A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.
Gilbert Damping in Noncollinear Ferromagnets
Yuan, Zhe; Hals, Kjetil M.D.; Liu, Yi; Starikov, Anton A.; Brataas, Arne; Kelly, Paul J.
2014-01-01
The precession and damping of a collinear magnetization displaced from its equilibrium are well described by the Landau-Lifshitz-Gilbert equation. The theoretical and experimental complexity of noncollinear magnetizations is such that it is not known how the damping is modified by the noncollinearit
Oscillations with three damping effects
Energy Technology Data Exchange (ETDEWEB)
Wang Xiaojun [Department of Physics, Georgia Southern University, Statesboro, GA (United States)]. E-mail: xwang@gasou.edu; Schmitt, Chris; Payne, Marvin [Department of Physics, Georgia Southern University, Statesboro, GA (United States)
2002-03-01
Experiments on oscillatory motion are described with three different damping effects. The first experiment is a physical pendulum whose damping mechanism is due to sliding friction; the second is magnetic resistance due to eddy currents; and the third experiment involves a pendulum setup where air resistance is the dominant factor. These three damping mechanisms yield constant ({nu}-bar/ vertical bar {nu}-bar vertical bar), linear, and quadratic resistances in velocity respectively. Approximation methods are described for treating the three damping effects and a general solution is derived for the damping with a very general velocity dependence. A sonic rangefinder is used to record the oscillatory motions of the pendulums. The experimental measurements and theoretical calculations are in a good agreement. (author)
Damping Bearings In High-Speed Turbomachines
Von Pragenau, George L.
1994-01-01
Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).
Endurance of Damping Properties of Foam-Filled Tubes.
Strano, Matteo; Marra, Alessandro; Mussi, Valerio; Goletti, Massimo; Bocher, Philippe
2015-07-07
The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1) square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2) round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve) with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.
Endurance of Damping Properties of Foam-Filled Tubes
Directory of Open Access Journals (Sweden)
Matteo Strano
2015-07-01
Full Text Available The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1 square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2 round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.
Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams
Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.
2015-04-01
In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized
Damping Effects Induced by a Mass Moving along a Pendulum
Directory of Open Access Journals (Sweden)
E. Gandino
2014-01-01
Full Text Available The experimental study of damping in a time-varying inertia pendulum is presented. The system consists of a disk travelling along an oscillating pendulum: large swinging angles are reached, so that its equation of motion is not only time-varying but also nonlinear. Signals are acquired from a rotary sensor, but some remarks are also proposed as regards signals measured by piezoelectric or capacitive accelerometers. Time-varying inertia due to the relative motion of the mass is associated with the Coriolis-type effects appearing in the system, which can reduce and also amplify the oscillations. The analytical model of the pendulum is introduced and an equivalent damping ratio is estimated by applying energy considerations. An accurate model is obtained by updating the viscous damping coefficient in accordance with the experimental data. The system is analysed through the application of a subspace-based technique devoted to the identification of linear time-varying systems: the so-called short-time stochastic subspace identification (ST-SSI. This is a very simple method recently adopted for estimating the instantaneous frequencies of a system. In this paper, the ST-SSI method is demonstrated to be capable of accurately estimating damping ratios, even in the challenging cases when damping may turn to negative due to the Coriolis-type effects, thus causing amplifications of the system response.
Landau damping in space plasmas
Thorne, Richard M.; Summers, Danny
1991-01-01
The Landau damping of electrostatic Langmuir waves and ion-acoustic waves in a hot, isotropic, nonmagnetized, generalized Lorentzian plasma is analyzed using the modified plasma dispersion function. Numerical solutions for the real and imaginary parts of the wave frequency omega sub 0 - (i)(gamma) have been obtained as a function of the normalized wave number (k)(lambda sub D), where lambda sub D is the electron Debye length. For both particle distributions the electrostatic modes are found to be strongly damped at short wavelengths. At long wavelengths, this damping becomes less severe, but the attenuation of Langmuir waves is much stronger for a generalized Lorentzian plasma than for a Maxwellian plasma. It is concluded that Landau damping of ion-acoustic waves is only slightly affected by the presence of a high energy tail, but is strongly dependent on the ion temperature.
Simple suppression of radiation damping.
Khitrin, A K; Jerschow, Alexej
2012-12-01
Radiation damping is known to cause line-broadening and frequency shifts of strong resonances in NMR spectra. While several techniques exist for the suppression of these effects, many require specialized hardware, or are only compatible with the presence of few strong resonances. We describe a simple pulse sequence for radiation damping suppression in spectra with many strong resonances. The sequence can be used as-is to generate simple spectra or as a signal excitation part in more advanced experiments.
Ferri, A. A.; Dowell, E. H.
1985-01-01
The anticipated low damping level in large space structures (LSS) has been a major concern for the designers of these structures. Low damping degrades the free response and complicates the design of shape and attitude controllers for flexible spacecraft. Dry friction damping has been considered as a means of increasing the passive damping of LSS, by placing it in the joints and connecting junctures of structures. However, dry friction is highly nonlinear and, hence, analytical investigations are difficult to perform. Here, a multi-harmonic, frequency domain solution technique is developed and applied to a multi-DOF, dry friction damped system. It is seen that the multi-harmonic method is much more accurate than traditional, one harmonic solution methods. The method also compares well with time integration. Finally, comparisons are made with experimental results.
Importance of damping on nanoswitching in LiNbO{sub 3}-type ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Giri, P; Bandyopadhyay, A K [Dumkal Institute of Engineering and Technology, West Bengal University of Technology, Murshidabad, WB (India); Ghosh, S [Department of Physics, Shibpur Dinobundhu College, Howrah, WB (India); Choudhary, K; Alam, Md [Government College of Engineering and Ceramic Technology, West Bengal University of Technology, 73, A C Banerjee Lane, Calcutta-700010 WB (India); Ray, P C, E-mail: asisbanerjee1000@gmail.co, E-mail: ghoshsukriti@yahoo.co.i, E-mail: raypratap1@yahoo.co.i [Department of Mathematics, Government College of Engineering and Leather Technology, LB Block, Sector III, Salt Lake, Calcutta-700098, WB (India)
2011-01-15
In a previous dynamic study of some ferroelectric materials showing memory switching behavior, a Hamiltonian was developed that gave rise to a nonlinear Duffing oscillator equation involving the Landau-Ginzburg free energy functional as a potential formulation (Bandyopadhyay et al 2006 J. Appl. Phys. 100 114106). A high level of oscillations was observed in polarization waves against non-dimensional time that was quenched by increasing damping, which is a decay constant related to the loss of polarization due to damping during its motion in a ferroelectric material, such as lithium niobate. From the computer simulation of the damped oscillation curves, a critical time for switching, say, in a nanoswitch, was found that varies with the damping coefficient. This damping was also found to show an increasing behavior with the coercive field or the amount of impurities in a quadratic manner in such ferroelectrics.
Proceedings of Damping , Held in San Diego, California on 13 - 15 February 1991. Volume 1
1991-08-01
Rheological Fluids and Fluids The Vibration Damping Effect of an Electrorheological Fluid GAB Stephen A. Austin Mod,!!ing of Nonlinear Dilatation Response of...W. Vos Passive Control of a Flexible Planar Truss Using A Reaction Mass GBC Actuator Capt. Steven G. Webb and Lt. David R. Lee SESSION GC - Damping...Procedure to the PACOSS Multi- Actuator Control Experiment To show the applicability of the procedure to the solution of realistic dynamics and control
Asymptotics for dissipative nonlinear equations
Hayashi, Nakao; Kaikina, Elena I; Shishmarev, Ilya A
2006-01-01
Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.
Chaos in nonlinear oscillations controlling and synchronization
Lakshamanan, M
1996-01-01
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
Enhanced damping for bridge cables using a self-sensing MR damper
Chen, Z. H.; Lam, K. H.; Ni, Y. Q.
2016-08-01
This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.
Damping mechanisms of a pendulum
Dolfo, Gilles; Castex, Daniel; Vigué, Jacques
2016-11-01
In this paper, we study the damping mechanisms of a pendulum. The originality of our setup is the use of a metal strip suspension and the development of extremely sensitive electric measurements of the pendulum velocity and position. Their sensitivity is absolutely necessary for a reliable measurement of the pendulum damping time constant because this measurement is possible only for very low oscillation amplitudes, when air friction forces quadratic in velocity have a negligible contribution to the observed damping. We have thus carefully studied damping by air friction forces, which is the dominant mechanism for large values of the Reynolds number Re but which is negligible in the Stokes regime, {Re} ∼ 1. In this last case, we have found that the dominant damping is due to internal friction in the metal strip, a universal effect called anelasticity, and, for certain frequencies, to resonant coupling to the support of the pendulum. All our measurements are well explained by theory. We believe this paper would be of interest to students in an undergraduate classical mechanics course.
Dampness in buildings and health
DEFF Research Database (Denmark)
Bornehag, Carl-Gustaf; Blomquist, G.; Gyntelberg, F.
2001-01-01
Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy The aim of the present interdisciplinary review is to evaluate this association as shown in the epidem......Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy The aim of the present interdisciplinary review is to evaluate this association as shown...... in the epidemiological literature. A literature search identified 590 peer-reviewed articles of which 61 have been the foundation for this review. The review shows that "dampness" in buildings appears to increase the risk for health effects in the airways, such as cough, wheeze and asthma. Relative risks...... definitions of dampness have been used in the studies, but all seems to be associated with health problems. Sensitisation to mites may be one but obviously not the only mechanism. Even if the mechanisms are unknown, there is sufficient evidence to take preventive measures against dampness in buildings....
Blow-up of a hyperbolic equation of viscoelasticity with supercritical nonlinearities
Guo, Yanqiu; Rammaha, Mohammad A.; Sakuntasathien, Sawanya
2017-02-01
We investigate a hyperbolic PDE, modeling wave propagation in viscoelastic media, under the influence of a linear memory term of Boltzmann type, and a nonlinear damping modeling friction, as well as an energy-amplifying supercritical nonlinear source:
High Damping Alloys and Their Application
Institute of Scientific and Technical Information of China (English)
Fuxing Yin
2000-01-01
Damping alloys show prospective applications in the elimination of unwanted vibrations and acoustic noise. The basic definitions and characterization methods of damping capacity are reviewed in this paper. Several physical mechanisms controlled by the alloy microstructure are responsible for the damping behavior in the damping alloys. Composite, dislocation, ferromagnetic and planar defect types are commonly classified for the alloys, which show the different damping behavior against temperature, frequency of vibration,amplitude of vibration and damping modes. Development of practically applicable damping alloys requires the higher mechanical properties and adequate workability, besides the high damping capacity. A new Mn-Cu damping alloy, named as M2052 alloy, is recently developed with possible industrial applications.
Landau damping of auroral hiss
Morgan, D. D.; Gurnett, D. A.; Menietti, J. D.; Winningham, J. D.; Burch, J. L.
1994-01-01
Auroral hiss is observed to propagate over distances comparable to an Earth radius from its source in the auroral oval. The role of Landau damping is investigated for upward propagating auroral hiss. By using a ray tracing code and a simplified model of the distribution function, the effect of Landau damping is calculated for auroral hiss propagation through the environment around the auroral oval. Landau damping is found to be the likely mechanism for explaining some of the one-sided auroral hiss funnels observed by Dynamics Explorer 1. It is also found that Landau damping puts a lower limit on the wavelength of auroral hiss. Poleward of the auroral oval, Landau damping is found in a typical case to limit omega/k(sub parallel) to values of 3.4 x 10(exp 4) km/s or greater, corresponding to resonance energies of 3.2 keV or greater and wavelengths of 2 km or greater. For equatorward propagation, omega/k(sub parallel) is limited to values greater than 6.8 x 10(exp 4) km/s, corresponding to resonance energies greater than 13 keV and wavelengths greater than 3 km. Independent estimates based on measured ratios of the magnetic to electric field intensity also show that omega/k(sub parallel) corresponds to resonance energies greater than 1 keV and wavelengths greater than 1 km. These results lead to the difficulty that upgoing electron beams sufficiently energetic to directly generate auroral hiss of the inferred wavelength are not usually observed. A partial transmission mechanism utilizing density discontinuities oblique to the magnetic field is proposed for converting auroral hiss to wavelengths long enough to avoid damping of the wave over long distances. Numerous reflections of the wave in an upwardly flared density cavity could convert waves to significantly increased wavelengths and resonance velocities.
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
Chou, Chia-Chun
2016-10-01
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton-Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.
IMPACT GRINDING OF DAMP MATERIALS
Directory of Open Access Journals (Sweden)
Ladaev Nikolay Mikhaylovich
2012-10-01
Centrifugal grinders were used to analyze the grinding process. The experimental data have proven that the probability of destruction of damp samples is a lot higher than the one of dry samples, given the same initial dimensions of particles and the loading intensity. The rise in the probability of destruction is stipulated by the fact that that the grinder speed at which crushing is triggered is lower in case of damp samples than in case of dry ones. Expressions for speed that describes destruction initiation and the probability of destruction depending on the type of materials, the moisture content and the loading intensity have been derived.
Magnetic damping of ski vibrations
Energy Technology Data Exchange (ETDEWEB)
Yonnet, J.-P. [CNRS, St. Martin d' Heres (France). Lab. d' Electrotech. de Grenoble; Patton, A.C.; Philippe; Arnould; Bressan, C. [CNRS, St. Martin d' Heres (France). Lab. d' Electrotech. de Grenoble]|[Skis Dynastar S.A., Sallanches (France)
1998-07-01
An original damping device has been developed to reduce ski vibrations. Ski movement is transmitted to a conductive sheet situated in a multipole magnetic field created by permanent magnets. The conductive sheet is simultaneously submitted to eddy current and friction forces, giving the damping effect. The eddy current damper is more efficient for high frequency than for low frequency vibrations and consequently is very well adapted to ski vibrations. Bench and snow tests show the positive effects of the damper, which will be commercially available before the end of this year. (orig.)
Damping of prominence longitudinal oscillations due to mass accretion
Ruderman, Michael
2016-01-01
We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. In this model we considered a thin curved magnetic tube filled with the plasma. The parts of the tube at the two sides of the thread are filled with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential equations describing the thread dynamics. We consider linear and nonlinear oscillation. The nonlinearity reduces the damping time, however this reduction is small. The damping time is inversely proportional to the accretion rate. We also obtain that the oscillation periods decrease with time. However even for the largest initial oscillation amplitude considered in our articl...
Numerical computation of nonlinear normal modes in mechanical engineering
Renson, L.; Kerschen, G.; Cochelin, B.
2016-03-01
This paper reviews the recent advances in computational methods for nonlinear normal modes (NNMs). Different algorithms for the computation of undamped and damped NNMs are presented, and their respective advantages and limitations are discussed. The methods are illustrated using various applications ranging from low-dimensional weakly nonlinear systems to strongly nonlinear industrial structures.
Global existence and decay of solutions of a nonlinear system of wave equations
Said-Houari, Belkacem
2012-03-01
This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.
Physically Damped Noise Canceling Hydrophone
2016-06-24
300075 1 of 10 PHYSICALLY DAMPED NOISE CANCELING HYDROPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be...transducer with an electromechanical driver comprising a plurality of single crystal piezoelectric elements joined to an inner surface and arranged to form...an electromechanical stack assembly. Each single crystal piezoelectric element has a surface, an opposite surface, and a Attorney Docket No
Waves, damped wave and observation
Phung, Kim Dang
2009-01-01
We consider the wave equation in a bounded domain (eventually convex). Two kinds of inequality are described when occurs trapped ray. Applications to control theory are given. First, we link such kind of estimate with the damped wave equation and its decay rate. Next, we describe the design of an approximate control function by an iterative time reversal method.
Red cell DAMPs and inflammation.
Mendonça, Rafaela; Silveira, Angélica A A; Conran, Nicola
2016-09-01
Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.
Damped Oscillator with Delta-Kicked Frequency
Manko, O. V.
1996-01-01
Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.
Marhauser, Frank
2017-06-01
Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it
Modal approximations to damped linear systems
Veseli/'c, K
2009-01-01
We consider a finite dimensional damped second order system and obtain spectral inclusion theorems for the related quadratic eigenvalue problem. The inclusion sets are the 'quasi Cassini ovals' which may greatly outperform standard Gershgorin circles. As the unperturbed system we take a modally damped part of the system; this includes the known proportionally damped models, but may give much sharper estimates. These inclusions are then applied to derive some easily calculable sufficient conditions for the overdampedness of a given damped system.
Validation of High-Resolution CFD Method for Slosh Damping Extraction of Baffled Tanks
Yang, H. Q.; West, Jeff
2016-01-01
Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involve the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations and knowledge were mainly carried out by extensive experimental studies. A Volume-Of-Fluid (VOF) based CFD program developed at NASA MSFC was applied to extract slosh damping in a baffled tank from the first principle. First, experimental data using water with subscale smooth wall tank were used as the baseline validation. CFD simulation was demonstrated to be capable of accurately predicting natural frequency and very low damping value from the smooth wall tank at different fill levels. The damping due to a ring baffle at different liquid fill levels from barrel section and into the upper dome was then investigated to understand the slosh damping physics due to the presence of a ring baffle. Based on this study, the Root-Mean-Square error of our CFD simulation in estimating slosh damping was less than 4.8%, and the maximum error was less than 8.5%. Scalability of subscale baffled tank test using water was investigated using the validated CFD tool, and it was found that unlike the smooth wall case, slosh damping with baffle is almost independent of the working fluid and it is reasonable to apply water test data to the full scale LOX tank when the damping from baffle is dominant. On the other hand, for the smooth wall, the damping value must be scaled according to the Reynolds number. Comparison of experimental data, CFD, with the classical and modified Miles equations for upper dome was made, and the limitations of these semi-empirical equations were identified.
GRIZZLY/FAVOR Interface Project Report
Energy Technology Data Exchange (ETDEWEB)
Dickson, Terry L [ORNL; Williams, Paul T [ORNL; Yin, Shengjun [ORNL; Klasky, Hilda B [ORNL; Tadinada, Sashi [ORNL; Bass, Bennett Richard [ORNL
2013-06-01
As part of the Light Water Reactor Sustainability (LWRS) Program, the objective of the GRIZZLY/FAVOR Interface project is to create the capability to apply GRIZZLY 3-D finite element (thermal and stress) analysis results as input to FAVOR probabilistic fracture mechanics (PFM) analyses. The one benefit of FAVOR to Grizzly is the PROBABILISTIC capability. This document describes the implementation of the GRIZZLY/FAVOR Interface, the preliminary verification and tests results and a user guide that provides detailed step-by-step instructions to run the program.
Generalized Landau damping due to multi-plasmon resonances
Brodin, Gert; Zamanian, Jens
2016-01-01
We study wave-particle interaction of Langmuir waves in a fully degenerate plasma using the Wigner-Moyal equation. As is well known, in the short wavelength regime the resonant velocity is shifted from the phase velocity due to the finite energy and momentum of individual plasmon quanta. In the present work we focus on the case when the resonant velocity lies outside the background distribution, i.e. when it is larger than the Fermi velocity. Going beyond the linearized theory we show that we can still have nonlinear wave-particle damping associated with multi-plasmon resonances. Sets of evolution equations are derived for the case of two-plasmon resonance and for the case of three-plasmon resonance. The damping rates of the Langmuir waves are deduced for both cases, and the implications of the results are discussed.
LOCAL STABILITY OF TRAVELLING FRONTS FOR A DAMPED WAVE EQUATION
Institute of Scientific and Technical Information of China (English)
Cao LUO
2013-01-01
The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut =uxx-V'(u) on R.The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut =uxx-V'(u).Whereas a lot is known about the local stability of travelling fronts in parabolic systems,for the hyperbolic equations it is only briefly discussed when the potential V is of bistable type.However,for the combustion or monostable type of V,the problem is much more complicated.In this paper,a local stability result for travelling fronts of this equation with combustion type of nonlinearity is established.And then,the result is extended to the damped wave equation with a case of monostable pushed front.
Decoherence and damping in ideal gases
Polonyi, Janos
2010-01-01
The particle and current densities are shown to display damping and undergo decoherence in ideal quantum gases. The damping is read off from the equations of motion reminiscent of the Navier-Stokes equations and shows some formal similarity with Landau damping. The decoherence leads to consistent density and current histories with characteristic length and time scales given by the ideal gas.
Review: Modeling Damping in Mechanical Engineering Structures
Directory of Open Access Journals (Sweden)
Michel Lalanne
2000-01-01
Full Text Available This paper is concerned with the introduction of damping effects in the analysis of mechanical engineering structures. Damping can be considered as being generated by concentrated elements, by distributed elements, or by several effects existing simultaneously. Modeling damping for different engineering situations is described and some applications are presented briefly.
Landau damping effects on dust-acoustic solitary waves in a dusty negative-ion plasma
Barman, A
2014-01-01
The nonlinear theory of dust-acoustic waves (DAWs) with Landau damping is studied in an unmagnetized dusty negative-ion plasma in the extreme conditions when the free electrons are absent. The cold massive charged dusts are described by fluid equations, whereas the two-species of ions (positive and negative) are described by the kinetic Vlasov equations. A Korteweg de-Vries (KdV) equation with Landau damping, governing the dynamics of weakly nonlinear and weakly dispersive DAWs, is derived following Ott and Sudan [Phys. Fluids {\\bf 12}, 2388 (1969)]. It is shown that for some typical laboratory and space plasmas, the Landau damping (and the nonlinear) effects are more pronounced than the finite Debye length (dispersive) effects for which the KdV soliton theory is not applicable to DAWs in dusty pair-ion plasmas. The properties of the linear phase velocity, solitary wave amplitudes (in presence and absence of the Landau damping) as well as the Landau damping rate are studied with the effects of the positive io...
Landau damping effects on dust-acoustic solitary waves in a dusty negative-ion plasma
Energy Technology Data Exchange (ETDEWEB)
Barman, Arnab; Misra, A. P., E-mail: apmisra@visva-bharati.ac.in, E-mail: apmisra@gmail.com [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, West Bengal (India)
2014-07-15
The nonlinear theory of dust-acoustic waves (DAWs) with Landau damping is studied in an unmagnetized dusty negative-ion plasma in the extreme conditions when the free electrons are absent. The cold massive charged dusts are described by fluid equations, whereas the two-species of ions (positive and negative) are described by the kinetic Vlasov equations. A Korteweg-de Vries (KdV) equation with Landau damping, governing the dynamics of weakly nonlinear and weakly dispersive DAWs, is derived following Ott and Sudan [Phys. Fluids 12, 2388 (1969)]. It is shown that for some typical laboratory and space plasmas, the Landau damping (and the nonlinear) effects are more pronounced than the finite Debye length (dispersive) effects for which the KdV soliton theory is not applicable to DAWs in dusty pair-ion plasmas. The properties of the linear phase velocity, solitary wave amplitudes (in presence and absence of the Landau damping) as well as the Landau damping rate are studied with the effects of the positive ion to dust density ratio (μ{sub pd}) as well as the ratios of positive to negative ion temperatures (σ) and masses (m)
Zweig, George
2016-05-01
An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.
CHAOTIC BELT PHENOMENA IN NONLINEAR ELASTIC BEAM
Institute of Scientific and Technical Information of China (English)
张年梅; 杨桂通
2003-01-01
The chaotic motions of axial compressed nonlinear elastic beam subjected totransverse load were studied. The damping force in the system is nonlinear. Consideringmaterial and geometric nonlinearity, nonlinear governing equation of the system wasderived. By use of nonlinear Galerkin method, differential dynamic system was set up.Melnikov method was used to analyze the characters of the system. The results showed thatchaos may occur in the system when the load parameters P0 and f satisfy some conditions.The zone of chaotic motion was belted. The route from subharmonic bifurcation to chaoswas analyzed. The critical conditions that chaos occurs were determined.
Modeling and experimental study of a honeycomb beam filled with damping particles
Ahmad, Nazeer; Ranganath, R.; Ghosal, Ashitava
2017-03-01
Honeycomb sandwich laminates which are the basic structural element of spacecraft have inherently low damping. In this paper, we propose to improve the damping characteristics of such structures by adding damping particles in the cells of the honeycomb. This paper presents modeling of a cantilever beam constructed with honeycomb structure with the hexagonal honeycomb cells, filled with particles. The beam is subjected to external dynamic loads and the interactions of damping particles with the walls of the cells and its overall effect on the frequency response function (FRF) and the damping of the beam are obtained. The discrete-element-method (DEM) is used to model the dynamics of the particles in conjunction with the governing equations of motion of the beam and the cell-walls. The particle-particle and particle-wall impact is modeled using Hertz's non-linear dissipative contact model for normal component and Coulomb's laws of friction for tangential component. Contiguous block of cells near the tip of the cantilever beam were filled with the damping particles and the beam was excited with a random signal near the fixed end. The damping and transfer functions obtained experimentally are compared to those obtained from the mathematical model and they are found to match very well. Further the model was used to study the effect of fill fraction, mass ratio, and the level of excitation signal on transfer function. Depending on the mass ratio and fill fraction, significant reductions in vibration levels are observed.
A PSO based unified power flow controller for damping of power system oscillations
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H. [Technical Engineering Dept., Univ. of Mohaghegh Ardabili, Daneshgah Street, P.O. Box 179, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Dept., Iran Univ. of Science and Technology, Tehran (Iran); Jalilzadeh, S.; Safari, A. [Technical Engineering Dept., Zanjan Univ., Zanjan (Iran)
2009-10-15
On the basis of the linearized Phillips-Herffron model of a single-machine power system, we approach the problem of select the best input control signal of the unified power flow controller (UPFC) and design optimal UPFC based damping controller in order to enhance the damping of the power system low frequency oscillations. The potential of the UPFC supplementary controllers to enhance the dynamic stability is evaluated. This controller is tuned to simultaneously shift the undamped electromechanical modes to a prescribed zone in the s-plane. The problem of robustly UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multiobjective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using particle swarm optimization technique (PSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller is demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the tuned PSO based UPFC controller using the proposed multiobjective function has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based controller is superior to the m{sub B} based controller. (author)
DAMPs, Ageing, and Cancer: The ‘DAMP Hypothesis’
Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J.; Kang, Rui; Lotze, Michael T.; Tang, Daolin
2014-01-01
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. PMID:25446804
CRITICAL DAMPING OF THE SECOND-ORDER PENDULUM-LIKE SYSTEMS
Institute of Scientific and Technical Information of China (English)
李鑫滨; 黄永念; 杨莹; 黄琳
2005-01-01
First, the properties of solutions of a typical second-order pendulum-like system with a specified nonlinear function were discussed. Then the case with a general form of nonlinearity is considered and its global properties were studied by using the qualitative theory of differential equations. As a result, sufficient conditions for estimating the critical damp are established, which improves the work by Leonov et al.
Pythium and Fusarium species causing seed rot and damping-off of alfalfa
Seed rot and damping-off is an important disease of alfalfa, severely affecting stand establishment when conditions favor the disease. This disease may have been overlooked as a cause of poor stand establishment and reduced vigor of adult plants. Globally, 15 Pythium species have been found to cause...
Periodic Solution of Weakly Damped 3D Schrodinger-Boussinesq Equations
Institute of Scientific and Technical Information of China (English)
GUANMei-jiao; LIYong-sheng
2003-01-01
In this paper the authors consider a model of the interaction of a nonlinear complex Schrodinger field and a real Boussinesq field in a 3D domain with the weakly damping which arises in the laser and plasma physics and prove the existence of the periodic solution.
Kinetic theory of collective excitations and damping in Bose-Einstein condensed gases
Al Khawaja, U.; Stoof, H.T.C.
2000-01-01
We calculate the frequencies and damping rates of the low-lying collective modes of a Bose-Einstein condensed gas at nonzero temperature. We use a complex nonlinear Schrödinger equation to determine the dynamics of the condensate atoms, and couple it to a Boltzmann equation for the noncondensate ato
Global existence of solutions for semilinear damped wave equation in 2-D exterior domain
Ikehata, Ryo
We consider a mixed problem of a damped wave equation utt-Δ u+ ut=| u| p in the two dimensional exterior domain case. Small global in time solutions can be constructed in the case when the power p on the nonlinear term | u| p satisfies p ∗=2Japon. 55 (2002) 33) plays an effective role.
The Damped String Problem Revisited
Gesztesy, Fritz
2010-01-01
We revisit the damped string equation on a compact interval with a variety of boundary conditions and derive an infinite sequence of trace formulas associated with it, employing methods familiar from supersymmetric quantum mechanics. We also derive completeness and Riesz basis results (with parentheses) for the associated root functions under less smoothness assumptions on the coefficients than usual, using operator theoretic methods (rather than detailed eigenvalue and root function asymptotics) only.
Active damping of unidimensional structures
Tartakovskiy, B. D.
1973-01-01
The vibration characteristics of an unidimensional structure are discussed. The cases considered are: (1) a rigid pipe in which a wave propagates, (2) an infinite string along which a transverse wave propagates, (3) a rod along which longitudinal or torsional columns propagate, and (4) generally a unidimensional propagation of some one mode of vibrations which is nondegenerating with distance. Mathematical models are developed to show the performance of the mechanical devices under various damping conditions.
Radiation damping in real time.
Mendes, A C; Takakura, F I
2001-11-01
We study the nonequilibrium dynamics of a charge interacting with its own radiation, which originates the radiation damping. The real-time equation of motion for the charge and the associated Langevin equation is found in classical limit. The equation of motion for the charge allows one to obtain the frequency-dependent coefficient of friction. In the lowest order we find that although the coefficient of static friction vanishes, there is dynamical dissipation represented by a non-Markovian dissipative kernel.
The DAMPE silicon tungsten tracker
Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D
2017-01-01
The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...
Fast relaxation transients in a kicked damped oscillator
Energy Technology Data Exchange (ETDEWEB)
Urquizu, Merce [Laboratori d' Estudis Geofisics ' Eduard Fontsere' , IEC, Barcelona (Spain); Correig, Antoni M. [Departament d' Astronomical i Meteorologia, Laboratori d' Estudis Geofisics Eduard Fontsere, UB Marti Franques 1, E-08028 Barcelona (Spain) and Laboratori d' Estudis Geofisics ' Eduard Fontsere' , IEC, Barcelona (Spain)]. E-mail: ton.correig@am.ub.es
2007-08-15
Although nonlinear relaxation transients are very common in nature, very few studies are devoted to its characterization, mainly due to its short time duration. In this paper, we present a study about the nature of relaxation transients in a kicked damped oscillator, in which transients are generated in terms of continuous fast changes in the parameters of the system. We have found that transient dynamics can be described, rather than in terms of bifurcation dynamics, in terms of instantaneous stretching factors, which are related to the stability of fixed points of the corresponding stroboscopic maps.
On a Strongly Damped Wave Equation for the Flame Front
Institute of Scientific and Technical Information of China (English)
Claude-Michel BRAUNER; Luca LORENZI; Gregory I.SIVASHINSKY; Chuanju XU
2010-01-01
In two-dimensional free-interface problems,the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S).However,away from the stability threshold,the structure of the front equation may be more in-volved.In this paper,a generalized K-S equation,a nonlinear wave equation with a strong damping operator,is considered.As a consequence,the associated semigroup turns out to be analytic.Asymptotic convergence to K-S is shown,while numerical results illustrate the dynamics.
Asymptotic expansions in nonlinear rotordynamics
Day, William B.
1987-01-01
This paper is an examination of special nonlinearities of the Jeffcott equations in rotordynamics. The immediate application of this analysis is directed toward understanding the excessive vibrations recorded in the LOX pump of the SSME during hot-firing ground testing. Deadband, side force, and rubbing are three possible sources of inducing nonlinearity in the Jeffcott equations. The present analysis initially reduces these problems to the same mathematical description. A special frequency, named the nonlinear natural frequency, is defined and used to develop the solutions of the nonlinear Jeffcott equations as singular asymptotic expansions. This nonlinear natural frequency, which is the ratio of the cross-stiffness and the damping, plays a major role in determining response frequencies.
Asymptotic Behavior for a Strongly Damped Nonlinear Wave Equation.
1980-06-01
principle to reaction- diffusion equations, J. Differential Equations 33(1979), 201-225. [2] Billotti, J.E. and J.P. LaSalle , Periodic dissipative...results of Alikakos. Invariant sets in one space are automatically invariant sets in many spaces (which implies smoothness properties of invariant sets...of a "very smooth" maximal compact invariant set under a very weak dissipative assumption, along with its strong stability and attractivity properties
Tracking controller for robot manipulators via composite nonlinear feedback law
Institute of Scientific and Technical Information of China (English)
Peng Wendong; Su Jianbo
2009-01-01
A composite nonlinear feedback tracking controller for motion control of robot manipulators is de-scribed. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.
Identification of Nonlinearities in Joints of a Wing Structure
Sani M.S.M.; Ouyang H
2016-01-01
Nonlinear structural identification is essential in engineering. As new materials are being used andstructures become slender and lighter, nonlinear behaviour of structures becomes more important. There have been many studies into the development and application of system identification methods for structural nonlinearity based on changes in natural frequencies, mode shapes and damping ratios. A great challenge is to identify nonlinearity in large structural systems. Much work has been undert...
Unimodal optimal passive electromechanical damping of elastic structures
Ben Mekki, O.; Bourquin, F.; Maceri, F.; Merliot, E.
2013-08-01
In this paper, a new electromechanical damper is presented and used, made of a pendulum oscillating around an alternator axis and connected by a gear to the vibrating structure. In this way, the mechanical energy of the oscillating mass can be transformed into electrical energy to be dissipated when the alternator is branched on a resistor. This damping device is intrinsically non-linear, and the problem of the optimal parameters and of the best placement of this damper on the structure is studied. The optimality criterion chosen here is the maximum exponential time decay rate (ETDR) of the structural response. This criterion leads to new design formulas. The case of a bridge under construction is considered and the analytical results are compared with experimental ones, obtained on a mock-up made of a vertical tower connected to a free-end horizontal beam, to simulate the behavior of a cable-stayed bridge during the erection phase. Up to three electromechanical dampers are placed in order to study the multi-modal damping. The satisfactory agreement between the theoretical model and the experiments suggests that a multi-modal passive damping of electromagnetic type could be effective on lightweight flexible structures, when dampers are suitably placed.
Optics design of Intrabeam Scattering dominated damping rings
Antoniou, Fanouria; Papaphilippou, Ioannis
A e+/e- linear collider, the Compact Linear Collider (CLIC) is under design at CERN, aiming to explore the terascale particle physics regime. The collider has been optimized at 3 TeV center of mass energy and targets a luminosity of 1034 cm-2 s-1. In order to achieve this high luminosity, high intensity bunches with ultra low emittances, in all three planes, are required. The generation of ultra low emittance is achieved in the Damping Rings (DR) complex of the collider. The large input beam emittances, especially the ones coming from the positron source, and the requirement of ultra low emittance production in a fast repetition time of 20 ms, imply that the beam damping is done in two stages. Thus, a main-damping ring (DR) and a predamping ring (PDR) are needed, for each particle species. The high bunch brightness gives rise to several collective effects, with Intra-beam scattering (IBS) being the main limitation to the ultra-low emittance. This thesis elaborates the lattice design and non-linear optimizatio...
Sub-synchronous resonance damping using high penetration PV plant
Khayyatzadeh, M.; Kazemzadeh, R.
2017-02-01
The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.
Landau Damping of Beam Instabilities by Electron Lenses
Energy Technology Data Exchange (ETDEWEB)
Shiltsev, V. [Fermilab; Alexahin, Yuri; Burov, A. [Fermilab; Valishev, A. [Fermilab
2017-06-26
Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.
Introduction to DAMPE event reconstruction (On behalf of DAMPE collaboration)
Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. To measure basic attributes of cosmic ray particles, DAMPE is equipped with four sub-detectors, BGO calorimeter (BGO), plastic scintillator detector (PSD), silicon tungsten tracker (STK) and neutron detector (NUD). On orbit, the high energy particle data are acquired and recorded by well-designed Data Acquisition system. After that, a series of elaborate event reconstruction algorithms are implemented to determine the energy, direction and particle ID of each event. The energy reconstruction algorithm firstly treats the sum of the BGO crystal energy as the overall energy estimator and various corrections are performed to calculate energy leakage from side and back of the calorimeter. The track reconstruction starts with cluster finding in STK, then shower axis of BGO and barycentre of clusters are used to extract seed of tracks. These seeds will be projected on the next layer by Kalman Filter method which will finally give location and direction of particle tracks. Based on shower development in BGO and tracks reconstructed by STK, we also combine data from PSD and NUD and developed a series of algorithms to evaluate particle's charge and identification. In this talk, we will describe technical strategies of event reconstruction and provide their basic performance.
Air Damping Analysis in Comb Microaccelerometer
Directory of Open Access Journals (Sweden)
Wu Zhou
2014-04-01
Full Text Available Air damping significantly influences the dynamical characteristics of MEMS accelerometers. Its effects at micro-scale level sharply depend on the structure layouts and size of MEMS devices. The damping phenomenon of comb microaccelerometers is investigated. The air between fixed plate electrodes and movable plate electrodes cannot flow freely and is compressed. The air damping, therefore, exhibits both viscous effects and stiffness effects. The former generates a drag force like that in macromechanical systems, and the damping force is proportional to the velocity of movable electrodes. The latter stiffens the rigidity of structure, and the stiffening level is related to the gap value of capacitors, internal pressure, and temperature. This paper focuses on the dependence of the squeeze film air damping on capacitor gaps. The simulation and experiments indicate that the squeeze film effect is sharply affected by the gap value when the structural dimensions decrease. And the influence of fabrication errors is considered in damping design in comb microaccelerometers.
Damped transverse oscillations of interacting coronal loops
Soler, Roberto
2015-01-01
Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations compared to those of an isolated loop. Here we theoretically investigate resonantly damped transverse oscillations of interacting non-uniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. ...
Quantizing the damped harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Latimer, D C [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)
2005-03-04
We consider the Fermi quantization of the classical damped harmonic oscillator (dho). In past work on the subject, authors double the phase space of the dho in order to close the system at each moment in time. For an infinite-dimensional phase space, this method requires one to construct a representation of the CAR algebra for each time. We show that the unitary dilation of the contraction semigroup governing the dynamics of the system is a logical extension of the doubling procedure, and it allows one to avoid the mathematical difficulties encountered with the previous method.
Vitreous Enamel Damping Material Development.
1982-11-01
PROCEDURES 3 2.1. EXPERIMENTAL 3 2.1.1. GLASS PREPARATION 3 2.1.2. METHOD OF COATING APPLICATION 3 2.1.3. VIBRATION DAMPING MEASUREMENTS 3 2.2. CALCULATION OF...discussion in this report. fL 2 SECTION II TECHNICAL PROCEDURES 2.1 EXPERIMENTAL 2.1.1 Glass Preparation All of the compositions, except the standard...After heat treatments of composition "B", a- cristobalite and devitrite (Na20.3CaO-6SiO 2) appear as crystalline phases; a- cristobalite being the major
Radiation damping in metal nanoparticle pairs.
Dahmen, Christian; Schmidt, Benjamin; von Plessen, Gero
2007-02-01
The radiation damping rate of plasmon resonances in pairs of spherical gold nanoparticles is calculated. The radiative line width of the plasmon resonance indicates significant far-field coupling between the nanoparticles over distances many times the particle diameter. The radiation damping of the coupled particle-plasmon mode alternates between superradiant and subradiant behavior when the particle spacing is varied. At small particle spacings where near-field coupling occurs, the radiation damping rate lies far below that of an isolated particle.
Parametric Landau damping of space charge modes
Macridin, Alexandru; Stern, Eric; Amundson, James; Spentzouris, Panagiotis
2016-01-01
Landau damping is the mechanism of plasma and beam stabilization; it is caused by energy transfer from collective modes to incoherent motion of resonant particles. Normally this resonance requires the wave frequency in the particle frame to match the resonant particles frequency. Using the Synergia modeling package to study transverse coherent modes of bunched beams with space charge, we have identified a new kind of damping mechanism, parametric Landau damping, driven by the modulation of the wave-particle interaction.
Tuning of damping controller for UPFC using quantum particle swarm optimizer
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)
2010-11-15
On the basis of the linearized Phillips-Herffron model of a single machine power system, we design optimally the unified power flow controller (UPFC) based damping controller in order to enhance power system low frequency oscillations. The problem of robustly UPFC based damping controller is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO) technique that has fewer parameters and stronger search capability than the particle swarm optimization (PSO), as well as is easy to implement. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller is demonstrated through non-linear time-domain simulation and some performance indices studies under various disturbance conditions of over a wide range of loading conditions. The results analysis reveals that the designed QPSO based UPFC controller has an excellent capability in damping power system low frequency oscillations in comparison with the designed classical PSO (CPSO) based UPFC controller and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based damping controller is superior to the m{sub B} based damping controller.
Effect of embedded voltage source converter on power system oscillation damping
Institute of Scientific and Technical Information of China (English)
R; DUNN
2010-01-01
This paper presents the damping torque analysis of power system oscillation stability as affected by the dynamic and control functions of an embedded voltage source converter(VSC).The objective of the study is to explain why and how the dynamic and basic control functions of the embedded VSC,ac and dc voltage regulation,provide damping to power system oscillations.The most important conclusion obtained in the paper is that both the dynamics and the dc voltage control of the VSC contribute a variable damping torque,which can be positive or negative,at different levels of system load conditions.More positive damping torque can be provided by the VSC at a heavier load condition.There exists a point of system load condition where the VSC provides no damping torque to power system oscillation hence dose not impose any influence on power system oscillation stability.The VSC studied in the paper can be the power-electronics-based interface of various FACTS(flexible ac transmission systems) devices,energy storage systems and renewable power generation units,although the focus of the discussion presented in this paper is the effect of the dynamics and basic control functions of the VSC themselves on power system oscillation damping.To demonstrate the analytical conclusions obtained in the paper,results of eigenvalue computation and nonlinear simulation of an example power system with STATCOM(static synchronous compensator) are given.
Finite element model calibration using frequency responses with damping equalization
Abrahamsson, T. J. S.; Kammer, D. C.
2015-10-01
Model calibration is a cornerstone of the finite element verification and validation procedure, in which the credibility of the model is substantiated by positive comparison with test data. The calibration problem, in which the minimum deviation between finite element model data and experimental data is searched for, is normally characterized as being a large scale optimization problem with many model parameters to solve for and with deviation metrics that are nonlinear in these parameters. The calibrated parameters need to be found by iterative procedures, starting from initial estimates. Sometimes these procedures get trapped in local deviation function minima and do not converge to the globally optimal calibration solution that is searched for. The reason for such traps is often the multi-modality of the problem which causes eigenmode crossover problems in the iterative variation of parameter settings. This work presents a calibration formulation which gives a smooth deviation metric with a large radius of convergence to the global minimum. A damping equalization method is suggested to avoid the mode correlation and mode pairing problems that need to be solved in many other model updating procedures. By this method, the modal damping of a test data model and the finite element model is set to be the same fraction of critical modal damping. Mode pairing for mapping of experimentally found damping to the finite element model is thus not needed. The method is combined with model reduction for efficiency and employs the Levenberg-Marquardt minimizer with randomized starts to achieve the calibration solution. The performance of the calibration procedure, including a study of parameter bias and variance under noisy data conditions, is demonstrated by two numerical examples.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu
2016-06-21
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Hysteretic damping in rotordynamics: An equivalent formulation
Genta, Giancarlo; Amati, Nicola
2010-10-01
The hysteretic damping model cannot be applied to time domain dynamic simulations: this is a well-known feature that has been discussed in the literature since the time when analog computers were widespread. The constant equivalent damping often introduced to overcome this problem is also discussed, and its limitations are stated, in particular those linked with its application in rotordynamics to simulate rotating damping. An alternative model based on the nonviscous damping (NVD) model, but with a limited number of additional degrees of freedom, is proposed, and the relevant equations are derived. Some examples show applications to the rotordynamics field.
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.......Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...
Instantaneous Frequency and Damping from Transient Ring-Down Data
Energy Technology Data Exchange (ETDEWEB)
Kuether, Robert J.; Brake, Matthew Robert
2015-10-01
Broadband impact excitation in structural dynamics is a common technique used to detect and characterize nonlinearities in mechanical systems since it excites many frequencies of a structure at once and can be applied with a variety of boundary conditions. Non-stationary time signals from transient ring-down measurements require time-frequency analysis tools to observe variations in frequency and energy dissipation as the response evolves. This work uses the short-time Fourier transform to estimate the instantaneous frequency and damping ratio from either measured or simulated transient ring-down data. By combining the discrete Fourier transform with an expanding or contracting window function that moves along the time axis, the resulting spectrum is used to estimate the instantaneous frequencies, damping and complex Fourier coefficients. This method is demonstrated on a multi-degree-of-freedom beam with a cubic spring attachment, and investigates the amplitudefrequency dependence in connection to the undamped nonlinear normal modes. A second example shows the results from experiment ring-down response on a beam with a lap joint, and reveals how the system behaves as energy dissipates.
Petitjean, P.; Ledoux, C.
Recently, Prochaska & Wolfe (1997) have used Keck spectra of 17 DLA absorbers to investigate the kinematics of the neutral gas using unsaturated low excitation transitions such as Si iiλ 1808. They show that the absorption profiles are inconsistent with models of galactic haloes with random motions, spherically infalling gas and slowly rotating hot disks. The CDM model (Kauffmann 1996) is rejected as it produces disks with rotation velocities too small to account for the large observed velocity broadening of the absorption lines. Models of thick disks (h ~0.3 R, where h is the vertical scale and R the radius) with large rotational velocity (v 225kms-1) can reproduce the data. By combining new data on five damped systems with information gathered in the literature, we study the kinematics of the low and high-ionization phases in a sample of 26 damped Lyman-α systems in the redshift range 1.17 - 4.38. We show that the broader the line the more asymmetric, as expected in case rotation dominates the line broadening. However this correlation does not hold for velocities larger than 150 km/s indicating that evidence for rotational motions if any is restricted to velocity broadenings Δ V 200kms-1 are peculiar with kinematics consistent with random motions. They show sub-systems as those expected if the objects are in the process of merging.
Damped and detuned accelerator structures
Energy Technology Data Exchange (ETDEWEB)
Deruyter, H.; Farkas, Z.D; Hoag, H.A.; Ko, K.; Kroll, N.; Loew, G.A.; Miller, R.; Palmer, R.B.; Paterson, J.M.; Thompson, K.A.; Wang, J.W.; Wilson, P.B.
1990-09-01
This paper reports continuing work on accelerator structures for future TeV linear colliders. These structures, in addition to having to operate at high gradients, must minimize the effects of wakefield modes which are induced by e{sup {plus minus}} bunch trains. Two types of modified disk-loaded waveguides are under investigation: damped structures in which the wakefield power is coupled out to lossy regions through radial slots in the disks and/or azimuthal rectangular waveguides, whereby the external Q of the undesirable HEM{sub 11} mode is lowered to values below 20, and detuned structures in which the frequencies of these modes are modified from one end to the other of each section by {approximately}10%, thereby scrambling their effects on the beam. Beam dynamics calculations indicate that these two approaches are roughly equivalent. MAFIA, ARGUS and URMEL codes have been used extensively in conjunction with low-power tests on S- and X-band models to identify mode patterns, dispersion curves and Q values, and to demonstrate damping or detuning of the HEM modes. Results of calculations and measurements on the various structures are presented and evaluated.
Acoustic transducer with damping means
Smith, Richard W.; Adamson, Gerald E.
1976-11-02
An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.
ON INFLUENCE OF KINEMATICS TO EQUIVALENT LINEAR DAMPING OF HELICOPTER BLADE HYDRAULIC DAMPER
Institute of Scientific and Technical Information of China (English)
胡国才; 向锦武; 张晓谷
2002-01-01
An analytical model of hydraulic damper was presented in forward flight accounting for pitch/flap/lag kinematic coupling and its nonlinear force-velocity curve. The fourth order Runge-Kutta was applied to calculate the damper axial velocity in time domain. Fourier series based moving block analysis was applied to calculate equivalent linear damping in terms of transient responses of damper axial velocity. Results indicate that equivalent linear damping will be significantly reduced if pitch/ flap/ lag kinematic coupling introduced for notional model and flight conditions.
Application of the direct Lyapunov method to improve damping of power swings by control of UPFC
Energy Technology Data Exchange (ETDEWEB)
Januszewski, M.; Machowski, J. [Warsaw Univ. of Technology (Poland). Inst. of Elektroenergetyki; Bialek, J.W. [Edinburgh Univ. (United Kingdom). School of Engineering and Electronics
2004-03-01
Large interconnected power systems often suffer from weakly damped swings between synchronous generators and subsystems. This paper presents an approach, based on the use of the nonlinear system model and application of the direct Lyapunov method, to improve damping of power swings using the unified power flow controller (UPFC). A state-variable control strategy has been derived as well as its implementation using locally available signals of real and reactive power. The results of simulation tests, undertaken using a small multi-machine system model, have been presented. (author)
High performance single-error-correcting quantum codes for amplitude damping
Shor, Peter W; Smolin, John A; Zeng, Bei
2009-01-01
We construct families of high performance quantum amplitude damping codes. All of our codes are nonadditive and most modestly outperform the best possible additive codes in terms of encoded dimension. One family is built from nonlinear error-correcting codes for classical asymmetric channels, with which we systematically construct quantum amplitude damping codes with parameters better than any prior construction known for any block length n > 7 except n=2^r-1. We generalize this construction to employ classical codes over GF(3) with which we numerically obtain better performing codes up to length 14. Because the resulting codes are of the codeword stabilized (CWS) type, easy encoding and decoding circuits are available.
Inductive intrinsic localized modes in a one-dimensional nonlinear electric transmission line
Sato, M.; Mukaide, T.; Nakaguchi, T.; Sievers, A. J.
2016-07-01
The experimental properties of intrinsic localized modes (ILMs) have long been compared with theoretical dynamical lattice models that make use of nonlinear onsite and/or nearest-neighbor intersite potentials. Here it is shown for a one-dimensional lumped electrical transmission line that a nonlinear inductive component in an otherwise linear parallel capacitor lattice makes possible a new kind of ILM outside the plane wave spectrum. To simplify the analysis, the nonlinear inductive current equations are transformed to flux transmission line equations with analog onsite hard potential nonlinearities. Approximate analytic results compare favorably with those obtained from a driven damped lattice model and with eigenvalue simulations. For this mono-element lattice, ILMs above the top of the plane wave spectrum are the result. We find that the current ILM is spatially compressed relative to the corresponding flux ILM. Finally, this study makes the connection between the dynamics of mass and force constant defects in the harmonic lattice and ILMs in a strongly anharmonic lattice.
Quasienergy formulation of damped response theory.
Kristensen, Kasper; Kauczor, Joanna; Kjaergaard, Thomas; Jørgensen, Poul
2009-07-28
We present a quasienergy-based formulation of damped response theory where a common effective lifetime parameter has been introduced for all excited states in terms of complex excitation energies. The introduction of finite excited state lifetimes leads to a set of (complex) damped response equations, which have the same form to all orders in the perturbation. An algorithm is presented for solving the damped response equations in Hartree-Fock theory and Kohn-Sham density functional theory. The use of the quasienergy formulation allows us to obtain directly the computationally simplest expressions for damped response functions by applying a set of response parameter elimination rules, which minimize the total number of damped response equations to be solved. In standard response theory broadened absorption spectra are obtained by ad hoc superimposing lineshape functions onto the absorption stick spectra, whereas an empirical lineshape function common to all excitations is an integrated part of damped response theory. By superimposing the lineshape functions inherent in damped response theory onto the stick spectra of standard response theory, we show that the absorption spectra obtained in standard and damped response theory calculations are identical. We demonstrate that damped response theory may be applied to obtain absorption spectra in all frequency ranges, also those that are not readily addressed using standard response theory. This makes damped response theory an effective tool, e.g., for determining absorption spectra for large molecules, where the density of the excited states may be very high, and where standard response theory therefore is not applicable in practice. A thorough comparison is given between our formulation of damped response theory and the formulation by Norman et al. [J. Chem. Phys. 123, 194103 (2005)].
New Study Says CAI May Favor Introverts.
Hopmeier, George
1981-01-01
A personality research study using the Myers-Briggs Type Indicator indicates that computer-assisted instruction programs favor introverts, i.e., those learners who can concentrate on details, memorize facts, and stay with a task until it is completed. (JJD)
Generation Favorable Institutional Configuration Regional Business Environment
Directory of Open Access Journals (Sweden)
Natalia Zinovievna Solodilova
2014-12-01
Full Text Available This article discusses the theoretical issues of creating an enabling business environment, which is the base platform for the successful development of entrepreneurship in the regions. Provides A definition of a favorable institutional configuration of the regional business environment, which refers to forms of implementing the basic institutions and other regional institutions, taking into account existing regional system of formal and informal interaction between economic actors. States that despite the measures taken, the landscape of the Russian business community in terms of regions, remains uneven, with different indices of investment and business attractiveness, there is differentiation in business conditions in the regions with similar natural and geographical conditions and resource potential, which is primarily determined by , differences in the institutional configuration of the regional business environment and quality of interaction among the business community of the region. Hypothesis about the impossibility of creating a favorable business environment, institutional configurations at the same time in all regions of the country, as well as its limited duration. Conducted theoretical and probabilistic analysis of the parameters of creating an enabling institutional configuration of the business environment in the Russian regions. Grounded approach whereby institutional configuration of regional business environment, may be subject to management and control actions through targeted by the regional authorities can accept the specified (favorable to the business community parameters. The necessity of planning and effective management of a favorable institutional configuration of the business environment by regional authorities to increase the period of its existence.
To Form a Favorable Idea of Chemistry
Heikkinen, Henry W.
2010-01-01
"To confess the truth, Mrs. B., I am not disposed to form a very favorable idea of chemistry, nor do I expect to derive much entertainment from it." That 200-year-old statement by Caroline to Mrs. Bryan, her teacher, appeared on the first page of Jane Marcet's pioneering secondary school textbook, "Conversations on Chemistry". It was published 17…
To Form a Favorable Idea of Chemistry
Heikkinen, Henry W.
2010-01-01
"To confess the truth, Mrs. B., I am not disposed to form a very favorable idea of chemistry, nor do I expect to derive much entertainment from it." That 200-year-old statement by Caroline to Mrs. Bryan, her teacher, appeared on the first page of Jane Marcet's pioneering secondary school textbook, "Conversations on Chemistry". It was published 17…
Structures of Neural Correlation and How They Favor Coding
Franke, Felix; Fiscella, Michele; Sevelev, Maksim; Roska, Botond; Hierlemann, Andreas; da Silveira, Rava Azeredo
2017-01-01
Summary The neural representation of information suffers from “noise”—the trial-to-trial variability in the response of neurons. The impact of correlated noise upon population coding has been debated, but a direct connection between theory and experiment remains tenuous. Here, we substantiate this connection and propose a refined theoretical picture. Using simultaneous recordings from a population of direction-selective retinal ganglion cells, we demonstrate that coding benefits from noise correlations. The effect is appreciable already in small populations, yet it is a collective phenomenon. Furthermore, the stimulus-dependent structure of correlation is key. We develop simple functional models that capture the stimulus-dependent statistics. We then use them to quantify the performance of population coding, which depends upon interplays of feature sensitivities and noise correlations in the population. Because favorable structures of correlation emerge robustly in circuits with noisy, nonlinear elements, they will arise and benefit coding beyond the confines of retina. PMID:26796692
Electron dynamics with radiation and nonlinear wigglers
Energy Technology Data Exchange (ETDEWEB)
Jowett, J.M.
1986-06-01
The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches.
Passivation of Underactuated Systems with Physical Damping
Gómez-Estern, F.; Schaft, A.J. van der; Acosta, J.A.
2004-01-01
In recent works, Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) has been succesfully applied to mechanical control problems with no physical damping present. In some cases, the friction terms can be obviated without compromising stability in closed loop. However in method
Magnetic dipole oscillations and radiation damping
Stump, Daniel R.; Pollack, Gerald L.
1997-01-01
We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field. An equation for the radiation reaction torque is derived, and the damping of the oscillations is described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the influence of the reaction torque, with no external torque.
Gyroscopic Stabilization of Indefinite Damped Systems
DEFF Research Database (Denmark)
Kliem, Wolfhard; Müller, Peter C.
1997-01-01
Modelling of mechanical systems with sliding bearings, or with dry friction, can lead to linear systems with an indefinite damping matrix. We ask under what conditions such a system is unstable (the indefiniteness of the damping matrix is not enough) and under what conditions we can stabilize...
Understanding the Damped SHM without ODEs
Ng, Chiu-king
2016-01-01
Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b ? [square root]4mk for the occurrence of the non-oscillating critical damping and…
Damping Characteristics of Metal Matrix Composites
1989-05-25
Sin . ........... Inches x 106 (Microinches) IR&D ......................... n e t Research and Development.K ...................... Kelvin LPSS...Proper Sitan Ampliutde Dependence for a Dislocation Damping Mechanism 5.4 SUMMARY Damping measurements of pitch 55 graphite fiber reinforcement in high
Anisotropic damping of Timoshenko beam elements
DEFF Research Database (Denmark)
Hansen, M.H.
2001-01-01
This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risø for modeling wind turbines. The model has been developed to enable modeling of turbine blades which oftenhave different damping characteristics...
On Collisionless Damping of Ion Acoustic Waves
DEFF Research Database (Denmark)
Jensen, Vagn Orla; Petersen, P.I.
1973-01-01
Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....
Soil-structure interaction including nonlinear soil
Gicev, Vlado
2008-01-01
There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.
Magnetic damping of rotation. [in satellites
Opik, E. J.
1977-01-01
Based on Wilson's (1977) article on the magnetic effects on space vehicles and other celestial bodies, the magnetic damping of rotation is considered. The inadequacy of the interstellar magnetic field in overcoming solar wind shielding and thus influencing the rotation of bodies is described. The ionospheric shielding of the interstellar field is discussed along with the permeability and magnetic damping by the solar or stellar wind. Star formation and angular momentum is discussed and attention is given to the magnetic damping of unshielded small bodies. Calculations of the rate for damping through random particle impact are made. Theories concerning the rotation of asteroids and the origin of meteorites are reviewed. The shielding process of ionospheric plasmas is outlined and the damping effect of the geomagnetic field on the rotation of artificial satellites is evaluated.
Quantum dynamics of the damped harmonic oscillator
Philbin, T G
2012-01-01
The quantum theory of the damped harmonic oscillator has been a subject of continual investigation since the 1930s. The obstacle to quantization created by the dissipation of energy is usually dealt with by including a discrete set of additional harmonic oscillators as a reservoir. But a discrete reservoir cannot directly yield dynamics such as Ohmic damping (proportional to velocity) of the oscillator of interest. By using a continuum of oscillators as a reservoir, we canonically quantize the harmonic oscillator with Ohmic damping and also with general damping behaviour. The dynamics of a damped oscillator is determined by an arbitrary effective susceptibility that obeys Kramers-Kronig relations. This approach offers an alternative description of nano-mechanical oscillators and opto-mechanical systems.
Damping characteristics of damaged fiber composite components
Eberle, K.
1986-01-01
Defects in fiber composite components produce changes with respect to the vibrational characteristics of the material. These changes can be recognized in the form of a frequency shift or an alteration of the damping process. The present investigation is concerned with questions regarding the possibility of a utilization of the changes in suitable defect-detecting inspection procedures. A description is given of a method for measuring the damping characteristics of a specimen. This method provides a spectrum of the damping coefficients of the sample as a basis for a comprehensive evaluation of the damping behavior. The correlation between defects and change in the damping characteristics is demonstrated with the aid of results obtained in measurements involving specimens of carbon-fiber composites and a component consisting of glass-fiber-reinforced plastics.
Practical Damping Identification of FAST Cable Suspension
Directory of Open Access Journals (Sweden)
Jinghai Sun
2014-03-01
Full Text Available FAST focus cabin is suspended and driven by 6 parallel large span cables. Low stiffness of cables makes the cabin sensitive to disturbance and difficult to control. Structural damping then becomes a key factor that can improve control ability. Therefore, a reasonable damping estimation is important for system design. In this paper, a practical damping identification method is developed based on Ibrahim-time-domain algorithm. The method shows satisfied performance on accuracy and reliability in simulation test and is utilized in vibration experiments to identify damping ratios of both single cable model and FAST 3 m scale cable suspension model. Finally, a preliminary analysis of the damping properties is given out based on the results of identification.
Dampness in Buildings and Health
DEFF Research Database (Denmark)
Clausen, Geo; Rode, Carsten; Bornehag, Carl-Gustaf
1999-01-01
will maintain close contact with international, not the least Nordic, research groups by facilitating possibilities for exchange visits and guest positions. The centre will be very active in educating new Ph.D.'s.Next to presenting the setting, the paper gives an overview of the research tasks within the centre...... academic positions. It is anticipated that the research council's support for the centre will be prolonged for another five years, during which period it will be gradually reduced and the centre will be indulged as a permanent activity at DTU.The ambition of the research is to extend the knowledge....... The main themes are:· Continued research in human perception of indoor air quality, especially by identification of the factors that may cause annoyance to the occupants. Such annoyances may be emissions from materials or biological activity, and is often linked to the dampness of buildings.· Studies...
A New Fine Damping Method for Solid ESG Rotor
Institute of Scientific and Technical Information of China (English)
LIU Chun-ning; TIAN Wei-feng; JIN Zhi-hua
2006-01-01
For the electrostatically suspended gyro(ESG) with solid rotor, because the equatorial photoelectric sensor won't sense the equatorial marking line and output the correct damping control information when the nutation angle is small, the active damping with equatorial marking line will bring considerable error. The passive damping method by applying strong DC magnetic field requires too much time. So an active damping method by longitude marking lines is proposed to fulfill the fine damping for solid ESG rotor. The shape of rotor marking lines and the principle of fine damping are introduced. The simulation results prove that this fine damping method can effectively solve the problem of damping error introduced by active damping with equatorial marking line. The estimating results for damping time indicate that the fine damping time is less than 10 percent of passive damping time.
Energy Technology Data Exchange (ETDEWEB)
Chortis, D I; Chrysochoidis, N A; Saravanos, D A [Department of Mechanical Engineering and Aeronautics, University of Patras, Patras 26500 (Greece)
2007-07-15
The paper presents a brief description of composite damping mechanics for blade sections of arbitrary lamination and geometry. A damped 3-D shear beam element is presented enabling the assembly of damped structural dynamic models of blades with hollow multi-cell tubular laminated sections. Emphasis is placed to the inclusion of composite material coupling effects, first in the blade section stiffness and damping matrices and finally into the stiffness and damping matrices of the finite element. Evaluations of the beam element are presented, to quantify the material coupling effect on composite beams of simple box sections. Correlations between predicted and measured modal frequencies and damping values in small model Glass/Epoxy are also shown. Finally, the damped modal characteristics of a 35m realistic wind-turbine blade model design, are predicted.
Jayaprasad, N; Bhalerao, M; Sengupta, Anand S; Majumder, Barun
2013-01-01
We design a low-cost, electromagnetically coupled, simple harmonic oscillator and demonstrate free, damped and forced oscillations in an under-graduate (UG) Physics laboratory. It consists of a spring-magnet system that can oscillate inside a cylinder around which copper coils are wound. Such demonstrations can compliment the traditional way in which a Waves & Oscillations course is taught and offers a richer pedagogical experience for students. We also show that with minimal modifications, it can be used to probe the magnitude of viscous damping forces in liquids by analyzing the oscillations of an immersed magnet. Finally, we propose some student activities to explore non-linear damping effects and their characterization using this apparatus.
Familial risk factors favoring drug addiction onset.
Zimić, Jadranka Ivandić; Jukić, Vlado
2012-01-01
This study, primarily aimed at identification of familial risk factors favoring drug addiction onset, was carried out throughout 2008 and 2009. The study comprised a total of 146 addicts and 134 control subjects. Based on the study outcome, it can be concluded that in the families the addicts were born into, familial risk factors capable of influencing their psychosocial development and favoring drug addiction onset had been statistically more frequently encountered during childhood and adolescence as compared to the controls. The results also indicated the need for further research into familial interrelations and the structure of the families addicts were born into, as well as the need for the implementation of family-based approaches to both drug addiction prevention and therapy.
Temperature dependent elasticity and damping in dehydrated sandstone
Darling, T. W.; Struble, W.
2013-12-01
Work reported previously at this conference, outlining our observation of anomalously large elastic softening and damping in dehydrated Berea sandstone at elevated temperatures, has been analysed to study shear and compressional effects separately. Modeling of the sample using COMSOL software was necessary to identify modes, as the vibration spectrum of the sample is poorly approximated by a uniform isotropic solid. The first torsional mode of our evacuated, dry, core softens at nearly twice the rate of Young's modulus modes (bending and compressional) and is also damped nearly twice as strongly as temperature increases. We consider two possible models for explaining this behavior, based on the assumption that the mechanical properties of the sandstone are dominated by the framework of quartz grains and polycrystalline cementation, neglecting initially the effects of clay and feldspar inclusions. The 20cm x 2.54cm diameter core is dry such that the pressure of water vapor in the experiment chamber is below 1e-6 Torr at 70C, suggesting that surface water beyond a small number of monolayers is negligible. Our models consider (1) enhanced sliding of grain boundaries in the cementation at elevated temperature and reduced internal water content, and (2) strain microcracking of the cementatioin at low water content due to anisotropic expansion in the quartz grains. In model (1) interfaces parallel to polyhedral grain surfaces were placed in the cement bonds and assigned frictional properties. Model (2) has not yet been implemented. The overall elasticity of a 3-D several-grain model network was determined by modeling quasistatic loading and measuring displacements. Initial results with a small number of grains/bonds suggests that only the first model provides softening and damping for all the modes, however the details of the effects of defect motioin at individual interfaces as the source for the frictional properties is still being evaluated. Nonlinear effects are
The in-plane anisotropic magnetic damping of ultrathin epitaxial Co{sub 2}FeAl film
Energy Technology Data Exchange (ETDEWEB)
Qiao, Shuang [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Heibei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Yan, Wei; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui, E-mail: xinhuiz@semi.ac.cn [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China)
2015-08-15
The in-plane orientation-dependent effective damping of ultrathin Co{sub 2}FeAl film epitaxially grown on GaAs(001) substrate by molecular beam epitaxy (MBE) has been investigated by employing the time-resolved magneto-optical Kerr effect (TR-MOKE) measurements. It is found that the interface-induced uniaxial anisotropy is favorable for precession response and the anisotropy of precession frequency is mainly determined by this uniaxial anisotropy, while the magnetic relaxation time and damping factor exhibit the fourfold anisotropy at high-field regime. The field-independent anisotropic damping factor obtained at high fields indicates that the effective damping shows an intrinsic fourfold anisotropy for the epitaxial Co{sub 2}FeAl thin films.
Chemical treatment of papaya seeds aiming at long-term storage and control of damping off
Directory of Open Access Journals (Sweden)
Silvia de Carvalho Campos Botelho
2014-06-01
Full Text Available Damping off is a nursery disease of great economic importance in papaya and seed treatment may be an effective measure to control. The aim of this work was to evaluate the quality of papaya seeds treated with fungicides and stored under two environmental and packaging conditions. Additionally, the efficiency of fungicide treatments in the control of damping-off caused by Rhizoctonia solani was evaluated. Papaya seeds were treated with the fungicides Captan, Tolylfluanid and the mixture Tolylfluanid + Captan (all commercial wettable powder formulations. Seeds of the control group were not treated. The seeds were stored for nine months in two conditions: packed in aluminum coated paper and kept at 7 ± 1ºC and in permeable kraft paper and kept in non-controlled environment. At the beginning of the storage and every three months the seed quality (germination and vigor tests, emergence rate index, height, dry mass and damping of plants in pre and post-emergence (in contaminated substrate and mycelia-free substrate were analyzed. Both storage conditions as well as the fungicide treatments preserved the germination and seed vigor. In the infested substrate, seedling emergence was favored by fungicides, but in post-emergence, fungicides alone did not control the damping off caused by R. solani. Symptoms of damping off were not observed in the clean substrate. The results showed that the fungicide treatments may be used to pretreat papaya seed for long-term storage and commercialization.
A Resonant Damping Study Using Piezoelectric Materials
Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.
2008-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.
Structural dynamic modification using additive damping
Indian Academy of Sciences (India)
B C Nakra
2000-06-01
In order to control dynamic response in structures and machines, modofications using additive viscoelastic damping materials are highlighted. The techniques described for analysis include analytical methods for structural elements, FEM and perturbation methods for reanalysis or structural dynamic modifications for complex structures. Optimisation techniques are used for damping effectiveness include multi-parameter optimisatoin techniques and a technique using dynamic sensitivity analysis and structural dynamic modification. These have been applied for optimum dynamic design of structures incorporating viscoelastic damping. Some current trends for vibraton control are also discussed.
Radiation damping of a polarizable particle
Novotny, Lukas
2017-09-01
A polarizable body moving in an external electromagnetic field will slow down. This effect is referred to as radiation damping and is analogous to Doppler cooling in atomic physics. Using the principles of special relativity we derive an expression for the radiation damping force and find that it solely depends on the scattered power. The cooling of the particle's center-of-mass motion is balanced by heating due to radiation pressure shot noise, giving rise to an equilibrium that depends on the ratio of the field's frequency and the particle's mass. While damping is of relativistic nature, heating has its roots in quantum mechanics.
Damping Properties of Flexible Epoxy Resin
Institute of Scientific and Technical Information of China (English)
WANG Xiang; LIU Hanxing; OUYANG Shixi
2008-01-01
Amino-terminated polyethers and amino-terminated polyurethane were used as curing agent to cure the epoxy resin together and get a series of cured products. The damping properties of the composites were studied by DMA test at different measurement frequencies. Damping mechanical tests show that the flexible epoxy resin has higher loss factor than common epoxy. The highest loss factor reaches 1.57. Also the height and position of loss factor peak of the flexible epoxy resin varies by changing the content of amino-terminated polyethers. Results shows that the flexible epoxy resin can be used as damping polymer materials at room temperature or in common frequency range.
Effect of Stress Amplitude on the Damping of Recycled Aggregate Concrete
Directory of Open Access Journals (Sweden)
Chaofeng Liang
2015-08-01
Full Text Available Damping characterizes the energy dissipation capacity of materials and structures, and it is affected by several external factors such as vibrating frequency, stress history, temperature, and stress amplitude. This study investigates the relationship between the damping and the stress amplitude of environment-friendly recycled aggregate concrete (RAC. First, a function model of a member’s loss factor and stress amplitude was derived based on Lazan’s damping-stress function. Then, the influence of stress amplitude on the loss tangent of RAC was experimentally investigated. Finally, parameters used to determine the newly derived function were obtained by numerical fitting. It is shown that the member’s loss factor is affected not only by the stress amplitude but also by factors such as the cross section shapes, boundary conditions, load types, and loading positions. The loss tangent of RAC increases with the stress amplitude, even at low stress amplitude. The damping energy exponent of RAC is not identically equal to 2.0, indicating that the damping is nonlinear. It is also found that the energy dissipation capacity of RAC is superior to that of natural aggregate concrete (NAC, and the energy dissipation capacity can be further improved by adding modified admixtures.
On Coulomb and Viscosity damped single-degree-of-freedom vibrating systems
DEFF Research Database (Denmark)
Jakobsen, J.; Sivebæk, Ion Marius
2016-01-01
with frequencies 1, 3, 5, … times the basic frequency of the square wave and with respective amplitudes: (4/π)∗(1, 1/3, 1/5... )∗Fμ(ωt). Fμ(ωt): the square wave amplitude. The governing equation for the sequence of a free vibration with Coulomb friction damping is nonlinear, but is linear within each ½ period......Attention on friction damping mechanisms could be of interest for vibration reduction, and appears therefore to be desirable. Presentations of textbook analyses on mechanical vibration of a viscosity damped single degree system [mass, spring and eventually damping] are numerous. Often they begin...... with an assumption of a sin/cos behaviour of mass-amplitude (x) versus time (t) solution to the governing equation [M*acceleration = Sum of forces]. The solutions have all an equal sin/cos form. This may indicate that mass and spring are prime elements of the model and that damping mainly has an amplitude reducing...
When and why are reliable organizations favored?
DEFF Research Database (Denmark)
Ethiraj, Sendil; Yi, Sangyoon
in this assertion. Principally, we show that whether reliable organizations are favored depends on the nature of the environment. When environments are complex, reliability is selected out. In more complex environments, variability is more valued by selection forces. Further, we also examine the consequences......In the 1980s, organization theory witnessed a decade long debate about the incentives and consequences of organizational change. Though the fountainhead of this debate was the observation that reliable organizations are the “consequence” rather than the “cause” of selection forces, much...
Experimental Study and System Identification of Hydrodynamic Force Acting on Heave Damping Plate
Institute of Scientific and Technical Information of China (English)
JI Heng-teng; FAN Ju; HUANG Xiang-lu
2008-01-01
Although Morison equation is often applied for simulating hydrodynamic force of marine structure, it may give poor results when non-linear behavior is severe or random wave is encountered. This leads to some modifications of Morison equation or other methods for predicting hydrodynamic force. One of them is the system identification technique. In this paper, NARMAX model theory is firstly used to identify the hydrodynamic system of heave damping plates, which are commonly installed on spar platform. Both linear and non-linear models are obtained. The comparisons between the predicted results and measured data indicate that NARMAX model can predict hydrodynamic force of a heave damping plate very well. The measured data for identification originate from forced oscillation tests, which are random records with given spectrum. The forced oscillation forms in experiment also contain simple harmonic, multi-frequency ones.
Global Optimization of Damping Ring Designs Using a Multi-Objective Evolutionary Algorithm
Emery, Louis
2005-01-01
Several damping ring designs for the International Linear Collider have been proposed recently. Some of the specifications, such as circumference and bunch train, are not fixed yet. Designers must make a choice anyway, select a geometry type (dog-bone or circular), an arc cell type (TME or FODO), and optimize linear and nonlinear part of the optics. The design process include straightforward steps (usually the linear optics), and some steps not so straightforward (when nonlinear optics optimization is affected by the linear optics). A first attempt at automating this process for the linear optics is reported. We first recognize that the optics is defined by just a few primary parameters (e.g., phase advance per cell) that determine the rest (e.g., quadrupole strength). In addition to the exact specification of circumference, equilibrium emittance and damping time there are some other quantities which could be optimized that may conflict with each other. A multiobjective genetic optimizer solves this problem b...
Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.
Non-parametric system identification from non-linear stochastic response
DEFF Research Database (Denmark)
Rüdinger, Finn; Krenk, Steen
2001-01-01
An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable p...
Nonlinear and stochastic dynamics of coherent structures
DEFF Research Database (Denmark)
Rasmussen, Kim
1997-01-01
system described by a tight-binding Hamiltonian and a harmonic lattice coupled b y a deformation-type potential. This derivation results in a two-dimensional nonline ar Schrödinger model, and considering the harmonic lattice to be in thermal contact with a heat bath w e show that the nonlinear...... phenomenon. We find numerically and analytically that the collapse can be delayed and ultimatively arrested by the fluctuations. Allowing the system to reach thermal equilibrium we further augment the model by a nonlineardamping term and find that this prohibits collapse in the strict mathematical se nse....... However a collapse like behavior still persists in the presence of the nonlinear damping . Apart from the absence of the collapse in the strict mathematical sense we find that the nonlinear damping term has rather weak influence on the interplay between fluctuations and self-focusing. The study...
MEMS linear and nonlinear statics and dynamics
Younis, Mohammad I
2011-01-01
MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of nume
Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death
Directory of Open Access Journals (Sweden)
Abhishek D Garg
2015-11-01
Full Text Available The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of so-called damage-associated molecular patterns (DAMPs. The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical and clinical aspects of ICD, in an attempt to capture the essence of this clinically relevant phenomenon, and identify future challenges for this rapidly expanding field of investigation.
Bondeson, A.; Ott, E.; Antonsen, T. M., Jr.
1985-01-01
Certain first-order nonlinear ordinary differential equations exemplified by strongly damped, quasiperiodically driven pendula and Josephson junctions are isomorphic to Schroedinger equations with quasiperiodic potentials. The implications of this equivalence are discussed. In particular, it is shown that the transition to Anderson localization in the Schroedinger problem corresponds to the occurrence of a novel type of strange attractor in the pendulum problem. This transition should be experimentally observable in the frequency spectrum of the pendulum of Josephson junction.
Exponential Attractor for the Boussinesq Equation with Strong Damping and Clamped Boundary Condition
Fan Geng; Ruizhai Li; Xiaojun Zhang; Xiangyu Ge
2016-01-01
The paper studies the existence of exponential attractor for the Boussinesq equation with strong damping and clamped boundary condition utt-Δu+Δ2u-Δut-Δg(u)=f(x). The main result is concerned with nonlinearities g(u) with supercritical growth. In that case, we construct a bounded absorbing set with further regularity and obtain quasi-stability estimates. Then the exponential attractor is established in natural energy space V2×H.
Properties of Differential Scattering Section Based on Multi-photon Nonlinear Compton Effect
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Properties of damping electrons in collision with photons based on multi-photon nonlinear Compton effect are investigated. The expressions of the differential scattering section are derived. Several useful conclusions are drawn.
Resonant Electromagnetic Shunt Damping of Flexible Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Becker
2016-01-01
Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...
DAMPING PERFORMANCE OF EUCOMMIA ULMOIDES GUM
Institute of Scientific and Technical Information of China (English)
Ji-chuan Zhang; Zhao-hong Xue; Rui-fang Yan
2011-01-01
Eucommia ulmoides gum (EU gum), known as gutta percha in Southeast Asia, is a natural polymer with double characteristics of rubber and plastic. In present paper, tanδ-T curve and hysteresis loss (HL) were chosen to characterize its damping property. The results indicated that its tanδvalue would increase with rising of temperature when T＞ 0°C and form another damping peak at 40-80°C besides Tg peak. This phenomenon resulted fiom meltage of crystals of EU gum could increase its damping property at ambient-high temperature. Its tanδ value even exceeded those of conventional damping rubbers, such as nitrile-butadiene rubber (NBR) and chlorinated isobutene-isoprene rubber (CIIR).
Piezoelectric RL shunt damping of flexible structures
DEFF Research Database (Denmark)
Høgsberg, Jan Becker; Krenk, Steen
2015-01-01
Resonant RL shunt circuits represent a robust and effective approach to piezoelectric damping, provided that the individual shunt circuit components are calibrated accurately with respect to the dynamic properties of the corresponding flexible structure. The balanced calibration procedure applied...
Modification of spastic gait through mechanical damping.
Maki, B E; Rosen, M J; Simon, S R
1985-01-01
The effect of dissipative mechanical loads on spastic gait has been studied, to evaluate the feasibility of using mechanically damped orthoses to effect functional improvements in the gait of spastic patients. This concept is based on a hypothesis citing uninhibited, velocity-dependent stretch reflexes as a possible causal factor in spastic gait abnormalities, such as equinus and back-kneeing. In order to screen potential experimental subjects and to quantify velocity-dependent reflex behaviour, ankle rotation experiments and filmed gait analysis were performed. The results supported the existence of a velocity threshold. Orthosis simulation experiments were performed with one spastic subject, using a wearable, computer-controlled, electromechanical, below-knee orthosis simulator to apply a variety of damping loads to the ankle as the subject walked. Results indicated that appropriate damping can improve local joint kinematics. The damping causes a reduction in muscle stretch velocity which apparently results in reduced spastic reflex activity.
Dynamic damping property of magnetorheological elastomer
Institute of Scientific and Technical Information of China (English)
李剑锋; 龚兴龙
2008-01-01
Magnetorheological elastomer(MRE) is a new kind of smart materials,its dynamic mechanic performances can be controlled by an applied magnetic field.MRE is usually used as a stiffness-changeable spring in the semi-active vibration absorber.In order to get perfect vibration control effect,low dynamic damping of MRE is need.But the dynamic damping of MRE was not studied deeply in the past.The dynamic damping of MRE was studied and analyzed.The influences of different test conditions including test strain amplitude,test frequency and test magnetic field were deeply studied.MRE sample and pure silicone rubber sample were prepared and tested under different conditions.The test results show that the main source of dynamic damping is the friction between iron particles and rubber matrix.And the friction is mainly influenced by the strain amplitude and test magnetic field.
Techniques for Thermal Damping in Tube Bundles
Directory of Open Access Journals (Sweden)
QAMAR IQBAL
2010-10-01
Full Text Available Flow-induced vibration in heat exchangers has been a source of concern in the process, power generation and nuclear industry for several decades. Damping has a major influence on the flow induced vibrations and is dependant on a variety of factors such as mechanical properties of the tube material, geometry of intermediate supports, the physical properties of shell-side fluid, type of tube motion, number of supports, tube frequency, shell-side temperature etc. Various damping mechanisms have been identified and quantified. Generally the effects of the higher operating temperatures on the various damping mechanisms are neglected in the general design procedure. This paper focuses on the thermal aspects of damping mechanisms subjected to single phase cross-flow in shell and tube heat exchanger and a comparison is carried out safer design based on experimental and empirical formulations.
Damping Wiggler Study at KEK-ATF
Naito, Takashi; Honda, Yosuke; Korostelev, Maxim S; Kubo, Kiyoshi; Kuriki, Masao; Kuroda, Shigeru; Muto, Toshiya; Nakamura, Norio; Ross, Marc; Sakai, Hiroshi; Terunuma, Nobuhiro; Urakawa, Junji; Zimmermann, Frank
2005-01-01
The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.
Interaction of multiple actuators for synchronized switching damping control
Cazzulani, Gabriele; Braghin, Francesco; Mazzocchi, Fabrizio
2016-04-01
The semi-active Synchronized Switching Damping (SSD) family is based on a nonlinear shunting circuit applied to piezoelectric actuators, where the circuit characteristics are switched along the vibration cycles of the structure. SSD offers many advantages with respect to other vibration suppression techniques using piezoelectric actuators. Indeed, multiple modes can be suppressed with a relatively simple system and with very low power consumption. This allows the realization of self-powered control systems, without the need of wiring and external power supply. Moreover, the characteristics of this control strategy make it very robust to the variation of the dynamic characteristics of the structure, outperforming the classic passive linear shunts. Different SSD techniques have been developed, varying the circuit characteristics and the switching logic. Although this control family has been studied for many years, all the works are limited to the single actuator case, losing in generality with respect to many practical cases. For this reason, the aim of this work is to apply SSD control with multiple actuators and to study the interaction of the actuators and their shunting circuits in order to optimize the damping performance. The study will be performed numerically and then an experimental setup will be realized to test the proposed solutions.
ON DAMPING COEFFICIENT DUE TO PHASE TRANSFORMATION
Institute of Scientific and Technical Information of China (English)
Din-YuHSIEH
2003-01-01
The damping coefficient of capillary waves due to the evaporation-condensation process at the interface of the two phases of a fluid is evaluated. To highlight the mechanism of the effect of heat and mass transfer across the interface between regions of liquid and vapor, potential flow of incompressible fluids are assumed. Thus other mechanisms of damping are neglected. To fascilitate the analysis, the method of multiple-scale is employed in the analysis, even though the problem is linear.
Diffusion-damped domain wall dynamics
Energy Technology Data Exchange (ETDEWEB)
Varga, R; Infante, G [Inst. Phys., Fac. Sci., UPJS, Park Angelinum 9, 04154 Kosice (Slovakia); Badini-Confalonieri, G A; Vazquez, M, E-mail: rvarga@upjs.s [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid (Spain)
2010-01-01
In the given work, the influence of diffusional damping on the domain wall dynamics of heat treated FeSiBP microwires is presented. Two regions of the domain wall dynamics have been found. At low applied fields diffusion damping prevails, keeping the domain wall velocity and mobility low. At higher fields, the diffusional effects are overcomed and domain wall velocity increases steeply and so does the domain wall mobility.
Turbine blade with tuned damping structure
Energy Technology Data Exchange (ETDEWEB)
Campbell, Christian X.; Messmann, Stephen J.
2015-09-01
A turbine blade is provided comprising: a root; an airfoil comprising an external wall extending radially from the root and having a radially outermost portion; and a damping structure. The external wall may comprise first and second side walls joined together to define an inner cavity of the airfoil. The damping structure may be positioned within the airfoil inner cavity and coupled to the airfoil so as to define a tuned mass damper.
On a Nonlocal Damping Model in Ferromagnetism
Directory of Open Access Journals (Sweden)
M. Moumni
2015-01-01
Full Text Available We consider a mathematical model describing nonlocal damping in magnetization dynamics. The model consists of a modified form of the Landau-Lifshitz-Gilbert (LLG equation for the evolution of the magnetization vector in a rigid ferromagnet. We give a global existence result and characterize the long time behaviour of the obtained solutions. The sensitivity of the model with respect to large and small nonlocal damping parameters is also discussed.
Numerical studies of shear damped composite beams using a constrained damping layer
DEFF Research Database (Denmark)
Kristensen, R.F.; Nielsen, Kim Lau; Mikkelsen, Lars Pilgaard
2008-01-01
Composite beams containing one or more damping layers are studied numerically. The work is based on a semi-analytical model using a Timoshenko beam theory and a full 2D finite element model. The material system analysed, is inspired by a train wagon suspension system used in a EUREKA project Sigma......!1841. For the material system, the study shows that the effect of the damping layer is strongly influenced by the presence of a stiff constraining layer, that enforces large shear strain amplitudes. The thickness of the damping rubber layer itself has only a minor influence on the overall damping...
Smith, Clifford B.; Wereley, Norman M.
1996-10-01
The first objective of this paper is to evaluate the performance of damping identification algorithms. The second objective is to determine the feasibility of damping augmentation in rotating composite beams via passive constrained layer damping (PCLD). Damping identification schemes were applied to four rectangular cross-section laminated composite beams with cocured integral damping layers over the span of the beam. The cocured beam consisted of a twenty-ply balanced and symmetric cross-ply Gr/Ep composite host structure, a top and bottom damping layer of viscoelastic material (VEM), and a 2-ply Gr/Ep constraining layer sandwiching the viscoelastic material to the host structure. Four VEM thicknesses were considered: 0, 5, 10, and 15 mils. The cantilevered beams were tested at rotational speeds ranging from 0 to 900 RPM in a vacuum chamber. Excitation in bending was provided using piezo actuators, and the bending response was measured using full strain gauge bridges. Transient data were analysed using logarithmic decrement, a Hilbert transform technique, and an FFT- based moving block analysis. When compared to the beam with no VEM, a 19.2% volume fraction (15 mil layer) of viscoelastic in the beam produced a 400% increase in damping ratio in the non-rotating case, while at 900 RPM, the damping ratio increased only 360%. Overall structural damping was reduced as a function of RPM, due to centrifugal stiffening.
Shape Memory Alloys for Vibration Isolation and Damping of Large-Scale Space Structures
2010-08-04
Agustin F. Maqui, Texas A&M University (BS 2010) Jack V. Heath, Texas A&M University (BS 2010) Paul F. Braden, Texas A&M University (2011) 1... San Diego, CA, February 28-March 2, 2006. Machado, L.G. and Lagoudas, D.C., “Nonlinear Dynamics and Chaos of a SMA Passive Vibration Isolation and...Damping Device”, Vol. 6525, SPIE 2007, San Diego, CA, March 18-22, 2007. Machado, L.G. and Lagoudas, D.C., “Nonlinear dynamics of a SMA passive
DEFF Research Database (Denmark)
Knüppel, Thyge; Nielsen, Jørgen Nygård; Jensen, Kim Høj
2011-01-01
that utilizes the stored kinetic energy in the wind turbine (WT) mechanical system as energy storage from which damping power can be exchanged. This eliminates the need for curtailed active power production. Results are presented using modal analysis and induced torque coefficients (ITC) to depict the torques...... induced on the synchronous generators from the POD. These are supplemented with nonlinear time domain simulations with and without an auxiliary POD for the WPP. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....
Seismic response of arch dams considering infinite radiation damping and joint opening effects
Institute of Scientific and Technical Information of China (English)
刘新佳; 徐艳杰; 王光纶; 张楚汉
2002-01-01
Effects of two important factors on earthquake response of high arch dams are considered and combined into oneprogram. These factors are: effects of radiation damping of the infinite canyon and local non-linearity of the contraction jointopening between the dam monoliths. For modeling of rock canyon, the discrete parameters are obtained based on a curve fitting,thus allowing the nonlinear dam system to be solved in the time domain. The earthquake uniform free-field input at thedam-canyon interface is used. An engineering example is given to demonstrate the significant effects of the radiation dampingon the structure response.
Linear control strategies for damping of flexible structures
DEFF Research Database (Denmark)
Høgsberg, Jan Riess; Krenk, Steen
2006-01-01
Starting from the two-component representation technique for damping of structures the possible increase in damping efficiency obtained by introducing collocated active damping is illustrated. The two-component representation of the damped vibration mode is constructed as a linear combination of ...
EXPERIMENTAL MODAL ANALYSIS OF VISCO-ELASTICALLY DAMPED STRUCTURES
Institute of Scientific and Technical Information of China (English)
1998-01-01
The form of the modal analysis of viscoelastically damped structures is simplified and this simplified form is similar to the form of the modal analysis of linear viscously damped structures. As a result of this simplified form, the experimental modal analysis methods of linear viscously damped structures are applied to the experimental modal analysis of viscoelastically damped structures.
Homoclinic and quasi-homoclinic solutions for damped differential equations
Directory of Open Access Journals (Sweden)
Chuan-Fang Zhang
2015-01-01
Full Text Available We study the existence and multiplicity of homoclinic solutions for the second-order damped differential equation $$ \\ddot{u}+c\\dot{u}-L(tu+W_u(t,u=0, $$ where L(t and W(t,u are neither autonomous nor periodic in t. Under certain assumptions on L and W, we obtain infinitely many homoclinic solutions when the nonlinearity W(t,u is sub-quadratic or super-quadratic by using critical point theorems. Some recent results in the literature are generalized, and the open problem proposed by Zhang and Yuan is solved. In addition, with the help of the Nehari manifold, we consider the case where W(t,u is indefinite and prove the existence of at least one nontrivial quasi-homoclinic solution.
Thermal damping and retardation in karst conduits
Directory of Open Access Journals (Sweden)
A. J. Luhmann
2014-08-01
Full Text Available Water temperature is a non-conservative tracer in the environment. Variations in recharge temperature are damped and retarded as water moves through an aquifer due to heat exchange between water and rock. However, within karst aquifers, seasonal and short-term fluctuations in recharge temperature are often transmitted over long distances before they are fully damped. Using analytical solutions and numerical simulations, we develop relationships that describe the effect of flow path properties, flow-through time, recharge characteristics, and water and rock physical properties on the damping and retardation of thermal peaks/troughs in karst conduits. Using these relationships, one can estimate the thermal retardation and damping that would occur under given conditions with a given conduit geometry. Ultimately, these relationships can be used with thermal damping and retardation field data to estimate parameters such as conduit diameter. We also examine sets of numerical experiments where we relax some of the assumptions used to develop these relationships, testing the effects of variable diameter, variable velocity, open channels, and recharge shape on thermal damping and retardation to provide some constraints on uncertainty. Finally, we discuss a tracer experiment that provides field confirmation of our relationships. High temporal resolution water temperature data are required to obtain sufficient constraints on the magnitude and timing of thermal peaks and troughs in order to take full advantage of water temperature as a tracer.
Damp heat stable doped zinc oxide films
Energy Technology Data Exchange (ETDEWEB)
Hüpkes, J., E-mail: j.huepkes@fz-juelich.de [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Owen, J.I. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Wimmer, M.; Ruske, F. [Institute of Silicon Photovoltaics, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin (Germany); Greiner, D.; Klenk, R. [Institute for Heterogeneous Materials Systems, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Zastrow, U. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Hotovy, J. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)
2014-03-31
Zinc oxide is widely used as transparent contact in thin film solar cells. We investigate the damp heat stability of aluminum doped ZnO (ZnO:Al) films sputter deposited at different conditions. Increase in resistivity upon damp heat exposure was observed for as-deposited ZnO:Al films and the water penetration was directly linked to this degradation. Deuterium was used as isotopic marker to identify the amount of water taken up by the films. Finally, we applied a special annealing step to prepare highly stable ZnO:Al films with charge carrier mobility of 70 cm{sup 2}/Vs after 1000 h of damp heat treatment. A grain boundary reconstruction model is proposed to explain the high stability of ZnO:Al films after annealing. - Highlights: • Study of damp heat degradation on electrical properties of ZnO:Al • Demonstration of fast water penetration and replacement mechanism • Damp heat stable ZnO:Al films with high mobility after damp heat treatment.
SELF TUNING CONTROLLERS FOR DAMPING LOW FREQUENCY OSCILLATIONS
Directory of Open Access Journals (Sweden)
SANGU RAVINDRA
2012-09-01
Full Text Available This paper presents a new control methods based on adaptive Neuro-Fuzzy damping controller and adaptive Artificial Neural Networks damping controller techniques to control a Unified Power Flow controller (UPFC installed in a single machine infinite bus Power System. The objective of Neuro-Fuzzy and ANN based UPFC controller is to damp power system oscillations.Phillips-Herffron model of a single machine power system equipped with a UPFC is used to model the system. In order to damp power system oscillations, adaptive neuro-fuzzy damping controller and adaptive ANN damping controller for UPFC are designed and simulated. Simulation is performed for various types of loads and for different disturbances. Simulation results demonstrate that the developed adaptive ANN damping controller has an excellent capability in damping electromechanical oscillations which exhibits a superior damping performance in comparison to the neuro-fuzzy damping controller as well as conventional lead-lag controller.
Vibration damping characteristics of laminated steel sheet
Chen, Y. S.; Hsu, T. J.; Chen, S. I.
1991-03-01
The use of laminated steel sheets as vibration damping materials was studied. The laminate consisted of a viscoelastic layer which was sandwiched between two steel sheets. The study sought to identify parameters affecting the damping efficiency of the laminate. Two viscoelastic materials, a copolymer based on ethylene and acrylic acid (PEAA) and polyvinyl butyral (PVB), were used. A frequency analyzer was used to measure the loss factor of the laminates. A theoretical analysis of damping efficiency based on a model described by Ungar[2] was also carried out. The results showed that the loss factor of the PEAA-based laminates increased monotonically with increasing thickness of the viscoelastic layer and leveled off at 25.9 pct of total thickness. Ungar’s theory predicted a higher loss factor than the experimental data. This might have resulted from interfacial adhesive bonding, a nonuniform viscoelastic layer thickness, and the extrapolation of the rheological data from low to high frequencies. The loss factor of the laminate increased with increasing temperature, reached a maximum value, and then decreased. An optimum temperature for maximum damping was found for each laminate configuration. The PEAA-based laminates possessed higher damping efficiency than the PVB-based laminates at room temperature. The symmetric laminate (with the same steel sheet thickness) possessed a better damping efficiency than asymmetric laminates. The maximum damping peak of the laminates using a polymer blend, when compared to the laminates using unblended resin, exhibited a lower loss factor value, became broader, and occurred at a temperature between the T g’s of the individual components of the polymer blend.
Institute of Scientific and Technical Information of China (English)
Ming Li; Zeng He; Huiming Zheng; Ning Zhang
2008-01-01
A cantilever beam with Damping Material Applying Rubber Magnetic Powder (DRM)has been investigated.Two methods are selected to hold DRM to a vibrating steel beam,one is to attach DRM by the magnetic attractive force (called DRM beam) and the other by adhesive bonding (called AB-DRM beam).Different from the damping property of AB-DRM beam caused by shear deformation of damping material,the damping property of DRM beam is characterized by the sliding frictional loss together with the internal loss of damping material.The authors established a formulation to predict the damping characteristics of DRM beam,which was validated experimentally.It is found that rubber material loss factor/β has a decisive influence on damping improvement of DRM beam versus AB-DRM beam.If/β is smaller than the critical value around 0.8255,a valid range of vibratory amplitude always exists in which DRM beam can achieve better damping than AB-DRM beam;conversely,if/β is bigger than the critical value,the valid range does not exist when slide occurs.Such results are used to determine the merits and limitations of DRM and develop design guidelines.
Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration)
Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.
Hamidia, Mohammad Javad
A simplified procedure is developed for estimating the seismic sidesway collapse capacity of frame building structures. The procedure is then extended to quantify the seismic collapse capacity of buildings incorporating supplemental damping systems. The proposed procedure is based on a robust database of seismic peak displacement responses of viscously damped nonlinear single-degree-of-freedom systems for various seismic intensities and uses nonlinear static (pushover) analysis without the need for nonlinear time history dynamic analysis. The proposed procedure is assessed by comparing its collapse capacity predictions on 1470 different building models with those obtained from incremental nonlinear dynamic analyses. A straightforward unifying collapse capacity based design procedure aimed at achieving a pre-determined probability of collapse under maximum considered earthquake event is also introduced for structures equipped with viscous dampers (linear and nonlinear) and hysteretic dampers. The proposed simplified procedure offers a simple, yet efficient, computational/analytical tool that is capable of predicting collapse capacities with acceptable accuracy for a wide variety of frame building structures incorporate several types of supplemental damping systems.
Energy Technology Data Exchange (ETDEWEB)
Lallart, Mickael; Guyomar, Daniel, E-mail: mickael.lallart@insa-lyon.fr [LGEF, INSA-Lyon, Universite de Lyon, 8 rue de la Physique, F-69621 (France)
2011-10-29
The proliferation of wearable and left-behind devices has raised the issue of powering such systems. While primary batteries have been widely used in order to address this issue, recent trends have focused on energy harvesting products that feature high reliability and low maintenance issues. Among all the ambient sources available for energy harvesting, vibrations and heat have been of significant interest among the research community for small-scale devices. However, the conversion abilities of materials are still limited when dealing with systems featuring small dimensions. The purpose of this paper is to presents an up-to-date view of nonlinear approaches for increasing the efficiency of electromechanical and electrocaloric conversion mechanisms. From the modeling of the operation principles of the different architectures, a comparative analysis will be exposed, emphasizing the advantages and drawbacks of the presented concepts, in terms of maximal output power (under constant vibration magnitude or taking into account the damping effect), load independence, and implementation easiness.
DEFF Research Database (Denmark)
Hagerhed, L.; Bornehag, Carl-Gustaf; Sundell, Jan
2002-01-01
Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type of found...... of "Dry air" in 17.3 and 33.7% respectively. Older buildings and the use of natural ventilation were associated with increased frequency of dampness indicators as well as to increased frequencies of complaints on bad indoor air quality.......Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type...
Wu, Dan; Guyomar, Daniel; Richard, Claude
2013-04-01
A new global approach for improved vibration damping of smart structure, based on global energy redistribution by means of a network of piezoelectric elements is proposed. It is basically using semi-active Synchronized Switch Damping technique. SSD technique relies on a cumulative build-up of the voltage resulting from the continuous switching and it was shown that the performance is strongly related to this voltage. The increase of the piezoelectric voltage results in improvement of the damping performance. External voltage sources or improved switching sequences were previously designed to increase this voltage in the case of single piezoelectric element structure configurations. This paper deals with extended structure with many embedded piezoelectric elements. The proposed strategy consist of using an electric network made with non-linear component and switches in order to set up and control a low-loss energy transfer from source piezoelements extracting the vibration energy of the structure and oriented toward a given piezoelement in order to increase its operative energy for improving a given mode damping. This paper presents simulation of a clamped plate with four piezoelectric elements implemented in the Matlab/SimulinkTM environment and SimscapeTM library. The various simulation cases show the relationship between the damping performance on a given targeted mode and the established power flow. SSDD and SSDT are two proposed original networks. Performances are compared to the SSDI baseline. A damping increase of 18dB can be obtained even with a weakly coupled piezoelectric element in the multi-sine excitation case. This result proves the importance of new global non-linear multi-actuator strategies for improved vibration damping of extended smart structure.
The Evaluation of the Damping Characteristics of a Hard Coating on Titanium
Directory of Open Access Journals (Sweden)
Christopher Blackwell
2007-01-01
Full Text Available Engine failures due to fatigue have cost the Air Force an estimated $400 million dollars per year over the past two decades. Damping treatments capable of reducing the internal stresses of fan and turbine blades to levels where fatigue is less likely to occur have the potential for reducing cost while enhancing reliability. This research evaluates the damping characteristics of magnesium aluminate spinel, MgO+Al2O3, (mag spinel on titanium plates from an experimental point of view. The material and aspect ratio were chosen to approximate the low aspect ratio blades found in military gas turbine fans. In the past, work has generally been performed on cantilever supported beams, and thus the two-dimensional features of damping were lost. In this study plates were tested with a cantilevered boundary condition, using electrodynamic shaker excitation. The effective test area of each specimen was 4.5 in × 4.5 in. The nominal plate thickness was 0.125 in. Mag spinel was applied to both sides of the plate, at a thickness of 0.01 in, and damping tests were run at room temperature. The effect of the coating was evaluated at the 2nd bending mode (mode 3 and the chord wise bending mode (mode 4. A scanning laser vibrometer revealed the frequency and shape of each mode for the plates. Sine sweeps were used to characterize the damping of the coated and uncoated specimens for the modes tested. The coating increased damping nonlinearly for both modes tested in which the general outcome was similar to that found in beams.
Radiation damping in microcoil NMR probes.
Krishnan, V V
2006-04-01
Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-microL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.
Anti-damping effect of radiation reaction
Wang, G.; Li, H.; Shen, Y. F.; Yuan, X. Z.; Zi, J.
2010-01-01
The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges (~10-15 m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.
Nonlinear Oscillators in Space Physics
Lester,Daniel; Thronson, Harley
2011-01-01
We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.
Angelo, T; Barbalho, G N; Gelfuso, G M; Gratieri, T
2016-09-01
There is yet no consensus among prescribers whether minoxidil (MXD) formulations should be applied on wet/damp or dry scalp and no clear FDA guidelines on the matter. We hypothesized that the use of MXD on damp scalp may lead to higher drug penetration. First, because the drug diffusion and consequent deposition into the hair follicle may be favored when follicle cast is humid. Second, because humidity may also prevent drug crystallization and, therefore, maintain a higher thermodynamic activity for longer periods, which leads to increased penetration. Following in vitro experiments on rat and porcine skin we confirmed the hypothesis, which could markedly improve treatment effectiveness. © 2016 Wiley Periodicals, Inc.
Plasmon-enhanced Kerr nonlinearity via subwavelength-confined anisotropic Purcell factors
Ren, Juanjuan; Chen, Hongyi; Gu, Ying; Zhao, Dongxing; Zhou, Haitao; Zhang, Junxiang; Gong, Qihuang
2016-10-01
We theoretically investigate the enhancement of Kerr nonlinearity through anisotropic Purcell factors provided by plasmon nanostructures. In a three-level atomic system with crossing damping, larger anisotropism of Purcell factors leads to more enhanced Kerr nonlinearity in electromagnetically induced transparency windows. While for fixed anisotropic Purcell factors, Kerr nonlinearity with orthogonal dipole moments increases with the decrease of its crossing damping, and Kerr nonlinearity with nonorthogonal dipole moments is very sensitive to both the value of crossing damping and the orientation of the dipole moments. We design the non-resonant gold nanorods array, which only provides subwavelength-confined anisotropic Purcell factors, and demonstrate that the Kerr nonlinearity of cesium atoms close to the nanorods array can be modulated at the nanoscale. These findings should have potential application in ultracompact quantum logic devices.
DEFF Research Database (Denmark)
Knüppel, Thyge; Kumar, Sathess; Thuring, Patrik;
2012-01-01
contributes to a collective response. This ability is shown with a 150 wind turbine (WT) WPP with all WTs represented, and it is demonstrated that the WPP contributes to the inter-area damping. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power WT.......In this paper a power oscillation damping controller (POD) based on modulation of reactive power (Q POD) is analyzed where the modular and distributed characteristics of the wind power plant (WPP) are considered. For a Q POD it is essential that the phase of the modulated output is tightly...
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Fluid damping of cylindrical liquid storage tanks.
Habenberger, Joerg
2015-01-01
A method is proposed in order to calculate the damping effects of viscous fluids in liquid storage tanks subjected to earthquakes. The potential equation of an ideal fluid can satisfy only the boundary conditions normal to the surface of the liquid. To satisfy also the tangential interaction conditions between liquid and tank wall and tank bottom, the potential flow is superimposed by a one-dimensional shear flow. The shear flow in this boundary layer yields to a decrease of the mechanical energy of the shell-liquid-system. A damping factor is derived from the mean value of the energy dissipation in time. Depending on shell geometry and fluid viscosity, modal damping ratios are calculated for the convective component.
Biomimetic Gradient Polymers with Enhanced Damping Capacities.
Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian
2016-04-01
Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures.
Resolving photons from cosmic ray in DAMPE
Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.
Damping of wind turbine tower vibrations
DEFF Research Database (Denmark)
Brodersen, Mark Laier; Pedersen, Mikkel Melters
Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... dominated vibrations.The first part of the thesis presents the theoretical framework for implementation of supplemental dampers in wind turbines. It is demonstrated that the feasibility of installing dampers at the bottom of the tower is significantly increased when placing passive or semiactive dampers...... that a minimum of three braces in a symmetric circumferential configuration are needed to introduce homogeneous damping in the two lowest vibration modes, independent of the rotor direction. A novel hybrid viscous damper concept is described in the second part. The hybriddamper consists of a viscous dash...
Dynamic characteristics of the blisk with synchronized switch damping based on negative capacitor
Liu, J.; Li, L.; Huang, X.; Jezequel, L.
2017-10-01
In this paper, we propose a method to suppress the vibration of the integral bladed disk ('blisk' for short) in aero-engines using synchronized switch damping based on negative capacitor (SSDNC). Different from the classical piezoelectric shunt damping, SSDNC is a type of nonlinear piezoelectric damping. A multi-harmonic balance method combined with the alternating frequency/time method (MHBM-AFT) is used to predict and further analyze the dynamic characteristics of the electromechanical system, and an arc-length continuation technique is used to improve the convergence of the method. In order to validate the algorithm as well as to recognize the characteristics of the system with SSDNC, a two degree-of-freedom (2-DOF) system with SSDNC is studied at first. The nonlinear complex modal information is calculated and compared with those of the corresponding system with a linear RL shunt circuit. The results indicate that the natural frequencies and modal damping ratio do not change with the modal amplitude, which means that SSDNC has the same modal damping corresponding to different system energy levels. In addition, SSDNC can improve the damping level of all the modes nearly without affecting the natural frequencies of the system. Then, the forced response of the blisk with SSDNC in the frequency domain is calculated and analyzed, including a tuned blisk, which is excited by the traveling wave excitation with a single harmonic and multi-harmonic, and a mistuned blisk, which is excited by traveling wave excitation with a single harmonic and multi-harmonic. We present two advantages of the SSDNC technique when compared with piezoelectric shunt damping. First, SSDNC can suppress the vibration of the blisk under a multi-harmonic wideband the traveling wave, and second, the vibration suppression performance of SSDNC is insensitive to the mistuning of mechanical parameters of the blisk. The results will be of great significance in overcoming the problem of the amplitude
Damping Functions correct over-dissipation of the Smagorinsky Model
Pakzad, Ali
2016-01-01
This paper studies the time-averaged energy dissipation rate $\\langle \\varepsilon_{SMD} (u)\\rangle$ for the combination of the Smagorinsky model and damping function. The Smagorinsky model is well known to over-damp. One common correction is to include damping functions that reduce the effects of model viscosity near walls. Mathematical analysis is given here that allows evaluation of $\\langle \\varepsilon_{SMD} (u)\\rangle $ for any damping function. Moreover, the analysis motivates a modified van Driest damping. It is proven that the combination of the Smagorinsky with this modified damping function does not over dissipate and is also consistent with Kolmogorov phenomenology.
Variable stiffness and damping magnetorheological isolator
Institute of Scientific and Technical Information of China (English)
Yang ZHOU; Xingyu WANG; Xianzhou ZHANG; Weihua LI
2009-01-01
This paper presents the development and characterization of a magnetorheological (MR) fluid-based variable stiffness and damping isolator. The prototype of the MR fluid isolator is fabricated, and its dynamic behavior is measured under various applied magnetic fields. The parameters of the model under various magnetic fields are identified, and the dynamic perfor-mance of the isolator is evaluated in simulation. Experi-mental results indicate that both the stiffness and damping capability of the developed MR isolator can be controlled by an external magnetic field.
Classical Statistical Mechanics and Landau Damping
1997-01-01
We study the retarded response function in scalar $\\phi^4$-theory at finite temperature. We find that in the high-temperature limit the imaginary part of the self-energy is given by the classical theory to leading order in the coupling. In particular the plasmon damping rate is a purely classical effect to leading order, as shown by Aarts and Smit. The dominant contribution to Landau damping is given by the propagation of classical fields in a heat bath of non-interacting fields.
Wind turbine blade with viscoelastic damping
Energy Technology Data Exchange (ETDEWEB)
Sievers, Ryan A.; Mullings, Justin L.
2017-01-10
A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).
System Reduction and Damping of Flexible Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Riess; Krenk, Steen
2007-01-01
An increasing number of flexible structures such as cable-stayed bridges, pedestrian bridges and high-rise buildings are fitted with local dampers to mitigate vibration problems. In principle the effect of local dampers can be analyzed by use of complex modes, e.g. in conjunction with an averaging...... frequency - containing the resulting modal damping via the imaginary part - is given by an explicit formula. For very flexible structures, e.g. cables, only moderate damping is involved, and the explicit approximation is very accurate. However, even for stiffer structures the explicit form gives a quite...
Shock Performance of Different Semiactive Damping Strategies
Directory of Open Access Journals (Sweden)
N. Ferguson
2010-08-01
Full Text Available The problem of shock generated vibration is presented and analyzed. The fundamental background is explainedbased on the analysis of a single degree-of-freedom model with passive stiffness and damping. The advantages andlimitations of such a shock mount are discussed. Afterwards, different semi-active strategies involving variabledamping are presented. These strategies have been used for harmonic excitation but it is not clear how they willperform during a shock. This paper analyzes the different variable damping schemes already used for harmonicvibration in order to find any potential advantages or issues for theoretical shock pulses.
Institute of Scientific and Technical Information of China (English)
Gian Paolo Cimellar; Hwasung Roh; Alessandro De Stefano
2009-01-01
A retrofit procedure for existing buildings called the "weakening and damping technique" (WED) is presented in this paper. Weakening of structures can limit the maximum response accelerations during severe ground motions, but leads to an increase in the displacements or inter-story drifts. Added damping by using viscous dampers, on the other hand, reduces the inter-story drifts and has no significant effect on total accelerations, when structures behave inelastically. The weakening and damping technique addresses the two main causes for both structural and nonstructural damage in structures. The weakening retrofit is particularly suitable for structures that have overstressed components and weak brittle components. In this paper, the advantages of the WeD are verified by nonlinear dynamic analysis and simplified spectral approach that has been modified to fit structures with additional damping devices. A hospital structure located in the San Femando Valley in California is selected as a case study. The results from both analyses show that the retrofit solution is feasible to reduce both structural acceleration and displacement. A sensitivity analysis is also carried out to evaluate the effectiveness of the retrofitting method using different combinations of performance thresholds in accelerations and displacements through fragility analysis.
PSS and TCSC damping controller coordinated design using PSO in multi-machine power system
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Safari, A.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)
2010-12-15
The paper develops a new design procedure for simultaneous coordinated designing of the thyristor controlled series capacitor (TCSC) damping controller and power system stabilizer (PSS) in multi-machine power system. The coordinated design problem of PSS and TCSC damping controllers over a wide range of loading conditions is converted to an optimization problem with the time domain-based objective function that is solved by a particle swarm optimization (PSO) technique which has a strong ability to find the most optimistic results. By minimizing the proposed fitness function in which oscillatory characteristics between areas are included and thus the interactions among the TCSC controller and PSS under transient conditions in the multi-machine power system are improved. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results of these studies show that the proposed coordinated controllers have an excellent capability in damping power system inter-area oscillations and enhance greatly the dynamic stability of the power system. Moreover, it is superior to both the uncoordinated designed stabilizers of the PSS and the TCSC damping controller.
Nonlinear characterization of a bolted, industrial structure using a modal framework
Roettgen, Daniel R.; Allen, Matthew S.
2017-02-01
This article presents measurements from a sub assembly of an off-the-shelf automotive exhaust system containing a bolted-flange connection and uses a recently proposed modal framework to develop a nonlinear dynamic model for the structure. The nonlinear identification and characterization methods used are reviewed to highlight the strengths of the current approach and the areas where further development is needed. This marks the first use of these new testing and nonlinear identification tools, and the associated modal framework, on production hardware with a realistic joint and realistic torque levels. To screen the measurements for nonlinearities, we make use of a time frequency analysis routine designed for transient responses called the zeroed early-time fast Fourier transform (ZEFFT). This tool typically reveals the small frequency shifts and distortions that tend to occur near each mode that is affected by the nonlinearity. The damping in this structure is found to be significantly nonlinear and a Hilbert transform is used to characterize the damping versus amplitude behavior. A model is presented that captures these effects for each mode individually (e.g. assuming negligible nonlinear coupling between modes), treating each mode as a single degree-of-freedom oscillator with a spring and viscous damping element in parallel with a four parameter Iwan model. The parameters of this model are identified for each of the structure's modes that exhibited nonlinearity and the resulting nonlinear model is shown to capture the stiffness and damping accurately over a large range of response amplitudes.
Damping of the wrist joint during voluntary movement.
Milner, T E; Cloutier, C
1998-10-01
Damping characteristics of the musculoskeletal system were investigated during rapid voluntary wrist flexion movements. Oscillations about the final position were induced by introducing a load with the characteristics of negative damping, which artificially reduced the damping of the wrist. Subjects responded to increases in the negatively damped load by stronger cocontraction of wrist flexor and extensor muscles during the stabilization phase of the movement. However, their ability to counteract the effects of the negatively damped load diminished as the negative damping increased. Consequently, the number and frequency of oscillations increased. The oscillations were accompanied by phase-locked muscle activity superimposed on underlying tonic muscle activation. The wrist stiffness and damping coefficient increased with the increased cocontraction that accompanied more negatively damped loads, although changes in the damping coefficient were less systematic than the stiffness. Analysis of successive half-cycles of the oscillation revealed that the wrist stiffness and damping coefficient increased, despite decreasing muscle activation, as oscillation amplitude and velocity declined. This indicates that the inverse dependence of the damping coefficient on oscillation velocity contributes significantly to damping of joint motion. It is suggested that this property helps to offset a negative contribution to damping from the stretch reflex.
Nonlinear Field Oriented Control of Induction Motors using the Backstepping Design
DEFF Research Database (Denmark)
Rasmussen, Henrik; Vadstrup, P.; Børsting, H.
1999-01-01
Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping with a s......Using backstepping, which is a recursive nonlinear design method, a novel approach to control of induction motors is developed. The resulting scheme leads to a nonlinear controller for the torque and the amplitude of the field. A combination of nonlinear damping and observer backstepping...... with a simple flux observer is used in the design. Assuming known motor parameters the design achieves stabilioty with garanteed region of attraction. It is also shown how a conventional field oriented controller may be obtained by omitting parts of the nonlinear controller....
Most Americans Favor Larger Health Warnings on Cigarette Packs
... page: https://medlineplus.gov/news/fullstory_164398.html Most Americans Favor Larger Health Warnings on Cigarette Packs ... According to the study's first author, Sarah Kowitt, "Most adults, including smokers, have favorable attitudes towards larger ...
Active Damping Using Distributed Anisotropic Actuators
Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.
2010-01-01
A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.
Damping of Crank–Nicolson error oscillations
DEFF Research Database (Denmark)
Britz, Dieter; Østerby, Ole; Strutwolf, J.
2003-01-01
The Crank–Nicolson (CN) simulation method has an oscillatory response to sharp initial transients. The technique is convenient but the oscillations make it less popular. Several ways of damping the oscillations in two types of electrochemical computations are investigated. For a simple one...
The DAMPE silicon–tungsten tracker
Energy Technology Data Exchange (ETDEWEB)
Azzarello, P., E-mail: philipp.azzarello@unige.ch [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Ambrosi, G. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Asfandiyarov, R. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Bernardini, P. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Bertucci, B.; Bolognini, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Cadoux, F. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Caprai, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); De Mitri, I. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Domenjoz, M. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Dong, Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Duranti, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Fan, R. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); and others
2016-09-21
The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m{sup 2}. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.
Radiation Damping at a Bubble Wall
Lee, J; Lee, C H; Jang, J; Lee, Jae-weon; Kim, Kyungsub; Lee, Chul H.; Jang, Ji-ho
1999-01-01
The first order phase transition proceeds via nucleation and growth of true vacuum bubbles. When charged particles collide with the bubble they could radiate electromagnetic wave. We show that, due to an energy loss of the particles by the radiation, the damping pressure acting on the bubble wall depends on the velocity of the wall even in a thermal equilibrium state.
First stars in Damped Lyman Alpha systems
Salvadori, Stefania; Ferrara, Andrea
2011-01-01
In order to characterize Damped Lyman Alpha systems (DLAs) potentially host- ing first stars, we present a novel approach to investigate DLAs in the context of Milky Way (MW) formation, along with their connection with the most metal-poor stars and local dwarf galaxies. The merger tree method previo
Passivation of underactuated systems with physical damping
Gomez-Estern, F.; Schaft, van der A.J.; Acosta, J.A.; Allgöwer, Frank; Zeitz, Michael
2005-01-01
In recent works, IDA-PBC has been succesfully applied to mechanical control problems with no physical damping present. In some cases, the friction terms can be obviated without compromising stability in closed loop. However in methods that modify the kinetic energy, a controller designed for stabili
Damping mechanisms and models in structural dynamics
DEFF Research Database (Denmark)
Krenk, Steen
2002-01-01
Several aspects of damping models for dynamic analysis of structures are investigated. First the causality condition for structural response is used to identify rules for the use of complex-valued frequency dependent material models, illustrated by the shortcomings of the elastic hysteretic model...
Active damping in precision equipment using piezo
Babakhani, B.; de Vries, Theodorus J.A.
2010-01-01
In this paper, the rotational vibration in the linearly actuated precision machines with low damping is discussed. This so called Rocking mode is e.g. caused by the compliance in the guiding system of a linear actuator and leads to a long settling time of the end-effector. Another problem occurs
DETERMINISTIC HOMOGENIZATION OF QUASILINEAR DAMPED HYPERBOLIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
Gabriel Nguetseng; Hubert Nnang; Nils Svanstedt
2011-01-01
Deterministic homogenization is studied for quasilinear monotone hyperbolic problems with a linear damping term.It is shown by the sigma-convergence method that the sequence of solutions to a class of multi-scale highly oscillatory hyperbolic problems converges to the solution to a homogenized quasilinear hyperbolic problem.
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Active damping based on decoupled collocated control
Holterman, J.; de Vries, Theodorus J.A.; Auer, Frank; Gardonio, P.; Rafaely, B.
2002-01-01
High-precision machines typically suffer from small but persistent vibrations. As it is difficult to damp these vibrations by passive means, research at the Drebbel Institute at the University of Twente is aimed at the development of an active structural element that can be used for vibration
First stars in Damped Lyman Alpha systems
Salvadori, Stefania; Ferrara, Andrea
In order to characterize Damped Lyman Alpha systems (DLAs) potentially host- ing first stars, we present a novel approach to investigate DLAs in the context of Milky Way (MW) formation, along with their connection with the most metal-poor stars and local dwarf galaxies. The merger tree method
First Stars in Damped Lyman Alpha systems
Salvadori, Stefania; Ferrara, Andrea
In order to characterize Damped Lyα Absorption systems (DLAs) potentially hosting first stars, we present a novel approach to investigate DLAs in the context of Milky Way (MW) formation, along with their connection with the most metal-poor stars and local dwarf galaxies. The model explains the
An Equivalent Circuit for Landau Damping
DEFF Research Database (Denmark)
Pécseli, Hans
1976-01-01
An equivalent circuit simulating the effect of Landau damping in a stable plasma‐loaded parallel‐plate capacitor is presented. The circuit contains a double infinity of LC components. The transition from stable to unstable plasmas is simulated by the introduction of active elements into the circuit....
Chiral damping of magnetic domain walls
Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2016-03-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).
Damage detection in structures through nonlinear excitation and system identification
Hajj, Muhammad R.; Bordonaro, Giancarlo G.; Nayfeh, Ali H.; Duke, John C., Jr.
2008-03-01
Variations in parameters representing natural frequency, damping and effective nonlinearities before and after damage initiation in a beam carrying a lumped mass are assessed. The identification of these parameters is performed by exploiting and modeling nonlinear behavior of the beam-mass system and matching an approximate solution of the representative model with quantities obtained from spectral analysis of measured vibrations. The representative model and identified coefficients are validated through comparison of measured and predicted responses. Percentage variations of the identified parameters before and after damage initiation are determined to establish their sensitivities to the state of damage of the beam. The results show that damping and effective nonlinearity parameters are more sensitive to damage initiation than the system's natural frequency. Moreover, the sensitivity of nonlinear parameters to damage is better established using a physically-derived parameter rather than spectral amplitudes of harmonic components.
Phase mixing and nonlinearity in geodesic acoustic modes
Energy Technology Data Exchange (ETDEWEB)
Hung, C. P.; Hassam, A. B. [University of Maryland at College Park, College Park, Maryland 20742 (United States)
2013-09-15
Phase mixing and nonlinear resonance detuning of geodesic acoustic modes in a tokamak plasma are examined. Geodesic acoustic modes (GAMs) are tokamak normal modes with oscillations in poloidal flow constrained to lie within flux surfaces. The mode frequency is sonic, dependent on the local flux surface temperature. Consequently, mode oscillations between flux surfaces get rapidly out of phase, resulting in enhanced damping from the phase mixing. Damping rates are shown to scale as the negative 1/3 power of the large viscous Reynolds number. The effect of convective nonlinearities on the normal modes is also studied. The system of nonlinear GAM equations is shown to resemble the Duffing oscillator, which predicts resonance detuning of the oscillator. Resonant amplification is shown to be suppressed nonlinearly. All analyses are verified by numerical simulation. The findings are applied to a recently proposed GAM excitation experiment on the DIII-D tokamak.
2016-07-01
Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9
The plastic scintillator detector calibration circuit for DAMPE
Yang, Haibo; Kong, Jie; Zhao, Hongyun; Su, Hong
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is being constructed as a scientific satellite to observe high energy cosmic rays in space. Plastic scintillator detector array (PSD), developed by Institute of Modern Physics, Chinese Academy of Sciences (IMPCAS), is one of the most important parts in the payload of DAMPE which is mainly used for the study of dark matter. As an anti-coincidence detector, and a charged-particle identification detector, the PSD has a total of 360 electronic readout channels, which are distributed at four sides of PSD using four identical front end electronics (FEE). Each FEE reads out 90 charge signals output by the detector. A special calibration circuit is designed in FEE. FPGA is used for on-line control, enabling the calibration circuit to generate the pulse signal with known charge. The generated signal is then sent to the FEE for calibration and self-test. This circuit mainly consists of DAC, operation amplifier, analog switch, capacitance and resistance. By using controllable step pulse, the charge can be coupled to the charge measuring chip using the small capacitance. In order to fulfill the system's objective of large dynamic range, the FEE is required to have good linearity. Thus, the charge-controllable signal is needed to do sweep test on all channels in order to obtain the non-linear parameters for off-line correction. On the other hand, the FEE will run on the satellite for three years. The changes of the operational environment and the aging of devices will lead to parameter variation of the FEE, highlighting the need for regular calibration. The calibration signal generation circuit also has a compact structure and the ability to work normally, with the PSD system's voltage resolution being higher than 0.6%.
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nanda, Sudarsan
2013-01-01
"Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.
Nonlinear ion trap stability analysis
Energy Technology Data Exchange (ETDEWEB)
Mihalcea, Bogdan M; Visan, Gina G, E-mail: bmihal@infim.r [Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomistilor Str. Nr. 409, 077125 Magurele-Bucharest, Jud. Ilfov (Romania)
2010-09-01
This paper investigates the dynamics of an ion confined in a nonlinear Paul trap. The equation of motion for the ion is shown to be consistent with the equation describing a damped, forced Duffing oscillator. All perturbing factors are taken into consideration in the approach. Moreover, the ion is considered to undergo interaction with an external electromagnetic field. The method is based on numerical integration of the equation of motion, as the system under investigation is highly nonlinear. Phase portraits and Poincare sections show that chaos is present in the associated dynamics. The system of interest exhibits fractal properties and strange attractors. The bifurcation diagrams emphasize qualitative changes of the dynamics and the onset of chaos.
12 CFR 560.110 - Most favored lender usury preemption.
2010-01-01
... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Most favored lender usury preemption. 560.110... INVESTMENT Lending and Investment Provisions Applicable to all Savings Associations § 560.110 Most favored... permits its most favored lender to charge late fees, then a savings association located in that state...
The structural damping of composite beams with tapered boundaries
Coni, M.; Benchekchou, B.; White, R. G.
1994-11-01
Most metallic and composite structures of conventional construction are lightly damped. It is obviously advantageous, in terms of response to in-service dynamic loading, if damping can be increased with minimal weight addition. This report describes finite element analyses and complementary experiments carried out on composite, carbon fiber reinforced plastic, beams with tapered boundaries composed of layers of highly damped composite material. It is shown that modal damping of the structure may be significantly increased by this method.
Anti-damping effect of radiation reaction
Energy Technology Data Exchange (ETDEWEB)
Wang, G; Yuan, X Z [School of Physics and Electric Information, Wenzhou University, Wenzhou 325035 (China); Li, H [Department of Physics, Yantai University, Yantai 264005 (China); Shen, Y F [Department of Physics, China University of Mining and Technology, Xuzhou 221008 (China); Zi, J [National Laboratory of Surface Physics, Fudan University, Shanghai 200433 (China)], E-mail: gz_wang131@yahoo.cn
2010-01-15
The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges ({approx}10{sup -15} m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.
Chaotic saddles in nonlinear modulational interactions in a plasma
Energy Technology Data Exchange (ETDEWEB)
Miranda, Rodrigo A. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), Sao Jose dos Campos, SP 12228-900 (Brazil); National Institute for Space Research (INPE) and World Institute for Space Environment Research (WISER), P.O. Box 515, Sao Jose dos Campos, SP 12227-010 (Brazil); University of Brasilia (UnB), Gama Campus, and Plasma Physics Laboratory, Institute of Physics, Brasilia, DF 70910-900 (Brazil); Rempel, Erico L. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), Sao Jose dos Campos, SP 12228-900 (Brazil); National Institute for Space Research (INPE) and World Institute for Space Environment Research (WISER), P.O. Box 515, Sao Jose dos Campos, SP 12227-010 (Brazil); Chian, Abraham C.-L. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), Sao Jose dos Campos, SP 12228-900 (Brazil); National Institute for Space Research (INPE) and World Institute for Space Environment Research (WISER), P.O. Box 515, Sao Jose dos Campos, SP 12227-010 (Brazil); Observatoire de Paris, LESIA, CNRS, 92195 Meudon (France)
2012-11-15
A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.
Chaotic saddles in nonlinear modulational interactions in a plasma
Miranda, Rodrigo A; Chian, Abraham C -L
2012-01-01
A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.
Prevention of wing rock motion for lightly damped aircraft in lateral-directional dynamics
Institute of Scientific and Technical Information of China (English)
Emad N.Abdulwahab; CHEN Hong-quan
2008-01-01
Based on the Ricatti technique,the methodology for preventing the limit cycle accomplished by adding a control function to the original equation of wing rock motion is presented in this paper.To analyze the state variables of the system,the complete set of nonlinear equations of motion including an effective linear control function was solved for A-4D and Mig-21 Aircraft.The roll angle responding to the linear control function for both models was estimated when the systems were tested under different damping ratios.The numerical results show that a linear control function including both the roll attitude and the roll rate is sufficient to suppress the wing rock motion with an acceptable error in desired time.A good agreement between the numerical results and the published work is obtained for the limit cycle oscillation existence at different damping ratios.
Yu, Minli; Hahn, Eric J.; Liu, Jike; Lu, Zhongrong
2016-11-01
This paper introduced a modal parameter based identification procedure to identify the equivalent system of structures under harmonic excitations. The developed identification technique assumed non-proportional hysteretic damping in the equivalent system, which would be applicable in identifying more general structures. By introducing quasi-modal parameter, modal analysis equation was decoupled under physical coordinate; hence, the modal parameters of each vibration mode are identified independently. Double iteration algorithm was developed to solve the derived non-linear identification equation with complex unknowns. The developed identification procedure was applied to identify the equivalent system of a numerical model in order to evaluate the feasibility of the technique in practice. The identification procedure was also applied to identify an experimental mass and bar rig for validation purpose. Identification results showed that the identification procedure could identify accurately and robustly the equivalent system with non-proportional hysteretic damping assumption; hence, it is likely to be applicable in the field.
ANFIS based UPFC supplementary controller for damping low frequency oscillations in power systems
Directory of Open Access Journals (Sweden)
M. Sobha
2007-12-01
Full Text Available An adaptive neuro- fuzzy inference system (ANFIS based supplementary Unified Power Flow Controller (UPFC to superimpose the damping function on the control signal of UPFC is proposed. By using a hybrid learning procedure, the proposed ANFIS construct an input –output mapping based on stipulated input-output data pairs. The linguistic rules, considering the dependence of the plant output on the controlling signal are used to build the initial fuzzy inference structure. On the basis of linearized Philips-Hefron model of power system installed with UPFC, the damping function of the UPFC with various alternative UPFC control signals are investigated. In the simulations under widely varying operating conditions and system parameters, ANFIS based controller yields improved performance when compared with constant gain controller, based on phase compensation technique. To validate the robustness of the proposed technique, the approach is integrated to a multi-machine power system and the nonlinear simulation results are presented
The effect of resonant driving and damping on dynamic suction pumping
Battista, Nicholas; Miller, Laura
2016-11-01
Impedance pumping (or dynamic suction pumping) drives flow through a a flexible valveless tube with a single region of actuation. It is a profoundly complex pumping mechanism given that the flow velocities and directions generated depend nonlinearly upon the driving frequency, material properties, duty factor, and location of the actuation point. Given the simplicity of its actuation, it is used in biomedical devices and is thought to generate flow in a number of biological systems. In this study, we numerically simulate an elastic tube with mass using the immersed boundary method and explore the performance when it is driven over a range of frequencies and damping factors. Flow is maximized during resonance, and bulk transport is minimal when the tube is over-damped.
Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma.
Zhidkov, A; Koga, J; Sasaki, A; Uesaka, M
2002-05-01
A strong effect of radiation damping on the interaction of an ultraintense laser pulse with an overdense plasma slab is found and studied via a relativistic particle-in-cell simulation including ionization. Hot electrons generated by the irradiation of a laser pulse with a radiance of I lambda(2)>10(22) W microm(2)/cm(2) and duration of 20 fs can convert more than 35% of the laser energy to radiation. This incoherent x-ray emission lasts for only the pulse duration and can be intense. The radiation efficiency is shown to increase nonlinearly with laser intensity. Similar to cyclotron radiation, the radiation damping may restrain the maximal energy of relativistic electrons in ultraintense-laser-produced plasmas.
A Novel Engine Mount with Semi-Active Dry Friction Damping
Directory of Open Access Journals (Sweden)
M. Lorenz
2006-01-01
Full Text Available In this paper the authors present a semi-active engine mount with a controllable friction damper. The normal force of the friction contact is applied by an electromagnetic actuator and can be varied dynamically. The nonlinear current-force-relation of the actuator is linearized. To account for wear and assembly tolerances, an initialization method is developed, that is based on indirect measurement of the actuators inductance. The friction contact is made up of industrial friction pads and a friction rod of steel. The friction model used is suitable especially for small oscillations of the friction damper. The control policy imitates viscous damping forces that exert a minimum of harmonics. Damping is activated only when necessary. Finally the friction mount is compared to the original mount in a row of test rack experiments and also in the car.
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Linear and Nonlinear Aspects of Rotordynamics
Day, W. B.
1983-01-01
Excessive vibrations of the liquid oxygen pump in the Space Shuttle's Main Engine have been recorded during hot firing ground testing. In order to determine mathematical explanations of this possibility, destructive phenomenon differential equations have been examined which describe the rotordynamics of the pump. Modeling the rotor as a random eigenvalue problem was considered. Analytical expressions were derived for the solution in the case of symmetric damping and stiffness. This enables one to determine accuracy estimates when testing numerical techniques to solve both asymmetric and nonlinear problems. Finally, the rotor model has had nonlinear elements incorporated to improve its simulation of the pump and to expand the corresponding mathematical theory.
Power Spectral Density Conversions and Nonlinear Dynamics
Directory of Open Access Journals (Sweden)
Mostafa Rassaian
1994-01-01
Full Text Available To predict the vibration environment of a payload carried by a ground or air transporter, mathematical models are required from which a transfer function to a prescribed input can be calculated. For sensitive payloads these models typically include linear shock isolation system stiffness and damping elements relying on the assumption that the isolation system has a predetermined characteristic frequency and damping ratio independent of excitation magnitude. In order to achieve a practical spectral analysis method, the nonlinear system has to be linearized when the input transportation and handling vibration environment is in the form of an acceleration power spectral density. Test data from commercial isolators show that when nonlinear stiffness and damping effects exist the level of vibration input causes a variation in isolator resonant frequency. This phenomenon, described by the stationary response of the Duffing oscillator to narrow-band Gaussian random excitation, requires an alternative approach for calculation of power spectral density acceleration response at a shock isolated payload under random vibration. This article details the development of a plausible alternative approach for analyzing the spectral response of a nonlinear system subject to random Gaussian excitations.
Short Pulse Dynamics in Strongly Nonlinear Dissipative Granular Chains
Rosas, Alexandre; Romero, Aldo H.; Nesterenko, Vitali F.; Lindenberg, Katja
2008-01-01
We study the energy decay properties of a pulse propagating in a strongly nonlinear granular chain with damping proportional to the relative velocity of the grains. We observe a wave disturbance that at low viscosities consists of two parts exhibiting two entirely different time scales of dissipation. One part is an attenuating solitary wave, is dominated by discreteness and nonlinearity effects as in a dissipationless chain, and has the shorter lifetime. The other is a purely dissipative sho...
Allergy and respiratory health effects of dampness and dampness-related agents in schools and homes
DEFF Research Database (Denmark)
Holst, G; Høst, Arne; Doekes, G;
2016-01-01
Little is known about the health effects of school-related indoor dampness and microbial exposures. In this study we investigated dampness and dampness-related agents in both homes and schools and their association with allergy and respiratory health effects in 330 Danish pupils. Classroom dampness...... ), forced vital capacity (zFVC) and the ratio zFEV1 /zFVC using GLI-2012-prediction-equations. The parents reported children's allergies, airway symptoms and doctor-diagnosed asthma. High classroom dampness, but not bedroom dampness, was negatively associated with zFEV1 (β-coef. -0.71; 95%CI -1.17 - -0.......23), zFVC (β-coef. -0.52; 95%CI -0.98 - -0.06) and positively with wheezing (OR 8.09; 95%CI 1.49-43.97). No consistent findings were found between any individual microbial components or combination of microbial components and health outcomes. Among other indoor risk factors, environmental tobacco smoke...
Recovering the damping rates of cyclotron damped plasma waves from simulation data
Schreiner, Cedric; Spanier, Felix
2016-01-01
Plasma waves with frequencies close to the particular gyrofrequencies of the charged particles in the plasma lose energy due to cyclotron damping. We briefly discuss the gyro-resonance of low frequency plasma waves and ions particularly with regard to particle-in-cell (PiC) simulations. A setup is outlined which uses artificially excited waves in the damped regime of the wave mode's dispersion relation to track the damping of the wave's electromagnetic fields. Extracting the damping rate directly from the field data in real or Fourier space is an intricate and non-trivial task. We therefore present a simple method of obtaining the damping rate {\\Gamma} from the simulation data. This method is described in detail, focusing on a step-by-step explanation of the course of actions. In a first application to a test simulation we find that the damping rates obtained from this simulation generally are in good agreement with theoretical predictions. We then compare the results of one-, two- and three-dimensional simul...
Directory of Open Access Journals (Sweden)
Tai-Hong Cheng
2015-01-01
Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.
Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load
Directory of Open Access Journals (Sweden)
Zheng Lu
2017-02-01
Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.
Entanglement dynamics of quantum oscillators nonlinearly coupled to thermal environments
Voje, Aurora; Croy, Alexander; Isacsson, Andreas
2015-07-01
We study the asymptotic entanglement of two quantum harmonic oscillators nonlinearly coupled to an environment. Coupling to independent baths and a common bath are investigated. Numerical results obtained using the Wangsness-Bloch-Redfield method are supplemented by analytical results in the rotating wave approximation. The asymptotic negativity as function of temperature, initial squeezing, and coupling strength, is compared to results for systems with linear system-reservoir coupling. We find that, due to the parity-conserving nature of the coupling, the asymptotic entanglement is considerably more robust than for the linearly damped cases. In contrast to linearly damped systems, the asymptotic behavior of entanglement is similar for the two bath configurations in the nonlinearly damped case. This is due to the two-phonon system-bath exchange causing a suppression of information exchange between the oscillators via the bath in the common-bath configuration at low temperatures.
Nonlinear dynamic response of stay cables under axial harmonic excitation
Institute of Scientific and Technical Information of China (English)
Xu XIE; He ZHAN; Zhi-cheng ZHANG
2008-01-01
This paper proposes a new numerical simulation method for analyzing the parametric vibration of stay cables based on the theory of nonlinear dynamic response of structures under the asynchronous support excitation.The effects of important parameters related to parametric vibration of cables,I.e., characteristics of structure,excitation frequency,excitation amplitude,damping effect of the air and the viscous damping coefficient of the cables,were investigated by using the proposed method for the cables with significant length difference as examples.The analysis results show that nonlinear finite element method is a powerful technique in analyzing the parametric vibration of cables,the behavior of parametric vibration of the two cables with different Irvine parameters has similar properties,the amplitudes of parametric vibration of cables are related to the frequency and amplitude of harmonic support excitations and the effect of distributed viscous damping on parametric vibration of the cables is very small.
Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials
Seren, Huseyin R; Keiser, George R; Maddox, Scott J; Zhao, Xiaoguang; Fan, Kebin; Bank, Seth R; Zhang, Xin; Averitt, Richard D
2015-01-01
The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector, and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field induced intervalley scattering resulting in a reduced carrier mobility thereby damping the plasmonic response. We demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide f...
Study on global performances and mooring-induced damping of a semi-submersible
Xiong, Ling-zhi; Yang, Jian-min; Lv, Hai-ning; Zhao, Wen-hua; Kou, Yu-feng
2016-10-01
The harsh environmental conditions bring strong nonlinearities to the hydrodynamic performances of the offshore floating platforms, which challenge the reliable prediction of the platform coupled with the mooring system. The present study investigates a typical semi-submersible under both the operational and the survival conditions through numerical and experimental methods. The motion responses, the mooring line tensions, and the wave loads on the longitudinal mid-section are investigated by both the fully non-linearly coupled numerical simulation and the physical experiment. Particularly, in the physical model test, the wave loads distributed on the semi-submersible's mid-section were measured by dividing the model into two parts, namely the port and the starboard parts, which were rigidly connected by three six-component force transducers. It is concluded that both the numerical and physical model can have good prediction of the semi-submersible's global responses. In addition, an improved numerical approach is proposed for the estimation of the mooring-induced damping, and is validated by both the experimental and the published results. The characteristics of the mooring-induced damping are further summarized in various sea states, including the operational and the survival environments. In order to obtain the better prediction of the system response in deep water, the mooring-induced damping of the truncated mooring lines applied in the physical experiment are compensated by comparing with those in full length. Furthermore, the upstream taut and the downstream slack mooring lines are classified and investigated to obtain the different mooring line damping performances in the comparative study.
Landau damping of Gardner solitons in a dusty bi-ion plasma
Misra, A. P.; Barman, Arnab
2015-07-01
The effects of linear Landau damping on the nonlinear propagation of dust-acoustic solitary waves (DASWs) are studied in a collisionless unmagnetized dusty plasma with two species of positive ions. The extremely massive, micron-seized, cold, and negatively charged dust particles are described by fluid equations, whereas the two species of positive ions, namely, the cold (heavy) and hot (light) ions are described by the kinetic Vlasov equations. Following Ott and Sudan [Phys. Fluids 12, 2388 (1969)], and by considering lower and higher-order perturbations, the evolution of DASWs with Landau damping is shown to be governed by Korteweg-de Vries (KdV), modified KdV (mKdV), or Gardner (KdV-mKdV)-like equations. The properties of the phase velocity and the Landau damping rate of DASWs are studied for different values of the ratios of the temperatures (σ) and the number densities (μ) of hot and cold ions as well as the cold to hot ion mass ratio m. The distinctive features of the decay rates of the amplitudes of the KdV, mKdV, and Gardner solitons with a small effect of Landau damping are also studied in different parameter regimes. It is found that the Gardner soliton points to lower wave amplitudes than the KdV and mKdV solitons. The results may be useful for understanding the localization of solitary pulses and associated wave damping (collisionless) in laboratory and space plasmas (e.g., the F-ring of Saturn), in which the number density of free electrons is much smaller than that of ions and the heavy, micron seized dust grains are highly charged.
Energy harvesting using parametric resonant system due to time-varying damping
Scapolan, Matteo; Tehrani, Maryam Ghandchi; Bonisoli, Elvio
2016-10-01
In this paper, the problem of energy harvesting is considered using an electromechanical oscillator. The energy harvester is modelled as a spring-mass-damper, in which the dissipated energy in the damper can be stored rather than wasted. Previous research provided the optimum damping parameter, to harvest maximum amount of energy, taking into account the stroke limit of the device. However, the amount of the maximum harvested energy is limited to a single frequency in which the device is tuned. Active and semi-active strategies have been suggested, which increases the performance of the harvester. Recently, nonlinear damping in the form of cubic damping has been proposed to extend the dynamic range of the harvester. In this paper, a periodic time-varying damper is introduced, which results in a parametrically excited system. When the frequency of the periodic time-varying damper is twice the excitation frequency, the system internal energy increases proportionally to the energy already stored in the system. Thus, for certain parametric damping values, the system can become unstable. This phenomenon can be exploited for energy harvesting. The transition curves, which separate the stable and unstable dynamics are derived, both analytically using harmonic balance method, and numerically using time simulations. The design of the harvester is such that its response is close to the transition curves of the Floquet diagram, leading to stable but resonant system. The performance of the parametric harvester is compared with the non-parametric one. It is demonstrated that performances and the frequency bandwidth in which the energy can be harvested can be both increased using time-varying damping.
BOUNDARY LAYER AND VANISHING DIFFUSION LIMIT FOR NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
彭艳
2014-01-01
In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameterαgoes to zero.
Sturm-Picone type theorems for nonlinear differential systems
Directory of Open Access Journals (Sweden)
Aydin Tiryaki
2015-06-01
Full Text Available In this article, we establish a Picone-type inequality for a pair of first-order nonlinear differential systems. By using this inequality, we give Sturm-Picone type comparison theorems for these systems and a special class of second-order half-linear equations with damping term.
Effects of Landau-Lifshitz-Gilbert damping on domain growth.
Kudo, Kazue
2016-12-01
Domain patterns are simulated by the Landau-Lifshitz-Gilbert (LLG) equation with an easy-axis anisotropy. If the Gilbert damping is removed from the LLG equation, it merely describes the precession of magnetization with a ferromagnetic interaction. However, even without the damping, domains that look similar to those of scalar fields are formed, and they grow with time. It is demonstrated that the damping has no significant effects on domain growth laws and large-scale domain structure. In contrast, small-scale domain structure is affected by the damping. The difference in small-scale structure arises from energy dissipation due to the damping.
Topology Optimization in Damping Structure Based on ESO
Institute of Scientific and Technical Information of China (English)
GUO Zhong-ze; CHEN Yu-ze; HOU Qiang
2008-01-01
The damping material optimal placement for the structure with damping layer is studied based on evolutionary structural optimization (ESO) to maximize modal loss factors. A mathematical model is constructed with the objective function defined as the maximum of modal loss factors of the structure and design constraints function defined as volume fraction ofdamping material. The optimal placement is found. Several examples are presented for verification. The results demonstratethat the method based on ESO is effective in solving the topology optimization of the structure with uncon-strained damping layer and constrained damping layer. This optimization method suits for free and constrained damping structures.
Effects of Landau-Lifshitz-Gilbert damping on domain growth
Kudo, Kazue
2016-12-01
Domain patterns are simulated by the Landau-Lifshitz-Gilbert (LLG) equation with an easy-axis anisotropy. If the Gilbert damping is removed from the LLG equation, it merely describes the precession of magnetization with a ferromagnetic interaction. However, even without the damping, domains that look similar to those of scalar fields are formed, and they grow with time. It is demonstrated that the damping has no significant effects on domain growth laws and large-scale domain structure. In contrast, small-scale domain structure is affected by the damping. The difference in small-scale structure arises from energy dissipation due to the damping.
Scott, Robert C.; Bartels, Robert E.
2009-01-01
This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.
Nonlinear dynamic vibration absorbers with a saturation
Febbo, M.; Machado, S. P.
2013-03-01
The behavior of a new type of nonlinear dynamic vibration absorber is studied. A distinctive characteristic of the proposed absorber is the impossibility to extend the system to infinity. The mathematical formulation is based on a finite extensibility nonlinear elastic potential to model the saturable nonlinearity. The absorber is attached to a single degree-of-freedom linear/nonlinear oscillator subjected to a periodic external excitation. In order to solve the equations of motion and to analyze the frequency-response curves, the method of averaging is used. The performance of the FENE absorber is evaluated considering a variation of the nonlinearity of the primary system, the damping and the linearized frequency of the absorber and the mass ratio. The numerical results show that the proposed absorber has a very good efficiency when the nonlinearity of the primary system increases. When compared with a cubic nonlinear absorber, for a large nonlinearity of the primary system, the FENE absorber shows a better effectiveness for the whole studied frequency range. A complete absence of quasi-periodic oscillations is also found for an appropriate selection of the parameters of the absorber. Finally, direct integrations of the equations of motion are performed to verify the accuracy of the proposed method.
Vadose zone controls on damping of climate-induced transient recharge fluxes in U.S. agroecosystems
Gurdak, Jason
2017-04-01
Understanding the physical processes in the vadose zone that link climate variability with transient recharge fluxes has particular relevance for the sustainability of groundwater-supported irrigated agriculture and other groundwater-dependent ecosystems. Natural climate variability on interannual to multidecadal timescales has well-documented influence on precipitation, evapotranspiration, soil moisture, infiltration flux, and can augment or diminish human stresses on water resources. Here the behavior and damping depth of climate-induced transient water flux in the vadose zone is explored. The damping depth is the depth in the vadose zone that the flux variation damps to 5% of the land surface variation. Steady-state recharge occurs when the damping depth is above the water table, and transient recharge occurs when the damping depth is below the water table. Findings are presented from major agroecosystems of the United States (U.S.), including the High Plains, Central Valley, California Coastal Basin, and Mississippi Embayment aquifer systems. Singular spectrum analysis (SSA) is used to identify quasi-periodic signals in precipitation and groundwater time series that are coincident with the Arctic Oscillation (AO) (6-12 mo cycle), Pacific/North American oscillation (PNA) (<1-4 yr cycle), El Niño/Southern Oscillation (ENSO) (2-7 yr cycle), North Atlantic Oscillation (NAO) (3-6 yr cycle), Pacific Decadal Oscillation (PDO) (15-30 yr cycle), and Atlantic Multidecadal Oscillation (AMO) (50-70 yr cycle). SSA results indicate that nearly all of the quasi-periodic signals in the precipitation and groundwater levels have a statistically significant lag correlation (95% confidence interval) with the AO, PNA, ENSO, NAO, PDO, and AMO indices. Results from HYDRUS-1D simulations indicate that transient water flux through the vadose zone are controlled by highly nonlinear interactions between mean infiltration flux and infiltration period related to the modes of climate
A soft damping function for dispersion corrections with less overfitting
Ucak, Umit V.; Ji, Hyunjun; Singh, Yashpal; Jung, Yousung
2016-11-01
The use of damping functions in empirical dispersion correction schemes is common and widespread. These damping functions contain scaling and damping parameters, and they are usually optimized for the best performance in practical systems. In this study, it is shown that the overfitting problem can be present in current damping functions, which can sometimes yield erroneous results for real applications beyond the nature of training sets. To this end, we present a damping function called linear soft damping (lsd) that suffers less from this overfitting. This linear damping function damps the asymptotic curve more softly than existing damping functions, attempting to minimize the usual overcorrection. The performance of the proposed damping function was tested with benchmark sets for thermochemistry, reaction energies, and intramolecular interactions, as well as intermolecular interactions including nonequilibrium geometries. For noncovalent interactions, all three damping schemes considered in this study (lsd, lg, and BJ) roughly perform comparably (approximately within 1 kcal/mol), but for atomization energies, lsd clearly exhibits a better performance (up to 2-6 kcal/mol) compared to other schemes due to an overfitting in lg and BJ. The number of unphysical parameters resulting from global optimization also supports the overfitting symptoms shown in the latter numerical tests.
DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS
Directory of Open Access Journals (Sweden)
JAGADEESH PASUPULETI
2006-06-01
Full Text Available The IEEE bench mark model 2 series compensated system is considered for analysis. It consists of single machine supplying power to infinite bus through two parallel lines one of which is series compensated. The mechanical system considered consists of six mass, viz, high pressure turbine, intermediate pressure turbine, two low pressure turbines, generator and an exciter. The excitation system considered is IEEE type 1 with saturation. The auxiliary controls considered to damp the unstable subsynchronous modes of oscillations are Power System Stabilizer (PSS and Static var Compensator (SVC. The different cases of power system stabilizer and reactive power controls are adapted to study the effectiveness of damping these unstable subsynchronous modes of oscillations.
Wakefield Damping for the CLIC Crab Cavity
Energy Technology Data Exchange (ETDEWEB)
Ambattu, P.K.; Burt, G.; Dexter, A.C.; Carter, R.G.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Khan, V.; Jones, R.M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Dolgashev, V.; /SLAC
2011-12-01
A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.
Damping effects in Penning trap mass spectrometry
George, S; Kowalska, M; Dworschak, M; Neidherr, D; Blaum, K; Schweikhard, L; Ramirez, E M; Breitenfeldt, M; Kretzschmar, M; Herfurth, F; Schwarz, S; Herlert, A
2011-01-01
Collisions of ions with residual gas atoms in a Penning trap can have a strong influence on the trajectories of the ions, depending on the atom species and the gas pressure. We report on investigations of damping effects in time-of-flight ion-cyclotron resonance mass spectrometry with the Penning trap mass spectrometers ISOLTRAP at ISOLDE/CERN (Geneva, Switzerland) and SHIPTRAP at GSI (Darmstadt, Germany). The work focuses on the interconversion of the magnetron and cyclotron motional modes, in particular the modification of the resonance profiles for quadrupolar excitation due to the damping effect of the residual gas. Extensive experiments have been performed with standard and Ramsey excitation schemes. The results are in good agreement with predictions obtained by analytical continuation of the formulae for the undamped case.
Accelerator physics measurements at the damping ring
Rivkin, L.; Delahaye, J. P.; Wille, K.; Allen, M. A.; Bane, K.; Fieguth, T.; Hofmann, A.; Button, A.; Lee, M.; Linebarger, W.
1985-05-01
Besides the optics measurements described elsewhere, machine experiments were done at the Stanford Linear Collider (SLC) damping ring to determine some of its parameters. The synchrotron radiation energy loss which gives the damping rates was measured by observing the RF-voltage dependence of the synchronous phase angle. The emittance was obtained from the synchrotron light monitor, scraper measurements and by extracting the beam through a doublet and measuring its size for different quadrupole settings. Current dependent effects such as parasitic mode losses, head tail instabilities, synchrotron and betatron frequency shifts were measured to estimate the impedance. RF-cavity beam loading and its compensation were also studied and ion collection was investigated. All results agree reasonably well with expectations and indicate no limitations to the design performance.
Linear Inviscid Damping for Monotone Shear Flows
Zillinger, Christian
2014-01-01
In this article we prove linear stability, inviscid damping and scattering of the 2D Euler equations around regular, strictly monotone shear flows $(U(y),0)$ in a periodic channel under Sobolev perturbations. We treat the settings of an infinite channel, $\\mathbb{T} \\times \\mathbb{R}$, as well as a finite channel, $\\mathbb{T} \\times [0,1]$, with impermeable boundary. We first prove inviscid damping with optimal algebraic rates for strictly monotone shear flows under the assumption of controlling the regularity of the scattered vorticity. Subsequently, we establish linear stability of the scattering equation in Sobolev spaces under perturbations which are of not too large wave-length with respect to $x$, depending on $U''$.
Power Oscillations Damping in DC Microgrids
DEFF Research Database (Denmark)
Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang
2016-01-01
This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow...... transient response of the FC stack. The HPCS controller comprises a multi-loop voltage controller and a virtual impedance loop for power management. The virtual impedance loop uses a dynamic droop gain to actively damp the low-frequency oscillations of the power sharing control unit. The gain of virtual...... impedance loop is determined using small signal analysis and pole placement method. The Mesh analysis is employed to further study the stability of low-frequency modes of the overall dc microgrid. Moreover, based on the guardian map theorem, a robust stability analysis is carried out to determine...
Relativity Damps OPEP in Nuclear Matter
Banerjee, Manoj K.
1998-09-01
Using a relativistic Dirac--Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of M*/M with increasing density. We point out that if derivative-coupled OPEP is the preferred form of nuclear effective Lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M* it cannot replicate the damping. We suggest an examination of the feasibility of using pseudoscalar coupled πN interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.
Relativity Damps OPEP in Nuclear Matter
Banerjee, M K
1998-01-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of $M^*/M$ with increasing density. We point out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of $M^*$ it cannot replicate the damping. We suggest an examination of the feasibility of using pseudoscalar coupled $\\pi$N interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.
Radiation Damping in Einstein-Aether Theory
Foster, B Z
2006-01-01
This work concerns the loss of energy of a material system due to gravitational radiation in Einstein-aether theory-an alternative theory of gravity in which the metric couples to a dynamical, timelike, unit-norm vector field. Derived to lowest post-Newtonian-order are waveforms for the metric and vector fields far from a nearly-Newtonian system and the rate of energy radiated by the system. The expressions depend on the quadrupole moment of the source, as in standard general relativity, but also contain monopolar and dipolar terms. There exists a one-parameter family of Einstein-aether theories for which only the quadrupolar contribution is present, and for which the expression for the damping rate is identical to that of general relativity to lowest order. Because observations from binary pulsar systems already test the damping rate beyond this order, this family cannot yet be declared observationally viable.
Damping behavior of synthetic graphite beams
Directory of Open Access Journals (Sweden)
Luiz Cláudio Pardini
2006-06-01
Full Text Available The main objective of this work was to obtain the damping factor (xi as well as the elasticity modulus (E of two kinds of synthetic graphite (HLM and ATJ, using the modal analysis technique. Prismatic beams of square section (~ 11 x 11 mm and length over thickness ratio (L/t of about 22.7 were tested in the free - free boundary condition. The first four modes of vibration were taken into account in the non-destructive evaluation of the materials. In addition, numerical simulations were also carried out in this investigation. The agreement between the theoretical and the experimental results was quite good. The average values of E and xi for the HLM graphite were 20% and 90% higher, respectively, than those presented by the ATJ graphite, indicating that the HLM graphite has, proportionally, more damping mechanisms than the ATJ graphite.
Experimental investigation of damping force of twin tube shock absorber
Directory of Open Access Journals (Sweden)
Sandip K. Kadu
2014-09-01
Full Text Available A shock absorber is a mechanical device to damp shock impulse and convert kinetic energy into thermal energy. The damping effect of shock absorber depends on damping force and damping force is affected by various process parameters. In this analysis three process parameters damping diameter(A, number of holes(B and suspension velocity(C were considered and their effect on damping force of shock absorber was studied and accordingly suitable orthogonal array was selected by taguchi method. Experiment conducted on servo hydraulic testing machine and after conducting experiments damping force was measured and with the help of S/N ratio, ANOVA, Regression analysis optimum parameter values can be obtained and confirmation experiments was carried out. Twin tube shock absorber was used to carry out experimentation.
Beam halo study on ATF damping ring
Wang, Dou; Yokoya, Kaoru; Naito, Takashi; Gao, Jie
2016-01-01
Halo distribution is a key topic for background study. This paper has developed an analytical method to give an estimation of ATF beam halo distribution. The equilibrium particle distribution of the beam tail in the ATF damping ring is calculated analytically with different emittance and different vacuum degree. The analytical results agree the measurements very well. This is a general method which can be applied to any electron rings.
Cubic Lienard Equations with Quadratic Damping (Ⅱ)
Institute of Scientific and Technical Information of China (English)
Yu-quan Wang; Zhu-jun Jing
2002-01-01
Applying Hopf bifurcation theory and qualitative theory, we show that the general cubic Lienard equations with quadratic damping have at most three limit cycles. This implies that the guess in which the system has at most two limit cycles is false. We give the sufficient conditions for the system has at most three limit cycles or two limit cycles. We present two examples with three limit cycles or two limit cycles by using numerical simulation.
On circular flows: linear stability and damping
Zillinger, Christian
2016-01-01
In this article we establish linear inviscid damping with optimal decay rates around 2D Taylor-Couette flow and similar monotone flows in an annular domain $B_{r_{2}}(0) \\setminus B_{r_{1}}(0) \\subset \\mathbb{R}^{2}$. Following recent results by Wei, Zhang and Zhao, we establish stability in weighted norms, which allow for a singularity formation at the boundary, and additional provide a description of the blow-up behavior.
Proceedings of Damping Volume 2 of 3
1993-06-01
Inc., 1979. [101 N. Balabanian and T. Bickert. Electrical Network Theory. Jonh Wiley and Sons, Inc., 1969. [111 D. Wang and M. Vidyasagar. Passive...1987). Dynamics of Polymeric Liquids, J. Wiley , New York, NY. Dargush, G.E and Banerjee, P.K. (1991a). "A Time-dependent Incompressible Viscous BEM for...414. 11. Nashif, A. D., Jones, D. I. G. and Henderson, J. P. (1985). Vibration Damping, Wiley -Interscience Publication, New York. 12. Bland, D. R. and
Active Compliance And Damping In Telemanipulator Control
Kim, Won S.; Bejczy, Antal K.; Hannaford, Blake
1991-01-01
Experimental telemanipulator system of force-reflecting-hand-controller type provides for active compliance and damping in remote, robotic manipulator hand. Distributed-computing and -control system for research in various combinations of force-reflecting and active-compliance control regimes. Shared compliance control implemented by low-pass-filtered force/torque feedback. Variable simulated springs and shock absorbers soften collisions and increase dexterity.
Damping of roll vibrations of vehicle suspension
Le, K. C.; Pieper, A.
2014-04-01
Small forced vibrations of an axle model of independent suspensions having four degrees of freedom are studied. The exact analytical solution of the generalised Lagrange equation enables one to produce 3D plots of the normalised amplitudes of forced vibrations versus frequency and excitation ratio or phase difference of the road inputs. The analysis of these plots exhibits some deficiency in damping of roll vibrations of conventional vehicle suspensions. The possibilities of improvement are discussed.
Coulomb collision effects on linear Landau damping
Energy Technology Data Exchange (ETDEWEB)
Callen, J. D., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison, Wisconsin 53706-1609 (United States)
2014-05-15
Coulomb collisions at rate ν produce slightly probabilistic rather than fully deterministic charged particle trajectories in weakly collisional plasmas. Their diffusive velocity scattering effects on the response to a wave yield an effective collision rate ν{sub eff} ≫ ν and a narrow dissipative boundary layer for particles with velocities near the wave phase velocity. These dissipative effects produce temporal irreversibility for times t ≳ 1/ν{sub eff} during Landau damping of a small amplitude Langmuir wave.
Accurate integration of forced and damped oscillators
García Alonso, Fernando Luis; Cortés Molina, Mónica; Villacampa, Yolanda; Reyes Perales, José Antonio
2016-01-01
The new methods accurately integrate forced and damped oscillators. A family of analytical functions is introduced known as T-functions which are dependent on three parameters. The solution is expressed as a series of T-functions calculating their coefficients by means of recurrences which involve the perturbation function. In the T-functions series method the perturbation parameter is the factor in the local truncation error. Furthermore, this method is zero-stable and convergent. An applica...
1991-08-01
Fluids The Vibration Damping Effect of an Electrorheological Fluid GAB Stephen A. Austin Modelling of Nonlinear Dilatation Response of Fluids...Struc- GBB tures Dr. Andreas von Flotow and D. W. Vos Passive Control of a Flexible Planar Truss Using A Reaction Mass GBC Actuator Capt. Steven G...Multi- Actuator Control Experiment To show the applicability of the procedure to the solution of realistic dynamics and control problems which
Damping of liquid sloshing by foams
Sauret, Alban; Cappello, Jean; Dressaire, Emilie; Stone, Howard A
2014-01-01
When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of wa ter is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, wh ich suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscill ations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissi pation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D a...
Synchrosqueezed wavelet transform for damping identification
Mihalec, Marko; Slavič, Janko; Boltežar, Miha
2016-12-01
Synchrosqueezing is a procedure for improving the frequency localization of a continuous wavelet transform. This research focuses on using a synchrosqueezed wavelet transform (SWT) to determine the damping ratios of a vibrating system using a free-response signal. While synchrosqueezing is advantageous due to its localisation in the frequency, damping identification with the original SWT is not sufficiently accurate. Here, the synchrosqueezing was researched in detail, and it was found that an error in the frequency occurs as a result of the numerical calculation of the preliminary frequencies. If this error were to be compensated, a better damping identification would be expected. To minimize the frequency-shift error, three different strategies are investigated: the scale-dependent coefficient method, the shifted-coefficient method and the autocorrelated-frequency method. Furthermore, to improve the SWT, two synchrosqueezing criteria are introduced: the average SWT and the proportional SWT. Finally, the proposed modifications are tested against close modes and the noise in the signals. It was numerically and experimentally confirmed that the SWT with the proportional criterion offers better frequency localization and performs better than the continuous wavelet transform when tested against noisy signals.
Radiative damping in plasma-based accelerators
Kostyukov, I. Yu.; Nerush, E. N.; Litvak, A. G.
2012-11-01
The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.
Radiation damping in pulsed Gaussian beams
Harvey, Chris; Marklund, Mattias
2012-01-01
We consider the effects of radiation damping on the electron dynamics in a Gaussian-beam model of a laser field. For high intensities, i.e., with dimensionless intensity a0≫1, it is found that the dynamics divides into three regimes. For low-energy electrons (low initial γ factor, γ0) the radiation damping effects are negligible. At higher energies, but still at 2γ0a0 one is in a regime of radiation-reaction-induced electron capture. This capture is found to be stable with respect to the spatial properties of the electron beam and results in a significant energy loss of the electrons. In this regime the plane-wave model of the laser field provides a good description of the dynamics, whereas for lower energies the Gaussian-beam and plane-wave models differ significantly. Finally the dynamics is considered for the case of an x-ray free-electron laser field. It is found that the significantly lower intensities of such fields inhibit the damping effects.
DAMPs and influenza virus infection in ageing.
Samy, Ramar Perumal; Lim, Lina H K
2015-11-01
Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.
Collisional damping rates for plasma waves
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2016-06-01
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Damping of acoustic vibrations in gold nanoparticles
Pelton, Matthew; Sader, John E.; Burgin, Julien; Liu, Mingzhao; Guyot-Sionnest, Philippe; Gosztola, David
2009-08-01
Studies of acoustic vibrations in nanometre-scale particles can provide fundamental insights into the mechanical properties of materials because it is possible to precisely characterize and control the crystallinity and geometry of such nanostructures. Metal nanoparticles are of particular interest because they allow the use of ultrafast laser pulses to generate and probe high-frequency acoustic vibrations, which have the potential to be used in a variety of sensing applications. So far, the decay of these vibrations has been dominated by dephasing due to variations in nanoparticle size. Such inhomogeneities can be eliminated by performing measurements on single nanoparticles deposited on a substrate, but unknown interactions between the nanoparticles and the substrate make it difficult to interpret the results of such experiments. Here, we show that the effects of inhomogeneous damping can be reduced by using bipyramidal gold nanoparticles with highly uniform sizes. The inferred homogeneous damping is due to the combination of damping intrinsic to the nanoparticles and the surrounding solvent; the latter is quantitatively described by a parameter-free model.
Metallic materials for mechanical damping capacity applications
Crăciun, R. C.; Stanciu, S.; Cimpoeșu, R.; (Dragoș Ursanu, A. I.; Manole, V.; Paraschiv, P.; Chicet, D. L.
2016-08-01
Some metallic materials exhibit good damping capacity of mechanical energy into thermal energy. This property along with the others metallic characteristics make this materials interesting for a big number of applications. These materials can be used as bumpers in different applications including automotive field. Beside grey cast iron and shape memory alloys few new metallic materials are presented for the supposition of high damping capacity. We analyze the causes that increase the internal friction of some metallic materials and possibilities to enhance this property through different mechanical, physical or chemical methods. Shape memory alloys, especially those based on copper, present a different damping capacity on martensite, austenite or transition state. In the transformation range M ↔A, which in case of copper base shape memory alloys is quite large, the metallic intelligent materials present a high internal friction, almost comparable with natural rubber behavior that can transform mechanical energy into thermal energy till a certain value of the external solicitation. These materials can be used as noise or small vibrations bumpers or even as shock absorbers in automotive industry.
Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran
2016-01-01
We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Principles of TRIP Steel Optimization for Passive Damping Applications
Fraley, George Jay
Globally many historic structures of cultural significance which do not have systems to mitigate seismic damage are located in areas with heavy seismic activity. Efforts have been undertaken to develop strategies to retrofit such structures, however any intervention must be limited in size for aesthetic reasons. To contribute to this effort, ArcelorMittal aims to create steel-based solutions for passive energy dissipation through plastic deformation during cyclic loading. High-strength TRansformation-Induced Plasticity (TRIP) steels are proposed as an excellent candidate material for this application, due to the extreme combination of high strength and large ductility they are well-known to exhibit. To evaluate high-strength TRIP steels for passive damping applications, isothermal, fully-reversed, displacement-controlled Ultra-Low Cycle Fatigue (ULCF) experiments (Nf fatigue life and a lower rate of cyclic hardening at fixed displacement amplitudes for low to intermediate levels of plastic strain range (2-10%) compared to the lower stability austenite condition (Mssigma = 27 °C). However, at higher levels of plastic straining (10-16% strain range) the fatigue lives and strain hardening behavior converged for the two stabilities, indicating a likely exhaustion of transformation during the first few cycles. ULCF life behavior for the high-stability austenite condition compared favorably with literature values for structural stainless steel 316, despite having a yield strength approximately four times larger. For a similar number of cycles to failure the high stability condition dissipated 2.4 times more energy than stainless steel 316 upon initial cycling. The stress-strain hysteresis curves and fatigue life data generated can be input into computational models of passive damping devices for initial concurrent material/device design iterations. Evidence of shear lips, large primary inclusions serving as fracture-initiation sites, and highly dimpled fracture surfaces
Analysis of Nonlinear Thermoelastic Dissipation in Euler-Bernoulli Beam Resonators.
Nourmohammadi, Zahra; Joshi, Surabhi; Vengallatore, Srikar
2016-01-01
The linear theory of thermoelastic damping (TED) has been extensively developed over the past eight decades, but relatively little is known about the different types of nonlinearities that are associated with this fundamental mechanism of material damping. Here, we initiate the study of a dissipative nonlinearity (also called thermomechanical nonlinearity) whose origins reside at the heart of the thermomechanical coupling that gives rise to TED. The finite difference method is used to solve the nonlinear governing equation and estimate nonlinear TED in Euler-Bernoulli beams. The maximum difference between the nonlinear and linear estimates ranges from 0.06% for quartz and 0.3% for silicon to 7% for aluminum and 28% for zinc.
On the propagation of binary signals in damped mechanical systems of oscillators
Macías-Díaz, J E; 10.1016/j.physd.2007.02.007
2011-01-01
In the present work, we explore efficient ways to transmit binary information in discrete, semi-infinite chains of coupled oscillators using the process of nonlinear supratransmission. A previous work showed that such transmission is possible and, indeed, reliable under the idealistic condition when weak or no damping is present. In this paper, we study a more realistic case and propose the design of mechanical devices in order to avoid the loss of information, consisting on the linear concatenation of several such mechanical systems. Our results demonstrate that the loss of information can be minimized or avoided using such physical structures.
Design and control of LCL-filter with active damping for Active Power Filter
DEFF Research Database (Denmark)
Zeng, Guohong; Rasmussen, Tonny Wederberg; Ma, L
2010-01-01
In the application of shunt Active Power Filter (APF) to compensate nonlinear load's harmonic, reactive and negative sequence current, it is more effective to use a LCL-filter than an L-filter as an interface between the Voltage Source Converter (VSC) and grid. In this paper, a designing procedure...... of LCL-filter for APF is introduced, which is aimed for simplified the implementation. To suppress the resonance that may be excited in the system, which brings in stability problems, an active damping control strategy using the current feed-back of the filter capacitor is adopted. By selecting two equal...
Damped and zero-damped quasinormal modes of charged, nearly-extremal black holes
Zimmerman, Aaron
2015-01-01
Despite recent progress, the complete understanding of the perturbations of charged, rotating black holes as described by the Kerr-Newman metric remains an open and fundamental problem in relativity. In this study, we explore the existence of families of quasinormal modes of Kerr-Newman black holes whose decay rates limit to zero at extremality, called zero-damped modes in past studies. We review the nearly-extremal and WKB approximation methods for spin-weighted scalar fields (governed by the Dudley-Finley equation) and give an accounting of the regimes where scalar zero-damped and damped modes exist. Using Leaver's continued fraction method, we verify that these approximations give accurate predictions for the frequencies in their regimes of validity. In the non-rotating limit, we argue that gravito-electromagnetic perturbations of nearly-extremal Reissner-Nordstr\\"{o}m black holes have zero-damped modes in addition to the well-known spectrum of damped modes. We provide an analytic formula for the frequenci...
Nembach, Hans T; Shaw, Justin M; Boone, Carl T; Silva, T J
2013-03-15
We demonstrate a strong dependence of the effective damping on the nanomagnet size and the particular spin-wave mode that can be explained by the theory of intralayer transverse-spin pumping. The effective Landau-Lifshitz damping is measured optically in individual, isolated nanomagnets as small as 100 nm. The measurements are accomplished by use of a novel heterodyne magneto-optical microwave microscope with unprecedented sensitivity. Experimental data reveal multiple standing spin-wave modes that we identify by use of micromagnetic modeling as having either localized or delocalized character, described generically as end and center modes. The damping parameter of the two modes depends on both the size of the nanomagnet as well as the particular spin-wave mode that is excited, with values that are enhanced by as much as 40% relative to that measured for an extended film. Contrary to expectations based on the ad hoc consideration of lithography-induced edge damage, the damping for the end mode decreases as the size of the nanomagnet decreases. The data agree with the theory for damping caused by the flow of intralayer transverse spin currents driven by the magnetization curvature. These results have serious implications for the performance of nanoscale spintronic devices such as spin-torque-transfer magnetic random access memory.
Hyperchaotic circuit with damped harmonic oscillators
DEFF Research Database (Denmark)
Lindberg, Erik; Murali, K.; Tamasevicius, A.
2001-01-01
capacitors and one nonlinear active conductor. The Lyapunov exponents are presented to confirm the hyperchaotic nature of the oscillations of the circuit. The nonlinear conductor is realized with a diode. A negative impedance converter and a linear resistor. The performance of the circuit is investigated...
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t
Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller
DEFF Research Database (Denmark)
Yao, Wei; Jiang, L.; Fang, Jiakun
2013-01-01
This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying...... forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal...... in each sampling interval. Case studies are undertaken on a two-area fourmachine power system and the New England 10-machine 39-bus power system, respectively. Simulation results show that the proposed adaptive WADC not only can damp the inter-area oscillations effectively under a wide range of operation...
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Pacini, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayes, Randall L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roettgen, Daniel R [Univ. of Wisconsin, Madison, WI (United States)
2015-10-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.
Reliable Damping of Free Surface Waves in Numerical Simulations
Peric, Robinson
2015-01-01
This paper generalizes existing approaches for free-surface wave damping via momentum sinks for flow simulations based on the Navier-Stokes equations. It is shown in 2D flow simulations that, to obtain reliable wave damping, the coefficients in the damping functions must be adjusted to the wave parameters. A scaling law for selecting these damping coefficients is presented, which enables similarity of the damping in model- and full-scale. The influence of the thickness of the damping layer, the wave steepness, the mesh fineness and the choice of the damping coefficients are examined. An efficient approach for estimating the optimal damping setup is presented. Results of 3D ship resistance computations show that the scaling laws apply to such simulations as well, so the damping coefficients should be adjusted for every simulation to ensure convergence of the solution in both model and full scale. Finally, practical recommendations for the setup of reliable damping in flow simulations with regular and irregular...
Purity and decoherence in the theory of a damped harmonic oscillator
Isar, A.; Sandulescu, A.; Scheid, W.
1999-12-01
For the generalized master equations derived by Karrlein and Grabert for the microscopic model of a damped harmonic oscillator, the conditions for purity of states are written, in particular for different initial conditions and different types of damping, including Ohmic, Drude, and weak coupling cases, and the Agarwal and Weidlich-Haake models. It is shown that the states which remain pure are the squeezed states with variances that are constant in time. For pure states, generalized nonlinear Schrödinger-type equations corresponding to these master equations are also obtained. Then the condition for purity of states of a damped harmonic oscillator is considered in the framework of Lindblad theory for open quantum systems. For a special choice of the environment coefficients, correlated coherent states with constant variances and covariance are shown to be the only states which remain pure all the time during the evolution of the considered system. In Karrlein-Grabert and Lindblad models, as well as in the particular models considered, expressions for the rate of entropy production are written, and it is shown that state which preserve their purity in time are also states which minimize entropy production and, therefore, are the most stable state under evolution in the presence of the environment, and play an important role in the description of decoherence phenomenon.
Decay of geodesic acoustic modes due to the combined action of phase mixing and Landau damping
Biancalani, A; Angioni, C; Bottino, A; Zonca, F
2016-01-01
Geodesic acoustic modes (GAMs) are oscillations of the electric field whose importance in tokamak plasmas is due to their role in the regulation of turbulence. The linear collisionless damping of GAMs is investigated here by means of analytical theory and numerical simulations with the global gyrokinetic particle-in-cell code ORB5. The combined effect of the phase mixing and Landau damping is found to quickly redistribute the GAM energy in phase-space, due to the synergy of the finite orbit width of the passing ions and the cascade in wave number given by the phase mixing. When plasma parameters characteristic of realistic tokamak profiles are considered, the GAM decay time is found to be an order of magnitude lower than the decay due to the Landau damping alone, and in some cases of the same order of magnitude of the characteristic GAM drive time due to the nonlinear interaction with an ITG mode. In particular, the radial mode structure evolution in time is investigated here and reproduced quantitatively by ...
Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect
Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng
2016-01-01
Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems. PMID:27832098
Design of output feedback UPFC controller for damping of electromechanical oscillations using PSO
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H. [Technical Engineering Dept., Univ. of Mohaghegh Ardabili, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Dept., Iran Univ. of Science and Technology, Tehran (Iran); Jalilzadeh, S.; Safari, A. [Technical Engineering Dept., Zanjan Univ., Zanjan (Iran)
2009-10-15
In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) is developed. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a particle swarm optimization technique (PSO) that has a strong ability to find the most optimistic results. Only local and available state variables are adopted as the input signals of each controller for the decentralized design. Thus, structure of the designed UPFC controller is simple and easy to implement. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the designed PSO-based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based controller is superior to both the m{sub B} based controller and conventional power system stablizer. (author)
Landau damping of Gardner solitons in a dusty bi-ion plasma
Misra, A P
2015-01-01
The effects of linear Landau damping on the nonlinear propagation of dust-acoustic solitary waves (DASWs) are studied in a collisionless unmagnetized dusty plasma with two species of positive ions. The extremely massive, micron-seized, cold and negatively charged dust particles are described by fluid equations, whereas the two species of positive ions, namely the cold (heavy) and hot (light) ions are described by the kinetic Vlasov equations. Following Ott and Sudan [Phys. Fluids {\\bf 12}, 2388 (1969)], and by considering lower and higher-order perturbations, the evolution of DASWs with Landau damping is shown to be governed by Korteweg-de Vries (KdV), modified KdV (mKdV) or Gardner (KdV-mKdV)-like equations. The properties of the phase velocity and the Landau damping rate of DASWs are studied for different values of the ratios of the temperatures $(\\sigma)$ and the number densities $(\\mu)$ of hot and cold ions as well the cold to hot ion mass ratio $m$. The distinctive features of the decay rates of the ampl...
Study on vibration suppression based on particle damping in centrifugal field of gear transmission
Xiao, Wangqiang; Li, Jiani; Wang, Sheng; Fang, Xiaomeng
2016-03-01
Though particle damping technology has been applied to vibration suppression in steady state, there are few reports about the study of particle dampers in centrifugal fields because of its nonlinear damping performance and complex mechanism. Introducing particle damping technology into gear transmission will effectively reduce the vibration from gear engaging, especially for harsh working conditions, such as high temperature and oil lubrication. In this paper, we have explored the mechanism of gear excitation and determined the relationship between the rotational speed and gear's modal parameters in centrifugal fields. A mechanical model of the particle damper based on the discrete element method (DEM) in centrifugal fields has been established. Furthermore, the DEM model has been verified by comparing simulation data with experimental data. Based on the model, we have discussed the particle damper's energy dissipation mechanism in centrifugal fields, as well as the calculation method of energy dissipation. Moreover, the influence of the particle size on energy dissipation characteristics has been analyzed. The results can provide theoretical guidance for vibration and noise reduction of the gear transmission.
The Effect of Infinitesimal Damping on the Dynamic Instability Mechanism of Conservative Systems
Directory of Open Access Journals (Sweden)
Dimitris S. Sophianopoulos
2008-01-01
Full Text Available The local instability of 2 degrees of freedom (DOF weakly damped systems is thoroughly discussed using the Liénard-Chipart stability criterion. The individual and coupling effect of mass and stiffness distribution on the dynamic asymptotic stability due to mainly infinitesimal damping is examined. These systems may be as follows: (a unloaded (free motion and (b subjected to a suddenly applied load of constant magnitude and direction with infinite duration (forced motion. The aforementioned parameters combined with the algebraic structure of the damping matrix (being either positive semidefinite or indefinite may have under certain conditions a tremendous effect on the Jacobian eigenvalues and then on the local stability of these autonomous systems. It was found that such systems when unloaded may exhibit periodic motions or a divergent motion, while when subjected to the above step load may experience either a degenerate Hopf bifurcation or periodic attractors due to a generic Hopf bifurcation. Conditions for the existence of purely imaginary eigenvalues leading to global asymptotic stability are fully assessed. The validity of the theoretical findings presented herein is verified via a nonlinear dynamic analysis.
Computational aspects of helicopter trim analysis and damping levels from Floquet theory
Gaonkar, Gopal H.; Achar, N. S.
1992-01-01
Helicopter trim settings of periodic initial state and control inputs are investigated for convergence of Newton iteration in computing the settings sequentially and in parallel. The trim analysis uses a shooting method and a weak version of two temporal finite element methods with displacement formulation and with mixed formulation of displacements and momenta. These three methods broadly represent two main approaches of trim analysis: adaptation of initial-value and finite element boundary-value codes to periodic boundary conditions, particularly for unstable and marginally stable systems. In each method, both the sequential and in-parallel schemes are used and the resulting nonlinear algebraic equations are solved by damped Newton iteration with an optimally selected damping parameter. The impact of damped Newton iteration, including earlier-observed divergence problems in trim analysis, is demonstrated by the maximum condition number of the Jacobian matrices of the iterative scheme and by virtual elimination of divergence. The advantages of the in-parallel scheme over the conventional sequential scheme are also demonstrated.
Improving the Validity of Squeeze Film Air-Damping Model of MEMS Devices with Border Effect
Directory of Open Access Journals (Sweden)
Cheng Bai
2014-01-01
Full Text Available Evaluation of squeezed film air damping is critical in the design and control of dynamic MEMS devices. The published squeezed film air damping models are generally derived from the analytical solutions of Reynolds equation or its other modified forms under the supposition of trivial pressure boundary conditions on the peripheral borders. These treatments ignoring the border effect can not give faithful result for structure with smaller air venting gap or the double-gimbaled structure in which the inner frame and outer one affect the air venting. In this paper, we use Green’s function to solve the nonlinear Reynolds equation with inhomogeneous boundary conditions. For two typical normal motion cases of parallel plate, the analytical models of squeeze film damping force with border effect are established. The viscous and inertial losses with real values and image values acoustic impedance are all included in the model. These models reduced the time consumption while giving satisfactory result. Without multifield coupling analysis, the estimation of the dynamic behavior of MEMS device is also allowed, and the simulation of the system performance is more convenient.
Nonlinear Krylov acceleration of reacting flow codes
Energy Technology Data Exchange (ETDEWEB)
Kumar, S.; Rawat, R.; Smith, P.; Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)
1996-12-31
We are working on computational simulations of three-dimensional reactive flows in applications encompassing a broad range of chemical engineering problems. Examples of such processes are coal (pulverized and fluidized bed) and gas combustion, petroleum processing (cracking), and metallurgical operations such as smelting. These simulations involve an interplay of various physical and chemical factors such as fluid dynamics with turbulence, convective and radiative heat transfer, multiphase effects such as fluid-particle and particle-particle interactions, and chemical reaction. The governing equations resulting from modeling these processes are highly nonlinear and strongly coupled, thereby rendering their solution by traditional iterative methods (such as nonlinear line Gauss-Seidel methods) very difficult and sometimes impossible. Hence we are exploring the use of nonlinear Krylov techniques (such as CMRES and Bi-CGSTAB) to accelerate and stabilize the existing solver. This strategy allows us to take advantage of the problem-definition capabilities of the existing solver. The overall approach amounts to using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method and its variants as nonlinear preconditioners for the nonlinear Krylov method. We have also adapted a backtracking approach for inexact Newton methods to damp the Newton step in the nonlinear Krylov method. This will be a report on work in progress. Preliminary results with nonlinear GMRES have been very encouraging: in many cases the number of line Gauss-Seidel sweeps has been reduced by about a factor of 5, and increased robustness of the underlying solver has also been observed.
Analysis and design of robust decentralized controllers for nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Schoenwald, D.A.
1993-07-01
Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.
Online Fault Diagnosis Method Based on Nonlinear Spectral Analysis
Institute of Scientific and Technical Information of China (English)
WEI Rui-xuan; WU Li-xun; WANG Yong-chang; HAN Chong-zhao
2005-01-01
The fault diagnosis based on nonlinear spectral analysis is a new technique for the nonlinear fault diagnosis, but its online application could be limited because of the enormous compution requirements for the estimation of general frequency response functions. Based on the fully decoupled Volterra identification algorithm, a new online fault diagnosis method based on nonlinear spectral analysis is presented, which can availably reduce the online compution requirements of general frequency response functions. The composition and working principle of the method are described, the test experiments have been done for damping spring of a vehicle suspension system by utilizing the new method, and the results indicate that the method is efficient.
Long-time behavior of a class of thermoelastic plates with nonlinear strain
Fatori, L. H.; Jorge Silva, M. A.; Ma, T. F.; Yang, Zhijian
2015-11-01
In recent years a class of vibrating plates with nonlinear strain of p-Laplacian type was studied by several authors. The present paper contains a first thermoelastic model of that class of problems including both Fourier and non-Fourier heat laws. Our main result establishes the existence of global and exponential attractors for the strongly damped problem through a stabilizability inequality. In addition, for the weakly damped problem, we establish the exponential stability of its Galerkin semiflows.
Nonlinear Optimization of CLIC DRS New Design with Variable Bends and High Field Wigglers
Ghasem, H.; Alabau-Gonzalvo, J.; Papadopoulou, S.; Papaphilippou, Y.
2016-01-01
The new design of CLIC damping rings is based on longitudinal variable bends and high field superconducting wiggler magnets. It provides an ultra-low horizontal normalised emittance of 412 nm-rad at 2.86 GeV. In this paper, nonlinear beam dynamics of the new design of the damping ring (DR) with trapezium field profile bending magnets have been investigated in detail. Effects of the misalignment errors have been studied in the closed orbit and dynamic aperture.
Excitation of nonlinear ion acoustic waves in CH plasmas
Feng, Q S; Liu, Z J; Xiao, C Z; Wang, Q; He, X T
2016-01-01
Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number $ k\\lambda_{De} $ increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of $ T_i/T_e < 0.2 $ in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with $k\\lambda_{De}$ increasing. When $k\\lambda_{De}$ is not large, such as $k\\lambda_{De}=0.1, 0.3, 0.5$, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when $k\\lambda_{De}$ is large, such as $k\\lambda_{De}=0.7$, the linear ...
Damping in high-temperature superconducting levitation systems
Energy Technology Data Exchange (ETDEWEB)
Hull, John R.
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.
Damping in high-temperature superconducting levitation systems
Hull, John R.
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.
Digital notch filter based active damping for LCL filters
DEFF Research Database (Denmark)
Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin
2015-01-01
. In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....
Damping behaviors of metal matrix composites with interface layer
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A novel technique of designing the interface layer in metal matrix composites of high damping capacity was developed via different CVD coatings on carbon fibers in Cf/Al composites. It was shown that the interface layer improved the tensile strength, elastic modulus and damping capacity of the Cf/Al composites. A carbon layer showed the highest improvement and a silicon layer the lowest, while a mixed carbon and silicon layer exhibited an intermediate effect. Moreover, the thickness of interface layer also influences the damping capacity. A thicker carbon layer produced a better damping capacity because the dependence of damping capacity on strain amplitude was increased. It is suggested that a micro-sliding action occurring in the interface layer is the main mechanism responsible for the high damping capacity of the composites.
The damping performance of aluminum-based composites
Energy Technology Data Exchange (ETDEWEB)
Updike, C.A.; Bhagat, R.B.; Pechersky, M.J.; Amateau, M.F. (Harris Corp., Government Aerospace Systems Div., Melbourne, FL (USA) Pennsylvania State Univ., University Park (USA))
1990-03-01
Metal-matrix-composites may offer better damping properties than unreinforced alloys. Because damping properties (and metal-matrix composites) are becoming important in airframe design, the damping capabilities of a number of aluminum-matrix composites were measured over a wide range of frequencies at low strain amplitudes, using a new laser vibrometer technique. Silicon carbide and alumina reinforcements resulted in a material with damping properties similar to that of unreinforced aluminum 6061-T6, but unidirectional and planar-random graphite continuous-fiber reinforcements increased the damping by 5 and 14 times, respectively. The increased damping of the continuous fiber composites is attributed to the absence of interfacial reaction resulting from the high-pressure infiltration method used for their manufacture. 25 refs.
Active member bridge feedback control for damping augmentation
Chen, Gun-Shing; Lurie, Boris J.
1992-01-01
An active damping augmentation approach using active members in a structural system is described. The problem of maximizing the vibration damping in a lightly damped structural system is considered using the analogy of impedance matching between the load and source impedances in an electrical network. The proposed active damping augmentation approach therefore consists of finding the desired active member impedances that maximize the vibration damping, and designing a feedback control in order to achieve desired active member impedances. This study uses a bridge feedback concept that feeds back a combination of signals from sensors of the axial force and relative velocity across the active member to realize the desired active member impedance. The proposed active damping augmentation approach and bridge feedback concept were demonstrated on a three-longeron softly suspended truss structure.
Design of damping valve for vehicle hydro pneumatic suspension
Institute of Scientific and Technical Information of China (English)
Mingming DONG; Hua HUANG; Lian GU
2008-01-01
According to the design features of a hydro pneumatic spring, the necessity of a separate damping valve is proposed. Based on a 1/4 vehicle linear suspension model, the optimum damping coefficient is worked out and the parameters of the damping valve are determined with the equivalent linearization method. A practical structure of the damping valve is proposed having a small size, high flowrate when the valve opens, and the ability of enduring high back pressure. Based on bench tests, the damping valve has been found to properly work and be suitable. The design method and damping valve structure are useful guides for hydro pneumatic suspension, especially for the design of heavy-duty vehicles.
Researches on Track Reconstruction for DAMPE
Lu, T. S.; Lei, S. J.; Zang, J. J.; Chang, J.; Wu, J.
2016-05-01
The Dark Matter Particle Explorer (DAMPE) is aimed to study the existence and distribution of dark matter via observation of high energy particles in space with unprecedented large energy bandwidth, high energy resolution, and high space resolution. The track reconstruction is to restore the positions and angles of the incident particles using the multiple observations of different channels at different positions, and its accuracy determines the angular resolution of the detector. The track reconstruction is mainly based on the observations of two sub-detectors, namely, the Silicon Tracker (STK) detector and the BGO (Bi_4Ge_3O12) calorimeter. In accordance with the design and structure of the two sub-detectors and using the data collected during the beam tests and ground tests, we provide a detailed introduction of the track reconstruction of DAMPE data, including three basic steps, the selection of track hits, the fitting of track hits, and the judgement of the best track among (most probably) many of them. Since a high energy particle most probably leaves more than one hit in each level of the STK and BGO, we first provide a method to constrain the STK clusters for the track reconstruction using the rough result of the BGO reconstruction. We apply two different algorithms, the Kalman filter and the least square linear fitting, to fit the track hits. The consistency of the results obtained independently via the two algorithms confirms the validity of our track reconstruction results, and we discuss the advantages/disadvantages of each method. Several criteria combining the BGO and STK detection are discussed for picking out the most possible track among all the tracks found in the track reconstruction. Using the track reconstruction methods mentioned in this article and the beam test data, we confirm that the angular resolution of DAMPE satisfies the requirement in design.
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
System Reduction and Damping of Flexible Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Riess; Krenk, Steen
2007-01-01
technique for local linearization of the damper characteristics. However, the complex mode shapes and frequencies depend on the magnitude of the damper and therefore are less suitable for design of the damper system. An efficient alternative consists in the use of a two-component representation...... good estimate for use in design calculations. The efficiency of the damper configuration depends on damper placement as well as damper properties. Thus a stiffness component in the damper characteristic leads to a decrease in damping efficiency. The method is illustrated by some simple examples, also...
PENDULUM WITH LINEAR DAMPING AND VARIABLE LENGTH
Institute of Scientific and Technical Information of China (English)
蔡建平; 杨翠红; 李怡平
2004-01-01
The methods of multiple scales and approximate potential are used to study pendulums with linear damping and variable length. According to the order of the coefficient of friction compared with that of the slowly varying parameter of length, three different cases are discussed in details. Asymptotic analytical expressions of amplitude, frequency and solution are obtained. The method of approximate potential makes the results effective for large oscillations. A modified multiple scales method is used to get more accurate leading order approximations when the coefficient friction is not small. Comparisons are also made with numerical results to show the efficiency of the present method.
System for damping vibrations in a turbine
Energy Technology Data Exchange (ETDEWEB)
Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis
2015-11-24
A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.
Problem of the gyroscopic stabilizer damping
Directory of Open Access Journals (Sweden)
Šklíba J.
2009-06-01
Full Text Available The gyroscopic stabilization of the vibro-isolation system of an ambulance couch is analyzed. This paper follows several previous papers, which concern the derivation of the complete system of appropriate differential equations and some analyses were provided there, as well. It was supposed that mass matrix, stiffness matrix and gyroscope impulse-moment remain constant and the stability of equilibrium state was solved according to different alternatives of the damping and of the radial correction. Little known theorems of the stability were used there. With respect to these theorems, vibro-isolation systems can be classified according to odd or even number of generalized coordinates.
Mode damping in a commensurate monolayer solid
DEFF Research Database (Denmark)
Bruch, Ludwig Walter; Hansen, Flemming Yssing
1997-01-01
with an elastic-continuum theory of the response of modes of either parallel or perpendicular polarization for a spherical adsorbate on a hexagonal substrate. The results are applied to the discussion of computer simulations and inelastic atomic-scattering experiments for adsorbates on graphite. The extreme...... anisotropy of the elastic behavior of the graphite leads to quite different wave-vector dependence of the damping for modes polarized perpendicular and parallel to the substrate. A phenomenological extension of the elasticity theory of the graphite to include bond-bending energies improves the description...
Gyroscopic Stabilization of Indefinite Damped Systems
DEFF Research Database (Denmark)
Kliem, Wolfhard; Müller, Peter C.
1996-01-01
The paper deals with linear systems of differential equationswith symmetric system matrices M,D, and K.The mass matrix M and the stiffness matrix K are both assumed to bepositive definite. The damping matrix D is indefinite. Three questionsare of interest: 1) When is the system unstable? Apparently...... not always,if the matrix D is indefinite. 2) What can we say about conditions whichensure that an unstable system can be stabilized by adding a gyroscopicterm Gdx/dt? 3) What is, in this case, a suitable or optimal matrixG? The questions are answered in the frame of a first order perturbationapproach....
Glued trees algorithm under phase damping
Energy Technology Data Exchange (ETDEWEB)
Lockhart, J. [School of Electronics, Electrical Engineering and Computer Science, Queen' s University, Belfast, BT7 1NN (United Kingdom); Di Franco, C., E-mail: c.difranco@qub.ac.uk [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast, BT7 1NN (United Kingdom); Paternostro, M. [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast, BT7 1NN (United Kingdom)
2014-01-17
We study the behaviour of the glued trees algorithm described by Childs et al. in [1] under decoherence. We consider a discrete time reformulation of the continuous time quantum walk protocol and apply a phase damping channel to the coin state, investigating the effect of such a mechanism on the probability of the walker appearing on the target vertex of the graph. We pay particular attention to any potential advantage coming from the use of weak decoherence for the spreading of the walk across the glued trees graph.
Radiation damping in closed expanding universes
Bernui, Armando
The dynamics of a coupled model (harmonic oscillator-relativistic scalar field) in Conformal Robertson-Walker (k = +1) spacetimes is investigated. The exact radiation-reaction equation of the source-including the retarded radiation terms due to the closed space geometry - is obtained and analyzed. A suitable family of Lyapunov functions is constructed to show that, if the spacetime expands monotonely, then the source's energy damps. A numerical simulation of this equation for expanding Universes, with and without Future Event Horizon, is performed.
Relativity Damps OPEP in Nuclear Matter
Banerjee, Manoj K.
1998-01-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of $M^*/M$ with increasing density. We point out that if derivative-coupled OPEP...
Bridge feedback for active damping augmentation
Chen, G.-S.; Lurie, B. J.
1990-01-01
A method is described for broadband damping augmentation of a structural system in which the active members (with feedback control) were developed such that their mechanical input impedance can be electrically adjusted to maximize the energy dissipation rate in the structural system. The active member consists of sensors, an actuator, and a control scheme. A mechanical/electrical analogy is described to model the passive structures and the active members in terms of their impedance representation. As a result, the problem of maximizing dissipative power is analogous to the problem of impedance matching in the electrical network. Closed-loop performance was demonstrated for single- and multiple-active-member controlled truss structure.
Optimal Constrained Layer Damping of Beams: Experimental and Numerical Studies
Directory of Open Access Journals (Sweden)
J.-L. Marcelin
1995-01-01
Full Text Available This article deals with the optimal damping of beams constrained by viscoelastic layers when only one or several portions of the beam are covered. The design variables are the dimensions and locations of the viscoelastic layers and the objective function is the maximum damping factor. The discrete design variable optimization problem is solved using a genetic algorithm. Numerical results for minimum and maximum damping are compared to experimental results. This is done for a various number of materials and beams.
Test particle study of Landau damping of steepening magnetosonic waves
Matsumoto, H.; Barnes, A.
1982-01-01
A test particle study of Landau damping of steepening large-amplitude magnetosonic waves is made. Motions of test particles in a model of a steepening large-amplitude magnetosonic wave are traced. The kinetic energy change of the ensemble of test particles is computed to estimate the effective Landau damping rate of the magnetosonic wave. The numerical results are compared with the linear kinetic theory of Landau damping and interpreted in terms of a simple physical picture for particle trapping.
Damping of Torsional Beam Vibrations by Control of Warping Displacement
DEFF Research Database (Denmark)
Høgsberg, Jan Becker; Hoffmeyer, David; Ejlersen, Christian
2016-01-01
Supplemental damping of torsional beam vibrations is considered by viscous bimoments acting on the axial warping displacement at the beam supports. The concept is illustrated by solving the governing eigenvalue problem for various support configurations with the applied bimoments represented...... as viscous boundary conditions. It is demonstrated that properly calibrated viscous bimoments introduce a significant level of supplemental damping to the targeted vibration mode and that the attainable damping can be accurately estimated from the two undamped problems associated with vanishing and infinite...
Energy Technology Data Exchange (ETDEWEB)
Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)
1989-01-01
Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.
Climate variability and vadose zone controls on damping of transient recharge
Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.
2017-01-01
Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.
Structural dynamic analysis with generalized damping models analysis
Adhikari , Sondipon
2013-01-01
Since Lord Rayleigh introduced the idea of viscous damping in his classic work ""The Theory of Sound"" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general ""non-viscous"" damping models and vibration of non-viscously damped systems. This book, along with a related book
Excitation of magnetization using a modulated radiation damping field.
Walls, Jamie D; Huang, Susie Y; Lin, Yung-Ya
2006-10-12
In this work, pulsed-field gradients are used to modulate the radiation damping field generated by the detection coil in an NMR experiment in order that spins with significantly different chemical shifts can affect one another via the radiation damping field. Experiments performed on solutions of acetone/water and acetone/DMSO/water demonstrate that spins with chemical shift differences much greater than the effective radiation damping field strength can still be coupled by modulating the radiation damping field. Implications for applications in high-field NMR and for developing sensitive magnetization detectors are discussed.