2015-04-01
of dislocations in anisotropic crystals, Int. J. Eng. Sci. 5, 171–190 (1967). [92] A. Yavari and A. Goriely, Riemann -Cartan geometry of nonlinear...distributed point defects, Proc. R. Soc. Lond. A 468, 3902–3922 (2012). [94] A. Yavari and A. Goriely, Riemann -Cartan geometry of nonlinear disclination...ARL-RP-0522 ● APR 2015 US Army Research Laboratory Defects in Nonlinear Elastic Crystals: Differential Geometry , Finite
Miniaci, M.; Gliozzi, A. S.; Morvan, B.; Krushynska, A.; Bosia, F.; Scalerandi, M.; Pugno, N. M.
2017-05-01
The appearance of nonlinear effects in elastic wave propagation is one of the most reliable and sensitive indicators of the onset of material damage. However, these effects are usually very small and can be detected only using cumbersome digital signal processing techniques. Here, we propose and experimentally validate an alternative approach, using the filtering and focusing properties of phononic crystals to naturally select and reflect the higher harmonics generated by nonlinear effects, enabling the realization of time-reversal procedures for nonlinear elastic source detection. The proposed device demonstrates its potential as an efficient, compact, portable, passive apparatus for nonlinear elastic wave sensing and damage detection.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Hilbert complexes of nonlinear elasticity
Angoshtari, Arzhang; Yavari, Arash
2016-12-01
We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these decompositions in nonlinear elasticity, we study the strain compatibility equations of linear and nonlinear elasticity in the presence of Dirichlet boundary conditions and the existence of stress functions on non-contractible bodies. As an application of these Hilbert complexes in computational mechanics, we briefly discuss the derivation of a new class of mixed finite element methods for nonlinear elasticity.
2014-04-01
irreversible deformation, the three-term model allows for residual elastic strains— including dilatation observed in experiments and atomic simulations...residual elastic strains—including dilatation observed in experiments and atomic simulations—not addressed by conventional two-term crystal plasticity...gradient for an element of crystalline material. For simplicity, thermal effects are omitted, gliding dislocations are the only kind of defect considered
Elastic anisotropy of crystals
Directory of Open Access Journals (Sweden)
Christopher M. Kube
2016-09-01
Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.
Teaching nonlinear dynamics through elastic cords
Energy Technology Data Exchange (ETDEWEB)
Chacon, R; Galan, C A; Sanchez-Bajo, F, E-mail: rchacon@unex.e [Departamento de Fisica Aplicada, Escuela de IngenierIas Industriales, Universidad de Extremadura, Apartado Postal 382, E-06071 Badajoz (Spain)
2011-01-15
We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.
Probing hysteretic elasticity in weakly nonlinear materials
Energy Technology Data Exchange (ETDEWEB)
Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS
2010-12-07
Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.
Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R; Cao, Wenwu
2010-02-01
Through second harmonic measurements, the ultrasonic nonlinearity parameters of [001](c) and [111](c) polarized 0.70Pb(Mg(13)Nb(23))O(3)-0.30PbTiO(3)(PMN-0.3PT) single crystals have been measured as a function of bias electric field. It was found that the nonlinearity parameter increases almost linearly with field at low field but shows a drastic increase near the coercive field. The [111](c) polarized single domain crystal has much smaller nonlinearity parameter than that of the [001](c) polarized multidomain crystal. Based on effective symmetries of these crystals, we were able to derive the field dependence of several third order elastic constants, which are important parameters for high field applications.
Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R.; Cao, Wenwu
2010-01-01
Through second harmonic measurements, the ultrasonic nonlinearity parameters of [001]c and [111]c polarized 0.70Pb(Mg1∕3Nb2∕3)O3–0.30PbTiO3(PMN–0.3PT) single crystals have been measured as a function of bias electric field. It was found that the nonlinearity parameter increases almost linearly with field at low field but shows a drastic increase near the coercive field. The [111]c polarized single domain crystal has much smaller nonlinearity parameter than that of the [001]c polarized multidomain crystal. Based on effective symmetries of these crystals, we were able to derive the field dependence of several third order elastic constants, which are important parameters for high field applications. PMID:20198132
Non-linear elastic deformations
Ogden, R W
1997-01-01
Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.
Nonlinear Photonic Crystal Fibers
DEFF Research Database (Denmark)
Hansen, Kim Per
2004-01-01
, leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...
NONLINEAR ELASTICITY OF BLOOD ARTERIAL DUCT
Institute of Scientific and Technical Information of China (English)
黄孟才; 顾忠; 沈俊; 唐复勇
1991-01-01
The paper deals with nonlinear elasticity of blood arterial duct, in which the artery is modeled to bea locally triclinic, transverse isotropic, incorapressible, axisymmetric and thickwalled tube with large deformations, The nonlinear coustitutive relationship of arterial tissues is based on the theorv of Green and Adkins. A nonlinear strain energy density function is introduced for nonlinear stress-strain relationship of second order, in which the coefficient of each term is expressed by means of a Lame’s constant, The elasticity constants are nqcessary to describe such a uonlinear finite strain etastieity of the second order, These constants are determined by means of the stress-strain increment theory.
Handbook of nonlinear optical crystals
Dmitriev, Valentin G; Nikogosyan, David N
1991-01-01
This Handbook of Nonlinear Optical Crystals provides a complete description of the properties and applications of nonlinear crystals In addition, it presents the most important equations for calculating the main parameters of nonlinear frequency converters This comprehensive reference work will be of great value to all scientists and engineers working in nonlinear optics, quantum electronics and laser physics
Solitary waves on nonlinear elastic rods. I
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1984-01-01
Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...
Extended temperature dependence of elastic constants in cubic crystals.
Telichko, A V; Sorokin, B P
2015-08-01
To extend the theory of the temperature dependence of the elastic constants in cubic crystals beyond the second- and third-order elastic constants, the fourth-order elastic constants, as well as the non-linearity in the thermal expansion temperature dependence, have been taken into account. Theoretical results were represented as temperature functions of the effective elastic constants and compared with experimental data for a number of cubic crystals, such as alkali metal halides, and elements gold and silver. The relations obtained give a more accurate description of the experimental temperature dependences of second-order elastic constants for a number of cubic crystals, including deviations from linear behavior. A good agreement between theoretical estimates and experimental data has been observed.
CHAOTIC BELT PHENOMENA IN NONLINEAR ELASTIC BEAM
Institute of Scientific and Technical Information of China (English)
张年梅; 杨桂通
2003-01-01
The chaotic motions of axial compressed nonlinear elastic beam subjected totransverse load were studied. The damping force in the system is nonlinear. Consideringmaterial and geometric nonlinearity, nonlinear governing equation of the system wasderived. By use of nonlinear Galerkin method, differential dynamic system was set up.Melnikov method was used to analyze the characters of the system. The results showed thatchaos may occur in the system when the load parameters P0 and f satisfy some conditions.The zone of chaotic motion was belted. The route from subharmonic bifurcation to chaoswas analyzed. The critical conditions that chaos occurs were determined.
Athermal nonlinear elastic constants of amorphous solids.
Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar
2010-08-01
We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place.
Solitary waves on nonlinear elastic rods. II
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1987-01-01
In continuation of an earlier study of propagation of solitary waves on nonlinear elastic rods, numerical investigations of blowup, reflection, and fission at continuous and discontinuous variation of the cross section for the rod and reflection at the end of the rod are presented. The results...
Theoretical and Numerical Study of Nonlinear Phononic Crystals
Guerder, Pierre-Yves
This work is dedicated to the theoretical and numerical study of nonlinear phononic crystals. The studied nonlinearities are those due to the second (quadratic) and third (cubic) order elastic constants of the materials that constitute the crystals. Nonlinear effects are studied by the means of finite element methods, used to simulate the propagation of an elastic wave through the crystals. A first research project concerns the study of a bone structure, namely the dispersion of elastic waves in a structure composed of collagen and hydroxy apatite alternate constituent layers. Simulations showed that it exists a strong link between bones hydration and their ability to dissipate the energy. The second study relates to an elastic resonator. A structure composed of steel inclusions in a silica matrix shows a switch behavior when the cubic nonlinearities of steel are taken into account. This strong nonlinear effect appears when the amplitude of the incident wave reaches a threshold. A full analytical model is provided. The last study demonstrates the design of composite materials with both strong cubic nonlinearities and weak quadratic nonlinearities. The derivation of the mixing laws of the elastic parameters of a nonlinear material inside a linear one is performed up to order three. Equations show a strong amplification of the nonlinear parameters of the material for some concentrations. Numerical simulations allow to conclude that the above mentioned resonator can be produced.
Nonlinear elasticity of alginate gels
Hashemnejad, Seyed Meysam; Kundu, Santanu
Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.
Spatial solitons in nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2000-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....
The elastic pendulum: A nonlinear paradigm
Breitenberger, Ernst; Mueller, Robert D.
1981-06-01
A pendulum with an elastic instead of an inextensible suspension is the simplest realization of an autonomous, conservative, oscillatory system of several degrees of freedom with nonlinear coupling; it can also have an internal 1:2 resonance. A fairly complete study of this system at and near resonance is here undertaken by means of the ''slow-fluctuation'' approximation which consists in developing the x2y-type interaction into a trigonometric polynomial and keeping only the term with the slowest frequency. Extensive computations showed that up to moderately large amplitudes the approximate solutions were virtually as accurate as numerical integrations of the exact equations of motion. The slow-fluctuation equations of motion can be completely integrated by quadratures. Explicit solutions for amplitudes and phases are given in terms of elliptic functions, and can be linked to initial conditions. There exist two branches of purely periodic, harmonic, constant-amplitude motions which are orbitally stable but Liapunov unstable. The pure suspension motion is Liapunov unstable and remains orbitally stable only up to and including a critical amplitude; the standard ''method of variational equations'' leads to a slightly different stability criterion but is shown to be unreliable. In the dynamical neighborhood of the unstable pure suspension mode are motions which convert to it after infinite time. When a motion has an amplitude modulation minimum at or near zero, a phase reversal of the suspension takes place which is shown to be an artefact inherent in the description in terms of amplitudes and phases. In addition there is in the pendulum (but not in the exactly soluble system having the slow-fluctuation Hamiltonian) a fast phase transient which vitiates the slow-fluctuation technique for a few periods around the suspension amplitude minimum; this is the only restriction on the method. An appendix outlines formal isomorphisms between the elastic pendulum and the
Nonlinear Photonic Crystal Fibers
DEFF Research Database (Denmark)
Hansen, Kim Per
2004-01-01
Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... of doping, use a microstructure of air and glass to obtain a refractive index difference between the core and the cladding. This air/glass microstructure lends the photonic crystal fibers a range of unique and highly usable properties, which are very different from those found in solid standard fibers....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...
Elasticity of some mantle crystal structures. II.
Wang, H.; Simmons, G.
1973-01-01
The single-crystal elastic constants are determined as a function of pressure and temperature for rutile structure germanium dioxide (GeO2). The data are qualitatively similar to those of rutile TiO2 measured by Manghnani (1969). The compressibility in the c direction is less than one-half that in the a direction, the pressure derivative of the shear constant is negative, and the pressure derivative of the bulk modulus has a relatively high value of about 6.2. According to an elastic strain energy theory, the negative shear modulus derivative implies that the kinetic barrier to diffusion decreases with increasing pressure.
Nonlinear elastic inclusions in isotropic solids
Yavari, A.
2013-10-16
We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.
Controlling elastic waves with small phononic crystals containing rigid inclusions
Peng, Pai
2014-05-01
We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.
GLOBAL ATTRACTOR FOR THE NONLINEAR STRAIN WAVES IN ELASTIC WAVEGUIDES
Institute of Scientific and Technical Information of China (English)
戴正德; 杜先云
2001-01-01
In this paper the authors consider the initial boundary value problems of the generalized nonlinear strain waves in elastic waveguides and prove the existence of global attractors and thefiniteness of the Hausdorff and the fractal dimensions of the attractors.
Nonlinear surface waves in soft, weakly compressible elastic media.
Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F
2007-04-01
Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.
In situ nonlinear elastic behavior of soil observed by DAET
Energy Technology Data Exchange (ETDEWEB)
Larmat, Carene [Los Alamos National Laboratory; Renaud, Guillaume [Eramus Medical Center, Rotterdam, The Netherlands; Rutledge, James T. [EES-17: GEOPHYSICS; Lee, Richard C. [Los Alamos National Laboratory; Guyer, Robert A. [Los Alamos National Laboratory; Johnson, Paul A. [Los Alamos National Laboratory
2012-07-05
The key to safe design of critical facilities (strong ground motion in low velocity materials such as soils). Current approaches are predictions from measurements of the elastic non-linear properties of boreholes samples. Need for in-situ, local and complete determination of non-linear properties of soil, rock in response to high-strain motion.
Uniform Stability of Damped Nonlinear Vibrations of an Elastic String
Indian Academy of Sciences (India)
Ganesh C Gorain; Sujit K Bose
2003-11-01
Here we are concerned about uniform stability of damped nonlinear transverse vibrations of an elastic string fixed at its two ends. The vibrations governed by nonlinear integro-differential equation of Kirchoff type, is shown to possess energy uniformly bounded by exponentially decaying function of time. The result is achieved by considering an energy-like Lyapunov functional for the system.
Conditioning-induced elastic nonlinearity in hysteretic media
Gliozzi, A. S.; Scalerandi, M.; Antonaci, P.; Bruno, C. L. E.
2010-08-01
The definition and measurement of the nonlinear elastic properties of a sample is of great importance for a large number of applications, including characterization of material performances and damage detection. However, such measurements are often influenced by spurious effects due to a combination of nonlinearity and nonequilibrium phenomena. We will present experimental data to show how nonlinearity due to small cracks in concrete samples increases as a consequence of conditioning, i.e., after having perturbed them with a constant amplitude excitation. In addition, our experimental data highlight "memory effects," i.e., they show that when the excitation is removed, the elastic modulus does not return instantaneously to the initial value.
Non-linear theory of elasticity and optimal design
Ratner, LW
2003-01-01
In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it
Nonlinear optical crystals a complete survey
Nikogosyan, David N
2005-01-01
Nonlinear optical crystals are widely used in modern optical science and technology for frequency conversion of laser light, i.e. to generate laser radiation at any specific wavelength in visible, UV or IR spectral regions. This unrivalled reference book contains the most complete and up-to-date information on properties of nonlinear optical crystals. It includes: * Database of 63 common and novel nonlinear optical crystals * Periodically-poled and self-frequency-doubling materials * Full description of linear and nonlinear optical properties * Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information * 7 mini-reviews on novel applications, such as deep-UV light generation, terahertz-wave generation, ultrashort laser pulse compression, photonic band-gap crystals, x3 nonlinearity, etc. * More than 1500 different references with full titles It is a vital source of information for scientists and engineers dealing with modern applications of nonlinear opti...
NONLINEAR SPECTRAL IMAGING OF ELASTIC CARTILAGE IN RABBIT EARS
Directory of Open Access Journals (Sweden)
JING CHEN
2013-07-01
Full Text Available Elastic cartilage in the rabbit external ear is an important animal model with attractive potential value for researching the physiological and pathological states of cartilages especially during wound healing. In this work, nonlinear optical microscopy based on two-photon excited fluorescence and second harmonic generation were employed for imaging and quantifying the intact elastic cartilage. The morphology and distribution of main components in elastic cartilage including cartilage cells, collagen and elastic fibers were clearly observed from the high-resolution two-dimensional nonlinear optical images. The areas of cell nuclei, a parameter related to the pathological changes of normal or abnormal elastic cartilage, can be easily quantified. Moreover, the three-dimensional structure of chondrocytes and matrix were displayed by constructing three-dimensional image of cartilage tissue. At last, the emission spectra from cartilage were obtained and analyzed. We found that the different ratio of collagen over elastic fibers can be used to locate the observed position in the elastic cartilage. The redox ratio based on the ratio of nicotinamide adenine dinucleotide (NADH over flavin adenine dinucleotide (FAD fluorescence can also be calculated to analyze the metabolic state of chondrocytes in different regions. Our results demonstrated that this technique has the potential to provide more accurate and comprehensive information for the physiological states of elastic cartilage.
Solitons in quadratic nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2001-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families...
Filtering of elastic waves by opal-based hypersonic crystal.
Salasyuk, Alexey S; Scherbakov, Alexey V; Yakovlev, Dmitri R; Akimov, Andrey V; Kaplyanskii, Alexander A; Kaplan, Saveliy F; Grudinkin, Sergey A; Nashchekin, Alexey V; Pevtsov, Alexander B; Golubev, Valery G; Berstermann, Thorsten; Brüggemann, Christian; Bombeck, Michael; Bayer, Manfred
2010-04-14
We report experiments in which high quality silica opal films are used as three-dimensional hypersonic crystals in the 10 GHz range. Controlled sintering of these structures leads to well-defined elastic bonding between the submicrometer-sized silica spheres, due to which a band structure for elastic waves is formed. The sonic crystal properties are studied by injection of a broadband elastic wave packet with a femtosecond laser. Depending on the elastic bonding strength, the band structure separates long-living surface acoustic waves with frequencies in the complete band gap from bulk waves with band frequencies that propagate into the crystal leading to a fast decay.
Finsler geometry of nonlinear elastic solids with internal structure
Clayton, J. D.
2017-02-01
Concepts from Finsler differential geometry are applied towards a theory of deformable continua with internal structure. The general theory accounts for finite deformation, nonlinear elasticity, and various kinds of structural features in a solid body. The general kinematic structure of the theory includes macroscopic and microscopic displacement fields-i.e., a multiscale representation-whereby the latter are represented mathematically by the director vector of pseudo-Finsler space, not necessarily of unit magnitude. A physically appropriate fundamental (metric) tensor is introduced, leading to affine and nonlinear connections. A deformation gradient tensor is defined via differentiation of the macroscopic motion field, and another metric indicative of strain in the body is a function of this gradient. A total energy functional of strain, referential microscopic coordinates, and horizontal covariant derivatives of the latter is introduced. Variational methods are applied to derive Euler-Lagrange equations and Neumann boundary conditions. The theory is shown to encompass existing continuum physics models such as micromorphic, micropolar, strain gradient, phase field, and conventional nonlinear elasticity models, and it can reduce to such models when certain assumptions on geometry, kinematics, and energy functionals are imposed. The theory is applied to analyze two physical problems in crystalline solids: shear localization/fracture in a two-dimensional body and cavitation in a spherical body. In these examples, a conformal or Weyl-type transformation of the fundamental tensor enables a description of dilatation associated, respectively, with cleavage surface roughness and nucleation of voids or vacancies. For the shear localization problem, the Finsler theory is able to accurately reproduce the surface energy of Griffith's fracture mechanics, and it predicts dilatation-induced toughening as observed in experiments on brittle crystals. For the cavitation problem
Non-linear theory of elasticity
Lurie, AI
2012-01-01
This book examines in detail the Theory of Elasticity which is a branch of the mechanics of a deformable solid. Special emphasis is placed on the investigation of the process of deformation within the framework of the generally accepted model of a medium which, in this case, is an elastic body. A comprehensive list of Appendices is included providing a wealth of references for more in depth coverage. The work will provide both a stimulus for future research in this field as well as useful reference material for many years to come.
NONLINEAR WAVES AND PERIODIC SOLUTION IN FINITE DEFORMATION ELASTIC ROD
Institute of Scientific and Technical Information of China (English)
Liu Zhifang; Zhang Shanyuan
2006-01-01
A nonlinear wave equation of elastic rod taking account of finite deformation, transverse inertia and shearing strain is derived by means of the Hamilton principle in this paper. Nonlinear wave equation and truncated nonlinear wave equation are solved by the Jacobi elliptic sine function expansion and the third kind of Jacobi elliptic function expansion method. The exact periodic solutions of these nonlinear equations are obtained, including the shock wave solution and the solitary wave solution. The necessary condition of exact periodic solutions, shock solution and solitary solution existence is discussed.
Nonlinear elasticity in rocks: A comprehensive three-dimensional description
Lott, Martin; Remillieux, Marcel C.; Garnier, Vincent; Le Bas, Pierre-Yves; Ulrich, T. J.; Payan, Cédric
2017-07-01
We study theoretically and experimentally the mechanisms of nonlinear and nonequilibrium dynamics in geomaterials through dynamic acoustoelasticity testing. In the proposed theoretical formulation, the classical theory of nonlinear elasticity is extended to include the effects of conditioning. This formulation is adapted to the context of dynamic acoustoelasticity testing in which a low-frequency "pump" wave induces a strain field in the sample and modulates the propagation of a high-frequency "probe" wave. Experiments are conducted to validate the formulation in a long thin bar of Berea sandstone. Several configurations of the pump and probe are examined: the pump successively consists of the first longitudinal and first torsional mode of vibration of the sample while the probe is successively based on (pressure) P and (shear) S waves. The theoretical predictions reproduce many features of the elastic response observed experimentally, in particular, the coupling between nonlinear and nonequilibrium dynamics and the three-dimensional effects resulting from the tensorial nature of elasticity.
Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy
Energy Technology Data Exchange (ETDEWEB)
Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2017-04-15
The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.
Theory of nonlinear elastic behavior in rock
Energy Technology Data Exchange (ETDEWEB)
McCall, K.R.
1993-04-01
We study plane wave propagation in an isotropic, homogeneous solid with cubic and quartic anharmonicity. Attenuation is introduced through use of a retarded displacement response. We develop a Green function technique to exhibit the solution for the displacement field as a systematic hierarchy in the nonlinear parameters. This solution is applied to three problems: propagation from monochromatic and broadband sources, and the shape of nonlinear stress curves.
Theory of nonlinear elastic behavior in rock
Energy Technology Data Exchange (ETDEWEB)
McCall, K.R.
1993-01-01
We study plane wave propagation in an isotropic, homogeneous solid with cubic and quartic anharmonicity. Attenuation is introduced through use of a retarded displacement response. We develop a Green function technique to exhibit the solution for the displacement field as a systematic hierarchy in the nonlinear parameters. This solution is applied to three problems: propagation from monochromatic and broadband sources, and the shape of nonlinear stress curves.
Functional possibilities of nonlinear crystals for frequency conversion: uniaxial crystals
Energy Technology Data Exchange (ETDEWEB)
Andreev, Yu M [Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Arapov, Yu D; Kasyanov, I V [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Grechin, S G; Nikolaev, P P [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)
2016-01-31
The method and results of the analysis of phase-matching and nonlinear properties for all point groups of symmetry of uniaxial crystals that determine their functional possibilities for solving various problems of nonlinear frequency conversion of laser radiation are presented. (nonlinear optical phenomena)
Measurement of elastic nonlinearity of soft solid with transient elastography
Catheline, S.; Gennisson, J.-L.; Fink, M.
2003-12-01
Transient elastography is a powerful tool to measure the speed of low-frequency shear waves in soft tissues and thus to determine the second-order elastic modulus μ (or the Young's modulus E). In this paper, it is shown how transient elastography can also achieve the measurement of the nonlinear third-order elastic moduli of an Agar-gelatin-based phantom. This method requires speed measurements of polarized elastic waves measured in a statically stressed isotropic medium. A static uniaxial stress induces a hexagonal anisotropy (transverse isotropy) in solids. In the special case of uniaxially stressed isotropic media, the anisotropy is not caused by linear elastic coefficients but by the third-order nonlinear elastic constants, and the medium recovers its isotropic properties as soon as the uniaxial stress disappears. It has already been shown how transient elastography can measure the elastic (second-order) moduli in a media with transverse isotropy such as muscles. Consequently this method, based on the measurement of the speed variations of a low-frequency (50-Hz) polarized shear strain waves as a function of the applied stress, allows one to measure the Landau moduli A, B, C that completely describe the third-order nonlinearity. The several orders of magnitude found among these three constants can be justified from the theoretical expression of the internal energy.
Measurement of elastic nonlinearity of soft solid with transient elastography.
Catheline, S; Gennisson, J L; Fink, M
2003-12-01
Transient elastography is a powerful tool to measure the speed of low-frequency shear waves in soft tissues and thus to determine the second-order elastic modulus mu (or the Young's modulus E). In this paper, it is shown how transient elastography can also achieve the measurement of the nonlinear third-order elastic moduli of an Agar-gelatin-based phantom. This method requires speed measurements of polarized elastic waves measured in a statically stressed isotropic medium. A static uniaxial stress induces a hexagonal anisotropy (transverse isotropy) in solids. In the special case of uniaxially stressed isotropic media, the anisotropy is not caused by linear elastic coefficients but by the third-order nonlinear elastic constants, and the medium recovers its isotropic properties as soon as the uniaxial stress disappears. It has already been shown how transient elastography can measure the elastic (second-order) moduli in a media with transverse isotropy such as muscles. Consequently this method, based on the measurement of the speed variations of a low-frequency (50-Hz) polarized shear strain waves as a function of the applied stress, allows one to measure the Landau moduli A, B, C that completely describe the third-order nonlinearity. The several orders of magnitude found among these three constants can be justified from the theoretical expression of the internal energy.
Nonlinear Waves in an Inhomogeneous Fluid Filled Elastic Tube
Institute of Scientific and Technical Information of China (English)
DUAN Wen-Shan
2004-01-01
In a thin-walled, homogeneous, straight, long, circular, and incompressible fluid filled elastic tube, small but finite long wavelength nonlinear waves can be describe by a KdV (Korteweg de Vries) equation, while the carrier wave modulations are described by a nonlinear Schrodinger equation (NLSE). However if the elastic tube is slowly inhomogeneous, then it is found, in this paper, that the carrier wave modulations are described by an NLSE-like equation. There are soliton-like solutions for them, but the stability and instability regions for this soliton-like waves will change,depending on what kind of inhomogeneity the tube has.
Nonlinear analysis of flexible plates lying on elastic foundation
Directory of Open Access Journals (Sweden)
Trushin Sergey
2017-01-01
Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.
NONLINEAR RESPONSES OF A FLUID-CONVEYING PIPE EMBEDDED IN NONLINEAR ELASTIC FOUNDATIONS
Institute of Scientific and Technical Information of China (English)
Qin Qian; Lin Wang; Qiao Ni
2008-01-01
The nonlinear responses of planar motions of a fluid-conveying pipe embedded in nonlinear elastic foundations are investigated via the differential quadrature method diseretization (DQMD) of the governing partial differential equation. For the analytical model, the effect of the nonlinear elastic foundation is modeled by a nonlinear restraining force. By using an iterative algorithm, a set of ordinary differential dynamical equations derived from the equation of motion of the system are solved numerically and then the bifurcations are analyzed. The numerical results, in which the existence of chaos is demonstrated, are presented in the form of phase portraits of the oscillations. The intermittency transition to chaos has been found to arise.
Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity.
Tang, Guangxin; Jacobs, Laurence J; Qu, Jianmin
2012-04-01
This paper considers the scattering of a plane, time-harmonic wave by an inclusion with heterogeneous nonlinear elastic properties embedded in an otherwise homogeneous linear elastic solid. When the inclusion and the surrounding matrix are both isotropic, the scattered second harmonic fields are obtained in terms of the Green's function of the surrounding medium. It is found that the second harmonic fields depend on two independent acoustic nonlinearity parameters related to the third order elastic constants. Solutions are also obtained when these two acoustic nonlinearity parameters are given as spatially random functions. An inverse procedure is developed to obtain the statistics of these two random functions from the measured forward and backscattered second harmonic fields.
Multiwave nonlinear couplings in elastic structures
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available This short contribution considers the essentials of nonlinear wave properties in typical mechanical systems such as an infinite straight bar, a circular ring, and a flat plate. It is found that nonlinear resonance is experienced in all the systems exhibiting continuous and discrete spectra, respectively. Multiwave interactions and the stability of coupled modes with respect to small perturbations are discussed. The emphasis is placed on mechanical phenomena, for example, stress amplification, although some analogies with some nonlinear optical systems are also obvious. The nonlinear resonance coupling in a plate within the Kirchhoff-Love approximation is selected as a two-dimensional example exhibiting a rich range of resonant wave phenomena. This is originally examined by use of Whitham's averaged Lagrangian method. In particular, the existence of three basic resonant triads between longitudinal, shear, and bending modes is shown. Some of these necessarily enter cascade wave processes related to the instability of some mode components of the triad under small perturbations.
Nonlinear elastic behavior of rocks revealed by dynamic acousto-elastic testing
Shokouhi, Parisa; Riviere, Jacques; Guyer, Robert; Johnson, Paul
2017-04-01
Nonlinear elastic behavior of rocks is studied at the laboratory scale with the goal of illuminating observations at the Earth scale, for instance during strong ground motion and earthquake slip processes. A technique called Dynamic Acousto-Elastic Testing (DAET) is used to extract the nonlinear elastic response of disparate rocks (sandstone, granite and soapstone). DAET is the dynamic analogous to standard (quasi-static) acousto-elastic testing. It consists in measuring speed of sound with high-frequency low amplitude pulses (MHz range) across the sample while it is dynamically loaded with a low frequency, large amplitude resonance (kHz range). This particular configuration provides the instantaneous elastic response over a full dynamic cycle and reveals unprecedented details: instantaneous softening, tension/compression asymmetry as well as hysteretic behaviors. The strain-induced modulation of ultrasonic pulse velocities ('fast dynamics') is analyzed to extract nonlinearity parameters. A projection method is used to extract the harmonic content and a careful comparison of the fast dynamics response is made. In order to characterize the rate of elastic recovery ('slow dynamics'), we continue to monitor the ultrasonic wave velocity for about 30 minutes after the low-frequency resonance is turned off. In addition, the frequency, pressure and humidity dependences of the nonlinear parameters are reported for a subset of samples. We find that the nonlinear components can be clustered into two categories, which suggests that two main mechanisms are at play. The first one, related to the second harmonic, is likely related to the opening/closing of microstructural features such as cracks and grain/grain contacts. In contrast, the second mechanism is related to all other nonlinear parameters (transient softening, hysteresis area and higher order harmonics) and may arise from shearing mechanisms at grain interfaces.
Elastic models of defects in two-dimensional crystals
Kolesnikova, A. L.; Orlova, T. S.; Hussainova, I.; Romanov, A. E.
2014-12-01
Elastic models of defects in two-dimensional (2D) crystals are presented in terms of continuum mechanics. The models are based on the classification of defects, which is founded on the dimensionality of the specification region of their self-distortions, i.e., lattice distortions associated with the formation of defects. The elastic field of an infinitesimal dislocation loop in a film is calculated for the first time. The fields of the center of dilatation, dislocation, disclination, and circular inclusion in planar 2D elastic media, namely, nanofilms and graphenes, are considered. Elastic fields of defects in 2D and 3D crystals are compared.
Vibration Analysis of Timoshenko Beams on a Nonlinear Elastic Foundation
Institute of Scientific and Technical Information of China (English)
MO Yihua; OU Li; ZHONG Hongzhi
2009-01-01
The vibrations of beams on a nonlinear elastic foundation were analyzed considering the effects of transverse shear deformation and the rotational inertia of beams. A weak form quadrature element method (QEM) is used for the vibration analysis. The fundamental frequencies of beams are presented for various slenderness ratios and nonlinear foundation parameters for both slender and short beams. The results for slender beams compare well with finite element results. The analysis shows that the transverse shear de-formation and the nonlinear foundation parameter significantly affect the fundamental frequency of the beams.
Elastic interaction of point defects in crystals with cubic symmetry
Kuz'michev, S. V.; Kukushkin, S. A.; Osipov, A. V.
2013-07-01
The energy of elastic mechanical interaction between point defects in cubic crystals is analyzed numerically. The finite-element complex ANSYS is used to investigate the character of interaction between point defects depending on their location along the crystallographic directions , , and on the distance from the free boundary of the crystal. The numerical results are compared with the results of analytic computations of the energy of interaction between two point defects in an infinite anisotropic medium with cubic symmetry. The interaction between compressible and incompressible defects of general type is studied. Conditions for onset of elastic attraction between the defects, which leads to general relaxation of the crystal elastic energy, are obtained.
Dielectric and Elastic Characterization of Nonlinear Heterogeneous Materials
Directory of Open Access Journals (Sweden)
Stefano Giordano
2009-09-01
Full Text Available This review paper deals with the dielectric and elastic characterization of composite materials constituted by dispersions of nonlinear inclusions embedded in a linear matrix. The dielectric theory deals with pseudo-oriented particles shaped as ellipsoids of revolution: it means that we are dealing with mixtures of inclusions of arbitrary aspect ratio and arbitrary non-random orientational distributions. The analysis ranges from parallel spheroidal inclusions to completely random oriented inclusions. Each ellipsoidal inclusion is made of an isotropic dielectric material described by means of the so-called Kerr nonlinear relation. On the other hand, the nonlinear elastic characterization takes into consideration a dispersion of nonlinear (spherical or cylindrical inhomogeneities. Both phases are considered isotropic (actually it means polycrystalline or amorphous solids. Under the simplifying hypotheses of small deformation for the material body and of small volume fraction of the embedded phase, we describe a theory for obtaining the linear and nonlinear elastic properties (bulk and shear moduli and Landau coefficients of the overall material.
Decoupling Nonclassical Nonlinear Behavior of Elastic Wave Types
Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cédric; Ulrich, T. J.
2016-03-01
In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. This result could lead to further understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.
Elastic reflection based waveform inversion with a nonlinear approach
Guo, Qiang
2017-08-16
Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.
Some Debye temperatures from single-crystal elastic constant data
Robie, R.A.; Edwards, J.L.
1966-01-01
The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.
Elastic constants in orthorhombic hen egg-white lysozyme crystals.
Kitajima, N; Tsukashima, S; Fujii, D; Tachibana, M; Koizumi, H; Wako, K; Kojima, K
2014-01-01
The ultrasonic sound velocities of cross-linked orthorhombic hen egg-white lysozyme (HEWL) crystals, including a large amount of water in the crystal, were measured using an ultrasonic pulse-echo method. As a result, seven elastic constants of orthorhombic crystals were observed to be C11 = 5.24 GPa, C22 = 4.87 GPa, C12 = 4.02 GPa, C33 = 5.23 GPa, C44 = 0.30 GPa, C55 = 0.40 GPa, and C66 = 0.43 GPa, respectively. However, C13 and C23 could not be observed because the suitable crystal planes could not be cut from bulk crystals. We conclude that the observed elastic constants of the cross-linked crystals are coincident with those of the intrinsic crystals without cross-linking. Moreover, the characteristics of the elastic constants in orthorhombic HEWL crystals are due to the fact that the shear elastic constants, C44, C55, and C66, are softer than in tetragonal crystals. That is, the shear components, C44, C55, and C66, are one half of those of the tetragonal crystals.
A nonlinear approach of elastic reflection waveform inversion
Guo, Qiang
2016-09-06
Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.
Nonlinear elastic behavior of phantom materials for elastography
Energy Technology Data Exchange (ETDEWEB)
Pavan, Theo Z; Madsen, Ernest L; Frank, Gary R; Hall, Timothy J [Medical Physics Department, University of Wisconsin, Room 1005, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705 (United States); Adilton O Carneiro, Antonio, E-mail: tjhall@wisc.ed [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, Sao Paulo (Brazil)
2010-05-07
The development of phantom materials for elasticity imaging is reported in this paper. These materials were specifically designed to provide nonlinear stress/strain relationship that can be controlled independently of the small strain shear modulus of the material. The materials are mixtures of agar and gelatin gels. Oil droplet dispersions in these materials provide further control of the small strain shear modulus and the nonlinear parameter of the material. Since these materials are mostly water, they are assumed to be incompressible under typical experimental conditions in elasticity imaging. The Veronda-Westman model for strain energy density provided a good fit to all materials used in this study. Materials with a constant gelatin concentration (3.0% dry weight) but varying agar concentration (0.6-2.8% dry weight) demonstrated the same power law relationship between elastic modulus and agar concentration found for pure agar (1.89 {+-} 0.02), consistent with percolation theory, and provided a consistent nonlinearity parameter of 4.5 {+-} 0.3. The insights provided by this study will form the basis for stable elastography phantoms with stiffness and nonlinear stress/strain relationships in the background that differ from those in the target.
Nonlinear Forced Vibration Analysis for Thin Rectangular Plate on Nonlinear Elastic Foundation
Directory of Open Access Journals (Sweden)
Zhong Zhengqiang
2013-02-01
Full Text Available Nonlinear forced vibration is analyzed for thin rectangular plate with four free edges on nonlinear elastic foundation. Based on Hamilton variation principle, equations of nonlinear vibration motion for thin rectangular plate under harmonic loads on nonlinear elastic foundation are established. In the case of four free edges, viable expressions of trial functions for this specification are proposed, satisfying all boundary conditions. Then, equations are transformed to a system of nonlinear algebraic equations by using Galerkin method and are solved by using harmonic balance method. In the analysis of numerical computations, the effect on the amplitude-frequency characteristic curve due to change of the structural parameters of plate, parameters of foundation and parameters of excitation force are discussed.
Stress-enhanced Gelation: A Dynamic Nonlinearity of Elasticity
Yao, Norman Y.; Broedersz, Chase P.; Depken, Martin; Becker, Daniel J.; Pollak, Martin R.; MacKintosh, Frederick C.; Weitz, David A.
2013-01-01
A hallmark of biopolymer networks is their sensitivity to stress, reflected by pronounced nonlinear elastic stiffening. Here, we demonstrate a distinct dynamical nonlinearity in biopolymer networks consisting of F-actin cross-linked by α-actinin-4. Applied stress delays the onset of relaxation and flow, markedly enhancing gelation and extending the regime of solid-like behavior to much lower frequencies. We show that this macroscopic network response can be accounted for at the single molecule level by the increased binding affinity of the cross-linker under load, characteristic of catch-bond-like behavior. PMID:23383843
Multiple beam splitting in elastic phononic crystal plates.
Lee, Hyuk; Oh, Joo Hwan; Kim, Yoon Young
2015-02-01
This work presents an experimental evidence for triple beam splitting in an elastic plate with an embedded elastic phononic crystal (PC) prism and elaborates on its working mechanism. While there were reports on negative refraction and double beam splitting with PCs, no experimental evidence on the splitting of triple or more ultrasonic elastic beams through PCs has been shown yet. After the experimental results are presented in case of triple beam splitting, further analysis is carried out to explain how triple or more beams can be split depending on elastic PC prism angles. Copyright © 2014 Elsevier B.V. All rights reserved.
Nonlinear mechanics of hyper elastic polyurethane furniture foams
Directory of Open Access Journals (Sweden)
Jerzy Smardzewski
2008-07-01
Full Text Available Upholstered furniture intended to provide better sleep and rest, especially furniture for disabled persons, require careful design of elastic spring systems. In the majority of cases, when designing new articles, both furniture designers and manufacturers rely on long-term experience and craftsman’s intuition. On the other hand, the accumulated interdisciplinary knowledge of modern medical laboratories as well as furniture certification offices indicate that it is necessary to carry out investigations related to the mechanical properties of raw materials used to manufacture furniture and to conduct virtual modelling of the phenomena connected with the contact of the human body with the elastic base. The aim of this study was to determine the elastic properties of hyper-plastic polyurethane foams applied in furniture industry, to elaborate mathematical models of these materials on the basis of non-linear Mooney-Rivlin models and to conduct a non-linear numerical analysis of contact strains in a deformed seat made of polyurethane foam. The results of the experiments revealed that the mechanical properties of polyurethanefoams are described properly by the Mooney-Rivlin model. Knowing the mechanical properties of these foams, it is possible to create freely complex furniture elastic systems. The state of strains in the contact of the human body with foam depends on the friction between these bodies. Therefore, in practice, it is advisable to design seatsystems resulting in minimal frictions between the user’s clothes and the furniture seat.
Immense elastic nonlinearities at the demixing transition of aqueous PNIPAM solutions
Philipp, Martine; Müller, Ulrich; Aleksandrova, Ralitsa; Sanctuary, Roland; Müller-Buschbaum, P.; Krüger, Jan-Kristian
2013-01-01
Elastic nonlinearities are particularly relevant for soft materials because of their inherently small linear elasticity. Nonlinear elastic properties may even take over the leading role for the transformation at mechanical instabilities accompanying many phase transitions in soft matter. Because of inherent experimental difficulties, only little is known about third order (nonlinear) elastic constants within liquids, gels and polymers. Here we show that a key concept to access thi...
Free-vibration acoustic resonance of a nonlinear elastic bar
Tarumi, Ryuichi; Oshita, Yoshihito
2011-02-01
Free-vibration acoustic resonance of a one-dimensional nonlinear elastic bar was investigated by direct analysis in the calculus of variations. The Lagrangian density of the bar includes a cubic term of the deformation gradient, which is responsible for both geometric and constitutive nonlinearities. By expanding the deformation function into a complex Fourier series, we derived the action integral in an analytic form and evaluated its stationary conditions numerically with the Ritz method for the first three resonant vibration modes. This revealed that the bar shows the following prominent nonlinear features: (i) amplitude dependence of the resonance frequency; (ii) symmetry breaking in the vibration pattern; and (iii) excitation of the high-frequency mode around nodal-like points. Stability of the resonant vibrations was also addressed in terms of a convex condition on the strain energy density.
Elasticity in Amorphous Solids: Nonlinear or Piecewise Linear?
Dubey, Awadhesh K; Procaccia, Itamar; Shor, Carmel A B Z; Singh, Murari
2016-02-26
Quasistatic strain-controlled measurements of stress versus strain curves in macroscopic amorphous solids result in a nonlinear-looking curve that ends up either in mechanical collapse or in a steady state with fluctuations around a mean stress that remains constant with increasing strain. It is therefore very tempting to fit a nonlinear expansion of the stress in powers of the strain. We argue here that at low temperatures the meaning of such an expansion needs to be reconsidered. We point out the enormous difference between quenched and annealed averages of the stress versus strain curves and propose that a useful description of the mechanical response is given by a stress (or strain) -dependent shear modulus for which a theoretical evaluation exists. The elastic response is piecewise linear rather than nonlinear.
The Nonlinear Analytical Envelope Equation in quadratic nonlinear crystals
Bache, Morten
2016-01-01
We here derive the so-called Nonlinear Analytical Envelope Equation (NAEE) inspired by the work of Conforti et al. [M. Conforti, A. Marini, T. X. Tran, D. Faccio, and F. Biancalana, "Interaction between optical fields and their conjugates in nonlinear media," Opt. Express 21, 31239-31252 (2013)], whose notation we follow. We present a complete model that includes $\\chi^{(2)}$ terms [M. Conforti, F. Baronio, and C. De Angelis, "Nonlinear envelope equation for broadband optical pulses in quadratic media," Phys. Rev. A 81, 053841 (2010)], $\\chi^{(3)}$ terms, and then extend the model to delayed Raman effects in the $\\chi^{(3)}$ term. We therefore get a complete model for ultrafast pulse propagation in quadratic nonlinear crystals similar to the Nonlinear Wave Equation in Frequency domain [H. Guo, X. Zeng, B. Zhou, and M. Bache, "Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media," J. Opt. Soc. Am. B 30, 494-504 (2013)], but where the envelope is...
Nonlinear dispersion effects in elastic plates: numerical modelling and validation
Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.
Swinteck, Nichlas Z.
This dissertation contains research directed at investigating the behavior and properties of a class of composite materials known as phononic crystals. Two categories of phononic crystals are explicitly investigated: (I) elastic phononic crystals and (II) nano-scale phononic crystals. For elastic phononic crystals, attention is directed at two-dimensional structures. Two specific structures are evaluated (1) a two-dimensional configuration consisting of a square array of cylindrical Polyvinylchloride inclusions in air and (2) a two-dimensional configuration consisting of a square array of steel cylindrical inclusions in epoxy. For the first configuration, a theoretical model is developed to ascertain the necessary band structure and equi-frequency contour features for the realization of phase control between propagating acoustic waves. In contrasting this phononic crystal with a reference system, it is shown that phononic crystals with equifrequency contours showing non-collinear wave and group velocity vectors are ideal systems for controlling the phase between propagating acoustic waves. For the second configuration, it is demonstrated that multiple functions can be realized of a solid/solid phononic crystal. The epoxy/steel phononic crystal is shown to behave as (1) an acoustic wave collimator, (2) a defect-less wave guide, (3) a directional source for elastic waves, (4) an acoustic beam splitter, (5) a phase-control device and (6) a k-space multiplexer. To transition between macro-scale systems (elastic phononic crystals) and nano-scale systems (nano-phononic crystals), a toy model of a one-dimensional chain of masses connected with non-linear, anharmonic springs is utilized. The implementation of this model introduces critical ideas unique to nano-scale systems, particularly the concept of phonon mode lifetime. The nano-scale phononic crystal of interest is a graphene sheet with periodically spaced holes in a triangular array. It is found through equilibrium
Rayleigh scattering and nonlinear inversion of elastic waves
Energy Technology Data Exchange (ETDEWEB)
Gritto, R.
1995-12-01
Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of {minus}100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k{sub p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.
An Enhanced Asymptotic Expansion for the Stability of Nonlinear Elastic Structures
DEFF Research Database (Denmark)
Christensen, Claus Dencker; Byskov, Esben
2010-01-01
A new, enhanced asymptotic expansion applicable to stability of structures made of nonlinear elastic materials is established. The method utilizes “hyperbolic” terms instead of the conventional polynomial terms, covers full kinematic nonlinearity and is applied to nonlinear elastic Euler columns ...
Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity
2015-08-13
conditions. 15. SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...associated Laplacian. We use the general theory for approximation of Hilbert complexes and the finite element exterior calculus and introduce some stable mixed...Ωk(B)→ Ωk+1(B) be the standard exterior derivative given by (dβ)I0⋯Ik = k ∑ i=0 (−1)iβI0⋯Îi⋯Ik, Ii , where the hat over an index implies the
On the elastic contribution to crystal growth in complex environments
Gadomski, A.; Siódmiak, J.
2005-03-01
Based on a number of experimental studies, we propose to consider how elastic interactions between a crystal and its surroundings change crystal growing conditions. To aim to do this, we analyze the influence of some nonequilibrium modification of the Gibbs-Thomson thermodynamic condition, prescribed at the crystal boundary, on some properties of a kinetic model of protein crystal growth in a mass-convection regime. Next, to draw the physical picture more realistically, we study the influence of a certain stochastic perturbation on the crystal growth rate. To fulfill the task we apply the description of crystal growth in terms of nonequilibrium thermodynamics at a mesoscopic level. The proposed model offers a quite comprehensive picture of the formation of modern organic crystalline materials such as non-Kossel crystals.
GEOMETRICAL NONLINEAR WAVES IN FINITE DEFORMATION ELASTIC RODS
Institute of Scientific and Technical Information of China (English)
GUO Jian-gang; ZHOU Li-jun; ZHANG Shan-yuan
2005-01-01
By using Hamilton-type variation principle in non-conservation system, the nonlinear equation of wave motion of a elastic thin rod was derived according to Lagrange description of finite deformation theory. The dissipation caused due to viscous effect and the dispersion introduced by transverse inertia were taken into consideration so that steady traveling wave solution can be obtained. Using multi-scale method the nonlinear equation is reduced to a KdV-Burgers equation which corresponds with saddle-spiral heteroclinic orbit on phase plane. Its solution is called the oscillating-solitary wave or saddle-spiral shock wave.If viscous effect or transverse inertia is neglected, the equation is degraded to classical KdV or Burgers equation. The former implies a propagating solitary wave with homoclinic on phase plane, the latter means shock wave and heteroclinic orbit.
Dumbbell formation for elastic capsules in nonlinear extensional Stokes flows
Dimitrakopoulos, P.
2017-06-01
Cross-slot and four-roll-mill microdevices are commonly used for particle manipulation and characterization owing to the stagnation-point flow at the device center. Because of the solid boundaries, these devices may generate extensional Stokes flows where the velocity is a nonlinear function of position associated with a decreased pressure at the particle edges and an increased pressure at the particle middle. Our computational investigation shows that in this class of Stokes flows, an elastic capsule made of a strain-hardening membrane develops two distinct steady-state conformations at strong flows, i.e., an elongated weak dumbbell shape with rounded edges at low flow nonlinearity and a laterally extended dumbbell shape at high flow nonlinearity. These effects are more pronounced for the less strain-hardening capsules which develop a flat extended middle where the two sides of the membrane approach each other. The strong stability properties of the strain-hardening capsules (owing to the development of strong membrane tensions) contrast significantly with the behavior of droplets in these nonlinear flows which are unable to achieve highly deformed steady-state dumbbell shapes owing to their constant surface tension.
Strongly Nonlinear Transverse Perturbations in Phononic Crystals
Directory of Open Access Journals (Sweden)
S. Nikitenkova
2014-01-01
Full Text Available The dynamics of the surface heterogeneities formation in low-dimensional phononic crystals is studied. It is shown that phononic transverse perturbations in this medium are highly nonlinear. They can be described with the help of the Riemann wave and may form stable wave structures of the finite amplitude. The Riemann wave deformation is described analytically. The Riemann wave time existence up to the beginning of the gradient catastrophe is calculated.
Nonlinear elastic model for compacted clay concrete interface
Institute of Scientific and Technical Information of China (English)
R. R. SHAKIR; Jungao ZHU
2009-01-01
In this paper, a nonlinear elastic model was developed to simulate the behavior of compacted clay concrete interface (CCCI) based on the principle of transition mechanism failure (TMF). A number of simple shear tests were conducted on CCCI to demonstrate different failure mechanisms; i.e., sliding failure and deformation failure. The clay soil used in the test was collected from the "Shuang Jang Kou" earth rockfill dam project. It was found that the behavior of the interface depends on the critical water contents by which two failure mechanisms can be recognized. Mathematical relations were proposed between the shear at failure and water content in addition to the transition mechanism indicator.The mathematical relations were then incorporated into the interface model. The performance of the model is verified with the experimental results. The verification shows that the proposed model is capable of predicting the interface shear stress versus the total shear displacement very well.
Modeling of the wave transmission properties of large arteries using nonlinear elastic tubes.
Pythoud, F; Stergiopulos, N; Meister, J J
1994-11-01
We propose a new, simple way of constructing elastic tubes which can be used to model the nonlinear elastic properties of large arteries. The tube models are constructed from a silicon elastomer (Sylgard 184, Dow Corning), which exhibits a nonlinear behavior with increased stiffness at high strains. Tests conducted on different tube models showed that, with the proper choice of geometric parameters, the elastic properties, in terms of area-pressure relation and compliance, can be similar to that of real arteries.
Band gap tunability of magneto-elastic phononic crystal
Bou Matar, O.; Robillard, J. F.; Vasseur, J. O.; Hladky-Hennion, A.-C.; Deymier, P. A.; Pernod, P.; Preobrazhensky, V.
2012-03-01
The possibility of control and tuning of the band structures of phononic crystals offered by the introduction of an active magnetoelastic material and the application of an external magnetic field is studied. Two means to obtain large elastic properties variations in magnetoelastic material are considered: Giant magnetostriction and spin reorientation transition effects. A plane wave expansion method is used to calculate the band structures. The magnetoelastic coupling is taken into account through the consideration of an equivalent piezomagnetic material model with elastic, piezomagnetic, and magnetic permeability tensors varying as a function of the amplitude and orientation of the applied magnetic field. Results of contactless tunability of the absolute bandgap are presented for a two-dimensional phononic crystal constituted of Terfenol-D square rod embedded in an epoxy matrix.
Nonlinear refractive index of optical crystals
Adair, Robert; Chase, L. L.; Payne, Stephen A.
1989-02-01
The nonlinear refractive indices (n2) of a large number of optical crystals have been measured at a wavelength near one micrometer with use of nearly degenerate three-wave mixing. The measurements are compared with the predictions of an empirical formula derived by Boling, Glass, and Owyoung. This formula, which relates n2 to the linear refractive index and its dispersion, is shown to be accurate to within about 30% for materials with nonlinear indices ranging over 3 orders of magnitude. Measurements for a number of binary oxide and fluoride crystals have been analyzed under the assumption that the hyperpolarizability of the anion is much larger than that of the cation. It is found that the hyperpolarizability of oxygen varies by a factor of 10, and that of fluorine varies by a factor of 7, depending on the size of the coordinating cation. This behavior is similar to that of the linear polarizability, although the hyperpolarizability is much more sensitive than the linear polarizability to the identity of the cation. The measured halide ion hyperpolarizabilities for several alkali-halide crystals are in reasonable agreement with recent self-consistent calculations. A semiempirical model was proposed by Wilson and Curtis to account for the dependence of the linear anionic polarizability on the radius of the cation. This model also accounts quite well for the variation of the hyperpolarizability of both fluorine and oxygen, except for cation partners that have filled or unfilled d-electron shells. The nonlinear indices of a number of complex oxides (i.e., those with more than one cation) have been calculated from the partial hyperpolarizabilities deduced from the data for the binary oxides. The calculated and measured values of n2 agree to within an average error of 13%.
Tunable nonlinear beam defocusing in infiltrated photonic crystal fibers
DEFF Research Database (Denmark)
Rosberg, Christian Romer; Bennet, Francis H; Neshev, Dragomir N.;
2007-01-01
We demonstrate a novel experimental platform for discrete nonlinear optics based on infiltrated photonic crystal fibers. We observe tunable discrete diffraction and nonlinear self-defocusing, and apply the effects to realize a compact all-optical power limiter....
Single-crystal elastic constants of natural ettringite
Speziale, Sergio
2008-07-01
The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young\\'s modulus and Poisson\\'s ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3- octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete. © 2008 Elsevier Ltd. All rights reserved.
Corelli: Efficient single crystal diffraction with elastic discrimination
Indian Academy of Sciences (India)
Stephan Rosenkranz; Raymond Osborn
2008-10-01
Single crystal diffuse scattering provides one of the most powerful probes of short-range correlations on the 1-100 nm scale, which often are responsible for the extreme field response of many emerging phenomena of great interest. Accurate modeling of such complex disorder from diffuse scattering data however puts stringent experimental demands, requiring measurements over large volumes of reciprocal space with sufficient momentum and energy resolution. Here, we discuss the potential of the cross-correlation technique for efficient measurement of single crystal diffuse scattering with energy discrimination, as will be implemented in a novel instrument, Corelli. Utilizing full experiment simulations, we show that this technique readily leads up to a fifty-fold gain in efficiency, as compared to traditional methods, for measuring single crystal diffuse scattering over volumes of reciprocal space with elastic discrimination.
Nonlinear dynamic acousto-elasticity measurement by Rayleigh wave in concrete cover evaluation
Vu, Quang Anh; Garnier, Vincent; Payan, Cédric; Chaix, Jean-François; Lott, Martin; Eiras, Jesús N.
2015-10-01
This paper presents local non-destructive evaluation of concrete cover by using surface Rayleigh wave in nonlinear Dynamic Acousto-Elasticity (DAE) measurement. Dynamic non classical nonlinear elastic behavior like modulus decrease under applied stress and slow dynamic process has been observed in many varieties of solid, also in concrete. The measurements conducted in laboratory, consist in qualitative evaluation of concrete thermal damage. Nonlinear elastic parameters especially conditioning offset are analyzed for the cover concrete by Rayleigh wave. The results of DAE method show enhanced sensitivity when compared to velocity measurement. Afterward, this technique broadens measurements to the field.
Atomic, Crystal, Elastic, Thermal, Nuclear, and Other Properties of Beryllium
Energy Technology Data Exchange (ETDEWEB)
Goldberg, A
2006-02-01
This report is part of a series of documents that provide a background to those involved in the construction of beryllium components and their applications. This report is divided into five sub-sections: Atomic/Crystal Structure, Elastic Properties, Thermal Properties, Nuclear Properties, and Miscellaneous Properties. In searching through different sources for the various properties to be included in this report, inconsistencies were at times observed between these sources. In such cases, the values reported by the Handbook of Chemistry and Physics was usually used. In equations, except where indicated otherwise, temperature (T) is in degrees Kelvin.
Optical limiter based on two-dimensional nonlinear photonic crystals
Belabbas, Amirouche; Lazoul, Mohamed
2016-04-01
The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.
Q-switching with single crystal photo-elastic modulators
Bammer, F.; Petkovsek, R.
2011-02-01
An overview is given about experiments with a new method for Q-switching lasers at a constant pulse repetition frequency. It uses inside the laser resonator a Single Crystal Photo-Elastic Modulator (SCPEM). This consists of one piezo-electric crystal electrically excited on a mechanical resonance frequency. In resonance mechanical stresses are induced that lead via the photo-elastic effect to a strongly modulated birefringence. Polarized light going through such an oscillating crystal will experience a significant modulation of its polarization and of transmission through a polarizer. Suitable materials should not be optically active, as it is for example the case for SiO2, and should allow the excitation of a longitudinal oscillation with an electric field perpendicular to the travelling direction of the light. Crystals of the group 3m, like LiTaO3 and LiNbO3, proved to be ideally suited for SCPEMS for the NIR- and VIS-region. For the infrared GaAs can be used. We demonstrated SCPEM-Q-switching for a Nd:YAG-fiber, a Nd:YVO4-slab- and a Nd:YAG-rod-laser with typical pulse repetition rates of 100-200kHz, pulse enhancement factors of 100 and pulse durations {1/100 of the period time. Typically the average power during pulsed operation is nearly the same as the cw-power, when the modulator is switched off. The most stable results were achieved up to now with the Nd:YVO4-slab-laser at 10W average power, 1.1 kW peak power, 127 kHz pulse repetition rate, and 70ns pulse durations.
Analysis of Nonlinear Poro-Elastic and Poro-Visco-Elastic Models
Bociu, Lorena; Guidoboni, Giovanna; Sacco, Riccardo; Webster, Justin T.
2016-12-01
We consider the initial and boundary value problem for a system of partial differential equations describing the motion of a fluid-solid mixture under the assumption of full saturation. The ability of the fluid phase to flow within the solid skeleton is described by the permeability tensor, which is assumed here to be a multiple of the identity and to depend nonlinearly on the volumetric solid strain. In particular, we study the problem of the existence of weak solutions in bounded domains, accounting for non-zero volumetric and boundary forcing terms. We investigate the influence of viscoelasticity on the solution functional setting and on the regularity requirements for the forcing terms. The theoretical analysis shows that different time regularity requirements are needed for the volumetric source of linear momentum and the boundary source of traction depending on whether or not viscoelasticity is present. The theoretical results are further investigated via numerical simulations based on a novel dual mixed hybridized finite element discretization. When the data are sufficiently regular, the simulations show that the solutions satisfy the energy estimates predicted by the theoretical analysis. Interestingly, the simulations also show that, in the purely elastic case, the Darcy velocity and the related fluid energy might become unbounded if indeed the data do not enjoy the time regularity required by the theory.
NONLINEARLY VIBRATIONAL ENERGY-SPECTRA OF MOLECULAR CRYSTALS
Institute of Scientific and Technical Information of China (English)
PANG XIAO-FENG; CHEN XIANG-RONG
2000-01-01
The nonlinear quantum vibrational energy spectra of amide-I in the molecular crystals acetanilide are calculatedby using the discrete nonlinear Schrodinger equation appropriate to this kind of crystals. The numerical results obtainedby this method are in good agreement with the experimental values. Meanwhile, the energy levels at high excited stateshave also been obtained for the acetanilide, which is helpful in researching the Raman scattering and infrared absorptionproperties of the this kind of crystals.
Pulse wave attenuation measurement by linear and nonlinear methods in nonlinearly elastic tubes.
Bertram, C D; Pythoud, F; Stergiopulos, N; Meister, J J
1999-04-01
Reasons for the continuing difficulty in making definitive measurements of pulse wave attenuation in elastic tubes and arteries in the presence of reflections are sought. The measurement techniques available were re-examined in elastic tubes mimicking the arterial compliance nonlinearity, under conditions of strong reflection. The pulse was of physiological shape, and two different pulse amplitudes in the physiological range were used. Measurements of pressure, flow-rate and diameter pulsation allowed the deployment of four of the classical linear methods of analysis. In addition, a method of separating the forward- and backward-travelling waves that does not require linearising assumptions was used, and the attenuation in the forward and reverse directions was calculated from the resulting waveforms. Overall, the results obtained here suggest that a fully satisfactory way of measuring arterial attenuation has yet to be devised. The classical linear methods all provided comparable attenuation estimates in terms of average value and degree of scatter across frequency. Increased scatter was generally found at the higher pulse amplitude. When the forward waveforms from the separation were similarly compared in terms of frequency components, the average value at energetic harmonics was similar to both the value indicated by the linear methods and the values predicted from linear theory on the basis of estimated viscous and viscoelastic parameter data. The backward waveforms indicated a physically unreasonable result, attributed as the expression for this technique of the same difficulties that normally manifest in scatter. Data in the literature suggesting that one of the classical methods, the three-point, systematically over-estimates attenuation were not supported, but it was confirmed that this method becomes prone to negative attenuation estimates at low harmonics as pulse amplitude increases. Although the goal of definitive attenuation measurement remains elusive
On the vibrations of a simply supported square plate on a weakly nonlinear elastic foundation
Zarubinskaya, M.A.; Van Horssen, W.T.
2003-01-01
In this paper an initial-boundary value problem for a weakly nonlinear plate equation with a quadratic nonlinearity will be studied. This initial-boundary value problem can be regarded as a simple model describing free oscillations of a simply supported square plate on an elastic foundation. It is a
Magneto-elastic oscillator: Modeling and analysis with nonlinear magnetic interaction
Kumar, K. Aravind; Ali, Shaikh Faruque; Arockiarajan, A.
2017-04-01
The magneto-elastically buckled beam is a classic example of a nonlinear oscillator that exhibits chaotic motions. This system serves as a model to analyze the motion of elastic structures in magnetic fields. The system follows a sixth order magneto-elastic potential and may have up to five static equilibrium positions. However, often the non-dimensional Duffing equation is used to approximate the system, with the coefficients being derived from experiments. In few other instances, numerical methods are used to evaluate the magnetic field values. These field values are then used to approximate the nonlinear magnetic restoring force. In this manuscript, we derive analytical closed form expressions for the magneto-elastic potential and the nonlinear restoring forces in the system. Such an analytical formulation would facilitate tracing the effect of change in a parameter, such as the magnet dimension, on the dynamics of the system. The model is derived assuming a single mode approximation, taking into account the effect of linear elastic and nonlinear magnetic forces. The developed model is then numerically simulated to show that it is accurate in capturing the system dynamics and bifurcation of equilibrium positions. The model is validated through experiments based on forced vibrations of the magneto-elastic oscillator. To gather further insights about the magneto-elastic oscillator, a parametric study has been conducted based on the field strength of the magnets and the distance between the magnets and the results are reported.
Frequency, pressure, and strain dependence of nonlinear elasticity in Berea Sandstone
Rivière, Jacques; Pimienta, Lucas; Scuderi, Marco; Candela, Thibault; Shokouhi, Parisa; Fortin, Jérôme; Schubnel, Alexandre; Marone, Chris; Johnson, Paul A.
2016-04-01
Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static (f→0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2-3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1f appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. These findings can be used to improve theories relating the macroscopic elastic response to microstructural features.
Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil
2017-08-01
Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals.
Kumon, R E; Hamilton, M F
2002-05-01
Spectral evolution equations are used to perform analytical and numerical studies of nonlinear surface acoustic waves in the (001) plane of a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, and quasilinear solutions of the equations are presented. Expressions are also developed for a characteristic length scale for nonlinear distortion and a nonlinearity coefficient. A time-domain equation corresponding to the spectral equations is derived. Numerical calculations based on measured second- and third-order elastic constants taken from the literature are performed to predict the evolution of initially monofrequency surface waves. Nonlinearity matrix elements that indicate the coupling strength of harmonic interactions are shown to provide a useful tool for characterizing waveform distortion. The formation of compression or rarefaction shocks can be strongly dependent on the direction of propagation, and harmonic generation is suppressed or increased in certain directions.
Large difference in the elastic properties of fcc and hcp hard-sphere crystals
Pronk, S.; Frenkel, D.
2003-01-01
We report a numerical calculation of the elastic constants of the fcc and hcp crystal phases of monodisperse hard-sphere colloids. Surprisingly, some of these elastic constants are very different (up to 20%), even though the free-energy, pressure, and bulk compressibility of the two crystal structur
Nonlinear spin wave coupling in adjacent magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2016-07-25
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
Fluid flow of incompressible viscous fluid through a non-linear elastic tube
Energy Technology Data Exchange (ETDEWEB)
Lazopoulos, A.; Tsangaris, S. [National Technical University of Athens, Fluids Section, School of Mechanical Engineering, Zografou, Athens (Greece)
2008-11-15
The study of viscous flow in tubes with deformable walls is of specific interest in industry and biomedical technology and in understanding various phenomena in medicine and biology (atherosclerosis, artery replacement by a graft, etc) as well. The present work describes numerically the behavior of a viscous incompressible fluid through a tube with a non-linear elastic membrane insertion. The membrane insertion in the solid tube is composed by non-linear elastic material, following Fung's (Biomechanics: mechanical properties of living tissue, 2nd edn. Springer, New York, 1993) type strain-energy density function. The fluid is described through a Navier-Stokes code coupled with a system of non linear equations, governing the interaction with the membrane deformation. The objective of this work is the study of the deformation of a non-linear elastic membrane insertion interacting with the fluid flow. The case of the linear elastic material of the membrane is also considered. These two cases are compared and the results are evaluated. The advantages of considering membrane nonlinear elastic material are well established. Finally, the case of an axisymmetric elastic tube with variable stiffness along the tube and membrane sections is studied, trying to substitute the solid tube with a membrane of high stiffness, exhibiting more realistic response. (orig.)
Spectral characteristics and nonlinear studies of crystal violet dye
Sukumaran, V. Sindhu; Ramalingam, A.
2006-03-01
Solid-state dye-doped polymer is an attractive alternative to the conventional liquid dye solution. In this paper, the spectral characteristics and the nonlinear optical properties of the dye crystal violet are studied. The spectral characteristics of crystal violet dye doped poly(methylmethacrylate) modified with additive n-butyl acetate (nBA) are studied by recording its absorption and fluorescence spectra and the results are compared with the corresponding liquid mixture. The nonlinear refractive index of the dye in nBA and dye doped polymer film were measured using z-scan technique, by exciting with He-Ne laser. The results obtained are intercompared. Both the samples of dye crystal violet show a negative nonlinear refractive index. The origin of optical nonlinearity in the dye may be attributed due to laser-heating induced nonlinear effect.
Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A
2003-06-01
Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.
Simulation of Nonlinear Gain Saturation in Active Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Chen, Yaohui; Mørk, Jesper
2012-01-01
In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated.......In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated....
Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Chen, Yaohui; Mørk, Jesper
2013-01-01
We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....
2014-11-01
temperature equation-of-state (EOS) [ Luscher et al., 2013] for the pressure. For isotropic (e.g., untextured polycrystalline) solids, nonlinear elasticity...elastoplasticity [ Luscher et al., 2013]. 1450048-12 2nd Reading October 15, 2014 11:4 WSPC-255-IJAM S1758-8251 1450048 Shock Compression of Metal Crystals...Clayton, 2011; Luscher et al., 2013] S̄ = ∂Ū ∂E = ∂Ψ̄ ∂E = JFE−1σFE−T, θ = ∂Ū/∂η, η = −∂Ψ̄/∂θ, χ̄ = −∂Ψ̄/∂ζ, (3.7) c̄θ̇ = ∑ α τ̄αγ̇α + θ ∂S̄ ∂θ : Ė
Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics
2015-03-01
JD. Modeling nonlinear electromechanical behavior of shocked silicon carbide. Journal of Applied Physics . 2010;107:013520. 30. Clayton JD. A... Physics by JD Clayton Approved for public release; distribution unlimited. NOTICES Disclaimers...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL
Nonlinear coda wave analysis of hysteretic elastic behavior in strongly scattering media
Ouarabi, M. Ait; Boubenider, F.; Gliozzi, A. S.; Scalerandi, M.
2016-10-01
Strongly scattering elastic media, such as consolidated granular materials, respond to ultrasonic pulse excitations with a long response signal with peculiar properties. The portion of the signal at late times, termed coda, is due to multiple scattering. It contains information about the elastic properties of the material, and it has been proven to be very sensitive to small variations in the modulus. Here we propose a technique based on a nonlinear analysis of the coda of a signal, which might be applied to quantify the nonlinear elastic response in consolidated granular media exhibiting a hysteretic elastic behavior. The method proposed allows for an intrinsic definition of the reference signal which is normally needed for applying coda-based methods.
Fast and slow dynamics in a nonlinear elastic bar excited by longitudinal vibrations
Favrie, Nicolas; Payan, Cédric
2014-01-01
Heterogeneous materials, such as rocks and concrete, have a complex dynamics including hysteresis, nonlinear elasticity and viscoelasticity. It is very sensitive to microstructural changes and damage. The goal of this paper is to propose a physical model describing the longitudinal vibrations of this class of material, and to develop a numerical strategy for solving the evolution equations. The theory relies on the coupling between two processes with radically-different time scales: a fast process at the frequency of the excitation, governed by nonlinear elasticity and viscoelasticity; a slow process, governed by the evolution of defects. The evolution equations are written as a nonlinear hyperbolic system with relaxation. A time-domain numerical scheme is developed, based on a splitting strategy. The numerical simulations show qualitative agreement with the features observed experimentally by Dynamic Acousto-Elastic Testing.
Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.
2015-10-01
An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit
Aftershocks and Omori's law in a modified Carlson-Langer model with nonlinear visco-elasticity
Sakaguchi, Hidetsugu
2015-01-01
A modified Carlson-Langer model for earthquakes is proposed, which includes nonlinear visco-elasticity. Several aftershocks are generated after the main shock owing to the damping of the additional visco-elastic force. Both the Gutenberg-Richter law and Omori's law are reproduced in a numerical simulation of the modified Carlson-Langer model on a critical percolation cluster of a square lattice.
The Kerr nonlinearity of the beta-barium borate crystal
DEFF Research Database (Denmark)
Bache, Morten; Guo, Hairun; Zhou, Binbin
2013-01-01
A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond...
Non-linear waves in heterogeneous elastic rods via homogenization
Quezada de Luna, Manuel
2012-03-01
We consider the propagation of a planar loop on a heterogeneous elastic rod with a periodic microstructure consisting of two alternating homogeneous regions with different material properties. The analysis is carried out using a second-order homogenization theory based on a multiple scale asymptotic expansion. © 2011 Elsevier Ltd. All rights reserved.
Nonlinear Vibration of an Elastically Restrained Tapered Beam
DEFF Research Database (Denmark)
Karimpour, S; Ganji, S.S; Barari, Amin;
2012-01-01
This paper presents the analytical simulation of an elastically restrained tapered cantilever beam using the energy balance method (EBM) and the iteration perturbation method (IPM). To assess the accuracy of solutions, we compare the results with the harmonic balance method (HBM). The obtained re...
Extra phase noise from thermal fluctuations in nonlinear optical crystals
DEFF Research Database (Denmark)
César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.
2009-01-01
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...... the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction in the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature....
Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates
Energy Technology Data Exchange (ETDEWEB)
Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2010-10-15
Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters
Directory of Open Access Journals (Sweden)
Da-Guang Zhang
2015-10-01
Full Text Available For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao, E-mail: zhouhm@cjlu.edu.cn [College of Information Engineering, China Jiliang University, 310018, Hangzhou (China)
2015-10-15
For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.
Directory of Open Access Journals (Sweden)
K. R. McCall
1996-01-01
Full Text Available The velocity of sound in rock is a strong function of pressure, indicating that wave propagation in rocks is very nonlinear. The quasistatic elastic properties of rocks axe hysteretic, possessing discrete memory. In this paper a new theory is developed, placing all of these properties (nonlinearity, hysteresis, and memory on equal footing. The starting point of the new theory is closer to a microscopic description of a rock than the starting point of the traditional five-constant theory of nonlinear elasticity. However, this starting point (the number density Ï? of generic mechanical elements in an abstract space is deliberately independent of a specific microscopic model. No prejudice is imposed as to the mechanism causing nonlinear response in the microscopic mechanical elements. The new theory (1 relates suitable stress-strain measurements to the number density Ï? and (2 uses the number density Ï? to find the behaviour of nonlinear elastic waves. Thus the new theory provides for the synthesis of the full spectrum of elastic behaviours of a rock. Early development of the new theory is sketched in this contribution.
Optimal cuts to extract the third-order elastic constants of langasite single crystals.
Zhang, Haifeng
2011-06-01
Optimal cuts to determine the third-order elastic constants of langasite single crystals by the resonator method are proposed. By designing a small number of langasite resonators with optimal cut angles and measuring their force-frequency effects, the third-order elastic constants of langasite single crystals may be extracted separately. The numerical method to search for these optimal cut angles is presented. All 14 third-order elastic constants may be determined through a series of experimental measurements. This method will simplify traditional methods used to determine the third-order elastic constants and could potentially produce more accurate results.
Institute of Scientific and Technical Information of China (English)
HANG Chao; HUANG Guo-Xiang
2006-01-01
We investigate the nonlinear localized structures of optical pulses propagating in a one-dimensional photonic crystal with a quadratic nonlinearity. Using a method of multiple scales we show that the nonlinear evolution of a wave packet, formed by the superposition of short-wavelength excitations, and long-wavelength mean fields, generated by the self-interaction of the wave packet, are governed by a set of coupled high-dimensional nonlinear envelope equations, which can be reduced to Davey-Stewartson equations and thus support dromionlike high-dimensional nonlinear excitations in the system.
Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles
Hocking, Erica G.; Wereley, Norman M.
2013-01-01
Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.
MODELING OF NONLINEAR DEFORMATION AND BUCKLING OF ELASTIC INHOMOGENEOUS SHELLS
Directory of Open Access Journals (Sweden)
Bazhenov V.A.
2014-06-01
Full Text Available The paper outlines the fundamentals of the method of solving static problems of geometrically nonlinear deformation, buckling, and postbuckling behavior of thin thermoelastic inhomogeneous shells with complex-shaped mid-surface, geometrical features throughout the thickness, and multilayer structure under complex thermomechanical loading. The method is based on the geometrically nonlinear equations of three-dimensional thermoelasticity and the moment finiteelement scheme. The method is justified numerically. Comparing solutions with those obtained by other authors and by software LIRA and SCAD is conducted.
Hmiel, A.; Winey, J. M.; Gupta, Y. M.; Desjarlais, M. P.
2016-05-01
Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elastic constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.
Nonlinear Optical BBO Crystals: Growth, Properties and Applications
Institute of Scientific and Technical Information of China (English)
唐鼎元
2000-01-01
Low temperature phase barium metaborate β-BaB2O4 (BBO) is an important nonlinear optical material. Up to now, the BBO single crystals with large size and good optical quality were grown from Na2O or NaF fluxed solvents by the top-seeded solution growth (TSSG) technique with or without pulling. In order to improve the growth rate and quality of BBO crystals, several new techniques such as continuous feeding, forced stirring and cooling growing crystals etc. have been suggested. Applications of BBO as an excellent nonlinear optical crystal include mainly frequency conversion of various laser radiation, high average power frequency conversion, frequency doubling of ultrashort pulses and broadly tunable optical parametric oscillators (OPO).This paper is a brief review on the growth, properties and applications of BBO crystals.
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.
1993-01-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.
1993-06-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr. [Los Alamos National Lab., NM (United States)
1993-11-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Nonlinear femtosecond pulse compression in cholesteric liquid crystals (Conference Presentation)
Liu, Yikun; Zhou, Jianying; Lin, Tsung-Hsien; Khoo, Iam-Choon
2016-09-01
Liquid crystals materials have the advantage of having a large nonlinear coefficient, but the response time is slow, normally up to several minisecond. This makes it is hard to apply in ultra fast optical devices. Recently, fentosecond (fs) nonlinear effect in choleteric liquid crystals is reported, nonlinear coefficient in the scale of 10-12 cm2/W is achieved. Base on this effect, in this work, fentosecond pulse compression technique in a miniature choleteric liquid crystal is demonstrated1,2. Cholesteric liquid crystals (CLC) is a kind of 1-dimensional phontonic structure with helical periodic. In a 10 μm thick CLC, femtosecond pulse with 100 fs is compressed to about 50 fs. CLC sample in planar texture with 500μm thick cell gap is further fabricated. In this sample, femtosecond pulse with 847 fs can be compressed to 286 fs. Due to the strong dispersion at the edge of photonic band gap, femtosecond pulse stretching and compensation can be achieve. In this experiment, laser pulse with duration 90 fs is stretched to above 2 picosecond in the first CLC sample and re-compressed to 120 fs in the second sample. Such technique might be applied in chirp pulse amplification. In conclusion, we report ultra fast nonlinear effect in cholesteric liquid crystals. Due to the strong dispersion and nonlinearity of CLC, femtosecond pulse manipulating devices can be achieved in the scale of micrometer.
Directory of Open Access Journals (Sweden)
Anis Mohd
2016-09-01
Full Text Available The present study is focused to explore the photonic device applications of L-arginine doped ZTC (LA-ZTC crystals using nonlinear optical (NLO and dielectric studies. The LA-ZTC crystals have been grown by slow evaporation solution technique. The chemical composition and surface of LA-ZTC crystal have been analyzed by means of energy dispersive spectroscopy (EDS and surface scanning electron microscopy (SEM techniques. The Vicker’s microhardness study has been carried out to determine the hardness, work hardening index, yield strength and elastic stiffness of LA-ZTC crystal. The enhanced SHG efficiency of LA-ZTC crystal has been ascertained using the Kurtz-Perry powder SHG test. The closed-and-open aperture Z-scan technique has been employed to confirm the third order nonlinear optical nature of LA-ZTC crystal. The Z-scan transmittance data has been utilized to calculate the superior cubic susceptibility, nonlinear refractive index, nonlinear absorption coefficient and figure of merit of LA-ZTC crystal. The behavior of dielectric constant and dielectric loss of LA-ZTC crystal at different temperatures has been investigated using the dielectric analysis.
NonLinear Effects in Photorefractive Crystals
1988-01-01
Counterpropagating beams impinging on a crystal exhibiting optical activity was studied by Kukhtarev, Dov- galenko and Starkov [741. Diffraction...Dovgalenko, and V. N. Starkov . Influence of the optical activity on hologram formation in photorefractive crystals. Applied Physics A, 33:227-230, 1984
Nonlinear elastic response in solid helium: critical velocity or strain?
Day, James; Syshchenko, Oleksandr; Beamish, John
2010-02-19
Torsional oscillator experiments show evidence of mass decoupling in solid 4He. This decoupling is amplitude dependent, suggesting a critical velocity for supersolidity. We observe similar behavior in the elastic shear modulus. By measuring the shear modulus over a wide frequency range, we can distinguish between an amplitude dependence which depends on velocity and one which depends on some other parameter such as displacement. In contrast with the torsional oscillator behavior, the modulus depends on the magnitude of stress, not velocity. We interpret our results in terms of the motion of dislocations which are weakly pinned by 3He impurities but which break away when large stresses are applied.
Growth and properties of semi-organic nonlinear optical crystal: L-Glutamic acid hydrochloride
Directory of Open Access Journals (Sweden)
J. Uma
2016-02-01
Full Text Available Semiorganic nonlinear optical crystal of L-Glutamic acid hydrochloride (LGHC was grown from aqueous solution by slow evaporation technique. Single crystal X-ray Diffraction analysis confirms that LGHC crystallizes in orthorhombic system with noncentrosymmetric space group P212121. The powder X-ray diffraction study confirms the crystallinity of the grown crystal. The fundamental functional groups of the grown crystals were analyzed by Fourier Transform Infrared spectroscopic analysis in the range of 450–4000 cm−1. The range of optical transmission was ascertained using UV–vis–NIR studies. The Refractive Index of the LGHC crystal was found to be 1.4. The second harmonic generation efficiency of the LGHC was determined using Kurtz and Perry powder technique and it was 0.5 times greater than that of the KDP crystal. Thermo Gravimetric Analysis (TGA and Differential Thermal Analysis (DTA were used to study thermal behavior of the sample. The dielectric behavior and ac conductivity of the sample were studied as a function of frequency for different temperatures. The mechanical strength of the crystal was determined by Vicker׳s Hardness test. The elastic stiffness constant and yield strength of the sample was calculated.
A nonlinear theory for elastic plates with application to characterizing paper properties
M. W. Johnson; Thomas J. Urbanik
1984-03-01
A theory of thin plates which is physically as well as kinematically nonlinear is, developed and used to characterize elastic material behavior for arbitrary stretching and bending deformations. It is developed from a few clearly defined assumptions and uses a unique treatment of strain energy. An effective strain concept is introduced to simplify the theory to a...
Directory of Open Access Journals (Sweden)
Alain Mignot
2005-09-01
Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.
Possible second-order nonlinear interactions of plane waves in an elastic solid
Korneev, V.A.; Demcenko, A.
2014-01-01
There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The cons
Directory of Open Access Journals (Sweden)
Shi Jing
2014-01-01
Full Text Available The solving processes of the homogeneous balance method, Jacobi elliptic function expansion method, fixed point method, and modified mapping method are introduced in this paper. By using four different methods, the exact solutions of nonlinear wave equation of a finite deformation elastic circular rod, Boussinesq equations and dispersive long wave equations are studied. In the discussion, the more physical specifications of these nonlinear equations, have been identified and the results indicated that these methods (especially the fixed point method can be used to solve other similar nonlinear wave equations.
Singh, S. N.
1982-03-01
Using the invariance principle of LaSalle (1962) sufficient conditions for the existence of linear and nonlinear control laws for local and global asymptotic stability of nonlinear Hamiltonian systems are derived. An instability theorem is also presented which identifies the control laws from the given class which cannot achieve asymptotic stability. Some of the stability results are based on certain results for the univalence of nonlinear maps. A similar approach for the stabilization of bilinear systems which include nonconservative systems in elasticity is used and a necessary and sufficient condition for stabilization is obtained. An application to attitude control of a gyrostat Satellite is presented.
Breakdown of nonlinear elasticity in stress-controlled thermal amorphous solids
Dailidonis, Vladimir; Ilyin, Valery; Procaccia, Itamar; Shor, Carmel A. B. Z.
2017-03-01
In recent work it was clarified that amorphous solids under strain control do not possess nonlinear elastic theory in the sense that the shear modulus exists but nonlinear moduli exhibit sample-to-sample fluctuations that grow without bound with the system size. More relevant, however, for experiments are the conditions of stress control. In the present Rapid Communication we show that also under stress control the shear modulus exists, but higher-order moduli show unbounded sample-to-sample fluctuation. The unavoidable consequence is that the characterization of stress-strain curves in experiments should be done with a stress-dependent shear modulus rather than with nonlinear expansions.
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri
2008-01-01
The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...... spring-mass chains with non-linear inclusions. The presented analytical and numerical results suggest that the effective material properties can easily be altered by establishing finite amplitude HF standing waves in the non-linear regions of the chain....
A non-linear elastic constitutive framework for replicating plastic deformation in solids.
Energy Technology Data Exchange (ETDEWEB)
Roberts, Scott Alan; Schunk, Peter Randall
2014-02-01
Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.
Equilateral pentagon polarization maintaining photonic crystal fibre with low nonlinearity
Institute of Scientific and Technical Information of China (English)
Yang Han-Rui; Li Xu-You; Hong Wei; Hao Jin-Hui
2012-01-01
A new pentagon polarization maintaining photonic crystal fibre with low nonlinearity is introduced. The full vector finite element method was used to investigate the distribution and the effective area of modal field,the nonlinear properties,the effective indices of two orthogonal polarization modes and the birefringence of the new PM-PCF effectively.It is found that the birefringence of the new polarization maintaining photonic crystal fibre can easily achieve the order of 10-4,and it can obtain higher birefringence,larger effectively mode-field area and lower nonlinearity than traditional hexagonal polarization maintaining photonic crystal fibre with the same hole pitch,same hole diameter,and same ring number.It is important for sensing and communication applications,especially has potential application for fibre optical gyroscope.
Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.
Energy Technology Data Exchange (ETDEWEB)
Preston, Leiph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-08-01
Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti) by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.
Molecular and crystal design of nonlinear optical organic materials
Energy Technology Data Exchange (ETDEWEB)
Suponitsky, Kirill Yu; Antipin, Mikhail Yu [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation); Timofeeva, Tatiana V [Department of Chemistry, New Mexico Highlands University (United States)
2006-06-30
The results of theoretical and experimental studies on the second-order molecular and crystal nonlinear optical susceptibilities of organic and several classes of organoelement compounds are summarised. Modern methods used in these studies are briefly characterised, their advantages and drawbacks are outlined as regards their application to the systematic search for efficient nonlinear optical materials. Recent achievements and the main challenges in the field are thoroughly discussed and an optimum algorithm of the design of such materials is proposed.
A conservation law formulation of nonlinear elasticity in general relativity
Gundlach, Carsten; Erickson, Stephanie J
2011-01-01
We present a practical framework for ideal hyperelasticity in numerical relativity. For this purpose, we recast the formalism of Carter and Quintana as a set of Eulerian conservation laws in an arbitrary 3+1 split of spacetime. The resulting equations are presented as an extension of the standard Valencia formalism for a perfect fluid, with additional terms in the stress-energy tensor, plus a set of kinematic conservation laws that evolve a configuration gradient. We prove that the equations can be made symmetric hyperbolic by suitable constraint additions, at least in a neighbourhood of the unsheared state. We discuss the Newtonian limit of our formalism and its relation to a second formalism also used in Newtonian elasticity. We validate our framework by numerically solving a set of Riemann problems in Minkowski spacetime, as well as Newtonian ones from the literature.
Extreme non-linear elasticity and transformation optics
DEFF Research Database (Denmark)
Gersborg, Allan Roulund; Sigmund, Ole
2010-01-01
Transformation optics is a powerful concept for designing novel optical components such as high transmission waveguides and cloaking devices. The selection of specific transformations is a non-unique problem. Here we reveal that transformations which allow for all dielectric and broadband optical...... realizations correspond to minimizers of elastic energy potentials for extreme values of the mechanical Poisson's ratio ν . For TE (Hz) polarized light an incompressible transformation ν = 1/2 is ideal and for TM (E z) polarized light one should use a compressible transformation with negative Poissons's ratio...... ν = -1. For the TM polarization the mechanical analogy corresponds to a modified Liao functional known from the transformation optics literature. Finally, the analogy between ideal transformations and solid mechanical material models automates and broadens the concept of transformation optics...
Nonlinear Phononic Periodic Structures and Granular Crystals
2012-02-10
of the advanced delay equation (13) and they compared the numerically obtained solutions with those of approximated PDEs. Recently, Starosvetsky... KdV ), a nonlinear partial differential equation , and have been discovered in myriad systems and discrete nonlinear lattices of all the above types...granular chain, and derived the following KdV equation : t 0 0 1/2 2 2 2 2 0 0 0 0 0 0, 2 6 , , . 6 xx x xc uc A R c R c Rc m σξ ξ γξ ξξ ξ δ γ σ δ
Nonlinear switching dynamics in a photonic-crystal nanocavity
DEFF Research Database (Denmark)
Yu, Yi; Palushani, Evarist; Heuck, Mikkel;
2014-01-01
the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms......We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When...... of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching...
Nitzan, Sarah H; Zega, Valentina; Li, Mo; Ahn, Chae H; Corigliano, Alberto; Kenny, Thomas W; Horsley, David A
2015-01-01
Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.
Directory of Open Access Journals (Sweden)
E. Mardani
2008-01-01
Full Text Available A prismatic beam made of a behaviorally nonlinear material was analyzed under a concentrated load moving with a known velocity on a nonlinear elastic foundation with a reaction the vibration equation of motion was derived using Hamilton principle and Euler Lagrange equation. The amplitude of vibration, circular frequency, bending moment, stress and deflection of the beam can be calculated by the presented solution. Considering the response of the beam, in the sense of its resonance, it was found that there is no critical velocity when the behavior of the beam and foundation material is assumed to be physically nonlinear and there are finite values for the deflection, stress and bending moment of the beam when
Nonlinear effect of elastic vortexlike motion on the dynamic stress state of solids
Shilko, Evgeny V.; Grinyaev, Yurii V.; Popov, Mikhail V.; Popov, Valentin L.; Psakhie, Sergey G.
2016-05-01
We present a theoretical analysis of the dynamic stress-strain state of regions in a solid body that are involved in a collective elastic vortexlike motion. It is shown that the initiation of elastic vortexlike motion in the material is accompanied by the appearance of dilatancy and equivalent strain, the magnitudes of which are proportional to the square of the ratio of linear velocity on the periphery of the elastic vortex to the velocity of longitudinal elastic waves (P wave). Under conditions of dynamic loading the described dynamic effects are able to initiate inelastic deformation or destruction of the material at loading speeds of a few percent of the P -wave speed. The obtained analytical estimates suggest that dynamic nonlinear strains can make a significant contribution in a number of widely studied nonlinear dynamic phenomena in solids. Among them are the effect of acoustic (dynamic) dilatancy in solids and granular media, which leads to the generation of longitudinal elastic waves by transverse waves [V. Tournat et al., Phys. Rev. Lett. 92, 085502 (2004), 10.1103/PhysRevLett.92.085502] and the formation of an array of intense "hot spots" (reminiscent of shear-induced hydrodynamic instabilities in fluids) in adiabatic shear bands [P. R. Guduru et al., Phys. Rev. E 64, 036128 (2001), 10.1103/PhysRevE.64.036128].
Energy Technology Data Exchange (ETDEWEB)
Bemer, E.; Bouteca, M.; Vincke, O. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Hoteit, N.; Ozanam, O. [Agence Nationale pour la Gestion des Dechets Radioactifs ANDRA, 92 - Chatenay Malabry (France)
2001-07-01
Due to the impact on productivity and oil an place estimates, reliable modeling of rock behavior is essential in reservoir engineering. This paper examines several aspects of rock poro-elastic behavior within the framework of Biot's mechanics of fluid saturated porous solids. Constitutive laws of linear and nonlinear poro-elasticity are first determined from a fundamental stress decomposition, which allows to clearly connect linear and nonlinear models. Concept of effective stress and rock compressibility are considered. Linear incremental stress-strain relations are derived from the proposed nonlinear constitutive law by defining tangent elastic properties. These characteristics are naturally functions of strains and pore pressure, but explicit expressions as functions of stresses and pore pressure are established herein. Experiments performed on a reservoir sandstone illustrate these points. A constitutive law of poro-visco-elasticity is finally presented and applied to experimental data obtained on clay. (authors)
Lefèvre, Victor; Lopez-Pamies, Oscar
2017-02-01
This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi
Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.
Nam, Sungmin; Hu, Kenneth H; Butte, Manish J; Chaudhuri, Ovijit
2016-05-17
The extracellular matrix (ECM) is a complex assembly of structural proteins that provides physical support and biochemical signaling to cells in tissues. The mechanical properties of the ECM have been found to play a key role in regulating cell behaviors such as differentiation and malignancy. Gels formed from ECM protein biopolymers such as collagen or fibrin are commonly used for 3D cell culture models of tissue. One of the most striking features of these gels is that they exhibit nonlinear elasticity, undergoing strain stiffening. However, these gels are also viscoelastic and exhibit stress relaxation, with the resistance of the gel to a deformation relaxing over time. Recent studies have suggested that cells sense and respond to both nonlinear elasticity and viscoelasticity of ECM, yet little is known about the connection between nonlinear elasticity and viscoelasticity. Here, we report that, as strain is increased, not only do biopolymer gels stiffen but they also exhibit faster stress relaxation, reducing the timescale over which elastic energy is dissipated. This effect is not universal to all biological gels and is mediated through weak cross-links. Mechanistically, computational modeling and atomic force microscopy (AFM) indicate that strain-enhanced stress relaxation of collagen gels arises from force-dependent unbinding of weak bonds between collagen fibers. The broader effect of strain-enhanced stress relaxation is to rapidly diminish strain stiffening over time. These results reveal the interplay between nonlinear elasticity and viscoelasticity in collagen gels, and highlight the complexity of the ECM mechanics that are likely sensed through cellular mechanotransduction.
Bauer-Gogonea, S.; Camacho-Gonzalez, F.; Schwödiauer, R.; Ploss, B.; Bauer, S.
2007-09-01
Nonlinearities in ferroelectret polymer foam capacitors arise from voltage-dependent thickness changes. Such thickness changes are caused by the converse piezoelectric and electrostrictive effects in these soft materials. The authors show that the higher harmonics of the current response during application of a sinusoidal voltage to ferroelectret capacitors provide information on the elastic and electromechanical properties of the foam. The authors demonstrate the potential of this versatile measurement technique by investigating the temperature dependence of the piezoelectric response and by monitoring the changes in the elastic and electromechanical properties during inflation of cellular polypropylene.
Birefringent Bragg Gratings in Highly-Nonlinear Photonic Crystal Fiber
Institute of Scientific and Technical Information of China (English)
Kevin Cook; John Canning; John Holdsworth
2008-01-01
Efficient writing of Bragg gratings in 12-ring highly-nonlinear photonic crystal fibers is described. Experimental and numerical investigations are performed to reveal the optimum angle for coupling UV writing light to the core. Furthermore, we show that the formation of a strongly briefringent grating is at a particular angle of orientation.
Nonlinear refractive index measurements of glasses and crystals
Adair, R.; Chase, L. L.; Payne, S. A.
1987-12-01
We have measured the nonlinear index for numerous glasses and crystals with the goal of determining the material properties that contribute to the magnitude and dispersion of n sub 2. We have found that a nearly-degenerate three-wave-mixing (TWM) process is the most useful method since it can provide both rapid and accurate n sub 2 measurements.
Equivalent Representation Form of Oscillators with Elastic and Damping Nonlinear Terms
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
Full Text Available In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others.
Adhikari, S. K.
2016-09-01
We consider the statics and dynamics of a stable, mobile three-dimensional (3D) spatiotemporal light bullet in a cubic-quintic nonlinear medium with a focusing cubic nonlinearity above a critical value and any defocusing quintic nonlinearity. The 3D light bullet can propagate with a constant velocity in any direction. Stability of the light bullet under a small perturbation is established numerically. We consider frontal collision between two light bullets with different relative velocities. At large velocities the collision is elastic with the bullets emerge after collision with practically no distortion. At small velocities two bullets coalesce to form a bullet molecule. At a small range of intermediate velocities the localized bullets could form a single entity which expands indefinitely, leading to a destruction of the bullets after collision. The present study is based on an analytic Lagrange variational approximation and a full numerical solution of the 3D nonlinear Schrödinger equation.
Pan, Shoukui; Okano, Y.; Tsunekawa, S.; Fukuda, T.
1993-03-01
The Kyropoulus method was used to grow nonlinear optical organic crystals ABP (4-aminobenzophenone). The crystals were characterized by nonlinear optical measurements and had a large effect of frequency doubling.
A novel organic nonlinear optical crystal: Creatininium succinate
Energy Technology Data Exchange (ETDEWEB)
Thirumurugan, R.; Anitha, K., E-mail: singlecerystalxrd@gmail.ciom [School of Physics, Madurai Kamraj University, Madurai 625021 (India)
2015-06-24
A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV–Vis transmission was carried out which shows the crystal has a good optical transmittance in the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.
Crystal growth in fluid flow: Nonlinear response effects
Peng, H. L.; Herlach, D. M.; Voigtmann, Th.
2017-08-01
We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.
Nonlinear optical response of a two-dimensional atomic crystal.
Merano, Michele
2016-01-01
The theory of Bloembergen and Pershan for the light waves at the boundary of nonlinear media is extended to a nonlinear two-dimensional (2D) atomic crystal, i.e., a single planar atomic lattice, placed between linear bulk media. The crystal is treated as a zero-thickness interface, a real 2D system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. As a particular case that contains all the essential physical features, second-order harmonic generation is considered. The theory, due to its simplicity that stems from the special character of a single planar atomic lattice, is able to elucidate and explain the rich experimental details of harmonic generation from a 2D atomic crystal.
Adaptive, Small-Rotation-Based, Corotational Technique for Analysis of 2D Nonlinear Elastic Frames
Directory of Open Access Journals (Sweden)
Jaroon Rungamornrat
2014-01-01
Full Text Available This paper presents an efficient and accurate numerical technique for analysis of two-dimensional frames accounted for both geometric nonlinearity and nonlinear elastic material behavior. An adaptive remeshing scheme is utilized to optimally discretize a structure into a set of elements where the total displacement can be decomposed into the rigid body movement and one possessing small rotations. This, therefore, allows the force-deformation relationship for the latter part to be established based on small-rotation-based kinematics. Nonlinear elastic material model is integrated into such relation via the prescribed nonlinear moment-curvature relationship. The global force-displacement relation for each element can be derived subsequently using corotational formulations. A final system of nonlinear algebraic equations along with its associated gradient matrix for the whole structure is obtained by a standard assembly procedure and then solved numerically by Newton-Raphson algorithm. A selected set of results is then reported to demonstrate and discuss the computational performance including the accuracy and convergence of the proposed technique.
Three kinds of nonlinear dispersive waves in elastic rods with finite deformation
Institute of Scientific and Technical Information of China (English)
ZHANG Shan-yuan; LIU Zhi-fang
2008-01-01
On the basis of classical linear theory on longitudinal, torsional and flexural waves in thin elastic rods, and taking finite deformation and dispersive effects into consideration, three kinds of nonlinear evolution equations are derived. Qualitative analysis of three kinds of nonlinear equations are presented. It is shown that these equations have homoclinic or heteroclinic orbits on the phase plane, corresponding to solitary wave or shock wave solutions, respectively. Based on the principle of homogeneous balance, these equations are solved with the Jacobi elliptic function expansion method. Results show that existence of solitary wave solution and shock wave solution is possible under certain conditions. These conclusions are consistent with qualitative analysis.
Duc, Nguyen Dinh; Quan, Tran Quoc
2012-09-01
An analytical investigation into the nonlinear response of thick functionally graded double-curved shallow panels resting on elastic foundations and subjected to thermal and thermomechanical loads is presented. Young's modulus and Poisson's ratio are both graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of constituents. All formulations are based on the classical shell theory with account of geometrical nonlinearity and initial geometrical imperfection in the cases of Pasternak-type elastic foundations. By applying the Galerkin method, explicit relations for the thermal load-deflection curves of simply supported curved panels are found. The effects of material and geometrical properties and foundation stiffness on the buckling and postbuckling load-carrying capacity of the panels in thermal environments are analyzed and discussed.
Control of an extending nonlinear elastic cable with an active vibration control strategy
Dai, L.; Sun, L.; Chen, C.
2014-10-01
An active control strategy based on the fuzzy sliding mode control (FSMC) is developed in this research for controlling the large-amplitude vibrations of an extending nonlinear elastic cable. The geometric nonlinearity of the cable and the fixed-fixed boundary of the cable are considered. For effectively and accurately control the motion of the cable with the active control strategy developed, the governing equation of the elastic cable is established and transformed into a multi-dimensional dynamic system with the 3rd order Galerkin method. The active control strategy is developed on the basis of the dynamic system, and the control strategy is applicable to multi-dimensional dynamic systems. In the numerical simulation, large-amplitude vibrations of the cable are effectively controlled with the control strategy. The results of the research demonstrate significances for controlling the cable vibrations of an elevator in practice.
Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides.
Suzuki, Keijiro; Baba, Toshihiko
2010-12-06
Optical nonlinearity can be enhanced by the combination of highly nonlinear chalcogenide glass and photonic crystal waveguides (PCWs) providing strong optical confinement and slow-light effects. In a Ag-As(2)Se(3) chalcogenide PCW, the effective nonlinear parameter γeff reaches 6.3 × 10(4) W(-1)m(-1), which is 200 times larger than that in Si photonic wire waveguides. In this paper, we report the detailed design, fabrication process, and the linear and nonlinear characteristics of this waveguide at silica fiber communication wavelengths. We show that the waveguide exhibits negligible two-photon absorption, and also high-efficiency self-phase modulation and four-wave mixing, which are assisted by low-dispersion slow light.
Krivosheina, Marina; Kobenko, Sergey; Tuch, Elena; Kozlova, Maria
2016-11-01
This paper investigates elastic and plastic waves in HCP single crystals through the numerical simulation of strain processes in anisotropic materials based on a zinc single crystal. Velocity profiles for compression waves in the back surfaces of single-crystal zinc plates with impact loading oriented in 0001 and 10 1 ¯0 are presented in this work as a part of results obtained in numerical simulations. The mathematical model implemented in this study reflects the following characteristics of the mechanical properties inherent in anisotropic (transtropic) materials: varying degree of anisotropy of elastic and plastic properties, which includes reverse anisotropy, dependence of distribution of all types of waves on the velocity orientation, and the anisotropy of compressibility. Another feature of elastic and plastic waves in HCP single crystals is that the shock wave does not split into an elastic precursor and "plastic" compression shock wave, which is inherent in zinc single crystals with loading oriented in 0001. The study compares numerical results obtained in a three-dimensional formulation with the results of velocity profiles from the back surfaces of target plates obtained in real experiments. These results demonstrate that the mathematical model is capable of describing the properties of the above-mentioned anisotropic (transtropic) materials.
Cubic Single Crystal Representations in Classical and Size-dependent Couple Stress Elasticity
Bansal, Dipanshu; Aref, Amjad J; Hadjesfandiari, Ali R
2015-01-01
Beginning with Cosserat theory in the early 20th century, there have been several different formulations for size-dependent elastic response. In this paper, we concentrate on the application of classical Cauchy theory and the recent parsimonious consistent couple stress theory to model a homogeneous linear elastic solid, exemplified by a pure single crystal with cubic structure. The focus is on an examination of elastodynamic response based upon wave velocities from ultrasonic excitation and phonon dispersion curves, along with adiabatic bulk moduli measurements. In particular, we consider in detail elastic parameter estimation within classical elasticity and consistent couple stress theory for four different cubic single crystals (NaCl, KCl, Cu, CuZn). The classical theory requires the estimation of three independent material parameters, while only one additional parameter relating skew-symmetric mean curvature to skew-symmetric couple-stress is needed for the size-dependent consistent couple stress theory. ...
GREEN＇S FUNCTION AND EFFECTIVE ELASTIC STIFFNESS TENSOR FOR ARBITRARY AGGREGATES OF CUBIC CRYSTALS
Institute of Scientific and Technical Information of China (English)
HuangMojia; ZhengChaomei
2004-01-01
A closed but approximate formula of Green's function for an arbitrary aggregate of cubic crystallites is given to derive the effective elastic stiffness tensor of the polycrystal. This formula, which includes three elastic constants of single cubic crystal and five texture coefficients,accounts for the effects of the orientation distribution function (ODF) up to terms linear in the texture coefficients. Thus it is expected that our formula would be applicable to arbitrary aggregates with weak texture or to materials such as aluminum whose single crystal has weak anisotropy.Three examples are presented to compare predictions from our formula with those from Nishioka and Lothe's formula and Synge's contour integral through numerical integration. As an application of Green's function, we briefly describe the procedure of deriving the effective elastic stiffness tensor for an orthorhombic aggregate of cubic crystallites. The comparison of the computational results given by the finite element method and our effective elastic stiffness tensor is made by an example.
Nonlinear microwave switching response of BSCCO single crystals
Energy Technology Data Exchange (ETDEWEB)
Jacobs, T.; Sridhar, S. [Northeastern Univ., Boston, MA (United States). Dept. of Physics; Willemsen, B.A. [Northeastern Univ., Boston, MA (United States). Dept. of Physics]|[Rome Lab., Hanscom AFB, MA (United States); Li, Qiang [Brookhaven National Lab., Upton, NY (United States); Gu, G.D.; Koshizuka, N. [Superconductivity Research Lab., Tokyo (Japan)
1996-06-01
Measurements of the surface impedance in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystal with microwave currents flowing along the {cflx c} axis show clear evidence of a step-like nonlinearity. The surface resistance switches between apparently quantized levels for microwave field strength changes < 1 mG. This nonlinear response can arise from the presence of intrinsic Josephson junctions along the {cflx c} axis of these samples driven by the microwave current.
Institute of Scientific and Technical Information of China (English)
Xingzhe Wang; Xiaojing Zheng
2009-01-01
Based on the generalized variational principle of magneto-thermo-elasticity of the ferromagnetic elastic medium, a nonlinear coupling theoretical modeling for a ferromagnetic thin shell is developed. All governing equations and boundary conditions for the ferromagnetic shell are obtained from the variational manipulations on the magnetic scalar potential, temperature and the elastic displacement related to the total energy functional. The multi-field couplings and geometrical nonlinearity of the ferromagnetic thin shell are taken into account in the modeling. The general modeling can be further deduced to existing models of the magneto-elasticity and the thermo-elasticity of a ferromagnetic shell and magneto-thermo-elasticity of a ferromagnetic plate, which axe coincident with the ones in literature.
Oscillations of a Beam on a Non-Linear Elastic Foundation under Periodic Loads
Directory of Open Access Journals (Sweden)
Donald Mark Santee
2006-01-01
Full Text Available The complexity of the response of a beam resting on a nonlinear elastic foundation makes the design of this structural element rather challenging. Particularly because, apparently, there is no algebraic relation for its load bearing capacity as a function of the problem parameters. Such an algebraic relation would be desirable for design purposes. Our aim is to obtain this relation explicitly. Initially, a mathematical model of a flexible beam resting on a non-linear elastic foundation is presented, and its non-linear vibrations and instabilities are investigated using several numerical methods. At a second stage, a parametric study is carried out, using analytical and semi-analytical perturbation methods. So, the influence of the various physical and geometrical parameters of the mathematical model on the non-linear response of the beam is evaluated, in particular, the relation between the natural frequency and the vibration amplitude and the first period doubling and saddle-node bifurcations. These two instability phenomena are the two basic mechanisms associated with the loss of stability of the beam. Finally Melnikov's method is used to determine an algebraic expression for the boundary that separates a safe from an unsafe region in the force parameters space. It is shown that this can be used as a basis for a reliable engineering design criterion.
Poole, L. R.
1972-01-01
A computer program is presented by which the effects of nonlinear suspension-system elastic characteristics on parachute inflation loads and motions can be investigated. A mathematical elastic model of suspension-system geometry is coupled to the planar equations of motion of a general vehicle and canopy. Canopy geometry and aerodynamic drag characteristics and suspension-system elastic properties are tabular inputs. The equations of motion are numerically integrated by use of an equivalent fifth-order Runge-Kutta technique.
Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium
Fernandes, R.; El-Borgi, S.; Mousavi, S. M.; Reddy, J. N.; Mechmoum, A.
2017-04-01
In this paper, we study the longitudinal linear and nonlinear free vibration response of a single walled carbon nanotube (CNT) embedded in an elastic medium subjected to different boundary conditions. This formulation is based on a large deformation analysis in which the linear and nonlinear von Kármán strains and their gradient are included in the expression of the strain energy and the velocity and its gradient are taken into account in the expression of the kinetic energy. Therefore, static and kinetic length scales associated with both energies are introduced to model size effects. The governing motion equation along with the boundary conditions are derived using Hamilton's principle. Closed-form solutions for the linear free vibration problem of the embedded CNT rod are first obtained. Then, the nonlinear free vibration response is investigated for various values of length scales using the method of multiple scales.
Non-linear optical titanyl arsenates: Crystal growth and properties
Nordborg, Jenni Eva Louise
Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic
Elastic anisotropy effects on the electrical responses of a thin sample of nematic liquid crystal
Gomes, O. A.; Yednak, C. A. R.; Ribeiro de Almeida, R. R.; Teixeira-Souza, R. T.; Evangelista, L. R.
2017-03-01
The electrical responses of a nematic liquid crystal cell are investigated by means of the elastic continuum theory. The nematic medium is considered as a parallel circuit of a resistance and a capacitance and the electric current profile across the sample is determined as a function of the elastic constants. In the reorientation process of the nematic director, the resistance and capacitance of the sample are determined by taking into account the elastic anisotropy. A nonmonotonic profile for the current is observed in which a minimum value of the current may be used to estimate the elastic constants values. This scenario suggests a theoretical method to determine the values of the bulk elastic constants in a single planar aligned cell just by changing the direction of applied electrical field and measuring the resulting electrical current.
Stojanović, Vladimir; Petković, Marko D.
2016-12-01
Geometrically nonlinear free and forced vibrations of damaged high order shear deformable beams resting on a nonlinear Pasternak foundation are investigated in this paper. Equations of motion are derived for the beam which is under subjected combined action of arbitrarily distributed or concentrated transverse loading as well as axial loading. To account for shear deformations, the concept of high order shear deformation is used in comparison with the concept of first order shear deformation theory. Analyses are performed to investigate the effects of the specific stiffness of the foundation on the damaged beam frequencies and displacements with the aim of equalising the response of a damaged and an intact beam. According to that, functions of the foundation stiffness are determined depending on the location and size of the damage as a result of the possibility for the damaged beam to behave like one that is intact. An advanced p-version of the finite element method is developed for geometrically nonlinear vibrations of damaged Reddy-Bickford beams. The present study gives a clear view of the nonlinear dynamical behaviour of four types of beams according to high order shear deformation theory - an intact beam, a damaged beam, a damaged beam on an elastic foundation and intact beam on elastic foundation. The paper also presents the derivation of a new set of two nonlinear partial differential equations where only the transverse and axial displacements figure. The forced nonlinear vibrations problem is solved in the time domain using the Newmark integration method. Free vibration analysis carried out by harmonic balance and the use of continuation methods and backbone curves are constructed.
Acoustic and elastic properties of Sn(2)P(2)S(6) crystals.
Mys, O; Martynyuk-Lototska, I; Grabar, A; Vlokh, R
2009-07-01
We present the results concerned with acoustic and elastic properties of Sn(2)P(2)S(6) crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.
Single-Crystal Elastic Constants of Yttria (Y2O3) Measured to High Temperatures
Sayir, Ali; Palko, James W.; Kriven, Waltraud M.; Sinogeikin, Sergey V.; Bass, Jay D.
2001-01-01
Yttria, or yttrium sesquioxide (Y2O3), has been considered for use in nuclear applications and has gained interest relatively recently for use in infrared optics. Single crystals of yttria have been grown successfully at the NASA Glenn Research Center using a laser-heated float zone technique in a fiber and rod. Such samples allow measurement of the single-crystal elastic properties, and these measurements provide useful property data for the design of components using single crystals. They also yield information as to what degree the elastic properties of yttria ceramics are a result of the intrinsic properties of the yttria crystal in comparison to characteristics that may depend on processing, such as microstructure and intergranular phases, which are common in sintered yttria. The single-crystal elastic moduli are valuable for designing such optical components. In particular, the temperature derivatives of elastic moduli allow the dimensional changes due to heating under physical constraints, as well as acoustic excitation, to be determined. The single-crystal elastic moduli of yttria were measured by Brillouin spectroscopy up to 1200 C. The room-temperature values obtained were C(sub 11) = 223.6 + 0.6 GPa, C(sub 44) = 74.6 + 0.5 GPa, and C(sub 12) = 112.4 + 1.0 GPa. The resulting bulk and (Voigt-Reuss-Hill) shear moduli were K = 149.5 + 1.0 GPa and G(sub VRH) = 66.3 + 0.8 GPa, respectively. Linear least-squares regressions to the variation of bulk and shear moduli with temperature resulted in derivatives of dK/dT = -17 + 2 MPa/C and dG(sub VRH)/dT = -8 + 2 MPa/ C. Elastic anisotropy was found to remain essentially constant over the temperature range studied.
Photonic Crystal Nanocavity Devices for Nonlinear Signal Processing
DEFF Research Database (Denmark)
Yu, Yi
, membranization of InP/InGaAs structure and wet etching. Experimental investigation of the switching dynamics of InP photonic crystal nanocavity structures are carried out using short-pulse homodyne pump-probe techniques, both in the linear and nonlinear region where the cavity is perturbed by a relatively small......This thesis deals with the investigation of InP material based photonic crystal cavity membrane structures, both experimentally and theoretically. The work emphasizes on the understanding of the physics underlying the structures’ nonlinear properties and their applications for all-optical signal...... and large pump power. The experimental results are compared with coupled mode equations developed based on the first order perturbation theory, and carrier rate equations we established for the dynamics of the carrier density governing the cavity properties. The experimental observations show a good...
GaInP on oxide nonlinear photonic crystal technology.
Martin, Aude; Sanchez, Dorian; Combrié, Sylvain; de Rossi, Alfredo; Raineri, Fabrice
2017-02-01
Heat dissipation is improved in nonlinear III-V photonic crystal waveguides owing to the hybrid III-V/Silicon integration platform, allowing efficient four-wave mixing in the continuous-wave regime. A conversion efficiency of -17.6 dB is demonstrated with a pump power level below 100 mW in a dispersion-engineered waveguide with a flat group index of 28 over a 10 nm bandwidth.
Temperature dependences of piezoelectric, elastic and dielectric constants of L-alanine crystal
Tylczyński, Z.; Sterczyńska, A.; Wiesner, M.
2011-09-01
Temperature changes in the components of piezoelectric, elastic and dielectric tensors were studied in L-alanine crystals in the range 100-300 K. A jumpwise increase in the c55 component of the elastic stiffness accompanied by maxima in damping of all face-shear modes observed at 199 K in L-alanine crystal were interpreted as a result of changes in the NH3+ vibrations occurring through electron-phonon coupling. All components of the piezoelectric tensor show small anomalies in this temperature range. The components of the electromechanical coupling coefficient determined indicate that L-alanine is a weak piezoelectric.
Geometric methods in the elastic theory of membranes in liquid crystal phases
Ji Xing Liu; Yu Zhang Xie
1999-01-01
This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic - A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations
Arivuselvi, R.; Ruban Kumar, A.
2017-02-01
The growth of inorganic zinc di-magnesium chloro sulphate (ZDMCS) nonlinear optical material from low temperature evaporation technique at ambient temperature has been reported. The dimension of harvested crystal is 28×10×2 mm3 and is possess rectangular shape morphology. The single crystal X-ray diffraction studies confirmed that the grown crystal belongs to the system of trigonal. The S-Cl stretching vibrations and Mg2+ ions present in the sample were observed by FTIR spectrometer. The cut-off wavelength of the grown crystal is about 203 nm is found by UV-visible absorption spectrum. The nonlinear optical efficiency was determined by powder Kurtz Perry technique. EDAX spectrum confirms the presence of elements within the material. Dielectric nature of the sample was analyzed for the frequency range 50 Hz to 5 MHz at different temperatures. The mechanical behaviour of the title compound was investigated using Vicker's microhardness tester.
Elastic Torque and the Levitation of Metal Wires by a Nematic Liquid Crystal
Lapointe, C.; Hultgren, A.; Silevitch, D. M.; Felton, E. J.; Reich, D. H.; Leheny, R. L.
2004-01-01
Anisotropic particles suspended in a nematic liquid crystal disturb the alignment of the liquid crystal molecules and experience small forces that depend on the particles' orientation. We have measured these forces using magnetic nanowires. The torque on a wire and its orientation-dependent repulsion from a flat surface are quantitatively consistent with theoretical predictions based on the elastic properties of the liquid crystal. These forces can also be used to manipulate submicrometer-scale particles. We show that controlled spatial variations in the liquid crystal's alignment convert the torque on a wire to a translational force that levitates the wire to a specified height.
Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers
DEFF Research Database (Denmark)
Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.
of nonlinear beam reshaping occurring on a short time scale before the establishment of a steady state regime. In experiment, a 532nm laser beam can be injected into a single hole of an infiltrated PCF cladding structure, and the temporal dynamics of the nonlinear response is measured by monitoring......Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio......-sensing as well as active devices for all-optical switching at low (mW) laser powers. Commercially available PCFs infiltrated with liquids also provide a versatile and compact tool for exploration of the fundamentals of nonlinear beam propagation in periodic photonic structures. To explore the full scientific...
Soutas-Little, Robert William
2010-01-01
According to the author, elasticity may be viewed in many ways. For some, it is a dusty, classical subject . . . to others it is the paradise of mathematics."" But, he concludes, the subject of elasticity is really ""an entity itself,"" a unified subject deserving comprehensive treatment. He gives elasticity that full treatment in this valuable and instructive text. In his preface, Soutas-Little offers a brief survey of the development of the theory of elasticity, the major mathematical formulation of which was developed in the 19th century after the first concept was proposed by Robert Hooke
Directory of Open Access Journals (Sweden)
Jessamine P Winer
Full Text Available Most tissue cells grown in sparse cultures on linearly elastic substrates typically display a small, round phenotype on soft substrates and become increasingly spread as the modulus of the substrate increases until their spread area reaches a maximum value. As cell density increases, individual cells retain the same stiffness-dependent differences unless they are very close or in molecular contact. On nonlinear strain-stiffening fibrin gels, the same cell types become maximally spread even when the low strain elastic modulus would predict a round morphology, and cells are influenced by the presence of neighbors hundreds of microns away. Time lapse microscopy reveals that fibroblasts and human mesenchymal stem cells on fibrin deform the substrate by several microns up to five cell lengths away from their plasma membrane through a force limited mechanism. Atomic force microscopy and rheology confirm that these strains locally and globally stiffen the gel, depending on cell density, and this effect leads to long distance cell-cell communication and alignment. Thus cells are acutely responsive to the nonlinear elasticity of their substrates and can manipulate this rheological property to induce patterning.
Energy Technology Data Exchange (ETDEWEB)
Vladas Tvaskis; John Arrington; Michael Christy; Rolf Ent; Cynthia Keppel; Yongguang Liang; Grahame Vittorini
2006-01-26
The effects of two-photon exchange corrections, suggested to explain the difference between measurements of the proton elastic electromagnetic form factors using the polarization transfer and Rosenbluth techniques, have been studied in elastic and inelastic scattering data. Such corrections could introduce epsilon-dependent non-linearities in inelastic Rosenbluth separations, where epsilon is the virtual photon polarization parameter. It is concluded that such non-linear effects are consistent with zero for elastic, resonance, and deep-inelastic scattering for all Q{sup 2} and W{sup 2} values measured.
Elastic interactions and manipulation of wire-shaped inclusions in nematic liquid crystals
Lapointe, Clayton P.
Anisotropic particles suspended in a nematic liquid crystal disturb the alignment of the liquid crystal molecules and experience small forces and torques mediated by the elasticity of the fluid. These elastic interactions depend upon the orientation of the particle relative to the alignment of the liquid crystal as well as the nature of the molecular-scale alignment at the surface of the particle. In this thesis, I present the results of video microscopy studies on elastic interactions on ferromagnetic nanowires suspended in the nematic liquid crystal 4-pentyl-4-cyanobiphenyl (5CB). In the first part, I describe measurements that characterize the orientation-dependent elastic torque on a nanowire with longitudinal anchoring in uniformly aligned 5CB, its temperature dependence, as well as the elastic repulsion of a nanowire from a flat wall. These measurements were found to be quantitatively consistent with theoretical predictions based on the elastic properties of 5CB. In the second part of this thesis, I demonstrate that distorting the liquid crystal from a state of uniform alignment results in converting the elastic torque on a nanowire into an orientation-dependant translational force that can be utilized to reversibly manipulate the positions of isolated nanowires as well as to assemble suspensions of them into pre-designed arrays on a substrate. First, I describe measurements of an orientation-dependent levitating force on a nanowire in a twisted nematic cell. This force can be used to position nanowires to pre-determined heights above the bottom substrate by controlling their orientation with an external magnetic field. I then describe a series of experiments in which in a liquid crystal cell with a pattern of micron-scale stripe domains was used to drive nanowires held at a fixed orientation with external magnetic fields selectively into the middle of the stripe domains. In the last part of this thesis, I discuss video microscopy experiments to probe the
Nonlinear MIMO Control of a Continuous Cooling Crystallizer
Directory of Open Access Journals (Sweden)
Pedro Alberto Quintana-Hernández
2012-01-01
Full Text Available In this work, a feedback control algorithm was developed based on geometric control theory. A nonisothermal seeded continuous crystallizer model was used to test the algorithm. The control objectives were the stabilization of the third moment of the crystal size distribution (μ3 and the crystallizer temperature (T; the manipulated variables were the stirring rate and the coolant flow rate. The nonlinear control (NLC was tested at operating conditions established within the metastable zone. Step changes of magnitudes ±0.0015 and ±0.5°C were introduced into the set point values of the third moment and crystallizer temperature, respectively. In addition, a step change of ±1°C was introduced as a disturbance in the feeding temperature. Closed-loop stability was analyzed by calculating the eigenvalues of the internal dynamics. The system presented a stable dynamic behavior when the operation conditions maintain the crystallizer concentration within the metastable zone. Closed-loop simulations with the NLC were compared with simulations that used a classic PID controller. The PID controllers were tuned by minimizing the integral of the absolute value of the error (IAE criterion. The results showed that the NLC provided a suitable option for continuous crystallization control. For all analyzed cases, the IAEs obtained with NLC were smaller than those obtained with the PID controller.
The 'sixth sense' of ultrasound: probing nonlinear elasticity with acoustic radiation force.
Guzina, Bojan B; Dontsov, Egor V; Urban, Matthew W; Fatemi, Mostafa
2015-05-07
Prompted by a recent finding that the magnitude of the acoustic radiation force (ARF) in isotropic tissue-like solids depends linearly on a particular third-order modulus of elasticity-hereon denoted by C, this study investigates the possibility of estimating C from the amplitude of the ARF-generated shear waves. The featured coefficient of nonlinear elasticity, which captures the incipient nonlinear interaction between the volumetric and deviatoric modes of deformation, has so far received only a limited attention in the context of soft tissues due to the fact that the latter are often approximated as (i) fluid-like when considering ultrasound waves, and (ii) incompressible under static deformations. On establishing the analytical and computational platform for the proposed sensing methodology, the study proceeds with applying the prototype technique toward estimating via ARF the third-order modulus C in a series of tissue-mimicking phantoms. To help validate the concept and its implementation, the germane third-order modulus is independently estimated in each phantom via an established technique known as acoustoelasticity. The C-estimates obtained respectively via acoustoelasticity and the new theory of ARF show a significant degree of consistency. The key features of the new sensing methodology are that: (a) it requires no external deformation of a material other than that produced by the ARF, and (b) it estimates the nonlinear C-modulus locally, over the focal region of an ultrasound beam-where the shear waves are being generated.
Loyer, A.; Sinou, J.-J.; Chiello, O.; Lorang, X.
2012-02-01
As noise reduction tends to be part of environmental directives, predicting squeal noise generated by disc brakes is an important industrial issue. It involves both the transient and stationary nonlinear dynamics of self-excited systems with frictional contact. Time simulation of the phenomenon is an attractive option for reducing experiment costs. However, since such computations using full finite element models of industrial disc brake systems is time-consuming, model reduction has to be performed. In this paper, both the transient and stationary nonlinear behaviors of the friction destabilized system and the effect of dynamical reduction on the nonlinear response of a simple friction destabilized system are carried out. The first part provides a description of the general modeling retained for friction destabilized systems. Then, discretization and solving processes for the stability analysis and the temporal evolution are presented. The third part presents an analysis of a sliding elastic layer for different operating conditions, in order to better understand the nonlinear behavior of such systems. Finally, spatial model reduction is performed with different kinds of reduction bases in order to analyze the different effects of modal reductions. This clearly shows the necessity of including static modes in the reduction basis and that nonlinear interactions between unstable modes are very difficult to represent with reduced bases. Finally, the proposed model and the associated studies are intended to be the benchmark cases for future comparison.
Küchler, Sebastian; Meurer, Thomas; Jacobs, Laurence J; Qu, Jianmin
2009-03-01
This study investigates two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity. The problem is formulated as a hyperbolic system of conservation laws, which is solved numerically using a semi-discrete central scheme. These numerical results are then analyzed in the frequency domain to interpret the nonlinear effects, specifically the excitation of higher-order harmonics. To quantify and compare the nonlinearity of different materials, a new parameter is introduced, which is similar to the acoustic nonlinearity parameter beta for one-dimensional longitudinal waves. By using this new parameter, it is found that the nonlinear effects of a material depend on the point of observation in the half-space, both the angle and the distance to the excitation source. Furthermore it is illustrated that the third-order elastic constants have a linear effect on the acoustic nonlinearity of a material.
Microhardness studies on nonlinear optical -alanine single crystals
Indian Academy of Sciences (India)
R Hanumantharao; S Kalainathan
2013-06-01
Vickers and Knoop microhardness tests were carried out on grown -alanine single crystals by slow evaporation technique over a load range of 10–50 g on selected broad (2 0 3) plane. Vickers (v) and Knoop (k) microhardness for the above loads were found to be in the range of 60–71 kg/mm2 and 35–47 kg/mm2, respectively. Vickers microhardness number (v) and Knoop microhardness number (k) were found to increase with increasing load. Meyer’s index number () calculated from v shows that the material belongs to the soft material category. Using Wooster’s empirical relation, the elastic stiffness constant (11) was calculated from Vickers hardness values. Young’s modulus was calculated using Knoop hardness values. Hardness anisotropy has been observed in accordance with the orientation of the crystal.
Scaling functional patterns of skeletal and cardiac muscles: New non-linear elasticity approach
Kokshenev, Valery B
2009-01-01
Responding mechanically to environmental requests, muscles show a surprisingly large variety of functions. The studies of in vivo cycling muscles qualified skeletal muscles into four principal locomotor patterns: motor, brake, strut, and spring. While much effort of has been done in searching for muscle design patterns, no fundamental concepts underlying empirically established patterns were revealed. In this interdisciplinary study, continuum mechanics is applied to the problem of muscle structure in relation to function. The ability of a powering muscle, treated as a homogenous solid organ, tuned to efficient locomotion via the natural frequency is illuminated through the non-linear elastic muscle moduli controlled by contraction velocity. The exploration of the elastic force patterns known in solid state physics incorporated in activated skeletal and cardiac muscles via the mechanical similarity principle yields analytical rationalization for locomotor muscle patterns. Besides the explanation of the origin...
Global well-posedness for nonlinear nonlocal Cauchy problems arising in elasticity
Directory of Open Access Journals (Sweden)
Hantaek Bae
2017-02-01
Full Text Available In this article, we prove global well-posedness for a family of one dimensional nonlinear nonlocal Cauchy problems arising in elasticity. We consider the equation $$ u_{tt}-\\delta Lu_{xx}=\\big(\\beta \\ast [(1-\\deltau+u^{2n+1}]\\big_{xx}\\,, $$ where $L$ is a differential operator, $\\beta$ is an integral operator, and $\\delta =0$ or 1. (Here, the case $\\delta=1$ represents the additional doubly dispersive effect. We prove the global well-posedness of the equation in energy spaces.
Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies
Sozio, Fabio; Yavari, Arash
2017-01-01
In this paper we formulate the initial-boundary value problems of accreting cylindrical and spherical nonlinear elastic solids in a geometric framework. It is assumed that the body grows as a result of addition of new (stress-free or pre-stressed) material on part of its boundary. We construct Riemannian material manifolds for a growing body with metrics explicitly depending on the history of applied external loads and deformation during accretion and the growth velocity. We numerically solve the governing equilibrium equations in the case of neo-Hookean solids and compare the accretion and residual stresses with those calculated using the linear mechanics of surface growth.
Scaling Laws for the Response of Nonlinear Elastic Media with Implications for Cell Mechanics
Shokef, Yair; Safran, Samuel A.
2012-04-01
We show how strain stiffening affects the elastic response to internal forces, caused either by material defects and inhomogeneities or by active forces that molecular motors generate in living cells. For a spherical force dipole in a material with a strongly nonlinear strain energy density, strains change sign with distance, indicating that, even around a contractile inclusion or molecular motor, there is radial compression; it is only at a long distance that one recovers the linear response in which the medium is radially stretched. Scaling laws with irrational exponents relate the far-field renormalized strain to the near-field strain applied by the inclusion or active force.
An Approximate Method for Analysis of Solitary Waves in Nonlinear Elastic Materials
Rushchitsky, J. J.; Yurchuk, V. N.
2016-05-01
Two types of solitary elastic waves are considered: a longitudinal plane displacement wave (longitudinal displacements along the abscissa axis of a Cartesian coordinate system) and a radial cylindrical displacement wave (displacements in the radial direction of a cylindrical coordinate system). The basic innovation is the use of nonlinear wave equations similar in form to describe these waves and the use of the same approximate method to analyze these equations. The distortion of the wave profile described by Whittaker (plane wave) or Macdonald (cylindrical wave) functions is described theoretically
Nonlinear Elastic Deformation of Thin Composite Shells of Discretely Variable Thickness
Lutskaya, I. V.; Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.
2016-11-01
A method for analyzing the stress-strain state of nonlinear elastic orthotropic thin shells with reinforced holes and shells of discretely variable thickness is developed. The reference surface is not necessarily the midsurface. The constitutive equations are derived using Lomakin's theory of anisotropic plasticity. The methods of successive approximations and variational differences are used. The Kirchhoff-Love hypotheses are implemented using Lagrange multipliers. The method allows analyzing the stress-strain state of shells with arbitrarily varying thickness and ribbed shells. The numerical results are presented in the form of tables and analyzed
Optical Solitons in a Trinal-channel Inverted Nonlinear Photonic Crystal
Chen, Guihua; Wu, Muying
2014-01-01
Inverted nonlinear photonic crystals are the crystals featuring competition between linear and nonlinear lattices, with minima of the linear potential coinciding with maxima of the nonlinear pseudopotential, and vice versa. Traditional inverted nonlinear photonic crystals only have two channels, and can be attained experimentally by means of Rhodamine B (RhB, a dye featuring saturable absorption) doped into the SU-8 polymer. In this paper, a new type of inverted nonlinear photonic crystal is constructed by juxtaposing three kinds of channels into a period. These three channels are a purely linear channel, a saturable self-focusing nonlinear channel, and a saturable self-defocusing nonlinear channel. This optical device is assumed to be fabricated by means of SU-8 polymer material periodically doped with two types of active dyes. The nonlinear propagation of a light field inside this device (passing along the channel) can be described by a nonlinear Schrodinger equation. Stable multi-peak fundamental and dipol...
Pakarzadeh, H.; Rezaei, S. M.
2016-01-01
In this article, we investigate for the first time the dispersion and the nonlinear characteristics of the tapered photonic crystal fibers (PCFs) as a function of length z, via solving the eigenvalue equation of the guided mode using the finite-difference frequency-domain method. Since the structural parameters such as the air-hole diameter and the pitch of the microstructured cladding change along the tapered PCFs, dispersion and nonlinear properties change with the length as well. Therefore, it is important to know the exact behavior of such fiber parameters along z which is necessary for nonlinear optics applications. We simulate the z dependency of the zero-dispersion wavelength, dispersion slope, effective mode area, nonlinear parameter, and the confinement loss along the tapered PCFs and propose useful relations for describing dispersion and nonlinear parameters. The results of this article, which are in a very good agreement with the available experimental data, are important for simulating pulse propagation as well as investigating nonlinear effects such as supercontinuum generation and parametric amplification in tapered PCFs.
Hieber, Simone E.; Koumoutsakos, Petros
2008-11-01
We present a novel Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. Linear solids are represented by the Lagrangian formulation of the stress-strain relationship that is extended to nonlinear solids by using the Lagrangian evolution of the deformation gradient described in a moving framework. The present method introduces a level set description, along with the particles, to capture the body deformations and to enforce the boundary conditions. Furthermore, the accuracy of the method in cases of large deformations is ensured by implementing a particle remeshing procedure. The method is validated in several benchmark problems, in two and three dimensions and the results compare well with the results of respective finite elements simulations. In simulations of large solid deformation under plane strain compression, the finite element solver exhibits spurious structures that are not present in the Lagrangian particle simulations. The particle simulations are compared with experimental results in an aspiration test of liver tissue.
Study on Attenuation, Modulus of Elasticity and Nonlinearity in Thermowood Using Ultrasound
Hæggström, E.; Wallin, A.; Hoffren, H.; Hassinen, T.; Viitaniemi, P.
2005-04-01
We determined ultrasonically the attenuation, modulus of elasticity (MOE), and nonlinearity parameter (B/A) of dry defect-free thermally modified wood samples ("thick" 10 × 50 × 100 mm3 and "thin" 2 × 40 × 150 mm3) of Finnish pine, Pinus Sylvestris, as a function of treatment temperature (60-240 °C, three hours in protective water steam). The samples were cut as radial-tangential (RT) planes, and as longitudinal-radial (LR) planes. Two distinct regions of change in mechanical parameters were seen: one around 140 C where both the linear and nonlinear parameters increased and one around 230 C where the mechanical parameters decreased. These treatment temperatures thus serves as candidates for quality class delimiters for these soft wood samples.
Metamaterials-based sensor to detect and locate nonlinear elastic sources
Energy Technology Data Exchange (ETDEWEB)
Gliozzi, Antonio S.; Scalerandi, Marco [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Miniaci, Marco; Bosia, Federico [Department of Physics, University of Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Pugno, Nicola M. [Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (Trento) (Italy); School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)
2015-10-19
In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.
Possible second-order nonlinear interactions of plane waves in an elastic solid.
Korneev, V A; Demčenko, A
2014-02-01
There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The considered waves include longitudinal and two shear waves polarized in the interacting plane and orthogonal to it. The amplitudes of scattered waves have simple analytical forms, which can be used for experimental setup and design. The analytic results are verified by comparison with numerical solutions of initial equations. Amplitude coefficients for all ten interactions are computed as functions of frequency for polyvinyl chloride, together with interaction and scattering angles. The nonlinear equation of motion is put into a general vector form and can be used for any coordinate system.
Elastic Wave Propagation in Two-Dimensional Ordered and Weakly Disordered Phononic Crystals
Institute of Scientific and Technical Information of China (English)
YUAN Zuo-Dong; CHENG Jian-Chun
2005-01-01
@@ Elastic wave propagation in two-dimensional solid-solid ordered and weakly disordered phononic crystals is studied by using finite-difference time-domain method.Theoretical results show that obvious band gaps in the ordered crystal could be found, while in the weakly disordered ones the band gaps could partially vanish.Furthermore,with increase of disorder, band gaps are destructed badly and prominently in the high frequency regime while slightly in the low regime.Comparing the energy transmission dependent on time, we find that the coda wave phenomenon is prominent in the ordered crystal while weakened in the weakly disordered ones, and the physical properties are discussed.
Wang, Chenju; Gu, Jianbing; Kuang, Xiaoyu; Xiang, Shikai
2015-06-01
Nonlinear elastic properties of diamond-cubic silicon and germanium have not been investigated sufficiently to date. Knowledge of these properties not only can help us to understand nonlinear mechanical effects but also can assist us to have an insight into the related anharmonic properties, so we investigate the nonlinear elastic behaviour of single silicon and germanium by calculating their second- and third-order elastic constants. All the results of the elastic constants show good agreement with the available experimental data and other theoretical calculations. Such a phenomenon indicates that the present values of the elastic constants are accurate and can be used to further study the related anharmonic properties. Subsequently, the anharmonic properties such as the pressure derivatives of the second-order elastic constants, Grüneisen constants of long-wavelength acoustic modes, and ultrasonic nonlinear parameters are explored. All the anharmonic properties of silicon calculated in the present work also show good agreement with the existing experimental results; this consistency not only reveals that the calculation method of the anharmonic properties is feasible but also illuminates that the anharmonic properties obtained in the present work are reliable. For the anharmonic properties of germanium, since there are no experimental result and other theoretical data till now, we hope that the anharmonic properties of germanium first offered in this work would serve as a reference for future studies.
Energy Technology Data Exchange (ETDEWEB)
Wang, Chenju [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics; Gu, Jianbing [Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics; Sichuan Univ., Chengdu (China). College of Physical Science and Technology; Kuang, Xiaoyu [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Xiang, Shikai [Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics
2015-10-01
Nonlinear elastic properties of diamond-cubic silicon and germanium have not been investigated sufficiently to date. Knowledge of these properties not only can help us to understand nonlinear mechanical effects but also can assist us to have an insight into the related anharmonic properties, so we investigate the nonlinear elastic behaviour of single silicon and germanium by calculating their second- and third-order elastic constants. All the results of the elastic constants show good agreement with the available experimental data and other theoretical calculations. Such a phenomenon indicates that the present values of the elastic constants are accurate and can be used to further study the related anharmonic properties. Subsequently, the anharmonic properties such as the pressure derivatives of the second-order elastic constants, Grueneisen constants of long-wavelength acoustic modes, and ultrasonic nonlinear parameters are explored. All the anharmonic properties of silicon calculated in the present work also show good agreement with the existing experimental results; this consistency not only reveals that the calculation method of the anharmonic properties is feasible but also illuminates that the anharmonic properties obtained in the present work are reliable. For the anharmonic properties of germanium, since there are no experimental result and other theoretical data till now, we hope that the anharmonic properties of germanium first offered in this work would serve as a reference for future studies.
The study of the elasticity of spider dragline silk with liquid crystal model
Energy Technology Data Exchange (ETDEWEB)
Cui Linying, E-mail: cly05@mails.tsinghua.edu.c [Department of Physics, Tsinghua University, Beijing 100084 (China); Liu Fei [Centre for Advanced Study, Tsinghua University, Beijing 100084 (China); Ouyang Zhongcan, E-mail: oy@itp.ac.c [Centre for Advanced Study, Tsinghua University, Beijing 100084 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, PO Box 2735, Beijing 100190 (China)
2009-11-30
Spider dragline silk is an optimal biomaterial with a combination of high tensile strength and high elasticity, and it has long been suggested to belong to liquid crystalline materials. However, a satisfactory liquid crystal description for the mechanical properties of the dragline is still missing. To solve the long existing problem, we generalized the Maier-Saupe theory of nematics to construct a liquid crystal model of the deformation mechanism of the dragline silk. We show that the remarkable elasticity of the dragline can be understood as the isotropic-nematic phase transition of the chain network with the beginning of the transition corresponding to the yield point. The calculated curve fits well with the measurements and the yield point is obtained self-consistently within our framework. The present theory can also qualitatively account for the drop of stress in supercontracted spider silk. All these comprehensive agreements between theory and experiments strongly indicate the dragline to belong to liquid crystal materials.
Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes
Kirkendall, Christopher R.; Kwon, Jae W.
2016-03-01
Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion.
Highly Nonlinear and Birefringent Spiral Photonic Crystal Fiber
Directory of Open Access Journals (Sweden)
S. Revathi
2014-01-01
Full Text Available We propose and design a spiral photonic crystal fiber with elliptical air holes for achieving high birefringence, large nonlinearity, and negative dispersion. The structure is designed using chalcogenide glass (As2S3 for different ellipticity ratios of air holes in the cladding and the effect on various properties is observed. The proposed structure has birefringence of the order 10−2, nonlinearity of 26739.42 W−1 m−1, and dispersion of −1136.69 at 0.85 μm. An accurate numerical approach based on finite element method is used for the design and simulation of the structure. Due to high birefringence and negative dispersion, the proposed structure can be used for polarization control and dispersion compensation, respectively.
Interfacial elastic fingering in Hele-Shaw cells: A weakly nonlinear study
Carvalho, Gabriel D.
2013-11-11
We study a variant of the classic viscous fingering instability in Hele-Shaw cells where the interface separating the fluids is elastic, and presents a curvature-dependent bending rigidity. By employing a second-order mode-coupling approach we investigate how the elastic nature of the interface influences the morphology of emerging interfacial patterns. This is done by focusing our attention on a conventionally stable situation in which the fluids involved have the same viscosity. In this framework, we show that the inclusion of nonlinear effects plays a crucial role in inducing sizable interfacial instabilities, as well as in determining the ultimate shape of the pattern-forming structures. Particularly, we have found that the emergence of either narrow or wide fingers can be regulated by tuning a rigidity fraction parameter. Our weakly nonlinear findings reinforce the importance of the so-called curvature weakening effect, which favors the development of fingers in regions of lower rigidity. © 2013 American Physical Society.
Nonlinear visco-elastic finite element analysis of different porcelain veneers configuration.
Sorrentino, Roberto; Apicella, Davide; Riccio, Carlo; Gherlone, Enrico; Zarone, Fernando; Aversa, Raffaella; Garcia-Godoy, Franklin; Ferrari, Marco; Apicella, Antonio
2009-11-01
This study is aimed at evaluating the biomechanical behavior of feldspathic versus alumina porcelain veneers. A 3D numerical model of a maxillary central incisor, with the periodontal ligament (PDL) and the alveolar bone was generated. Such model was made up of four main volumes: dentin, enamel, cement layer and veneer. Incisors restored with alumina and feldspathic porcelain veneers were compared with a natural sound tooth (control). Enamel, cementum, cancellous and cortical bone were considered as isotropic elastic materials; on the contrary, the tubular structure of dentin was designed as elastic orthotropic. The nonlinear visco-elatic behavior of the PDL was considered. The veneer volumes were coupled with alumina and feldspathic porcelain mechanical properties. The adhesive layers were modeled in the FE environment using spring elements. A 50N load applied at 60 degrees angle with tooth longitudinal axis was applied and validated. Compressive stresses were concentrated on the external surface of the buccal side of the veneer close to the incisal margin; such phenomenon was more evident in the presence of alumina. Tensile stresses were negligible when compared to compressive ones. Alumina and feldspathic ceramic were characterized by a different biomechanical behavior in terms of elastic deformations and stress distributions. The ultimate strength of both materials was not overcome in the performed analysis.
Ahmadpoor, Fatemeh; Wang, Peng; Huang, Rui; Sharma, Pradeep
2017-10-01
The study of statistical mechanics of thermal fluctuations of graphene-the prototypical two-dimensional material-is rendered rather complicated due to the necessity of accounting for geometric deformation nonlinearity. Unlike fluid membranes such as lipid bilayers, coupling of stretching and flexural modes in solid membranes like graphene leads to a highly anharmonic elastic Hamiltonian. Existing treatments draw heavily on analogies in the high-energy physics literature and are hard to extend or modify in the typical contexts that permeate materials, mechanics and some of the condensed matter physics literature. In this study, using a variational perturbation method, we present a ;mechanics-oriented; treatment of the thermal fluctuations of elastic sheets such as graphene and evaluate their effect on the effective bending stiffness at finite temperatures. In particular, we explore the size, pre-strain and temperature dependency of the out-of-plane fluctuations, and demonstrate how an elastic sheet becomes effectively stiffer at larger sizes. Our derivations provide a transparent approach that can be extended to include multi-field couplings and anisotropy for other 2D materials. To reconcile our analytical results with atomistic considerations, we also perform molecular dynamics simulations on graphene and contrast the obtained results and physical insights with those in the literature.
Photo-elastic effect, thermal lensing and depolarization in a-cut tetragonal laser crystals
Yumashev, K. V.; Zakharova, A. N.; Loiko, P. A.
2016-06-01
We report on analytical description of thermal lensing effect in tetragonal crystals cut along the [1 0 0] crystallographic axis, for the two principal light polarizations, E ┴ c and E || c, under diode-pumping (plane stress approximation). Within this approach, we take into account anisotropy of elastic, photo-elastic, thermal and optical properties of the material. Expressions for the ‘generalized’ thermo-optic coefficient χ are presented. It is shown that astigmatism of thermal lens is determined both by the photo-elastic and end-bulging effects. The sign of the photo-elastic term χ″ can be either positive or negative affecting significantly the sign of the thermal lens. Depolarization loss in a-cut tetragonal crystals is few orders of magnitude lower than that in cubic crystals. Calculations are performed for a-cut tetragonal molybdates, Nd:CaMoO4, Nd:PbMoO4 and Nd:NaBi(MoO4)2.
Elastic Properties of Nematic Liquid Crystals Formed by Living and Migrating Cells
Kemkemer, R; Kaufmann, D; Gruler, H; Kemkemer, Ralf; Kling, Dieter; Kaufmann, Dieter; Gruler, Hans
1998-01-01
In culture migrating and interacting amoeboid cells can form nematic liquid crystal phases. A polar nematic liquid crystal is formed if the interaction has a polar symmetry. One type of white blood cells (granulocytes) form clusters where the cells are oriented towards the center. The core of such an orientational defect (disclination) is either a granulocyte forced to be in an isotropic state or another cell type like a monocyte. An apolar nematic liquid crystal is formed if the interaction has an apolar symmetry. Different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (= fat cells) etc., form an apolar nematic liquid crystal. The orientational elastic energy is derived and the orientational defects (disclination) of nematic liquid crystals are investigated. The existence of half-numbered disclinations show that the nematic phase has an apolar symmetry. The density- and order parameter dependence...
Pandian, Muthu Senthil; Karuppasamy, P.; Ramasamy, P.
2017-05-01
The semi-organic nonlinear optical single crystals of potassium 3,5-dinitrobenzoate (KDNB) were grown by slow evaporation solution technique (SEST). The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. The optical transmittance, cut-off wavelength and band gap of the KDNB crystal were obtained by UV-Vis NIR spectrum analysis. Vickers microhardness analysis was carried out to identify mechanical stability and work hardening co-efficient of the grown crystal. The crystalline perfection of the grown crystal was identified by chemical etching study using water as etchant. The third-order nonlinear optical properties such as nonlinear refractive index (n2), nonlinear absorption co-efficient (β) and third order nonlinear susceptibility (χ(3)) of KDNB crystal were evaluated using Z-scan technique at the wavelength of 632.8 nm.
Institute of Scientific and Technical Information of China (English)
Xingzhe Wang; Xiaojing Zheng
2009-01-01
Based on the generalized variational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo-elasticity of ferromagnetic thin shell-Ⅰ), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones.
Effect of Saddle-Splay Elasticity on Stability of Disclination Rings in Nematic Liquid Crystals
Institute of Scientific and Technical Information of China (English)
WANG Yu-Sheng; YUAN Bao-He; YANG Guo-Hong
2008-01-01
In this paper, the stability of disclination ring in nematic liquid crystals is studied. In the presence of saddle-splay elasticity (characterized by k24) the disclination ring has a universal equilibrium radius. Depending on the values of the saddle-splay constant k24, the universal equilibrium radius is altered. When k24 > 0.92k (m=1/2) and k24>0.88k (m = -1/2), the disclination will be a point rather than a ring, where k is the Frank elastic constant in the one-constant approximation.
Non-linear Elasticity and Monitoring of Stress in the Focus of an Earthquake
Bakulin, V.; Bakulin, A.
2001-05-01
Non-linear elasticity proved to give comprehensive framework for relating seismic velocities in rocks to stress. This powerful theory allows attacking the problem of estimating stress state at the focus of earthquakes. Such idea has been proposed long time ago [Kostrov and Nikitin, 1968] however its implementation requires a-priori knowledge of non-linear rock properties. Three non-linear constants needed to describe variation of any velocity with stress are typically estimated from core measurements [Bakulin et al., 2000]. More reliable estimates can be obtained from multi-mode inversions of borehole acoustic data [Sinha, 1996]. Nevertheless database of non-linear formation constants is still very limited. More measurements are required to estimate non-linear rock properties on larger scale and with independent stress constraints. Such measurements can be done in mines [Bakulin and Bakulin, 1999] or in hydrocarbon reservoirs where time-dependent pressure measurements are available. Without knowledge of non-linear rock properties seismic waves can still bring information about directions of tectonic stresses. In particular, shear wave polarizations can deliver directions of principal stresses in the focus of an earthquake, provided the overburden effects were removed. If rock non-linear properties are independently derived then estimation of stress magnitudes becomes feasible. Such techniques were applied in mining environment [Bakulin and Bakulin, 1999]. They may become routine for monitoring stress state in the focus of earthquakes and therefore can be used for forecasting the seismic activity. Bakulin, A. V., Troyan, V. N., and Bakulin, V. N., 2000, Acoustoelasticity of rocks, St. Petersburg (in Russian). Bakulin, V. and Bakulin, A., 1999, Acoustopolarizational method of measuring stress in rock mass and determination of Murnaghan constants: 69th Annual Internat. Mtg., Soc. Expl. Geophys., 1971-1974. Kostrov, B.V., and Nikitin, L.V., 1968, Influence of initial
The ‘sixth sense’ of ultrasound: probing nonlinear elasticity with acoustic radiation force
Guzina, Bojan B.; Dontsov, Egor V.; Urban, Matthew W.; Fatemi, Mostafa
2015-05-01
Prompted by a recent finding that the magnitude of the acoustic radiation force (ARF) in isotropic tissue-like solids depends linearly on a particular third-order modulus of elasticity—hereon denoted by C, this study investigates the possibility of estimating C from the amplitude of the ARF-generated shear waves. The featured coefficient of nonlinear elasticity, which captures the incipient nonlinear interaction between the volumetric and deviatoric modes of deformation, has so far received only a limited attention in the context of soft tissues due to the fact that the latter are often approximated as (i) fluid-like when considering ultrasound waves, and (ii) incompressible under static deformations. On establishing the analytical and computational platform for the proposed sensing methodology, the study proceeds with applying the prototype technique toward estimating via ARF the third-order modulus C in a series of tissue-mimicking phantoms. To help validate the concept and its implementation, the germane third-order modulus is independently estimated in each phantom via an established technique known as acoustoelasticity. The C-estimates obtained respectively via acoustoelasticity and the new theory of ARF show a significant degree of consistency. The key features of the new sensing methodology are that: (a) it requires no external deformation of a material other than that produced by the ARF, and (b) it estimates the nonlinear C-modulus locally, over the focal region of an ultrasound beam—where the shear waves are being generated.
Poddar, Antarip; Chakraborty, Suman
2016-01-01
Advent of nematic liquid crystals flows have attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electroosmosis stands as one of the efficient flow actuation method through narrow confinement. In the present study, we explore the electrically actuated flow of a nematic fluid with ionic inclusions taking into account the influences from surface induced elastic and electrical double layer phenomena. Influence of surface effects on the flow characteristics is known to get augmented in micro-confined environment and must be properly addressed. Towards this, we devise the coupled flow governing equations from fundamental free energy analysis considering the contributions from first and second-order elastic, dielectric, flexoelectric, ionic and entropic energies. We have further considered weak anchoring surface conditions with second order elasticity which helps us to more accurately capture the director deformations along the boundaries. The present study fo...
Experimental determination of third-order elastic constants of diamond.
Lang, J M; Gupta, Y M
2011-03-25
To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.
Wavelet-based method for computing elastic band gaps of one-dimensional phononic crystals
Institute of Scientific and Technical Information of China (English)
YAN; ZhiZhong; WANG; YueSheng
2007-01-01
A wavelet-based method was developed to compute elastic band gaps of one-dimensional phononic crystals. The wave field was expanded in the wavelet basis and an equivalent eigenvalue problem was derived in a matrix form involving the adaptive computation of integrals of the wavelets. The method was then applied to a binary system. For comparison, the elastic band gaps of the same one-di- mensional phononic crystals computed with the wavelet method and the well- known plane wave expansion (PWE) method are both presented in this paper. The numerical results of the two methods are in good agreement while the computation costs of the wavelet method are much lower than that of PWE method. In addition, the adaptability of wavelets makes the method possible for efficient band gap computation of more complex phononic structures.
Elasticity of some mantle crystal structures. I - Pleonaste and hercynite spinel.
Wang, H.; Simmons, G.
1972-01-01
The elasticity of high-pressure mantle phases can be characterized by using data for chemically similar crystal compounds. The single-crystal elastic constants are determined as a function of pressure and temperature for pleonaste spinel and at room conditions for hercynite spinel. The bulk modulus increases from 1.95 Mb for pleonaste spinel to 2.10 Mb for hercynite spinel. Low or negative values of the pressure derivatives of shear constants are characteristic of the spinel structure and imply a low kinetic barrier to phase transformations and diffusion. Compressional and shear velocities of the spinel phase of olivine are estimated as a function of mean atomic weight by using the pleonaste and hercynite data.
Mapping residual stresses in PbWO$_{4}$ crystals using photo-elastic analysis
Lebeau, Michel; Majni, G; Paone, N; Pietroni, P; Rinaldi, D
2005-01-01
Large scintillating crystals are affected by internal stresses induced by the crystal growth temperature gradient remanence. Cutting boules (ingots) into finished crystal shapes allows for a partial tension relaxation but residual stresses remain the main cause of breaking. Quality control of residual stresses is essential in the application of Scintillating Crystals to high-energy physics calorimeters (e.g. CMS ECAL at CERN LHC). In this context the industrial process optimisation towards stress reduction is mandatory. We propose a fast technique for testing samples during the production process in order to evaluate the residual stress distribution after the first phases of mechanical processing. We mapped the stress distribution in PbWO/sub 4/slabs cut from the same production boule. The analysis technique is based on the stress intensity determination using the photo-elastic properties of the samples. The stress distribution is mapped in each sample. The analysis shows that there are regions of high residu...
Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code
Perger, W. F.; Criswell, J.; Civalleri, B.; Dovesi, R.
2009-10-01
An automated procedure for calculating second-order elastic constants for crystalline systems of any symmetry using the CRYSTAL program is described. Second derivatives with respect to strain are evaluated numerically from analytical gradients. The internal co-ordinates are re-optimized with each applied strain. Point group symmetry is exploited to reduce the number of needed deformations according to Laue classes. A set of test cases covering many of the crystal classes is used to document the numerical accuracy of the scheme, and to define default values of the computational parameters so as to reduce the input file to a single keyword.
Zhou, Shuang; Nastishin, Yu. A.; Omelchenko, M. M.; Tortora, L.; Nazarenko, V. G.; Boiko, O. P.; Ostapenko, T.; Sprunt, S. N.; Gleeson, J. T.; Lavrentovich, O. D.
2012-02-01
By using director reorientation in the magnetic field, we determine the concentration and temperature dependencies of the splay K1, twist K2, and bend K3 elastic constants (normalized by the anisotropy of the diamagnetic susceptibility) for a nematic lyotropic chromonic liquid crystal (LCLC) Sunset Yellow. In a sharp contrast to thermotropic liquid crystals, the Frederiks effects in LCLC show a hysteresis, which is more pronounced at high concentration and low temperatures. We attribute the hysteresis to the changes in self-assembled structure of LCLC aggregates under the influence of field-imposed deformations.
The model of solid phase crystallization of amorphous silicon under elastic stress
2000-01-01
Solid phase crystallization of an amorphous silicon (a-Si) film stressed by a Si3N4 cap was studied by laser Raman spectroscopy. The a-Si films were deposited on Si3N4 (50 nm)/Si(100) substrate by rf sputtering. The stress in an a-Si film was controlled by thickness of a Si3N4 cap layer. The Si3N4 films were also deposited by rf sputtering. It was observed that the crystallization was affected by the stress in a-Si films introduced by the Si3N4 cap layer. The study suggests that the elastic s...
Contribution of molecular flexibility to the elastic-plastic properties of molecular crystal α-RDX
Pal, Anirban; Picu, Catalin R.
2017-01-01
We show in this work that the mechanical properties of molecular crystals are strongly affected by the flexibility of the constituent molecules. To this end, we explore several kinematically restrained models of the molecular crystal cyclotrimethylene trinitramine in the α phase. We evaluate the effect of gradually removing the flexibility of the molecule on various crystal-scale parameters such as the elastic constants, the lattice parameters, the thermal expansion coefficients, the stacking fault energy and the critical stress for the motion of a dislocation (the Peierls-Nabarro stress). The values of these parameters evaluated with the fully refined, fully flexible atomistic model of the crystal are taken as reference. It is observed that the elastic constants, the lattice parameters and their dependence on pressure, and the thermal expansion coefficient can be accurately predicted with models that consider the NO2 and CH2 groups rigid, and the N-N bonds and the bonds of the triazine ring inextensible. Eliminating the dihedral flexibility of the ring leads to larger errors. The model in which the entire molecule is considered rigid or is mapped to a blob leads to even larger errors. Only the fully flexible, reference model provides accurate values for the stacking fault energy and the Peierls-Nabarro critical stress. Removing any component of the molecular flexibility leads to large errors in these parameters. These results also provide guidance for the development of coarse grained models of molecular crystals.
Merkel, A; Tournat, V; Gusev, V
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.
Lohar, Hareram; Mitra, Anirban; Sahoo, Sarmila
2016-09-01
In the present study non-linear free vibration analysis is performed on a tapered Axially Functionally Graded (AFG) beam resting on an elastic foundation with different boundary conditions. Firstly the static problem is carried out through an iterative scheme using a relaxation parameter and later on the subsequent dynamic problem is solved as a standard eigen value problem. Minimum potential energy principle is used for the formulation of the static problem whereas for the dynamic problem Hamilton's principle is utilized. The free vibrational frequencies are tabulated for different taper profile, taper parameter and foundation stiffness. The dynamic behaviour of the system is presented in the form of backbone curves in dimensionless frequency-amplitude plane.
On Exact Controllability of Networks of Nonlinear Elastic Strings in 3-Dimensional Space
Institute of Scientific and Technical Information of China (English)
Günter R. LEUGERING; E. J. P. Georg SCHMIDT
2012-01-01
This paper concerns a system of nonlinear wave equations describing the vibrations of a 3-dimensional network of elastic strings.The authors derive the equations and appropriate nodal conditions,determine equilibrium solutions,and,by using the methods of quasilinear hyperbolic systems,prove that for tree networks the natural initial,bound-ary value problem has classical solutions existing in neighborhoods of the "stretched" equilibrium solutions.Then the local controllability of such networks near such equilibrium configurations in a certain specified time interval is proved.Finally,it is proved that,given two different equilibrium states satisfying certain conditions,it is possible to control the network from states in a small enough neighborhood of one equilibrium to any state in a suitable neighborhood of the second equilibrium over a sufficiently large time interval.
Gu, Jian-Bing; Wang, Chen-Ju; Zhang, Wang-Xi; Sun, Bin; Liu, Guo-Qun; Liu, Dan-Dan; Yang, Xiang-Dong
2016-12-01
Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systematical study on the high-pressure structure and elastic properties of the cubic Ta by using the first-principles method. Results show that the initial body-centered cubic phase of Ta remains stable even up to 500 GPa and the high-pressure elastic properties are excellently consistent with the available experimental results. Besides, the high-pressure sound velocities of the single- and poly-crystals Ta are also calculated based on the elastic constants, and the predications exhibit good agreement with the existing experimental data. Project supported by the Basic and Frontier Technical Research Project of Henan Province, China (Grant No. 152300410228), the University Innovation Team Project in Henan Province, China (Grant No. 15IRTSTHN004), and the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 17A140014).
Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping
2015-10-01
We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.
Geometric method for stability of non-linear elastic thin shells
Ivanova, Jordanka
2002-01-01
PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surfac...
A Scanning Hologram Recorded by Phase Conjugate Property of Nonlinear Crystals
DEFF Research Database (Denmark)
Zi-Liang, Ping; Dalsgaard, Erik
1996-01-01
A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given.......A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given....
Nonlinear radiation pressure dynamics in an optomechanical crystal
Krause, Alex G; Ludwig, Max; Safavi-Naeini, Amir H; Chan, Jasper; Marquardt, Florian; Painter, Oskar
2015-01-01
Utilizing a silicon nanobeam optomechanical crystal, we investigate the attractor diagram arising from the radiation pressure interaction between a localized optical cavity at $\\lambda = 1552$nm and a mechanical resonance at $\\omega/2\\pi = 3.72$GHz. At a temperature of $T \\approx 10$K, highly nonlinear driving of mechanical motion is observed via continuous wave optical pumping. Introduction of a time-dependent (modulated) optical pump is used to steer the system towards an otherwise inaccessible dynamically stable attractor in which mechanical self-oscillation occurs for an optical pump red-detuned from the cavity resonance. An analytical model incorporating thermo-optic effects due to optical absorption heating is developed, and found to accurately predict the measured device behavior.
Directory of Open Access Journals (Sweden)
Kim Gaik Tay
2010-04-01
Full Text Available In the present work, by considering the artery as a prestressed thin-walled elastic tube with a symmetrical stenosis and the blood as an incompressible viscous fluid, we have studied the amplitude modulation of nonlinear waves in such a composite medium through the use of the reductive perturbation method [23]. The governing evolutions can be reduced to the dissipative non-linear Schrodinger (NLS equation with variable coefficient. The progressive wave solution to the above non-linear evolution equation is then sought.
Duc, Nguyen Dinh; Quan, Tran Quoc
2013-11-01
The nonlinear response of buckling and posbuckling of imperfect thin functionally graded doubly curved thin shallow shells resting on elastic foundations and subjected to some mechanical loads is investigated analytically. The elastic moduli of materials, Young's modulus, and Poisson ratio are all graded in the shell thickness direction according to a simple power-law in terms of volume fractions of constituents. All formulations are based on the classical theory of shells with account of geometrical nonlinearity, an initial geometrical imperfection, and a Pasternak-type elastic foundation. By employing the Galerkin method, explicit relations for the load-deflection curves of simply supported doubly curved shallow FGM shells are determined. The effects of material and geometrical properties, foundation stiffness, and imperfection of shells on the buckling and postbuckling loadcarrying capacity of spherical and cylindrical shallow FGM shells are analyzed and discussed.
Liu, Lili
2014-05-22
We present theoretical studies for the third-order elastic constants (TOECs) of superconducting antiperovskites MNNi 3 (M = Zn, Cd, Mg, Al, Ga, and In) using the density functional theory (DFT) and homogeneous deformation method. From the nonlinear least-square fitting, the elastic constants are extracted from a polynomial fit to the calculated strain-energy data. Calculated second-order elastic constants (SOECs) are compared with the previous theoretical calculations, and a very good agreement was found. The nonlinear effects often play an important role when the finite strains are larger than approximately 2.5 %. Besides, we have computed the pressure derivatives of SOECs and provided rough estimations for the Grüneisen constants of long-wavelength acoustic modes by using the calculated TOECs. © 2014 Springer Science+Business Media New York.
Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud
2016-09-01
The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.
Eiras, J N; Vu, Q A; Lott, M; Payá, J; Garnier, V; Payan, C
2016-07-01
This study demonstrates the feasibility of the dynamic acousto-elastic effect of a continuous high frequency wave for investigating the material nonlinearity upon transient vibration. The approach is demonstrated on a concrete sample measuring 15×15×60cm(3). Two ultrasonic transducers (emitter and receiver) are placed at its middle span. A continuous high frequency wave of 500kHz propagates through the material and is modulated with a hammer blow. The position of the hammer blow on the sample is configured to promote the first bending mode of vibration. The use of a continuous wave allows discrete time extraction of the nonlinear behavior by a short-time Fourier transform approach, through the simultaneous comparison of a reference non-modulated signal and an impact-modulated signal. The hammer blow results in phase shifts and variations of signal amplitude between reference and perturbed signals, which are driven by the resonant frequency of the sample. Finally, a comprehensive analysis of the relaxation mechanisms (modulus and attenuation recovery) is conducted to untangle the coupled fast and slow hysteretic effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhanced Nonlinear Optical Effect in Hybrid Liquid Crystal Cells Based on Photonic Crystal
Bugaychuk, Svitlana; Iljin, Andrey; Lytvynenko, Oleg; Tarakhan, Ludmila; Karachevtseva, Lulmila
2017-07-01
Nonlinear-optical response of photorefractive hybrid liquid crystal (LC) cells has been studied by means of dynamic holographic technique in two-wave mixing arrangement. The LC cells include nonuniform silicon substrates comprising a micrometer-range photonic crystal. A thin LC layer is set between silicon substrate and a flat glass substrate covered by a transparent (ITO) electrode. A dynamic diffraction grating was induced in the LC volume by the two-wave mixing of laser beams with simultaneous application of DC electric field to the cell. Theoretical model of Raman-Nath self-diffraction was developed. This model allows for calculation of nonlinear optical characteristics in thin samples on the base of two-wave mixing experimental data, and with taking into account light losses on absorption and/or scattering. The hybrid LC cells demonstrate strong nonlinear optical effect, prospective for many applications in electro-optical microsystems, such as SLMs, as well as in multi-channel systems.
Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals.
Shemer, Keren; Voloch-Bloch, Noa; Shapira, Asia; Libster, Ana; Juwiler, Irit; Arie, Ady
2013-12-15
We experimentally demonstrate that the orbital angular momentum (OAM) of a second harmonic (SH) beam, generated within twisted nonlinear photonic crystals, depends both on the OAM of the input pump beam and on the quasi-angular momentum of the crystal. In addition, when the pump's radial index is zero, the radial index of the SH beam is equal to that of the nonlinear crystal. Furthermore, by mixing two noncollinear pump beams in this crystal, we generate, in addition to the SH beams, a new "virtual beam" having multiple values of OAM that are determined by the nonlinear process.
Optical scattering by a nonlinear medium, II: induced photonic crystal in a nonlinear slab of BBO
Godard, Pierre; Nicolet, Andre
2010-01-01
The purpose of this paper is to investigate the scattering by a nonlinear crystal whose depth is about the wavelength of the impinging field. More precisely, an infinite nonlinear slab is illuminated by an incident field which is the sum of three plane waves of the same frequency, but with different propagation vectors and amplitudes, in such a way that the resulting incident field is periodic. Moreover, the height of the slab is of the same order of the wavelength, and therefore the so-called slowly varying envelope approximation cannot be used. In our approach we take into account some retroactions of the scattered fields between them (for instance, we do not use the nondepletion of the pump beam). As a result, a system of coupled nonlinear partial differential equations has to be solved. To do this, the finite element method (FEM) associated with perfectly matched layers is well suited. Nevertheless, when using the FEM, the sources have to be located in the meshed area, which is of course impossible when d...
Meera, M. R.; Dipuna Das, C. N.; Bena Jothy, V.; Rayar, S. L.
2016-10-01
Nonlinear optics is a topic of much current interest that exhibits a great diversity. This is due to the technological potentials of certain nonlinear optical effects for photonic based technologies. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. In this context, the present work it is attempted to grow NLO active Triglycine phosphate [(NH2CH2COOH)3H3PO4](TGP) crystal from aqueous solution at room temperature by slow evaporation method. The geometry, intermolecular hydrogen bonding and harmonic vibrational wavenumbers of TGP was investigated with the help of B3LYP density functional theory (DFT) methods. Natural Bond Orbital (NBO) analysis confirms the occurrence of strong intermolecular N-H...O hydrogen bond. Second harmonic frequency generation was examined by Kurtz and Perry powder test. Theoretical first order hyperpolarizability value was calculated.
Optical frequency conversion in quasi-phase-matched stacks of nonlinear crystals
Rustagi, K. C.; Mehendale, S. C.; Meenakshi, S.
1982-06-01
The paper presents a quantitative theory of nonlinear frequency conversion in stacks of crystals in which the phase mismatch due to dispersion is compensated by changing the sign of the nonlinear coupling coefficient in successive crystals. The effects of systematic and random departures in crystal lengths are studied with emphasis on the evolution of the relative phase. It is shown that with the appropriate choice of the signs of the nonlinear coupling coefficient in various crystals, high efficiency frequency conversion should be possible using almost any sufficiently large set of nonlinear crystals. In addition, the theory of second harmonic generation in periodic stacks and in rotating twinned crystals of zinc-blend structure is described.
Energy Technology Data Exchange (ETDEWEB)
Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.; Korsunsky, A. M. [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom); Zhang, S. Y.; Kabra, S.; Kelleher, J. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Neo, T. K. [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, Singapore 228510 (Singapore)
2014-08-07
Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.
Tian, Jian; Han, Pengdi; Payne, David A
2007-09-01
Property measurements are reported for Pb(Mg1/3Nb2/3)03-PbTiO3 (PMN-PT) single crystals grown along (001) by a seeded-melt method. Chemical segregation occurs during crystal growth, leading to property changes along the growth direction. Variations in dielectric, piezoelectric, and elastic properties were evaluated for specimens selected from the crystals. Room-temperature data are correlated with Tc and composition that ranged from 27 to 32% PT, i.e., in the vicinity of the morphotropic phase boundary (MPB). While there was little change in the high electromechanical coupling factor k33 (0.87-0.92), both the piezoelectric charge coefficient d33 (1100-1800 pC/N) and the free dielectric constant K3 (4400-7000) were found to vary significantly with position. Increases in d33 and KT33 were relatively offsetting in that the ratio yielded a relatively stable piezoelectric voltage coefficient g33 (27-31 x 10(-3) Vm/N). Values are also reported for the elastic compliance (3.3-6.3 x 10(-11) m2/N) determined from resonance measurements. Enhancements in d33 and K(T)33 were associated with lattice softening (increasing sE33) as the composition approached the MPB. Details are reported for the piezoelectric, dielectric, and elastic properties as a function of growth direction, Tc, and composition. The results are useful for an understanding of properties in PMN-PT crystals and for the design of piezoelectric devices.
Isaak, D. G.; Ohno, I.
2001-12-01
In past years, the rectangular parallelepiped resonance (RPR) method has been used to measure single-crystal elastic moduli, and their temperature dependences, of several materials important to geophysics. The high-temperature elastic properties of cubic, orthorhombic, tetragonal, and trigonal crystals, in addition to polycrystals, have all been studied with the RPR method. One feature of the RPR method is that, in principle, all the single-crystal elastic moduli (Cij) can be obtained from a single spectral sweep. However, no materials with crystal symmetry lower than orthorhombic symmetry have been reported in RPR studies. We extend the RPR theory to monoclinic and triclinic crystal symmetries. With these developments, we are able to compute single-crystal resonant spectra using a set of assumed Cij for right-rectangular parallelepiped monoclinic specimens cut along the b and c axes, or monoclinic specimens cut along known, but arbitrary, axes. We present initial results showing the comparison of calculated and measured resonance modes for single-crystal monoclinic diopside. Our measured resonance spectrum on chrome diopside is markedly more consistent with the spectrum calculated from the elasticity data of Collins and Brown (PCM, 26, 7-13, 1998) using a specimen that is 72% diopside than the end-member diopside elasticity data reported by Levien et al. (PCM, 4, 105-113, 1979).
A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals
Mohamed, Mamdouh S.
2015-05-18
The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.
Indian Academy of Sciences (India)
S Gunasekaran; G Anand; R Arun Balaji; J Dhanalakshmi; S Kumaresan
2010-10-01
Single crystals of urea thiourea mercuric sulphate (UTHS) and urea thiourea mercuric chloride (UTHC), semi-organic nonlinear optical materials, were grown by low-temperature solution growth technique by slow evaporation method using water as the solvent. Good quality single crystals were grown within three weeks. The nonlinear nature of the crystals was confirmed by SHG test. The UV–Vis spectrum showed the transmitting ability of the crystals in the entire visible region. FTIR spectrum was recorded and vibrational assignments were made. The degree of dopant inclusion was ascertained by AAS. The TGA–DTA studies showed the thermal properties of the crystals.
Mitsak, Anna G; Dunn, Andrew M; Hollister, Scott J
2012-07-01
Scaffold tissue engineering strategies for repairing and replacing soft tissue aim to improve reconstructive and corrective surgical techniques whose limitations include suboptimal mechanical properties, fibrous capsule formation and volume loss due to graft resorption. An effective tissue engineering strategy requires a scaffolding material with low elastic modulus that behaves similarly to soft tissue, which has been characterized as a nonlinear elastic material. The material must also have the ability to be manufactured into specifically designed architectures. Poly(glycerol sebacate) (PGS) is a thermoset elastomer that meets these criteria. We hypothesize that the mechanical properties of PGS can be modulated through curing condition and architecture to produce materials with a range of stiffnesses. To evaluate this hypothesis, we manufactured PGS constructs cured under various conditions and having one of two architectures (solid or porous). Specimens were then tensile tested according to ASTM standards and the data were modeled using a nonlinear elastic Neo-Hookean model. Architecture and testing conditions, including elongation rate and wet versus dry conditions, affected the mechanical properties. Increasing curing time and temperature led to increased tangent modulus and decreased maximum strain for solid constructs. Porous constructs had lower nonlinear elastic properties, as did constructs of both architectures tested under simulated physiological conditions (wetted at 37 °C). Both solid and porous PGS specimens could be modeled well with the Neo-Hookean model. Future studies include comparing PGS properties to other biological tissue types and designing and characterizing PGS scaffolds for regenerating these tissues.
Sushko, N; van der Schoot, P
2005-01-01
As is well known, hard-sphere crystals of the fcc and hcp type differ very little in their thermodynamic properties. Nonetheless, recent computer simulations by Pronk and Frenkel indicate that the elastic response to mechanical deformation of these two types of crystal are quite different [S. Pronk
Effect of thermal shield and gas flow on thermal elastic stresses in 300 mm silicon crystal
Institute of Scientific and Technical Information of China (English)
GAO Yu; XIAO Qinghua; ZHOU Qigang; DAI Xiaolin; TU Hailing
2006-01-01
The thermal elastic stresses induced in 300 mm Si crystal may be great troubles because it can incur the generation of dislocations and undesirable excessive residual stresses.A special thermal modeling tool, CrysVUn, was used for numerical analysis of thermal elastic stresses and stress distribution of 300 mm Si crystal under the consideration of different thermal shields and gas flow conditions.The adopted governing partial equations for stress calculation are Cauchy's first and second laws of motion.It is demonstrated that the presence and shape of thermal shield, the gas pressure and velocity can strongly affect von Mises stress distribution in Si crystal.With steep-wall shield, however, the maximal stress and ratio of high stress area are relatively low.With slope-wall shield or without shield, both maximal stress and ratio of high stress area are increased in evidence.Whether thermal shields are used or not, the increase of gas flow velocity could raise the stress level.In contrast, the increase of gas pressure cannot result in so significant effect.The influence of thermal shield and gas flow should be attributed to the modification of heat conduction and heat radiation by them.
Lee, Sin-Doo
2015-10-01
Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.
Directory of Open Access Journals (Sweden)
Alexander L. Ivanovskii
2008-01-01
Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.
Hanumantharao, Redrothu; Kalainathan, S.
2012-02-01
A new and efficient semi organic nonlinear optical crystal (NLO) from the amino acid family L-alanine lithium chloride (LAL) has been grown by slow evaporation technique from aqueous solution. The functional groups were identified from NMR spectral studies. Mass spectral analysis shows the molecular ion mass. Dielectric studies has been done for the grown crystal and relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.43 times that of standard potassium dihydrogen phosphate (KDP) crystals. The compound crystallized in non-centrosymmetric space group Pna21. The results have been discussed in detail.
Hanumantharao, Redrothu; Kalainathan, S
2012-02-01
A new and efficient semi organic nonlinear optical crystal (NLO) from the amino acid family L-alanine lithium chloride (LAL) has been grown by slow evaporation technique from aqueous solution. The functional groups were identified from NMR spectral studies. Mass spectral analysis shows the molecular ion mass. Dielectric studies has been done for the grown crystal and relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.43 times that of standard potassium dihydrogen phosphate (KDP) crystals. The compound crystallized in non-centrosymmetric space group Pna21. The results have been discussed in detail.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper presents a theoretical model on the normal(head-on) collision between soft-spheres on the basis of elastic loading of the Hertz contact for compression process and a nonlinear plastic unloading for restitution one,in which the parameters all are determined in terms of the material and geometric ones of the spheres,and the behaviors of perfect elastic,inelastic,and perfect plastic collisions appeared in the classical mechanics are fully described once a value of coefficient of restitution is speci...
Crystal structure and elastic constants of Dharwar cotton fibre using WAXS data
Indian Academy of Sciences (India)
O M Samir; R Somashekar
2007-10-01
Wide-angle X-ray scattering (WAXS) recordings were carried out on raw Dharwar cotton fibres available in Karnataka. Using this data and employing linked atom least squares (LALS) method, we report here the molecular and crystal structure of these cotton fibres. Employing structural data, we have computed elastic moduli tensor components of these fibres. From these investigations, it turns out that the intrinsic strains present in the fibre arise due to hydrogen bonds and not covalent bonds, which is a significant result.
Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals.
Lepeshkin, Nick N; Schweinsberg, Aaron; Piredda, Giovanni; Bennink, Ryan S; Boyd, Robert W
2004-09-17
We describe a new type of artificial nonlinear optical material composed of a one-dimensional metal-dielectric photonic crystal. Because of the resonant nature of multiple Bragg reflections, the transmission within the transmission band can be quite large, even though the transmission through the same total thickness of bulk metal would be very small. This procedure allows light to penetrate into the highly nonlinear metallic layers, leading to a large nonlinear optical response. We present experimental results for a Cu/SiO(2) crystal which displays a strongly enhanced nonlinear optical response (up to 12X) in transmission.
Nonlinear normal modes of a two degree of freedom oscillator with a bilateral elastic stop
Moussi, El Hadi; Cochelin, Bruno; Nistor, I
2013-01-01
A study of the non linear modes of a two degree of freedom mechanical system with bilateral elastic stop is considered. The issue related to the non-smoothness of the impact force is handled through a regularization technique. In order to obtain the Nonlinear Normal Mode (NNM), the harmonic balance method with a large number of harmonics, combined with the asymptotic numerical method, is used to solve the regularized problem. These methods are present in the software "package" MANLAB. The results are validated from periodic orbits obtained analytically in the time domain by direct integration of the non regular problem. The two NNMs starting respectively from the two linear normal modes of the associated underlying linear system are discussed. The energy-frequency plot is used to present a global vision of the behavior of the modes. The dynamics of the modes are also analyzed comparing each periodic orbits and modal lines. The first NNM shows an elaborate dynamics with the occurrence of multiple impacts per p...
Nonlinear optical studies of liquid crystals and polymers
Hong, Seok-Cheol
Polymers are indispensable in our life. A life is a continuous event maintained by many complex processes in which biological polymers participate. It also gets help from a variety of natural and synthetic polymers with useful functions. Such functions depend on the chemical and conformational structures of polymers and often largely on the surface structures and properties of polymers. We used second order nonlinear optical techniques (sum frequency vibrational spectroscopy (SFVS) and second harmonic generation (SHG)) to obtain structural information on polymers. We also studied liquid crystal molecules deposited on polymer surfaces. The first part of the thesis is aimed at understanding liquid crystal (LC) alignment on rubbed polymer surfaces by determining the molecular orientations of LC adsorbates and surface polymer chains. The alignment of LCs by rubbed polymers is not only of fundamental interest but also of practical importance because it is a technique enabling production of commercial liquid crystal displays. We observed that rubbing induces alignment of surface polymer chains along the rubbing direction, and there is a strong correlation between the molecular orientations of LC adsorbates and the surface chains of rubbed polymers such as polyvinyl alcohol (PVA) and polyimide (6FDA-6CBO). The latter revealed a relatively large but negative pretilt angle, which is highly unusual. On a rubbed polystyrene (PS) surface, we found that the phenyl side groups of PS are oriented perpendicularly to the rubbing direction at the surface, rendering an LC alignment also perpendicular to the rubbing direction. The second part of the thesis is our discovery of rubbing-induced polar ordering on nylon 11 surfaces. Nylon 11 is known to be ferroelectric. We found that mechanical rubbing can induce strong ferroelectric polarization on an initially amorphous film of nylon 11. The surface chains of rubbed nylon 11 are aligned along the rubbing direction while the induced
Gupta, Anupam
2016-01-01
We perform a direct numerical simulation (DNS) of the forced, incompressible two-dimensional Navier-Stokes equation coupled with the FENE-P equations for the polymer-conformation tensor. The forcing is such that, without polymers and at low Reynolds numbers $Re$, the film attains a steady state that is a square lattice of vortices and anti-vortices. We find that, as we increase the Weissenberg number ${\\mathcal Wi}$, this lattice undergoes a series of nonequilibrium phase transitions, first to spatially distorted, but temporally steady, crystals and then to a sequence of crystals that oscillate in time, periodically, at low ${\\mathcal Wi}$, and quasiperiodically, for slightly larger ${\\mathcal Wi}$. Finally, the system becomes disordered and displays spatiotemporal chaos and elastic turbulence. We then obtain the nonequilibrium phase diagram for this system, in the ${\\mathcal Wi} - Re$ plane, and show that (a) the boundary between the crystalline and turbulent phases has a complicated, fractal-type character ...
Institute of Scientific and Technical Information of China (English)
YANGGuo-Hong; WANGYu-Sheng; DUANYi-Shi
2004-01-01
In the light of C-mapping method and topological current theory, the contribution of disclination lines to free energy density of liquid crystals is studied in the single-elastic constant approximation. It is pointed out that the total free energy density can be divided into two parts. One is the usual distorted energy density of director field around the disclination lines. The other is the free energy density of disclination lines themselves, which is shown to be centralized at the disclination lines and to be topologically quantized in the unit of kn/2. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director l~eld at the disclination lines, i.e. the disclination strengths. From the Lagrange's method of multipliers, the equilibrium equation and the molecular field ofliquid crystals are also obtained. The physical meaning of the Lagrangian multiplier is just the distorted energy density.
Institute of Scientific and Technical Information of China (English)
YANG Guo-Hong; WANG Yu-Sheng; DUAN Yi-Shi
2004-01-01
In the light of φ-mapping method and topological current theory, the contribution of disclination lines to free energy density of liquid crystals is studied in the single-elastic constant approximation. It is pointed out that the total free energy density can be divided into two parts. One is the usual distorted energy density of director field around the disclination lines. The other is the free energy density of disclination lines themselves, which is shown to be centralized at the disclination lines and to be topologically quantized in the unit of kπ /2. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director field at the disclination lines, i.e. the disclination strengths. From the Lagrange's method of multipliers, the equilibrium equation and the molecular field of liquid crystals are also obtained. The physical meaning of the Lagrangian multiplier is just the distorted energy density.
Research on the elastic wave band gaps of curved beam of phononic crystals
Energy Technology Data Exchange (ETDEWEB)
Shaogang, Liu; Shidan, Li; Haisheng, Shu, E-mail: shuhaisheng@hrbeu.edu.cn; Weiyuan, Wang; Dongyan, Shi; Liqiang, Dong; Hang, Lin; Wei, Liu
2015-01-15
Based on wave equations of Timoshenko curved beam, the theoretical derivation and numerical calculation of the behavior of in-plane and out-of-plane wave propagating in curved beam of phononic crystals (CBPC) are carried out using transfer matrix method combined with the Bloch theorem. Finite CBPC is also simulated by FEM method. It is shown that both in-plane and out-of-plane elastic waves band gaps exist in CBPC. Compared with equivalent straight beam of phononic crystals (SBPC), CBPC has some unique characteristics, such as the first complete in-plane band gap, special in-plane coupling band gap, and out-of-plane coupling band gap. In those band gaps, CBPC has a better property of vibration reduction than the equivalent SBPC in some ways. Furthermore, effects of curvature of CBPC on the in-plane and out-of-plane band gaps are discussed.
Gyrotropic elastic response of skyrmion crystals to current-induced tensions
Ochoa, Hector; Kim, Se Kwon; Tchernyshyov, Oleg; Tserkovnyak, Yaroslav
2017-07-01
We theoretically study the dynamics of skyrmion crystals in electrically insulating chiral magnets subjected to current-induced spin torques by adjacent metallic layers. We develop an elasticity theory that accounts for the gyrotropic force engendered by the nontrivial topology of the spin texture, tensions at the boundaries due to the exchange of linear and spin angular momentum with the metallic reservoirs, and dissipation in the bulk of the film. A steady translation of the skyrmion crystal is triggered by the current-induced tensions and subsequently sustained by dissipative forces, generating an electromotive force on itinerant spins in the metals. This phenomenon should be revealed as a negative drag in an open two-terminal geometry, or equivalently, as a positive magnetoresistance when the terminals are connected in parallel. We propose nonlocal transport measurements with these salient features as a tool to characterize the phase diagram of insulating chiral magnets.
Chew, Huck Beng
2013-01-01
Determining the tractions along a surface or interface from measurement data in the far-fields of nonlinear materials is a challenging inverse problem which has significant engineering and nanoscience applications. Previously, a field projection method was established to identify the crack-tip cohesive zone constitutive relations in an isotropic elastic solid (Hong and Kim, 2003. J. Mech. Phys. Solids 51, 1267). In this paper, the field projection method is further generalized to extracting the tractions along interfaces bounded by nonlinear materials, both with and without pre-existing cracks. The new formulation is based on Maxwell-Betti's reciprocal theorem with a reciprocity gap associated with nonlinear materials. We express the unknown normal and shear tractions along the interface in terms of the Fourier series, and use specially constructed analytical auxiliary fields in the reciprocal theorem to extract the unknown Fourier coefficients from far-field data; the reciprocity gap in the formulation is iteratively determined with a set of numerical algorithms. Our detailed numerical experiments demonstrate that this nonlinear field projection method (NFPM) is well-suited for extracting the interfacial tractions from the far-field data of any nonlinear elastic or elasto-plastic material with known constitutive laws. Applications of the NFPM to experiments and atomistic simulations are discussed.
Directory of Open Access Journals (Sweden)
P. A. Johnson
1996-01-01
Full Text Available Nonlinear elastic response in rock is established as a robust and representative characteristic rock rather than a curiosity. We show measurements of this behaviour from a variety of experiments on rock taken over many orders of magnitude in strain and frequency. The evidence leads to a pattern of unifying behaviour in rock: (1 Nonlinear response in rock is ubiquitous. (2 The response takes place over a large frequency interval (dc to 105 kHz at least. (3 The response not only occurs, as is commonly appreciated, large strains but also at small strains where this behaviour and the manifestations of this behaviour are commonly disregarded.
Energy Technology Data Exchange (ETDEWEB)
Dhanalakshmi, B. [Department of Physics, Asan Memorial College of Engineering and Technology, Chengalpattu 603 203, Tamil Nadu (India); Ponnusamy, S., E-mail: suruponnus@gmail.com [Center for Materials Science and Nano Devices, Department of Physics, SRM University, Kattankulathur 603 203, Tamil Nadu (India); Muthamizhchelvan, C.; Subhashini, V. [Center for Materials Science and Nano Devices, Department of Physics, SRM University, Kattankulathur 603 203, Tamil Nadu (India)
2015-10-15
Highlights: • EDA4NPH crystal possesses negative nonlinear refractive index. • The crystal exhibits high third-order NLO susceptibility. • Wide transparency of the crystal makes it suitable for NLO applications. • Dielectric studies substantiate the suitability for electro-optic applications. • The crystal possesses suitable mechanical strength for device fabrication. - Abstract: Bulk crystals of the charge-transfer complex, ethylenediamine-4-nitrophenolate monohydrate, were grown by slow solvent evaporation method from aqueous solution at room temperature. The X-ray diffraction measurements showed that the crystal belongs to centrosymmetric space group C2/c of monoclinic system. The functional groups in the complex were identified using FTIR, FTRaman and FTNMR analyses. The Z-scan measurements revealed the negative nonlinear refractive index of the crystal. The nonlinear absorption coefficient and third order nonlinear optical susceptibility calculated from the measurements were −3.5823 × 10{sup −3} cm/W and 2.3762 × 10{sup −6} esu respectively. The crystal was shown to be highly transparent above 366 nm by UV–vis spectroscopy and a yellow fluorescence was observed from PL spectrum. The TG–DTA and DSC analyses showed that the crystal is thermally stable up to 117.4 °C. The crystals were characterized by dielectric, etching and microhardness studies.
Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal.
Soluch, Waldemar; Brzozowski, Ernest; Lysakowska, Magdalena; Sadura, Jolanta
2011-11-01
Mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal were determined. Mass density was obtained from the measured ratio of mass to volume of a cuboid. The dielectric constants were determined from the measured capacitances of an interdigital transducer (IDT) deposited on a Z-cut plate and from a parallel plate capacitor fabricated from this plate. The elastic and piezoelectric constants were determined by comparing the measured and calculated SAW velocities and electromechanical coupling coefficients on the Z- and X-cut plates. The following new constants were obtained: mass density p = 5986 kg/m(3); relative dielectric constants (at constant strain S) ε(S)(11)/ε(0) = 8.6 and ε(S)(11)/ε(0) = 10.5, where ε(0) is a dielectric constant of free space; elastic constants (at constant electric field E) C(E)(11) = 349.7, C(E)(12) = 128.1, C(E)(13) = 129.4, C(E)(33) = 430.3, and C(E)(44) = 96.5 GPa; and piezoelectric constants e(33) = 0.84, e(31) = -0.47, and e(15) = -0.41 C/m(2).
Single-crystal elasticity of diaspore, AlOOH, to 12 GPa by Brillouin scattering
Jiang, Fuming; Majzlan, Juraj; Speziale, Sergio; He, Duanwei; Duffy, Thomas S.
2008-11-01
The high-pressure elasticity of diaspore (AlOOH) has been determined by Brillouin spectroscopy to 12 GPa in diamond anvil cells. Experiments were carried out using a 16:3:1 methanol-ethanol-water mixture as pressure medium, and ruby as pressure standard. Acoustic velocities were measured in three roughly orthogonal planes at ambient and eight elevated pressures. The nine individual elastic stiffness constants of the orthorhombic crystal were obtained by fitting the velocity data to Christoffel's equation. Aggregate elastic moduli and pressure derivatives were calculated from the Cijs by fits to Eulerian finite strain equations, yielding: K=152(1) GPa, G0 = 117.2(5) GPa, (/∂P)T=3.7(1), (=1.5(1) for the Voigt-Reuss-Hill average. All individual Cijs increase with pressure but C23 and C55 exhibit anomalously low pressure derivatives. From calculated linear compressibilities, the a-axis is the most compressible. The b-axis becomes the least compressible axis at high pressures. Over the examined pressure range, the azimuthal P-wave anisotropy decreased from 22% to 16%, while the azimuthal S-wave anisotropy increased from 15% to 21%. Both volume and axial compression curves calculated using our Brillouin results are in good agreement with the results from static compression studies. High-pressure sound velocities in diaspore exceed those of other hydrous minerals as well as many anhydrous phases relevant to Earth's upper mantle.
Terahertz Generation in Nonlinear Crystals with Mid-Infrared CO2 Laser
Institute of Scientific and Technical Information of China (English)
LU Yan-Zhao; WANG Xin-Bing; MIAO Liang; ZUO Du-Luo; CHENG Zu-Hai
2011-01-01
The terahertz(THz)generation based on difference frequency generation in nonlinear optical crystals pumped by mid-infrared C02 laser has been investigated.We present a comprehensive study of the phase-matching conditions in the GaSe, ZnGeP2 and GaAs crystals. A comparison of the characteristics of these crystals as the THz frequency generator is also presented. The investigation of the conversion efficiency shows that GaSe and GaAs are the most promising nonlinear crystals for the efficient and widely tunable THz generation.
Zhou, Shuang; Neupane, Krishna; Nastishin, Yuriy A; Baldwin, Alan R; Shiyanovskii, Sergij V; Lavrentovich, Oleg D; Sprunt, Samuel
2014-09-14
Using dynamic light scattering, we study orientational fluctuation modes in the nematic phase of a self-assembled lyotropic chromonic liquid crystal (LCLC) disodium cromoglycate and measure the Frank elastic moduli and viscosity coefficients. The elastic moduli of splay (K1) and bend (K3) are in the order of 10 pN while the twist modulus (K2) is an order of magnitude smaller. The splay constant K1 and the ratio K1/K3 both increase substantially as the temperature T decreases, which we attribute to the elongation of the chromonic aggregates at lower temperatures. The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger. The temperature dependence of bend viscosity is weak. The splay and twist viscosities change exponentially with the temperature. In addition to the director modes, the fluctuation spectrum reveals an additional mode that is attributed to diffusion of structural defects in the column-like aggregates.
A nonlinear generalized continuum approach for electro-elasticity including scale effects
Skatulla, S.; Arockiarajan, A.; Sansour, C.
2009-01-01
Materials characterized by an electro-mechanically coupled behaviour fall into the category of so-called smart materials. In particular, electro-active polymers (EAP) recently attracted much interest, because, upon electrical loading, EAP exhibit a large amount of deformation while sustaining large forces. This property can be utilized for actuators in electro-mechanical systems, artificial muscles and so forth. When it comes to smaller structures, it is a well-known fact that the mechanical response deviates from the prediction of classical mechanics theory. These scale effects are due to the fact that the size of the microscopic material constituents of such structures cannot be considered to be negligible small anymore compared to the structure's overall dimensions. In this context so-called generalized continuum formulations have been proven to account for the micro-structural influence to the macroscopic material response. Here, we want to adopt a strain gradient approach based on a generalized continuum framework [Sansour, C., 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc. 8, 341-348; Sansour, C., Skatulla, S., 2007. A higher gradient formulation and meshfree-based computation for elastic rock. Geomech. Geoeng. 2, 3-15] and extend it to also encompass the electro-mechanically coupled behaviour of EAP. The approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is completed by Dirichlet boundary conditions for the displacement field and its derivatives normal to the boundary as well as the electric potential. The basic idea behind this generalized continuum theory is the consideration of a micro- and a macro-space which together span the generalized space. As all quantities are defined in this generalized space, also the constitutive law, which is in this work conventional electro-mechanically coupled nonlinear
DEFF Research Database (Denmark)
Bache, Morten; Moses, Jeffrey; Lægsgaard, Jesper;
2007-01-01
We show theoretically that high-quality soliton compression from ~500 fs to ~10 fs is possible in poled silica photonic crystal fibers using cascaded (2):(2) nonlinearities. A moderate group-velocity mismatch optimizes the compression.......We show theoretically that high-quality soliton compression from ~500 fs to ~10 fs is possible in poled silica photonic crystal fibers using cascaded (2):(2) nonlinearities. A moderate group-velocity mismatch optimizes the compression....
Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber
DEFF Research Database (Denmark)
Roberts, John; Lægsgaard, Jesper
2009-01-01
Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling...
Multiple-μJ mid-IR supercontinuum generation in quadratic nonlinear crystals
DEFF Research Database (Denmark)
Bache, Morten; Zhou, Binbin; Ashihara, S.
2016-01-01
Pumping a quadratic nonlinear crystal in the mid-IR we observe octave-spanning mid-IR supercontinua. A self-acting cascaded process leads to the formation of a self-defocusing nonlinearity, allowing formation of filament-free octave-spanning supercontinua in the 2.0–7.0 μm range with 10s of μ...
Acoustic and elastic properties of Sn{sub 2}P{sub 2}S{sub 6} crystals
Energy Technology Data Exchange (ETDEWEB)
Mys, O; Martynyuk-Lototska, I; Vlokh, R [Institute of Physical Optics of the Ministry of Education and Science of Ukraine, 23 Dragomanov Street, 79005 Lviv (Ukraine); Grabar, A [Istitute for Solid State Physics and Chemistry, Uzhgorod National University, 54 Voloshyn Street, 88000 Uzhgorod (Ukraine)], E-mail: vlokh@ifo.lviv.ua
2009-07-01
We present the results concerned with acoustic and elastic properties of Sn{sub 2}P{sub 2}S{sub 6} crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.
Energy Technology Data Exchange (ETDEWEB)
Simonário, P.S., E-mail: simonario@gmail.com [Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, Paraná (Brazil); Freire, F.C.M.; Evangelista, L.R. [Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, Paraná (Brazil); Teixeira-Souza, R.T. [Universidade Tecnológica Federal do Paraná – Câmpus Apucarana, Rua Marcílio Dias, 635, 86812-460 Apucarana, Paraná (Brazil)
2014-01-17
The bulk and the surface-like elastic constants of a nematic liquid crystal are calculated for an ensemble of particles interacting via anisotropic dispersion forces using the pseudo-molecular method. The geometrical anisotropy of the molecules is also taken into account in the calculations by choosing a molecular volume of ellipsoidal shape. Analytical expressions for the elastic constants are obtained as a function of the eccentricity in the molecular volume shape. The method allows one to explore the dependence on the molecular orientation with respect to the intermolecular vector by analyzing the magnitude and the behaviour of macroscopic elastic parameters defining the nematic phase.
Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady
2008-02-01
We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald
Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region
Institute of Scientific and Technical Information of China (English)
Tingting Sun; Guiyun Kai; Zhi Wang; Shuzhong Yuan; Xiaoyi Dong
2008-01-01
Germanium doping in silica can be used as a method for nonlinearity enhancement.Properties of the enhanced nonlinearity in photonic crystal fiber(PCF)with a GeO2-doped core are investigated theoretically by using all-vector finite element method.Numerical result shows that the nonlinear coefficient of PCF is greatly enhanced with increasing doping concentration,furthermore,optimal radius of the doped region should be considered for the desired operating wavelength.
A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids
Horgan, Cornelius O.; Saccomandi, Giuseppe
2005-09-01
We consider an incompressible nonlinearly elastic material in which a matrix is reinforced by strong fibers, for example fibers of nylon or carbon aligned in one family of curves in a rubber matrix. Rather than adopting the constraint of fiber inextensibility as has been previously assumed in the literature, here we develop a theory of fiber-reinforced materials based on the less restrictive idea of limiting fiber extensibility. The motivation for such an approach is provided by recent research on limiting chain extensibility models for rubber. Thus the basic idea of the present paper is simple: we adapt the limiting chain extensibility concept to limiting fiber extensibility so that the usual inextensibility constraint traditionally used is replaced by a unilateral constraint. We use a strain-energy density composed with two terms, the first being associated with the isotropic matrix or base material and the second reflecting the transversely isotropic character of the material due to the uniaxial reinforcement introduced by the fibers. We consider a base neo-Hookean model plus a special term that takes into account the limiting extensibility in the fiber direction. Thus our model introduces an additional parameter, namely that associated with limiting extensibility in the fiber direction, over previously investigated models. The aim of this paper is to investigate the mathematical and mechanical feasibility of this new model and to examine the role played by the extensibility parameter. We examine the response of the proposed models in some basic homogeneous deformations and compare this response to those of standard models for fiber reinforced rubber materials. The role of the strain-stiffening of the fibers in the new models is examined. The enhanced stability of the new models is then illustrated by investigation of cavitation instabilities. One of the motivations for the work is to apply the model to the biomechanics of soft tissues and the potential merits
Effects of nonlinear muscle elasticity on pelvic floor mechanics during vaginal childbirth.
Li, Xinshan; Kruger, Jennifer A; Nash, Martyn P; Nielsen, Poul M F
2010-11-01
The role of the pelvic floor soft tissues during the second stage of labor, particularly the levator ani muscle, has attracted much interest recently. It has been postulated that the passage of the fetal head through the pelvis may cause excessive stretching of the levator ani muscle, which may lead to pelvic floor dysfunction and pelvic organ prolapse later in life. In order to study the complex biomechanical interactions between the levator ani muscle and the fetal head during the second stage of labor, finite element models have been developed for quantitative analysis of this process. In this study we have simulated vaginal delivery using individual-specific anatomical computer models of the pelvic floor interacting with a fetal head model with minimal restrictions placed upon its motion. Two constitutive relations were considered for the levator ani muscle (of exponential and neo-Hookean forms). For comparison purposes, the exponential relation was chosen to exhibit much greater stiffening at higher strains beyond the range of the experimental data. We demonstrated that increased nonlinearity in the elastic response of the tissues leads to considerably higher (56%) estimated force required for delivery, accompanied by a more homogeneous spatial distribution of maximum principal stretch ratio across the muscle. These results indicate that the form of constitutive relation beyond the presently available experimental data markedly affects the estimated function of the levator ani muscle during vaginal delivery, due to the large strains that occur. Further experimental data at higher strains are necessary in order to more reliably characterize the constitutive behavior required for modeling vaginal childbirth.
Growth and characterization of an organic nonlinear optical crystal: Glycinium trichloroacetate
Energy Technology Data Exchange (ETDEWEB)
Peter, M. Esthaku [Department of Physics, Easwari Engineering College, Chennai 600089 (India); Ramasamy, P., E-mail: proframasamy@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603110 (India)
2012-11-15
Single crystal of glycinium trichloroacetate, an organic nonlinear optic (NLO) material, has been grown by slow solvent evaporation technique at room temperature. The grown crystal was subjected to single crystal X-ray diffraction for confirming the coordination formed, and the presence of various functional groups was studied by FTIR in the range 4000-450 cm{sup -1}. UV-Visible transmittance studies were performed to analyze optical transparency of the crystal and second harmonic generation was investigated to explore the NLO property of the material. Thermogravimetric and differential thermal analysis have been performed to study thermal properties of the grown crystal. Dielectric constant and dielectric loss were studied at different temperatures and frequencies. Vicker's microhardness testing was carried out on the as grown crystal to reveal the mechanical properties of the crystal. Etching studies were made on the as grown crystal to analyze the structural imperfection of the crystal.
Dai, H H
2009-01-01
Buckling and barrelling instabilities in the uniaxial compressions of an elastic rectangle have been studied by many authors under lubricated end conditions. However, in practice it is very difficult to realize such conditions due to friction. Here, we study the compressions of a two-dimensional nonlinearly elastic rectangle under clamped end conditions.
NONLINEAR OPTICAL MOLECULAR CRYSTAL BASED ON 2,6-DIAMINOPYRIDINE: SYNTHESIS AND CHARACTERIZATION
Directory of Open Access Journals (Sweden)
I. M. Pavlovetc
2014-05-01
Full Text Available The paper deals with investigation of a new nonlinear optical material based on nonlinear optical chromophore (4-Nitrophenol and aminopyridine (2,6-Diaminopyridine. Calculation results are presented for molecular packing in the crystalline compound, based on the given components. According to these results the finite material must have a noncentrosymmetric lattice, which determines the presence of the second order nonlinear optical response. Investigations carried out in this work confirm these calculations. Results of experiments are given describing the co-crystallization of these components and the following re-crystallization of the obtained material. In order to get a monocrystal form, the optimal conditions for the synthesis of molecular crystals based on these components are determined. Sufficiently large homogeneous crystals are obtained, that gave the possibility to record their spectra in the visible and near infrared parts of the spectrum, to determine their nonlinear optical properties and the level of homogeneity. Their optical (optical transmission and optical laser damage threshold and nonlinear optical properties are presented. For observation and measurement of the nonlinear optical properties an installation was built which implements the comparative method for measurements of nonlinear optical properties. A potassium titanyl oxide phosphate crystal was used as a sample for comparison. Results are given for the conversion efficiency of the primary laser radiation in the second optical harmonic relative to the signal obtained on the potassium titanyl oxide phosphate crystal. Obtained results show that the molecular co-crystal based on 2,6-Diaminopyridine is a promising nonlinear optical material for generating the second optical harmonic on the Nd: YAG laser (532 nm.
Influence of boron concentration on nonlinear absorption and ultrafast dynamics in GaSe crystals
Karatay, Ahmet; Yuksek, Mustafa; Ertap, Hüseyin; Mak, Ali Kemal; Karabulut, Mevlüt; Elmali, Ayhan
2016-10-01
The nonlinear absorption properties and ultrafast dynamics of pure and boron doped GaSe crystals have been studied by open aperture Z-scan and ultrafast pump probe spectroscopy techniques. All of the studied crystals showed nonlinear absorption under 100 fs pulse duration and 1200 nm wavelength excitations. Nonlinear absorption coefficients increase with increasing the doping ratio of boron atoms in crystals. These findings indicate that free carrier density increase with boron doping and this behavior leads to excited state absorption. Second harmonic generation signals of crystals were detected with the help of fiber optic spectrometer. The blue shift in the energy of the second harmonic generation signals was observed in boron doped crystals. Ultrafast pump probe experiments indicate that the excited state absorption signal with long lifetime observed for undoped GaSe crystal switches to bleach signal for boron doped GaSe crystals at 625 nm probe wavelength. The effects of increasing doping ratio were observed on ultrafast dynamics as a switching time changes. Our experimental results indicate that it is possible to control nonlinear absorption properties, frequency conversion and ultrafast dynamics of GaSe crystal by changing boron doping ratio.
The nonlinear optical response of a two-dimensional atomic crystal
Merano, Michele
2015-01-01
The theory of Bloembergen and Persham for the light waves at the boundary of nonlinear media is applied to a nonlinear two-dimensional atomic crystal placed in between linear bulk media. The crystal is treated as a zero-thickness interface, a real two-dimensional system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. The nonlinear polarization of these special materials is very sensitive to the substrate on which they are deposited. Experiments on second harmonic generation of a $\\rm MoS_{2}$ monolayer are discussed to elucidate this point.
Anbuchezhiyan, M.; Ponnusamy, S.; Muthamizhchelvan, C.
2010-02-01
Single crystal of a new semiorganic nonlinear optical material, L-cystine dihydrobromide, was grown successfully from aqueous solution by slow evaporation method. The grown crystals were characterized by single crystal X-ray diffraction technique to determine the cell parameters. Powder X-ray diffraction analysis also confirms the structure of the grown title compound. The functional groups and vibrational frequencies have been identified using FTIR and FT Raman spectral data. Transmittance of the title compound was analyzed using UV-Vis spectrum. The mechanical strength of the grown crystal was found using Vickers microhardness measurement. The thermal stability of the grown crystal was determined with the aid of thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Second order nonlinear optical behavior of the grown crystal has been confirmed by Kurtz powder second harmonic generation (SHG) test and its SHG efficiency was found as deff=0.38 deff (KDP).
Energy Technology Data Exchange (ETDEWEB)
Anbuchezhiyan, M. [Department of Physics, Valliammai Engineering College, S.R.M. Nagar, Kattankulathur 603 203, Chennai (India); Ponnusamy, S., E-mail: suruponnus@gmail.co [Centre for Material Science and Nano Devices, Department of Physics, SRM University, Kattankulathur 603 203, Chennai (India); Muthamizhchelvan, C. [Centre for Material Science and Nano Devices, Department of Physics, SRM University, Kattankulathur 603 203, Chennai (India)
2010-02-15
Single crystal of a new semiorganic nonlinear optical material, L-cystine dihydrobromide, was grown successfully from aqueous solution by slow evaporation method. The grown crystals were characterized by single crystal X-ray diffraction technique to determine the cell parameters. Powder X-ray diffraction analysis also confirms the structure of the grown title compound. The functional groups and vibrational frequencies have been identified using FTIR and FT Raman spectral data. Transmittance of the title compound was analyzed using UV-Vis spectrum. The mechanical strength of the grown crystal was found using Vickers microhardness measurement. The thermal stability of the grown crystal was determined with the aid of thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Second order nonlinear optical behavior of the grown crystal has been confirmed by Kurtz powder second harmonic generation (SHG) test and its SHG efficiency was found as d{sub eff}=0.38d{sub eff} (KDP).
Hanumantharao, Redrothu; Kalainathan, S.; Bhagavannarayana, G.
2012-06-01
Single crystals of organic nonlinear material urea thiosemicarbazone monohydrate (UTM) have been grown by slow evaporation method. The grown crystals were characterized by single crystal X-ray diffraction analysis reveals that sample crystallized in triclinic system with noncentrosymmetric space group P1. Powder XRD pattern confirmed that grown crystal posses highly crystalline nature. FTIR spectrum was recorded to identify the presence of functional groups and molecular structure was confirmed by 1H NMR spectrum. Material confirmation of title compound has been performed by using mass spectroscopic analysis. Elemental composition of grown crystal was confirmed by energy-dispersive spectrometry (EDS). To study the crystalline perfection of the grown crystals, high-resolution X-ray diffraction (HR-XRD) study was carried out. Thermogravimetric and differential thermal analyses were employed to understand the thermal and physio-chemical stability of the synthesized compound. UV-Vis-NIR spectrum revealed the transmission properties of the crystal specimen. Relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.89 times that of standard potassium dihydrogen phosphate (KDP) crystals.
Hassan, M A; Hamdi, M; Noma, A
2012-01-01
The mechanical behavior of the heart muscle tissues is the central problem in finite element simulation of the heart contraction, excitation propagation and development of an artificial heart. Nonlinear elastic and viscoelastic passive material properties of the left ventricular papillary muscle of a guinea pig heart were determined based on in-vitro precise uniaxial and relaxation tests. The nonlinear elastic behavior was modeled by a hypoelastic model and different hyperelastic strain energy functions such as Ogden and Mooney-Rivlin. Nonlinear least square fitting and constrained optimization were conducted under MATLAB and MSC.MARC in order to obtain the model material parameters. The experimental tensile data was used to get the nonlinear elastic mechanical behavior of the heart muscle. However, stress relaxation data was used to determine the relaxation behavior as well as viscosity of the tissues. Viscohyperelastic behavior was constructed by a multiplicative decomposition of a standard Ogden strain energy function, W, for instantaneous deformation and a relaxation function, R(t), in a Prony series form. The study reveals that hypoelastic and hyperelastic (Ogden) models fit the tissue mechanical behaviors well and can be safely used for heart mechanics simulation. Since the characteristic relaxation time (900 s) of heart muscle tissues is very large compared with the actual time of heart beating cycle (800 ms), the effect of viscosity can be reasonably ignored. The amount and type of experimental data has a strong effect on the Ogden parameters. The in vitro passive mechanical properties are good initial values to start running the biosimulation codes for heart mechanics. However, an optimization algorithm is developed, based on clinical intact heart measurements, to estimate and re-correct the material parameters in order to get the in vivo mechanical properties, needed for very accurate bio-simulation and for the development of new materials for the
Alberucci, Alessandro; Laudyn, Urszula A.; Piccardi, Armando; Kwasny, Michał; Klus, Bartlomiej; Karpierz, Mirosław A.; Assanto, Gaetano
2017-07-01
We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals. We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach. Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-4'-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.
Thayanithi, V.; Rajesh, K.; Praveen Kumar, P.
2017-08-01
An aminoacid nonlinear optical crystal of L-alaninium p-toluenesulfonate (LAPT) was grown by Sankaranarayanan and Ramasamy (SR) method. The seed crystal of LAPT was grown with the help of a conventional solution method. The size of the grown crystal is 50 mm length and 20 mm diameter for (0 1 0) plane. The solubility of LAPT was determined in deionized water. The grown LAPT crystal belongs to the orthorhombic crystal system with noncentrosymmetric space group P212121. The morphology of the grown LAPT crystal reveals a hexagonal shape with six facet. The lower cut-off wavelength of the grown crystal is found to be 285 nm. Optical transmittance of the crystal grown by SR method is increased by 20%, when compared with the conventionally grown crystal. The LDT value of the SR-grown LAPT crystal has increased by 0.57 GW cm-2, compared with LAPT crystal grown by conventional method. The emission spectra of the grown crystal was analysed by photoluminescence analysis. The mechanical strength of the grown LAPT crystal was analysed by using Vickers hardness test, and the work hardening coefficient (n) of the LAPT crystal grown by SR method is found to be 2.20. The second harmonic generation efficiency of the LAPT crystal is 2.1 times that of KDP.
Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.
2016-08-01
Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.
Single-Crystal Elasticity of MgO at High Pressure and Temperature
Fan, D.; Mao, Z.; Lin, J. F.; Yang, J.; Prakapenka, V.
2014-12-01
Periclase (MgO) is a material of key importance to Earth sciences: it is one of the most abundant minerals in Earth's lower mantle. It has the simple NaCl structure with no phase transition at least up to 200 GPa and also has very high melting temperatures above 3000 K. These wide stability ranges of MgO cover high-pressure and high-temperature conditions corresponding to the Earth's lower mantle. Therefore, precise knowledge of the thermal elastic properties of MgO, major end-members of constituent mineral phases of the lower mantle, under high pressure and high temperature condition is crucial for constructing the accurate mineralogical model of the Earth's lower mantle. Here we have measured the single-crystal elasticity of MgO using in situ Brillouin spectroscopy and X-ray diffraction at simultaneous high pressure-temperature conditions up to 33 GPa and 900 K in an externally-heated diamond anvil cell. Using the third-order Eulerian finite-strain equations to model the elasticity data, we have derived the aggregate adiabatic bulk, KS0, and shear moduli, G0, at ambient conditions: KS0=162.9 (6) GPa (the value in parentheses represents propagated uncertainties) and G0=130.7 (8) GPa, respectively, consistent with literature results. The pressure derivatives of the bulk and shear moduli at 300K are (∂KS/∂P)T=4.06 (22) and (∂G/∂P)T=2.75(±0.18), respectively, which are also consistent with previous literature results. We also derived the temperature derivatives of these moduli at constant pressure. Our results here provide accurate insights into seismic profiles and mineralogical models of the lower mantle region.
Al4SiC4 wurtzite crystal: Structural, optoelectronic, elastic, and piezoelectric properties
Directory of Open Access Journals (Sweden)
L. Pedesseau
2015-12-01
Full Text Available New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al4SiC4. A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al4SiC4 material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude that the Al4SiC4 material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.
Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting
Tol, S.; Degertekin, F. L.; Erturk, A.
2016-08-01
We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.
Effect of ionic additives on elasticity of lyotropic chromonic liquid crystal
Zhou, Shuang; Cervenka, Adam J.; Singh, Yogesh; Tortora, Luana T.; Almasan, Carmen C.; Lavrentovich, Oleg D.
2013-03-01
Using a magnetic Frederiks transition technique, we determine how the splay K1 and bend K3 elastic constants of lyotropic chromonic liquid crystal Sunset Yellow (SSY) depend on concentration of ionic additives, sodium chloride (NaCl) and magnesium sulfate (MgSO4). Both salts increase the ratio K1 /K3 , by mainly increasing K1 (MgSO4) or mainly decreasing K3 (NaCl). The effects are attributed to the screening of electrostatic repulsions of chromonic molecules, which is expected to increase the contour length (thus increasing K1) and to decrease the persistence length (thus decreasing K3) of the chromonic aggregates in which the molecules are stacked face-to-face. As in salt-free SSY, the ratio K1 /K3 increases when the temperature decreases. The work was supporeted by NSF grants DMR 1104850 and 11212878.
Elastic analysis of a mode Ⅱ crack in a decagonal quasi-crystal
Institute of Scientific and Technical Information of China (English)
李显方; 范天佑
2002-01-01
The elastic analysis of a mode Ⅱ Griffith crack penetrating through a decagonal quasi-crystal along the periodicaxis is made within the context of the continuum theory. By using a general solution obtained previously, the problemin the case of uniform shear stress at infinity is solved, and the analytical expressions for the entire stress field disturbedby an internal crack are derived in an explicit form. The asymptotic fields of the displacement and stress around a cracktip in both phonon and phason fields indicate that the stresses near a crack tip exhibit the square-root singularity. Theformula for evaluating the energy release rate is also given. If imposing that the phason field is absent, the well-knownresults of a mode Ⅱ crack in a conventional material are recovered from the present results.
Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals
DEFF Research Database (Denmark)
Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin;
2015-01-01
, despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique......The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation...... is generally applicable and can be applied to any combination of fundamental wavelengths and nonlinear crystals....
Physical, optical and nonlinear properties of InS single crystal
Kushwaha, Pallavi; Patra, Anuradha; Anjali, E.; Surdi, Harshad; Singh, Abhishek; Gurada, C.; Ramakrishnan, S.; Prabhu, S. S.; Gopal, Achanta Venu; Thamizhavel, A.
2014-01-01
Indium Sulphide (InS) single crystals are successfully grown by In flux. Single crystal X-ray diffraction shows orthorhombic structure of Pnnm space group. Ellipsometry measurements performed on the (0 1 0) oriented crystal exhibit low anisotropy in the 300-1000 nm wavelength range and consequently negligible THz transmission is observed. Optical band gap of 2.09 eV is deduced from linear optical measurements. Nonlinear optical properties are studied by single beam Z-scan measurements at 800 nm, where two-photon absorption is present. Nonlinear refractive index and absorption coefficient are estimated to be n2 = 2.3 × 10-11 cm2/W and β = 62.4 cm/GW, respectively for excitation intensity of 0.32 GW/cm2. The origin of nonlinearity in InS crystal is accounted to be due to the third-order anharmonic motion of the bound electrons.
Li, Xinyang; Mao, Zhu; Sun, Ningyu; Liao, Yifan; Zhai, Shuangmeng; Wang, Yi; Ni, Huaiwei; Wang, Jingyun; Tkachev, Sergey N.; Lin, Jung-Fu
2016-08-01
We investigated the combined effect of pressure and temperature on the elasticity of single-crystal superhydrous phase B (Shy-B) using Brillouin scattering and X-ray diffraction up to 12 GPa and 700 K. Using the obtained elasticity, we modeled the anisotropy of Shy-B along slab geotherms, showing that Shy-B has a low anisotropy and cannot be the major cause of the observed anisotropy in the region. Modeled velocities of Shy-B show that Shy-B will be shown as positive velocity anomalies at the bottom transition zone. Once Shy-B is transported to the topmost lower mantle, it will exhibit a seismic signature of lower velocities than topmost lower mantle. We speculate that an accumulation of hydrous phases, such as Shy-B, at the topmost lower mantle with a weight percentage of ~17-26% in the peridotite layer as subduction progresses could help explain the observed 2-3% low shear velocity anomalies in the region.
Zhu, H.; Shan, G. C.; Shek, C. H.; Lee, J. E.-Y.
2012-07-01
The frequency response of a single crystal silicon resonator under nonlinear vibration is investigated and related to the shear property of the material. The shear stress-strain relation of bulk silicon is studied using a first-principles approach. By incorporating the calculated shear property into a device-level model, our simulation closely predicts the frequency response of the device obtained by experiments and further captures the nonlinear features. These results indicate that the observed nonlinearity stems from the material's mechanical property. Given the high quality factor (Q) of the device reported here (˜2 × 106), this makes it highly susceptible to such mechanical nonlinear effects.
MECHANISM OF OPTICAL NONLINEARITY IN “LYOTROPIC LIQUID CRYSTAL — VIOLOGEN” SYSTEM
Directory of Open Access Journals (Sweden)
Hanna Bordyuh
2014-06-01
Full Text Available In the present work we analyze the characteristics of holographic grating recording and consider a mechanism of optical nonlinearity in the lyotropic liquid crystal (LLC — viologen samples. Taking into account structural and electrooptical properties of the admixture molecules it is possible to suggest that the recording is realized due to the change of polarizability of π-electron system of coloured viologen derivatives under the action of laser radiation. The main nonlinear optical parameters such as nonlinear refraction coefficient n2, cubic nonlinear susceptibility χ(3, and hyperpolarizability γ were calculated.
Ansari, R.; Faraji Oskouie, M.; Gholami, R.
2016-01-01
In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.
Faetti, Massimo; Faetti, Sandro
1998-06-01
The Nehring-Saupe [J. Chem. Phys. 54, 337 (1971); 56, 5527 (1972)] elastic free energy of nematic liquid crystals (NLCs) contains the splay-bend elastic constant K13, which affects only the elastic surface free energy. Several years ago, Somoza and Tarazona [Mol. Phys. 72, 991 (1991)] showed that the value of K13 depends on the nonlocal to local mapping that is used to define the local elastic free energy. Then they concluded that the splay-bend constant is not a well-defined physical parameter. In the present paper we show that the Somoza-Tarazona result comes from an inconsistent treatment of the boundary effects. If all the boundary effects are correctly taken into account in an elastic approach, the elastic surface free energy contains an effective elastic constant Keff13 that is mapping independent. Keff13 is the sum of three different constants: the classical Nehring-Saupe bulk constant K13 and two specific interfacial constants K1 and Kh. While each surface constant (K13, K1, and Kh) depends on the kind of nonlocal to local mapping, the resulting surface constant Keff13=K13+K1+Kh is mapping independent. Using a simple molecular model of the intermolecular interactions, we obtain explicit expressions of Keff13 in terms of the characteristic parameters of the intermolecular energy. In the final part of this paper we discuss the meaning and the physical consequences of the elastic surface free energy Fs. We show that Fs is a semimacroscopic parameter that provides an approximate elastic description of the interfacial layer. Furthermore, we point out that the elastic surface free energy should not be confused with the thermodynamic surface free energy that appears in a consistent continuum theory of NLCs.
Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.
2012-01-01
Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.
Dispersion of the nonlinear refractive index of optical crystals
Adair, Robert; Chase, L. L.; Payne, Stephen A.
1992-09-01
The nonlinear refractive indices of several important optical materials have been measured at the second and third harmonic wavelengths of the Nd laser using nearly degenerate four-wave mixing. Measurements made relative to the nonlinear index of fused silica have the highest accuracy. Absolute measurements were also made using the Raman cross-section of benzene as a nonlinear reference standard. The relative measurements are compared with a despersion model base on parameters fitted to the linear refractive indicies and also to a recently proposed model based on Kramers-Kronig transformation of the calculated, two-band, two-photon loss spectrum.
Elavarasu, N.; Sathya, P.; Pugazhendhi, S.; Vijayan, N.; Maurya, K. K.; Gopalakrishnan, R.
2016-10-01
Ammonium D,L-Tartrate (AMT) single crystal for optical and photonic device application was analyzed with different characterization studies. The AMT crystal was grown by low cost conventional solution growth technique. The unit cell parameters were obtained from single crystal XRD analysis and the crystal system is confirmed to be orthorhombic with noncentrosymmetric space group P212121. The crystalline perfection evaluated by high resolution X-ray diffractometry (HRXRD) enumerates the quality of the crystal is good. The optical transparency window of AMT crystal has 78% transmittance from 234 nm to 1100 nm region and has lower cut-off wavelength of 234 nm was analyzed by UV-visible spectral studies. The hardness number (Hv), yield strength (σy) and elastic stiffness constant (C11) were evaluated from the hardness data using Vickers hardness tester. Dielectric study indicates the moderate dielectric constant and low dielectric loss of AMT crystal which are required properties to develop optoelectronic devices. The laser damage threshold value of AMT is 0.238 GW/cm2 and photoconductivity study reveals the positive photoconductivity nature of the AMT crystal. The particle size dependent SHG studies were performed using Nd:YAG laser. The SHG efficiency of AMT is found to be 1.3 times greater than the standard KDP crystal. Third order nonlinear susceptibility χ(3) of AMT was assessed using an open aperture and closed aperture Z-scan technique and the value is 6.71×10-6 esu. AMT crystal is found to exhibit good optical power limiting. The present work indicates that AMT is a potential material for optoelectronic and nonlinear optical devices.
Growth and characterization of L-alanine cadmium bromide a semiorganic nonlinear optical crystals
Ilayabarathi, P.; Chandrasekaran, J.
2012-10-01
A new semiorganic nonlinear optical crystal, L-alanine cadmium bromide (LACB) was grown from aqueous solution by slow solvent evaporation method at room temperature. As grown crystals were characterized for its spectral, thermal, linear and second order nonlinear optical properties. LACB crystallizes in orthorhombic system and unit cell parameters a = 5.771(2) Å, b = 6.014(4) Å, c = 12.298(2) Å, α = β = γ = 90° and volume = 426.8(3) Å3. The mode of vibrations of different molecular groups present in the crystal was identified by FTIR study. The grown crystals were found to be transparent in the entire visible region. The thermal strength and the decomposition of the grown crystals were studied using TG/DTA and DSC analysis. Dielectric measurement revealed that the crystals had very low dielectric constant at higher frequency in room temperature. The mechanical behavior was studied by Vicker's microhardness tester. The grown crystal has negative photoconductivity nature. The fluorescence spectrum of the crystal was recorded and its optical band gap is about 3.356 eV. The NLO property of crystal using modified Kurtz-Perry powder technique with Nd:YAG laser light of wavelength 1064 nm indicated that their second harmonic generation (SHG) efficiency was half that of pure KDP.
Group-velocity matched nonlinear photonic crystal fibers
DEFF Research Database (Denmark)
Bache, Morten; Lægsgaard, Jesper; Bang, Ole
2006-01-01
A quadratic nonlinear index-guiding silica PCF is optimized for efficient second-harmonic generation through dispersion calculations. Zero group-velocity mismatch is possible for any pump wavelength above 780 nm. Very high conversion efficiencies and bandwidths are found.......A quadratic nonlinear index-guiding silica PCF is optimized for efficient second-harmonic generation through dispersion calculations. Zero group-velocity mismatch is possible for any pump wavelength above 780 nm. Very high conversion efficiencies and bandwidths are found....
Single crystal elasticity of majoritic garnet at high pressure and temperature
Pamato, M. G.; Kurnosov, A.; Boffa Ballaran, T.; Frost, D. J.; Ziberna, L.; Giannini, M.; Trots, D. M.; Tkachev, S. N.; Zhuravlev, K. K.; Prakapenka, V.
2013-12-01
Seismological observations are fundamental for understanding the chemistry and structure of the Earth's interior, providing a tangible method for tracing the chemical anomalies caused by the subduction of oceanic lithosphere. The mineral garnet is a dominant component of subducted mid ocean ridge basalts (MORB) in the upper mantle and transition zone and as such can influence its physical-chemical properties. Among garnet minerals, the high pressure structured majoritic garnet, is stable throughout the entire transition zone, being volumetrically the most abundant mineral phase in this region. In order to constrain the seismic appearance and buoyancy of subducting slabs into the Earth's transition zone, the knowledge of the elastic properties and density of majoritic garnet at high pressures and temperatures is of crucial importance. Here, we report for the first time the P-V-T equation of state and Vs and Vp sound velocities of single crystals of majoritic garnet (Mg3.24Al1.53Si3.23O12) simultaneously determined by means of Brillouin spectroscopy and X ray diffraction, up to 30 GPa and 880 K. Measurements were performed on single-crystals synthesized in a multianvil apparatus at 17 GPa and 1900 °C and loaded in a diamond anvil cell with Ne as a pressure transmitting medium. A single crystal of Sm:YAG, whose fluorescence has been calibrated against an absolute pressure determination, was used as a pressure calibrant. In addition, ruby chips were used to accurately derive the temperature inside the cell. A specially designed internal resistive heater was placed around the diamonds for achieving high temperatures. An accurate pressure scale is a major issue in the investigation of physical properties of mantle minerals at the depth and temperature required to understand the Earth's interior. In this study, simultaneous measurements of density and sound velocities at the same conditions, allowed accurate determinations of the absolute pressure. We combine our
Studies on lithium L-ascorbate dihydrate: An interesting chiral nonlinear optical crystal
Energy Technology Data Exchange (ETDEWEB)
Raghavendra Rao, K., E-mail: krrao@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Bhat, H.L. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Centre for Soft Matter Research, Jalahalli, Bangalore 560013 (India); Elizabeth, Suja [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)
2013-01-15
Lithium L-Ascorbate dihydrate (LLA) is a new metal organic nonlinear optical crystal belonging to the saccharide family. Single crystals of LLA were grown from aqueous solution. Solubility of the crystal has a positive temperature coefficient facilitating growth by slow cooling. Rietveld refinement was used to confirm the phase formation. The crystal has prismatic habit with (010), (001) and (10-1) prominent faces. Thermal analysis shows that the crystal is stable up to 102 Degree-Sign C. Transmission spectrum of the crystal extends from 302 nm to 1600 nm. Dielectric spectroscopic analysis revealed Cole-Cole behaviour and prominent piezoelectric resonance peaks were observed in the range of 100-200 kHz. Second harmonic generation (SHG) conversion efficiency of up to 2.56 times that of a phase matched KDP crystal was achieved when the (010) plate of LLA single crystal was rotated about the +ve c axis, by 9.4 Degree-Sign in the clockwise direction. We also observed SHG conical sections which were attributed to noncollinear phase matching. The observation of the third conical section suggests very high birefringence and large nonlinear coefficients. A detailed study of surface laser damage showed that the crystal has high multiple damage thresholds of 9.7 GW cm{sup -2} and 4.2 GW cm{sup -2} at 1064 nm and 532 nm radiation respectively. Highlights: Black-Right-Pointing-Pointer Large nonlinear optical lithium L-ascorbate dihydrate crystals. Black-Right-Pointing-Pointer Crystals exhibit dielectric Cole-Cole behaviour and piezoelectric resonance. Black-Right-Pointing-Pointer Intense collinear and noncollinear second harmonic generation is observed. Black-Right-Pointing-Pointer Crystals possess high surface laser damage thresholds.
Manimekalai, R.; Antony Joseph, A.; Ramachandra Raja, C.
2014-03-01
This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of authors. According to the author we have reported Aloevera Amino Acid added Lithium sulphate monohydrate [AALSMH] crystal is a new nonlinear optical crystal. From the recorded high performance liquid chromatography spectrum, by matching the retention times with the known compounds, the amino acids present in our extract are identified as homocystine, isoleucine, serine, leucine and tyrosine. From the thin layer chromatography and colorimetric estimation techniques, presence of isoleucine was identified and it was also confirmed by NMR spectrum. From the above studies, we came to conclude that AALSMH is new nonlinear optical crystal. After further investigation, lattice parameter values of AALSMH are coinciding with lithium sulphate. Therefore we have decided to withdraw our paper. Sorry for the inconvenience and time spent.
Pichan, Karuppasamy; Muthu, Senthil Pandian; Perumalsamy, Ramasamy
2017-09-01
The organic single crystal of piperazinium bis(4-hydroxybenzenesulphonate) (P4HBS) was grown by slow evaporation solution technique (SEST) at room temperature. The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. Functional groups of P4HBS crystal were confirmed by FTIR spectrum analysis. The optical quality of the grown crystal was identified by the UV-Vis NIR spectrum analysis. The grown crystal has good optical transmittance in the range of 410-1100 nm. In photoluminescence spectrum, sharp emission peaks are observed, which indicates the ultraviolet (UV) emission. The photoconductivity study reveals that the grown crystal has negative photoconductive nature. The thermal behaviour of the P4HBS crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). The mechanical stability of grown crystal was analyzed and the indentation size effect (ISE) was explained by Hays-Kendall's (HK) approach and proportional specimen resistance model (PSRM). Chemical etching study was carried out and the etch pit density (EPD) was calculated. The dielectric constant (ε‧) and dielectric loss (tan δ) as a function of frequency were measured for the grown crystal. The solid state parameters such as valence electron, plasma energy, Penn gap and Fermi energy were evaluated theoretically for the P4HBS using the empirical relation. The estimated values are used to calculate the electronic polarizability. The third-order nonlinear optical properties such as nonlinear refractive index (n2), absorption co-efficient (β) and susceptibility (χ(3)) were studied by Z-scan technique at 632.8 nm using He-Ne laser.
Selvaraju, K; Kirubavathi, K
2013-11-01
The single crystals of bis l-proline hydrogen nitrate (BLPHN) belonging to non-centrosymmetric space group were successfully grown by the slow evaporation solution growth technique. The BLPHN crystals of size 10×7×3mm(3) were obtained in 35days. Initially, the solubility tests were carried out for two solvents such as deionized water and mixed of deionized water-acetone. Among the two solvents, the solubility of BLPHN was found to be the highest in deionized water, so crystallization of BLPHN was done from its aqueous solution. As grown, crystals were characterized by single crystal X-ray diffraction studies and optical transmission spectral studies. Infrared spectroscopy, thermo gravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of the grown BLPHN crystals. Nonlinear optical (NLO) behavior of BLPHN crystal was studied by Kurtz and Perry powder method. Copyright © 2013 Elsevier B.V. All rights reserved.
Institute of Scientific and Technical Information of China (English)
He Xiao-Kang; Zeng Li-Bo; Wu Qiong-Shui; Zhang Li-Yan; Zhu Ke; Liu Yu-Long
2012-01-01
From the sound velocity measured using the Brillouin scattering technique,the elastic,piezoelectric,and dielectric constants of a high-quality monodomain tetragonal Rh:BaTiO3 single crystal are determined at room temperature.The elastic constants are in fairly good agreement with those of the BaTiO3 single crystal,measured previously by Brillouin scattering and the low-frequency equivalent circuit methods.However,their electromechanical properties are significantly different.Based on the sound propagation equations and these results,the directional dependence of the compressional modulus and the shear modulus of Rh:BaTiO3 in the (010) plane is investigated.Some properties of sound propagation and electromechanical coupling in the crystal are discussed.
Dimitrova, Zlatinka I
2015-01-01
We investigate flow of incompressible fluid in a cylindrical tube with elastic walls. The radius of the tube may change along its length. The discussed problem is connected to the blood flow in large human arteries and especially to nonlinear wave propagation due to the pulsations of the heart. The long-wave approximation for modeling of waves in blood is applied. The obtained model Korteweg-deVries equation possessing a variable coefficient is reduced to a nonlinear dynamical system of 3 first order differential equations. The low probability of arising of a solitary wave is shown. Periodic wave solutions of the model system of equations are studied and it is shown that the waves that are consequence of the irregular heart pulsations may be modeled by a sequence of parts of such periodic wave solutions.
Energy Technology Data Exchange (ETDEWEB)
Byers, Loren W. [Los Alamos National Laboratory; Ten Cate, James A. [Los Alamos National Laboratory; Johnson, Paul A. [Los Alamos National Laboratory
2012-06-28
Nonlinear resonance ultrasound spectroscopy experiments conducted on concrete cores, one chemically and mechanically damaged by alkali-silica reactivity, and one undamaged, show that this material displays highly nonlinear wave behavior, similar to many other damaged materials. They find that the damaged sample responds more nonlinearly, manifested by a larger resonant peak and modulus shift as a function of strain amplitude. The nonlinear response indicates that there is a hysteretic influence in the stress-strain equation of state. Further, as in some other materials, slow dynamics are present. The nonlinear response they observe in concrete is an extremely sensitive indicator of damage. Ultimately, nonlinear wave methods applied to concrete may be used to guide mixing, curing, or other production techniques, in order to develop materials with particular desired qualities such as enhanced strength or chemical resistance, and to be used for damage inspection.
Nonlinear regime of the mode-coupling instability in 2D plasma crystals
Röcker, T B; Zhdanov, S K; Nosenko, V; Ivlev, A V; Thomas, H M; Morfill, G E
2014-01-01
The transition between linear and nonlinear regimes of the mode-coupling instability (MCI) operating in a monolayer plasma crystal is studied. The mode coupling is triggered at the centre of the crystal and a melting front is formed, which travels through the crystal. At the nonlinear stage, the mode coupling results in synchronisation of the particle motion and the kinetic temperature of the particles grows exponentially. After melting of the crystalline structure, the mean kinetic energy of the particles continued to grow further, preventing recrystallisation of the melted phase. The effect could not be reproduced in simulations employing a simple point-like wake model. This shows that at the nonlinear stage of the MCI a heating mechanism is working which was not considered so far.
Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.
Chen, Tao; Sun, Junqiang; Li, Linsen
2012-08-27
In this paper, we derive the couple-mode equations for third-order nonlinear effects in photonic crystal waveguides by employing the modal theory. These nonlinear interactions include self-phase modulation, cross-phase modulation and degenerate four-wave mixing. The equations similar to that in nonlinear fiber optics could be expanded and applied for third-order nonlinear processes in other periodic waveguides. Based on the equations, we systematically analyze the group-velocity dispersion, optical propagation loss, effective interaction area, slow light enhanced factor and phase mismatch for a slow light engineered silicon photonic crystal waveguide. Considering the two-photon and free-carrier absorptions, the wavelength conversion efficiencies in two low-dispersion regions are numerically simulated by utilizing finite difference method. Finally, we investigate the influence of slow light enhanced multiple four-wave-mixing process on the conversion efficiency.
Energy Technology Data Exchange (ETDEWEB)
Yadav, Harsh [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India); Sinha, Nidhi [Department of Physics & Electronics, SGTB Khalsa College, University of Delhi, Delhi 110007 (India); Kumar, Binay, E-mail: b3kumar69@yahoo.co.in [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India)
2015-04-15
Highlights: • A new semiorganic single crystal of LSO grown by slow evaporation technique. • Morphological studies of the LSO crystal deduced by BFDH law. • In the UV–vis spectrum wide transparent region and large band gap were found. • SHG is equal to KDP crystal and d{sub 33} was found to be equal to 6pC/N. • Grown crystal belongs to softer category. - Abstract: New semiorganic crystal of lithium sulfate monohydrate oxalate (LSO) for nonlinear application was synthesized by controlled slow evaporation method. The growth rate of various planes of the grown crystal was estimated by morphological study. Single crystal XRD analysis confirmed that the crystal belongs to triclinic lattice with space group P1. High transparency (∼95%) with large band gap (4.57 eV) was analyzed by UV–vis studies. FTIR and Raman spectroscopy were used to identify various functional groups present in the LSO crystal. SHG efficiency was found to be equal to the KDP crystal. Thermal stability (up to 117.54 °C) and melting point (242 °C) of the crystal were studied by TG-DTA. In dielectric measurements, the value of dielectric constant decreases with increase in frequency. Hardness studies confirmed soft nature of crystals. The piezoelectric coefficient was found to be 6pC/N along [0 0 1].
Rezaee, Mousa; Jahangiri, Reza
2015-05-01
In this study, in the presence of supersonic aerodynamic loading, the nonlinear and chaotic vibrations and stability of a simply supported Functionally Graded Piezoelectric (FGP) rectangular plate with bonded piezoelectric layer have been investigated. It is assumed that the plate is simultaneously exposed to the effects of harmonic uniaxial in-plane force and transverse piezoelectric excitations and aerodynamic loading. It is considered that the potential distribution varies linearly through the piezoelectric layer thickness, and the aerodynamic load is modeled by the first order piston theory. The von-Karman nonlinear strain-displacement relations are used to consider the geometrical nonlinearity. Based on the Classical Plate Theory (CPT) and applying the Hamilton's principle, the nonlinear coupled partial differential equations of motion are derived. The Galerkin's procedure is used to reduce the equations of motion to nonlinear ordinary differential Mathieu equations. The validity of the formulation for analyzing the Limit Cycle Oscillation (LCO), aero-elastic stability boundaries is accomplished by comparing the results with those of the literature, and the convergence study of the FGP plate is performed. By applying the Multiple Scales Method, the case of 1:2 internal resonance and primary parametric resonance are taken into account and the corresponding averaged equations are derived and analyzed numerically. The results are provided to investigate the effects of the forcing/piezoelectric detuning parameter, amplitude of forcing/piezoelectric excitation and dynamic pressure, on the nonlinear dynamics and chaotic behavior of the FGP plate. It is revealed that under the certain conditions, due to the existence of bi-stable region of non-trivial solutions, system shows the hysteretic behavior. Moreover, in absence of airflow, it is observed that variation of control parameters leads to the multi periodic and chaotic motions.
Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya
2011-10-10
We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.
Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber.
Moeser, J T; Wolchover, N A; Knight, J C; Omenetto, F G
2007-04-15
We present a theoretical and experimental analysis of supercontinuum generation in very short lengths of high-nonlinearity photonic crystal fibers. The Raman response function for Schott SF6 glass is presented for what is believed to be the first time and used for numerical modeling of pulse propagation. Simulation and experiments are in excellent agreement and demonstrate the rapid transition to regimes of spectral complexity due to higher-order nonlinear effects.
Cavity optomechanics with a nonlinear photonic-crystal nanomembrane
Energy Technology Data Exchange (ETDEWEB)
Makles, Kevin; Kuhn, Aurélien; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine [Laboratoire Kastler Brossel, UPMC-ENS-CNRS, Case 74, 4 place Jussieu, F75252 Paris Cedex 05 (France); Antoni, Thomas [Laboratoire de Photonique et Nanostructures LPN-CNRS, UPR-20, Route de Nozay, 91460 Marcoussis, France and Laboratoire Kastler Brossel, UPMC-ENS-CNRS, Case 74, 4 place Jussieu, F75252 Paris Cedex 05 (France); Braive, Rémy [Laboratoire de Photonique et Nanostructures LPN-CNRS, UPR-20, Route de Nozay, 91460 Marcoussis, France and Université Paris Diderot, 10, rue Alice Domon et Léonie Duquet, 75205 Paris, Cedex 13 (France); Sagnes, Isabelle; Robert-Philip, Isabelle [Laboratoire de Photonique et Nanostructures LPN-CNRS, UPR-20, Route de Nozay, 91460 Marcoussis (France)
2014-12-04
We have designed, fabricated and characterized a nanomembrane which could be used as a moving end mirror of a Fabry-Perot cavity. The high reflectivity and optimized mechanical properties of the membrane should allow us to demonstrate the mechanical ground state of the membrane. As any sub-micron mechanical resonator, our system demonstrates nonlinear dynamical effects. We characterize the mechanical response to a strong pump drive and observe a shift in the oscillation frequency and phase conjugation of the mechanical mode. Such nonlinear effects are expected to play a role in the quantum dynamics of the membrane as well.
Nonlinear processes upon two-photon interband picosecond excitation of PbWO4 crystal
Lukanin, V. I.; Karasik, A. Ya
2016-09-01
A new experimental method is proposed to study the dynamics of nonlinear processes occurring upon two-photon interband picosecond excitation of a lead tungstate crystal and upon its excitation by cw probe radiation in a temporal range from several nanoseconds to several seconds. The method is applied to the case of crystal excitation by a sequence of 25 high-power picosecond pulses with a wavelength of 523.5 nm and 633-nm cw probe radiation. Measuring the probe beam transmittance during crystal excitation, one can investigate the influence of two-photon interband absorption and the thermal nonlinearity of the refractive index on the dynamics of nonlinear processes in a wide range of times (from several nanoseconds to several seconds). The time resolution of the measuring system makes it possible to distinguish fast and slow nonlinear processes of electronic or thermal nature, including the generation of a thermal lens and thermal diffusion. An alternative method is proposed to study the dynamics of induced absorption transformation and, therefore, the dynamics of the development of nonlinear rocesses upon degenerate two-photon excitation of the crystal in the absence of external probe radiation.
Salamon, P; Eber, N; Seltmann, J; Lehmann, M; Gleeson, J T; Sprunt, S; Jákli, A
2012-06-01
The effect of director pretilt on the twist magnetic Fréedericksz transition of nematics was investigated in a planar cell. The director configuration was calculated as a function of magnetic inductance. The dielectric and optical response of the nematic liquid crystal was numerically modeled. A dielectric measurement method for determining the elastic constant K_{22} is presented. The influence of the conditions for the Mauguin effect is discussed. The theoretical predictions were confirmed by our experiments. Experimental data for all elastic constants of a bent-core nematic material are presented and discussed.
Yoneda, Akira; Fukui, Hiroshi; Gomi, Hitoshi; Kamada, Seiji; Xie, Longjian; Hirao, Naohisa; Uchiyama, Hiroshi; Tsutsui, Satoshi; Baron, Alfred Q. R.
2017-09-01
We measured the elasticity of single crystal gold (Au) and its lattice parameters under high pressure using inelastic X-ray scattering (IXS). The elastic moduli were obtained at five pressure points between 0 and 20 GPa. The pressure variation of the bulk modulus displays anomalous behavior, being nearly constant up to ˜5 GPa, and then steeply increasing at higher pressure. A similar anomaly is observed in first-principles calculations. An absolute pressure scale was derived by direct numerical integration of the bulk modulus over volume change. This yields a scale that gives slightly lower pressure values than those of previous work, about 5-10% lower at ˜20 GPa.
Measurement of nonlinear elastic response in rock by the resonant bar method
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A. [Los Alamos National Lab., NM (United States); Rasolofosaon, P.; Zinszner, B. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)
1993-04-01
In this work we are studying the behavior of the fundamental (Young`s) mode resonant peak as a function of drive amplitude in rock samples. Our goal from these studies is to obtain nonlinear moduli for many rock types, and to study the nonlinear moduli as a function of water saturation and other changes in physical properties. Measurements were made on seven different room dry rock samples. For one sample measurements were taken at 16 saturation levels between 1 and 98%. All samples display a ``softening`` nonlinearity, that is, the resonant frequency shifts downward with increasing drive amplitude. In extreme cases, the resonant frequency changes by as much as 25% over a strain interval of 10{sup {minus}7} to {approximately}4 {times} 10{sup {minus}5}. Measurements indicate that the nonlinear response is extremely sensitive to saturation. Estimates of a combined cubic and quartic nonlinear parameter {Gamma} range from approximately {minus}300 to {minus}10{sup 9} for the rock samples.
Self-induced transparency and giant nonlinearity in doped photonic crystals
Kurizki, G; Opatrny, T; Blaauboer, M; Malomed, B; Kurizki, Gershon; Petrosyan, David; Opatrny, Tomas; Blaauboer, Miriam; Malomed, Boris
2002-01-01
Photonic crystals doped with resonant atoms allow for uniquely advantageous nonlinear modes of optical propagation: (a) Self-induced transparency (SIT) solitons and multi-dimensional localized "bullets" propagating at photonic band gap frequencies. These modes can exist even at ultraweak intensities (few photons) and therefore differ substantially either from solitons in Kerr-nonlinear photonic crystals or from SIT solitons in uniform media. (b) Cross-coupling between pulses exhibiting electromagnetically induced transparency (EIT) and SIT gap solitons. We show that extremely strong correlations (giant cross-phase modulation) can be formed between the two pulses. These features may find applications in high-fidelity classical and quantum optical communications.
Intracavity frequency doubling of CW Ti:Sapphire laser utilising BiBO nonlinear crystal
DEFF Research Database (Denmark)
Thorhauge, Morten; Mortensen, Jesper Liltorp; Tidemand-Lichtenberg, Peter
Utilising BiBO nonlinear crystal frequency doubling a Ti:Sapphire CW laser gave 100 mW at 405 nm and 53 mW at 392 nm. Stability proved excellent without servo control. Broad tunability was shown around 392 nm.......Utilising BiBO nonlinear crystal frequency doubling a Ti:Sapphire CW laser gave 100 mW at 405 nm and 53 mW at 392 nm. Stability proved excellent without servo control. Broad tunability was shown around 392 nm....
Research on Nonlinear Absorption Effect in KDP and 70%-DKDP Crystals
Directory of Open Access Journals (Sweden)
Duanliang Wang
2017-07-01
Full Text Available Nonlinear optical absorption effect in KDP and 70%-DKDP crystals, which were grown by the conventional temperature cooling method, was systematically studied using picosecond pulse laser excitation. Using open aperture Z-scan measurements, the dependence of nonlinear absorption effect on sample orientations (I, II, and z as well as laser intensity was systematically measured at λ = 1064 and 532 nm. According to the experimental results, the nonlinear absorption effect at λ = 532 nm was confirmed, while at λ = 1064 nm no nonlinear absorption was observed for KDP and 70%-DKDP crystals. In addition, the optical absorption along I- and II-type affected by laser intensity was larger than that along the z-direction. The important nonlinear absorption coefficients β and χ I ( 3 (esu measured along different orientations were exhibited in detail at wavelengths of 1064 nm and 532 nm. The results indicate that nonlinear absorption coefficients increase first and then decrease with the increment of laser intensity for KDP and 70%-DKDP crystals.
Non-linear elasticity of core/shell spun PGS/PLLA fibres and their effect on cell proliferation.
Xu, Bing; Rollo, Ben; Stamp, Lincon A; Zhang, Dongcheng; Fang, Xiya; Newgreen, Donald F; Chen, Qizhi
2013-09-01
An efficient delivery system is critical for the success of cell therapy. To deliver cells to a dynamic organ, the biomaterial vehicle should mechanically match with the non-linearly elastic host tissue. In this study, non-linearly elastic biomaterials have been fabricated from a chemically crosslinked elastomeric poly(glycerol sebacate) (PGS) and thermoplastic poly(l-lactic acid) (PLLA) using the core/shell electrospinning technique. The spun fibrous materials containing a PGS core and PLLA shell demonstrate J-shaped stress-strain curves, having ultimate tensile strength (UTS), rupture elongation and stiffness constants of 1 ± 0.2 MPa, 25 ± 3% and 12 ± 2, respectively, which are comparable to skin tissue properties reported previously. Our ex vivo and in vivo trials have shown that the elastomeric mesh supports and fosters the growth of enteric neural crest (ENC) progenitor cells, and that the cell-seeded elastomeric fibrous sheet physically remains in intimate contact with guts after grafting, providing the effective delivery of the progenitor cells to an embryonic and post-natal gut environment.
The effect of pressure on open-framework silicates: elastic behaviour and crystal-fluid interaction
Gatta, G. D.; Lotti, P.; Tabacchi, G.
2017-08-01
The elastic behaviour and the structural evolution of microporous materials compressed hydrostatically in a pressure-transmitting fluid are drastically affected by the potential crystal-fluid interaction, with a penetration of new molecules through the zeolitic cavities in response to applied pressure. In this manuscript, the principal mechanisms that govern the P-behaviour of zeolites with and without crystal-fluid interaction are described, on the basis of previous experimental findings and computational modelling studies. When no crystal-fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around O atoms that behave as hinges. Tilting of tetrahedra is the dominant mechanism at low-mid P-regime, whereas distortion and compression of tetrahedra represent the mechanisms which usually dominate the mid-high P regime. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. The deformation mechanisms are dictated by the topological configuration of the tetrahedral framework; however, the compressibility of the cavities is controlled by the nature and bonding configuration of the ionic and molecular content, resulting in different unit-cell volume compressibility in isotypic structures. The experimental results pertaining to compression in "penetrating" fluids, and thus with crystal-fluid interaction, showed that not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, zeolites with well-stuffed channels at room conditions (e.g. natural zeolites) tend to hinder the penetration of new species through the zeolitic cavities. Several variables govern the sorption phenomena at high pressure, among those: the "free diameters" of the framework cavities, the chemical nature and the configuration of the extra-framework population, the partial pressure of the penetrating molecule in the
Frequency conversion, nonlinear absorption and carrier dynamics of GaSe:B/Er crystals
Yuksek, Mustafa; Karatay, Ahmet; Ertap, Hüseyin; Elmali, Ayhan; Karabulut, Mevlut
2017-04-01
We aimed to investigate the influence of Er3+ rare earth element on the frequency conversion wavelength in boron doped GaSe crystals. It was found that by substitution of Er3+ with B3+, SHG signal shifted to higher wavelength. In addition, the nonlinear absorption properties and ultrafast dynamics of pure, 0.5 at% B3+ and 0.25 at% B3+ + 0.25 at% Er3+ doped GaSe crystals have been studied by open aperture Z-scan and ultrafast pump probe spectroscopy techniques. All of the studied crystals showed nonlinear absorption (NA). It was observed that 0.5 at% B3+ doped GaSe crystal showed bleach signal. This signal switched to NA signal with long life after substitution of 0.25 at% Er3+ with 0.25 at% B3+.
Institute of Scientific and Technical Information of China (English)
S.V.Ivanova
2008-01-01
By the 90°elastic light scattering investigation and far field observation in the range of 20-800℃,the relation between behavior of light scattering anomalies and evolution of nanodomain structures in lattice of barium sodium niobate(Ba2NaNb5O15,BSN)crystal was clarified.The correlation between anomalies on the temperature curves of the elastic light scattering intensity and temperature transformations of nanodomains was studied by X-ray and electron microscope methods.Phase transition near 500℃ and movement in field of scattering light could be explained by appearance of a new incommensurate phase.
Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia
2017-08-01
A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.
Properties of a New Nonlinear Optical Crystal CdZn2B2O6
Institute of Scientific and Technical Information of China (English)
ZHANG Fan; SHEN De-Zhong; SHEN Guang-Qiu; WANG Xiao-Qing
2008-01-01
@@ Cadmium dizinc diborate (CdZn2B2O6) single crystals have been grown for the first time. The crystal structure of CdZn2B2O6 is the same as that of the Cd3Zn3B4O12. The x-ray diffraction, infrated and Raman spectra,differential scanning calorimetry analysis and density indicate that the physical and chemical properties of both crystals are very similar. Especially, the nonlinear optical coefficients of CdZn2B2O6 and Cd3ZnaB4O12 crystals are 2.6 and 2.4 times as large as that of KH2PO4 crystal respectively. Chemical etching experiments indicated that these crystals are very stable in neutral solution and not hygroscopic in air at room temperature.
Nonlinear optical properties of polymer dispersed liquid crystals doped with La2CaB10019
Zegadlo, Krzysztof B.; El Ouazzani, Hasnaa; Cieslik, Iwona; Weglowski, Rafal; Zmija, Jozef; Klosowicz, Stanislaw; Majchrowski, Andrzej; Mysliwiec, Jaroslaw; Sahraoui, Bouchta; Karpierz, Miroslaw A.
2012-08-01
Second order nonlinearity in polymer dispersed liquid crystal structures containing La2CaB10O19 nanocrystals were measured with use of the Maker fringes method. The composites with different concentration of La2CaB10O19 crystallites or without them were compared. It was shown that there is a strong influence of the crystals concentration on the second harmonic generation in such structures which can be additionally modified by external electric field.
Parameters for efficient growth of second harmonic field in nonlinear photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Joseph, Shereena, E-mail: sherin5462@gmail.com; Khan, Mohd. Shahid; Hafiz, Aurangzeb Khurram
2014-03-01
The ultrashort pulse propagation and nonlinear second harmonic generation under the undepleted pump approximation in a quadratic nonlinear photonic crystal (NPC) structure is theoretically investigated and the optimized parameters for high second harmonic generation conversion efficiency are extracted. The transfer matrix method is used for the numerical formulation for oblique angle of incidence. A unique set of material combination GaInP/InAlP is selected as alternating nonlinear and linear layers. The NPC parameters like incident angle and layer thickness are manipulated to obtain the exact phase matching using double resonance condition for a fixed number of layers with known experimental material parameters.
Theory of director precession and nonlinear waves in nematic liquid crystals under elliptical shear.
Krekhov, A P; Kramer, L
2005-09-01
We study theoretically the slow director precession and nonlinear waves observed in homeotropically oriented nematic liquid crystals subjected to circular or elliptical Couette and Poiseuille flow and an electric field. From a linear analysis of the nematodynamic equations it is found that in the presence of the flow the electric bend Fréedericksz transition is transformed into a Hopf-type bifurcation. In the framework of an approximate weakly nonlinear analysis we have calculated the coefficients of the modified complex Ginzburg-Landau equation, which slightly above onset describes nonlinear waves with strong nonlinear dispersion. We also derive the equation describing the precession and waves well above the Fréedericksz transition and for small flow amplitudes. Then the nonlinear waves are of diffusive nature. The results are compared with full numerical simulations and with experimental data.
Switching behaviour of nonlinear Mach–Zehnder interferometer based on photonic crystal geometry
Indian Academy of Sciences (India)
Man Mohan Gupta; S Medhekar
2014-06-01
Nonlinear Mach–Zehnder interferometer (NMZI) created with photonic crystal waveguides (PCW) and with Kerr-type nonlinearity has been investigated in this paper. The NMZI has been simulated using two-dimensional finite difference time domain (2D-FDTD) method. Input verses output (I/O) characteristics have been obtained for different lengths of the nonlinear arm, nonlinear coefficients of the nonlinear arm, wavelengths of the input beam, sizes of defect rods and NMZI offset. The results obtained are compared with earlier published results of NMZI created with conventional step index waveguides (SIW). It is shown that all useful features of light switching offered by SIW-based NMZIs are also possible with PCW-based NMZIs of extremely small dimensions. Moreover, PCW-based NMZIs offer additional useful feature not available with SIW-based NMZIs.
Institute of Scientific and Technical Information of China (English)
NIU Jia-Sheng; MA Ben-Kun
2003-01-01
In this paper, we theoretically discuss the soliton properties of light pulse transportation on the surface of an ionic crystal having strong nonlinear interactions between ions of unit cells. We analyze in detail the dark solitons when the nonlinear coefficient g is positive and negative, respectively. It is found that whether the nonlinear coefficient g is positive or negative, the dark solitons can be formed over the whole dispersion relation area of surface polaritons considering nonlinear effects. Attention should be paid to the fact that around ωTO, the light pulse can form advanced dark solitons, and there is a switching area from advanced dark soliton to retarded dark soliton near ωTO. We also discuss the effects of higher nonlinear dispersion on the solitons.
A review of recent theoretical studies in nonlinear crystals: towards the design of new materials
Luppi, Eleonora; Véniard, Valérie
2016-12-01
Nonlinear optics is an important and exciting field of fundamental and applied research, with applications in many different disciplines such as physics chemistry, material science and biology. In the recent years, nonlinear optical phenomena started to be also widely used in technological applications for optoelectronics and photovoltaics. This coincided with an important experimental and theoretical search for new materials with an efficient and exploitable nonlinear optical response. Here, starting from the discovery of nonlinear optics, we review the most important theoretical formalisms developed to understand, interpret and predict the nonlinear optical phenomena. We show the different level of approximation of the many-electrons interactions that these formalisms can describe which are fundamental in the interpretation of the experiments. The impact of the theory is then analyzed on different classes of new materials particularly studied in these years: silicon bulk to nano, compound semiconductors, graphene, transition metal dichalcogenide, hexagonal boron nitride and borate crystals.
Arivazhagan, T.; Siva Bala Solanki, S.; Rajesh, Narayana Perumal
2017-02-01
The butyl 4-hydroxybenzoate single crystal has been grown by vertical Bridgman technique using single wall ampoule. The cell parameters of the grown crystal are verified by single crystal X-ray diffraction analysis. The functional groups of the grown crystal were identified by Fourier transform infrared analysis. The melting, decomposition and crystallization point of the compound are determined by thermo gravimetric analysis and differential scanning calorimetric analysis. The mechanical properties of the grown crystal has been analyzed by Vickers microhardness method. The optical behavior of the grown crystal has been observed by UV-vis-NIR transmission spectroscopic analysis which shows that the lower cut-off wavelength lying at 293 nm and found that the energy band gap value is 4.05 eV. The blue light emission of the crystal was identified by photoluminescence studies. The positive third order nonlinear optical parameters like nonlinear refractive index (n2), nonlinear absorption co-efficient (β) and third order nonlinear susceptibility (χ3) of the grown crystal was calculated by Z-scan studies. The positive sign of nonlinear refractive index (n2) indicates that the crystal exhibits self focusing optical nonlinearity. The crystal exhibits good optical power limiting behavior.
DEFF Research Database (Denmark)
Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari
2010-01-01
Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...... and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However...
Institute of Scientific and Technical Information of China (English)
XIAO Yong-gang; FU Yi-ming; ZHA Xu-dong
2005-01-01
Based on Reissner plate theory and Hamilton variational principle, the nonlinear equations of motion were derived for the moderate thickness rectangular plates with transverse surface penetrating crack on the two-parameter foundation. Under the condition of free boundary, a set of trial functions satisfying all boundary conditions and crack's continuous conditions were proposed. By employing the Galerkin method and the harmonic balance method, the nonlinear vibration equations were solved and the nonlinear vibration behaviors of the plate were analyzed. In numerical computation, the effects of the different location and depth of crack, the different structural parameters of plates and the different physical parameters of foundation on the nonlinear amplitude frequency response curves of the plate were discussed.
Crystal growth and properties of novel organic nonlinear optical crystals of 4-Nitrophenol urea
Energy Technology Data Exchange (ETDEWEB)
Mohan, M. Krishna, E-mail: krishnamohan.m@ktr.srmuniv.ac.in; Ponnusamy, S.; Muthamizhchelvan, C.
2017-07-01
Single crystals of 4-Nitrophenol urea have been grown from water using slow evaporation technique at constant temperature, with the vision to improve the properties of the crystals. The unit cell parameters of the grown crystals were determined by single crystal and powder X-Ray diffraction. FTIR studies reveals the presence of different vibrational bands. The Optical studies confirmed that the crystal is transparent up to 360 nm .TGA and DSC studies were carried out to understand the thermal behavior of crystals. The SHG studies show the suitability of the crystals for NLO applications. The etching studies were carried out to study the behavior of the crystals under different conditions.These studies reveal that the crystals of 4-Nitrophenol urea are suitable for device applications. - Highlights: • 4-Nitrophenol urea crystals of dimensions 14 mm × 1 mm were grown. • UV–Visible studies indicate the crystal is transparent in the region of 370–800 nm. • Thermal studies show the crystal starts decomposing at 170 °C. • SHG studies indicate that the crystals have NLO efficiency 3.5 times that of KDP.
Computation of displacements for nonlinear elastic beam models using monotone iterations
Directory of Open Access Journals (Sweden)
Philip Korman
1988-01-01
Full Text Available We study displacement of a uniform elastic beam subject to various physically important boundary conditions. Using monotone methods, we discuss stability and instability of solutions. We present computations, which suggest efficiency of monotone methods for fourth order boundary value problems.
Development of Chalcopyrite Crystals for Nonlinear Optical Applications
1974-12-01
write the expansion ol the homopolar and the heteropolar part of the mean energy gap in the following way. £.(«) - £. + (a«», + (a.)’*, + (Ha) C...a nearly linear relation over a wide 7 —12-um spectral range. We therefore used a 1 stepping motor and synchronously rotated the AgGaSe, crystal
Optimizing nonlinear beam coupling in low-symmetry crystals.
Shumelyuk, A; Volkov, A; Odoulov, S; Grabar, A; Stoyka, I; Evans, D R
2014-10-01
The purpose of this paper is to find the polarizations and spatial orientations of the two interacting counterpropagating coherent light waves which ensure the largest beam coupling in monoclinic photorefractive crystal. The results of calculations are presented that are verified experimentally with Sn₂P₂S₆.
Nonlinear spatial mode imaging of hybrid photonic crystal fibers
DEFF Research Database (Denmark)
Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Laurila, Marko;
2013-01-01
Degenerate spontaneous four wave mixing is studied for the rst time in a large mode area hybrid photonic crystal ber, where light con nement is achieved by combined index- and bandgap guiding. Four wave mixing products are generated on the edges of the bandgaps, which is veri ed by numerical...
Reliability-based design optimization of a nonlinear elastic plastic thin-walled T-section beam
Ba-Abbad, Mazen A.
A two part study is performed to investigate the application of reliability-based design optimization (RBDO) approach to design elastic-plastic stiffener beams with T-section. The objectives of this study are to evaluate the benefits of reliability-based optimization over deterministic optimization, and to illustrate through a practical design example some of the difficulties that a design engineer may encounter while performing reliability-based optimization. Other objectives are to search for a computationally economic RBDO method and to utilize that method to perform RBDO to design an elastic-plastic T-stiffener under combined loads and with flexural-torsional buckling and local buckling failure modes. First, a nonlinear elastic-plastic T-beam was modeled using a simple 6 degree-of-freedom non-linear beam element. To address the problems of RBDO, such as the high non-linearity and derivative discontinuity of the reliability function, and to illustrate a situation where RBDO fails to produce a significant improvement over the deterministic optimization, a graphical method was developed. The method started by obtaining a deterministic optimum design that has the lowest possible weight for a prescribed safety factor (SF), and based on that design, the method obtains an improved optimum design that has either a higher reliability or a lower weight or cost for the same level of reliability as the deterministic design. Three failure modes were considered for an elastic-plastic beam of T cross-section under combined axial and bending loads. The failure modes are based on the total plastic failure in a beam section, buckling, and maximum allowable deflection. The results of the first part show that it is possible to get improved optimum designs (more reliable or lighter weight) using reliability-based optimization as compared to the design given by deterministic optimization. Also, the results show that the reliability function can be highly non-linear with respect to
Energy Technology Data Exchange (ETDEWEB)
Min, Young Jae; Yun, Gyeong Won; Kim, Kyung Min; Roh, Yuji; Kim, Young H. [Applied Acoustics Lab, Korea Science Academy of KAIST, Busan (Korea, Republic of)
2016-02-15
Single crystalline silicon wafers having (100), (110), and (111) directions are employed as specimens for obtaining slowness profiles. Leaky Lamb waves (LLW) from immersed wafers were detected by varying the incident angles of the specimens and rotating the specimens. From an analysis of LLW signals for different propagation directions and phase velocities of each specimen, slowness profiles were obtained, which showed a unique symmetry with different symmetric axes. Slowness profiles were compared with elastic moduli of each wafer. They showed the same symmetries as crystal structures. In addition, slowness profiles showed expected patterns and values that can be inferred from elastic moduli. This implies that slowness profiles can be used to examine crystal structures of anisotropic solids.
Yu, Meina; Zhou, Xiaochen; Jiang, Jinghua; Yang, Huai; Yang, Deng-Ke
2016-05-11
Chiral nematic liquid crystals possess a self-assembled helical structure and exhibit unique selective reflection in visible and infrared light regions. Their optical properties can be electrically tuned. The tuning involves the unwinding and restoring of the helical structure. We carried out an experimental study on the mechanism of the restoration of the helical structure. We constructed chiral nematic liquid crystals with variable elastic constants by doping bent-dimers and studied their impact on the restoration. With matched twist and bend elastic constants, the helical structure can be restored dramatically fast from the field-induced homeotropic state. Furthermore, defects can be eliminated to produce a perfect planar state which exhibits high selective reflection.
Cathodoluminescence Study of Orientation-Patterned GaAs Crystals for Nonlinear Optics
Martínez, O.; Avella, M.; Hortelano, V.; Jiménez, J.; Lynch, C.; Bliss, D.
2010-06-01
Orientation-patterned (OP) GaAs crystals are very promising for their use in nonlinear optical applications. In particular, mid-infrared and terahertz lasers can be generated by frequency conversion from shorter-wavelength sources. However, the quality of the crystals is crucial for high conversion efficiency, as the presence of defects with electrooptical signatures can contribute to optical losses. The study of these defects is a step toward the improvement of OP-GaAs crystals. We present here a spectroscopic cathodoluminescence study of the distribution of the main defects. Tentative relations between defects and the optical propagation losses are discussed.
Thermal and Transmission Properties of UV Nonlinear Optical Material-- ZnCd(SCN)4 Crystal
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Zinc cadmium thiocyanate(ZCTC), ZnCd(SCN)4, has been discovered as a UV second-order nonlinear optical coordination crystal. Its thermal and transmission properties are reported. The thermal decomposition is characterized by using the X-ray powder diffraction (XRPD) and infrared (IR) spectroscopy at room temperature. The absorptions of intrinsic ions and ZCTC in a solution state are discussed as well as transmission properties of the ZCTC crystal. An effective method of reducing the surface reflection loss of ZCTC crystal is introduced.
Growth and characterization of L-valine - a nonlinear optical crystal
Energy Technology Data Exchange (ETDEWEB)
Moitra, S.; Kar, T. [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)
2010-01-15
The growth of a new nonlinear optical material L-valine by solvent evaporation method is reported here. To grow good quality crystals pH value of growth solution has been optimized and solubility of L-valine in different solvents and different pH values was determined. The grown crystals were characterized by IR, single crystal XRD, DTA and TGA, optical transmission and second harmonic generation (SHG) efficiency measurement. SHG efficiency of L-valine was found equivalent to KDP and its transmission is 75%-80% from ultraviolet to near IR region. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Kumar, P. Ramesh; Gunaseelan, R.; Raj, A. Antony; Selvakumar, S.; Sagayaraj, P.
2012-06-01
Nonlinear optical amino-acid single crystal of L-phenylalanine hydrochloride (LPHCl) was successfully grown by unidirectional Sankaranarayanan-Ramasamy (SR) method under ambient conditions for the first time. The grown single crystal was subjected to different characterization analyses in order to find out its suitability for device fabrication. The crystalline perfection was evaluated using high-resolution X-ray diffractometry. It is evident from the optical absorption study that crystal has excellent transmission in the entire visible region with its lower cut off wavelength around 290 nm.
DEFF Research Database (Denmark)
Yu, Yi; Chen, Yaohui; Hu, Hao;
2015-01-01
We suggest and experimentally demonstrate a photonic-crystal structure with more than 30 dB difference between forward and backward transmission levels. The non-reciprocity relies on the combination of ultrafast carrier nonlinearities and spatial symmetry breaking in a Fano structure employing...
High intensity polarization entangled source with a 2D nonlinear photonic crystal
DEFF Research Database (Denmark)
Wang, Qin
2009-01-01
We gave a proposal on how to use a piece of two-dimension (2D) nonlinear photonic crystal to generate a polarization entangled source. It provides not only has a high stability, but also a high entangled quality and a high intensity. Moreover, our scheme involves only practical experimental...
Nonlinear Control of Absorption in Graphene-based 1D Photonic Crystal
Vincenti, M A; Grande, M; D'Orazio, A; Scalora, M
2013-01-01
Perfect, narrow-band absorption is achieved in an asymmetric 1D photonic crystal with a monolayer graphene defect. Thanks to the large third order nonlinearity of graphene and field localization in the defect layer we demonstrate the possibility to achieve controllable, saturable absorption for the pump frequency.
Cascading nonlinearities in an organic single crystal core fiber: The Cerenkov regime
Torruellas, William E.; Krijnen, Gijs; Kim, Dug Y.; Schiek, Roland; Stegeman, George J.; Vidakovic, Petar; Zyss, Joseph
1994-01-01
The large nonlinear phase shifts imparted to the fundamental beam during Cerenkov second harmonic generation (SHG) in a DAN, 4-(N,N-dimethylamino)-3-acetamidonitrobenzene, single crystal core fiber are explained and modelled numerically. Cascading upconversion and downconversion processes leads to n
Synthesis, growth and characterization of a nonlinear optical crystal: l-Leucinium perchlorate
Directory of Open Access Journals (Sweden)
P. Baskaran
2017-01-01
Full Text Available An amino acid based semiorganic nonlinear optical family single crystal of l-leucinium perchlorate (LLPCl was grown by the solvent evaporation method at ambient temperature. Good optical quality single crystals up to a size of 6 mm × 5 mm × 3 mm were obtained. The single-crystal XRD analysis shows that the grown crystals have a monoclinic structure. Fourier transform infrared (FTIR spectral analysis and UV–vis spectral studies were also carried out. Microhardness mechanical studies show that the hardness number (Hv of a LLPCl single crystal decreases with the load as measured by the Vickers microhardness method. The dielectric properties of the grown crystal were analysed by varying the frequency. Photoconductivity analysis gives the variation of the photocurrent and dark current. The nonlinear optical properties were studied using the Kurtz and Perry powder method and the second harmonic generation efficiency was found to be 2.6 times higher than that of KDP crystals.
Kurnosov, A.; Marquardt, H.; Boffa Ballaran, T.; Frost, D. J.
2015-12-01
MgSiO3 bridgmanite constitutes about 70% by volume of the Earth's lower mantle and likely governs the physical behavior of this region. Chemical substitutions in MgSiO3 bridgmanite involving Al and Fe may explain seismic velocity anomalies observed in the Earth's lower mantle [1-3]. However, the effects of these substitutions on the anisotropic elastic properties of bridgmanite at high pressure and temperature are still experimentally unconstrained. Here, we present data of internally consistent measurements of the single-crystal elastic properties of Mg0.88Fe0.12Si0.09Al0.11O3 bridgmanite at high-pressures. Two differently oriented single-crystals of brigmanite have been double-side polished and cut as two semi-disks using a FEI Scios Focused Ion Beam (FIB) machine [4]. Two semi-disks, one for each of the crystallographic orientations, were loaded together in the pressure chamber of a diamond anvil cell with helium as a pressure-transmitting medium. Simultaneous measurements of density and sound velocities have been made on both crystals at high pressures using single-crystal X-ray diffraction and Brillouin spectroscopy in order to obtain self-consistent data, which do not depend on a secondary pressure scale. The Brillouin data at each pressure were fitted for both crystals simultaneously in order to reduce correlations among the elastic constants Cij. Our approach allows determining the single-crystal elastic properties of bridgmanite as a function of pressure, derived independently of a secondary pressure. We will use our results for Al-Fe-bearing bridgmanite to discuss the effects of chemical substitution on the high-pressure elasticity of bridgmanite and implications for the interpretation of seismic heterogeneities in Earth's lower mantle. [1] Ni et al. (2005), Geophys. J. Int. 161, 283-294. [2] Masters et al. (2000), AGU Monograph Series, 117, 63-87. [3] Garnero et al. (2005), The Geological Society of America Special Paper, 430, 79-101. [4] Marquardt et al
Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities.
Burgess, Ian B; Zhang, Yinan; McCutcheon, Murray W; Rodriguez, Alejandro W; Bravo-Abad, Jorge; Johnson, Steven G; Loncar, Marko
2009-10-26
We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a chi((2)) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency - i.e., quantum-limited conversion - is possible. We show that the output power at the point of optimal total conversion efficiency is adjustable by varying the mode quality (Q) factors.
Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch
DEFF Research Database (Denmark)
Bache, Morten; Nielsen, Hanne; Lægsgaard, Jesper;
2006-01-01
We consider an index-guiding silica photonic crystal fiber with a triangular hole pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780...... nm. The nonlinear strength is optimized when the fundamental has maximum confinement in the core. The conversion bandwidth allows for femtosecond-pulse conversion, and 4%-180% W-1 cm-2 relative efficiencies were found. © 2006 Optical Society of America......We consider an index-guiding silica photonic crystal fiber with a triangular hole pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780...
DEFF Research Database (Denmark)
Bache, Morten; Lægsgaard, Jesper; Bang, Ole;
2007-01-01
We investigate the possibility of using poled silica photonic crystal fibers for self-defocusing soliton compression with cascaded quadratic nonlinearities. Such a configuration has promise due to the desirable possibility of reducing the group-velocity mismatch. However, this unfortunately leads...... nonlinearity, and show that compression of nJ pulses to few-cycle duration is possible in such a fiber. A small amount of group-velocity mismatch optimizes the compression.......We investigate the possibility of using poled silica photonic crystal fibers for self-defocusing soliton compression with cascaded quadratic nonlinearities. Such a configuration has promise due to the desirable possibility of reducing the group-velocity mismatch. However, this unfortunately leads...
Growth, dielectric and nonlinear optical properties of Li3Cs2B5O10 single crystals
Sukumar, M.; Ramesh Babu, R.; Ramamurthi, K.
2017-01-01
Lithium cesium borate (Li3Cs2B5O10), an alkali metal borate, single crystals were grown by Czochralski method. Chemical etching was performed on grown Li3Cs2B5O10 crystal at various regions. The observed dislocation densities are varied at different regions of the grown Li3Cs2B5O10 crystal. Dielectric behavior of Li3Cs2B5O10 crystal at different temperatures is studied. The third-order nonlinear optical parameters of lithium cesium borate crystal are determined by Z-scan technique. The nonlinear refractive index ( n 2) value is estimated to be -7.272 × 10-11 cm2/W, and the corresponding third-order nonlinear susceptibility ( χ 3) is estimated to be 4.19 × 10-9 esu. The measured nonlinear refractive indices reveal the self-defocusing effect of Li3Cs2B5O10 crystal.
Measurement of nonlinear elastic response in rock by the resonant bar method
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A. (Los Alamos National Lab., NM (United States)); Rasolofosaon, P.; Zinszner, B. (Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France))
1993-01-01
In this work we are studying the behavior of the fundamental (Young's) mode resonant peak as a function of drive amplitude in rock samples. Our goal from these studies is to obtain nonlinear moduli for many rock types, and to study the nonlinear moduli as a function of water saturation and other changes in physical properties. Measurements were made on seven different room dry rock samples. For one sample measurements were taken at 16 saturation levels between 1 and 98%. All samples display a softening'' nonlinearity, that is, the resonant frequency shifts downward with increasing drive amplitude. In extreme cases, the resonant frequency changes by as much as 25% over a strain interval of 10[sup [minus]7] to [approximately]4 [times] 10[sup [minus]5]. Measurements indicate that the nonlinear response is extremely sensitive to saturation. Estimates of a combined cubic and quartic nonlinear parameter [Gamma] range from approximately [minus]300 to [minus]10[sup 9] for the rock samples.
Thomas Joseph Prakash, J.; Martin Sam Gnanaraj, J.
2015-01-01
Semiorganic nonlinear optical crystals of Cadmium Thiosemicarbazide Bromide was grown by slow evaporation solution growth technique. The unit cell parameters were estimated by subjecting the crystals to single crystal X-ray diffraction. The grown crystals were subjected to Powder X-ray diffraction for analyzing the crystalline nature of the sample. FTIR studies reveal the functional groups and the optical characters were analyzed by UV-Vis spectral studies. Mechanical stability of the sample was assessed by Vicker's micro hardness test. The presence of surface dislocations was identified by chemical etching technique. Antibacterial study was carried out against ACDP declared harmful pathogens. SHG efficiency of CTSB crystal was tested using Nd: YAG laser and it was found to be ∼1.8 times that of potassium dihydrogen phosphate.
Dynamics behaviour of an elastic non-ideal (NIS) portal frame, including fractional nonlinearities
Balthazar, J. M.; Brasil, R. M. L. F.; Felix, J. L. P.; Tusset, A. M.; Picirillo, V.; Iluik, I.; Rocha, R. T.; Nabarrete, A.; Oliveira, C.
2016-05-01
This paper overviews recent developments on some problems related to elastic structures, such as portal frames, taking into account the full interactions of the vibrating systems, with an energy source of limited power supply (small motors, electro-mechanical shakers). We include a discussion on fractional (rational) damping and stiffness effects on the adopted modelling. This was a plenary lecture, delivered in the event titled: Mechanics of Slender Structures, organized in Northampton, England from 21-22, September 2015.
A sandwich bar element for geometric nonlinear thermo-elastic analysis
Directory of Open Access Journals (Sweden)
Murín J.
2008-11-01
Full Text Available This contribution deals with a two-node straight sandwich composite bar element with constant double symmetric rectangular cross-sectional area. This new bar element (based on the non-linear second-order theory is intended to perform the non-incremental full geometric non-linear analysis. Stiffness matrix of this composite bar contains transfer constants, which accurately describe polynomial uniaxial variation of the material thermo-physical properties.In the numerical experiments the weak coupled thermo-structural geometric non-linear problem was solved. Obtained results were compared with several analyses made by ANSYS programme. Findings show good accuracy of this new finite element. The results obtained with this element do not depend on the element mesh density.
Cascaded third-harmonic generation in a single short-range-ordered nonlinear photonic crystal.
Sheng, Yan; Saltiel, Solomon M; Koynov, Kaloian
2009-03-01
Collinear third-harmonic generation at 526.7 nm was realized by the simultaneous phase matching of two second-order processes in a single quadratic crystal: second-harmonic generation (SHG) and sum-frequency mixing (SFM). The measured conversion efficiency was 12%. As a nonlinear medium a LiNbO(3) nonlinear photonic crystal with short-range order was used that allowed simultaneous phase matching by use of discrete reciprocal vector (for the SHG process) and continuous reciprocal vectors (for the SFM process). It was demonstrated that the third harmonic could be generated efficiently in such a crystal even if the intermediate process of SHG was not perfectly phase matched.
Sudharsana, N.; Nagalakshmi, R.; Krishnakumar, V.; Sharma, A.; Fausto, R.; Row, T. N. Guru; Pal, Rumpa
2012-06-01
Single crystals of hydroxyethylammonium picrate (C8 H10N4O8; HEAP) have been grown for the first time by slow evaporation solution growth technique at room temperature, using ethanol as solvent. FT-IR and Raman spectra were recorded for HEAP at room temperature. The main vibrational bands related to NH3+ and CO- (picrate) groups, involved in charge transfer, are discussed. Second-order hyperpolarizability(γ) for the single crystal was evaluated theoretically to be 3.48×10-28 e.s.u. A Z-scan study of HEAP showed that the relative third-order nonlinear refractive index is -9.2×10-5cm2/W. The measured third-order nonlinear properties confirm the suitability of the crystal for optical limiting and switching applications.
Nonlinear shear wave in a non Newtonian visco-elastic medium
Energy Technology Data Exchange (ETDEWEB)
Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)
2012-06-15
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.
Nonlinear response of plain concrete shear walls with elastic-damaging behavior
Energy Technology Data Exchange (ETDEWEB)
Yazdani, S.; Schreyer, H.L.
1997-02-01
This report summarizes the theoretical and computational efforts on the modeling of small scale shear walls. Small scale shear walls are used extensively in the study of shear wall behavior because the construction and testing of full size walls are rather expensive. A finite element code is developed which incorporates nonlinear constitutive relations of damage mechanics. The program is used to obtain nonlinear load-deformation curves and to address the initial loss of stiffness due to shrinkage cracking. The program can also be used to monitor the continuous degradation of the fundamental frequency due to progressive damage.
Effect of transverse shears on complex nonlinear vibrations of elastic beams
Krysko, V. A.; Zhigalov, M. V.; Saltykova, O. A.; Krysko, A. V.
2011-09-01
Models of geometrically nonlinear Euler-Bernoulli, Timoshenko, and Sheremet'ev-Pelekh beams under alternating transverse loading were constructed using the variational principle and the hypothesis method. The obtained differential equation systems were analyzed based on nonlinear dynamics and the qualitative theory of differential equations with using the finite difference method with the approximation O(h2) and the Bubnov-Galerkin finite element method. It is shown that for a relative thickness λ ⩽ 50, accounting for the rotation and bending of the beam normal leads to a significant change in the beam vibration modes.
Nonlinear Shear Wave in a Non Newtonian Visco-elastic Medium
Janaki, D Banerjee M S; Chaudhuri, M
2013-01-01
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic(GH) model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau -Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam (FPU) problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries (mKdV) equation. This model has application from laboratory to astrophysical plasmas as well as biological systems.
Fan, D.; Mao, Z.; Lin, J.; Yang, J.
2013-12-01
Brillouin light scattering (BLS) is the inelastic scattering of monochromatic laser light by phonons in the GHz frequency range [1]. BLS spectroscopy can be used to measure sound velocities traveling along certain directions of a single crystal through the frequency shifts of the scattered light from the acoustic phonons [1]. Over the past few decades, BLS spectroscopy has been widely used to measure the velocities of acoustic waves for a wide range of Earth's materials, in which the full elastic constants were derived from the measured compressional (VP) and shear wave (VS) velocities. However, the VP velocities of minerals normally overlap with the shear-wave velocities of diamonds in Brillouin measurements approximately above 25 GPa [2-5] such that only VS of minerals can be measured experimentally. Theoretical models have showed that the shear-wave velocities of minerals also carry necessary information to invert the full elastic tensors [2], although previous studies at high pressures have focused on measuring velocities within the principle planes of the crystals. This leads to a strong trade-off among individual Cij, preventing the derivation of the full elastic tensors from the VS velocities alone [3-5]. In this study, we have come up with an elastic model to overcome this problem by finding a suitable crystallographic plane that has optimized VS-VP interactions in the elastic tensors. Using MgO, spinel and zoisite as test samples, we have used measured VP/VS or VS velocities of these crystals using BLS spectroscopy to derive their full elastic tensors. This new approach sheds lights on future high-pressure elasticity studies relevant to materials the Earth's deep interior. 1. Sinogeikin, S.V., Bass, J.D., Phys. Earth Planet. Inter., 120, 43 (2000). 2. Every, A. G., Phys. Rev. B., 22, 1746, (1980) 3. Marquardt, H., Speziale, S., Reichmann, H.J., Frost, D.J., and Schilling, F.R., Earth Planet. Sci. Lett., 287, 345 (2009). 4. Marquardt, H., Speziale, S
Crystal growth and characterization of new semiorganic nonlinear optical single crystals
Kulshrestha, Shobha; Shrivastava, A. K.
2016-05-01
An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40-45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm3, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.
Rofooei, Fayaz R.; Enshaeian, Alireza; Nikkhoo, Ali
2017-04-01
Dynamic deformations of beams and plates under moving objects have extensively been studied in the past. In this work, the dynamic response of geometrically nonlinear rectangular elastic plates subjected to moving mass loading is numerically investigated. A rectangular von Karman plate with various boundary conditions is modeled using specifically developed geometrically nonlinear plate elements. In the available finite element (FE) codes the only way to distinguish between moving masses from moving loads is to model the moving mass as a separate entity. However, these procedures still do not guarantee the inclusion of all inertial effects associated with the moving mass. In a prepared finite element code, the plate elements are developed using the conventional nonlinear methods, i.e., Total Lagrangian technique, but all inertial components associated with the travelling mass are taken into account. Since inertial components affect the mass, damping, and stiffness matrices of the system as the moving mass traverses the plate, appropriate time increments shall be selected to avoid numerical instability. The dynamic response of the plate induced by the moving mass is evaluated and compared to previous studies. Also, unlike the existing FE programs, the different inertial components of the normal contact force between the moving mass and the plate are computed separately to substantiate the no-separation assumption made for the moving mass. Also, it is observed that for large moving mass velocities, the peak plate deformation occurs somewhere away from the plate center point. Under the two extreme in-plane boundary conditions considered in this study, it is shown that if the geometrical nonlinearity of plate is accounted for, the deformations obtained would be less than the case with classical linear plate theory.
Energy Technology Data Exchange (ETDEWEB)
Divya Bharathi, M.; Ahila, G.; Mohana, J. [Department of Physics, Presidency College, Chennai 600005 (India); Chakkaravarthi, G. [Department of Physics, CPCL Polytechnic College, Chennai 600068 (India); Anbalagan, G., E-mail: anbu24663@yahoo.co.in [Department of Nuclear Physics, University of Madras, Chennai 600025 (India)
2017-05-01
A neoteric organic third order nonlinear optical material 8-hydroxyquinolinium 2-chloro-5-nitrobenzoate dihydrate (8HQ2C5N) was grown by slow cooling technique using ethanol: water (1:1) mixed solvent. The calculated low value of average etch pit solidity (4.12 × 10{sup 3} cm{sup −2}) indicated that the title crystal contain less defects. From the single crystal X-ray diffraction data, it was endowed that 8HQ2C5N crystal belongs to the monoclinic system with centrosymmetric space group P2{sub 1}/c and the cell parameters values, a = 9.6546 (4) Ǻ, b = 7.1637(3) Ǻ, c = 24.3606 (12) Ǻ, α = γ = 90°, β = 92.458(2)° and volume = 1683.29(13) Ǻ{sup 3}. The FT-IR and FT-Raman spectrum were used to affirm the functional group of the title compound. The chemical structure of 8HQ2C5N was scrutinized by {sup 13}C and {sup 1}H NMR spectral analysis and thermal stability through the differential scanning calorimetry study. Using optical studies the lower cut-off wavelength and optical band gap of 8HQ2C5N were found to be 364 nm and 3.17 eV respectively. Using the single oscillator model suggested by Wemple – Didomenico, the oscillator energy (E{sub o}), the dispersion energy (E{sub d}) and static dielectric constant (ε{sub o}) were estimated. The third-order susceptibility were determined as Im χ{sup (3)} = 2.51 × 10{sup −5} esu and Re χ{sup (3)} = 4.46 × 10{sup −7} esu. The theoretical third-order nonlinear optical susceptibility χ{sup (3)} was calculated and the results were compared with experimental value. Photoluminescence spectrum of 8HQ2C5N crystal showed the yellow emission. The crystal had the single shot laser damage threshold of 5.562 GW/cm{sup 2}. Microhardness measurement showed that 8HQ2C5N belongs to a soft material category. - Highlights: • A new organic single crystals were grown and the crystal structure was reported. • Crystal possess, good transmittance, thermal and mechanical stability. • Single shot LDT value is found to be
DEFF Research Database (Denmark)
Bache, Morten; Guo, Hairun; Zhou, Binbin
2013-01-01
We study the anisotropic nature of the Kerr nonlinear response in a beta-barium borate (β-BaB2O4, BBO) nonlinear crystal. The focus is on determining the relevant χ(3) cubic tensor components that affect interaction of type I cascaded second-harmonic generation. Various experiments in the literat...
Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.
2012-01-01
Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.
Shinkawa, Mizuki; Ishikura, Norihiro; Hama, Yosuke; Suzuki, Keijiro; Baba, Toshihiko
2011-10-24
We have studied low-dispersion slow light and its nonlinear enhancement in photonic crystal waveguides. In this work, we fabricated the waveguides using Si CMOS-compatible process. It enables us to integrate spotsize converters, which greatly simplifies the optical coupling from fibers as well as demonstration of the nonlinear enhancement. Two-photon absorption, self-phase modulation and four-wave mixing were observed clearly for picosecond pulses in a 200-μm-long device. In comparison with Si wire waveguides, a 60-120 fold higher nonlinearity was evaluated for a group index of 51. Unique intensity response also occurred due to the specific transmission spectrum and enhanced nonlinearities. Such slow light may add various functionalities in Si photonics, while loss reduction is desired for ensuring the advantage of slow light.
Highly non-linear solid core photonic crystal fiber with one nano hole
Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar
2015-08-01
The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm2), high nonlinearity (36.34 W-1km-1) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for the SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.
Miyashita, Toyokatsu
2006-05-01
A novel acoustic waveguide composed of a line of single defects in a sonic crystal is shown to have desirable properties for acoustic circuits. The absence of a scatterer, i.e., a single defect or a point defect, in artificial crystals such as photonic crystals and phononic crystals leads to some localized resonant modes around the defect. Single defects in a sonic crystal made of acrylic resin cylinders in air are shown in this paper to have resonant modes or defect modes, which are excited successively to form a mode guided along a line of defects. Both a straight waveguide and a sharp bending waveguide composed of lines of single defects are shown equally to have a good transmission with small reflections at the inlet as well as at the outlet within the full band gap of the sonic crystal. Their advantages over conventional line-defect waveguides are clearly shown by their transmission versus frequency characteristics and also by typical examples of their spatial acoustic field distribution. On the basis of these properties, coupled defect-mode waveguides are investigated, and a high mode-coupling ratio is obtained. Defect-mode waveguides in a sonic crystal are expected to be desirable elements for functional acoustic circuits. The results of the elastic finite difference time domain (FDTD) method used as a tool of numerical calculation are also investigated and precisely compared with the experimental band gaps.
Hu, Zhan; Zheng, Gangtie
2016-08-01
A combined analysis method is developed in the present paper for studying the dynamic properties of a type of geometrically nonlinear vibration isolator, which is composed of push-pull configuration rings. This method combines the geometrically nonlinear theory of curved beams and the Harmonic Balance Method to overcome the difficulty in calculating the vibration and vibration transmissibility under large deformations of the ring structure. Using the proposed method, nonlinear dynamic behaviors of this isolator, such as the lock situation due to the coulomb damping and the usual jump resulting from the nonlinear stiffness, can be investigated. Numerical solutions based on the primary harmonic balance are first verified by direct integration results. Then, the whole procedure of this combined analysis method is demonstrated and validated by slowly sinusoidal sweeping experiments with different amplitudes of the base excitation. Both numerical and experimental results indicate that this type of isolator behaves as a hardening spring with increasing amplitude of the base excitation, which makes it suitable for isolating both steady-state vibrations and transient shocks.
Review of a New IR Nonlinear Optical BaGa4Se7 Crystal
Institute of Scientific and Technical Information of China (English)
Wen-Tao Xu; De-Gang Xu; Yu-Ye Wang; Peng-Xiang Liu; Wei Shi; Jian-Quan Yao
2016-01-01
A newly grown BaGa4Se7 crystal has been synthesized via the Bridgman-Stockbarger technique. This new crystal has advantages of high nonlinear optics (NLO) coefficients, high laser damage thresholds, and wide transparent regions. The BaGa4Se7 crystal has bright application prospects as a nonlinear gain medium in mid-infrared and terahertz regions. In this paper, the crystalline structure and synthetic method of the BaGa4Se7 crystal are introduced. The refractive indices and absorption coefficients along three dielectric axes between 0.1THz and 1.0THz are also obtained. The terahertz difference frequency generation (THz-DFG) characteristics based on the BaGa4Se7 crystal in the frequency range of 0.1THz to 1.0THz are analyzed theoretically and the phase-matching conditions are calculated. The application of BaGa4Se7 crystals in terahertz wave generation is also discussed.
Quadratic nonlinear optical parameters of 7% MgO-doped LiNbO3 crystal
Kulyk, B.; Kapustianyk, V.; Figà, V.; Sahraoui, B.
2016-06-01
Pure and 7% MgO-doped lithium niobate (LiNbO3) single crystals were grown by the Czochralski technique. The shift of optical absorption edge in 7% MgO-doped crystal in direction of shorter wavelength compared to undoped crystal was observed. The second harmonic generation measurements of 7% MgO-doped LiNbO3 crystal were performed at room temperature by means of the rotational Maker fringe technique using Nd:YAG laser generating at 1064 nm in picoseconds regime. Experimentally obtained value of nonlinear optical coefficient d33 for 7% MgO-doped LiNbO3 was found to be less than for undoped crystal but higher than for 5% MgO-doped. I-type phase-matched second harmonic generation was achieved and the value of phase-matched angle was calculated. High quadratic nonlinearity together with tolerance to intensive laser irradiation makes 7% MgO-doped LiNbO3 crystal interesting for application in optoelectronics.
Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.
2013-03-01
The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.
Modeling and analysis of nonlinear mechanics of a super-thin elastic rod%超细长弹杆非线形力学的建模与分析
Institute of Scientific and Technical Information of China (English)
薛纭
2006-01-01
@@ Nonlinear mechanics for a super-thin elastic rod with the biological background of DNA super-coiling macromolecules is an interdisciplinary research area of classical mechanics and molecular biology. It is also a subject of dynamics and elasticity because elastic bodies are analyzed via the theory of dynamics. It is in frontiers of general mechanics (dynamics and control).
2007-05-04
amplitude of oscillation, 01 0, kF ox <<−=− and A kF ox <<−=+ 02 , , where 12 kk < . If 02 =k , the elastoplastic case of Iwan’s model for...curve identifies the system as potentially mesoscopic elastic. The elasto-slip model of elastoplastic hysteresis presented by Iwan exhibits linear...in damaged concrete: Quantitative analysis of slow and fast dynamics,” Phys. Rev. B, 73, 014116 (2006). Bolton, M.D., and Wilson, J.M.R, “An
WNx and MoNx Layers: Elastic Properties and Crystal Structure
Ozsdolay, Brian
This thesis research has focused on the thin film growth, phase stability, and elastic properties of two relatively unknown nitrides: tungsten nitride and molybdenum nitride. The elastic properties and hardness are not well characterized for either material, with previous measurements showing a wide range of values. In addition, the conditions leading to growth of high quality epitaxial layers of these materials are not well known. There is also some discrepancy over the cubic crystal structure seen in both WNx and MoNx. While the presence of nitrogen vacancies are well documented, it is unclear if metal vacancies also appear and in what concentrations. Tungsten nitride layers, 1.45-microm-thick, were deposited by reactive magnetron sputtering on MgO(001), MgO(111), and Al2O3(0001) in 20 mTorr N2 at 500-800 °C. All layers deposited at Ts = 500-700 °C form a cubic phase, as determined by X-ray diffraction o-2theta scans, and show an N-to-W ratio x that decreases from x = 1.21 to 0.83 with increasing Ts = 500-700 °C, as measured by energy dispersive and photoelectron spectroscopies. Ts = 500 and 600 °C yields polycrystalline predominantly 111 oriented beta-WN on all substrates. In contrast, deposition at 700 °C results in epitaxial growth of beta-WN(111) and beta-WN(001) on MgO(111) and MgO(001), respectively, and a 111-preferred orientation on Al2O3(0001). Ts = 800 °C causes nitrogen loss and WN x layers with primarily BCC W grains and x = 0.04-0.06. For Ts = 700 °C, nanoindentation provides hardness values of 9.8+/-2.2, 12.5+/-1.0, and 10.3+/-0.4 GPa, and elastic moduli of 240+/-40, 257+/-13, and 242+/-10 GPa for layers grown on MgO(001), MgO(111), and Al2O3(0001), respectively. Brillouin spectroscopy measurements yield shear moduli of 120+/-2 GPa, 114+/-2 GPa and 108+/-2 GPa for WN on MgO(001), MgO(111) and Al2O3(0001), respectively, suggesting a WN elastic anisotropy factor of 1.6+/-0.3, consistent with the indentation results. The combined analysis of the
Experimental study of strong nonlinear-optics effects in liquid crystals
Darbin, S. D.; Arakelyan, S. M.; Cheung, M. M.; Shen, Y. R.
1984-07-01
Nonlinear optical effects that arise in nematic liquid crystals as a result of a change in the index of refraction induced by a laser field are considered. Since the resultant nonlinearity is extremely high, the approximation of perturbation theory cannot be used in calculations. However, the change in refractive index results mainly in phase advance as waves propagate through a thin film of liquid crystal, while the change of intensity is significant. Moreover, if there is no change in polarization of the pumping field, calculations are relatively simple. An investigation is made of the propagation of a cross sectionally bounded laser beam through a homeotropically oriented liquid crystal, giving rise to spatial phase modulation of emission. When the intensity of the laser beam exceeds a certain value, a system of aberation rings is observed in the output radiation. Effects of dynamic self-diffraction accompanying degenerate four-wave mixing when a change in refractive index is induced in a homeotropic liquid crystal film, and optical bistability in a nonlinear Fabry-Perot optical cavity, as well as generation of a self-oscillatory state in such a resonator are discussed.
Vela, T.; Selvarajan, P.; Freeda, T. H.; Balasubramanian, K.
2013-04-01
Lithium sulphate admixtured l-alanine (LSLA) salt was synthesized and the solubility of the commercially available l-alanine and the synthesized LSLA sample was determined in de-ionized water at various temperatures. In accordance with the solubility data, the saturated aqueous solutions of l-alanine and lithium admixtured l-alanine were prepared separately and the single crystals of the samples were grown by the solution method with a slow evaporation technique. Studying single x-ray diffraction shows that pure and LSLA crystal belong to the orthorhombic system with a non-centrosymmetric space group P212121. Using the powder x-ray diffraction study, the crystallinity of the grown crystals is confirmed and the diffraction peaks are indexed. The various functional groups present in the pure and LSLA crystal are elucidated from Fourier transform infrared spectroscopy study. UV-visible transmittance is recorded to study the optical transmittance range for the grown crystals. The powder second harmonic generation test confirms the nonlinear optical property of the grown crystals. From the microhardness test, the hardness of the grown crystals is estimated. The dielectric behaviour, such as the dielectric constant and the loss of the sample, are measured as a function of temperature and frequency. The ac conductivity of the grown crystals is also studied and the activation energy is calculated.
Crystal growth of an organic non-linear optical material from the vapour phase
Hou, W
1999-01-01
Due to the potential applications of organic non-linear optical materials in the areas of optical processing and communication, the investigation of the crystal growth of new organic NLO materials has been an active field for the last 20 years. For such uses it is necessary to produce single crystals of high quality and perfection, free of strain and defects. When crystals are grown from the solution and the melt, solvent and the decomposition component in the melt can introduce impurities and imperfection to the as-grown crystals. For crystals grown from vapour phase, in the absence of the solvent, this cannot occur and the method promises to yield single crystals of higher quality. Despite this attraction, little attention has been paid to the vapour phase growth of organic NLO crystals. It was with this in mind that the following investigation was carried out. Using Methyl p-hydroxybenzoate (p-MHB), a potential organic NLO material, a comparison investigation was made of its crystal growth from both the va...
Energy Technology Data Exchange (ETDEWEB)
Balasubramanian, D. [Post Graduate and Research Department of Physics, Pachaiyappa' s College, Chennai 600030 (India); Sankar, R. [Crystal Growth Centre, Anna University, Chennai 600025 (India); Shankar, V. Siva [Post Graduate and Research Department of Physics, Pachaiyappa' s College, Chennai 600030 (India); Murugakoothan, P. [Post Graduate and Research Department of Physics, Pachaiyappa' s College, Chennai 600030 (India)], E-mail: pmurugakoothan@yahoo.com; Arulmozhichelvan, P. [Post Graduate and Research Department of Physics, Pachaiyappa' s College, Chennai 600030 (India); Jayavel, R. [Crystal Growth Centre, Anna University, Chennai 600025 (India)
2008-01-15
A new semiorganic nonlinear optical rubidium bis-DL-malato borate (RBMB) has been synthesized and single crystals were grown by slow cooling technique from aqueous solution. The grown crystals have been characterized by X-ray diffraction (single crystal XRD) to confirm the formation of the crystalline phases. FT-IR and FT-Raman spectroscopic analyses confirm the presence of all the functional groups in the grown crystals. TG-DTA studies reveal that the material is stable up to 230 deg. C. The UV-vis transmission spectrum shows a lower cutoff wavelength of 230 nm. The emission of SHG using Nd:YAG laser is confirmed by a modified Kurtz and Perry powder setup.
Synthesis, crystal growth and studies on non-linear optical property of new chalcones
Sarojini, B. K.; Narayana, B.; Ashalatha, B. V.; Indira, J.; Lobo, K. G.
2006-09-01
The synthesis, crystal growth and non-linear optical (NLO) property of new chalcone derivatives are reported. 4-Propyloxy and 4-butoxy benzaldehydes were made to under go Claisen-Schmidt condensation with 4-methoxy, 4-nitro and 4-phenoxy acetophenones to form corresponding chalcones. The newly synthesized compounds were characterized by analytical and spectral data. The Second harmonic generation (SHG) efficiency of these compounds was measured by powder technique using Nd:YAG laser. Among tested compounds three chalcones showed NLO property. The chalcone 1-(4-methoxyphenyl)-3-(4-propyloxy phenyl)-2-propen-1-one exhibited SHG conversion efficiency 2.7 times that of urea. The bulk crystal of 1-(4-methoxyphenyl)-3-(4-butoxyphenyl)-2-propen-1-one (crystal size 65×28×15 mm 3) was grown by slow-evaporation technique from acetone. Microhardness of the crystal was tested by Vicker's microhardness method.
Nonlinear response studies and corrections for a liquid crystal spatial light modulator
Indian Academy of Sciences (India)
Ravinder Kumar Banyal; B Raghavendra Prasad
2010-06-01
The nonlinear response of light transmission characteristics of a liquid crystal (LC) spatial light modulator (SLM) is studied. The results show that the device exhibits a wide range of variations with different control parameters and input settings. Experiments were performed to obtain intensity modulation that is best described by either power-law or sigmoidal functions. Based on the inverse transformation, an appropriate pre-processing scheme for electrically addressed input gray-scale images, particularly important in several optical processing and imaging applications, is suggested. Further, the necessity to compensate the SLM image nonlinearities in a volume holographic data storage and retrieval system is demonstrated.
Second-harmonic generation with zero group-velocity mismatch in nonlinear photonic crystal fibers
DEFF Research Database (Denmark)
Bache, Morten; Lægsgaard, Jesper; Bang, Ole;
2006-01-01
We consider an index-guiding silica photonic crystal fiber with a triangular hole-pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative size of the holes, second-harmonic generation with zero group-velocity mismatch is found to be feasible for any fundamental...... wavelength above 780 nm. The phase-velocity mismatch has a lower limit with coherence lengths in the micron range. The nonlinear strength is optimized when the fundamental has maximum confinement in the core. The conversion bandwidth allows for fs-pulse conversion and 4-180%/(Wmiddotcm2) relative...
Anisotropy of Nonlinear-Optical Property of RCOB (R ＝ Gd, Y) Crystal
Institute of Scientific and Technical Information of China (English)
WANG Zheng-Ping; WEI Jing-Qian; CHEN Huan-Chu; SHAO Zong-Shu; LIU Jun-Hai; SONG Ren-Bo; JIANG Huai-Dong; ZHANG Shu-Jun; FU Kun; WANG Chang-Qing; WANG Ji-Yang; LIU Yao-Gang
2001-01-01
The nonlinear-optical coefficients of RCOB (R ＝ Gd, Y) crystals are measured. The spatial distribution of deff (effective nonlinear-optical coefficient) is subsequently determined. Our experiments show that the maximum deff occurs at the second quadrant. The second-harmonic generation efficiency reaches 48% for a 6 mm long, (113.2°,47.4°)-cut GdCOB, and 41.5% for a 5mm long, (113°, 36.5°)-cut YCOB, respectively. The intracavity frequency doubling of GdCOB is reported for the first time.
On the theory of ternary melt crystallization with a non-linear phase diagram
Toropova, L. V.; Dubovoi, G. Yu; Alexandrov, D. V.
2017-04-01
The present study is concerned with a theoretical analysis of unidirectional solidification process of ternary melts in the presence of a phase transition (mushy) layer. A new analytical solution of heat and mass transfer equations describing the steady-state crystallization scenario is found with allowance for a non-linear liquidus equation. The model under consideration takes into account the presence of two phase transition layers, namely, the primary and cotectic mushy regions. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.
Directory of Open Access Journals (Sweden)
R. P. Pogrebnyak
2017-08-01
Full Text Available Purpose. The article is aimed to determine the conditions of a dynamic error formation of contour machine cutting of surface of the real railway wheel flange by the cup-tip tool and propose the ways of reducing the errors. Methodology. The problem was solved by the creation of dynamic nonlinear and elastic calculation model with further modeling of its loading by the external force factors. The values of forces were obtained by analytical and experimental methods. The calculation scheme of the equilibrium support is a nonlinear two-mass system, a dynamic model of slide - single-mass with one degree of freedom. The basis of the mathematical description of technological loads is the results of factory experiments, as well as analytical generalizations obtained as a result of the comparison of several schemes of the formation of the wheel flange. Analytical determination of the components of the cutting force takes into account the changes in the kinematic parameters of the cutting mode when the profiling is done using a shaped tool. Findings. During processing of the wheel flange the radial and axial components of the cutting forces that load slide and slide-block of machine are alternating. There are conditions in drive of slide and slide-block when the gaps appear, and it is possible at any profile geometry of the wheel. The peculiarities of loading of the slide and slide-block forming a flange (with biharmonic allowance cause the occurrence of the processing areas where the gaps increase many times in drives of mechanical transmissions and error of forms increases. The dynamic system of the drive is quite tough and high-frequency and it is sensitive to the presence of gaps. Originality. The author created elastic nonlinear dynamic models of support and slide. In accordance with the model it is written and solved equations of motion of the masses and loading of the connections. The conditions of the stable motion were found. Practical value. It
2009-09-01
reference state. After efining average strain energies on a per-reference-volume basis s ournal of Engineering Materials and Technology aded 27 Aug 2009...with the absolute density f dislocations. Dislocation line densities in the preceding developments are efined per unit reference volume equivalent in
Kirubagaran, R.; Madhavan, J.
2015-02-01
Single crystals of L-alanine DL-malic acid (LADLMA) have been grown from aqueous solution by slow-cooling technique. Powder X-ray diffraction studies reveal the structure of the crystal to be orthorhombic. The nonlinear optical conversion efficiency test was carried out for the grown crystals using the Kurtz powder technique. The third order nonlinear refractive index and the nonlinear absorption coefficient where evaluated by Z-scan measurements. As the material have a negative refractive index it could be used in the protection of optical sensors such as night vision devices.
Third-order nonlinear and linear time-dependent dynamical diffraction of X-rays in crystals.
Balyan, Minas K
2016-07-01
For the first time the third-order nonlinear time-dependent Takagi's equations of X-rays in crystals are obtained and investigated. The third-order nonlinear and linear time-dependent dynamical diffraction of X-rays spatially restricted in the diffraction plane pulses in crystals is investigated theoretically. A method of solving the linear and the third-order nonlinear time-dependent Takagi's equations is proposed. Based on this method, results of analytical and numerical calculations for both linear and nonlinear diffraction cases are presented and compared.
First principles crystal engineering of nonlinear optical materials. I. Prototypical case of urea
Masunov, Artëm E.; Tannu, Arman; Dyakov, Alexander A.; Matveeva, Anastasia D.; Freidzon, Alexandra Ya.; Odinokov, Alexey V.; Bagaturyants, Alexander A.
2017-06-01
The crystalline materials with nonlinear optical (NLO) properties are critically important for several technological applications, including nanophotonic and second harmonic generation devices. Urea is often considered to be a standard NLO material, due to the combination of non-centrosymmetric crystal packing and capacity for intramolecular charge transfer. Various approaches to crystal engineering of non-centrosymmetric molecular materials were reported in the literature. Here we propose using global lattice energy minimization to predict the crystal packing from the first principles. We developed a methodology that includes the following: (1) parameter derivation for polarizable force field AMOEBA; (2) local minimizations of crystal structures with these parameters, combined with the evolutionary algorithm for a global minimum search, implemented in program USPEX; (3) filtering out duplicate polymorphs produced; (4) reoptimization and final ranking based on density functional theory (DFT) with many-body dispersion (MBD) correction; and (5) prediction of the second-order susceptibility tensor by finite field approach. This methodology was applied to predict virtual urea polymorphs. After filtering based on packing similarity, only two distinct packing modes were predicted: one experimental and one hypothetical. DFT + MBD ranking established non-centrosymmetric crystal packing as the global minimum, in agreement with the experiment. Finite field approach was used to predict nonlinear susceptibility, and H-bonding was found to account for a 2.5-fold increase in molecular hyperpolarizability to the bulk value.
Multiple-octave spanning mid-IR supercontinuum generation in bulk quadratic nonlinear crystals
Zhou, Binbin
2016-01-01
Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystal like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal pumped in the mid-IR gives multiple-octave spanning supercontinua. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed (covering 1.6-$7.0~\\mu$m). The results were recorded in a commercially available crystal LiInS$_2$ pumped in the 3-$4~\\mu$m range, but other mid-IR crystals ...
Detection of elastic and electric conductivity anomalies in Potassium Sulphamate single crystal
Energy Technology Data Exchange (ETDEWEB)
Varughese, George, E-mail: gvushakoppara@yahoo.co.i [Department of Physics, Catholicate College, Pathanamthitta, Kerala 689645 (India); Santhosh Kumar, A. [SPAP, Mahatma Gandhi University, Kottayam, Kerala 686 560 (India); Louis, Godfrey [Department of Physics, Cochin University of Science and Technology, Cochin 22 (India)
2010-04-01
Elastic anomalies in Potassium Sulphamate, (KNH{sub 2}SO{sub 3}), above room temperature were detected from temperature variation of elastic constants measured by ultrasonic Pulse Echo Overlap technique. Potassium Sulphamate has been reported to be a ferroelectric and piezo electric material. The elastic constants C{sub 11}, C{sub 44}, C{sub 55} and C{sub 66} have exhibited weak anomalies around 350 K. The DC conductivity measurement along a, b, and c axes also supports this conclusion.
Sahin, E.; Ooi, K. J. A.; Chen, G. F. R.; Ng, D. K. T.; Png, C. E.; Tan, D. T. H.
2017-09-01
We present the design, fabrication, and characterization of photonic crystal waveguides (PhCWs) on an ultra-silicon-rich nitride (USRN) platform, with the goal of augmenting the optical nonlinearities. The design goals are to achieve an optimized group index curve on the PhCW band edge with a non-membrane PhCW with symmetric SiO2 undercladding and overcladding, so as to maintain back-end CMOS compatibility and better structural robustness. Linear optical characterization, as well as nonlinear optical characterization of PhCWs on ultra-silicon-rich nitride is performed at the telecommunication wavelengths. USRN's negligible two-photon absorption and free carrier losses at the telecommunication wavelengths ensure that there is no scaling of two-photon related losses with the group index, thus maintaining a high nonlinear efficiency. Self-phase modulation experiments are performed using a 96.6 μm PhCW. A 1.5π phase shift is achieved with an input peak power of 2.5 W implying an effective nonlinear parameter of 1.97 × 104 (W m)-1. This nonlinear parameter represents a 49× enhancement in the nonlinear parameter from the slow light effect, in good agreement with expected scaling from the measured group index.
Elastic properties of the degenerate f.c.c. crystal of polydisperse soft dimers at zero temperature
Narojczyk, J W
2015-01-01
Elastic properties of soft, three-dimensional dimers, interacting through site-site n-inverse-power potential, are determined by computer simulations at zero temperature. The degenerate crystal of dimers exhibiting (Gaussian) size distribution of atomic diameters - i.e. size polydispersity - is studied at the molecular number density $1/\\sqrt{2}$; the distance between centers of atoms forming dimers is considered as a length unit. It is shown that, at the fixed number density of the dimers, increasing polydispersity causes, typically, an increase of pressure, elastic constants and Poisson's ratio; the latter is positive in most direction. A direction is found, however, in which the size polydispersity causes substantial decrease of Poisson's ratio, down to negative values for large $n$. Thus, the system is partially auxetic for large polydispersity and large n.
Institute of Scientific and Technical Information of China (English)
Wang Chun-Lei; Yu Ben-Hai; Huo Hai-Liang; Chen Dong; Sun Hai-Bin
2009-01-01
This paper predicts the elastic and thermodynamic characteristics of T1B2 crystal through the method of density functional theory within the generalized gradient approximation (GGA). The five independent elastic constants (Cij), the bulk modulus (Bo), the dependence of bulk modulus (Bo) on temperature T and pressure P and the coefficient of thermal expansion (αL) at various temperatures have been evaluated and discussed. According to calculation, the bulk modulus will increase with increasing pressure while decrease with the increasing temperature. The coefficient of thermal expansion is consistent with the famous Griineisen's law when the temperature is not too high. The obtained results agree well with the experimental and other theoretical results.
Microwave emission by nonlinear crystals irradiated with a high-intensity, mode-locked laser
Borghesani, A F; Guarise, M
2016-01-01
We report on the experimental investigation of the efficiency of some nonlinear crystals to generate microwave (RF) radiation as a result of optical rectification (OR) when irradiated with intense pulse trains delivered by a mode-locked laser at $1064\\,$nm. We have investigated lithium triborate (LBO), lithium niobate (LiNbO$_3$), zinc selenide (ZnSe), and also potassium titanyl orthophosphate (KTP) for comparison with previous measurements. The results are in good agreement with the theoretical predictions based on the form of the second-order nonlinear susceptibility tensor. For some crystals we investigated also the second harmonic generation (SHG) to cross check the theoretical model. We confirm the theoretical prediction that OR leads to the production of higher order RF harmonics that are overtones of the laser repetition rate.
Growth and characterization of organic nonlinear optical single crystal 2,7-dihydroxy naphthalene
Sadhasivam, S.; Rajesh, N. P.
2017-08-01
The organic nonlinear optical crystals of 2,7-dihydroxy naphthalene (2,7-DN) were grown by slow evaporation method using acetone as a solvent. Optically transparent single crystal with sizes up to 15 × 7 × 4 mm3 were grown. Non-centrosymmetry has been studied using X-ray diffraction (XRD) and functional group of 2,7-DN were studied by Raman scattering and FTIR spectral analysis. The optical transmittance was characterized and to be 28%. The melting point of 2,7-DN is 465 K. 2,7-DN found exhibit low dielectric constant of 20-22 in the frequency range of 10 Hz-10 MHz at room temperature. The nonlinear optical and phase matching properties were characterized by Kurtz powder second harmonic generation (SHG) efficiency test.
Saturable Nonlinearity in Photovoltaic-Photorefractive Crystals Under Open-circuit Condition
Institute of Scientific and Technical Information of China (English)
GUO Ru; LING Zhen-Fang; CHEN Xiao-Hu; ZHANG Guo-Quan; ZHANG Xin-Zheng; WEN Hai-Dong; JIANG Ying; LIU Si-Min
2000-01-01
We show that the refractive index change induced by a focused incident beam with an additional incoherent uniform illumination in photovoltaic-photorefractive crystals under open-circuit condition has a saturable nonlinearity form. The incoherent uniform background illumination can be used to increase the effective dark irradiance. The formation time of the photovoltaic soliton can be decreased by keeping the intensity of the soliton at a higher value without over-saturation by use of the background illumination.
Measuring nonlinear stresses generated by defects in 3D colloidal crystals
Lin, Neil Y C; Schall, Peter; Sethna, James P; Cohen, Itai
2016-01-01
The mechanical, structural and functional properties of crystals are determined by their defects and the distribution of stresses surrounding these defects has broad implications for the understanding of transport phenomena. When the defect density rises to levels routinely found in real-world materials, transport is governed by local stresses that are predominantly nonlinear. Such stress fields however, cannot be measured using conventional bulk and local measurement techniques. Here, we report direct and spatially resolved experimental measurements of the nonlinear stresses surrounding colloidal crystalline defect cores, and show that the stresses at vacancy cores generate attractive interactions between them. We also directly visualize the softening of crystalline regions surrounding dislocation cores, and find that stress fluctuations in quiescent polycrystals are uniformly distributed rather than localized at grain boundaries, as is the case in strained atomic polycrystals. Nonlinear stress measurements ...
Nonlinear frequency conversion effect in a one-dimensional graphene-based photonic crystal
Wicharn, S.; Buranasiri, P.
2015-07-01
In this research, the nonlinear frequency conversion effect based on four-wave mixing (FWM) principle in a onedimensional graphene-based photonics crystal (1D-GPC) has been investigated numerically. The 1D-GPC structure is composed of two periodically alternating material layers, which are graphene-silicon dioxide bilayer system and silicon membrane. Since, the third-order nonlinear susceptibility χ(3) of bilayer system is hundred time higher than pure silicon dioxide layer, so the enhancement of FWM response can be achieved inside the structure with optimizing photon energy being much higher than a chemical potential level (μ) of graphene sheet. In addition, the conversion efficiencies of 1DGPC structure are compared with chalcogenide based photonic structure for showing that 1D-GPC structure can enhance nonlinear effect by a factor of 100 above the chalcogenide based structure with the same structure length.
Extreme events induced by self-action of laser beams in dynamic nonlinear liquid crystal cells
Bugaychuk, S.; Iljin, A.; Chunikhina, K.
2017-06-01
Optical extreme events represent a feature of nonlinear systems where there may emerge individual pulses possessing very high (or very low) intensity hardly probable statistically. Such property is being connected with the generation of solitons in the nonlinear systems. We carry out the first experiments for detection of extreme events during two-wave mixing with nonlinear dynamical liquid crystal (LC) cells. We investigate the statistics of the extreme events in dependence on relation between the duration of a laser pulse and the time characteristic of dynamic grating relaxation in LC cell. Our research shows that the self-diffraction of laser beams with a dynamical grating support the generation of envelope solitons in this system.
Design of broadband nearly-zero flattened dispersion highly nonlinear photonic crystal fiber
Institute of Scientific and Technical Information of China (English)
Shuqin Lou; Hong Fang; Honglei Li; Tieying Guo; Lei Yao; Liwen Wang; Weiguo Chen; Shuisheng Jian
2008-01-01
We propose a new structure of broadband nearly-zero flattened dispersion highly nonlinear photonic crystal fiber (PCF). Through optimizing the diameters of the first two inner rings of air-holes and the GeO2 doping concentration of the core, the nonlinear coefficient is up to 47 W-1.km-1 at the wavelength of 1.55 μm and nearly-zero flattened dispersion of±0.5 ps/(nm.km) is achieved in the telecommunication window (1460 - 1625 nm). Due to the use of GeO2-doped core, this innovative structure can offer not only a large nonlinear coefficient and broadband nearly-zero flattened dispersion but also low leakage losses.
Munera, Natalia; Acuna Herrera, Rodrigo
2016-06-01
In this letter, a numerical analysis is developed for the propagation of ultrafast optical pulses through a standard photonic crystal fiber (PCF) consisting of two infiltrated holes using carbon disulfide (CS2). This material is a good choice since it has highly nonlinear properties, what makes it a good candidate for optical switching and broadband source at low power compared to traditional nonlinear fiber coupler. Based on supermodes theory, a set of generalized nonlinear equations is presented in order to study the propagation characteristics. It is shown in this letter that it is possible to get optical switching behavior at low power and how the dispersion, as well as, the two infiltrated holes separation influence this effect. Finally, we see that supercontinuum generation can be induced equally in both infiltrated holes despite no initial excitation at one hole.
Institute of Scientific and Technical Information of China (English)
Ali Chen; Yuesheng Wang; Guilan Yu; Yafang Guo; Zhengdao Wang
2008-01-01
The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phcnonic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.
Goyal, Deepak
Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of
Zarepour, Misagh; Amirhosein Hosseini, Seyed
2016-08-01
This study presents an examination of nonlinear free vibration of a nanobeam under electro-thermo-mechanical loading with elastic medium and various boundary conditions, especially the elastic boundary condition. The nanobeam is modeled as an Euler-Bernoulli beam. The von Kármán strain-displacement relationship together with Hamilton’s principle and Eringen’s theory are employed to derive equations of motion. The nonlinear free vibration frequency is obtained for simply supported (S-S) and elastic supported (E-E) boundary conditions. E-E boundary condition is a general and actual form of boundary conditions and it is chosen because of more realistic behavior. By applying the differential transform method (DTM), the nanobeam’s natural frequencies can be easily obtained for the two different boundary conditions mentioned above. Performing a precise study led to investigation of the influences of nonlocal parameter, temperature change, spring constants (either for elastic medium or boundary condition) and imposed electric potential on the nonlinear free vibration characteristics of nanobeam. The results for S-S and E-E nanobeams are compared with each other. In order to validate the results, some comparisons are presented between DTM results and open literature to show the accuracy of this new approach. It has been discovered that DTM solves the equations with minimum calculation cost.
Energy Technology Data Exchange (ETDEWEB)
Balakrishnan, T., E-mail: balacrystalgrowth@gmail.com [Crystal Growth Laboratory, PG & Research Department of Physics, Periyar EVR College (Autonomous), Tiruchirappalli, 620 023, Tamil Nadu (India); Sathiskumar, S. [Crystal Growth Laboratory, PG & Research Department of Physics, Periyar EVR College (Autonomous), Tiruchirappalli, 620 023, Tamil Nadu (India); Ramamurthi, K. [Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM University, Kattankulathur, 603 203, Kancheepuram, Tamil Nadu (India); Thamotharan, S. [Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401 (India)
2017-01-15
Single crystal of a novel metal organic nonlinear optical (NLO) cadmium (II) dibromide L - proline monohydrate (CBLPM) of size 7 × 7 × 5 mm{sup 3} was grown from slow evaporation technique. Single crystal X – ray diffraction analysis reveals that the crystal belongs to orthorhombic system with lattice parameters a = 10.1891 (8) Å, b = 13.4961 (11) Å, c = 7.4491 (5) Å and space group P2{sub 1}2{sub 1}2{sub 1}. The powder X – ray diffraction pattern of CBLPM was recorded and the X – ray diffraction peaks were indexed. The various functional groups of CBLPM were identified by the FT – IR and FT – Raman spectral analyses. The optical transmittance window and lower cut off wavelength of CBLPM were identified from UV – Vis – NIR studies. The mechanical strength of the grown crystal was estimated using Vickers microhardness test. Dielectric constant and dielectric loss measurements were carried out at different temperatures in the frequency range of 50 Hz - 2 MHz. The photoluminescence spectrum was recorded in the wavelength range 200–400 nm and the estimated optical band gap was ∼4.1 eV. Etching studies were carried out for different etching time. Thermal stability of CBLPM was determined using thermogravimetric analysis. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. Size dependent second harmonic generation efficiency of the grown crystal was determined by Kurtz and Perry powder technique with different particle size using Nd:YAG laser with wavelength 1064 nm. Second harmonic generation efficiency of the powdered CBLPM crystal was ∼2.3 times that of potassium dihydrogen orthophosphate. - Highlights: • CBLPM crystal belongs to orthorhombic crystal system with space group P2{sub 1}2{sub 1}2{sub 1.} • Transmittance of CBLPM is ∼80% in the 650–1100 nm range. • Powder SHG efficiency of CBLPM increases with increase in particle size. • SHG efficiency of 0.57 μm size powdered CBLPM is ∼2
Institute of Scientific and Technical Information of China (English)
黄冬梅; 徐伟; 谢文贤; 韩群
2015-01-01
In this paper, the principal resonance response of a stochastically driven elastic impact (EI) system with time-delayed cubic velocity feedback is investigated. Firstly, based on the method of multiple scales, the steady-state response and its dynamic stability are analyzed in deterministic and stochastic cases, respectively. It is shown that for the case of the multi-valued response with the frequency island phenomenon, only the smallest amplitude of the steady-state response is stable under a certain time delay, which is different from the case of the traditional frequency response. Then, a design criterion is proposed to suppress the jump phenomenon, which is induced by the saddle-node bifurcation. The effects of the feedback parameters on the steady-state responses, as well as the size, shape, and location of stability regions are studied. Results show that the system responses and the stability boundaries are highly dependent on these parameters. Furthermore, with the purpose of suppressing the amplitude peak and governing the resonance stability, appropriate feedback gain and time delay are derived.
On-chip steering of entangled photons in nonlinear photonic crystals.
Leng, H Y; Yu, X Q; Gong, Y X; Xu, P; Xie, Z D; Jin, H; Zhang, C; Zhu, S N
2011-08-16
One promising technique for working toward practical photonic quantum technologies is to implement multiple operations on a monolithic chip, thereby improving stability, scalability and miniaturization. The on-chip spatial control of entangled photons will certainly benefit numerous applications, including quantum imaging, quantum lithography, quantum metrology and quantum computation. However, external optical elements are usually required to spatially control the entangled photons. Here we present the first experimental demonstration of on-chip spatial control of entangled photons, based on a domain-engineered nonlinear photonic crystal. We manipulate the entangled photons using the inherent properties of the crystal during the parametric downconversion, demonstrating two-photon focusing and beam-splitting from a periodically poled lithium tantalate crystal with a parabolic phase profile. These experimental results indicate that versatile and precise spatial control of entangled photons is achievable. Because they may be operated independent of any bulk optical elements, domain-engineered nonlinear photonic crystals may prove to be a valuable ingredient in on-chip integrated quantum optics.
Srinivasan, Bikshandarkoil R
2015-01-05
The title paper (Manimekalai et al., 2014) reports a slow evaporation solution growth of a so called 'Aloevera amino acid added lithium sulfate monohydrate' (AALSMH) crystal. In this communication, many points of criticism, concerning the crystal growth, NMR spectrum and X-ray powder pattern of this so called AALSMH nonlinear optical crystal are highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.
Growth and characterization of glycinium 3-nitrophthalate nonlinear optical single crystal
Bhuvaneswari, R.; Bharathi, M. Divya; Hemanathan, K.; Murugesan, K. Sakthi
2017-05-01
The potential organic nonlinear optical single crystal of glycinium 3-nitrophthalate has been grown by slow evaporation solution growth technique (SEST) using water solution at room temperature. The single crystal x-ray diffraction confirms the monoclinic structure with the centro symmetric space group P21/c. The crystal shows good transparency about (80%) in the entire visible region with a lower cut off wavelength of 377nm. The physico-chemical changes, stability and decomposition stages of the Glycinium 3-Nitrophthalate compound were established by TG-DSC studies. The laser induced surface damage threshold value 6.2 GW/cm2 indicates that this material can be used for high power laser applications.
Armstrong, D J; Alford, W J; Raymond, T D; Smith, A V
1996-04-20
Absolute magnitudes of the effective nonlinearity, deff, were measured for seven KTP and six BBO crystals. The d(eff), were derived from the parametric gain of an 800-nm signal wave in the sample crystals when they were pumped by the frequency-doubled, spatially filtered light from an injectionseeded, Q-switched Nd:YAG laser. The KTP crystals, all type II phase matched with propagation in the X-Z plane, had d(eff) values ranging from 1.97 to 3.50 pm/V. Measurements of gain as a function of phase velocity mismatch indicate that two of the KTP crystals clearly contain multiple ferroelectric domains. For five type I phase-matched BBO crystals, d(eff) ranged from 1.76 to 1.83 pm/V, and a single type II phase-matched BBO crystal had a d(eff) of 1.56 pm/V. The uncertainty in our measurements of d(eff) values is ±5% for KTP and ±10% for BBO.
Thermal expansion and elastic anisotropy in single crystal Al2O3 and SiC reinforcements
Salem, Jonathan A.; Li, Zhuang; Bradt, Richard C.
1994-01-01
In single crystal form, SiC and Al2O3 are attractive reinforcing components for high temperature composites. In this study, the axial coefficients of thermal expansion and single crystal elastic constants of SiC and Al2O3 were used to determine their coefficients of thermal expansion and Young's moduli as a function of crystallographic orientation and temperature. SiC and Al2O3 exhibit a strong variation of Young's modulus with orientation; however, their moduli and anisotropies are weak functions of temperature below 1000 C. The coefficients of thermal expansion exhibit significant temperature dependence, and that of the non-cubic Al2O3 is also a function of crystallographic orientation.
Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingnan [Iowa State Univ., Ames, IA (United States)
2009-01-01
Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based
A high-speed demultiplexer based on a nonlinear optical loop mirror with a photonic crystal fiber
DEFF Research Database (Denmark)
Siahlo, Andrei; Oxenløwe, Leif Katsuo; Berg, Kim Skaalum
2003-01-01
A 50-m-long photonic crystal fiber with zero-dispersion wavelength at 1552 nm is used as the nonlinear medium in a nonlinear optical loop-mirror-based demultiplexer. The successful demultiplexing of an 80-Gb/s optical time-division multiplexing signal transmitted through an 80-km span of standard...
Nonlinear ultrafast switching based on soliton self-trapping in dual-core photonic crystal fibre
Stajanca, P.; Bugar, I.
2016-11-01
In this paper, we present a systematic numerical study of a novel ultrafast nonlinear switching concept based on soliton self-trapping in dual-core (DC) photonic crystal fibre (PCF). The geometrical parameters of highly-nonlinear (HN) DC microstructure are optimized with regard to desired linear and nonlinear propagation characteristics. The comparable magnitude of fibre coupling length and soliton period is identified as a key condition for presented switching concept. The optimized DC PCF design is subjected to detailed nonlinear numerical study. Complex temporal-spectral-spatial transformations of 100 fs hyperbolic secant pulse at 1550 nm in the DC PCF are studied numerically employing a model based on coupled generalized nonlinear Schrödinger equations solved by a split-step Fourier method. For the optimized DC structure, mutual interplay of solitonic and coupling processes gives rise to nonlinear switching of self-trapped soliton. The output channel (fibre core) for the generated soliton can be controlled via the input pulse energy. For vertical polarization, the optimal soliton switching with extinction ratio contrast of 32.4 dB at 10.75 mm propagation distance is achieved. Even better switching contrast of 34.8 dB can be achieved for horizontal polarization at optimal propagation distance of 10.25 mm. Besides energy-controlled soliton self-trapping switching, the fibre supports also nonlinear polarization switching with soliton switching contrast as high as 37.4 dB. The proposed fibre holds a high application potential allowing efficient ultrafast switching of sub-nanojoule pulses at over-Tb/s data rates requiring only about 1 cm fibre length.
Evaluation of frost damage in cement-based materials by a nonlinear elastic wave technique
Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Soriano, L.; Payá, J.
2014-03-01
Frost resistance of concrete is a major concern in cold regions. RILEM (International union of laboratories and experts in construction materials, systems and structures) recommendations provide two alternatives for evaluating frost damage by nondestructive evaluation methods for concrete like materials. The first method is based on the ultrasonic pulse velocity measurement, while the second alternative technique is based on the resonant vibration test. In this study, we monitor the frost damage in Portland cement mortar samples with water to cement ratio of 0.5 and aggregate to cement ratio of 3. The samples are completely saturated by water and are frozen for 24 hours at -25°C. The frost damage is monitored after 0, 5, 10, 15 and 20 freezing-thawing cycles by nonlinear impact resonance acoustic spectroscopy (NIRAS). The results obtained are compared with those obtained by resonant vibration tests, the second alternative technique recommended by RILEM. The obtained results show that NIRAS is more sensitive to early stages of damage than the standard resonant vibration tests.
Korman, Murray S.; Sabatier, James M.
2006-05-01
The vibration interaction between the top-plate of a buried VS 2.2 plastic, anti-tank landmine and the soil above it appears to exhibit similar characteristics to the nonlinear mesoscopic/nanoscale effects that are observed in geomaterials like rocks or granular materials. [J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. When airborne sound at two primary frequencies f1 and f2 (closely spaced near resonance) undergo acoustic-to-seismic coupling, (A/S), interactions with the mine and soil generate combination frequencies | n f1 ± m f2 | which affect the surface vibration velocity. Profiles at f1, f2, f1 -(f2 - f1) and f2 +(f2 - f1) exhibit single peaks whereas other combination frequencies may involve higher order modes. A family of increasing amplitude tuning curves, involving the surface vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding resonant frequency. Subsequent decreasing amplitude tuning curves exhibit hysteresis effects. New experiments for a buried VS 1.6 anti-tank landmine and a "plastic drum head" mine simulant behave similarly. Slow dynamics explains the amplitude difference in tuning curves for first sweeping upward and then downward through resonance, provided the soil modulus drops after periods of high strain. [Support by U.S. Army RDECOM CERDEC, NVESD, Fort Belvoir, VA.
A Non-Linear Model for Elastic Dielectric Crystals with Mobile Vacancies
2009-07-01
2812. [2] D.J. Bammann, E.C. Aifantis, A damage model for ductile metals, Nucl. Eng. Des. 116 (1989) 355–362. [3] N. Bernstein, H.J. Gostis, D.A...2006) 1604–1639. [12] J.D. Clayton, D.J. Bammann, D.L. McDowell, Anholonomic configuration spaces and metric tensors in finite elastoplasticity , Int...M.F. Horstemeyer, J. Lathrop, A.M. Gokhale, M. Dighe, Modeling stress state dependent damage evolution in a cast Al–Si–Mg aluminum alloy, Theor. Appl
First-principles study of electronic, elastic, and optical properties of Yb:CaF{sub 2} crystals
Energy Technology Data Exchange (ETDEWEB)
Qi, Yuan-Yuan; Li, Zhi-Guo; Chen, Xiang-Rong [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Lab. of High Energy Density Physics and Technology of Ministry of Education; Ji, Guang-Fu [Chinese Academy of Engineering Physics, Mianyang (China). National Key Lab. for Shock Wave and Detonation Physics Research
2015-07-01
The electronic structure, elastic, and optical properties of CaF{sub 2} and Yb-doped CaF{sub 2} are investigated by the first-principles calculations. The obtained lattice parameters, band structure, density of state, elastic constants, and imaginary part of dielectric function ε{sub 2} for CaF{sub 2} agree well with the experimental and other theoretical results. A good comparison of the properties is made between CaF{sub 2} and Yb:CaF{sub 2}, and it is found that: firstly, Yb doping leads to the crystal structure distortion of CaF{sub 2} and reduction of the elastic constants. Secondly, an impurity band is found at the top of valence band in the band structure of Yb:CaF{sub 2} and contributes to the bandgap narrowing. Thirdly, the peaks at about 26 eV in the optical curves disappear after Yb doping, and the remaining two peaks shift towards the longer-wavelength side, with the peak intensities drop down, indicating that Yb doping makes the ultraviolet transmittance of the system improve and the range of light in the UV region widen. Furthermore, Yb doping induces new peaks in the optical curves, which may be caused by 4f electron transitions of Yb atom. Finally, the transmittance of the doped system increases when the Yb-doped proportion decreases.
Yang, Xiaodong
The strong light localization and long photon lifetimes in two-dimensional silicon photonic crystal nanocavities with high quality factor (Q ) and subwavelength modal volume (V) significantly enhance the light-matter interactions, presenting many opportunities to explore new functionalities in silicon nanophotonic integrated circuits for on-chip all-optical information processing, optical computation and optical communications. This thesis will focus on the design, nanofabrication, and experimental characterization of both passive and active silicon nanophotonic devices based on two-dimensional high-Q silicon photonic crystal nanocavities. Three topics of controlling light with these high-Q nanocavities will be presented, including (1) photon confinement mechanism and cavity resonance tuning, (2) enhancement of optical nonlinearities, and (3) all-optical analogue to coherent interferences. The first topic is photon confinement in two-dimensional high- Q silicon photonic crystal nanocavities. In Chapter 2, the role of Q/V as the figure of merit for the enhanced light-matter interaction in optical microcavities and nanocavities is explained and different types of high-Q optical microcavities and nanocavities are reviewed with an emphasis on two-dimensional photonic crystal nanocavities. Then the nanofabrication process and the Q characterization are illustrated for the two-dimensional silicon photonic crystal nanocavities. In Chapter 3, the post-fabrication digital resonance tuning of high-Q silicon photonic crystal nanocavities using atomic layer deposition is proposed and demonstrated, with wide tuning range and precise control of cavity resonances while preserving high quality factors. The second topic is the enhancement of optical nonlinearities in two-dimensional high-Q silicon photonic crystal nanocavities, including stimulated Raman scattering and thermo-optical nonlinearities. In Chapter 4, the enhanced stimulated Raman scattering for low threshold Raman
Jayaprakash, P.; Mohamed, M. Peer; Caroline, M. Lydia
2017-04-01
An organic nonlinear optical single crystal, D-alanine DL-mandelic acid was synthesized and successfully grown by slow evaporation solution growth technique at ambient temperature using solvent of aqueous solution. The unit cell parameters were assessed from single crystal X-ray diffraction analysis. The presence of diverse functional groups and vibrational modes were identified using Fourier Transform Infra Red and Fourier Transform Raman spectral analyses. The chemical structure of grown crystal has been identified by Nuclear Magnetic Resonance spectroscopic study. Ultraviolet-visible spectral analysis reveal that the crystal has lower cut-off wavelength down to 259 nm, is a key factor to exhibit second harmonic generation signal. The electronic optical band gap and Urbach energy is calculated as 5.31 eV and 0.2425 eV respectively from the UV absorption profile. The diverse optical properties such as, extinction coefficient, reflectance, linear refractive index, optical conductivity was calculated using UV-visible data. The relative second harmonic efficiency of the compound is found to be 0.81 times greater than that of KH2PO4 (KDP). The thermal stability of the grown crystal was studied by thermogravimetric analysis and differential thermal analysis techniques. The luminescence spectrum exhibited two peaks (520 nm, 564 nm) due to the donation of protons from carboxylic acid to amino group. The Vickers microhardness test was carried out employing one of the as-grown hard crystal and there by hardness number (Hv), Meyer's index (n), yield strength (σy), elastic stiffness constant (C11) and Knoop hardness number (HK) were assessed. The dielectric behaviour of the as-grown crystal was analyzed for different temperatures (313 K, 333 K, 353 K, and 373 K) at different frequencies.
Zhang, Rui; Schweizer, Kenneth S
2012-04-21
We generalize the microscopic naïve mode coupling and nonlinear Langevin equation theories of the coupled translation-rotation dynamics of dense suspensions of uniaxial colloids to treat the effect of applied stress on shear elasticity, cooperative cage escape, structural relaxation, and dynamic and static yielding. The key concept is a stress-dependent dynamic free energy surface that quantifies the center-of-mass force and torque on a moving colloid. The consequences of variable particle aspect ratio and volume fraction, and the role of plastic versus double glasses, are established in the context of dense, glass-forming suspensions of hard-core dicolloids. For low aspect ratios, the theory provides a microscopic basis for the recently observed phenomenon of double yielding as a consequence of stress-driven sequential unlocking of caging constraints via reduction of the distinct entropic barriers associated with the rotational and translational degrees of freedom. The existence, and breadth in volume fraction, of the double yielding phenomena is predicted to generally depend on both the degree of particle anisotropy and experimental probing frequency, and as a consequence typically occurs only over a window of (high) volume fractions where there is strong decoupling of rotational and translational activated relaxation. At high enough concentrations, a return to single yielding is predicted. For large aspect ratio dicolloids, rotation and translation are always strongly coupled in the activated barrier hopping event, and hence for all stresses only a single yielding process is predicted.
Sreevalsa, V. G.; Jayalekshmi, S.
2014-01-01
Potassium Dihydrogen Phosphate (KDP) single crystal is considered as one of the best representative of nonlinear optical crystals. Recently, amino acids having excellent nonlinear optical characteristics are being investigated as prospective dopants to improve the non linear optical characteristics of KDP. The present work is an attempt in this direction and L citrulline, one of the non essential amino acids showing good non linear optical characteristics is used as the dopant for KDP. Good quality crystals of L-citrulline doped KDP crystals were grown by slow evaporation technique. From the powder X-ray diffraction studies of doped KDP crystal, the structure of the doped crystals was determined by direct method and refined by Pawley method employing Topaz version program using the single crystal X-ray data for pure KDP. The lattice parameters for L citrulline doped KDP are a=7.467A0, b=7.467 A0, c=6.977 A0. The crystal falls into the tetragonal crystal system with space group I42 d. The presence of carbon and oxygen, which are primary components of amino acids, in the EDAX spectrum confirms the effectiveness of doping. The absorption spectra of the doped samples show that the crystals are transparent in the entire visible region. The second harmonic generation efficiency of the doped samples was determined by Kurtz powder technique using the Q-switched Nd:YAG laser beam and is found to be 2.2 times that of KDP. The nonlinear optical properties can be well studied by the open aperture Z scan technique. The open aperture curve exhibits a normalized transmittance valley. The nonlinear absorption coefficient β is obtained by theoretical fitting for two photon absorption. It is inferred that doping KDP with L citrulline has enhanced the nonlinearity considerably. This obviously suggests the potentiality of the crystal as an optical power limiter and also for various optical device applications.
Elastic anomalies in BaFe{sub 2-x}Ni{sub x}As{sub 2} crystals
Energy Technology Data Exchange (ETDEWEB)
Saint-Paul, M., E-mail: michel.saint-paul@grenoble.cnrs.fr [Institut Neel, CNRS et Universite Joseph Fourier BP 166, F 38042 Grenoble Cedex 9 (France); Abbassi, A. [Faculte des Sciences et Techniques de Tanger, BP 416 Tanger, Universite Abdelmalek Essaadi (Morocco); Wang Zhaosheng [Institut Neel, CNRS et Universite Joseph Fourier BP 166, F 38042 Grenoble Cedex 9 (France); Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190 (China); Luo Huinqian; Lu Xingye; Ren Cong [Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190 (China); Wen, Hai-Hu [Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190 (China); National Laboratory for Solid State Microstuctures, Department of Physics, Nanjing University, 210093 Nanjing (China); Hasselbach, K. [Institut Neel, CNRS et Universite Joseph Fourier BP 166, F 38042 Grenoble Cedex 9 (France)
2012-12-14
We present ultrasonic measurements on superconducting BaFe{sub 2-x}Ni{sub x}As{sub 2} crystals with x = 0.07 and x = 0.15. The elastic constants C{sub 33} and C{sub 44} for the underdoped crystal (x = 0.07) show a large softening related to the structural phase transition at high temperatures. Anomalies in the sound velocity and the ultrasonic attenuation have been found at the superconducting phase transition T{sub c} = 17 K. Ultrasonic attenuation exhibits a peak at the superconducting transition in contrast with the attenuation in conventional superconductors. In the overdoped crystal (x = 0.15) a minimum of C{sub 66} is found at a temperature just above the superconducting temperature T{sub c} = 13 K. Superconducting energy gap values have been tentatively extracted from the longitudinal ultrasonic attenuation. Unconventional behaviour of the ultrasonic attenuation is observed in the superconducting BaFe{sub 2-x}Ni{sub x}As{sub 2} crystals.
Breakdown of elasticity in amorphous solids
Biroli, Giulio; Urbani, Pierfrancesco
2016-12-01
What characterizes a solid is the way that it responds to external stresses. Ordered solids, such as crystals, exhibit an elastic regime followed by a plastic regime, both understood microscopically in terms of lattice distortion and dislocations. For amorphous solids the situation is instead less clear, and the microscopic understanding of the response to deformation and stress is a very active research topic. Several studies have revealed that even in the elastic regime the response is very jerky at low temperature, resembling very much the response of disordered magnetic materials. Here we show that in a very large class of amorphous solids this behaviour emerges upon decreasing temperature, as a phase transition, where standard elastic behaviour breaks down. At the transition all nonlinear elastic moduli diverge and standard elasticity theory no longer holds. Below the transition, the response to deformation becomes history- and time-dependent.
Indian Academy of Sciences (India)
Srinivasan Bikshandarkoil R; Fernandes Royle
2016-03-01
In {\\it Pramana – J. Phys. } 75, 683 (2010), Gunasekaran et al reported that they have grown the nonlinear optical crystals, urea thiourea mercuric chloride (UTHC) and urea thiourea mercuric sulphate (UTHS).We argue that UTHC and UTHS are dubious crystals and are not what the authors propose.
Institute of Scientific and Technical Information of China (English)
Miha Brojan; Matjaz Cebron; Franc Kosel
2012-01-01
This work studies large deflections of slender,non-prismatic cantilever beams subjected to a combined loading which consists of a non-uniformly distributed continuous load and a concentrated load at the free end of the beam.The material of the cantilever is assumed to be nonlinearly elastic.Different nonlinear relations between stress and strain in tensile and compressive domain are considered.The accuracy of numerical solutions is evaluated by comparing them with results from previous studies and with a laboratory experiment.
Crystalline structure and symmetry dependence of acoustic nonlinearity parameters
Cantrell, John H.
1994-01-01
A quantitative measure of elastic wave nonlinearity in crystals is provided by the acoustic nonlinearity parameters. The nonlinearity parameters are defined for arbitrary propagation modes for solids of arbitrary crystalline symmetry and are determined along the pure mode propagation directions for 33 crystals of cubic symmetry from data reported in the literature. The magnitudes of the nonlinearity parameters are found to exhibit a strong dependence on the crystalline structure and symmetries associated with the modal direction in the solid. Calculations based on the Born-Mayer potential for crystals having a dominant repulsive contribution to the elastic constants from the interatomic pair potential suggest that the origin of the structure dependence is associated with the shape rather than the strength of the potential. Considerations based on variations in crystal symmetry during loading along pure mode propagation directions of face-centered-cubic solids provide a qualitative explanation for the dependence of the acoustic nonlinearity parameters on modal direction.
Numerical analysis of nonlinear electromagnetic waves in nematic liquid crystal cells
Papanicolaou, N. C.; Christou, M. A.; Polycarpou, A. C.
2012-10-01
In the current work, the nonlinear problem of electromagnetic wave propagation in a Nematic Liquid Crystal (NLC) cell is solved numerically. The LC is sandwiched between two glass layers of finite thickness and a linearly polarized beam is obliquely incident to the cell. The dielectric properties of N-LCs depend on the tilt angle of the directors. When the excitation beam enters the cell, and providing the incident intensity is above the Fréedericksz threshold, the directors reorient themselves changing the LC's relative permittivity tensor. In turn, this affects beam propagation throughout the crystal. The electromagnetic field is modeled by the time-harmonic Maxwell equations whereas the director field is governed by a nonlinear ordinary differential equation (ODE). Our solution method is iterative, consistently taking into account this interaction between the excitation beam and the director field. The Maxwell equations are solved employing the Mode-Matching Technique (MMT). The solution of the nonlinear differential equation for the director field is obtained with the aid of a finite difference (FD) scheme.
Indian Academy of Sciences (India)
D P Acharya; Asit Kumar Mondal
2006-06-01
The object of the present paper is to investigate the propagation of quasi-transverse waves in a nonlinear perfectly conducting nonhomogeneous elastic medium in the presence of a uniform magnetic ﬁeld transverse to the direction of wave propagation. Different types of ﬁgures have been drawn to exhibit the distortion of waves due to the presence of magnetic ﬁeld and the nonhomogeneous nature of the medium. Formation of shocks has also been numerically discussed.
Multifunctional Bi2ZnOB2O6 single crystals for second and third order nonlinear optical applications
Iliopoulos, K.; Kasprowicz, D.; Majchrowski, A.; Michalski, E.; Gindre, D.; Sahraoui, B.
2013-12-01
Bi2ZnOB2O6 nonlinear optical single crystals were grown by means of the Kyropoulos method from stoichiometric melt. The second and third harmonic generation (SHG/THG) of Bi2ZnOB2O6 crystals were investigated by the SHG/THG Maker fringes technique. Moreover, SHG microscopy studies were carried out providing two-dimensional SHG images as a function of the incident laser polarization. The high nonlinear optical efficiency combined with the possibility to grow high quality crystals make Bi2ZnOB2O6 an excellent candidate for photonic applications.
Directory of Open Access Journals (Sweden)
S. V. San’kova
2014-01-01
Full Text Available The measuring of the constants of single-crystals requires the availability of crystals of relatively big size. In this paper the elastic constants of the single crystals of magnesium alloy with zinc, zirconium, and rare earth metals (REM were determined by means of the experimental anisotropy of Young’s modulus and integral characteristics of texture (ICT, which were found from pole figures. Using these constants the anisotropy of Young’s modulus of alloy sheet ZE10 was calculated. Deviation of calculated values from experimental values did not exceed 2%.
Highly non-linear solid core photonic crystal fiber with one nano hole
Energy Technology Data Exchange (ETDEWEB)
Gangwar, Rahul Kumar, E-mail: rahul0889@gmail.com; Bhardwaj, Vanita, E-mail: bhardwajphy12@gmail.com; Singh, Vinod Kumar, E-mail: singh.vk.ap@ismdhanbad.co.in [Department of Applied Physics, Indian School of Mines, Dhanbad, Jharkhand (India)
2015-08-28
The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm{sup 2}), high nonlinearity (36.34 W{sup −1}km{sup −1}) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for the SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.
Chen, Hong; Huang, Xuanqi; Fu, Houqiang; Lu, Zhijian; Zhang, Xiaodong; Montes, Jossue A.; Zhao, Yuji
2017-05-01
We report the basic nonlinear optical properties, namely, two-photon absorption coefficient ( β ), three-photon absorption coefficient ( γ ), and Kerr nonlinear refractive index ( n kerr), of GaN crystals in polar c-plane, nonpolar m-plane, and semipolar ( 20 21 ¯ ) plane orientations. A typical Z-scan technique was used for the measurement with a femtosecond Ti:S laser from wavelengths of 724 nm to 840 nm. For the two-photon absorption coefficient ( β ), similar values were obtained for polar, nonpolar, and semipolar samples, which are characterized to be ˜0.90 cm/GW at 724 nm and ˜0.65 cm/GW at 730 nm for all the three samples. For the Kerr nonlinear refractive index ( n kerr), self-focusing features were observed in this work, which is different from previous reports where self-defocusing features were observed on GaN in the visible and near-UV spectral regions. At 724 nm, n kerr was measured to be ˜2.5 0 × 10 - 14 cm 2 / W for all three samples. Three-photon absorption coefficients ( γ ) were also determined, which were found to be consistent with previous reports. This study provides valuable information on the basic nonlinear optical properties of III-nitride semiconductors, which are vital for a wide range of applications such as integrated photonics and quantum photonics.
Solitons and vortices in nonlinear two-dimensional photonic crystals of the Kronig-Penney type.
Mayteevarunyoo, Thawatchai; Malomed, Boris A; Roeksabutr, Athikom
2011-08-29
Solitons in the model of nonlinear photonic crystals with the transverse structure based on two-dimensional (2D) quadratic- or rhombic-shaped Kronig-Penney (KP) lattices are studied by means of numerical methods. The model can also applies to a Bose-Einstein condensate (BEC) trapped in a superposition of linear and nonlinear 2D periodic potentials. The analysis is chiefly presented for the self-repulsive nonlinearity, which gives rise to several species of stable fundamental gap solitons, dipoles, four-peak complexes, and vortices in two finite bandgaps of the underlying spectrum. Stable solitons with complex shapes are found, in particular, in the second bandgap of the KP lattice with the rhombic structure. The stability of the localized modes is analyzed in terms of eigenvalues of small perturbations, and tested in direct simulations. Depending on the value of the KP's duty cycle (DC, i.e., the ratio of the void's width to the lattice period), an internal stability boundary for the solitons and vortices may exist inside of the first bandgap. Otherwise, the families of the localized modes are entirely stable or unstable in the bandgaps. With the self-attractive nonlinearity, only unstable solitons and vortices are found in the semi-infinite gap.
Energy Technology Data Exchange (ETDEWEB)
Sabari Girisun, T.C. [Department of Physics, Bishop Heber College, Tiruchirappalli 620 017, Tamil Nadu (India); School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Dhanuskodi, S., E-mail: dhanus2k3@yahoo.com [School of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India)
2010-01-15
Materials with low dielectric constant have attracted a great deal of interest in the field of nonlinear applications and microelectronic industry. Metal complexes of thiourea with group II transition metals (Zn, Cd) as central atom and period III elements (S, Cl) were synthesized by chemical reaction method and single crystals were grown from aqueous solution by slow evaporation method. By parallel plate capacitor technique, the dielectric response, dissipation factor, ac conductivity and impedance of virgin and metal complexes have been studied in the frequency (100 Hz to 5 MHz) and temperature (303-423 K) ranges. Metal complexes of thiourea with cadmium substitute have a low dielectric constant less than 10. Also the presence of chlorine in the metal complex induces noncentro symmetric structure. Hence the role of group II transition metals and period III elements in tuning the dielectric properties for efficient nonlinear applications has been studied.
Energy Squeeze of Ultrashort Light Pulse by Kerr Nonlinear Photonic Crystals
Institute of Scientific and Technical Information of China (English)
LIU Ye; ZHOU Fei; ZHANG Dao-Zhong; LI Zhi-Yuan
2009-01-01
Self-phase modulation can efficiently shape the spectrum of an optical pulse propagating along an optical material with Kerr nonlinearity. In this work we show that a one-dimensional Kerr nonlinear photonic crystal can impose anomalous spectrum modulation to a high-power ultrashort light pulse. The spectrum component at the photonic band gap edge can be one order of magnitude enhanced in addition to the ordinary spectrum broadening due to self-phase modulation. The enhancement is strictly pinned at the band gap edge by changing the sample length, the intensity or central wavelength of the incident pulse. The phenomenon is attributed to band gap induced enhancement of light-matter interaction.
Hasan, Md. Rabiul; Anower, Md. Shamim; Hasan, Md. Imran
2016-05-01
A simple hexagonal photonic crystal fiber is proposed to simultaneously achieve ultrahigh birefringence, large nonlinear coefficient, and two zero dispersion wavelengths (ZDWs). The finite element method with circular perfectly matched layer boundary condition is used to simulate the designed structure. Simulation results show that it is possible to achieve two closely lying ZDWs of 1.08 and 1.29 μm for x-polarization with 0.88 and 1.20 μm for y-polarization modes, respectively. In addition, an ultrahigh birefringence of 3.15×10-2 and a high nonlinear coefficient of 58 W-1 km-1 are also obtained at the excitation wavelength of 1.55 μm. The proposed fiber can have important applications in supercontinuum generation, parametric amplification, four-wave mixing, and optical sensors design.
Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers.
Hu, Xiaohong; Wang, Yishan; Zhao, Wei; Yang, Zhi; Zhang, Wei; Li, Cheng; Wang, Hushan
2010-09-10
Based on the generalized nonlinear Schrödinger equation and waveguiding properties typical of the photonic crystal fiber structure, nonlinear chirped-pulse propagation and supercontinua generation in the femtosecond and picosecond regimes are investigated numerically. The simulation results indicate that an input chirp parameter mainly affects the initial stage of spectral broadening caused by the self-phase modulation (SPM) effect. In the femtosecond regime where the SPM effect plays an important role in the process of spectral broadening, an input positive chirp can enhance the supercontinuum bandwidth through a modified pulse compression phase and a decreased propagation distance required by soliton fission. In the picosecond regime, where the SPM effect contributes less to the continuum bandwidth and four-wave mixing process or modulational instability dominates the initial stage of spectral and temporal evolution, the output spectral shape and bandwidths are less sensitive to the input chirp parameters.
High Pressure Gases in Hollow Core Photonic Crystal Fiber:A New Nonlinear Medium
Azhar, Mohiudeen; Chang, Wonkeun; Joly, Nicolas; Russell, Philip
2012-01-01
The effective Kerr nonlinearity of hollow-core kagome-style photonic crystal fiber (PCF) filled with argon gas increases over 100 times when the pressure is increased from 1 to 150 bar, reaching 15 % of that of bulk silica glass, while the zero dispersion wavelength shifts from 300 to 900 nm. The group velocity dispersion of the system is uniquely pressure-tunable over a wide range while avoiding Raman scattering : absent in noble gases and having an extremely high optical damage threshold. As a result, detailed and well controlled studies of nonlinear effects can be performed, in both normal and anomalous dispersion regimes, using only a fixed-frequency pump laser. For example, the absence of Raman scattering permits clean observation, at high powers, of the interaction between a modulational instability side-band and a soliton created dispersive wave. Excellent agreement is obtained between numerical simulations and experimental results. The system has great potential for the realisation of reconfigurable s...
All-optical diode effect of a nonlinear photonic crystal with a defect
Institute of Scientific and Technical Information of China (English)
WANG Wei-jiang; ZHOU Jin-yun; XIAO Wan-neng
2006-01-01
An all-optical diode behavior that uses a nonlinear one-dimensional photonic crystal (NPC) with a defect Kerr medium is numerically simulated by the use of a nonlinear finite-difference time-domain (NFDTD) method.The numerical results show that for an incident pulse with appropriate intensity and temporal width,the transmittance can be several times greater in one direction of NPC than in the opposite direction at the pulse carrier frequency. This behaves like an all-optical diode and has promising applications in some areas such as optical isolation and all-optical processing.The ways to obtain low threshold of pulse field strength to realize an all-optical diode are also analyzed in detail.
Institute of Scientific and Technical Information of China (English)
TU; Mei; HUANG; Yaoxiong
2004-01-01
The laser light scattering technique for non-invasive in situ simultaneous measurements on elastic constants and viscosity coefficients of nematic liquid crystals is introduced. By measuring the autocorrelation function of the scattered light from nematic liquid crystals at different scattering angles, the splay and twist elastic constants K11 and K22 are obtained from the amplitudes of the autocorrelation function, and the viscosity coefficients of (Splay and (Twist are determined using the viscoelastic ratios K11/( Splay and K22/(Twist from the relaxation parameters of the two modes.
Directory of Open Access Journals (Sweden)
Kean Wang
2015-10-01
Full Text Available Hydroxyapatite (HA nanoparticle-reinforced chitosan composites are biocompatible and biodegradable structural materials that are used as biomaterials in tissue engineering. However, in order for these materials to function effectively as intended, e.g., to provide adequate structural support for repairing damaged tissues, it is necessary to analyse and optimise the material processing parameters that affect the relevant mechanical properties. Here we are concerned with the strength, stiffness and toughness of wet-spun HA-reinforced chitosan fibres. Unlike previous studies which have addressed each of these parameters as singly applied treatments, we have carried out an experiment designed using a two-factor analysis of variance to study the main effects of two key material processing parameters, namely HA concentration and crystallization temperature, and their interactions on the respective mechanical properties of the composite fibres. The analysis reveals that significant interaction occurs between the crystallization temperature and HA concentration. Starting at a low HA concentration level, the magnitude of the respective mechanical properties decreases significantly with increasing HA concentration until a critical HA concentration is reached, at around 0.20–0.30 (HA mass fraction, beyond which the magnitude of the mechanical properties increases significantly with HA concentration. The sensitivity of the mechanical properties to crystallization temperature is masked by the interaction between the two parameters—further analysis reveals that the dependence on crystallization temperature is significant in at least some levels of HA concentration. The magnitude of the mechanical properties of the chitosan composite fibre corresponding to 40 °C is higher than that at 100 °C at low HA concentration; the reverse applies at high HA concentration. In conclusion, the elasticity of the HA nanoparticle-reinforced chitosan composite fibre is
Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry
DEFF Research Database (Denmark)
Yu, Yi; Chen, Yaohui; Hu, Hao;
2015-01-01
Nanostructures that feature nonreciprocal light trans- mission are highly desirable building blocks for realizing photonic integrated circuits. Here, a simple and ultracompact photonic-crystal structure, where a waveguide is coupled to a single nanocavity, is proposed and experimentally demon- st...... tunability. The nonlinearity of the device relies on ultrafast carrier dynamics, rather than the thermal effects usually considered, allowing the demonstration of nonreciprocal operation at a bit-rate of 10 Gbit s − 1 with a low energy consumption of 4.5 fJ bit − 1...
Spectral transformations in the regime of pulse self-trapping in a nonlinear photonic crystal
Novitsky, Denis
2011-01-01
We consider interaction of a femtosecond light pulse with a one-dimensional photonic crystal with relaxing cubic nonlinearity in the regime of self-trapping. By use of numerical simulations, it is shown that, under certain conditions, the spectra of reflected and transmitted light possess the properties of narrow-band (quasi-monochromatic) or wide-band (continuum-like) radiation. It is remarkable that these spectral features appear due to a significant frequency shift and occur inside a photonic band gap of the structure under investigation.
NONLINEAR OPTICAL FREQUENCY CONVERTER OF LASER RADIATION ON THE LBO TYPE I CRYSTALS
Directory of Open Access Journals (Sweden)
N. V. Kondratyuk
2014-01-01
Full Text Available Describes nonlinear optical frequency converter of laser radiation based on the two LBO type I crystals allowing to receive pulses of radiation at three wavelengths of 1064 nm, 532 nm and 355 nm with an adjustable pulse energy. For fine adjustment of the output pulse energy used two dual phase plates that change the orientation of the plane of polarization of the two waves in cascade third harmonic generation. Measured the efficiency of the generation of harmonics of the intensity of radiation at 1064 nm.
Fiber-to-fiber nonlinear coupling via a nematic liquid crystal
Nyushkov, B. N.; Trashkeev, S. I.; Ivanenko, A. V.; Kolker, D. B.; Purtov, P. A.
2017-01-01
Nonlinear optical coupling between two single-mode fibers terminated coaxially in a nematic liquid crystal (NLC) was explored for the first time. Light-induced reorientation of nematic molecules can result in the stable self-collimation of light transmitted through the gap between fibers. Thus, high coupling efficiency can be achieved despite large fiber spacing. We demonstrated a coupling efficiency of up to ∼0.7, achieved with spacing equal to four diffraction lengths. This feature opens up possibilities for the development of novel in-line fiber-optic elements based on NLCs. For instance, a polarization controller was proposed and considered.
Optical nonlinearities in GaSe and InSe crystals upon laser excitation
Kyazym-zade, A. G.; Salmanov, V. M.; Guseinov, A. G.; Gasanova, L. G.; Mamedov, R. M.
2014-04-01
The nonlinear absorption of light and its temporal evolution in the vicinity of exciton resonance in layered GaSe and InSe crystals under high optical excitation have been experimentally investigated. The decisive factor for the observed temporal dependence of the absorption coefficient and its dependence on the excitation intensity is screening excitons by nonequilibrium-carrier plasma. It is shown that the increase in the transmittance in the absorption-band edge in GaSe with a simultaneous blue shift of the band edge is caused by filling the energy bands under high optical excitation.
Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre
DEFF Research Database (Denmark)
Chow, K.K.; Takushima, Y.; Lin, C.
2006-01-01
Flat super-continuum generation spanning over the whole telecommunication band using a passively modelocked fibre laser source at 1550 nm together with a dispersion-flattened nonlinear photoinc crystal fibre is demonstrated. Since the pulses propagate in the normal dispersion regime of the fibre...... only, linear frequency chirp is induced by self-phase modulation which leads to a flat super-continuum. By launching the compressed 170 fs modelocked pulses with an average power of 10 mW into the fibre, super-continuum over 185 nm with less than 5 dB fluctuation is obtained from the all...
Transmission Frequency Properties of Elastic Waves along a Hetero-Phononic Crystal Waveguide
Institute of Scientific and Technical Information of China (English)
YAO Yuan-Wei; HOU Zhi-Lin; LIU You-Yan
2007-01-01
We investigate the propagation properties of hetero-phononic crystal waveguides by the improved eigen-mode matching theory, which can be used at same time to calculate both the transmission (reflection) coefficient and band structure. The numerical results show that the transmission frequency range is the same as the common range for two uniform waveguides composing the hetero-system, and the gap of any composite waveguide is also the gap of the hetero-phononic crystals waveguide.
Temperature-Dependent Sellmeier Equations of IR Nonlinear Optical Crystal BaGa4Se7
Directory of Open Access Journals (Sweden)
Naixia Zhai
2017-02-01
Full Text Available The thermal dependent principal refractive indices of a new promising IR nonlinear optical crystal BaGa4Se7 at wavelengths of 0.546, 0.5806, 0.644, 0.7065, 1.530, 1.970, and 2.325μm were measured by using the vertical incidence method within the temperature range from 25 to 150 °C. We derived equations of thermal refractive index coefficients as a function of wavelength that could be used to calculate the principal thermal refractive indices at different wavelengths. The temperature-dependent Sellmeier equations were also obtained and used to calculate the phase matching angles for the optical parametric process of BaGa4Se7 crystal at different temperatures.
Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal
Jin, H; Luo, X W; Leng, H Y; Gong, Y X; Zhu, S N
2013-01-01
Photonic entangled states lie at the heart of quantum science for the demonstrations of quantum mechanics foundations and supply as a key resource for approaching various quantum technologies. An integrated realization of such states will certainly guarantee a high-degree of entanglement and improve the performance like portability, stability and miniaturization, hence becomes an inevitable tendency towards the integrated quantum optics. Here, we report the compact realization of steerable photonic path-entangled states from a monolithic quadratic nonlinear photonic crystal. The crystal acts as an inherent beam splitter to distribute photons into coherent spatial modes, producing the heralded single-photon even appealing beamlike two-photon path-entanglement, wherein the entanglement is characterized by quantum spatial beatings. Such multifunctional entangled source can be further extended to high-dimensional fashion and multi-photon level as well as involved with other degrees of freedom, which paves a desir...
Investigation of Elastic Energy on Single Crystal GaN Nanobeams with Different Span
Directory of Open Access Journals (Sweden)
Shang-Chao Hung
2014-01-01
Full Text Available This research presents a novel technique which can more efficiently fabricate different spans of nanobeams on the same substrate. It requires less time to prepare specimen and further shortens the process of aligning, clamping, and testing. Also, we probe into the elastic deformation properties of clamped freestanding GaN nanobeams with different spans. In the bending process, displacement, D, corresponding to load, P is strongly dependent on the span of nanobeam at the same penetration depth and a distinct linearity is observed. Young’s moduli E of the GaN in this study are calculated as 171.3 GPa ±5.4% and 264.2 GPa ±4.7% by strain energy methods, respectively, for the longer and shorter spans of nanobeams, serving as a simple supporting beam of elastic material under small deformation. The result shows that, even under small deformation, the rigidity enhancement helps the shorter nanobeam store more elastic energy.
Indumathi, C.; T. C., Sabari Girisun; Anitha, K.; Alfred Cecil Raj, S.
2017-07-01
A new organic optical limiting material, ethylenediaminium picrate (EDAPA) was synthesized through acid base reaction and grown as single crystals by solvent evaporation method. Single crystal XRD analysis showed that EDAPA crystallizes in orthorhombic system with Cmca as space group. The formation of charge transfer complex during the reaction of ethylenediamine and picric acid was strongly evident through the recorded Fourier Transform Infra Red (FTIR), Raman and Nuclear Magnetic Resonance (NMR) spectrum. Thermal (TG-DTA and DSC) curves indicated that the material possesses high thermal stability with decomposition temperature at 243 °C. Optical (UV-Visible-NIR) analysis showed that the grown crystal was found to be transparent in the entire visible and NIR region. Z-scan studies with intense short pulse (532 nm, 5 ns, 100 μJ) excitations, revealed that EDAPA exhibited two photon absorption behaviour and the nonlinear absorption coefficient was found to be two orders of magnitude higher than some of the known optical limiter like Cu nano glasses. EDAPA exhibited a strong optical limiting action with low limiting threshold which make them a potential candidate for eye and photosensitive component protection against intense short pulse lasers.
Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals
Okano, Masayuki; Tanaka, Akira; Subashchandran, Shanthi; Takeuchi, Shigeki; 10.1364/OE.20.013977
2012-01-01
We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluorescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two beta-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz).We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not...
Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals.
Okano, Masayuki; Okamoto, Ryo; Tanaka, Akira; Subashchandran, Shanthi; Takeuchi, Shigeki
2012-06-18
We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluorescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two β-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz). We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not require special devices.
Energy Technology Data Exchange (ETDEWEB)
Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)
2017-04-15
An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.
Gaur, Poonam; Sharma, Dimple; Singh, Nageshwar; Malik, B P; Gaur, Arun
2012-11-01
A systematic investigation on nonlinear optical properties such as three photon absorption (3PA) wavelength dependent of Kerr type nonlinear refraction in direct and indirect band gap crystals has been reported in the present work. The Z-scan measurements are recorded for both ZnO and CdI(2) with femtosecond laser pulses while the wavelength dependent of the Kerr nonlinearity are in agreement with a two band model. The wavelength dependence of the 3PA is determined by [(3E(photon)/E(g))-1](5/2)[(3E(photon)/E(g))](-9) in the case of direct band gap crystal and [(3E(photon)±ℏΩ/E(g))-1](5/2)[(3E(photon)±ℏΩ/E(g))](-9) in the case of indirect band gap crystal. In the present investigation the value of 3PA in the case of indirect band gap crystal is lower than the direct band gap crystal which is due to the phonon assisted transition. The materials of large band gap with optical nonlinearity and fast response speed should be dominating factor for further photonic devices such as optical limiters, optical switches and optical modulators. The higher order nonlinear optical effects have also been determined in the present study. Copyright © 2012 Elsevier B.V. All rights reserved.
2009-03-01
finite shear strains associated with slip and deformation twinning and improper lattice rotations across twin boundaries . Nonlinear anisotropic...of (2) results from gradients in twin fractions, e.g. interface dislocations at tapered twin boundaries . Disclination models of twins (Clayton et
Directory of Open Access Journals (Sweden)
M. Packiya raj
2017-01-01
Full Text Available A new inorganic nonlinear optical single crystal of sodium manganese tetrachloride (SMTC has been successfully grown from aqueous solution using the slow evaporation technique at room temperature. The crystals obtained using the aforementioned method were characterized using different techniques. The crystalline nature of the as-grown crystal of SMTC was analyzed using powder X-ray diffraction. Single-crystal X-ray diffraction revealed that the crystal belongs to an orthorhombic system with non-centrosymmetric space group Pbam. The optical transmission study of the SMTC crystal revealed high transmittance in the entire UV–vis region, and the lower cut-off wavelength was determined to be 240 nm. The mechanical strength of the as-grown crystal was estimated using the Vickers microhardness test. The second harmonic generation (SHG efficiency of the crystal was measured using Kurtz's powder technique, which indicated that the crystal has a nonlinear optical (NLO efficiency that is 1.32 times greater than that of KDP. The dielectric constant and dielectric loss of the compound were measured at different temperatures with varying frequencies. The photoconductivity study confirmed that the title compound possesses a negative photoconducting nature. The growth mechanism and surface features of the as-grown crystals were investigated using chemical etching analysis.
Energy Technology Data Exchange (ETDEWEB)
Pedesseau, L., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Even, J., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Durand, O. [Fonctions Optiques pour les Technologies de l’Information, FOTON UMR 6082, CNRS, INSA de Rennes, 35708 Rennes (France); Modreanu, M. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Chaussende, D.; Sarigiannidou, E.; Chaix-Pluchery, O. [LMGP, CNRS, Université Grenoble Alpes, 38000 Grenoble (France)
2015-12-01
New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al{sub 4}SiC{sub 4}). A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al{sub 4}SiC{sub 4} material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude that the Al{sub 4}SiC{sub 4} material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.
Bedolla Pantoja, Marco A; Abbott, Nicholas L
2016-05-25
We report the fabrication of chemically patterned microwells that enable the rapid and facile preparation (by spin coating and patterned dewetting) of thin films of liquid crystals (LCs) that have precise thicknesses (0.7-30 μm), are supported on chemically defined substrates, and have free upper surfaces. We use these microwells to prepare elastically strained nematic LC films supported on silica glass, gold, or polystyrene substrates and thereby characterize the response of the strained LC films to vapors of toluene. We report that low concentrations of toluene vapor (LC to lower the anchoring energy of the LC on these substrates, thus allowing the elastic energy of the strained LC film to drive the LC films through an orientational transition. The central role of the toluene-induced change in surface anchoring energy is supported by additional experiments in which the response of the nematic LC to changes in film thickness and substrate identity are quantified. A simple thermodynamic model captures these trends and yielded estimates of anchoring energies (8-22 μJ/m(2)). Significantly, the orientational transitions observed in these strained LC thin films occur at concentrations of toluene vapor that are almost 1 order of magnitude below those which lead to bulk phase transitions, and they are not triggered by exposure to water vapor. Overall, these results hint at principles for the design of responsive LC-based materials that can be triggered by concentrations of aromatic, volatile organic compounds that are relevant to human health.
Zhou, Binbin
2015-01-01
We experimentally observe long-wavelength dispersive waves generation in a BBO crystal. A soliton was formed in normal GVD regime of the crystal by a self-defocusing and negative nonlinearity through phase-mismatched quatradic interaction. Strong temporal pulse compression confirmed the formation of soliton during the pulse propagation inside the crystal. Significant dispersive wave radiation was measured in the anomalous GVD regime of the BBO crystal. With the pump wavelengths from 1.24 to 1.4 $\\mu$m, tunable dispersive waves are generated around 1.9 to 2.2 $\\mu$m. The observed dispersive wave generation is well understood by simulations.
Sema, Fumie; Watanabe, Tohru
2017-10-01
Water and halogens in ocean floor sediments transported by a descending slab might play important roles in geodynamic processes. Imaging subducted sediments through seismological observations requires a thorough understanding of elastic properties of sediment origin hydrous minerals. Topaz is a sediment origin hydrous mineral, which is formed at the depth of 250-350 km on a cold subducting slab. We determined elastic constants and their temperature derivatives of a natural single-crystal of topaz (Al1.97SiO4(F1.56, OH0.42)) at the temperature from 271.5 to 312.7 °K by using the sphere-resonance method. Elastic constants at an ambient temperature (T = 291.9 °K) are C11 = 281.21(1) GPa, C22 = 346.23(9) GPa, C33 = 294.99(9) GPa, C44 = 108.49(1) GPa, C55 = 132.47(1) GPa, C66 = 130.32(1) GPa, C12 = 121.48(3) GPa, C13 = 80.94(3) GPa and C23 = 81.77(2) GPa. Since our sample [Al2SiO4(F1.56,OH0.42)] was relatively rich in fluorine, only small differences in elastic constants can be seen between our sample and fluorine end member. Elastic constants of OH-rich topaz should be experimentally investigated to understand the influence of F-OH substitution on elasticity of topaz. All the elastic constants decrease linearly with increasing temperature. The temperature derivatives are dC11/dT = -0.014(3) GPa/°K, dC22/dT = -0.010(7) GPa/°K, dC33/dT = -0.021(5) GPa/°K, dC44/dT = -0.011(1) GPa/°K, dC55/dT = -0.016(2) GPa/°K, dC66/dT = -0.0101(2) GPa/°K, dC12/dT = -0.0041(6) GPa/°K, dC13/dT = -0.001(2) GPa/°K and dC23/dT = -0.002(1) GPa/°K. The isotropic seismic velocities in topaz are distinctly higher than those in olivine at 10 GPa and 300-1400 °K. There should be a strong velocity contrast between the overlying mantle and the thin sediment-origin layer at the depth around 300 km. A seismological technique like the receiver function technique should be applied to detect a thin layer of topaz in a cold subduction zone.
Institute of Scientific and Technical Information of China (English)
Zhang Ya-Ni
2013-01-01
A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time.The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical air holes,which offers not only a large nonlinear coefficient but also a high birefringence and low leakage losses.The PCF with nonlinear coefficient as large as 46 W-1 · km-1 at the wavelength of 1.55 μm and a total dispersion as low as ±2.5 ps.nm-1 · km-1 over an ultra-broad waveband range of the S-C-L band (wavelength from 1.46 μm to 1.625 μm) is optimized by adjusting its structure parameter,such as the lattice constant A,the air-filling fraction f,and the air-hole ellipticity η.The novel PCF with ultra-flattened dispersion,highly nonlinear coefficient,and nearly zero negative dispersion slope will offer a possibility of efficient super-continuum generation in telecommunication windows using a few ps pulses.
Indian Academy of Sciences (India)
Shyamal Mondal; Satya Pratap Singh; Sourabh Mukhopadhyay; Aditya Date; Kamal Hussain; Shouvik Mukherjee; Prasanta Kumar Datta
2014-02-01
A comparative study in terms of optimized output power and stability is made on cascaded second-order nonlinear optical mode-locking with KTP, BBO and LBO crystals for both 1064 nm and 532 nm. Large nonlinear optical phase shift achieved in a non-phase-matched second harmonic generating crystal, is transformed into amplitude modulation through soft aperturing the nonlinear cavity mode variation at the laser gain medium to mode-lock a Nd:YVO4 laser. The laser delivers stable dual wavelength cw mode-locked pulse train with pulse duration 10.3 ps and average power of 1.84 W and 255 mW at 1064 nm and 532 nm respectively for the optimum performance in type-II KTP crystal. The exceptional stability achieved with KTP is accounted by simulating the mode-size variation with phase mismatch.
Elastic Properties of Ho0.5Er0.5 Single Crystal
DEFF Research Database (Denmark)
Spichkin, Yu.I.; Bohr, Jakob; Tishin, A.M.
1996-01-01
The results of an investigation of the Young's modulus E and the interval friction Q-1 of a Ho0.5Er0.5 single crystal in the basal plane in the temperature range 4.2-400 K are reported. The measurements were carried out by the method of flexural autovibrations of a thin sample with sound frequenc...
Jiang, Yi; Li, Guo-Yang; Qian, Lin-Xue; Hu, Xiang-Dong; Liu, Dong; Liang, Si; Cao, Yanping
2015-02-01
Dynamic elastography has become a new clinical tool in recent years to characterize the elastic properties of soft tissues in vivo, which are important for the disease diagnosis, e.g., the detection of breast and thyroid cancer and liver fibrosis. This paper investigates the supersonic shear imaging (SSI) method commercialized in recent years with the purpose to determine the nonlinear elastic properties based on this promising technique. Particularly, we explore the propagation of the shear wave induced by the acoustic radiation force in a stressed hyperelastic soft tissue described via the Demiray-Fung model. Based on the elastodynamics theory, an analytical solution correlating the wave speed with the hyperelastic parameters of soft tissues is first derived. Then an inverse approach is established to determine the hyperelastic parameters of biological soft tissues based on the measured wave speeds at different stretch ratios. The property of the inverse method, e.g., the existence, uniqueness and stability of the solution, has been investigated. Numerical experiments based on finite element simulations and the experiments conducted on the phantom and pig livers have been employed to validate the new method. Experiments performed on the human breast tissue and human heel fat pads have demonstrated the capability of the proposed method for measuring the in vivo nonlinear elastic properties of soft tissues. Generalization of the inverse analysis to other material models and the implication of the results reported here for clinical diagnosis have been discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Nagode, Marko; Šeruga, Domen
An approach is presented that enables the calculation of elastic strain energy in linear and nonlinear elastic solids during arbitrary thermomechanical load cycles. The approach uses the simple fact that the variation of both strain and complementary energies always forms a rectangular shape in stress-strain space, hence integration is no longer required to calculate the energy. Furthermore, the approach considers the mean stress effect so that predictions of fatigue damage are more realistically representative of real-life experimental observations. By doing so, a parameter has been proposed to adjust the mean stress effect. This parameter α is based on the well-known Smith-Watson-Topper energy criterion, but allows consideration of other arbitrary mean stress effects, e.g. the Bergmann type criterion. The approach has then been incorporated into a numerical method which can be applied to uniaxial and multiaxial, proportional and non-proportional loadings to predict fatigue damage. The end result of the method is the cyclic evolution of accumulated damage. Numerical examples show how the method presented in this paper could be applied to a nonlinear elastic material.