National Research Council Canada - National Science Library
Aoki, Yasunori; Nordgren, Rikard; Hooker, Andrew C
2016-01-01
... a bottleneck in the analysis. We propose a preconditioning method for non-linear mixed effects models used in pharmacometric analyses to stabilise the computation of the variance-covariance matrix...
Aoki, Yasunori; Nordgren, Rikard; Hooker, Andrew C
2016-03-01
As the importance of pharmacometric analysis increases, more and more complex mathematical models are introduced and computational error resulting from computational instability starts to become a bottleneck in the analysis. We propose a preconditioning method for non-linear mixed effects models used in pharmacometric analyses to stabilise the computation of the variance-covariance matrix. Roughly speaking, the method reparameterises the model with a linear combination of the original model parameters so that the Hessian matrix of the likelihood of the reparameterised model becomes close to an identity matrix. This approach will reduce the influence of computational error, for example rounding error, to the final computational result. We present numerical experiments demonstrating that the stabilisation of the computation using the proposed method can recover failed variance-covariance matrix computations, and reveal non-identifiability of the model parameters.
Directory of Open Access Journals (Sweden)
Li Sun
2016-01-01
Full Text Available It is assumed that the drift parameter is dependent on the acceleration variables and the diffusion coefficient remains the same across the whole accelerated degradation test (ADT in most of the literature based on Wiener process. However, the diffusion coefficient variation would also become obvious in some applications with the stress increasing. Aiming at the phenomenon, the paper concludes that both the drift parameter and the diffusion parameter depend on stress variables based on the invariance principle of failure mechanism and Nelson assumption. Accordingly, constant stress accelerated degradation process (CSADP and step stress accelerated degradation process (SSADP with random effects are modeled. The unknown parameters in the established model are estimated based on the property of degradation and degradation increment, separately for CASDT and SSADT, by the maximum likelihood estimation approach with measurement error. In addition, the simulation steps of accelerated degradation data are provided and simulated step stress accelerated degradation data is designed to validate the proposed model compared to other models. Finally, a case study of CSADT is conducted to demonstrate the benefits of our model in the practical engineering.
Land, M C
2001-01-01
This paper examines the Stark effect, as a first order perturbation of manifestly covariant hydrogen-like bound states. These bound states are solutions to a relativistic Schr\\"odinger equation with invariant evolution parameter, and represent mass eigenstates whose eigenvalues correspond to the well-known energy spectrum of the non-relativistic theory. In analogy to the nonrelativistic case, the off-diagonal perturbation leads to a lifting of the degeneracy in the mass spectrum. In the covariant case, not only do the spectral lines split, but they acquire an imaginary part which is lnear in the applied electric field, thus revealing induced bound state decay in first order perturbation theory. This imaginary part results from the coupling of the external field to the non-compact boost generator. In order to recover the conventional first order Stark splitting, we must include a scalar potential term. This term may be understood as a fifth gauge potential, which compensates for dependence of gauge transformat...
Nonlinear wave mechanics from classical dynamics and scale covariance
Energy Technology Data Exchange (ETDEWEB)
Hammad, F. [Departement TC-SETI, Universite A.Mira de Bejaia, Route Targa Ouzemmour, 06000 Bejaia (Algeria)], E-mail: fayhammad@yahoo.fr
2007-10-29
Nonlinear Schroedinger equations proposed by Kostin and by Doebner and Goldin are rederived from Nottale's prescription for obtaining quantum mechanics from classical mechanics in nondifferentiable spaces; i.e., from hydrodynamical concepts and scale covariance. Some soliton and plane wave solutions are discussed.
Covariation of spectral and nonlinear EEG measures with alpha biofeedback.
Fell, J.; Elfadil, H.; Klaver, P.; Roschke, J.; Elger, C.E.; Fernandez, G.S.E.
2002-01-01
This study investigated how different spectral and nonlinear EEG measures covaried with alpha power during auditory alpha biofeedback training, performed by 13 healthy subjects. We found a significant positive correlation of alpha power with the largest Lyapunov-exponent, pointing to an increased
Charvat, Hadrien; Remontet, Laurent; Bossard, Nadine; Roche, Laurent; Dejardin, Olivier; Rachet, Bernard; Launoy, Guy; Belot, Aurélien
2016-08-15
The excess hazard regression model is an approach developed for the analysis of cancer registry data to estimate net survival, that is, the survival of cancer patients that would be observed if cancer was the only cause of death. Cancer registry data typically possess a hierarchical structure: individuals from the same geographical unit share common characteristics such as proximity to a large hospital that may influence access to and quality of health care, so that their survival times might be correlated. As a consequence, correct statistical inference regarding the estimation of net survival and the effect of covariates should take this hierarchical structure into account. It becomes particularly important as many studies in cancer epidemiology aim at studying the effect on the excess mortality hazard of variables, such as deprivation indexes, often available only at the ecological level rather than at the individual level. We developed here an approach to fit a flexible excess hazard model including a random effect to describe the unobserved heterogeneity existing between different clusters of individuals, and with the possibility to estimate non-linear and time-dependent effects of covariates. We demonstrated the overall good performance of the proposed approach in a simulation study that assessed the impact on parameter estimates of the number of clusters, their size and their level of unbalance. We then used this multilevel model to describe the effect of a deprivation index defined at the geographical level on the excess mortality hazard of patients diagnosed with cancer of the oral cavity. Copyright © 2016 John Wiley & Sons, Ltd.
Covariant Description of Transformation Optics in Linear and Nonlinear Media
Paul, Oliver
2011-01-01
The technique of transformation optics (TO) is an elegant method for the design of electromagnetic media with tailored optical properties. In this paper, we focus on the formal structure of TO theory. By using a complete covariant formalism, we present a general transformation law that holds for arbitrary materials including bianisotropic, magneto-optical, nonlinear and moving media. Due to the principle of general covariance, the formalism is applicable to arbitrary space-time coordinate transformations and automatically accounts for magneto-electric coupling terms. The formalism is demonstrated for the calculation of the second harmonic generation in a twisted TO concentrator.
Institute of Scientific and Technical Information of China (English)
TAO Hua-xue; GUO Jin-yun
2005-01-01
The unknown parameter's variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now,which didn't appear in the internal and external referencing documents. The unknown parameter's variance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source,multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.
Covariant Calculus for Effective String Theories
Dass, N. D. Hari; Matlock, Peter
2007-01-01
A covariant calculus for the construction of effective string theories is developed. Effective string theory, describing quantum string-like excitations in arbitrary dimension, has in the past been constructed using the principles of conformal field theory, but not in a systematic way. Using the freedom of choice of field definition, a particular field definition is made in a systematic way to allow an explicit construction of effective string theories with manifest exact conformal symmetry. ...
Directory of Open Access Journals (Sweden)
Jan Thiele
2011-10-01
Full Text Available Prioritisation of high-impact species is becoming increasingly important for management of introduced species (‘neobiota’ because of their growing number of which, however, only a small fraction has substantial impacts. Impact scores for prioritising species may be affected by the type of effect model used. Recent studies have shown that environmental co-variation and non-linearity may be significant for effect models of biological invasions. Here, we test for differences in impact scores between simple and complex effect models of three invasive plant species (Heracleum mantegazzianum, Lupinus polyphyllus, Rosa rugosa.We investigated the effects of cover percentages of the invasive plants on species richness of invaded communities using both simple linear effect models (‘basic models’ and more complex linear or non-linear models including environmental co-factors (‘full models’. Then, we calculated impact scores for each invasive species as the average reduction of species richness predicted by basic and full effect models.All three non-native species had negative effects on species richness, but the full effect models also indicated significant influence of habitat types. Heracleum mantegazzianum had uniform linear effects in all habitats, while effects of L. polyphyllus interacted strongly with habitat type, and R. rugosa showed a marked non-linear relationship. Impact scores were overestimated by basic effect models for H. mantegazzianum and R. rugosa due to disregard of habitat effects and non-linearity, respectively. In contrast, impact of L. polyphyllus was underestimated by the basic model that did not account for the strong interaction of invader cover and habitat type.We conclude that simple linear models will often yield inaccurate impact scores of non-native species. Hence, effect models should consider environmental co-variation and, if necessary, non-linearity of the effects of biological invasions on native ecosystems.
Effect of Nonlinearities on Orbit Covariance Propagation
2013-09-01
1 0 3 1 x m P 0 0 0, ,12i i k k i ab a bx x x x 0,12i i ab abP m 0 0 0 0 0 0 0, , , ,14ij i a j a i
Non-linear shrinkage estimation of large-scale structure covariance
Joachimi, Benjamin
2017-03-01
In many astrophysical settings, covariance matrices of large data sets have to be determined empirically from a finite number of mock realizations. The resulting noise degrades inference and precludes it completely if there are fewer realizations than data points. This work applies a recently proposed non-linear shrinkage estimator of covariance to a realistic example from large-scale structure cosmology. After optimizing its performance for the usage in likelihood expressions, the shrinkage estimator yields subdominant bias and variance comparable to that of the standard estimator with a factor of ∼50 less realizations. This is achieved without any prior information on the properties of the data or the structure of the covariance matrix, at a negligible computational cost.
Treatment Effects with Many Covariates and Heteroskedasticity
DEFF Research Database (Denmark)
Cattaneo, Matias D.; Jansson, Michael; Newey, Whitney K.
The linear regression model is widely used in empirical work in Economics. Researchers often include many covariates in their linear model specification in an attempt to control for confounders. We give inference methods that allow for many covariates and heteroskedasticity. Our results are obtai......The linear regression model is widely used in empirical work in Economics. Researchers often include many covariates in their linear model specification in an attempt to control for confounders. We give inference methods that allow for many covariates and heteroskedasticity. Our results...... then propose a new heteroskedasticity consistent standard error formula that is fully automatic and robust to both (conditional) heteroskedasticity of unknown form and the inclusion of possibly many covariates. We apply our findings to three settings: (i) parametric linear models with many covariates, (ii...
On the influence of Gribov ambiguities in a class of nonlinear covariant gauges
Serreau, Julien; Tresmontant, Andréas
2015-01-01
We consider Yang-Mills theories in a recently proposed family of nonlinear covariant gauges that consistently deals with the issue of Gribov ambiguities. Such gauges provide a generalization of the Curci-Ferrari-Delbourgo-Jarvis gauges which can be formulated as an extremization procedure and might be implemented in numerical calculations. This would allow for nonperturbative studies of Yang-Mills correlators in a broad class of covariant gauges continuously connected to the well studied Landau gauge. We compute the ghost and gluon propagators in the continuum formulation at one-loop order in perturbation theory and we study their momentum dependence down to the deep infrared regime, with and without renormalization group improvement. In particular, we show that the theory admits infrared safe renormalization group trajectories with no Landau pole. Both the gluon and the ghost behave as massive fields at low energy, and the gluon propagator is transverse even away from the Landau gauge limit. We compare our r...
On the Validity of Covariate Adjustment for Estimating Causal Effects
Shpitser, Ilya; Robins, James M
2012-01-01
Identifying effects of actions (treatments) on outcome variables from observational data and causal assumptions is a fundamental problem in causal inference. This identification is made difficult by the presence of confounders which can be related to both treatment and outcome variables. Confounders are often handled, both in theory and in practice, by adjusting for covariates, in other words considering outcomes conditioned on treatment and covariate values, weighed by probability of observing those covariate values. In this paper, we give a complete graphical criterion for covariate adjustment, which we term the adjustment criterion, and derive some interesting corollaries of the completeness of this criterion.
Khoury, Justin; Tolley, Andrew J
2014-01-01
Traditional derivations of general relativity from the graviton degrees of freedom assume space-time Lorentz covariance as an axiom. In this essay, we survey recent evidence that general relativity is the unique spatially-covariant effective field theory of the transverse, traceless graviton degrees of freedom. The Lorentz covariance of general relativity, having not been assumed in our analysis, is thus plausibly interpreted as an accidental or emergent symmetry of the gravitational sector. From this point of view, Lorentz covariance is a necessary feature of low-energy graviton dynamics, not a property of space-time. This result has revolutionary implications for fundamental physics.
The covariant electromagnetic Casimir effect for real conducting spherical shells
Razmi, H
2016-01-01
Using the covariant electromagnetic Casimir effect (previously introduced for real conducting cylindrical shells [1]), the Casimir force experienced by a spherical shell, under Dirichlet boundary condition, is calculated. The renormalization procedure is based on the plasma cut-off frequency for real conductors. The real case of a gold (silver) sphere is considered and the corresponding electromagnetic Casimir force is computed. In the covariant approach, there isn't any decomposition of fields to TE and TM modes; thus, we do not need to consider the Neumann boundary condition in parallel to the Dirichlet problem and then add their corresponding results.
Ryu, Duchwan
2010-09-28
We consider nonparametric regression analysis in a generalized linear model (GLM) framework for data with covariates that are the subject-specific random effects of longitudinal measurements. The usual assumption that the effects of the longitudinal covariate processes are linear in the GLM may be unrealistic and if this happens it can cast doubt on the inference of observed covariate effects. Allowing the regression functions to be unknown, we propose to apply Bayesian nonparametric methods including cubic smoothing splines or P-splines for the possible nonlinearity and use an additive model in this complex setting. To improve computational efficiency, we propose the use of data-augmentation schemes. The approach allows flexible covariance structures for the random effects and within-subject measurement errors of the longitudinal processes. The posterior model space is explored through a Markov chain Monte Carlo (MCMC) sampler. The proposed methods are illustrated and compared to other approaches, the "naive" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves. © 2010, The International Biometric Society.
Ryu, Duchwan; Li, Erning; Mallick, Bani K
2011-06-01
We consider nonparametric regression analysis in a generalized linear model (GLM) framework for data with covariates that are the subject-specific random effects of longitudinal measurements. The usual assumption that the effects of the longitudinal covariate processes are linear in the GLM may be unrealistic and if this happens it can cast doubt on the inference of observed covariate effects. Allowing the regression functions to be unknown, we propose to apply Bayesian nonparametric methods including cubic smoothing splines or P-splines for the possible nonlinearity and use an additive model in this complex setting. To improve computational efficiency, we propose the use of data-augmentation schemes. The approach allows flexible covariance structures for the random effects and within-subject measurement errors of the longitudinal processes. The posterior model space is explored through a Markov chain Monte Carlo (MCMC) sampler. The proposed methods are illustrated and compared to other approaches, the "naive" approach and the regression calibration, via simulations and by an application that investigates the relationship between obesity in adulthood and childhood growth curves.
Nonlinear effects in optical fibers
Ferreira, Mario F
2011-01-01
Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber
Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.
Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F
2013-04-01
In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.
Janes, Holly; Pepe, Margaret S
2009-06-01
Recent scientific and technological innovations have produced an abundance of potential markers that are being investigated for their use in disease screening and diagnosis. In evaluating these markers, it is often necessary to account for covariates associated with the marker of interest. Covariates may include subject characteristics, expertise of the test operator, test procedures or aspects of specimen handling. In this paper, we propose the covariate-adjusted receiver operating characteristic curve, a measure of covariate-adjusted classification accuracy. Nonparametric and semiparametric estimators are proposed, asymptotic distribution theory is provided and finite sample performance is investigated. For illustration we characterize the age-adjusted discriminatory accuracy of prostate-specific antigen as a biomarker for prostate cancer.
Dreano, D.
2017-04-05
Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an open-source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.
Covariant effective action for a Galilean invariant quantum Hall system
Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.
2016-09-01
We construct effective field theories for gapped quantum Hall systems coupled to background geometries with local Galilean invariance i.e. Bargmann spacetimes. Along with an electromagnetic field, these backgrounds include the effects of curved Galilean spacetimes, including torsion and a gravitational field, allowing us to study charge, energy, stress and mass currents within a unified framework. A shift symmetry specific to single constituent theories constraints the effective action to couple to an effective background gauge field and spin connection that is solved for by a self-consistent equation, providing a manifestly covariant extension of Hoyos and Son's improvement terms to arbitrary order in m.
Nonlinear Peltier effect in semiconductors
Zebarjadi, Mona; Esfarjani, Keivan; Shakouri, Ali
2007-09-01
Nonlinear Peltier coefficient of a doped InGaAs semiconductor is calculated numerically using the Monte Carlo technique. The Peltier coefficient is also obtained analytically for single parabolic band semiconductors assuming a shifted Fermi-Dirac electronic distribution under an applied bias. Analytical results are in agreement with numerical simulations. Key material parameters affecting the nonlinear behavior are doping concentration, effective mass, and electron-phonon coupling. Current density thresholds at which nonlinear behavior is observable are extracted from numerical data. It is shown that the nonlinear Peltier effect can be used to enhance cooling of thin film microrefrigerator devices especially at low temperatures.
Covariant and single-field effective action with the background-field formalism
Safari, Mahmoud
2016-01-01
In the context of scalar quantum field theory we introduce a class of generically nonlinear quantum-background splits for which the splitting Ward identity, encoding the single field dependence in the effective action, can be solved exactly. We show that this can be used to construct an effective action which is both covariant and dependent on the background and fluctuation fields only through a single total field in a way independent from the dynamics. Moreover we discuss the criteria under which the ultraviolet symmetries are inherited by the quantum effective action. The approach is demonstrated through some examples, including the $O(N)$ effective field theory, which might be of interest for the Higgs sector of the Standard Model or its extensions.
Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates
Lee, Sik-Yum; Song, Xin-Yuan
2005-01-01
In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…
Covariant Derivation of Effective Actions for SUSY Topological Defects
París, J; Roca, Jaume
1998-01-01
We make a first step to extend to the supersymmetric arena the effective action method, which is used to covariantly deduce the low energy dynamics of topological defects directly from their parent field theory. By focussing on two-dimensional supersymmetric theories we are able to derive the appropriate change of variables that singles out the low energy degrees of freedom. These correspond to super-worldline embeddings in superspace which are subject to a geometrical constraint. We obtain a supersymmetric and $\\kappa$--invariant low energy expansion, with the standard superparticle action as the leading term, which can be used for the determination of higher-order corrections. Our formulation fits quite naturally with the present geometrical description of also provides a basis for the exploration of these issues in higher-dimensional supersymmetric theories.
Nonlinear effects in Thomson backscattering
Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.
2013-03-01
We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.
Nguyen, Thu Thuy; Bazzoli, Caroline; Mentré, France
2012-01-01
International audience; Bioequivalence or interaction trials are commonly studied in crossover design and can be analysed by nonlinear mixed effects models as an alternative to noncompartmental approach. We propose an extension of the population Fisher information matrix in nonlinear mixed effects models to design crossover pharmacokinetic trials, using a linearisation of the model around the random effect expectation, including within-subject variability and discrete covariates fixed or chan...
Assessing the effects of different types of covariates for binary logistic regression
Hamid, Hamzah Abdul; Wah, Yap Bee; Xie, Xian-Jin; Rahman, Hezlin Aryani Abd
2015-02-01
It is well known that the type of data distribution in the independent variable(s) may affect many statistical procedures. This paper investigates and illustrates the effect of different types of covariates on the parameter estimation of a binary logistic regression model. A simulation study with different sample sizes and different types of covariates (uniform, normal, skewed) was carried out. Results showed that parameter estimation of binary logistic regression model is severely overestimated when sample size is less than 150 for covariate which have normal and uniform distribution while the parameter is underestimated when the distribution of covariate is skewed. Parameter estimation improves for all types of covariates when sample size is large, that is at least 500.
Nonlinear effects in asymmetric catalysis.
Satyanarayana, Tummanapalli; Abraham, Susan; Kagan, Henri B
2009-01-01
There is a need for the preparation of enantiomerically pure compounds for various applications. An efficient approach to achieve this goal is asymmetric catalysis. The chiral catalyst is usually prepared from a chiral auxiliary, which itself is derived from a natural product or by resolution of a racemic precursor. The use of non-enantiopure chiral auxiliaries in asymmetric catalysis seems unattractive to preparative chemists, since the anticipated enantiomeric excess (ee) of the reaction product should be proportional to the ee value of the chiral auxiliary (linearity). In fact, some deviation from linearity may arise. Such nonlinear effects can be rich in mechanistic information and can be synthetically useful (asymmetric amplification). This Review documents the advances made during the last decade in the use of nonlinear effects in the area of organometallic and organic catalysis.
Understanding nonlinear effects and losses
Energy Technology Data Exchange (ETDEWEB)
Irwin, J.
1995-10-01
With the planned construction of a large hadron collider (LHC) and a major upgrade of LEP (LEP-II) at CERN, a {Phi}-factory at Frascatti, and B-factories at SLAC (PEP-II) and KEK (KEK-B), we are now entering new energy and intensity regimes in both electron and proton circular colliders. Understanding and accurately estimating dynamic apertures and particle loss rates under both injection and colliding beam conditions is of primary importance. This paper summarizes discussions on Understanding Nonlinear Effects and Losses that took place in Working Group Three at the September 1994 Conference on Nonlinear Dynamics in Particle Accelerators at Arcidosso, Italy. Questions addressed were: {open_quotes}What do simulations indicate as the underlying causes of particle loss?{close_quotes} and {open_quotes}Do experiments agree with simulations-and if not, why not?{close_quotes} Special attention was given to a discrepancy between dynamic aperture measurements and theoretical predictions at HERA.
Identifiability of the Sign of Covariate Effects in the Competing Risks Model
DEFF Research Database (Denmark)
Lo, Simon M.S.; Wilke, Ralf
2017-01-01
We present a new framework for the identification of competing risks models, which also include Roy models. We show that by establishing a Hicksian-type decomposition, the direction of covariate effects on the marginal distributions of the competing risks model can be identified under weak...... of the range of durations for which the direction of the covariate effect is identified, particularly for long duration....
Nonlinear Effects in the Cosmic Microwave Background
Maartens, R
2000-01-01
Major advances in the observation and theory of cosmic microwave background anisotropies have opened up a new era in cosmology. This has encouraged the hope that the fundamental parameters of cosmology will be determined to high accuracy in the near future. However, this optimism should not obscure the ongoing need for theoretical developments that go beyond the highly successful but simplified standard model. Such developments include improvements in observational modelling (e.g. foregrounds, non-Gaussian features), extensions and alternatives to the simplest inflationary paradigm (e.g. non-adiabatic effects, defects), and investigation of nonlinear effects. In addition to well known nonlinear effects such as the Rees-Sciama and Ostriker-Vishniac effects, further nonlinear effects have recently been identified. These include a Rees-Sciama-type tensor effect, time-delay effects of scalar and tensor lensing, nonlinear Thomson scattering effects and a nonlinear shear effect. Some of the nonlinear effects and th...
Comparison of Methods for Handling Missing Covariate Data
Johansson, Åsa M.; Karlsson, Mats O
2013-01-01
Missing covariate data is a common problem in nonlinear mixed effects modelling of clinical data. The aim of this study was to implement and compare methods for handling missing covariate data in nonlinear mixed effects modelling under different missing data mechanisms. Simulations generated data for 200 individuals with a 50% difference in clearance between males and females. Three different types of missing data mechanisms were simulated and information about sex was missing for 50% of the ...
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2017-01-01
Following our previous work wherein the leading order effective action was computed in the covariant effective field theory of gravity, here we specialize the effective action to the FRW spacetime and obtain the effective Friedmann equations. In particular, we focus our attention on studying...
Multilevel covariance regression with correlated random effects in the mean and variance structure.
Quintero, Adrian; Lesaffre, Emmanuel
2017-09-01
Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Effective AC Response of Nonlinear Composites
Institute of Scientific and Technical Information of China (English)
WEI En-Bo; GU Guo-Qing
2001-01-01
A perturbative approach is used to study the AC response of nonlinear composite media, which obey a current-field relation of the form J = σ E + χ|E|2 E with components having nonlinear response at finite frequencies. For a sinusoidal applied field, we extend the local potential in terms of sinusoidal components at fundamental frequency and high-order harmonic frequencies to treat the nonlinear composites. For nonlinear composite media vith a low concentrations of spherical inclusions, we give the formulae of the nonlinear effective AC susceptibility χ*3ω at the third harmonic frequency.
Koussoroplis, Apostolos-Manuel; Wacker, Alexander
2015-11-27
Understanding animal performance in heterogeneous or variable environments is a central question in ecology. We combine modelling and experiments to test how temperature and food availability variance jointly affect life-history traits of ectotherms. The model predicts that as mean temperatures move away from the ectotherm's thermal optimum, the effect size of joint thermal and food variance should become increasingly sensitive to their covariance. Below the thermal optimum, performance should be positively correlated with food-temperature covariance and the opposite is predicted above it. At lower temperatures, covariance should determine whether food and temperature variance increases or decreases performance compared to constant conditions. Somewhat stronger than predicted, the covariance effect below the thermal optimum was confirmed experimentally on an aquatic ectotherm (Daphnia magna) exposed to diurnal food and temperature variance with different amounts of covariance. Our findings have important implications for understanding ectotherm responses to climate-driven alterations of thermal mean and variance. © 2015 John Wiley & Sons Ltd/CNRS.
Lagged PM2.5 effects in mortality time series: Critical impact of covariate model
The two most common approaches to modeling the effects of air pollution on mortality are the Harvard and the Johns Hopkins (NMMAPS) approaches. These two approaches, which use different sets of covariates, result in dissimilar estimates of the effect of lagged fine particulate ma...
Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel
2014-05-20
A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.
Bello, Nora M; Steibel, Juan P; Tempelman, Robert J
2010-06-01
Bivariate mixed effects models are often used to jointly infer upon covariance matrices for both random effects (u) and residuals (e) between two different phenotypes in order to investigate the architecture of their relationship. However, these (co)variances themselves may additionally depend upon covariates as well as additional sets of exchangeable random effects that facilitate borrowing of strength across a large number of clusters. We propose a hierarchical Bayesian extension of the classical bivariate mixed effects model by embedding additional levels of mixed effects modeling of reparameterizations of u-level and e-level (co)variances between two traits. These parameters are based upon a recently popularized square-root-free Cholesky decomposition and are readily interpretable, each conveniently facilitating a generalized linear model characterization. Using Markov Chain Monte Carlo methods, we validate our model based on a simulation study and apply it to a joint analysis of milk yield and calving interval phenotypes in Michigan dairy cows. This analysis indicates that the e-level relationship between the two traits is highly heterogeneous across herds and depends upon systematic herd management factors.
Effective quantum gravity observables and locally covariant QFT
Rejzner, Kasia
2016-01-01
Perturbative algebraic quantum field theory (pAQFT) is a mathematically rigorous framework that allows to construct models of quantum field theories on a general class of Lorentzian manifolds. Recently this idea has been applied also to perturbative quantum gravity, treated as an effective theory. The difficulty was to find the right notion of observables that would in an appropriate sense be diffeomorphism invariant. In this article I will outline a general framework that allows to quantize theories with local symmetries (this includes infinitesimal diffeomorphism transformations) with the use of the BV (Batalin-Vilkovisky) formalism. This approach has been successfully applied to effective quantum gravity in a recent paper by R. Brunetti, K. Fredenhagen and myself. In the same paper we also proved perturbative background independence of the quantized theory, which is going to be discussed in the present work as well.
A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.
2012-01-01
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
Energy Technology Data Exchange (ETDEWEB)
McEwan, C.; Ball, M.; Novog, D., E-mail: mcewac2@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada)
2013-07-01
Simulation results are of little use if nothing is known about the uncertainty in the results. In order to assess the uncertainty in a set of output parameters due to uncertainty in a set of input parameters, knowledge of the covariance between input parameters is required. Current practice is to apply the covariance between multigroup cross sections at infinite dilution to all cross sections including those at non-infinite dilutions. In this work, the effect of dilution on multigroup cross section covariance is investigated as well as the effect on the covariance between the few group homogenized cross sections produced by lattice code DRAGON. (author)
The effects of stress and sex on selection, genetic covariance, and the evolutionary response.
Holman, L; Jacomb, F
2017-08-01
The capacity of a population to adapt to selection (evolvability) depends on whether the structure of genetic variation permits the evolution of fitter trait combinations. Selection, genetic variance and genetic covariance can change under environmental stress, and males and females are not genetically independent, yet the combined effects of stress and dioecy on evolvability are not well understood. Here, we estimate selection, genetic (co)variance and evolvability in both sexes of Tribolium castaneum flour beetles under stressful and benign conditions, using a half-sib breeding design. Although stress uncovered substantial latent heritability, stress also affected genetic covariance, such that evolvability remained low under stress. Sexual selection on males and natural selection on females favoured a similar phenotype, and there was positive intersex genetic covariance. Consequently, sexual selection on males augmented adaptation in females, and intralocus sexual conflict was weak or absent. This study highlights that increased heritability does not necessarily increase evolvability, suggests that selection can deplete genetic variance for multivariate trait combinations with strong effects on fitness, and tests the recent hypothesis that sexual conflict is weaker in stressful or novel environments. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Developmental plasticity in covariance structure of the skull: effects of prenatal stress.
Gonzalez, Paula N; Hallgrímsson, Benedikt; Oyhenart, Evelia E
2011-02-01
Environmental perturbations of many kinds influence growth and development. Little is known, however, about the influence of environmental factors on the patterns of phenotypic integration observed in complex morphological traits. We analyze the changes in phenotypic variance-covariance structure of the rat skull throughout the early postnatal ontogeny (from birth to weaning) and evaluate the effect of intrauterine growth retardation (IUGR) on this structure. Using 2D coordinates taken from lateral radiographs obtained every 4 days, from birth to 21 days old, we show that the pattern of covariance is temporally dynamic from birth to 21 days. The environmental perturbation provoked during pregnancy altered the skull growth, and reduced the mean size of the IUGR group. These environmental effects persisted throughout lactancy, when the mothers of both groups received a standard diet. More strikingly, the effect grew larger beyond this point. Altering environmental conditions did not affect all traits equally, as revealed by the low correlations between covariance matrices of treatments at the same age. Finally, we found that the IUGR treatment increased morphological integration as measured by the scaled variance of eigenvalues. This increase coincided and is likely related to an increase in morphological variance in this group. This result is expected if somatic growth is a major determinant of covariance structure of the skull. In summary, our findings suggest that environmental perturbations experienced in early ontogeny alter fundamental developmental processes and are an important factor in shaping the variance-covariance structure of complex phenotypic traits. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.
Cosmological effects of nonlinear electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Novello, M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Goulart, E [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Salim, J M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Bergliaffa, S E Perez [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, R. Sao Francisco Xavier, 524, Maracana, CEP 20559-900, Rio de Janeiro (Brazil)
2007-06-07
It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology.
Covariant Effective Field Theory of Gravity I: Formalism and Curvature expansion
Codello, Alessandro
2015-01-01
We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime.
On the covariant formalism of the effective field theory of gravity and leading order corrections
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2016-01-01
We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well...... as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology...... on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime....
On the covariant formalism of the effective field theory of gravity and leading order corrections
Codello, Alessandro; Jain, Rajeev Kumar
2016-11-01
We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime.
Covariance Between Genotypic Effects and its Use for Genomic Inference in Half-Sib Families
Directory of Open Access Journals (Sweden)
Dörte Wittenburg
2016-09-01
Full Text Available In livestock, current statistical approaches utilize extensive molecular data, e.g., single nucleotide polymorphisms (SNPs, to improve the genetic evaluation of individuals. The number of model parameters increases with the number of SNPs, so the multicollinearity between covariates can affect the results obtained using whole genome regression methods. In this study, dependencies between SNPs due to linkage and linkage disequilibrium among the chromosome segments were explicitly considered in methods used to estimate the effects of SNPs. The population structure affects the extent of such dependencies, so the covariance among SNP genotypes was derived for half-sib families, which are typical in livestock populations. Conditional on the SNP haplotypes of the common parent (sire, the theoretical covariance was determined using the haplotype frequencies of the population from which the individual parent (dam was derived. The resulting covariance matrix was included in a statistical model for a trait of interest, and this covariance matrix was then used to specify prior assumptions for SNP effects in a Bayesian framework. The approach was applied to one family in simulated scenarios (few and many quantitative trait loci and using semireal data obtained from dairy cattle to identify genome segments that affect performance traits, as well as to investigate the impact on predictive ability. Compared with a method that does not explicitly consider any of the relationship among predictor variables, the accuracy of genetic value prediction was improved by 10–22%. The results show that the inclusion of dependence is particularly important for genomic inference based on small sample sizes.
Covariance Between Genotypic Effects and its Use for Genomic Inference in Half-Sib Families.
Wittenburg, Dörte; Teuscher, Friedrich; Klosa, Jan; Reinsch, Norbert
2016-09-08
In livestock, current statistical approaches utilize extensive molecular data, e.g., single nucleotide polymorphisms (SNPs), to improve the genetic evaluation of individuals. The number of model parameters increases with the number of SNPs, so the multicollinearity between covariates can affect the results obtained using whole genome regression methods. In this study, dependencies between SNPs due to linkage and linkage disequilibrium among the chromosome segments were explicitly considered in methods used to estimate the effects of SNPs. The population structure affects the extent of such dependencies, so the covariance among SNP genotypes was derived for half-sib families, which are typical in livestock populations. Conditional on the SNP haplotypes of the common parent (sire), the theoretical covariance was determined using the haplotype frequencies of the population from which the individual parent (dam) was derived. The resulting covariance matrix was included in a statistical model for a trait of interest, and this covariance matrix was then used to specify prior assumptions for SNP effects in a Bayesian framework. The approach was applied to one family in simulated scenarios (few and many quantitative trait loci) and using semireal data obtained from dairy cattle to identify genome segments that affect performance traits, as well as to investigate the impact on predictive ability. Compared with a method that does not explicitly consider any of the relationship among predictor variables, the accuracy of genetic value prediction was improved by 10-22%. The results show that the inclusion of dependence is particularly important for genomic inference based on small sample sizes.
Effective ac response in weakly nonlinear composites
Energy Technology Data Exchange (ETDEWEB)
Wei Enbo [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Yang Zidong [College of Power Engineering, University of Shanghai Science and Technology, Shanghai 200093 (China); Gu Guoqing [Information College of Science and Technology, East China Normal University, Shanghai 200062 (China)
2004-01-07
The perturbation method is developed to deal with the problem of determining the effective nonlinear conductivity of Kerr-like nonlinear media under an external ac electric field. As an example, we have considered the cylindrical inclusion embedded in a host under the sinusoidal external field E{sub 1} sin (<{omega}t) + E{sub 3} sin (3<{omega}t) with frequencies{omega} and 3{omega}. The potentials of composites at higher harmonics are derived in both local inclusion particle and host regions. The effective responses of bulk nonlinear composites at basic frequency and harmonics are given for cylindrical composites in the dilute limit. Moreover, the relationships between the nonlinear effective responses at the basic frequency and the third harmonics are derived.
Enhanced Nonlinear Effects in Metamaterials and Plasmonics
Directory of Open Access Journals (Sweden)
C. Argyropoulos
2012-07-01
Full Text Available In this paper we provide an overview of the anomalous and enhanced nonlinear effects available when optical nonlinear materials are combined inside plasmonic waveguide structures. Broad, bistable and all-optical switching responses are exhibited at the cut-off frequency of these waveguides, characterized by reduced Q-factor resonances. These phenomena are due to the large field enhancement obtained inside specific plasmonic gratings, which ensures a significant boosting of the nonlinear operation. Several exciting applications are proposed, which may potentially lead to new optical components and add to the optical nanocircuit paradigm.
Directory of Open Access Journals (Sweden)
Gianola Daniel
2007-09-01
Full Text Available Abstract Multivariate linear models are increasingly important in quantitative genetics. In high dimensional specifications, factor analysis (FA may provide an avenue for structuring (covariance matrices, thus reducing the number of parameters needed for describing (codispersion. We describe how FA can be used to model genetic effects in the context of a multivariate linear mixed model. An orthogonal common factor structure is used to model genetic effects under Gaussian assumption, so that the marginal likelihood is multivariate normal with a structured genetic (covariance matrix. Under standard prior assumptions, all fully conditional distributions have closed form, and samples from the joint posterior distribution can be obtained via Gibbs sampling. The model and the algorithm developed for its Bayesian implementation were used to describe five repeated records of milk yield in dairy cattle, and a one common FA model was compared with a standard multiple trait model. The Bayesian Information Criterion favored the FA model.
Recent Issues on Nonlinear Effects in Optical Fibers
Institute of Scientific and Technical Information of China (English)
Takashi; Inoue; Osamu; Aso; Shu; Namiki
2003-01-01
This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.
Madrasi, Kumpal; Chaturvedula, Ayyappa; Haberer, Jessica E; Sale, Mark; Fossler, Michael J; Bangsberg, David; Baeten, Jared M; Celum, Connie; Hendrix, Craig W
2016-12-06
Adherence is a major factor in the effectiveness of preexposure prophylaxis (PrEP) for HIV prevention. Modeling patterns of adherence helps to identify influential covariates of different types of adherence as well as to enable clinical trial simulation so that appropriate interventions can be developed. We developed a Markov mixed-effects model to understand the covariates influencing adherence patterns to daily oral PrEP. Electronic adherence records (date and time of medication bottle cap opening) from the Partners PrEP ancillary adherence study with a total of 1147 subjects were used. This study included once-daily dosing regimens of placebo, oral tenofovir disoproxil fumarate (TDF), and TDF in combination with emtricitabine (FTC), administered to HIV-uninfected members of serodiscordant couples. One-coin and first- to third-order Markov models were fit to the data using NONMEM(®) 7.2. Model selection criteria included objective function value (OFV), Akaike information criterion (AIC), visual predictive checks, and posterior predictive checks. Covariates were included based on forward addition (α = 0.05) and backward elimination (α = 0.001). Markov models better described the data than 1-coin models. A third-order Markov model gave the lowest OFV and AIC, but the simpler first-order model was used for covariate model building because no additional benefit on prediction of target measures was observed for higher-order models. Female sex and older age had a positive impact on adherence, whereas Sundays, sexual abstinence, and sex with a partner other than the study partner had a negative impact on adherence. Our findings suggest adherence interventions should consider the role of these factors.
Nonlinear cosmological consistency relations and effective matter stresses
Energy Technology Data Exchange (ETDEWEB)
Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche ' ' Enrico Fermi' ' , Piazza del Viminale 1, I-00184 Rome (Italy); Hollenstein, Lukas; Jain, Rajeev Kumar; Kunz, Martin, E-mail: guillermo.ballesteros@pd.infn.it, E-mail: lukas.hollenstein@unige.ch, E-mail: rajeev.jain@unige.ch, E-mail: martin.kunz@unige.ch [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, Quai E. Ansermet 24, CH-1211 Genève 4 (Switzerland)
2012-05-01
We propose a fully nonlinear framework to construct consistency relations for testing generic cosmological scenarios using the evolution of large scale structure. It is based on the covariant approach in combination with a frame that is purely given by the metric, the normal frame. As an example, we apply this framework to the ΛCDM model, by extending the usual first order conditions on the metric potentials to second order, where the two potentials start to differ from each other. We argue that working in the normal frame is not only a practical choice but also helps with the physical interpretation of nonlinear dynamics. In this frame, effective pressures and anisotropic stresses appear at second order in perturbation theory, even for ''pressureless'' dust. We quantify their effect and compare them, for illustration, to the pressure of a generic clustering dark energy fluid and the anisotropic stress in the DGP model. Besides, we also discuss the effect of a mismatch of the potentials on the determination of galaxy bias.
Quantum Information Processing using Nonlinear Optical Effects
DEFF Research Database (Denmark)
Andersen, Lasse Mejling
of the converted idler depends on the other pump. This allows for temporal-mode-multiplexing. When the effects of nonlinear phase modulation (NPM) are included, the phases of the natural input and output modes are changed, reducing the separability. These effects are to some degree mediated by pre......This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear...... to obtain a 100 % conversion efficiency is to use multiple stages of frequency conversion, but this setup suffers from the combined effects of NPM. This problem is circumvented by using asymmetrically pumped BS, where one pump is continuous wave. For this setup, NPM is found to only lead to linear phase...
Totir, Liviu R; Fernando, Rohan L; Dekkers, Jack C M; Fernández, Soledad A; Guldbrandtsen, Bernt
2004-01-01
Under additive inheritance, the Henderson mixed model equations (HMME) provide an efficient approach to obtaining genetic evaluations by marker assisted best linear unbiased prediction (MABLUP) given pedigree relationships, trait and marker data. For large pedigrees with many missing markers, however, it is not feasible to calculate the exact gametic variance covariance matrix required to construct HMME. The objective of this study was to investigate the consequences of using approximate gametic variance covariance matrices on response to selection by MABLUP. Two methods were used to generate approximate variance covariance matrices. The first method (Method A) completely discards the marker information for individuals with an unknown linkage phase between two flanking markers. The second method (Method B) makes use of the marker information at only the most polymorphic marker locus for individuals with an unknown linkage phase. Data sets were simulated with and without missing marker data for flanking markers with 2, 4, 6, 8 or 12 alleles. Several missing marker data patterns were considered. The genetic variability explained by marked quantitative trait loci (MQTL) was modeled with one or two MQTL of equal effect. Response to selection by MABLUP using Method A or Method B were compared with that obtained by MABLUP using the exact genetic variance covariance matrix, which was estimated using 15,000 samples from the conditional distribution of genotypic values given the observed marker data. For the simulated conditions, the superiority of MABLUP over BLUP based only on pedigree relationships and trait data varied between 0.1% and 13.5% for Method A, between 1.7% and 23.8% for Method B, and between 7.6% and 28.9% for the exact method. The relative performance of the methods under investigation was not affected by the number of MQTL in the model.
Rathbun, Stephen L; Shiffman, Saul
2016-03-01
Cigarette smoking is a prototypical example of a recurrent event. The pattern of recurrent smoking events may depend on time-varying covariates including mood and environmental variables. Fixed effects and frailty models for recurrent events data assume that smokers have a common association with time-varying covariates. We develop a mixed effects version of a recurrent events model that may be used to describe variation among smokers in how they respond to those covariates, potentially leading to the development of individual-based smoking cessation therapies. Our method extends the modified EM algorithm of Steele (1996) for generalized mixed models to recurrent events data with partially observed time-varying covariates. It is offered as an alternative to the method of Rizopoulos, Verbeke, and Lesaffre (2009) who extended Steele's (1996) algorithm to a joint-model for the recurrent events data and time-varying covariates. Our approach does not require a model for the time-varying covariates, but instead assumes that the time-varying covariates are sampled according to a Poisson point process with known intensity. Our methods are well suited to data collected using Ecological Momentary Assessment (EMA), a method of data collection widely used in the behavioral sciences to collect data on emotional state and recurrent events in the every-day environments of study subjects using electronic devices such as Personal Digital Assistants (PDA) or smart phones.
Deformed Hamilton-Jacobi Method in Covariant Quantum Gravity Effective Models
Benrong, Mu; Yang, Haitang
2014-01-01
We first briefly revisit the original Hamilton-Jacobi method and show that the Hamilton-Jacobi equation for the action $I$ of tunnelings of a fermionic particle from a charged black hole can be written in the same form as that of a scalar particle. For the low energy quantum gravity effective models which respect covariance of the curved spacetime, we derive the deformed model-independent KG/Dirac and Hamilton-Jacobi equations using the methods of effective field theory. We then find that, to all orders of the effective theories, the deformed Hamilton-Jacobi equations can be obtained from the original ones by simply replacing the mass of emitted particles $m$ with a parameter $m_{eff}$ that includes all the quantum gravity corrections. Therefore, in this scenario, there will be no corrections to the Hawking temperature of a black hole from the quantum gravity effects if its original Hawking temperature is independent of the mass of emitted particles. As a consequence, our results show that breaking covariance...
Nonlinear Dispersion Effect on Wave Transformation
Institute of Scientific and Technical Information of China (English)
LI Ruijie; Dong-Young LEE
2000-01-01
A new nonlinear dispersion relation is given in this paper, which can overcome the limitation of the intermediate minimum value in the dispersion relation proposed by Kirby and Dalrymple (1986), and which has a better approximation to Hedges＇ empirical relation than the modilied relations by Hedges (1987). Kirby and Dahymple (1987) for shallow waters. The new dispersion relation is simple in form. thus it can be used easily in practice. Meanwhile. a general explicil approximalion to the new dispersion rela tion and olher nonlinear dispersion relations is given. By use of the explicit approximation to the new dispersion relation along with the mild slope equation taking inlo account weakly nonlinear effect, a mathematical model is obtained, and it is applied to laboratory data. The results show that the model developed vith the new dispersion relation predicts wave translornation over complicated topography quite well.
Rotational Doppler effect in nonlinear optics
Li, Guixin; Zentgraf, Thomas; Zhang, Shuang
2016-08-01
The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.
Nonlinear peltier effect in quantum point contacts
Bogachek, E. N.; Scherbakov, A. G.; Landman, Uzi
1998-11-01
A theoretical analysis of the Peltier effect in two-dimensional quantum point contacts, in field-free conditions and under the influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager's relation. Oscillations of the Peltier coefficient in a magnetic field are demonstrated.
Topological nature of nonlinear optical effects in solids
Morimoto, Takahiro; Nagaosa, Naoto
2015-01-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by the strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by the nonlinear suscepti...
López-Fanjul, Carlos; Fernández, Almudena; Toro, Miguel A
2006-03-21
The effect of population bottlenecks on the components of the genetic variance/covariance generated by n neutral independent additive x additive loci has been studied theoretically. In its simplest version, this situation can be modelled by specifying the allele frequencies and homozygous effects at each locus, and an additional factor measuring the strength of the n-th order epistatic interaction. The variance/covariance components in an infinitely large panmictic population (ancestral components) were compared with their expected values at equilibrium over replicates randomly derived from the base population, after t bottlenecks of size N (derived components). Formulae were obtained giving the derived components (and the between-line variance) as functions of the ancestral ones (alternatively, in terms of allele frequencies and effects) and the corresponding inbreeding coefficient F(t). The n-th order derived component of the genetic variance/covariance is continuously eroded by inbreeding, but the remaining components may increase initially until a critical F(t) value is attained, which is inversely related to the order of the pertinent component, and subsequently decline to zero. These changes can be assigned to the between-line variances/covariances of gene substitution and epistatic effects induced by drift. Numerical examples indicate that: (1) the derived additive variance/covariance component will generally exceed its ancestral value unless epistasis is weak; (2) the derived epistatic variance/covariance components will generally exceed their ancestral values unless allele frequencies are extreme; (3) for systems showing equal ancestral additive and total non-additive variance/covariance components, those including a smaller number of epistatic loci may generate a larger excess in additive variance/covariance after bottlenecks than others involving a larger number of loci, provided that F(t) is low. Our results indicate that it is unlikely that the rate of
Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss' law
Sanders, Ko; Hack, Thomas-Paul
2012-01-01
We quantise the massless vector potential A of electromagnetism in the presence of a classical electromagnetic (background) current, j, in a generally covariant way on arbitrary globally hyperbolic spacetimes M. By carefully following general principles and procedures we clarify a number of topological issues. First we combine the interpretation of A as a connection on a principal U(1)-bundle with the perspective of general covariance to deduce a physical gauge equivalence relation, which is intimately related to the Aharonov-Bohm effect. By Peierls' method we subsequently find a Poisson bracket on the space of local, affine observables of the theory. This Poisson bracket is in general degenerate, leading to a quantum theory with non-local behaviour. We show that this non-local behaviour can be fully explained in terms of Gauss' law. Thus our analysis establishes a relationship, via the Poisson bracket, between the Aharonov-Bohm effect and Gauss' law (a relationship which seems to have gone unnoticed so far)....
New nonlinear polarization effects for frequency selection
Karagodova, Tamara Y.; Karagodov, Alexander I.
1998-05-01
The method of computer simulations on nonlinear resonant magnetooptical effects developed for real multi-level atoms in the two laser fields of arbitrary intensity and external magnetic field is applied for the polarization effects of different types calculations and investigations of the dependence of the characteristics of these effects on magnetic field strength, intensities, polarization and detunings of laser fields for alkaline atoms. The essence of the method consists in simulations and analysis of the plots of dependence of quasi energies on parameters, which are obtained with the help of sorting subprogram, and selection of suitable algorithms for calculations of characteristics of nonlinear resonant magnetooptical effects. One photon and two photon resonant effects are investigated for wide range of magnetic field strength from Zeeman to Paschen Back effects. Some new features in the spectra of rotation of plane of polarization and circular dichroism of different types are predicted. The results show the agreement with known experiments. Such calculations of nonlinear resonant magnetooptical effects in the intense laser fields resonant to adjacent transitions and magnetic field show the opportunity of investigation the modifications of electronic structure due to intense radiation fields and strong external magnetic field in atomic gases and also may be used for the treatment of new methods of phase-polarization selection of modes of tunable lasers.
Machado, F A
2016-01-01
Gluon mass generation is investigated for 4-dimensional $SU(N)$ Yang-Mills in conventional covariant and in background field gauges within an effective description that, through a parameterization, can be regarded as a massive gluon model, or as a Nambu-Jona-Lasinio-like expansion around a massive leading order while preserving the Yang-Mills Lagrangian. We employ a renormalization scheme that introduces the ratio of the gluon mass parameter $m$ to the saturation value of the gluon propagator. This, along with the mass $m(\\mu)$ and the strong coupling $\\alpha_s(\\mu)$, provided the fit parameters for comparison with $SU(3)$ lattice results renormalized at the scale $\\mu$. We obtain two types of solutions with satisfactory fits. Within the proposed expansion, we show that it is possible to obtain an exactly vanishing longitudinal self-energy for any gauge parameter $\\xi$ in the background field case. However, such a result in conventional covariant gauges is unattainable by the given expansion as it is, indicat...
Trust and team performance: A meta-analysis of main effects, moderators, and covariates.
De Jong, Bart A; Dirks, Kurt T; Gillespie, Nicole
2016-08-01
Cumulating evidence from 112 independent studies (N = 7,763 teams), we meta-analytically examine the fundamental questions of whether intrateam trust is positively related to team performance, and the conditions under which it is particularly important. We address these questions by analyzing the overall trust-performance relationship, assessing the robustness of this relationship by controlling for other relevant predictors and covariates, and examining how the strength of this relationship varies as a function of several moderating factors. Our findings confirm that intrateam trust is positively related to team performance, and has an above-average impact (ρ = .30). The covariate analyses show that this relationship holds after controlling for team trust in leader and past team performance, and across dimensions of trust (i.e., cognitive and affective). The moderator analyses indicate that the trust-performance relationship is contingent upon the level of task interdependence, authority differentiation, and skill differentiation in teams. Finally, we conducted preliminary analyses on several emerging issues in the literature regarding the conceptualization and measurement of trust and team performance (i.e., referent of intrateam trust, dimension of performance, performance objectivity). Together, our findings contribute to the literature by helping to (a) integrate the field of intrateam trust research, (b) resolve mixed findings regarding the trust-performance relationship, (c) overcome scholarly skepticism regarding the main effect of trust on team performance, and (d) identify the conditions under which trust is most important for team performance. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Converse, Sarah J.; Royle, J. Andrew; Urbanek, Richard P.
2012-01-01
Inbreeding depression is frequently a concern of managers interested in restoring endangered species. Decisions to reduce the potential for inbreeding depression by balancing genotypic contributions to reintroduced populations may exact a cost on long-term demographic performance of the population if those decisions result in reduced numbers of animals released and/or restriction of particularly successful genotypes (i.e., heritable traits of particular family lines). As part of an effort to restore a migratory flock of Whooping Cranes (Grus americana) to eastern North America using the offspring of captive breeders, we obtained a unique dataset which includes post-release mark-recapture data, as well as the pedigree of each released individual. We developed a Bayesian formulation of a multi-state model to analyze radio-telemetry, band-resight, and dead recovery data on reintroduced individuals, in order to track survival and breeding state transitions. We used studbook-based individual covariates to examine the comparative evidence for and degree of effects of inbreeding, genotype, and genotype quality on post-release survival of reintroduced individuals. We demonstrate implementation of the Bayesian multi-state model, which allows for the integration of imperfect detection, multiple data types, random effects, and individual- and time-dependent covariates. Our results provide only weak evidence for an effect of the quality of an individual's genotype in captivity on post-release survival as well as for an effect of inbreeding on post-release survival. We plan to integrate our results into a decision-analytic modeling framework that can explicitly examine tradeoffs between the effects of inbreeding and the effects of genotype and demographic stochasticity on population establishment.
A Re-examination of Density Effects in Eddy Covariance Measurements of CO2 Fluxes
Institute of Scientific and Technical Information of China (English)
Heping LIU
2009-01-01
Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects, mean vertical velocity and perturbation of the density of dry air are two critical parameters in treating those physical processes responsible for density variations. Based on various underlying assumptions, different studies have obtained different formulas for the mean vertical velocity and perturbation of the density of dry air, leading to a number of approaches to correct density effects. In this study, we re-examine physical processes related to different assumptions that are made to formulate the density effects. Specifically, we re-examine the assumptions of a zero dry air flux and a zero moist air flux in the surface layer, used for treating density variations, and their implications for correcting density effects. It is found that physical processes in relation to the assumption of a zero dry air flux account for the influence of dry air expansion/compression on density variations. Meanwhile, physical processes in relation to the assumption of a zero moist air flux account for the influence of moist air expansion/compression on density variations. In this study, we also re-examine mixing ratio issues. Our results indicate that the assumption of a zero dry air flux favors the use of the mixing ratio relative to dry air, while the assumption of a zero moist air flux favors the use of the mixing ratio relative to the total moist air. Additionally, we compare different formula for the mean vertical velocity, generated by air-parcel expansion/compression, and for density effect corrections using eddy covariance data measured over three boreal ecosystems.
Controllable spatiotemporal nonlinear effects in multimode fibres
Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.
2015-05-01
Multimode fibres are of interest for next-generation telecommunications systems and the construction of high-energy fibre lasers. However, relatively little work has explored nonlinear pulse propagation in multimode fibres. Here, we consider highly nonlinear ultrashort pulse propagation in the anomalous-dispersion regime of a graded-index multimode fibre. Low modal dispersion and strong nonlinear coupling between the fibre's many spatial modes result in interesting behaviour. We observe spatiotemporal effects reminiscent of nonlinear optics in bulk media—self-focusing and multiple filamentation—at a fraction of the usual power. By adjusting the spatial initial conditions, we generate on-demand, megawatt, ultrashort pulses tunable between 1,550 and 2,200 nm dispersive waves over one octave; intense combs of visible light; and a multi-octave-spanning supercontinuum. Our results indicate that multimode fibres present unique opportunities for observing new spatiotemporal dynamics and phenomena. They also enable the realization of a new type of tunable, broadband fibre source that could be useful for many applications.
Directory of Open Access Journals (Sweden)
Meyer Karin
2001-11-01
Full Text Available Abstract A random regression model for the analysis of "repeated" records in animal breeding is described which combines a random regression approach for additive genetic and other random effects with the assumption of a parametric correlation structure for within animal covariances. Both stationary and non-stationary correlation models involving a small number of parameters are considered. Heterogeneity in within animal variances is modelled through polynomial variance functions. Estimation of parameters describing the dispersion structure of such model by restricted maximum likelihood via an "average information" algorithm is outlined. An application to mature weight records of beef cow is given, and results are contrasted to those from analyses fitting sets of random regression coefficients for permanent environmental effects.
Clarifying the covariant formalism for the SZ effect due to relativistic non-thermal electrons
Boehm, Celine
2008-01-01
We derive the covariant formalism associated with the relativistic Sunyaev-Zel'dovich effect due to a non-thermal population of high energy electrons in clusters of galaxies. More precisely, we show that the formalism proposed by Wright in 1979, based on an empirical approach (but widely used in the literature) to compute the inverse Compton scattering of a population of relativistic electrons on CMB photons, can actually be re-interpreted as a Boltzmann-like equation, in the single scattering approximation. Although this would tend to reconcile Wright's approach with the latest works on the relativistic corrections of the thermal SZ effect, we find that the squared matrix amplitude derived by Wright by applying a relativistic Lorentz boost on Chandrasekhar's non-relativistic formula is incorrect (it is not equivalent to the well-known Compton scattering squared matrix amplitude in the limit of relativistic incoming electrons and low energy photons). This has important consequences. In particular, this modifi...
Covariant variational approach to Yang-Mills theory: Effective potential of the Polyakov loop
Quandt, M.; Reinhardt, H.
2016-09-01
We compute the effective action of the Polyakov loop in S U (2 ) and S U (3 ) Yang-Mills theory using a previously developed covariant variational approach. The formalism is extended to background gauge and it is shown how to relate the low-order Green's functions to the ones in Landau gauge studied earlier. The renormalization procedure is discussed. The self-consistent effective action is derived and evaluated using the numerical solution of the gap equation. We find a clear signal for a deconfinement phase transition at finite temperatures, which is second order for S U (2 ) and first order for S U (3 ). The critical temperatures obtained are in reasonable agreement with high-precision lattice data.
Covariant variational approach to Yang-Mills Theory: effective potential of the Polyakov loop
Quandt, Markus
2016-01-01
We compute the effective action of the Polyakov loop in SU(2) and SU(3) Yang-Mills theory using a previously developed covariant variational approach. The formalism is extended to background gauge and it is shown how to relate the low order Green's functions to the ones in Landau gauge studied earlier. The renormalization procedure is discussed. The self-consistent effective action is derived and evaluated using the numerical solution of the gap equation. We find a clear signal for a deconfinement phase transition at finite temperatures, which is second order for SU(2) and first order for SU(3). The critical temperatures obtained are in reasonable agreement with high precision lattice data.
Can GE-Covariance Originating in Phenotype to Environment Transmission Account for the Flynn Effect?
Directory of Open Access Journals (Sweden)
Janneke M. de Kort
2014-09-01
Full Text Available The Dickens and Flynn model of the Flynn effect (generational increases in mean IQ assigns an important role to genotype-environment covariance (GE-cov. We quantify GE-cov in a longitudinal simplex model by modeling it as phenotype to environment (Ph->E transmission in twin data. The model fits as well as the standard genetic simplex model, which assumes uncorrelated genetic and environmental influences. We use the results to explore numerically the possible role of GE-cov in amplifying increases in environmental means. Given the estimated Ph->E transmission parameters, GE-cov resulted in an amplification (in std units of a factor 1.57 (full scale IQ to 1.7 (performance IQ. The results lend credence to the role of GE-cov in the Flynn effect.
Hyperon effects in covariant density functional theory with recent astrophysical observations
Long, W H; Hagino, K; Sagawa, H; Tamura, H
2011-01-01
Motivated by recent observational data, the equations of state with the inclusion of strangeness-bearing $\\Lambda$-hyperons and the corresponding properties of neutron stars are studied, based on the covariant density functional (CDF) theory. To this end, we specifically employ the density dependent relativistic Hartree-Fock (DDRHF) theory and the relativistic mean field theory (RMF). The inclusion of $\\Lambda$-hyperons in neutron stars shows substantial effects in softening the equation of state. Because of the extra suppression effect originated from the Fock channel, large reductions on both the star mass and radius are predicted by the DDRHF calculations. It is also found that the mass-radius relations of neutron stars with $\\Lambda$-hyperons determined by DDRHF with the PKA1 parameter set are in fairly good agreement with the observational data where a relatively small neutron stars radius is required. Therefore, it is expected that the exotic degrees of freedom such as the strangeness-bearing structure ...
Covariant Bardeen perturbation formalism
Vitenti, S. D. P.; Falciano, F. T.; Pinto-Neto, N.
2014-05-01
In a previous work we obtained a set of necessary conditions for the linear approximation in cosmology. Here we discuss the relations of this approach with the so-called covariant perturbations. It is often argued in the literature that one of the main advantages of the covariant approach to describe cosmological perturbations is that the Bardeen formalism is coordinate dependent. In this paper we will reformulate the Bardeen approach in a completely covariant manner. For that, we introduce the notion of pure and mixed tensors, which yields an adequate language to treat both perturbative approaches in a common framework. We then stress that in the referred covariant approach, one necessarily introduces an additional hypersurface choice to the problem. Using our mixed and pure tensors approach, we are able to construct a one-to-one map relating the usual gauge dependence of the Bardeen formalism with the hypersurface dependence inherent to the covariant approach. Finally, through the use of this map, we define full nonlinear tensors that at first order correspond to the three known gauge invariant variables Φ, Ψ and Ξ, which are simultaneously foliation and gauge invariant. We then stress that the use of the proposed mixed tensors allows one to construct simultaneously gauge and hypersurface invariant variables at any order.
Dynamical effects of overparametrization in nonlinear models
Aguirre, Luis Antonio; Billings, S. A.
1995-01-01
This paper is concemed with dynamical reconstruction for nonlinear systems. The effects of the driving function and of the complexity of a given representation on the bifurcation patter are investigated. It is shown that the use of different driving functions to excite the system may yield models with different bifurcation patterns. The complexity of the reconstructions considered is quantified by the embedding dimension and the number of estimated parameters. In this respect it appears that models which reproduce the original bifurcation behaviour are of limited complexity and that excessively complex models tend to induce ghost bifurcations and spurious dynamical regimes. Moreover, some results suggest that the effects of overparametrization on the global dynamical behaviour of a nonlinear model may be more deleterious than the presence of moderate noise levels. In order to precisely quantify the complexity of the reconstructions, global polynomials are used although the results are believed to apply to a much wider class of representations including neural networks.
DEFF Research Database (Denmark)
Holst, René; Jørgensen, Bent
2015-01-01
The paper proposes a versatile class of multiplicative generalized linear longitudinal mixed models (GLLMM) with additive dispersion components, based on explicit modelling of the covariance structure. The class incorporates a longitudinal structure into the random effects models and retains...... a marginal as well as a conditional interpretation. The estimation procedure is based on a computationally efficient quasi-score method for the regression parameters combined with a REML-like bias-corrected Pearson estimating function for the dispersion and correlation parameters. This avoids...... the multidimensional integral of the conventional GLMM likelihood and allows an extension of the robust empirical sandwich estimator for use with both association and regression parameters. The method is applied to a set of otholit data, used for age determination of fish....
Effective matter dispersion relation in quantum covariant Ho\\v{r}ava-Lifshitz gravity
Alexandre, Jean
2015-01-01
We study how quantum fluctuations of the metric in covariant Ho\\v{r}ava-Lifshitz gravity influence the propagation of classical fields (complex scalar and photon). The effective Lorentz-symmetry violation induced by the breaking of 4-dimensional diffeomorphism is then evaluated, by comparing the dressed dispersion relations for both external fields. The constraint of vanishing 3-dimensional Ricci scalar is imposed in the path integral, which therefore explicitly depends on two propagating gravitational degrees of freedom only. Because the matter fields are classical, the present model contains only logarithmic divergences. Furthermore, it imposes the characteristic Ho\\v{r}ava-Lifshitz scale, above which General Relativity is no-longer valid, to be smaller than $10^{10}$ GeV, if one wishes not to violate the current bounds on Lorentz symmetry violation.
The Nonlinear Talbot Effect of Rogue Waves
Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng
2014-01-01
Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schr\\"odinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a \\pi-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.
Simulation-Extrapolation for Estimating Means and Causal Effects with Mismeasured Covariates
Lockwood, J. R.; McCaffrey, Daniel F.
2015-01-01
Regression, weighting and related approaches to estimating a population mean from a sample with nonrandom missing data often rely on the assumption that conditional on covariates, observed samples can be treated as random. Standard methods using this assumption generally will fail to yield consistent estimators when covariates are measured with…
Avramidi, I G
1994-01-01
We continue the development of the effective covariant methods for calculating the heat kernel and the one-loop effective action in quantum field theory and quantum gravity. The status of the low-energy approximation in quantum gauge theories and quantum gravity is discussed in detail on the basis of analyzing the local Schwinger - De Witt expansion. It is argued that the low-energy limit, when defined in a covariant way, should be related to background fields with covariantly constant curvature, gauge field strength and potential. Some new approaches for calculating the low-energy heat kernel assuming a covariantly constant background are proposed. The one-loop low-energy effective action in Yang-Mills theory in flat space with arbitrary compact simple gauge group and arbitrary matter on a covariantly constant background is calculated. The stability problem of the chromomagnetic (Savvidy-type) vacuum is analyzed. It is shown, that this type of vacuum structure can be stable only in the case when more than on...
Nguyen, Thu Thuy; Bazzoli, Caroline; Mentré, France
2012-05-20
Bioequivalence or interaction trials are commonly studied in crossover design and can be analysed by nonlinear mixed effects models as an alternative to noncompartmental approach. We propose an extension of the population Fisher information matrix in nonlinear mixed effects models to design crossover pharmacokinetic trials, using a linearisation of the model around the random effect expectation, including within-subject variability and discrete covariates fixed or changing between periods. We use the expected standard errors of treatment effect to compute the power for the Wald test of comparison or equivalence and the number of subjects needed for a given power. We perform various simulations mimicking crossover two-period trials to show the relevance of these developments. We then apply these developments to design a crossover pharmacokinetic study of amoxicillin in piglets and implement them in the new version 3.2 of the r function PFIM.
Truccolo, Wilson; Eden, Uri T; Fellows, Matthew R; Donoghue, John P; Brown, Emery N
2005-02-01
Multiple factors simultaneously affect the spiking activity of individual neurons. Determining the effects and relative importance of these factors is a challenging problem in neurophysiology. We propose a statistical framework based on the point process likelihood function to relate a neuron's spiking probability to three typical covariates: the neuron's own spiking history, concurrent ensemble activity, and extrinsic covariates such as stimuli or behavior. The framework uses parametric models of the conditional intensity function to define a neuron's spiking probability in terms of the covariates. The discrete time likelihood function for point processes is used to carry out model fitting and model analysis. We show that, by modeling the logarithm of the conditional intensity function as a linear combination of functions of the covariates, the discrete time point process likelihood function is readily analyzed in the generalized linear model (GLM) framework. We illustrate our approach for both GLM and non-GLM likelihood functions using simulated data and multivariate single-unit activity data simultaneously recorded from the motor cortex of a monkey performing a visuomotor pursuit-tracking task. The point process framework provides a flexible, computationally efficient approach for maximum likelihood estimation, goodness-of-fit assessment, residual analysis, model selection, and neural decoding. The framework thus allows for the formulation and analysis of point process models of neural spiking activity that readily capture the simultaneous effects of multiple covariates and enables the assessment of their relative importance.
Li, Xingfeng; Coyle, Damien; Maguire, Liam; McGinnity, Thomas M; Benali, Habib
2011-07-01
In this paper a model selection algorithm for a nonlinear system identification method is proposed to study functional magnetic resonance imaging (fMRI) effective connectivity. Unlike most other methods, this method does not need a pre-defined structure/model for effective connectivity analysis. Instead, it relies on selecting significant nonlinear or linear covariates for the differential equations to describe the mapping relationship between brain output (fMRI response) and input (experiment design). These covariates, as well as their coefficients, are estimated based on a least angle regression (LARS) method. In the implementation of the LARS method, Akaike's information criterion corrected (AICc) algorithm and the leave-one-out (LOO) cross-validation method were employed and compared for model selection. Simulation comparison between the dynamic causal model (DCM), nonlinear identification method, and model selection method for modelling the single-input-single-output (SISO) and multiple-input multiple-output (MIMO) systems were conducted. Results show that the LARS model selection method is faster than DCM and achieves a compact and economic nonlinear model simultaneously. To verify the efficacy of the proposed approach, an analysis of the dorsal and ventral visual pathway networks was carried out based on three real datasets. The results show that LARS can be used for model selection in an fMRI effective connectivity study with phase-encoded, standard block, and random block designs. It is also shown that the LOO cross-validation method for nonlinear model selection has less residual sum squares than the AICc algorithm for the study.
Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich; Asparouhov, Tihomir; Muthen, Bengt
2008-01-01
In multilevel modeling (MLM), group-level (L2) characteristics are often measured by aggregating individual-level (L1) characteristics within each group so as to assess contextual effects (e.g., group-average effects of socioeconomic status, achievement, climate). Most previous applications have used a multilevel manifest covariate (MMC) approach,…
The Geometric Nonlinear Generalized Brazier Effect
DEFF Research Database (Denmark)
Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm; Damkilde, Lars
2016-01-01
denoted the generalized Brazier effect. The original work of Brazier dealt with very large deformations that changed the cross section significantly and hereby also the bending moment of inertia and the bending moment capacity. In this paper the aim is to describe the Brazier effect for smaller...... that the generalized Brazier effect is a local effect not influencing the overall mechanical behavior of the structure significantly. The offset is a nonlinear geometric beam-type Finite Element calculation, which takes into account the large displacements and rotations. The beam-type model defines the stresses which...... deformation not taking into account the change in moment of inertia. However, the generalized Brazier effect gives additional stresses directed perpendicular to the beam axis. In composite structures these extra stresses may influence the fatigue life significantly. The paper demonstrates a linearized method...
Enhanced Kerr electro-optic nonlinearity through cascaded Pockels effects
Li, Guang-Zhen; Jiang, Hao-Wei; Chen, Xian-Feng
2015-01-01
We demonstrated a large enhancement of Kerr electro-optic nonlinearity through cascaded Pockels effects in a domain inversion ferroelectric crystal. We designed a structure that can implement the cascaded Pockels effects and second-harmonic generation simultaneously. The energy coupling between the fundamental lights of different polarizations led to a large nonlinear phase shift, and thus an effective electro-optic nonlinear refractive index. The effective nonlinearity can be either positive or negative, causing the second-harmonic spectra to move towards the coupling center, which in turn, offered us a way to measure the effective electro-optic nonlinear refractive index. The corresponding enhanced Kerr electro-optic nonlinearity is more than three orders of magnitude higher than the intrinsic value. These results open a door to manipulate the nonlinear phase by applying external electric field instead of light intensity in noncentrosymmetric crystals.
Analysis on the effect of nonlinear polarization evolution in nonlinear amplifying loop mirror
Institute of Scientific and Technical Information of China (English)
Feng Qu; Xiaoming Liu; Pu Zhang; Xubiao Jiang; Hongming Zhang; Minyu Yao
2005-01-01
By considering the cross phase modulation (XPM) between the two orthogonal poparization components,the nonlinear birefringence and nonlinear polarization evolution (NPE) in highly-nonlinear fiber (HNLF),as well as the unequal evolutions of the state of polarization (SOP) between the clockwise (CW) and counter-clockwise (CCW) waves in a nonlinear amplifying loop mirror (NALM) are analyzed. It is pointed out that the traditional cosine expression is no longer valid for the power transmission of NALM due to uncompleted interference under the high power condition. The analytical expression considering NPE effect is derived, and the experimental result is presented.
Ecology: Nonlinearity and the Moran effect
Blasius, Bernd; Stone, Lewi
2000-08-01
The study of synchronization phenomena in ecology is important because it helps to explain interactions between population dynamics and extrinsic environmental variation. Grenfell et al. have examined synchronized fluctuations in the sizes of two populations of feral sheep which, although situated on close but isolated islands, were nevertheless strongly correlated (observed value of the population correlation, rp, 0.685). Using a nonlinear threshold model, they argue that this level of population correlation could only be explained if environmental stochasticity was correlated between the islands, with the environmental correlation, re, higher than 0.9 ``on average'' (Fig. 1a). This unusually high environmental correlation is far greater than would be predicted by the Moran effect, which states that the population correlation will equal the environmental correlation in a linear system. Grenfell et al. imply that a simple nonlinearity in population growth can mask or even destroy the Moran effect. Here we show that these surprising results are an artefact of the techniques used to measure noise correlations and synchronization.
Modal Identification Using OMA Techniques: Nonlinearity Effect
Directory of Open Access Journals (Sweden)
E. Zhang
2015-01-01
Full Text Available This paper is focused on an assessment of the state of the art of operational modal analysis (OMA methodologies in estimating modal parameters from output responses of nonlinear structures. By means of the Volterra series, the nonlinear structure excited by random excitation is modeled as best linear approximation plus a term representing nonlinear distortions. As the nonlinear distortions are of stochastic nature and thus indistinguishable from the measurement noise, a protocol based on the use of the random phase multisine is proposed to reveal the accuracy and robustness of the linear OMA technique in the presence of the system nonlinearity. Several frequency- and time-domain based OMA techniques are examined for the modal identification of simulated and real nonlinear mechanical systems. Theoretical analyses are also provided to understand how the system nonlinearity degrades the performance of the OMA algorithms.
Institute of Scientific and Technical Information of China (English)
SUN; Xiaomin; ZHU; Zhilin; XU; Jinping; YUAN; Guofu
2005-01-01
It is more and more popular to estimate the exchange of water vapor, heat and CO2fluxes between the land surface and the atmosphere using the eddy covariance technique. To get believable fluxes, it is necessary to correct the observations based on the different surface conditions and to determine relevant techinical parameters. The raw 10 Hz eddy covariance data observed in the Yucheng and Changbai Mountains stations were recalculated by various averaging periods (from 1 to 720 min) respectively, and the recalculated results were compared with the results calculated by the averaging period of 30 mins. Meanwhile, the distinctions of fluxes calculated by different averaging periods were analyzed. The continuous 15 days observations over wheat fields in the Yucheng station were mainly analyzed. The results are shown that: (i) In the Yucheng station, compared with the observations by 30 min, when the averaging period changes from 10 to 60 min, the variations of the eddy-covariance estimates of fluxes were less than 2%; when the averaging period changes less than 10 min, the estimate of fluxes reduced obviously with the reduction of the averaging period (the max relative error was -12%); and when the averaging period exceeds 120 min, the eddy covariance estimates of fluxes will be increased and become unsteady (the max relative error is over 10%); (ii) the eddy covariance estimates of fluxes over wheat field in the Yucheng station suggusted that it is much better to take 10 min as an averaging period in studying diurnal change of fluxes, and take 30min for a long-term flux observation; and (iii) normalized ratio was put forward to determine the range of averaging period of eddy covariance measurements. By comparing the observations over farmlands and those over forests, it is indicated that the increase of eddy covariance estimates over tall forest was more than that over short vegetation when the averaging period increased.
Directory of Open Access Journals (Sweden)
R. Felber
2015-02-01
Full Text Available Methane (CH4 from ruminants contributes one third to global agricultural greenhouse gas emissions. Eddy covariance (EC technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analysers the instrumentation at many flux sites have been amended for these gases. However the application of EC over pastures is challenging due to the spatial and temporal uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d−1 managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to two orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head−1 d−1 (best guess of this study correspond well to animal respiration chamber measurements reported in the literature. However a systematic effect of the distance between source and EC tower on cow emissions was found which is attributed to the analytical footprint model used. We show that the EC method allows to determine CH4 emissions of grazing cows if the data evaluation is adjusted for this purpose and if some cow distribution information is available.
Analytic model for the matter power spectrum, its covariance matrix, and baryonic effects
Mohammed, Irshad
2014-01-01
We develop a model for the matter power spectrum as the sum of quasi-linear Zeldovich approximation and even powers of $k$, i.e., $A_0 - A_2k^2 + A_4k^4 - ...$, compensated at low $k$. The model can predict the true power spectrum to a few percent accuracy up to $k \\sim 0.7\\ h \\rm{Mpc}^{-1}$, over a wide range of redshifts and models, including massive neutrino models. We write a simple form of the covariance matrix as a sum of Gaussian part and $A_0$ variance and we find that it reproduces well the simulations. We investigate the super-sample variance effect and show it induces a relation between the Zeldovich term and $A_0$ that differs from the amplitude change, allowing it to be modeled as an additional parameter that can be determined from the data. The $A_n$ coefficients contain information about cosmology, in particular the amplitude of fluctuations $\\sigma_8$. We explore their information content, showing that $A_0$ contains the bulk of amplitude information, scaling as $\\sigma_8^{3.9}$, which allows ...
Nonvolatile Memory Based on Nonlinear Magnetoelectric Effects
Shen, Jianxin; Cong, Junzhuang; Chai, Yisheng; Shang, Dashan; Shen, Shipeng; Zhai, Kun; Tian, Ying; Sun, Young
2016-08-01
The magnetoelectric effects in multiferroics have a great potential in creating next-generation memory devices. We use an alternative concept of nonvolatile memory based, on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The principle is to utilize the states of the magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, to store binary information. Our experiments in a device made of the PMN-PT/Terfenol-D multiferroic heterostructure clearly demonstrate that the sign of the magnetoelectric coefficient can be repeatedly switched between positive and negative by applying electric fields, confirming the feasibility of this principle. This kind of nonvolatile memory has outstanding practical virtues such as simple structure, easy operation in writing and reading, low power, fast speed, and diverse materials available.
Errors on errors - Estimating cosmological parameter covariance
Joachimi, Benjamin
2014-01-01
Current and forthcoming cosmological data analyses share the challenge of huge datasets alongside increasingly tight requirements on the precision and accuracy of extracted cosmological parameters. The community is becoming increasingly aware that these requirements not only apply to the central values of parameters but, equally important, also to the error bars. Due to non-linear effects in the astrophysics, the instrument, and the analysis pipeline, data covariance matrices are usually not well known a priori and need to be estimated from the data itself, or from suites of large simulations. In either case, the finite number of realisations available to determine data covariances introduces significant biases and additional variance in the errors on cosmological parameters in a standard likelihood analysis. Here, we review recent work on quantifying these biases and additional variances and discuss approaches to remedy these effects.
Effect of open-path gas analyzer wetness on eddy covariance flux measurements: A poposed solution
Heusinkveld, B.G.; Jacobs, A.F.G.; Holtslag, A.A.M.
2008-01-01
Open-path gas analyzers are popular in eddy covariance flux measurements of trace gasses (i.e. CO2). The quality of the data, however, may be influenced by several factors. Exposure in an outdoor environment invariably causes the instrument to become colder or warmer than the air temperature.
Effect of open-path gas analyzer wetness on eddy covariance flux measurements: A poposed solution
Heusinkveld, B.G.; Jacobs, A.F.G.; Holtslag, A.A.M.
2008-01-01
Open-path gas analyzers are popular in eddy covariance flux measurements of trace gasses (i.e. CO2). The quality of the data, however, may be influenced by several factors. Exposure in an outdoor environment invariably causes the instrument to become colder or warmer than the air temperature. Instru
Vibrational mechanics nonlinear dynamic effects, general approach, applications
Blekhman, Iliya I
2000-01-01
This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat
Analytical evaluation of nonlinear distortion effects on multicarrier signals
Araújo, Theresa
2015-01-01
Due to their ability to support reliable high quality of service as well as spectral and power efficiency, multicarrier modulation systems have found increasing use in modern communications services. However, one of the main drawbacks of these systems is their vulnerability to nonlinear distortion effects. Analytical Evaluation of Nonlinear Distortion Effects on Multicarrier Signals details a unified approach to well-known analytical results on memoryless nonlinearities that takes advantage of the Gaussian behavior of multicarrier signals.Sharing new insights into the behavior of nonlinearly d
Frasinski, Leszek J.
2016-08-01
Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.
Energy Technology Data Exchange (ETDEWEB)
Aguirre, R.M.; Paoli, A.L. de [Universidad Nacional de La Plata, and IFLP, Departamento de Fisica, Facultad de Ciencias Exactas, La Plata (Argentina)
2016-11-15
We obtain the covariant propagator at finite temperature for interacting baryons immersed in a strong magnetic field. The effect of the intrinsic magnetic moments on the Green function are fully taken into account. We make an expansion in terms of eigenfunctions of a Dirac field, which leads us to a compact form of its propagator. We present some simple applications of these propagators, where the statistical averages of nuclear currents and energy density are evaluated. (orig.)
Aguirre, R. M.; De Paoli, A. L.
2016-11-01
We obtain the covariant propagator at finite temperature for interacting baryons immersed in a strong magnetic field. The effect of the intrinsic magnetic moments on the Green function are fully taken into account. We make an expansion in terms of eigenfunctions of a Dirac field, which leads us to a compact form of its propagator. We present some simple applications of these propagators, where the statistical averages of nuclear currents and energy density are evaluated.
Quantifying the Effect of Component Covariances in CMB Extraction from Multi-frequency Data
Phillips, Nicholas G.
2008-01-01
Linear combination methods provide a global method for component separation of multi-frequency data. We present such a method that allows for consideration of possible covariances between the desired cosmic microwave background signal and various foreground signals that are also present. We also recover information on the foregrounds including the number of foregrounds, their spectra and templates. In all this, the covariances, which we would only expect to vanish 'in the mean' are included as parameters expressing the fundamental uncertainty due to this type of cosmic variance. When we make the reasonable assumption that the CMB is Gaussian, we can compute both a mean recovered CMB map and also an RMS error map, The mean map coincides with WMAP's Internal Linear Combination map.
A Novel Effective Approach for Solving Fractional Nonlinear PDEs.
Aminikhah, Hossein; Malekzadeh, Nasrin; Rezazadeh, Hadi
2014-01-01
The present work introduces an effective modification of homotopy perturbation method for the solution of nonlinear time-fractional biological population model and a system of three nonlinear time-fractional partial differential equations. In this approach, the solution is considered a series expansion that converges to the nonlinear problem. The new approximate analytical procedure depends only on two iteratives. The analytical approximations to the solution are reliable and confirm the ability of the new homotopy perturbation method as an easy device for computing the solution of nonlinear equations.
Westgate, Philip M; Braun, Thomas M
2012-09-10
Generalized estimating equations (GEE) are commonly used for the analysis of correlated data. However, use of quadratic inference functions (QIFs) is becoming popular because it increases efficiency relative to GEE when the working covariance structure is misspecified. Although shown to be advantageous in the literature, the impacts of covariates and imbalanced cluster sizes on the estimation performance of the QIF method in finite samples have not been studied. This cluster size variation causes QIF's estimating equations and GEE to be in separate classes when an exchangeable correlation structure is implemented, causing QIF and GEE to be incomparable in terms of efficiency. When utilizing this structure and the number of clusters is not large, we discuss how covariates and cluster size imbalance can cause QIF, rather than GEE, to produce estimates with the larger variability. This occurrence is mainly due to the empirical nature of weighting QIF employs, rather than differences in estimating equations classes. We demonstrate QIF's lost estimation precision through simulation studies covering a variety of general cluster randomized trial scenarios and compare QIF and GEE in the analysis of data from a cluster randomized trial. Copyright © 2012 John Wiley & Sons, Ltd.
Effects of Particle Shape and Microstructure on Effective Nonlinear Response
Institute of Scientific and Technical Information of China (English)
HUANG Ji-Ping; LI Zhen-Ya
2001-01-01
We consider a binary granular composite medium, in which two materials have high-order nonlinearities.The effect of particle shape on effective nonlinear response (ENR) is investigated by assuming all the particles to be shaped as uniaxial ellipsoid. We discuss two types of arrangements of particles: 1) parallel axes (Case I); 2) random axes (Case II). During the process of numerical calculation, one component material is assumed to be linear, and two kinds of conductors are assumed to be at high conducting contrast. We find that: 1) the shape effect on ENR is possibly strong; 2) the enhanced ENR can even be obtained by choosing particles of appropriate ellipsoidal shapes; 3) the ENR enhancement predicted by Case I is much stronger than that by Case II.``
Energy Technology Data Exchange (ETDEWEB)
Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)
2014-10-15
In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.
Topological nature of nonlinear optical effects in solids.
Morimoto, Takahiro; Nagaosa, Naoto
2016-05-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.
Directory of Open Access Journals (Sweden)
Lillian Pascoa
2013-06-01
Full Text Available We used actual and adjusted weights to 120 d and 210 d of age of 72,731 male and female Nellore calves born in 40 PMGRN - Nellore Brazil herds from 1985 to 2005 aiming to compare the effect of different definitions of contemporary groups on estimates of (covariance and genetic parameters. Four models, each one with a different structure of contemporary group (CG, were compared using the Akaike Information Criterion (AIC, the Bayesian Information Criterion (BIC, and the Consistent Akaike Information Criterion (CAIC. (Covariance estimates were obtained using a derivative-free restricted maximum likelihood procedure. Estimates of (covariances and genetic parameters were similar for the four models considered. However, the BIC and CAIC indicated that the most appropriate model for this Nellore population was the one that considered CG to be random, and sex of calf to be fixed and separate from CG, in which CG was defined as the group of calves born in the same herd, year, season of birth (trimester, and undergone the same management.
Higher-order nonlinear effects in a Josephson parametric amplifier
Kochetov, Bogdan A.; Fedorov, Arkady
2015-12-01
Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.
Conservation Laws in Higher-Order Nonlinear Optical Effects
Kim, J; Shin, H J; Kim, Jongbae
1999-01-01
Conservation laws of the nonlinear Schrödinger equation are studied in the presence of higher-order nonlinear optical effects including the third-order dispersion and the self-steepening. In a context of group theory, we derive a general expression for infinitely many conserved currents and charges of the coupled higher-order nonlinear Schrödinger equation. The first few currents and charges are also presented explicitly. Due to the higher-order effects, conservation laws of the nonlinear Schrödinger equation are violated in general. The differences between the types of the conserved currents for the Hirota and the Sasa-Satsuma equations imply that the higher-order terms determine the inherent types of conserved quantities for each integrable cases of the higher-order nonlinear Schrödinger equation.
Nonlinear Mixed-Effects Models for Repairable Systems Reliability
Institute of Scientific and Technical Information of China (English)
TAN Fu-rong; JIANG Zhi-bin; KUO Way; Suk Joo BAE
2007-01-01
Mixed-effects models, also called random-effects models, are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject, but also to describe the variation among different subjects. Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data. In this paper, nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies. By using this type of models, statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance. Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.
de Brito, G P; Gomes, Y M P; Junior, J T Guaitolini; Nikoofard, V
2016-01-01
In this paper we introduce a modified covariant quantum algebra based in the so-called Quesne-Tkachuk algebra. By means of a deformation procedure we arrive at a class of higher derivative models of gravity. The study of the particle spectra of these models reveals an equivalence with the physical content of the well-known renormalizable and super-renormalizable higher derivative gravities. The particle spectrum exhibits the presence of spurious complex ghosts and, in light of this problem, we suggest an interesting interpretation in the context of minimal length theories. Also, a discussion regarding the non-relativistic potential energy is proposed.
Effect of gain nonlinearity in semiconductor lasers
DEFF Research Database (Denmark)
Jensen, Niels H.; Christiansen, Peter Leth; Skovgaard, Ove
1988-01-01
Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2......+1)-dimensional Fokker-Planck equation is derived and integrated on an Amdahl VP1100 vector processor. Above threshold the resulting probability density agrees with the rate-equation predictions. The case of high-speed modulation is also considered. The nonlinear gain is found to stabilize the laser....
Estimating Cosmological Parameter Covariance
Taylor, Andy
2014-01-01
We investigate the bias and error in estimates of the cosmological parameter covariance matrix, due to sampling or modelling the data covariance matrix, for likelihood width and peak scatter estimators. We show that these estimators do not coincide unless the data covariance is exactly known. For sampled data covariances, with Gaussian distributed data and parameters, the parameter covariance matrix estimated from the width of the likelihood has a Wishart distribution, from which we derive the mean and covariance. This mean is biased and we propose an unbiased estimator of the parameter covariance matrix. Comparing our analytic results to a numerical Wishart sampler of the data covariance matrix we find excellent agreement. An accurate ansatz for the mean parameter covariance for the peak scatter estimator is found, and we fit its covariance to our numerical analysis. The mean is again biased and we propose an unbiased estimator for the peak parameter covariance. For sampled data covariances the width estimat...
Intra-Channel Nonlinear Effect on Optical PPM Pulse Transmission
Institute of Scientific and Technical Information of China (English)
Sun; Linghao; Jarmo; Takala
2003-01-01
PPM encoded Gaussian pulse sequence shows more immunity than non-PPM schemes on optical fiber intra-channel nonlinearity and demonstrated by a numerical study of IXPM and IFWM effects deploying on 100Gb/s single channelsystem.
Effects of Nonlinearities on Induced Voltages across Lumped Devices
Directory of Open Access Journals (Sweden)
Ziya Mazloom
2011-01-01
Full Text Available There have been many studies on induced currents and voltages along overhead conductors due to lightning flashes. In most of these studies lumped loads and components are connected only as line terminations [1]-[4]. In studies where series and shunt connected components are connected along the lines the effects of nonlinear components and effects are disregarded [5]-[8]. This is not always correct as nonlinear effects will introduce high frequencies in the system and affect the current and voltage wave distribution. In this paper the effects of series and shunt components and nonlinear phenomenon on a system representative of the Swedish electrified railway system will be investigated. It is seen how introduction of different linear and nonlinear components affect the propagating voltage wave forms.
Saltas, Ippocratis D
2016-01-01
We derive the 1-loop effective action of the cubic Galileon coupled to quantum-gravitational fluctuations in a background and gauge-independent manner, employing the covariant framework of DeWitt and Vilkovisky. Although the bare action respects shift symmetry, the coupling to gravity induces an effective mass to the scalar, of the order of the cosmological constant, as a direct result of the non-flat field-space metric, the latter ensuring the field-reparametrization invariance of the formalism. Within a gauge-invariant regularization scheme, we discover novel, gravitationally induced non-Galileon higher-derivative interactions in the effective action. These terms, previously unnoticed within standard, non-covariant frameworks, are not Planck suppressed. Unless tuned to be sub-dominant, their presence could have important implications for the classical and quantum phenomenology of the theory.
Directory of Open Access Journals (Sweden)
Xin Qi
2016-01-01
Full Text Available Individuals with internet gaming disorder (IGD often have impaired risky decision-making abilities, and IGD-related functional changes have been observed during neuroimaging studies of decision-making tasks. However, it is still unclear how feedback (outcomes of decision-making affects the subsequent risky decision-making in individuals with IGD. In this study, twenty-four adolescents with IGD and 24 healthy controls (HCs were recruited and underwent functional magnetic resonance imaging while performing the balloon analog risk task (BART to evaluate the effects of prior outcomes on brain activity during subsequent risky decision-making in adolescents with IGD. The covariance between risk level and activation of the bilateral ventral medial prefrontal cortex, left inferior frontal cortex, right ventral striatum (VS, left hippocampus/parahippocampus, right inferior occipital gyrus/fusiform gyrus and right inferior temporal gyrus demonstrated interaction effects of group by outcome (P < 0.05, AlphaSim correction. The regions with interactive effects were defined as ROI, and ROI-based intergroup comparisons showed that the covariance between risk level and brain activation was significantly greater in adolescents with IGD compared with HCs after a negative outcome occurred (P < 0.05. Our results indicated that negative outcomes affected the covariance between risk level and activation of the brain regions related to value estimation (prefrontal cortex, anticipation of rewards (VS, and emotional-related learning (hippocampus/parahippocampus, which may be one of the underlying neural mechanisms of disadvantageous risky decision-making in adolescents with IGD.
Effective nonlinear AC response to composite with spherical particles
Institute of Scientific and Technical Information of China (English)
Chen Xiao-Gang; Liang Fang-Chu; Wei En-Bo
2005-01-01
An effective nonlinear alternative-current (AC) response to granular nonlinear-composite with spherical inclusions embedded in a host medium under the action of an external AC field is investigated by using a perturbation approach.The local potentials of composite at higher harmonics are derived both in a region of local inclusion particles and in a local host region under the action of a sinusoidal field E1 sinωt + E3sin3ωt. An effective nonlinear-response to composite and the relationship between the effective nonlinear-responses at the fundamental frequency and the third harmonics are also studied for the spherical inclusions in a dilute limit.
Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.
2013-01-01
When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek
Energy Technology Data Exchange (ETDEWEB)
Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steven B.
2013-07-23
When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cek resolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek
Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.
2013-09-01
When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, Cɛ, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cek resolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek
Non-linear effects in bunch compressor of TARLA
Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin
2016-03-01
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.
ElNady, Khaled; Goda, Ibrahim; Ganghoffer, Jean-François
2016-09-01
The asymptotic homogenization technique is presently developed in the framework of geometrical nonlinearities to derive the large strains effective elastic response of network materials viewed as repetitive beam networks. This works extends the small strains homogenization method developed with special emphasis on textile structures in Goda et al. (J Mech Phys Solids 61(12):2537-2565, 2013). A systematic methodology is established, allowing the prediction of the overall mechanical properties of these structures in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the chosen equivalent continuum. Internal scale effects of the initially discrete structure are captured by the consideration of a micropolar effective continuum model. Applications to the large strain response of 3D hexagonal lattices and dry textiles exemplify the powerfulness of the proposed method. The effective mechanical responses obtained for different loadings are validated by FE simulations performed over a representative unit cell.
The effect of a population bottleneck on the evolution of genetic variance/covariance structure.
Jarvis, J P; Cropp, S N; Vaughn, T T; Pletscher, L S; King-Ellison, K; Adams-Hunt, E; Erickson, C; Cheverud, J M
2011-10-01
It is well known that standard population genetic theory predicts decreased additive genetic variance (V(a) ) following a population bottleneck and that theoretical models including interallelic and intergenic interactions indicate such loss may be avoided. However, few empirical data from multicellular model systems are available, especially regarding variance/covariance (V/CV) relationships. Here, we compare the V/CV structure of seventeen traits related to body size and composition between control (60 mating pairs/generation) and bottlenecked (2 mating pairs/generation; average F = 0.39) strains of mice. Although results for individual traits vary considerably, multivariate analysis indicates that V(a) in the bottlenecked populations is greater than expected. Traits with patterns and amounts of epistasis predictive of enhanced V(a) also show the largest deviations from additive expectations. Finally, the correlation structure of weekly weights is not significantly different between control and experimental lines but correlations between necropsy traits do differ, especially those involving the heart, kidney and tail length. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Bertolini, Daniele; Solon, Mikhail P; Walsh, Jonathan R; Zurek, Kathryn M
2015-01-01
We compute the non-Gaussian contribution to the covariance of the matter power spectrum at one-loop order in Standard Perturbation Theory (SPT), and using the framework of the effective field theory (EFT) of large scale structure (LSS). The complete one-loop contributions are evaluated for the first time, including the leading EFT corrections that involve seven independent operators, of which four appear in the power spectrum and bispectrum. In the basis where the three new operators are maximally uncorrelated, we find that two of them are suppressed at the few percent level relative to other contributions, and may thus be neglected. We extract the single remaining coefficient from N-body simulations, and obtain robust predictions for the non-Gaussian part of the covariance $C(k_i, k_j)$ up to $k_i + k_j \\sim$ 0.3 h/Mpc. The one-parameter prediction from EFT improves over SPT, with the analytic reach in wavenumber more than doubled.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Nonlinear Peltier effect and thermoconductance in nanowires
Energy Technology Data Exchange (ETDEWEB)
Bogachek, E.N.; Scherbakov, A.G.; Landman, U. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (United States)
1999-10-01
A theoretical analysis of thermal transport in nanowires, in field-free conditions and under influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager{close_quote}s relation between the Peltier and thermopower coefficients. Oscillations of the Peltier coefficient in a magnetic field are demonstrated. The thermoconductance has a steplike quantized structure similar to the electroconductance and it exhibits deviations from the Wiedemann-Franz law. The strong dependence of the thermoconductance on the applied magnetic field leads to the possibility of magnetic blockade of thermal transport in wires with a small number of conducting channels. Possible control of thermal transport in nanowires through external parameters, that is applied through finite voltages and magnetic fields, is discussed. {copyright} {ital 1999} {ital The American Physical Society}
Nonlinear Peltier effect and thermoconductance in nanowires
Bogachek, E. N.; Scherbakov, A. G.; Landman, Uzi
1999-10-01
A theoretical analysis of thermal transport in nanowires, in field-free conditions and under influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager's relation between the Peltier and thermopower coefficients. Oscillations of the Peltier coefficient in a magnetic field are demonstrated. The thermoconductance has a steplike quantized structure similar to the electroconductance and it exhibits deviations from the Wiedemann-Franz law. The strong dependence of the thermoconductance on the applied magnetic field leads to the possibility of magnetic blockade of thermal transport in wires with a small number of conducting channels. Possible control of thermal transport in nanowires through external parameters, that is applied through finite voltages and magnetic fields, is discussed.
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.
Third Order Nonlinear Optical Effects in Conjugated Polymers
Halvorson, Craig Steven
Third order nonlinear optical effects in conjugated materials were studied using two different spectroscopic methods, third harmonic generation and two photon absorption. The third harmonic generation spectra of cis-polyacetylene, trans-polyacetylene, oriented trans-polyacetylene, three isomers of polyaniline, cis and trans-polyacetylene in polyvinyl butyral, polyheptdadiester, polyheptadiketone, and MEH-PPV/polyethylene blends were measured. The nonlinear optical susceptibility increases with structural order, and is enhanced by the presence of a degenerate ground state. The magnitude of the susceptibility reaches as high as 10^{-7} esu, which is sufficient for the creation of all-optical nonlinear devices. The two photon absorption spectrum of oriented transpolyacetylene was measured using nonlinear photothermal deflection. The spectrum reveals directly the Ag state at 1.1 eV in trans-polyacetylene, and reveals another Ag state at higher energy. The magnitude of the two photon absorption is large enough to rule out using trans-polyacetylene in serial all-optical nonlinear devices; all-optical devices made from conjugated polymers must be parallel, not serial. A new figure of merit for nonlinear devices was proposed.
Research of secondary effects in nonlinear radio-location
Directory of Open Access Journals (Sweden)
M. V. Zinchenko
2012-12-01
Full Text Available Introduction. The basic setting of nonlinear radio-locator (NR in the field of technical guarding is the searching, identification and localization of radio-electronic mortgage devices − semiconductor nonlinear scatterers (NS. Statement of the problem. The NR efficiency increasing is possible by minimization of such factors influence as: presence of obstacle structures "metal-oxide-metal" (МОМ-structures in the investigated medium and presence of parasitic directional pattern lobe of emitting antenna. The analysis of nonlinear scatterers secondary unmasking features is considered. All possible regularities of the course of the phenomena and processes in the investigated medium, that are the consequence of nonlinear areas of NS semiconductor structures characteristics change (distortion under sounding radiation, are considered. Principal part. Researches showed that theoretically discovered effective radius change effect of nonlinear products dispersion of nonlinear scatterer response signal at the varying of nonlinear radio-locator sounding signal (SS power-level allows to investigate the phenomenon of semiconductor structures characteristics of NS distortion at the action of relatively powerful ultrahigh frequency field. The effective radius change of nonlinear products dispersion of NS response signal at varying of exposing signal power-level is experimentally confirmed, which proves the possibility and expediency of the secondary unmasked features practice use for the search, identification and localization of NS in the technical guarding field: − the area of looping appearance effect on functional dependence of response signal multiple harmonic level from the sounding signal power-level [3]; − effect of processes inertiality of semiconductor structures volt-ampere characteristics distortion [4]; − phenomena of cross-correlation dependence of response signal chaotic state degree from the sounding signal
Controlling ultrafast currents by the non-linear photogalvanic effect
Wachter, Georg; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim
2015-01-01
We theoretically investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femto-second optical laser pulses. Ab-initio simulations based on time-dependent density functional theory predict ultrafast DC currents that can be viewed as a non-linear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity I_c ~ 3.8*10^13 W/cm2. We trace this switching to the transition from non-linear polarization currents to the tunneling excitation regime. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. We find the ultrafast current control by the non-linear photogalvanic effect to be remarkably robust and insensitive to laser-pulse shape and carrier-envelope phase.
Coriolis effects on nonlinear oscillations of rotating cylinders and rings
Padovan, J.
1976-01-01
The effects which moderately large deflections have on the frequency spectrum of rotating rings and cylinders are considered. To develop the requisite solution, a variationally constrained version of the Lindstedt-Poincare procedure is employed. Based on the solution developed, in addition to considering the effects of displacement induced nonlinearity, the role of Coriolis forces is also given special consideration.
Zeno effect and switching of solitons in nonlinear couplers
DEFF Research Database (Denmark)
Abdullaev, F Kh; Konotop, V V; Ögren, Magnus;
2011-01-01
The Zeno effect is investigated for soliton type pulses in a nonlinear directional coupler with dissipation. The effect consists in increase of the coupler transparency with increase of the dissipative losses in one of the arms. It is shown that localized dissipation can lead to switching...
Korman, Josh; Yard, Mike
2017-01-01
Article for outlet: Fisheries Research. Abstract: Quantifying temporal and spatial trends in abundance or relative abundance is required to evaluate effects of harvest and changes in habitat for exploited and endangered fish populations. In many cases, the proportion of the population or stock that is captured (catchability or capture probability) is unknown but is often assumed to be constant over space and time. We used data from a large-scale mark-recapture study to evaluate the extent of spatial and temporal variation, and the effects of fish density, fish size, and environmental covariates, on the capture probability of rainbow trout (Oncorhynchus mykiss) in the Colorado River, AZ. Estimates of capture probability for boat electrofishing varied 5-fold across five reaches, 2.8-fold across the range of fish densities that were encountered, 2.1-fold over 19 trips, and 1.6-fold over five fish size classes. Shoreline angle and turbidity were the best covariates explaining variation in capture probability across reaches and trips. Patterns in capture probability were driven by changes in gear efficiency and spatial aggregation, but the latter was more important. Failure to account for effects of fish density on capture probability when translating a historical catch per unit effort time series into a time series of abundance, led to 2.5-fold underestimation of the maximum extent of variation in abundance over the period of record, and resulted in unreliable estimates of relative change in critical years. Catch per unit effort surveys have utility for monitoring long-term trends in relative abundance, but are too imprecise and potentially biased to evaluate population response to habitat changes or to modest changes in fishing effort.
Quantum corrections for the cubic Galileon in the covariant language
Saltas, Ippocratis D.; Vitagliano, Vincenzo
2017-05-01
We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach in this context is discussed, while all calculations are explicitly presented.
Nonlinear effects generation in non-adiabatically tapered fibres
Palací, Jesús; Mas, Sara; Monzón-Hernández, David; Martí, Javier
2015-12-01
Nonlinear effects are observed in a non-adiabatically tapered optical fibre. The designed structure allows for the introduction of self-phase modulation, which is observed through pulse breaking and spectral broadening, in approximately a centimetre of propagation using a commercial telecom laser. These devices are simple to fabricate and suitable to generate and control a variety of nonlinear effects in practical applications because they do not experience short-term degradation as previously reported approaches. Experimental and theoretical results are obtained, showing a good agreement.
Nonlinear Peltier effect and the nonequilibrium Jonson-Mahan theorem
Freericks, J. K.; Zlatic, V.
2006-01-01
We generalize the many-body formalism for the Peltier effect to the nonlinear/nonequilibrium regime corresponding to large amplitude (spatially uniform but time-dependent) electric fields. We find a relationship between the expectation values for the charge current and for the part of the heat current that reduces to the Jonson-Mahan theorem in the linear-response regime. The nonlinear-response Peltier effect has an extra term in the heat current that is related to Joule heating (we are unabl...
Effect of scalar nonlinearity on zonal flow generation by Rossby waves
Mikhailovskii, A. B.; Lominadze, J. G.; Erokhin, N. N.; Erokhin, N. S.; Smolyakov, A. I.; Tsypin, V. S.
2007-01-01
Effects of scalar nonlinearity on the generation of zonal flow by Rossby waves in shallow rotating fluid are considered. Zonal flows are generated via the action of Reynolds stress due to vector nonlinearity together with the effects of scalar nonlinearity. It is shown that the scalar nonlinearity r
The effect of agricultural structures on the quality of eddy covariance flux data
Tanny, Josef; Achiman, Ori; Mekhmandarov, Yonatan; Pirkner, Moran
2015-04-01
The Eddy Covariance (EC) is a common method to directly measure whole canopy turbulent fluxes of scalars like water vapor, air temperature and CO2. The method was originally developed to measure fluxes from canopies in the open; however, in recent years it was also shown to be valid for flux measurements of agricultural crops cultivated inside structures covered by porous screens, i.e., screenhouses. To reliably measure turbulent fluxes by the EC technique, several air flow conditions should prevail. The purpose of this study was to examine two criteria, commonly used to assess the suitability of turbulent flow conditions for EC measurements in open fields, for flux measurements in different types of agricultural screenhouses and greenhouses. The two tests are the "Integral Turbulence Characteristics" (ITC), which indicates on the development of the turbulent flow, and the "Steady State" (SS), which examines the variation in time of flow statistics during the averaging period. For both tests data was classified according to their suitability for flux measurements. The research was conducted in 3 types of agricultural structures with 3 different plants: (S1) A banana screenhouse, 5.5 m in height, covered by an 8% shade net; (S2) A pepper screenhouse, 3.7 m in height, covered by an insect-proof, 50 mesh net; (S3) A 12-span naturally ventilated tomato greenhouse with a 6 m height arched gable, equipped with an insect-proof 50 mesh net on the sidewalls, and impermeable plastic cover on the roof. In each structure an EC system was installed between the top of the canopy and the roof, in a position that provided sufficient fetch for the prevailing wind, for a measurement period of at least 20 days. Mean fluxes were calculated over half-hourly time intervals. In the present study the ITC test was applied in two different approaches: (i) according to the commonly used literature model which prevails for turbulent flow in open fields (ITC1), and (ii) according to a new
Manifestly covariant electromagnetism
Energy Technology Data Exchange (ETDEWEB)
Hillion, P. [Institut Henri Poincare' , Le Vesinet (France)
1999-03-01
The conventional relativistic formulation of electromagnetism is covariant under the full Lorentz group. But relativity requires covariance only under the proper Lorentz group and the authors present here the formalism covariant under the complex rotation group isomorphic to the proper Lorentz group. The authors discuss successively Maxwell's equations, constitutive relations and potential functions. A comparison is made with the usual formulation.
Nonlinear dispersion effects in elastic plates: numerical modelling and validation
Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2017-04-01
Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.
Nonlinear Effects in the Amplitude of Cosmological Density Fluctuations
Juszkiewicz, Roman; Fry, J N; Jaffe, Andrew H
2009-01-01
The amplitude of cosmological density fluctuations, $\\sigma_8$, has been studied and estimated by analysing many cosmological observations. The values of the estimates vary considerably between the various probes. However, different estimators probe the value of $\\sigma_8$ in different cosmological scales and do not take into account the nonlinear evolution of the parameter at late times. We show that estimates of the amplitude of cosmological density fluctuations derived from cosmic flows are systematically higher than those inferred at early epochs because of nonlinear evolution at later times. Here we derive corrections to the value of $\\sigma_8$ and compare amplitudes after accounting for this effect.
Study On Nonlinear effect In 2D Plastic Media
Wenjie, D.; Chen, X.
2011-12-01
Unlike the perfect elastic, homogeneous and isotropic model, the properties of real earth media are heterogeneous, plastic and anisotropic to a certain extend. To accurately simulate the strong ground motion in a basin, nonlinear or plastic effect should be considered in simulation. In this study, we use DRP/opt MacCormack non-staggered finite difference method to simulate 2D seismic wave propagation in anisotropic and plastic media. Compared with the traditional staggered grid FDM, this scheme is more accurate and more efficient. We focus on the nonlinear character of the sedimentary basin model. The preliminary ground motion results indicate that the energy of seismic wave has obvious nonlinear dissipation and irreversible deformations which is danger to buildings in the sedimentary basin.
The effect of nonlinearity on unstable zones of Mathieu equation
Indian Academy of Sciences (India)
M GH SARYAZDI
2017-03-01
Mathieu equation is a well-known ordinary differential equation in which the excitation term appears as the non-constant coefficient. The mathematical modelling of many dynamic systems leads to Mathieu equation. The determination of the locus of unstable zone is important for the control of dynamic systems. In this paper, the stable and unstable regions of Mathieu equation are determined for three cases of linear and nonlinear equations using the homotopy perturbation method. The effect of nonlinearity is examined in the unstable zone. The results show that the transition curves of linear Mathieu equation depend on the frequency of the excitation term. However, for nonlinear equations, the curves depend also on initial conditions. In addition, increasing the amplitude of response leads to an increase in the unstable zone.
Effective Dielectric Response of Nonlinear Composites of Coated Metal Inclusions
Institute of Scientific and Technical Information of China (English)
CHEN Guo-Qing; WU Ya-Min
2007-01-01
The effective dielectric response of the composites in which nondilute coated metal particles are randomly embedded in a linear host is investigated. Two types of coated particles are considered, one is that the core is nonlinear, the other is that the shell is nonlinear. We derive general expressions for the effective linear dielectric function and the effective third-order nonlinear susceptibility, and take one step forward to perform numerical calculations on the coated metal/dielectric composites. Numerical results show that the effective linear and nonlinear dielectric responses can be greatly enhanced near the surface plasmon resonant frequency. Moreover, the resonant peaks are found within a range from 0.46ωp to 0.57ωp for spherical particles and from 0.59ωp to 0.7ωp for cylindrical inclusions. In the frequency region, the resonant peak can achieve the maximum, according to an optimal structural parameter and volume fraction. The resonant frequency exhibits a redshift with the increasing structural parameter k or volume fraction f or dimensionality factor D.
Conditional linear-optical measurement schemes generate effective photon nonlinearities
Lapaire, G G; Dowling, J P; Sipe, J E; Dowling, Jonathan P.
2003-01-01
We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.
Spontaneous emission and nonlinear effects in photonic bandgap materials
Fogel, Ishella S.; Bendickson, Jon M.; Tocci, Michael D.; Bloemer, Mark J.; Scalora, Michael; Bowden, Charles M.; Dowling, Jonathan P.
1998-03-01
We summarize and review our theoretical and experimental work on spontaneous emission and nonlinear effects in one-dimensional, photonic bandgap (PBG) structures. We present a new result: a method for calculating the normal-mode solutions - and hence the spontaneous emission of embedded emitters - in an arbitrary, linear, lossless, one-dimensional, PBG structure.
Measuring the Non-Linear Effects of Monetary Policy
Christian Matthes; Regis Barnichon
2015-01-01
This paper proposes a method to identify the non-linear effects of structural shocks by using Gaussian basis functions to parametrize impulse response functions. We apply our approach to monetary policy and find that the effect of a monetary intervention depends strongly on (i) the sign of the intervention, (ii) the size of the intervention, and (iii) the state of the business cycle at the time of the intervention. A contractionary policy has a strong adverse effect on output, much stronger t...
Experimental observations of nonlinear effects of the Lamb waves
Institute of Scientific and Technical Information of China (English)
DENG Mingxi; D.C. Price; D.A.Scott
2004-01-01
The experimental observations of nonlinear effects of the primary Lamb waves have been reported. Firstly, the brief descriptions have been made for the nonlinear acoustic measurement system developed by Ritec. The detailed considerations for the acoustic experiment system established for observing of the nonlinear effects of the primary Lamb waves have been carried out. Especially, the analysis focuses on the time-domain responses of second harmonics of the primary Lame waves by employing a straightforward model. Based on the existence conditions of strong nonlinearity of the primary Lamb waves, the wedge transducers are designed to generate and detect the primary and secondary waves on the surface of an aluminum sheet. For the different distances between the transmitting and receiving wedge transducers,the amplitudes of the primary waves and the second harmonics on the sheet surface have been measured within a specified frequency range. In the immediate vicinity of the driving frequency,where the primary and the double frequency Lamb waves have the same phase velocities, the quantitative relations of second-harmonic amplitudes with the propagation distance have been analyzed. It is experimentally verified that the second harmonics of the primary Lamb waves do have a cumulative growth effect along with the propagation distance.
Nonlinear dielectric effects in liquids: a guided tour
Richert, Ranko
2017-09-01
Dielectric relaxation measurements probe how the polarization of a material responds to the application of an external electric field, providing information on structure and dynamics of the sample. In the limit of small fields and thus linear response, such experiments reveal the properties of the material in the same thermodynamic state it would have in the absence of the external field. At sufficiently high fields, reversible changes in enthalpy and entropy of the system occur even at constant temperature, and these will in turn alter the polarization responses. The resulting nonlinear dielectric effects feature field induced suppressions (saturation) and enhancements (chemical effect) of the amplitudes, as well as time constant shifts towards faster (energy absorption) and slower (entropy reduction) dynamics. This review focuses on the effects of high electric fields that are reversible and observed at constant temperature for single component glass-forming liquids. The experimental challenges involved in nonlinear dielectric experiments, the approaches to separating and identifying the different sources of nonlinear behavior, and the current understanding of how high electric fields affect dielectric materials will be discussed. Covering studies from Debye’s initial approach to the present state-of-the-art, it will be emphasized what insight can be gained from the nonlinear responses that are not available from dielectric relaxation results obtained in the linear regime.
Effective action of composite fields for general gauge theories in BLT-covariant formalism
Lavrov, P M; Reshetnyak, A A
1996-01-01
The gauge dependence of the effective action of composite fields for general gauge theories in the framework of the quantization method by Batalin, Lavrov and Tyutin is studied. The corresponding Ward identites are obtained. The variation of composite fields effective action is found in terms of new set of generators depending on composite field. The theorem of the on-shell gauge fixing independence for the effective action of composite fields in such formalism is proven. Brief discussion of gravitational-vector induced interaction for Maxwell theory with composite fields is given.
Energy Technology Data Exchange (ETDEWEB)
Lavrov, P.M.; Odintsov, S.D. [Department of Mathematical Analysis, Tomsk State Pedagogical University, Tomsk 634041 (Russia)]|[Department ECM, Faculte de Fisica, Universidad de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Reshetnyak, A.A. [Quantum Field Theory Department, Tomsk State University, Tomsk 634050 (Russia)
1997-07-01
The gauge dependence of the effective action of composite fields for general gauge theories in the framework of the quantization method by Batalin, Lavrov and Tyutin is studied. The corresponding Ward identities are obtained. The variation of composite fields effective action is found in terms of new set of generators depending on composite field. The theorem of the on-shell gauge fixing independence for the effective action of composite fields in such formalism is proven. A brief discussion of gravitational-vector induced interaction for Maxwell theory with composite fields is given. {copyright} {ital 1997 American Institute of Physics.}
Saltas, Ippocratis D.; Vitagliano, Vincenzo
2017-05-01
We derive the 1-loop effective action of the cubic Galileon coupled to quantum-gravitational fluctuations in a background and gauge-independent manner, employing the covariant framework of DeWitt and Vilkovisky. Although the bare action respects shift symmetry, the coupling to gravity induces an effective mass to the scalar, of the order of the cosmological constant, as a direct result of the nonflat field-space metric, the latter ensuring the field-reparametrization invariance of the formalism. Within a gauge-invariant regularization scheme, we discover novel, gravitationally induced non-Galileon higher-derivative interactions in the effective action. These terms, previously unnoticed within standard, noncovariant frameworks, are not Planck suppressed. Unless tuned to be subdominant, their presence could have important implications for the classical and quantum phenomenology of the theory.
Effect of Measurement vs. Counting Errors on Parameters' Covariance in Neutron Tomography Analysis
Energy Technology Data Exchange (ETDEWEB)
Odyniec, Michał [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Blair, Jerome J. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)
2013-06-13
We present here a method that estimates the relative effect of the counting uncertainty and of the instrument uncertainty on that of the parameters in a parametric model for neutron time of flight. The final result, obtained independently of calculation of the parameter values from measured data, presents explicitly the ratio of the two uncertainties in terms of the choice, settings, and placement of the detector and the oscilloscope. Consequently, the method can serve as a tool in planning a measurement setup.
Xu, Xu Steven; Yuan, Min; Yang, Haitao; Feng, Yan; Xu, Jinfeng; Pinheiro, Jose
2017-01-01
Covariate analysis based on population pharmacokinetics (PPK) is used to identify clinically relevant factors. The likelihood ratio test (LRT) based on nonlinear mixed effect model fits is currently recommended for covariate identification, whereas individual empirical Bayesian estimates (EBEs) are considered unreliable due to the presence of shrinkage. The objectives of this research were to investigate the type I error for LRT and EBE approaches, to confirm the similarity of power between the LRT and EBE approaches from a previous report and to explore the influence of shrinkage on LRT and EBE inferences. Using an oral one-compartment PK model with a single covariate impacting on clearance, we conducted a wide range of simulations according to a two-way factorial design. The results revealed that the EBE-based regression not only provided almost identical power for detecting a covariate effect, but also controlled the false positive rate better than the LRT approach. Shrinkage of EBEs is likely not the root cause for decrease in power or inflated false positive rate although the size of the covariate effect tends to be underestimated at high shrinkage. In summary, contrary to the current recommendations, EBEs may be a better choice for statistical tests in PPK covariate analysis compared to LRT. We proposed a three-step covariate modeling approach for population PK analysis to utilize the advantages of EBEs while overcoming their shortcomings, which allows not only markedly reducing the run time for population PK analysis, but also providing more accurate covariate tests.
Kendler, K S; Gardner, C O; Prescott, C A
1999-06-01
Previous analyses in a large population-based sample of female twins indicated that three dimensions of religiosity--personal devotion, personal conservatism and institutional conservatism--were, in different ways, significantly related to current depressive symptoms and substance use and lifetime psychiatric and substance use disorders. Furthermore, personal devotion, but neither personal conservatism nor institutional conservatism, buffered the depressogenic effects of stressful life events (SLEs). We here explore further these results, using linear, logistic and Cox regression models. Eight personality and six demographic variables had distinct patterns of association with the three dimensions. Personal devotion was positively associated with years of education, age, and optimism and negatively correlated with neuroticism. Personal conservatism was negatively associated with education, income, age, mastery and positively correlated with neuroticism. Institutional conservatism was negatively correlated with self-esteem and parental education. Covarying for these 14 variables produced little change in their association with psychiatric and substance use outcomes. The impact of the dimensions of religiosity differed as a function of the SLE category. High levels of both personal devotion and institutional conservatism protected against the depressogenic effects of death and personal illness. High levels of personal conservatism were associated with increased sensitivity to relationship problems. These results suggest that the association between religiosity and low risk for symptoms of depression and substance use may be in part causal. The relationship between dimensions of religiosity and response to SLEs is complex but probably of importance in clarifying the nature of the coping process.
Silica holey fibres: fabrication and nonlinear effects
Belardi, W.; Monro, T.M.; Lee, J.H.; Yusoff, Z.; Price, J.H.V.; Malinowski, A.; Piper, A; Richardson, D J
2002-01-01
Holey fibres (HFs) [1] have emerged as a novel class of optical fibres which can provide completely new optical properties, such as endlessly single mode operation and novel dispersion properties as anomalous dispersion below 1.3µm, broadband flat dispersion and highly normal dispersion at 1.55µm. Moreover by changing the HF parameters (i.e. hole and core size), it is possible to fabricate HFs with an effective area so high as 800µm2 or so low as approximately 1µm2 [2]. A holey fibre perform ...
Energy Technology Data Exchange (ETDEWEB)
Franz Gross, Alfred Stadler
2010-09-01
We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.
Dynamic nonlinear thermal optical effects in coupled ring resonators
Directory of Open Access Journals (Sweden)
Chenguang Huang
2012-09-01
Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
Effects of noise on the phase dynamics of nonlinear oscillators
Daffertshofer, A.
1998-07-01
Various properties of human rhythmic movements have been successfully modeled using nonlinear oscillators. However, despite some extensions towards stochastical differential equations, these models do not comprise different statistical features that can be explained by nondynamical statistics. For instance, one observes certain lag one serial correlation functions for consecutive periods during periodic motion. This work aims at an extension of dynamical descriptions in terms of stochastically forced nonlinear oscillators such as ξ¨+ω20ξ=n(ξ,ξ˙)+q(ξ,ξ˙)Ψ(t), where the nonlinear function n(ξ,ξ˙) generates a limit cycle and Ψ(t) denotes colored noise that is multiplied via q(ξ,ξ˙). Nonlinear self-excited systems have been frequently investigated, particularly emphasizing stability properties and amplitude evolution. Thus, one can focus on the effects of noise on the frequency or phase dynamics that can be analyzed by use of time-dependent Fokker-Planck equations. It can be shown that noise multiplied via polynoms of arbitrary finite order cannot generate the desired period correlation but predominantly results in phase diffusion. The system is extended in terms of forced oscillators in order to find a minimal model producing the required error correction.
Nonlinear Resonance Islands and Modulational Effects in a Proton Synchrotron
Energy Technology Data Exchange (ETDEWEB)
Satogata, Todd Jeffrey [Northwestern Univ., Evanston, IL (United States)
1993-01-01
We examine both one-dimensional and two-dimensional nonlinear resonance islands created in the transverse phase space of a proton synchrotron by nonlinear magnets. We also examine application of the theoretical framework constructed to the phenomenon of modulational diffusion in a collider model of the Fermilab Tevatron. For the one-dimensional resonance island system, we examine the effects of two types of modulational perturbations on the stability of these resonance islands: tune modulation and beta function modulation. Hamiltonian models are presented which predict stability boundaries that depend on only three paramders: the strength and frequency of the modulation and the frequency of small oscillations inside the resonance island. These. models are compared to particle tracking with excellent agreement. The tune modulation model is also successfully tested in experiment, where frequency domain analysis coupled with tune modulation is demonstrated to be useful in measuring the strength of a nonlinear resonance. Nonlinear resonance islands are also examined in two transverse dimensions in the presence of coupling and linearly independent crossing resonances. We present a first-order Hamiltonian model which predicts fixed point locations, but does not reproduce small oscillation frequencies seen in tracking; therefore in this circumstance such a model is inadequate. Particle tracking is presented which shows evidence of two-dimensional persistent signals, and we make suggestions on methods for observing such signals in future experiment.
Institute of Scientific and Technical Information of China (English)
GAO Jie
2009-01-01
In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC Ⅱ. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations.
Covariant Hamiltonian field theory
Giachetta, G; Sardanashvily, G
1999-01-01
We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.
Covariance of oxygen and hydrogen isotopic composition in plant water: Species effects
Energy Technology Data Exchange (ETDEWEB)
Cooper, L.W.; DeNiro, M.J. (Univ. of California, Los Angeles (United States))
1989-12-01
Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species-specific factors on leaf water enrichment of D and {sup 18}O have not been studied for different plants growing together. To learn whether leaf water enrichment patterns and processes for D and {sup 18}O are different for individual species growing under the same environmental conditions the authors tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show high sloped (m in the leaf water equation {delta}D = m {delta}{sup 18}O + b) than in C{sub 3} plants. They determined the relationships between the stable hydrogen ({delta}D) and oxygen ({delta}{sup 18}O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes.
Mullah, Muhammad Abu Shadeque; Benedetti, Andrea
2016-11-01
Besides being mainly used for analyzing clustered or longitudinal data, generalized linear mixed models can also be used for smoothing via restricting changes in the fit at the knots in regression splines. The resulting models are usually called semiparametric mixed models (SPMMs). We investigate the effect of smoothing using SPMMs on the correlation and variance parameter estimates for serially correlated longitudinal normal, Poisson and binary data. Through simulations, we compare the performance of SPMMs to other simpler methods for estimating the nonlinear association such as fractional polynomials, and using a parametric nonlinear function. Simulation results suggest that, in general, the SPMMs recover the true curves very well and yield reasonable estimates of the correlation and variance parameters. However, for binary outcomes, SPMMs produce biased estimates of the variance parameters for high serially correlated data. We apply these methods to a dataset investigating the association between CD4 cell count and time since seroconversion for HIV infected men enrolled in the Multicenter AIDS Cohort Study.
Cosmology in nonlinear multidimensional gravity and the Casimir effect
Bolokhov, S. V.; Bronnikov, K. A.
2017-01-01
We study the possible cosmological models in Kaluza-Klein-type multidimensional gravity with a curvature-nonlinear Lagrangian and a spherical extra space, taking into account the Casimir energy. First, we find a minimum of the effective potential of extra dimensions, leading to a physically reasonable value of the effective cosmological constant in our 4D space-time. In this model, the huge Casimir energy density is compensated by a fine-tuned contribution of the curvature-nonlinear terms in the original action. Second, we present a viable model with slowly evolving extra dimensions and power-law inflation in our space-time. In both models, the results formulated in Einstein and Jordan frames are compared.
New approximation for the effective energy of nonlinear conducting composites
Gibiansky, Leonid; Torquato, Salvatore
1998-07-01
Approximations for the effective energy and, thus, effective conductivity of nonlinear, isotropic conducting dispersions are developed. This is accomplished by using the Ponte Castaneda variational principles [Philos. Trans. R. Soc. London Ser. A 340, 1321 (1992)] and the Torquato approximation [J. Appl. Phys. 58, 3790 (1985)] of the effective conductivity of corresponding linear composites. The results are obtained for dispersions with superconducting or insulating inclusions, and, more generally, for phases with a power-law energy. It is shown that the new approximations lie within the best available rigorous upper and lower bounds on the effective energy.
Evolutionary quantitative genetics of nonlinear developmental systems.
Morrissey, Michael B
2015-08-01
In quantitative genetics, the effects of developmental relationships among traits on microevolution are generally represented by the contribution of pleiotropy to additive genetic covariances. Pleiotropic additive genetic covariances arise only from the average effects of alleles on multiple traits, and therefore the evolutionary importance of nonlinearities in development is generally neglected in quantitative genetic views on evolution. However, nonlinearities in relationships among traits at the level of whole organisms are undeniably important to biology in general, and therefore critical to understanding evolution. I outline a system for characterizing key quantitative parameters in nonlinear developmental systems, which yields expressions for quantities such as trait means and phenotypic and genetic covariance matrices. I then develop a system for quantitative prediction of evolution in nonlinear developmental systems. I apply the system to generating a new hypothesis for why direct stabilizing selection is rarely observed. Other uses will include separation of purely correlative from direct and indirect causal effects in studying mechanisms of selection, generation of predictions of medium-term evolutionary trajectories rather than immediate predictions of evolutionary change over single generation time-steps, and the development of efficient and biologically motivated models for separating additive from epistatic genetic variances and covariances.
Nonlinear effect induced in thermally poled glass waveguides
Institute of Scientific and Technical Information of China (English)
REN Yi-tao
2006-01-01
Thermally poled germanium-doped channel waveguides are presented. Multilayer waveguides containing a silicon oxynitride layer were used as charge trapper in this investigation on the effect of the internal field inside the waveguide. Compared to waveguides without the trapping layer, experimental results showed that the induced linear electro-optic (EO) coefficient increases about 20% after poling, suggesting strongly that the internal field is relatively enhanced, and showed it is a promising means for improving nonlinearity by poling in waveguides.
INFLUENCE ANALYSIS ON EXPONENTIAL NONLINEAR MODELS WITH RANDOM EFFECTS
Institute of Scientific and Technical Information of China (English)
宗序平; 赵俊; 王海斌; 韦博成
2003-01-01
This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991.The authors show that the case deletion model is equivalent to mean shift outlier model.From this point of view,several diagnostic measures,such as Cook distance,score statistics are derived.The local influence measure of Cook is also presented.Numerical example illustrates that our method is available.
INFLUENCE ANALYSIS IN NONLINEAR MODELS WITH RANDOM EFFECTS
Institute of Scientific and Technical Information of China (English)
WeiBocheng; ZhongXuping
2001-01-01
Abstract. In this paper,a unified diagnostic method for the nonlinear models with random ef-fects based upon the joint likelihood given by Robinson in 1991 is presented. It is shown that thecase deletion model is equivalent to the mean shift outlier model. From this point of view ,sever-al diagnostic measures, such as Cook distance, score statistics are derived. The local influencemeasure of Cook is also presented. A numerical example illustrates that the method is avail-able
Controlling ultrafast currents by the nonlinear photogalvanic effect
Wachter, Georg; Sato, Shunsuke A.; Floss, Isabella; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim
2015-12-01
We investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femtosecond optical laser pulses. Ab initio simulations based on time-dependent density functional theory predict ultrafast direct currents that can be viewed as a nonlinear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity of about {I}{{c}}˜ 3× {10}13 W cm-2. We trace this switching to the transition from nonlinear polarisation currents to the tunnelling excitation regime. The latter is found to be sensitive to the relative orientation between laser polarisation and chemical bonds. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. While two temporally separated laser pulses lead to currents along one direction their temporal overlap can reverse the current. We find the ultrafast current control by the nonlinear photogalvanic effect to be remarkably robust and insensitive to the laser-pulse shape and the carrier-envelope phase.
Szekeres models: a covariant approach
Apostolopoulos, Pantelis S
2016-01-01
We exploit the 1+1+2 formalism to covariantly describe the inhomogeneous and anisotropic Szekeres models. It is shown that an \\emph{average scale length} can be defined \\emph{covariantly} which satisfies a 2d equation of motion driven from the \\emph{effective gravitational mass} (EGM) contained in the dust cloud. The contributions to the EGM are encoded to the energy density of the dust fluid and the free gravitational field $E_{ab}$. In addition the notions of the Apparent and Absolute Apparent Horizons are briefly discussed and we give an alternative gauge-invariant form to define them in terms of the kinematical variables of the spacelike congruences. We argue that the proposed program can be used in order to express the Sachs optical equations in a covariant form and analyze the confrontation of a spatially inhomogeneous irrotational overdense fluid model with the observational data.
Bergshoeff, E.; Pope, C.N.; Stelle, K.S.
1990-01-01
We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.
Jia, Shaoyang; Pennington, M. R.
2016-12-01
We derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator Schwinger-Dyson equation (SDE) in any covariant gauge with arbitrary numbers of spacetime dimensions to be consistent with the Landau-Khalatnikov-Fradkin transformation (LKFT). The general result has been verified by the special cases of three and four dimensions. Additionally, we present the condition that ensures the vacuum polarization is independent of the gauge parameter. As an illustration, we show how the gauge technique dimensionally regularized in four dimensions does not satisfy the covariance requirement.
Pennington, Shaoyang Jia amd M R
2016-01-01
We derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator Schwinger-Dyson equation (SDE) in any covariant gauge with arbitrary numbers of spacetime dimensions to be consistent with the Landau-Khalatnikov-Fradkin transformation (LKFT). The general result has been verified by the special cases of three and four dimensions. Additionally, we present the condition that ensures the vacuum polarization is independent of the gauge parameter. As an illustration, we show how the Gauge Technique dimensionally regularized in 4D does not satisfy the covariance requirement.
Covariant diagrams for one-loop matching
Zhang, Zhengkang
2016-01-01
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Non-linear effects for cylindrical gravitational two-soliton
Tomizawa, Shinya
2015-01-01
Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study non-linear effects of gravitational waves such as Faraday rotation and time shift phenomenon. In the previous work, we analyzed the single-soliton solution constructed by the Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex conjugate poles, by which we can avoid light-cone singularities unavoidable in a single soliton case. In particular, we compute amplitudes of such non-linear gravitational waves and time-dependence of the polarizations. Furthermore, we consider the time shift phenomenon for soliton waves, which means that a wave packet can propagate at slower velocity than light.
Nonlinear thermokinetic phenomena due to the Seebeck effect.
Sugioka, Hideyuki
2014-07-22
We propose a novel mechanism to produce nonlinear thermokinetic vortex flows around a circular cylinder with ideally high thermal conductivity in an electrolyte. That is, the nonlinear thermokinetic slip velocity, which is proportional to the square of the temperature gradient [∇(T)0(2)], is derived based on the electrolyte Seebeck effect, heat conduction equation, and Helmholtz–Smoluchowski formula. Different from conventional linear thermokinetic theory, our theory predicts that the inversion of the temperature gradient does not change the direction of the thermokinetic flows and thus a Janus particle using this phenomenon can move to the both hotter and colder regions in a temperature gradient field by changing the direction of its dielectric end. Our findings bridge the gap between the electro- and thermo-kinetic phenomena and provide an integrated physical viewpoint for the interface science.
Anharmonic effects in simple physical models: introducing undergraduates to nonlinearity
Christian, J. M.
2017-09-01
Given the pervasive character of nonlinearity throughout the physical universe, a case is made for introducing undergraduate students to its consequences and signatures earlier rather than later. The dynamics of two well-known systems—a spring and a pendulum—are reviewed when the standard textbook linearising assumptions are relaxed. Some qualitative effects of nonlinearity can be anticipated from symmetry (e.g., inspection of potential energy functions), and further physical insight gained by applying a simple successive-approximation method that might be taught in parallel with courses on classical mechanics, ordinary differential equations, and computational physics. We conclude with a survey of how these ideas have been deployed on programmes at a UK university.
Doppler effect of nonlinear waves and superspirals in oscillatory media.
Brusch, Lutz; Torcini, Alessandro; Bär, Markus
2003-09-01
Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example in which waves originate from a source exhibiting a back-and-forth movement in a radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves ("superspiral"). Using direct simulations as well as numerical nonlinear analysis within the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonic growth or decay as well as saturation of these modulations depending on the perturbation frequency. Our findings elucidate recent experimental observations concerning superspirals and their decay to spatiotemporal chaos.
DEFF Research Database (Denmark)
Fratini, Gerardo; Ibrom, Andreas; Arriga, Nicola
2012-01-01
and correction method proposed here is deemed applicable to closed-path systems featuring a broad range of sampling lines, and indeed applicable also to passive gases as a special case. The methods described in this paper are incorporated, as processing options, in the free and open-source eddy......, a composite of two existing approaches, for correcting eddy-covariance fluxes. By means of a comparison with parallel open-path measurements, we show that the mixed method leads to an improved estimation of latent heat fluxes, with respect to the method described by Ibrom et al. (2007). The quantification......-covariance software packages ECO2S and EddyPro....
Yang, Hanyu; Cranford, James A; Li, Runze; Buu, Anne
2015-02-20
This study proposes a generalized time-varying effect model that can be used to characterize a discrete longitudinal covariate process and its time-varying effect on a later outcome that may be discrete. The proposed method can be applied to examine two important research questions for daily process data: measurement reactivity and predictive validity. We demonstrate these applications using health risk behavior data collected from alcoholic couples through an interactive voice response system. The statistical analysis results show that the effect of measurement reactivity may only be evident in the first week of interactive voice response assessment. Moreover, the level of urge to drink before measurement reactivity takes effect may be more predictive of a later depression outcome. Our simulation study shows that the performance of the proposed method improves with larger sample sizes, more time points, and smaller proportions of zeros in the binary longitudinal covariate.
Negative and nonlinear magnetoresistance effect in silicon strip
Wang, Fangcong; Guo, Hui; Fan, Xiaolong; Li, Zhankui
2016-01-01
Both negative magnetoresistance and nonlinear magnetoresisitance were observed in silicon strip nuclear radiation detector in room temperature if we applied high magnetic field intensity in different direction. This result is different with former report. We believe this is the result of coaction of high electric field (Gunn effect) and high magnetic field, or because of the variation of number of carriers and the carriers mobility. The weak localization and Landau energy levels also affect the magnetoresistance. Different crystal orientations have different energy band structures. Complex band structures lead complex carriers mobility plus Landau energy levels. So the magnetoresisitance effect is anisotropy.
Power-transfer effects in monomode optical nonlinear waveguiding structures.
Jakubczyk, Z; Jerominek, H; Patela, S; Tremblay, R; Delisle, C
1987-09-01
We describe power-transfer effects, over a certain threshold, among constituents of planar waveguiding structures consisting of an optical linear layer deposited onto a nonlinear substrate (CdS(x)Se(1-x)-doped glass). Proper selection of the thickness of the linear waveguiding film and the refractive index of the linear cladding allows one to obtain optical transistor action and to construct all-optical AND, OR, NOT, and XOR logic gates. The effects appear for the TE(0) guided mode.
Kaneda, Kotaro; Han, Tae-Hyung
2009-09-01
Fentanyl is a commonly used analgesic and sedative for the burned in the operating theater as well as the burn care units. The aim of this study was to characterize fentanyl population pharmacokinetics in burns and to identify clinically significant covariates. Twenty adults, aged 37+/-3 years, with 49+/-4% (mean+/-S.E.) total body surface area burn, were enrolled at 17+/-3 days after the injury. Twenty non-burn adults served as controls. After an intravenous bolus of 200 mcg fentanyl, the plasma concentrations were sequentially determined up to 4.5 h. Concentration-time profiles were subjected to non-linear mixed effect modeling. Cardiac indices were estimated with esophageal Doppler monitor. Burned patients have higher cardiac index than the non-burned. Three-compartment model was the best fit. The volumes of distribution were considerably expanded in all three compartments (27.9 L vs. 63.4 L, 64.7 L vs. 92.9 L, 153 L vs. 301 L, respectively) compared to the non-burned. BURN was the single most important covariate significantly improving the model. The primary effect of burn trauma on fentanyl pharmacokinetics is substantially expanded volumes of distribution, i.e., dilutional. Difference in simulation, however, was insufficient to explain the augmented resistance to fentanyl, implying the importance of titrating analgesics to the clinical effect.
Modeling and study of nonlinear effects in electrodynamic shakers
Saraswat, Abhishek; Tiwari, Nachiketa
2017-02-01
An electrodynamic shaker is inherently a nonlinear electro-mechanical system. In this work, we have developed a lumped parameter model for the entire electromechanical system, developed an approach to non-destructively determine these parameters, and predict the nonlinear response of the shaker. This predicted response has been validated using experimental data. Through such an approach, we have been able to accurately predict the resulting distortions in the response of the shaker and other nonlinear effects like DC offset in the displacement response. Our approach offers a key advantage vis-à-vis other approaches which rely on techniques involving Volterra Series expansions or techniques based on blackbox models like neural networks, which is that in our approach, apart from predicting the response of the shaker, the model parameters obtained have a physical significance and changes in the parameters can be directly mapped to modification in key design parameters of the shaker. The proposed approach is also advantageous in one more way: it requires measurement of only four parameters, voltage, current, displacement and acceleration for estimating shaker model parameters non-destructively. The proposed model can be used for the design of linearization controllers, prototype testing and simulation of new shaker designs as well as for performance prediction of shakers under testing conditions.
Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence
Energy Technology Data Exchange (ETDEWEB)
Belli, E. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hammett, G. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dorland, W. [Univ. of Maryland, College Park, MD (United States)
2008-08-01
The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ^{-1.5} or κ^{-2.0}, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.
Dwyer, Theodore J.
2016-01-01
There is a great deal of concern regarding teacher impacts on student achievement being used as a substantial portion of a teacher's performance evaluation. This study investigated the degree of concordance and discordance between mathematics teacher ranking using value tables and covariate regression, which have both been used as measures for…
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)
2014-02-15
We study numerically the dynamics of an initially localized wave packet in one-dimensional nonlinear Schroedinger lattices with both local and nonlocal nonlinearities. Using the discrete nonlinear Schroedinger equation generalized by including a nonlocal nonlinear term, we calculate four different physical quantities as a function of time, which are the return probability to the initial excitation site, the participation number, the root-mean-square displacement from the excitation site and the spatial probability distribution. We investigate the influence of the nonlocal nonlinearity on the delocalization to self-trapping transition induced by the local nonlinearity. In the non-self-trapping region, we find that the nonlocal nonlinearity compresses the soliton width and slows down the spreading of the wave packet. In the vicinity of the delocalization to self-trapping transition point and inside the self-trapping region, we find that a new kind of self-trapping phenomenon, which we call partial self-trapping, takes place when the nonlocal nonlinearity is sufficiently strong.
On the Origin of Gravitational Lorentz Covariance
Khoury, Justin; Tolley, Andrew J
2013-01-01
We provide evidence that general relativity is the unique spatially covariant effective field theory of the transverse, traceless graviton degrees of freedom. The Lorentz covariance of general relativity, having not been assumed in our analysis, is thus plausibly interpreted as an accidental or emergent symmetry of the gravitational sector.
Current-induced nonlinear magnetoelectric effects in strontium hexaferrite
Zavislyak, I. V.; Popov, M. A.; Srinivasan, G.
2016-12-01
We report on the observation of nonlinear magnetoelectric effects at room temperature due to a dc current in the ferrimagnetic M -type strontium hexaferrite platelets. Utilizing microwave measurement techniques and data on the shift in magnetic mode frequencies, it was found that a dc current along the hexagonal c axis resulted in a significant decrease in the saturation magnetization and an increase in the uniaxial magnetocrystalline anisotropy field. These changes in the magnetic order parameters were directly proportional to the square of applied electric field and were found to be much higher than variations due to Joule heating. A phenomenological theory that takes into account the current-induced magnetobielectric (MBE) effects is proposed. Expressions for coupling coefficients for MBE effects have been obtained and have been calculated from the variations in magnetic order parameters. The electric field E (or current) tuning of the magnetic modes in Sr M reported here is orders of magnitude stronger than strain mediated E tuning of magnetic resonance in hexaferrite-ferroelectric composites. The nonlinear magnetoelectric effects in hexaferrite, therefore, open up an avenue for the realization of E -tunable broadband microwave and millimeter wave ferrite signal processing devices such as resonators and filters.
Nonlinear Magnetoimpedance Effect in FeCoNi Ferromagnetic Tubes
Institute of Scientific and Technical Information of China (English)
G. V. Kurlyandskaya; H. Yakabchuk; E. Kisker; N. G. Bebenin; H. García-Miquel; M. Vázquez; V. O. Vas′kovskiy
2001-01-01
The very high (up to 820% of the magnetoimpedance ratio) and sensitive nonlinear giant magnetoimpedance effect has been studied in the FeCo1Ni magnetic tubes electroplated onto Cu(3%)Be nonmagnetic wirefor frequencies from 1-10MHz. Special annealing was carried out in order to induce the magnetic anisotropy. The high harmonic generation was observed and the harmonics show larger variations with the external magnetic field than the fundamental frequency. The super high sensitivity of the harmonics is promising as regards the increase of the sensitivity of magnetoimpedance sensors.
Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dubbert, Dale F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tise, Bertice L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-07-01
Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the relationship of INL to GMTI performance.
Griffin, Brian M.; Larson, Vincent E.
2016-11-01
Microphysical processes, such as the formation, growth, and evaporation of precipitation, interact with variability and covariances (e.g., fluxes) in moisture and heat content. For instance, evaporation of rain may produce cold pools, which in turn may trigger fresh convection and precipitation. These effects are usually omitted or else crudely parameterized at subgrid scales in weather and climate models.A more formal approach is pursued here, based on predictive, horizontally averaged equations for the variances, covariances, and fluxes of moisture and heat content. These higher-order moment equations contain microphysical source terms. The microphysics terms can be integrated analytically, given a suitably simple warm-rain microphysics scheme and an approximate assumption about the multivariate distribution of cloud-related and precipitation-related variables. Performing the integrations provides exact expressions within an idealized context.A large-eddy simulation (LES) of a shallow precipitating cumulus case is performed here, and it indicates that the microphysical effects on (co)variances and fluxes can be large. In some budgets and altitude ranges, they are dominant terms. The analytic expressions for the integrals are implemented in a single-column, higher-order closure model. Interactive single-column simulations agree qualitatively with the LES. The analytic integrations form a parameterization of microphysical effects in their own right, and they also serve as benchmark solutions that can be compared to non-analytic integration methods.
Covariant density functional theory: Reexamining the structure of superheavy nuclei
Agbemava, S E; Nakatsukasa, T; Ring, P
2015-01-01
A systematic investigation of even-even superheavy elements in the region of proton numbers $100 \\leq Z \\leq 130$ and in the region of neutron numbers from the proton-drip line up to neutron number $N=196$ is presented. For this study we use five most up-to-date covariant energy density functionals of different types, with a non-linear meson coupling, with density dependent meson couplings, and with density-dependent zero-range interactions. Pairing correlations are treated within relativistic Hartree-Bogoliubov (RHB) theory based on an effective separable particle-particle interaction of finite range and deformation effects are taken into account. This allows us to assess the spread of theoretical predictions within the present covariant models for the binding energies, deformation parameters, shell structures and $\\alpha$-decay half-lives. Contrary to the previous studies in covariant density functional theory, it was found that the impact of $N=172$ spherical shell gap on the structure of superheavy elemen...
Finite temperature Casimir effect in the presence of nonlinear dielectrics
Kheirandish, Fardin; Soltani, Morteza
2010-01-01
Starting from a Lagrangian, electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained and their relation to coupling functions are determined. Finally, the Casimir energy and force in the presence of a nonlinear medium at finite temperature is calculated.
Almaraz, Pablo; Green, Andy J; Aguilera, Eduardo; Rendón, Miguel A; Bustamante, Javier
2012-09-01
1. Understanding the impact of environmental variability on migrating species requires the estimation of sequential abiotic effects in different geographic areas across the life cycle. For instance, waterfowl (ducks, geese and swans) usually breed widely dispersed throughout their breeding range and gather in large numbers in their wintering headquarters, but there is a lack of knowledge on the effects of the sequential environmental conditions experienced by migrating birds on the long-term community dynamics at their wintering sites. 2. Here, we analyse multidecadal time-series data of 10 waterfowl species wintering in the Guadalquivir Marshes (SW Spain), the single most important wintering site for waterfowl breeding in Europe. We use a multivariate state-space approach to estimate the effects of biotic interactions, local environmental forcing during winter and large-scale climate during breeding and migration on wintering multispecies abundance fluctuations, while accounting for partial observability (observation error and missing data) in both population and environmental data. 3. The joint effect of local weather and large-scale climate explained 31·6% of variance at the community level, while the variability explained by interspecific interactions was negligible (observations through data augmentation increased the estimated magnitude of environmental forcing by an average 30·1% and reduced the impact of stochasticity by 39·3% when accounting for observation error. Interestingly however, the impact of environmental forcing on community dynamics was underestimated by an average 15·3% and environmental stochasticity overestimated by 14·1% when ignoring both observation error and data augmentation. 5. These results provide a salient example of sequential multiscale environmental forcing in a major migratory bird community, which suggests a demographic link between the breeding and wintering grounds operating through nonlinear environmental effects
Thermopiezoelectric and Nonlinear Electromechanical Effects in Quantum Dots and Nanowires
Patil, Sunil; Bahrami-Samani, M.; Melnik, R. V. N.; Toropova, M.; Zu, Jean
2010-01-01
We report thermopiezoelectric (TPE) and nonlinear electromechanical (NEM) effects in quantum dots (QD) and nanowires (NW) analyzed with a model based on coupled thermal, electric and mechanical balance equations. Several representative examples of low dimensional semiconductor structures (LDSNs) are studied. We focus mainly on GaN/AlN QDs and CdTe/ZnTe NWs which we analyze for different geometries. GaN/AlN nano systems are observed to be more sensitive to thermopiezoelectric effects than those of CdTe/ZnTe. Furthermore, noticeable qualitative and quantitative variations in electromechanical fields are observed as a consequence of taking into account NEM effects, in particular in GaN/AlN QDs.
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Global non-linear effect of temperature on economic production
Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward
2015-11-01
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Li, Bing-Xuan; Wei, Yong; Huang, Cheng-Hui; Zhuang, Feng-Jiang; Zhang, Ge; Guo, Guo-Cong
2014-01-01
In the present paper the authors report a research on testing the nonlinear optical performance of optical materials in visible and infrared band. Based on the second order nonlinear optic principle and the photoelectric signal detection technology, the authors have proposed a new testing scheme in which a infrared OPO laser and a method for separating the beams arising from frequency matching and the light produced by other optical effects were used. The OPO laser is adopted as light source to avoid the error of measurement caused by absorption because the double frequency signal of the material is in the transmittance band Our research work includes testing system composition, operational principle and experimental method. The experimental results of KTP, KDP, AGS tested by this method were presented. In the experiment several new infrared non-linear materials were found. This method possesses the merits of good stability and reliability, high sensitivity, simple operation and good reproducibility, which can effectively make qualitative and semi-quantitative test for optical material's nonlinear optical properties from visible to infrared. This work provides an important test -method for the research on second order nonlinear optical materials in visible, infrared and ultraviolet bands.
Covariant diagrams for one-loop matching
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhengkang [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-10-15
We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gaugecovariant quantities and are thus dubbed ''covariant diagrams.'' The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.
Imaging the anisotropic nonlinear Meissner effect in unconventional superconductors
Energy Technology Data Exchange (ETDEWEB)
Zhuravel, Alexander P. [B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkov (Ukraine); Ghamsari, Behnood G.; Kurter, Cihan; Abrahams, John [CNAM, Physics Department, University of Maryland, College Park, MD (United States); Jung, Philipp; Lukashenko, Alexander; Ustinov, Alexey V. [Physikalisches Institut and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, Karlsruhe (Germany); Remillard, Stephen [Physics Department, Hope College, Holland, MI (United States); Anlage, Steven M. [CNAM, Physics Department, University of Maryland, College Park, MD (United States); Physikalisches Institut and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, Karlsruhe (Germany)
2013-07-01
We present measurements on the anisotropic nonlinear Meissner effect (aNLME). Using a laser scanning microscope we have directly imaged this effect in a self-resonant spiral patterned from a thin film of the d{sub x{sup 2}-y{sup 2}} superconductor YBa{sub 2}Cu{sub 3}O{sub 7-δ}. The spiral is excited at one of its resonant frequencies while a focused laser spot is scanned across its surface. The local illumination by the laser gives rise to a detectable change in the resonant properties. At low temperatures, the aNLME causes a direction dependent contribution to the critical current density. This makes it possible to image the directions of nodes and anti-nodes of the superconducting order parameter and the contribution of Andreev bound states associated with them. These two contributions to the photoresponse can be distinguished by their temperature dependence, which is consistent with theoretical predictions.
New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves
Rezzolla, L
2002-01-01
In Newtonian and relativistic hydrodynamics the Riemann problem consists of calculating the evolution of a fluid which is initially characterized by two states having different values of uniform rest-mass density, pressure and velocity. When the fluid is allowed to relax, one of three possible wave-patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a special relativistic Riemann problem when velocities tangential to the initial discontinuity surface are present. We show that a smooth transition from one wave-pattern to another can be produced by varying the initial tangential velocities while otherwise maintaining the initial states unmodified. These special relativistic effects are produced by the coupling through the relativistic Lorentz factors and do not have a Newtonian counterpart.
Estimation of Nonlinear Dynamic Panel Data Models with Individual Effects
Directory of Open Access Journals (Sweden)
Yi Hu
2014-01-01
Full Text Available This paper suggests a generalized method of moments (GMM based estimation for dynamic panel data models with individual specific fixed effects and threshold effects simultaneously. We extend Hansen’s (Hansen, 1999 original setup to models including endogenous regressors, specifically, lagged dependent variables. To address the problem of endogeneity of these nonlinear dynamic panel data models, we prove that the orthogonality conditions proposed by Arellano and Bond (1991 are valid. The threshold and slope parameters are estimated by GMM, and asymptotic distribution of the slope parameters is derived. Finite sample performance of the estimation is investigated through Monte Carlo simulations. It shows that the threshold and slope parameter can be estimated accurately and also the finite sample distribution of slope parameters is well approximated by the asymptotic distribution.
The linear and nonlinear optical effects of white light
Institute of Scientific and Technical Information of China (English)
QI XinYuan; LIU SiMin; GUO Ru; LU Yi; GAO YuanMei; LIU ZhaoHong; HUANG ChunFu; ZHANG XiaoHua; ZHU Nan; XU JingJun
2009-01-01
An overview of our research group's experimental and theoretical developments is provided on the linear and nonlinear optical effects of white light since 2003. Their work includes the experimental researches on the white light one-dimensional photovoltaic dark spatial solitons and the waveguides and directional couplers induced by them, the circular and elliptic white-light dark spatial solitons and the white-light photorefractive phase masks, two-dimensional white-light photonic lattices and the applications of the white-light dark spatial solitons in the digital image transmission field, the interaction between the two-dimensional white-light dark spatial solitons to enhance or to improve the correlateddegree of the white light through the interaction between the white-light beam and coherent dark spatial solitons, the interaction between the one-or two-dimensional white-light dark spatial solitons and the two-dimensional white-light photonic lattices, respectively. We also numerically simulate the interaction between two or more partially incoherent bright spatial solitons and the white bright spatial soliton pairs in the saturated logarithmic nonlinear medium. We have observed experimentally for the first time,the modulation instability of the coherent light and white light, respectively, in self-defocusing medium and so on.
The linear and nonlinear optical effects of white light
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
An overview of our research group’s experimental and theoretical developments is provided on the linear and nonlinear optical effects of white light since 2003. Their work includes the experimental researches on the white light one-dimensional photovoltaic dark spatial solitons and the waveguides and directional couplers induced by them, the circular and elliptic white-light dark spatial solitons and the white-light photorefractive phase masks, two-dimensional white-light photonic lattices and the applications of the white-light dark spatial solitons in the digital image transmission field, the interaction between the two-dimensional white-light dark spatial solitons to enhance or to improve the correlated degree of the white light through the interaction between the white-light beam and coherent dark spatial solitons, the interaction between the one- or two-dimensional white-light dark spatial solitons and the two-dimensional white-light photonic lattices, respectively. We also numerically simulate the interaction between two or more partially incoherent bright spatial solitons and the white bright spatial soliton pairs in the saturated logarithmic nonlinear medium. We have observed experimentally for the first time, the modulation instability of the coherent light and white light, respectively, in self-defocusing medium and so on.
Covariant canonical quantization
Energy Technology Data Exchange (ETDEWEB)
Hippel, G.M. von [University of Regina, Department of Physics, Regina, Saskatchewan (Canada); Wohlfarth, M.N.R. [Universitaet Hamburg, Institut fuer Theoretische Physik, Hamburg (Germany)
2006-09-15
We present a manifestly covariant quantization procedure based on the de Donder-Weyl Hamiltonian formulation of classical field theory. This procedure agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and we apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein-Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses. Covariant canonical quantization can thus be understood as a ''first'' or pre-quantization within the framework of conventional QFT. (orig.)
Covariant canonical quantization
Von Hippel, G M; Hippel, Georg M. von; Wohlfarth, Mattias N.R.
2006-01-01
We present a manifestly covariant quantization procedure based on the de Donder-Weyl Hamiltonian formulation of classical field theory. Covariant canonical quantization agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein-Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses.
Nonlinear and spin effects in two-photon annihilation of a fermion pair in an intensive laser wave
Sikach, S M
2001-01-01
The pattern of calculation of amplitudes of a series of processes in the field of an intensive laser wave, in which two fermions $(p; p')$ and two real photons $(k_1; k_2)$ participate, is considered. In relation to one-photon processes, these processes are of the second order on $\\alpha$, if the wave intensity $\\xi \\ll 1$ (i.e., actually absorption from the wave only one quantum). Otherwise, they are competing and essentially nonlinear. One-photon processes have a number of the important physical applications. For example, ${\\gamma}e$ and ${\\gamma}{\\gamma}$ colliders work on their basis. In DSB the calculation is conducted at the level of reaction amplitudes. It essentially simplifies both the calculation and the form of obtained results; those combinations of amplitudes which describe the spin effects are easy to calculate. And these effects are especially essential in nonlinear processes. The calculations are conducted in covariant form. Besides compactness, this provides independence of the frames of refe...
Spherically symmetric vacuum in covariant F (T )=T +α/2 T2+O (Tγ) gravity theory
DeBenedictis, Andrew; Ilijić, Saša
2016-12-01
Recently, a fully covariant version of the theory of F (T ) torsion gravity has been introduced by M. Kršśák and E. Saridakis [Classical Quantum Gravity 33, 115009 (2016)]. In covariant F (T ) gravity, the Schwarzschild solution is not a vacuum solution for F (T )≠T , and therefore determining the spherically symmetric vacuum is an important open problem. Within the covariant framework, we perturbatively solve the spherically symmetric vacuum gravitational equations around the Schwarzschild solution for the scenario with F (T )=T +(α /2 )T2 , representing the dominant terms in theories governed by Lagrangians analytic in the torsion scalar. From this, we compute the perihelion shift correction to solar system planetary orbits as well as perturbative gravitational effects near neutron stars. This allows us to set an upper bound on the magnitude of the coupling constant, α , which governs deviations from general relativity. We find the bound on this nonlinear torsion coupling constant by specifically considering the uncertainty in the perihelion shift of Mercury. We also analyze a bound from a similar comparison with the periastron orbit of the binary pulsar PSR J0045-7319 as an independent check for consistency. Setting bounds on the dominant nonlinear coupling is important in determining if other effects in the Solar System or greater universe could be attributable to nonlinear torsion.
DEFF Research Database (Denmark)
Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik
2004-01-01
The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...
Covariance Applications with Kiwi
Mattoon, C. M.; Brown, D.; Elliott, J. B.
2012-05-01
The Computational Nuclear Physics group at Lawrence Livermore National Laboratory (LLNL) is developing a new tool, named `Kiwi', that is intended as an interface between the covariance data increasingly available in major nuclear reaction libraries (including ENDF and ENDL) and large-scale Uncertainty Quantification (UQ) studies. Kiwi is designed to integrate smoothly into large UQ studies, using the covariance matrix to generate multiple variations of nuclear data. The code has been tested using critical assemblies as a test case, and is being integrated into LLNL's quality assurance and benchmarking for nuclear data.
Covariance Applications with Kiwi
Directory of Open Access Journals (Sweden)
Elliott J.B.
2012-05-01
Full Text Available The Computational Nuclear Physics group at Lawrence Livermore National Laboratory (LLNL is developing a new tool, named ‘Kiwi’, that is intended as an interface between the covariance data increasingly available in major nuclear reaction libraries (including ENDF and ENDL and large-scale Uncertainty Quantification (UQ studies. Kiwi is designed to integrate smoothly into large UQ studies, using the covariance matrix to generate multiple variations of nuclear data. The code has been tested using critical assemblies as a test case, and is being integrated into LLNL's quality assurance and benchmarking for nuclear data.
Impact of nonlinear effective interactions on GFT quantum gravity condensates
Pithis, Andreas G A; Tomov, Petar
2016-01-01
We present the numerical analysis of effectively interacting Group Field Theory (GFT) models in the context of the GFT quantum gravity condensate analogue of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behaviour suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthe...
The chaotic effects in a nonlinear QCD evolution equation
Zhu, Wei; Shen, Zhenqi; Ruan, Jianhong
2016-10-01
The corrections of gluon fusion to the DGLAP and BFKL equations are discussed in a united partonic framework. The resulting nonlinear evolution equations are the well-known GLR-MQ-ZRS equation and a new evolution equation. Using the available saturation models as input, we find that the new evolution equation has the chaos solution with positive Lyapunov exponents in the perturbative range. We predict a new kind of shadowing caused by chaos, which blocks the QCD evolution in a critical small x range. The blocking effect in the evolution equation may explain the Abelian gluon assumption and even influence our expectations to the projected Large Hadron Electron Collider (LHeC), Very Large Hadron Collider (VLHC) and the upgrade (CppC) in a circular e+e- collider (SppC).
Effective action and vacuum expectations in nonlinear $\\sigma$ model
Fayzullaev, B A
2015-01-01
The equations for effective action for nonlinear $\\sigma$ model are derived using DeWitt method in two forms - for generator of vertex parts $\\Gamma$ and for generator of weakly connected parts $W$. Loop-expansion solutions to these equations are found. It is shown that vacuum expectation values for various quantities including divergence of a N\\"{o}ther current, trace of the energy-momentum tensor and so on, can be calculated by this method. Also it is shown that vacuum expectation to the sigma-field is determined by an explicit combination of tree Green function and classical solution. It is shown that the limit when coupling constant tends to zero is singular one.
Crystal growth in fluid flow: Nonlinear response effects
Peng, H. L.; Herlach, D. M.; Voigtmann, Th.
2017-08-01
We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.
Dispersion and nonlinear effects in OFDM-RoF system
Alhasson, Bader H.; Bloul, Albe M.; Matin, M.
2010-08-01
The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.
Generalized Linear Covariance Analysis
Carpenter, James R.; Markley, F. Landis
2014-01-01
This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.
Characterization of nonlinear ultrasonic effects using the dynamic wavelet fingerprint technique
Lv, Hongtao; Jiao, Jingpin; Meng, Xiangji; He, Cunfu; Wu, Bin
2017-02-01
An improved dynamic wavelet fingerprint (DWFP) technique was developed to characterize nonlinear ultrasonic effects. The white area in the fingerprint was used as the nonlinear feature to quantify the degree of damage. The performance of different wavelet functions, the effect of scale factor and white subslice ratio on the nonlinear feature extraction were investigated, and the optimal wavelet function, scale factor and white subslice ratio for maximum damage sensitivity were determined. The proposed DWFP method was applied to the analysis of experimental signals obtained from nonlinear ultrasonic harmonic and wave-mixing experiments. It was demonstrated that the proposed DWFP method can be used to effectively extract nonlinear features from the experimental signals. Moreover, the proposed nonlinear fingerprint coefficient was sensitive to micro cracks and correlated well with the degree of damage.
Temperature effects in a nonlinear model of monolayer Scheibe aggregates
DEFF Research Database (Denmark)
Bang, Ole; Christiansen, Peter Leth; If, F.
1994-01-01
A nonlinear dynamical model of molecular monolayers arranged in Scheibe aggregates is derived from a proper Hamiltonian. Thermal fluctuations of the phonons are included. The resulting equation for the excitons is the two dimensional nonlinear Schrodinger equation with noise. Two limits...
Conroy, M.J.; Senar, J.C.; Domenech, J.
2002-01-01
We developed models for the analysis of recapture data for 2678 serins (Serinus serinus) ringed in north-eastern Spain since 1985. We investigated several time- and individual-specific factors as potential predictors of overall mortality and dispersal patterns, and of gender and age differences in these patterns. Time-specific covariates included minimum daily temperature, days below freezing, and abundance of a strong competitor, siskins (Carduelis spinus) during winter, and maximum temperature and rainfall during summer. Individual covariates included body mass (i.e. body condition), and wing length (i.e. flying ability), and interactions between body mass and environmental factors. We found little support of a predictive relationship between environmental factors and survival, but good evidence of relationships between body mass and survival, especially for juveniles. Juvenile survival appears to vary in a curvilinear manner with increasing mass, suggesting that there may exist an optimal mass beyond which increases are detrimental. The mass-survival relationship does seem to be influenced by at least one environmental factor, namely the abundance of wintering siskins. When siskins are abundant, increases in body mass appear to relate strongly to increasing survival. When siskin numbers are average or low the relationship is largely reversed, suggesting that the presence of strong competition mitigates the otherwise largely negative aspects of greater body mass. Wing length in juveniles also appears to be related positively to survival, perhaps largely due to the influence of a few unusually large juveniles with adult-like survival. Further work is needed to test these relationships, ideally under experimentation.
A fully covariant description of CMB anisotropies
Dunsby, P K S
1997-01-01
Starting from the exact non-linear description of matter and radiation, a fully covariant and gauge-invariant formula for the observed temperature anisotropy of the cosmic microwave background (CBR) radiation, expressed in terms of the electric ($E_{ab}$) and magnetic ($H_{ab}$) parts of the Weyl tensor, is obtained by integrating photon geodesics from last scattering to the point of observation today. This improves and extends earlier work by Russ et al where a similar formula was obtained by taking first order variations of the redshift. In the case of scalar (density) perturbations, $E_{ab}$ is related to the harmonic components of the gravitational potential $\\Phi_k$ and the usual dominant Sachs-Wolfe contribution $\\delta T_R/\\bar{T}_R\\sim\\Phi_k$ to the temperature anisotropy is recovered, together with contributions due to the time variation of the potential (Rees-Sciama effect), entropy and velocity perturbations at last scattering and a pressure suppression term important in low density universes. We a...
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1987-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by conparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1986-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
Reduction of nonlinear patterning effects in SOA-based All-optical Switches using Optical filtering
DEFF Research Database (Denmark)
Nielsen, Mads Lønstrup; Mørk, Jesper; Skaguchi, J.
2005-01-01
We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches.......We explain theoretically, and demonstrate and quantify experimentally, how appropriate filtering can reduce the dominant nonlinear patterning effect, which limits the performance of differential-mode SOA-based switches....
Explanation of the inverse Doppler effect observed in nonlinear transmission lines.
Kozyrev, Alexander B; van der Weide, Daniel W
2005-05-27
The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator.
Localized Effects in the Nonlinear Behavior of Sandwich Panels with a Transversely Flexible Core
DEFF Research Database (Denmark)
Frostig, Y.; Thomsen, Ole Thybo
2005-01-01
nonlinear analysis approach incorporates the effects of the vertical flexibility of the core, and it is based on the approach of the High-order Sandwich Panel Theory (HSAPT). The results demonstrate that the effects of localized loads, when taken into the geometrically nonlinear domain, change the response...
Covariant approximation averaging
Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph
2014-01-01
We present a new class of statistical error reduction techniques for Monte-Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in $N_f=2+1$ lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte-Carlo calculations over conventional methods for the same cost.
Using Analysis of Covariance (ANCOVA) with Fallible Covariates
Culpepper, Steven Andrew; Aguinis, Herman
2011-01-01
Analysis of covariance (ANCOVA) is used widely in psychological research implementing nonexperimental designs. However, when covariates are fallible (i.e., measured with error), which is the norm, researchers must choose from among 3 inadequate courses of action: (a) know that the assumption that covariates are perfectly reliable is violated but…
Using Analysis of Covariance (ANCOVA) with Fallible Covariates
Culpepper, Steven Andrew; Aguinis, Herman
2011-01-01
Analysis of covariance (ANCOVA) is used widely in psychological research implementing nonexperimental designs. However, when covariates are fallible (i.e., measured with error), which is the norm, researchers must choose from among 3 inadequate courses of action: (a) know that the assumption that covariates are perfectly reliable is violated but…
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Some theoretical methods have been reported to deal with nonlinear problems of composite materials but the accuracy is not so good. In the meantime, a lot of nonlinear problems are difficult to be managed by the theoretical methods. The present study aims to use the developed method, the random microstructure finite element method, to deal with these nonlinear problems. In this paper, the random microstructure finite element method is used to deal with all three kinds of nonlinear property problems of composite materials. The analyzed results suggest that the influences of the nonlinear phenomena on the effective properties of composite materials are significant and the random microstructure finite element method is an efficient tool to investigate the nonlinear problems.
An effective analytic approach for solving nonlinear fractional partial differential equations
Ma, Junchi; Zhang, Xiaolong; Liang, Songxin
2016-08-01
Nonlinear fractional differential equations are widely used for modelling problems in applied mathematics. A new analytic approach with two parameters c1 and c2 is first proposed for solving nonlinear fractional partial differential equations. These parameters are used to improve the accuracy of the resulting series approximations. It turns out that much more accurate series approximations are obtained by choosing proper values of c1 and c2. To demonstrate the applicability and effectiveness of the new method, two typical fractional partial differential equations, the nonlinear gas dynamics equation and the nonlinear KdV-Burgers equation, are solved.
Effect of the counter cation on the third order nonlinearity in anionic Au dithiolene complexes
Iliopoulos, K.; El-Ghayoury, A.; Derkowska, B.; Ranganathan, A.; Batail, P.; Gindre, D.; Sahraoui, B.
2012-12-01
In this work, we present the third order nonlinear optical investigation of two gold complexes, which differ by the nature of the counter cations. The impact of the different design in the architecture through a set of hydrogen bonds in the case of Au-Mel of the systems on the nonlinearity has been studied by means of the Z-scan setup under 532 nm, 30 ps laser excitation, allowing for the determination of the nonlinear absorption and refraction of the samples. Significant modification of the nonlinear optical response between the two metal complexes has been found suggesting a clear effect of the counter cation.
Limiting effects of geometrical and optical nonlinearities on the squeezing in optomechanics
Energy Technology Data Exchange (ETDEWEB)
Djorwé, P. [Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaoundé I (Cameroon); Nana Engo, S.G., E-mail: nanaengo@gmail.com [Laboratory of Photonics, Faculty of Science, University of Ngaoundéré (Cameroon); Talla Mbé, J.H.; Woafo, P. [Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaoundé I (Cameroon)
2013-08-01
In recent experiments, the re-thermalization time of the mechanical resonator is stated as the limiting factor for quantum applications of optomechanical systems. To explain the origin of this limitation, an analytical nonlinear investigation supported by the recent successful experimental laser cooling parameters is carried out in this work. To this end, the effects of geometrical and the optical nonlinearities on the squeezing are studied and are in a good agreement with the experimental results. It appears that highly squeezed state are generated where these nonlinearities are minimized and that high nonlinearities are limiting factors to reach the quantum ground state.
Peng, Shichun; Ma, Yilong; Spetsieris, Phoebe G; Mattis, Paul; Feigin, Andrew; Dhawan, Vijay; Eidelberg, David
2014-05-01
To generate imaging biomarkers from disease-specific brain networks, we have implemented a general toolbox to rapidly perform scaled subprofile modeling (SSM) based on principal component analysis (PCA) on brain images of patients and normals. This SSMPCA toolbox can define spatial covariance patterns whose expression in individual subjects can discriminate patients from controls or predict behavioral measures. The technique may depend on differences in spatial normalization algorithms and brain imaging systems. We have evaluated the reproducibility of characteristic metabolic patterns generated by SSMPCA in patients with Parkinson's disease (PD). We used [(18) F]fluorodeoxyglucose PET scans from patients with PD and normal controls. Motor-related (PDRP) and cognition-related (PDCP) metabolic patterns were derived from images spatially normalized using four versions of SPM software (spm99, spm2, spm5, and spm8). Differences between these patterns and subject scores were compared across multiple independent groups of patients and control subjects. These patterns and subject scores were highly reproducible with different normalization programs in terms of disease discrimination and cognitive correlation. Subject scores were also comparable in patients with PD imaged across multiple PET scanners. Our findings confirm a very high degree of consistency among brain networks and their clinical correlates in PD using images normalized in four different SPM platforms. SSMPCA toolbox can be used reliably for generating disease-specific imaging biomarkers despite the continued evolution of image preprocessing software in the neuroimaging community. Network expressions can be quantified in individual patients independent of different physical characteristics of PET cameras.
Hui, Yi; Law, Siu Seong; Ku, Chiu Jen
2017-02-01
Covariance of the auto/cross-covariance matrix based method is studied for the damage identification of a structure with illustrations on its advantages and limitations. The original method is extended for structures under direct white noise excitations. The auto/cross-covariance function of the measured acceleration and its corresponding derivatives are formulated analytically, and the method is modified in two new strategies to enable successful identification with much fewer sensors. Numerical examples are adopted to illustrate the improved method, and the effects of sampling frequency and sampling duration are discussed. Results show that the covariance of covariance calculated from responses of higher order modes of a structure play an important role to the accurate identification of local damage in a structure.
Accurate covariance estimation of galaxy-galaxy weak lensing: limitations of jackknife covariance
Shirasaki, Masato; Miyatake, Hironao; Takahashi, Ryuichi; Hamana, Takashi; Nishimichi, Takahiro; Murata, Ryoma
2016-01-01
We develop a method to simulate galaxy-galaxy weak lensing by utilizing all-sky, light-cone simulations. We populate a real catalog of source galaxies into a light-cone simulation realization, simulate the lensing effect on each galaxy, and then identify lensing halos that are considered to host galaxies or clusters of interest. We use the mock catalog to study the error covariance matrix of galaxy-galaxy weak lensing and find that the super-sample covariance (SSC), which arises from density fluctuations with length scales comparable with or greater than a size of survey area, gives a dominant source of the sample variance. We then compare the full covariance with the jackknife (JK) covariance, the method that estimates the covariance from the resamples of the data itself. We show that, although the JK method gives an unbiased estimator of the covariance in the shot noise or Gaussian regime, it always over-estimates the true covariance in the sample variance regime, because the JK covariance turns out to be a...
Covariate analysis of bivariate survival data
Energy Technology Data Exchange (ETDEWEB)
Bennett, L.E.
1992-01-01
The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methods have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.
Nonlinear dynamics of wind waves: multifractal phase/time effects
Directory of Open Access Journals (Sweden)
R. H. Mellen
1994-01-01
Full Text Available In addition to the bispectral coherence method, phase/time analysis of analytic signals is another promising avenue for the investigation of phase effects in wind waves. Frequency spectra of phase fluctuations obtained from both sea and laboratory experiments follow an F-β power law over several decades, suggesting that a fractal description is appropriate. However, many similar natural phenomena have been shown to be multifractal. Universal multifractals are quantified by two additional parameters: the Lévy index 0 α 2 for the type of multifractal and the co-dimension 0 C1 1 for intermittence. The three parameters are a full statistical measure the nonlinear dynamics. Analysis of laboratory flume data is reported here and the results indicate that the phase fluctuations are 'hard multifractal' (α > 1. The actual estimate is close to the limiting value α = 2, which is consistent with Kolmogorov's lognormal model for turbulent fluctuations. Implications for radar and sonar backscattering from the sea surface are briefly considered.
Nonlinear turbulence models for predicting strong curvature effects
Institute of Scientific and Technical Information of China (English)
XU Jing-lei; MA Hui-yang; HUANG Yu-ning
2008-01-01
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applicatious and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent U- duct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these inodels may be employed to simulate the turbulent curved flows in engineering applications.
Stochastic nonlinear mixed effects: a metformin case study.
Matzuka, Brett; Chittenden, Jason; Monteleone, Jonathan; Tran, Hien
2016-02-01
In nonlinear mixed effect (NLME) modeling, the intra-individual variability is a collection of errors due to assay sensitivity, dosing, sampling, as well as model misspecification. Utilizing stochastic differential equations (SDE) within the NLME framework allows the decoupling of the measurement errors from the model misspecification. This leads the SDE approach to be a novel tool for model refinement. Using Metformin clinical pharmacokinetic (PK) data, the process of model development through the use of SDEs in population PK modeling was done to study the dynamics of absorption rate. A base model was constructed and then refined by using the system noise terms of the SDEs to track model parameters and model misspecification. This provides the unique advantage of making no underlying assumptions about the structural model for the absorption process while quantifying insufficiencies in the current model. This article focuses on implementing the extended Kalman filter and unscented Kalman filter in an NLME framework for parameter estimation and model development, comparing the methodologies, and illustrating their challenges and utility. The Kalman filter algorithms were successfully implemented in NLME models using MATLAB with run time differences between the ODE and SDE methods comparable to the differences found by Kakhi for their stochastic deconvolution.
Nonlinear effects in a conceptual multilayer cloud model
Directory of Open Access Journals (Sweden)
U. Wacker
2006-01-01
Full Text Available As conceptual model for a cloud a system is considered which is open for condensate mass transport and subject to internal processes such as cloud microphysical transformation and vertical condensate transport. The effects of microphysical processes are represented in parameterized form and the system is divided into two layers to account for the vertical structure. The evolution is mathematically described in terms of four coupled nonlinear ODEs; the prognostic variables are the mass concentrations of cloud water as well as precipitation condensate in each of the layers. In the absence of vertical velocity the evolution in the lower layer is triggered by the evolution in the upper layer. In the presence of an upwind, the dynamics in both layers is mutually coupled. Depending on the chosen parameter values up to four steady states are found. When varying the parameter upwind velocity, three regimes are distinguished: For week upwind the long-term evolution is steered by the external sources; for stronger upwind the cloud condensate is blown out of the cloud in the final state and does not contribute to formation of precipitation; for intermediate upwind multiple steady state solution branches arise which characterize the transition between those two regimes.
Weak nonlinear surface-charging effects in electrolytic films.
Dean, D S; Horgan, R R
2003-11-01
A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full nonlinear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the renormalization of the theory and apply it to a triple-layer model for a thin film with Stern layer of thickness h. For this model we give expressions for the surface charge sigma(L) and the disjoining pressure P(d)(L) and show their dependence on the parameters. The influence of image charges naturally arises in the formalism, and we show that predictions depend strongly on h because of their effects. In particular, we show that the surface charge vanishes as the film thickness L-->0. The fluctuation terms in this class of theories contribute a Casimir-like attraction across the film. Although this attraction is well known to be negligible compared with the mean-field component for model electrolytic films with no surface-charge regulation, in the model studied here these fluctuations also affect the surface-charge regulation leading to a fluctuation component in the disjoining pressure which has the same behavior as the mean-field component even for large film thickness.
Effects of introducing nonlinear components for a random excited hybrid energy harvester
Zhou, Xiaoya; Gao, Shiqiao; Liu, Haipeng; Guan, Yanwei
2017-01-01
This work is mainly devoted to discussing the effects of introducing nonlinear components for a hybrid energy harvester under random excitation. For two different types of nonlinear hybrid energy harvesters subjected to random excitation, the analytical solutions of the mean output power, voltage and current are derived from Fokker-Planck (FP) equations. Monte Carlo simulation exhibits qualitative agreement with FP theory, showing that load values and excitation’s spectral density have an effect on the total mean output power, piezoelectric (PE) power and electromagnetic power. Nonlinear components affect output characteristics only when the PE capacitance of the hybrid energy harvester is non-negligible. Besides, it is also demonstrated that for this type of nonlinear hybrid energy harvesters under random excitation, introducing nonlinear components can improve output performances effectively.
Effective Response of Nonlinear Composite under External AC and DC Electric Field
Institute of Scientific and Technical Information of China (English)
LIU Ye; LIANG Fang-Chu; SHEN Hong-Liang
2005-01-01
A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα = εαE + xα|E|2E. Under the external AC and DC electric field Eapp = Eα(1 + sinwt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute limit.
A nonlinear mixed-effects model for simultaneous smoothing and registration of functional data
DEFF Research Database (Denmark)
Raket, Lars Lau; Sommer, Stefan Horst; Markussen, Bo
2014-01-01
We consider misaligned functional data, where data registration is necessary for proper statistical analysis. This paper proposes to treat misalignment as a nonlinear random effect, which makes simultaneous likelihood inference for horizontal and vertical effects possible. By simultaneously fitting...
Estimation of the Nonlinear Random Coefficient Model when Some Random Effects Are Separable
du Toit, Stephen H. C.; Cudeck, Robert
2009-01-01
A method is presented for marginal maximum likelihood estimation of the nonlinear random coefficient model when the response function has some linear parameters. This is done by writing the marginal distribution of the repeated measures as a conditional distribution of the response given the nonlinear random effects. The resulting distribution…
Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Malureanu, Radu
2016-01-01
thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrodinger equation is solved. The dispersion length is much larger than the waveguides length...
DEFF Research Database (Denmark)
Bang, Ole; Graversen, T. W.; Clausen, Carl A. Balslev
2000-01-01
Quasi-phase-matching gratings induces Kerr effects in quadratic nonlinear materials. We show analytically and confirm numerically how modulating the grating changes the effective quadratic and cubic nonlinearities and allows for multi-wavelength second-harmonic generation....
van Lent, Thomas; Kitanidis, Peter K.
1996-05-01
The hydraulic head and the specific discharge fluctuations depend nonlinearly on the hydraulic conductivity. However, the methods most commonly used in the stochastic analysis of groundwater flow are based upon the linearization of these relations. In this paper we apply a numerical spectral approach to investigate the range of validity of the small perturbation approximation for head and specific discharge moments in two-dimensional finite domains. We find that the small perturbation approximation tends to underestimate the variance of large-scale head and specific discharge fluctuations and error increases with increasing log-conductivity variance and increasing domain size. The head fluctuations do not appear ergodic even when the small perturbation approximation predicts they will be ergodic. The specific discharge fluctuations, on the other hand, do appear ergodic. The small perturbation approximation performs well in estimating specific discharge variance in the longitudinal direction but significantly underestimates transverse specific discharge variance.
DEFF Research Database (Denmark)
Pu, Minhao; Chen, Yaohui; Yvind, Kresten
2014-01-01
Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects.......Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects....
Lan, Jun; Li, Yifeng; Yu, Huiyang; Li, Baoshun; Liu, Xiaozhou
2017-04-01
We theoretically investigate the nonlinear effects of acoustic wave propagation and dispersion in a cylindrical pipe with periodically arranged Helmholtz resonators. By using the classical perturbation method in nonlinear acoustics and considering a nonlinear response up to the third-order at the fundamental frequency, the expressions of the nonlinear impedance ZNHR of the Helmholtz resonator and effective nonlinear bulk modulus Bneff of the composite structure are derived. In order to confirm the nonlinear properties of the acoustic metamaterial, the transmission spectra have been studied by means of the acoustic transmission line method. Moreover, we calculate the effective acoustic impedance and dispersion relation of the system using the acoustic impedance theory and Bloch theory, respectively. It is found that with the increment of the incident acoustic pressure level, owing to the nonlinearity of the Helmholtz resonators, the resonant frequency ω0 shifts toward the lower frequency side and the forbidden bandgap of the transmission spectrum is shown to be broadened. The perturbation method employed in this paper extends the general analytical framework for a nonlinear acoustic metamaterial.
Extended Elliptic Mild Slope Equation Incorporating the Nonlinear Shoaling Effect
Directory of Open Access Journals (Sweden)
Xiao Qian-lu
2016-10-01
Full Text Available The transformation during wave propagation is significantly important for the calculations of hydraulic and coastal engineering, as well as the sediment transport. The exact wave height deformation calculation on the coasts is essential to near-shore hydrodynamics research and the structure design of coastal engineering. According to the wave shoaling results gained from the elliptical cosine wave theory, the nonlinear wave dispersion relation is adopted to develop the expression of the corresponding nonlinear wave shoaling coefficient. Based on the extended elliptic mild slope equation, an efficient wave numerical model is presented in this paper for predicting wave deformation across the complex topography and the surf zone, incorporating the nonlinear wave dispersion relation, the nonlinear wave shoaling coefficient and other energy dissipation factors. Especially, the phenomenon of wave recovery and second breaking could be shown by the present model. The classical Berkhoff single elliptic topography wave tests, the sinusoidal varying topography experiment, and complex composite slopes wave flume experiments are applied to verify the accuracy of the calculation of wave heights. Compared with experimental data, good agreements are found upon single elliptical topography and one-dimensional beach profiles, including uniform slope and step-type profiles. The results indicate that the newly-developed nonlinear wave shoaling coefficient improves the calculated accuracy of wave transformation in the surf zone efficiently, and the wave breaking is the key factor affecting the wave characteristics and need to be considered in the nearshore wave simulations.
Reduced Noise Effect in Nonlinear Model Estimation Using Multiscale Representation
Directory of Open Access Journals (Sweden)
Mohamed N. Nounou
2010-01-01
Full Text Available Nonlinear process models are widely used in various applications. In the absence of fundamental models, it is usually relied on empirical models, which are estimated from measurements of the process variables. Unfortunately, measured data are usually corrupted with measurement noise that degrades the accuracy of the estimated models. Multiscale wavelet-based representation of data has been shown to be a powerful data analysis and feature extraction tool. In this paper, these characteristics of multiscale representation are utilized to improve the estimation accuracy of the linear-in-the-parameters nonlinear model by developing a multiscale nonlinear (MSNL modeling algorithm. The main idea in this MSNL modeling algorithm is to decompose the data at multiple scales, construct multiple nonlinear models at multiple scales, and then select among all scales the model which best describes the process. The main advantage of the developed algorithm is that it integrates modeling and feature extraction to improve the robustness of the estimated model to the presence of measurement noise in the data. This advantage of MSNL modeling is demonstrated using a nonlinear reactor model.
Covariant Magnetic Connection Hypersurfaces
Pegoraro, F
2016-01-01
In the single fluid, nonrelativistic, ideal-Magnetohydrodynamic (MHD) plasma description magnetic field lines play a fundamental role by defining dynamically preserved "magnetic connections" between plasma elements. Here we show how the concept of magnetic connection needs to be generalized in the case of a relativistic MHD description where we require covariance under arbitrary Lorentz transformations. This is performed by defining 2-D {\\it magnetic connection hypersurfaces} in the 4-D Minkowski space. This generalization accounts for the loss of simultaneity between spatially separated events in different frames and is expected to provide a powerful insight into the 4-D geometry of electromagnetic fields when ${\\bf E} \\cdot {\\bf B} = 0$.
Universality of Covariance Matrices
Pillai, Natesh S
2011-01-01
We prove the universality of covariance matrices of the form $H_{N \\times N} = {1 \\over N} \\tp{X}X$ where $[X]_{M \\times N}$ is a rectangular matrix with independent real valued entries $[x_{ij}]$ satisfying $\\E \\,x_{ij} = 0$ and $\\E \\,x^2_{ij} = {1 \\over M}$, $N, M\\to \\infty$. Furthermore it is assumed that these entries have sub-exponential tails. We will study the asymptotics in the regime $N/M = d_N \\in (0,\\infty), \\lim_{N\\to \\infty}d_N \
Covariant Projective Extensions
Institute of Scientific and Technical Information of China (English)
许天周; 梁洁
2003-01-01
@@ The theory of crossed products of C*-algebras by groups of automorphisms is a well-developed area of the theory of operator algebras. Given the importance and the success ofthat theory, it is natural to attempt to extend it to a more general situation by, for example,developing a theory of crossed products of C*-algebras by semigroups of automorphisms, or evenof endomorphisms. Indeed, in recent years a number of papers have appeared that are concernedwith such non-classicaltheories of covariance algebras, see, for instance [1-3].
Earth Observing System Covariance Realism
Zaidi, Waqar H.; Hejduk, Matthew D.
2016-01-01
The purpose of covariance realism is to properly size a primary object's covariance in order to add validity to the calculation of the probability of collision. The covariance realism technique in this paper consists of three parts: collection/calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics. An empirical cumulative distribution function (ECDF) Goodness-of-Fit (GOF) method is employed to determine if a covariance is properly sized by comparing the empirical distribution of Mahalanobis distance calculations to the hypothesized parent 3-DoF chi-squared distribution. To realistically size a covariance for collision probability calculations, this study uses a state noise compensation algorithm that adds process noise to the definitive epoch covariance to account for uncertainty in the force model. Process noise is added until the GOF tests pass a group significance level threshold. The results of this study indicate that when outliers attributed to persistently high or extreme levels of solar activity are removed, the aforementioned covariance realism compensation method produces a tuned covariance with up to 80 to 90% of the covariance propagation timespan passing (against a 60% minimum passing threshold) the GOF tests-a quite satisfactory and useful result.
Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier
Neumeyer, S.; Sorokin, V. S.; Thomsen, J. J.
2017-01-01
We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing-Mathieu equation with appended quadratic nonlinearity is considered as the model system, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic nonlinearities may generate additional amplitude-frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi-stability in the amplitude-phase characteristics are predicted, supporting previously reported experimental observations.
Discriminating thermal effect in nonlinear-ellipse-rotation-modified Z-scan measurements.
Liu, Zhi-Bo; Shi, Shuo; Yan, Xiao-Qing; Zhou, Wen-Yuan; Tian, Jian-Guo
2011-06-01
We report that a modified Z-scan method by nonlinear ellipse rotation (NER) can be used to discriminate true nonlinear refraction from thermal effect in the transient regime and steady state. The combination of Z-scan and NER allows us to measure the third-order nonlinear susceptibility component without the influence of thermal-optical nonlinearity. The experimental results of pure CS(2) and CS(2) solutions of nigrosine verify that the transient thermal effect can be successfully eliminated from the NER-modified Z-scan measurements. This method is also extended to the case in which thermal-optical nonlinearities depend on a high repetition rate of femtosecond laser pulses for the N,N-dimethylmethanamide solutions of graphene oxide. © 2011 Optical Society of America
Institute of Scientific and Technical Information of China (English)
NIU Jia-Sheng; MA Ben-Kun
2003-01-01
In this paper, we theoretically discuss the soliton properties of light pulse transportation on the surface of an ionic crystal having strong nonlinear interactions between ions of unit cells. We analyze in detail the dark solitons when the nonlinear coefficient g is positive and negative, respectively. It is found that whether the nonlinear coefficient g is positive or negative, the dark solitons can be formed over the whole dispersion relation area of surface polaritons considering nonlinear effects. Attention should be paid to the fact that around ωTO, the light pulse can form advanced dark solitons, and there is a switching area from advanced dark soliton to retarded dark soliton near ωTO. We also discuss the effects of higher nonlinear dispersion on the solitons.
Nonlinear optical and magneto-optical effects in non-spherical magnetic granular composite
Institute of Scientific and Technical Information of China (English)
Ping Xu(须萍); Zhenya Li(李振亚)
2004-01-01
The magnetization-induced nonlinear optical and nonlinear magneto-optical properties in a magnetic metal-insulator composite are studied based on a tensor effective medium approximation with shape factor and Taylcr-expansion method. There is a weakly nonlinear relation between electric displacement D and elcctric field E in the composite. The results of our studies on the effective dielectric tensor and the nonlinear susceptibility tensor in a magnetic nanocomposite are surveyed. It is shown that such a metal-insulator composite exhibits the enhancements of optical and magneto-optical nonlinearity. The frequencies at which the enhancements occur, and the amplitude of the enhancement factors depend on the concentration and shape of the magnetic grains.
Nonlinear effects of the finite amplitude ultrasound wave in biological tissues
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Nonlinear effects will occur during the transmission of the finite amplitude wave in biological tissues.The theoretical prediction and experimental demonstration of the nonlinear effects on the propagation of the finite amplitude wave at the range of biomedical ultrasound frequency and intensity are studied.Results show that the efficiency factor and effective propagation distance will decrease while the attenuation coefficient increases due to the existence of nonlinear effects.The experimental results coincided quite well with the theory.This shows that the effective propagation distance and efficiency factor can be used to describe quantitatively the influence of nonlinear effects on the propagation of the finite amplitude sound wave in biological tissues.
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri
2008-01-01
The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...... spring-mass chains with non-linear inclusions. The presented analytical and numerical results suggest that the effective material properties can easily be altered by establishing finite amplitude HF standing waves in the non-linear regions of the chain....
Chiral Dynamics of Baryons in a Lorentz Covariant Quark Model
Faessler, A; Lyubovitskij, V E; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
We develop a manifestly Lorentz covariant chiral quark model for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons. The approach is based on a non-linear chirally symmetric Lagrangian, which involves effective degrees of freedom - constituent quarks and the chiral (pseudoscalar meson) fields. In a first step, this Lagrangian can be used to perform a dressing of the constituent quarks by a cloud of light pseudoscalar mesons and other heavy states using the calculational technique of infrared dimensional regularization of loop diagrams. We calculate the dressed transition operators with a proper chiral expansion which are relevant for the interaction of quarks with external fields in the presence of a virtual meson cloud. In a second step, these dressed operators are used to calculate baryon matrix elements. Applications are worked out for the masses of the baryon octet, the meson-nucleon sigma terms, the magnetic moments of the baryon octet, the nucleon charge...
Effect of Physical Nonlinearity on Local Buckling in Sandwich Beams
Koissin, Vitaly; Shipsha, Andrey; Skvortsov, Vitaly
2010-01-01
This article deals with experimental, theoretical, and FE characterization of the local buckling in foam-core sandwich beams. In the theoretical approach, this phenomena is considered in a periodic formulation (unbounded wrinkle wave); a nonlinear stress—strain response of the face material is accou
Nonlinear effective-medium theory of disordered spring networks.
Sheinman, M; Broedersz, C P; MacKintosh, F C
2012-02-01
Disordered soft materials, such as fibrous networks in biological contexts, exhibit a nonlinear elastic response. We study such nonlinear behavior with a minimal model for networks on lattice geometries with simple Hookian elements with disordered spring constant. By developing a mean-field approach to calculate the differential elastic bulk modulus for the macroscopic network response of such networks under large isotropic deformations, we provide insight into the origins of the strain stiffening and softening behavior of these systems. We find that the nonlinear mechanics depends only weakly on the lattice geometry and is governed by the average network connectivity. In particular, the nonlinear response is controlled by the isostatic connectivity, which depends strongly on the applied strain. Our predictions for the strain dependence of the isostatic point as well as the strain-dependent differential bulk modulus agree well with numerical results in both two and three dimensions. In addition, by using a mapping between the disordered network and a regular network with random forces, we calculate the nonaffine fluctuations of the deformation field and compare them to the numerical results. Finally, we discuss the limitations and implications of the developed theory.
Effect of Physical Nonlinearity on Local Buckling in Sandwich Beams
Koysin, V.; Shipsha, Andrey; Skvortsov, Vitaly
2010-01-01
This article deals with experimental, theoretical, and FE characterization of the local buckling in foam-core sandwich beams. In the theoretical approach, this phenomena is considered in a periodic formulation (unbounded wrinkle wave); a nonlinear stress—strain response of the face material is accou
Effective Third-Order Nonlinearities in Metallic Refractory Titanium Nitride Thin Films
Kinsey, Nathaniel; Courtwright, Devon; DeVault, Clayton; Bonner, Carl E; Gavrilenko, Vladimir I; Shalaev, Vladimir M; Hagan, David J; Van Stryland, Eric W; Boltasseva, Alexandra
2015-01-01
Nanophotonic devices offer an unprecedented ability to concentrate light into small volumes which can greatly increase nonlinear effects. However, traditional plasmonic materials suffer from low damage thresholds and are not compatible with standard semiconductor technology. Here we study the nonlinear optical properties in the novel refractory plasmonic material titanium nitride using the Z scan method at 1550 nm and 780 nm. We compare the extracted nonlinear parameters for TiN with previous works on noble metals and note a similarly large nonlinear optical response. However, TiN films have been shown to exhibit a damage threshold up to an order of magnitude higher than gold films of a similar thickness, while also being robust, cost-efficient, bio- and CMOS compatible. Together, these properties make TiN a promising material for metal-based nonlinear optics.
Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy
Institute of Scientific and Technical Information of China (English)
Gun LiNa; TANG ZhiLie; XING Da
2008-01-01
The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than twophoton confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.
Theoretical investigation on Raman induced Kerr effect spectroscopy in nonlinear confocal microscopy
Institute of Scientific and Technical Information of China (English)
2008-01-01
The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.
Weakly nonlinear dispersion and stop-band effects for periodic structures
DEFF Research Database (Denmark)
Sorokin, Vladislav; Thomsen, Jon Juel
Continua and structures composed of periodically repeated elements (cells) are used in many fields of science and technology. Examples of continua are composite materials, consisting of alternating volumes of substances with different properties, mechanical filters and wave guides. Examples of en...... suggested. The work is carried out with financial support from the Danish Council for Independent Research and COFUND: DFF – 1337-00026...... of these methods for studying nonlinear problems isimpossible or cumbersome, since Floquet theory is applicable only for linear systems. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applications may demand effects of nonlinearity on structural response...
DEFF Research Database (Denmark)
Thomsen, Jon Juel; Blekhman, Iliya I.
2007-01-01
, and to call these dynamic materials or spatiotemporal composites. Also, according to theoretical predictions, structural nonlinearity enhances the possibilities of achieving specific effective properties. For example, with an elastic rod having cubical elastic nonlinearities, it seems possible to control......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...
Nonlinear optical properties and optical power limiting effect of Giemsa dye
Al-Saidi, Imad Al-Deen Hussein A.; Abdulkareem, Saif Al-Deen
2016-08-01
The nonlinear optical properties of Giemsa dye in chloroform solution for different concentrations and dye mixed with poly(methylmethacrylate) (PMMA) as a dye-doped polymer film were investigated using continuous wave (CW) low power solid-state laser (SSL) operating at wavelength of 532 nm as an excitation source. Using the single beam z-scan technique, the nonlinear refractive index (n2), the nonlinear absorption coefficient (β), and the third-order nonlinear optical susceptibility (χ(3)) of Giemsa dye were measured. The measurements reveal that both n2 and β are dependent on the dye concentration. The obtained results indicate that the Giemsa dye exhibits positive nonlinear saturable absorption (SA) and negative refraction nonlinearity, manifestation of self-defocusing effect. Optical power limiting characteristics of the Giemsa dye at different concentrations in solution and polymer film were studied. The observed large third-order optical nonlinearity of Giemsa dye confirms that Giemsa dye is a promising nonlinear material for the optical power limiting and photonic devices applications.
Variations of cosmic large-scale structure covariance matrices across parameter space
Reischke, Robert; Schäfer, Björn Malte
2016-01-01
The likelihood function for cosmological parameters, given by e.g. weak lensing shear measurements, depends on contributions to the covariance induced by the nonlinear evolution of the cosmic web. As nonlinear clustering to date has only been described by numerical $N$-body simulations in a reliable and sufficiently precise way, the necessary computational costs for estimating those covariances at different points in parameter space are tremendous. In this work we describe the change of the matter covariance and of the weak lensing covariance matrix as a function of cosmological parameters by constructing a suitable basis, where we model the contribution to the covariance from nonlinear structure formation using Eulerian perturbation theory at third order. We show that our formalism is capable of dealing with large matrices and reproduces expected degeneracies and scaling with cosmological parameters in a reliable way. Comparing our analytical results to numerical simulations we find that the method describes...
Properties of Differential Scattering Section Based on Multi-photon Nonlinear Compton Effect
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Properties of damping electrons in collision with photons based on multi-photon nonlinear Compton effect are investigated. The expressions of the differential scattering section are derived. Several useful conclusions are drawn.
Systematic treatment of non-linear effects in Baryon Acoustic Oscillations
Ivanov, Mikhail M
2016-01-01
In this contribution we will discuss the non-linear effects in the baryon acoustic oscillations and present a systematic and controllable way to account for them within time-sliced perturbation theory.
Energy Technology Data Exchange (ETDEWEB)
Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)
2016-04-15
The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter β. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of β on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved β values can be obtained by considering the diffraction effects.
EFFECT OF DAMAGE ON NONLINEAR DYNAMIC PROPERTIES OF VISCOELASTIC RECTANGULAR PLATES
Institute of Scientific and Technical Information of China (English)
ZHENG Yu-fang; FU Yi-ming
2005-01-01
The nonlinear dynamic behaviors of viscoelastic rectangular plates including the damage effects under the action of a transverse periodic load were studied. Using the von Karman equations, Boltzmann superposition principle and continuum damage mechanics, the nonlinear dynamic equations in terms of the mid-plane displacements for the viscoelastic thin plates with damage effect were derived. By adopting the finite difference method and Newmark method, these equations were solved. The results were compared with the available data. In the numerical calculations, the effects of the external loading parameters and geometric dimensions of the plate on the nonlinear dynamic responses of the plate were discussed. Research results show that the nonlinear dynamic response of the structure will change remarkably when the damage effect is considered.
Lee, Paul H.
2017-01-01
Purpose: Some confounders are nonlinearly associated with dependent variables, but they are often adjusted using a linear term. The purpose of this study was to examine the error of mis-specifying the nonlinear confounding effect. Methods: We carried out a simulation study to investigate the effect of adjusting for a nonlinear confounder in the…
Hubeny, Veronika E
2014-01-01
A recently explored interesting quantity in AdS/CFT, dubbed 'residual entropy', characterizes the amount of collective ignorance associated with either boundary observers restricted to finite time duration, or bulk observers who lack access to a certain spacetime region. However, the previously-proposed expression for this quantity involving variation of boundary entanglement entropy (subsequently renamed to 'differential entropy') works only in a severely restrictive context. We explain the key limitations, arguing that in general, differential entropy does not correspond to residual entropy. Given that the concept of residual entropy as collective ignorance transcends these limitations, we identify two correspondingly robust, covariantly-defined constructs: a 'strip wedge' associated with boundary observers and a 'rim wedge' associated with bulk observers. These causal sets are well-defined in arbitrary time-dependent asymptotically AdS spacetimes in any number of dimensions. We discuss their relation, spec...
Deriving covariant holographic entanglement
Dong, Xi; Lewkowycz, Aitor; Rangamani, Mukund
2016-11-01
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Deriving covariant holographic entanglement
Dong, Xi; Rangamani, Mukund
2016-01-01
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Renyi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Covariant Macroscopic Quantum Geometry
Hogan, Craig J
2012-01-01
A covariant noncommutative algebra of position operators is presented, and interpreted as the macroscopic limit of a geometry that describes a collective quantum behavior of the positions of massive bodies in a flat emergent space-time. The commutator defines a quantum-geometrical relationship between world lines that depends on their separation and relative velocity, but on no other property of the bodies, and leads to a transverse uncertainty of the geometrical wave function that increases with separation. The number of geometrical degrees of freedom in a space-time volume scales holographically, as the surface area in Planck units. Ongoing branching of the wave function causes fluctuations in transverse position, shared coherently among bodies with similar trajectories. The theory can be tested using appropriately configured Michelson interferometers.
Covariant holographic entanglement negativity
Chaturvedi, Pankaj; Sengupta, Gautam
2016-01-01
We conjecture a holographic prescription for the covariant entanglement negativity of $d$-dimensional conformal field theories dual to non static bulk $AdS_{d+1}$ gravitational configurations in the framework of the $AdS/CFT$ correspondence. Application of our conjecture to a $AdS_3/CFT_2$ scenario involving bulk rotating BTZ black holes exactly reproduces the entanglement negativity of the corresponding $(1+1)$ dimensional conformal field theories and precisely captures the distillable quantum entanglement. Interestingly our conjecture for the scenario involving dual bulk extremal rotating BTZ black holes also accurately leads to the entanglement negativity for the chiral half of the corresponding $(1+1)$ dimensional conformal field theory at zero temperature.
Directory of Open Access Journals (Sweden)
Fábio Luiz Buranelo Toral
2006-10-01
Full Text Available Este trabalho foi realizado com o objetivo de selecionar o arranjo para efeitos fixos e a estrutura de (covariância residual que melhor representam a variabilidade dos pesos dentro do rebanho e dentro dos indivíduos, considerando-se dados de pesos de bovinos analisados como medidas repetidas. Foram utilizados dados de peso de 3.690 bovinos Canchim, obtidos ao nascimento, à desmama, aos 12 e aos 18 meses de idade. Analisaram-se diferentes arranjos para os efeitos fixos (grupos de contemporâneos e/ou efeitos principais de ano, mês ou época de nascimento e sexo do bezerro e diferentes estruturas de (covariâncias para os resíduos, considerando-se ou não alteração da variância residual ao longo da vida do animal e alteração da correlação entre as medidas tomadas em intervalos diferentes. Os resultados indicaram que o arranjo mais adequado dos efeitos fixos para representar a variabilidade dos pesos dos animais dentro do rebanho foi o grupo de contemporâneos formado por ano, mês e sexo do bezerro e que as melhores estruturas de (covariâncias residuais foram a Fator Analítico de Primeira Ordem e a Não Estruturada, que consideram o aumento das variâncias com o aumento da idade do indivíduo e as correlações diferentes para cada par de medidas de peso.The aim of this work was to evaluate arrays of fixed effects and residual covariance structures that best fit the herd and the animal variability to weights at birth, weaning, twelve and eighteen months of 3,690 Canchim animals. Different arrays of fixed effects (contemporary groups and, or the main effects of year, month or season of birth and sex and different residual covariance structures (considering or not change of variance and of correlation between weights at different ages were studied. The results indicated that the most adequate array of fixed effects to fit herd variability was the contemporary group of year, month and sex. The best residual covariance structures were
Asymmetrically pumped Bragg scattering with the effects of nonlinear phase modulation
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; Friis, Søren Michael Mørk; Reddy, Dileep V.
2014-01-01
We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM.......We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM....
Nonlinear Effects in Quantum Dynamics of Atom Laser: Mean-Field Approach
Institute of Scientific and Technical Information of China (English)
JING Hui
2002-01-01
Quantum dynamics and statistics of an atom laser with nonlinear binary interactions are investigated inthe framework of mean-field approximation. The linearized effective Hamiltonian of the system is accurately solvable.It is shown that, although the input radio frequency field is in an ordinary Glauber coherent state, the output matterwave will periodically exhibit quadrature squeezing effects purely originated from the nonlinear atom-atom collisions.
Bayes linear covariance matrix adjustment
Wilkinson, Darren J
1995-01-01
In this thesis, a Bayes linear methodology for the adjustment of covariance matrices is presented and discussed. A geometric framework for quantifying uncertainties about covariance matrices is set up, and an inner-product for spaces of random matrices is motivated and constructed. The inner-product on this space captures aspects of our beliefs about the relationship between covariance matrices of interest to us, providing a structure rich enough for us to adjust beliefs about unknown matrices in the light of data such as sample covariance matrices, exploiting second-order exchangeability and related specifications to obtain representations allowing analysis. Adjustment is associated with orthogonal projection, and illustrated with examples of adjustments for some common problems. The problem of adjusting the covariance matrices underlying exchangeable random vectors is tackled and discussed. Learning about the covariance matrices associated with multivariate time series dynamic linear models is shown to be a...
Fernández, E N; Legarra, A; Martínez, R; Sánchez, J P; Baselga, M
2017-06-01
Inbreeding generates covariances between additive and dominance effects (breeding values and dominance deviations). In this work, we developed and applied models for estimation of dominance and additive genetic variances and their covariance, a model that we call "full dominance," from pedigree and phenotypic data. Estimates with this model such as presented here are very scarce both in livestock and in wild genetics. First, we estimated pedigree-based condensed probabilities of identity using recursion. Second, we developed an equivalent linear model in which variance components can be estimated using closed-form algorithms such as REML or Gibbs sampling and existing software. Third, we present a new method to refer the estimated variance components to meaningful parameters in a particular population, i.e., final partially inbred generations as opposed to outbred base populations. We applied these developments to three closed rabbit lines (A, V and H) selected for number of weaned at the Polytechnic University of Valencia. Pedigree and phenotypes are complete and span 43, 39 and 14 generations, respectively. Estimates of broad-sense heritability are 0.07, 0.07 and 0.05 at the base versus 0.07, 0.07 and 0.09 in the final generations. Narrow-sense heritability estimates are 0.06, 0.06 and 0.02 at the base versus 0.04, 0.04 and 0.01 at the final generations. There is also a reduction in the genotypic variance due to the negative additive-dominance correlation. Thus, the contribution of dominance variation is fairly large and increases with inbreeding and (over)compensates for the loss in additive variation. In addition, estimates of the additive-dominance correlation are -0.37, -0.31 and 0.00, in agreement with the few published estimates and theoretical considerations. © 2017 Blackwell Verlag GmbH.
Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides
Lysenko, Oleg; Bache, Morten; Malureanu, Radu; Lavrinenko, Andrei
2016-04-01
This paper is devoted to experimental and theoretical studies of nonlinear propagation of a long-range surface plasmon polariton (LRSPP) in gold strip waveguides. The plasmonic waveguides are fabricated in house, and contain a gold layer, tantalum pentoxide adhesion layers, and silicon dioxide cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrödinger equation is solved. The dispersion length is much larger than the waveguides length, and the chromatic dispersion does not affect the propagation of the plasmonic mode. We find that the third-order susceptibility of the gold layer has a dominant contribution to the effective third-order susceptibility of the LRSPP mode. The real part of the effective third-order susceptibility leads to the observed spectral broadening through the self-phase modulation effect, and its imaginary part determines the nonlinear absorption parameter and leads to the observed nonlinear power transmission. The experimental values of the third-order susceptibility of the gold layers are obtained. They indicate an effective enhancement of the third-order susceptibility for the gold layers, comparing to the bulk gold values. This enhancement is explained in terms of the change of the electrons motion.
Nonlinear effects at the Fermilab Recycler e-cloud instability
Balbekov, V
2016-01-01
Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from the batch to its bunch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role of the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.
Collisional Effects on Nonlinear Ion Drag Force for Small Grains
Hutchinson, I H
2013-01-01
The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.
Chromatic and Dispersive Effects in Nonlinear Integrable Optics
Webb, Stephen D; Valishev, Alexander; Nagaitsev, Sergei N; Danilov, Viatcheslav V
2015-01-01
Proton accumulator rings and other circular hadron accelerators are susceptible to intensity-driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on how chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker ...
Nonlinear Effects at the Fermilab Recycler e-Cloud Instability
Energy Technology Data Exchange (ETDEWEB)
Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2016-06-10
Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from bunch to bunch along the batch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role of the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.
Nonlinear effects of energetic particle driven instabilities in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Bruedgam, Michael
2010-03-25
In a tokamak plasma, a population of superthermal particles generated by heating methods can lead to a destabilization of various MHD modes. Due to nonlinear wave-particle interactions, a consequential fast particle redistribution reduces the plasma heating and can cause severe damages to the wall of the fusion device. In order to describe the wave-particle interaction, the drift-kinetic perturbative HAGIS code is applied which evolves the particle trajectories and the waves nonlinearly. For a simulation speed-up, the 6-d particle phase-space is reduced by the guiding centre approach to a 5-d description. The eigenfunction of the wave is assumed to be invariant, but its amplitude and phase is altered in time. A sophisticated {delta}/f-method is employed to model the change in the fast particle distribution so that numerical noise and the excessive number of simulated Monte-Carlo points are reduced significantly. The original code can only calculate the particle redistribution inside the plasma region. Therefore, a code extension has been developed during this thesis which enlarges the simulation region up to the vessel wall. By means of numerical simulations, this thesis addresses the problem of nonlinear waveparticle interactions in the presence of multiple MHD modes with significantly different eigenfrequencies and the corresponding fast particle transport inside the plasma. In this context, a new coupling mechanism between resonant particles and waves has been identified that leads to enhanced mode amplitudes and fast particle losses. The extension of the code provides for the first time the possibility of a quantitative and qualitative comparison between simulation results and recent measurements in the experiment. The findings of the comparison serve as a validation of both the theoretical model and the interpretation of the experimental results. Thus, a powerful interface tool has been developed for a deeper insight of nonlinear wave-particle interaction
Covariant Renormalizable Anisotropic Theories and Off-Diagonal Einstein-Yang-Mills-Higgs Solutions
Vacaru, Sergiu I
2011-01-01
We use an important decoupling property of gravitational field equations in the general relativity theory and modifications, written with respect to nonholonomic frames with 2+2 spacetime decomposition. This allows us to integrate the Einstein equations in very general forms with generic off--diagonal metrics depending on all spacetime coordinates via generating and integration functions containing (broken and un-broken) symmetry parameters. We associate families of off-diagonal Einstein manifolds to certain classes of covariant gravity theories which have a nice ultraviolet behavior and seem to be (super) renormalizable in a sense of covariant modifications of Ho\\v{r}ava-Lifshits gravity. The apparent breaking of Lorentz invariance is present in some "partner" anisotropically induced theories due to nonlinear coupling with effective parametric interactions determined by nonholonomic constraints and generic off-diagonal gravitational and matter fields configurations. Finally, we show how the constructions can...
Nonlinear optical effects in pure and N-doped semiconductors
Donlagic, N S
2000-01-01
the optical response of a one-dimensional n-doped two-band semiconductor whose conduction band has been linearized with respect to the two Fermi points. Due to the linearization it is possible to calculate the linear and nonlinear response functions of the interacting electron system exactly. These response functions are then used in order to determine the linear absorption spectrum and the time-integrated signal of a degenerated four-wave-mixing experiment. It is shown that the well-known features of the linear response can directly be related to features of the nonlinear experiments. For example, the exponent which describes the algebraic decay of the time-integrated four-wave-mixing signal is functionally dependent on the exponent of the algebraic singularity in the linear absorption spectrum reflecting the common origin of the different phenomena. Over the last decades, the nonlinear optical properties of condensed matter systems have been an attractive and fruitful field of research. While the linear res...
Korman, Murray S.; Sabatier, James M.; Pauls, Kathleen E.; Genis, Sean A.
2006-05-01
When airborne sound at two primary tones, f I, f II (closely spaced near a resonance) excites the soil surface over a buried landmine, soil wave motion interacts with the landmine generating a scattered surface profile which can be measured over the "target." Profiles at the primaries f I, f II, and nonlinearly generated combination frequencies f I-(f II-f I) and f II+(f II-f I) , 2f I-(f II-f I), f I+f II and 2f II+(f II-f I) (among others) have been measured for a VS 2.2 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil and in a gravel road bed. [M.S. Korman and J.M. Sabatier, J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. It is observed that the "on target" to "off target" contrast ratio for the sum frequency component can be ~20 dB higher than for either primary. The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like sandstone. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Tuning curve experiments are performed both on and off the mine in an effort to understand the nonlinearities in each case.
Electrically actuated MEMS resonators: Effects of fringing field and nonlinear viscoelasticity
Farokhi, Hamed; Ghayesh, Mergen H.
2017-10-01
This paper studies the nonlinear electromechanical response of a MEMS resonator numerically. A nonlinear continuous multi-physics model of the MEMS resonator is developed taking into account the effects of fringing field, size, residual axial load, and viscoelasticity. Moreover, both longitudinal and transverse motions are accounted for in the system modelling and simulations. The equations of motion of the MEMS resonator are obtained employing Hamilton's principle together with the modified version of the couple stress based theory (to account for size effects) and the Kelvin-Voigt model (to account for nonlinear energy dissipation). The Meijs-Fokkema electrostatic load formula is used to reliably model the fringing field effects. The continuous multi-physics model, consisting of geometrical, electrical, and viscos nonlinearities is discretised via a weighted-residual method, yielding a set of nonlinearly coupled ordinary differential equations (ODEs). The resultant set of ODEs is solved numerically when the microresonator is actuated by a biased DC voltage and an AC voltage. The results of the numerical simulations are presented in the form of DC voltage-deflection, DC voltage-natural frequency, and AC frequency-displacement diagrams. The effects of fringing field, residual axial load, small-scale, and nonlinear energy dissipation are highlighted. It is shown that fringing field effects are significant on both static and dynamic electromechanical responses of the MEMS resonator.
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.
A multilevel nonlinear mixed-effects approach to model growth in pigs
DEFF Research Database (Denmark)
Strathe, Anders Bjerring; Danfær, Allan Christian; Sørensen, H
2009-01-01
Growth functions have been used to predict market weight of pigs and maximize return over feed costs. This study was undertaken to compare 4 growth functions and methods of analyzing data, particularly one that considers nonlinear repeated measures. Data were collected from an experiment with 40...... pigs maintained from birth to maturity and their BW measured weekly or every 2 wk up to 1,007 d. Gompertz, logistic, Bridges, and Lopez functions were fitted to the data and compared using information criteria. For each function, a multilevel nonlinear mixed effects model was employed because....... Furthermore, studies should consider adding continuous autoregressive process when analyzing nonlinear mixed models with repeated measures....
Nonlinear Absolute Nodal Coordinate Formulation of a Flexible Beam Considering Shear Effect
Institute of Scientific and Technical Information of China (English)
LIU Jin-yang; SHEN Ling-jie; HONG Jia-zhen
2005-01-01
Nonlinear modeling of a flexible beam with large deformation was investigated. Absolute nodal cooridnate formulation is employed to describe the motion, and Lagrange equations of motion of a flexible beam are derived based on the geometric nonlinear theory. Different from the previous nonlinear formulation with EulerBernoulli assumption, the shear strain and transverse normal strain are taken into account. Computational example of a flexible pendulum with a tip mass is given to show the effects of the shear strain and transverse normal strain. The constant total energy verifies the correctness of the present formulation.
López, Rosa; Sánchez, David
2013-07-01
We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two terminals. We discuss nonlinear contributions to the Peltier effect and find departures from the Wiedemann-Franz law in the nonlinear regime of transport.
Thorvaldsson, Valgeir; Skoog, Ingmar; Hofer, Scott M; Börjesson-Hanson, Anne; Ostling, Svante; Sacuiu, Simona; Johansson, Boo
2012-06-01
Midlife hypertension is associated with increased risk of cognitive impairment in later life. The association between blood pressure (BP) in older ages and cognition is less clear. In this study we provide estimates of between-person and within-person associations of BP and cognition in a population-based sample (N = 382) followed from age 70 across 12 occasions over 30 years. Between-person associations refer to how individual differences in BP relates to individual differences in cognition. Within-person associations refer to how individual and time specific changes in BP relate to variation in cognition. Hierarchical linear models were fitted to data from three cognitive measurements (verbal ability, spatial ability, and perceptual speed) while accounting for demographic and health-related covariates. We found consistent nonlinear between-person associations between diastolic BP (DBP) and cognition, such that both low (95 mmHg) pressure were associated with poorer cognition. Within-person decreases in systolic BP (SBP) and DBP were associated with decreases in perceptual speed. Notably, between-person and within-person estimates did not reveal similar associations, suggesting the need to separate the two effects in the analysis of associations between BP and cognition in old age.
Noise-induced transitions and resonant effects in nonlinear systems
Zaikin, Alexei
2003-02-01
Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich
Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors
Sadleir, John
2016-01-01
When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a
Engineering chromatic dispersion and effective nonlinearity in a dual-slot waveguide.
Liu, Yan; Yan, Jing; Han, Genquan
2014-09-20
In this paper, we propose a new dual slot based on rib-like structure, which exhibits a flat and near-zero dispersion over a 198 nm wide wavelength range. Chromatic dispersion of dual-slot silicon (Si) waveguide is mainly determined by waveguide dispersion due to the manipulating mode effective area rather than by the material dispersion. Moreover, the nonlinear coefficient and effective mode area of the waveguide are also explored in detail. A nonlinear coefficient of 1460/m/W at 1550 nm is achieved, which is 10 times larger than that of the Si rib waveguide. By changing different waveguide variables, both the dispersion and nonlinear coefficient can be tailored, thus enabling the potential for a highly nonlinear waveguide with uniform dispersion over a wide wavelength range, which could benefit the performance of broadband optical signal systems.
Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.
Chen, Tao; Sun, Junqiang; Li, Linsen
2012-08-27
In this paper, we derive the couple-mode equations for third-order nonlinear effects in photonic crystal waveguides by employing the modal theory. These nonlinear interactions include self-phase modulation, cross-phase modulation and degenerate four-wave mixing. The equations similar to that in nonlinear fiber optics could be expanded and applied for third-order nonlinear processes in other periodic waveguides. Based on the equations, we systematically analyze the group-velocity dispersion, optical propagation loss, effective interaction area, slow light enhanced factor and phase mismatch for a slow light engineered silicon photonic crystal waveguide. Considering the two-photon and free-carrier absorptions, the wavelength conversion efficiencies in two low-dispersion regions are numerically simulated by utilizing finite difference method. Finally, we investigate the influence of slow light enhanced multiple four-wave-mixing process on the conversion efficiency.
On the effects of nonlinearities in room impulse response measurements with exponential sweeps
DEFF Research Database (Denmark)
Ciric, Dejan; Markovic, Milos; Mijic, Miomir
2013-01-01
In room impulse response measurements, there are some common disturbances that affect the measured results. These disturbances include nonlinearity, noise and time variance. In this paper, the effects of nonlinearities in the measurements with exponential sweep-sine signals are analyzed from...... different perspectives. The analysis combines theoretical approach, simulations and measurements. The focus is on distortion artifacts in the causal part of the impulse response and their effects on room acoustical parameters. The results show that the sweep-sine method is vulnerable to a certain extent...... to nonlinearities from a theoretical standpoint, but the consequences of this vulnerability are reduced in the responses measured in practice. However, due to irretrievable contamination of the impulse responses, the nonlinearities (especially strong ones) should be avoided....
Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers
Leighton, Timothy G.
2004-11-01
Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.
Analysis of nonlinearities and effects in direct drive electro-hydraulic position servo system
Institute of Scientific and Technical Information of China (English)
WANG Hong-jie; JI Tian-jing; MAO Xin-tao; LIU Quan-zhong
2005-01-01
The direct drive electro-hydraulic servo system is a new approach hydraulic system. It is much smaller and easier controlled than traditional systems and is a perfect energy saver. This paper will briefly introduce the popular nonlinearities in the electro-hydraulic system and analyse the effect of nonlinearities in direct drive electro-hydraulic position servo system by means of simulation research. Some valuable conclusions are given.
Covariant electromagnetic field lines
Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.
2017-08-01
Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.
Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy.
Karadimitriou, M E; Kavousanaki, E G; Dani, K M; Fromer, N A; Perakis, I E
2011-05-12
We discuss a many-body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time-evolved many-body state due to correlated and uncorrelated multiple optical transitions, and use "Hubbard operator" density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including "pure dephasing". Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two-dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time-delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter-Landau-level magnetoplasmon and magnetoroton excitations and compare to three-pulse four-wave-mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four-particle correlations between an electron-hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton-exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non-equilibrium co-operative phenomena in strongly correlated systems.
Nonlinear Seebeck and Peltier effects in quantum point contacts
Energy Technology Data Exchange (ETDEWEB)
Cipiloglu, M.A.; Turgut, S.; Tomak, M. [Department of Physics, Middle East Technical University, Ankara (Turkey)
2004-09-01
The charge and entropy currents across a quantum point contact are expanded as a series in powers of the applied bias voltage and the temperature difference. After that, the expansions of the Seebeck voltage in temperature difference and the Peltier heat in current are obtained. With a suitable choice of the average temperature and chemical potential, the lowest order nonlinear term in both cases appear to be of third order. The behavior of the third-order coefficients in both cases are then investigated for different contact parameters. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Effect of Tissue Inhomogeneity on Nonlinear Propagation of Focused Ultrasound
Institute of Scientific and Technical Information of China (English)
LIU Zhen-Bo; FAN Ting-Bo; GUO Xia-Sheng; ZHANG Dong
2010-01-01
@@ We study the influence of tissue inhomogeneity on the focused ultrasound based on the phase screen model and the acoustic nonlinear equation.The inhomogeneous tissue is considered as a combination of a homogeneous medium and a phase aberration screen.Six polyethylene(PE)plates with various correlation lengths and standard deviations are made to mimic the inhomogeneity induced by the human body abdominal.Results indicate that the correlation length affects the side lobe structure of the beam pattern; while the standard deviation is associated with the focusing capability.This study provides a theoretical and experimental basis for the development of a precise treatment plan for high intensity focused ultrasound.
Nonlinear Seebeck and Peltier effects in quantum point contacts
Çipilolu, M. A.; Turgut, S.; Tomak, M.
2004-09-01
The charge and entropy currents across a quantum point contact are expanded as a series in powers of the applied bias voltage and the temperature difference. After that, the expansions of the Seebeck voltage in temperature difference and the Peltier heat in current are obtained. With a suitable choice of the average temperature and chemical potential, the lowest order nonlinear term in both cases appear to be of third order. The behavior of the third-order coefficients in both cases are then investigated for different contact parameters.
Weak non-linear surface charging effects in electrolytic films
Dean, D. S.; Horgan, R. R.
2002-01-01
A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full non-linear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the reno...
Effect of geometric anisotropy on optical nonlinearity enhancement for periodic composites
Yang, Baifeng; Zhang, Chengxiang; Tian, Decheng
2003-01-01
The effect of geometric anisotropy on the optical nonlinearity enhancement for the composites with metal or semiconductor spheriodal-shaped particles periodically in an insulating host is investigated. The frequency dependences of effective nonlinear susceptibility are calculated with the Stroud-Hui relation and a series expression of space-dependent electric field in periodic composites. The results show that for both metal-insulator (MI) and semiconductor-insulator (SI) composites, nonlinearity enhancement increases almost to its maximum when the percolation networks of the inclusion phase form. The nonlinearity enhancement increases to its maximum when the composites are transformed into the Boyd-Sipe layered composites. The behavior of the nonlinearity enhancement near the percolation threshold is also investigated. A local minimum appears in the nonlinear optical responses at the percolation threshold for the MI composites. For the SI composites the local minimum appears when the ratio of the bound-electron number density to the effective mass of the electron is large.
Research on Nonlinear Absorption Effect in KDP and 70%-DKDP Crystals
Directory of Open Access Journals (Sweden)
Duanliang Wang
2017-07-01
Full Text Available Nonlinear optical absorption effect in KDP and 70%-DKDP crystals, which were grown by the conventional temperature cooling method, was systematically studied using picosecond pulse laser excitation. Using open aperture Z-scan measurements, the dependence of nonlinear absorption effect on sample orientations (I, II, and z as well as laser intensity was systematically measured at λ = 1064 and 532 nm. According to the experimental results, the nonlinear absorption effect at λ = 532 nm was confirmed, while at λ = 1064 nm no nonlinear absorption was observed for KDP and 70%-DKDP crystals. In addition, the optical absorption along I- and II-type affected by laser intensity was larger than that along the z-direction. The important nonlinear absorption coefficients β and χ I ( 3 (esu measured along different orientations were exhibited in detail at wavelengths of 1064 nm and 532 nm. The results indicate that nonlinear absorption coefficients increase first and then decrease with the increment of laser intensity for KDP and 70%-DKDP crystals.
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
A comparison of covariance structure in wild and laboratory muroid crania.
Jamniczky, Heather A; Hallgrímsson, Benedikt
2009-06-01
Mutations have the ability to produce dramatic changes to covariance structure by altering the variance of covariance-generating developmental processes. Several evolutionary mechanisms exist that may be acting interdependently to stabilize covariance structure, despite this developmental potential for variation within species. We explore covariance structure in the crania of laboratory mouse mutants exhibiting mild-to-significant developmental perturbations of the cranium, and contrast it with covariance structure in related wild muroid taxa. Phenotypic covariance structure is conserved among wild muroidea, but highly variable and mutation-dependent within the laboratory group. We show that covariance structures in natural populations of related species occupy a more restricted portion of covariance structure space than do the covariance structures resulting from single mutations of significant effect or the almost nonexistent genetic differences that separate inbred mouse strains. Our results suggest that developmental constraint is not the primary mechanism acting to stabilize covariance structure, and imply a more important role for other mechanisms.
Primarily nonlinear effects observed in a driven asymmetrical vibrating wire
Hanson, Roger J.; Macomber, H. Kent; Morrison, Andrew C.; Boucher, Matthew A.
2005-01-01
The purpose of the work reported here is to further experimentally explore the wide variety of behaviors exhibited by driven vibrating wires, primarily in the nonlinear regime. When the wire is driven near a resonant frequency, it is found that most such behaviors are significantly affected by the splitting of the resonant frequency and by the existence of a ``characteristic'' axis associated with each split frequency. It is shown that frequency splitting decreases with increasing wire tension and can be altered by twisting. Two methods are described for determining the orientation of characteristic axes. Evidence is provided, with a possible explanation, that each axis has the same orientation everywhere along the wire. Frequency response data exhibiting nonlinear generation of transverse motion perpendicular to the driving direction, hysteresis, linear generation of perpendicular motion (sometimes tubular), and generation of motion at harmonics of the driving frequency are exhibited and discussed. Also reported under seemingly unchanging conditions are abrupt large changes in the harmonic content of the motion that sometimes involve large subharmonics and harmonics thereof. Slow transitions from one stable state of vibration to another and quasiperiodic motions are also exhibited. Possible musical significance is discussed. .
Nonlinear diffraction effects around a surface-piercing structure
Energy Technology Data Exchange (ETDEWEB)
Lalli, F.; Mascio, A. Di; Landrini, M. [Istituto Nazionale per Studi ed Esperienze di Architettura Navale, Rome (Italy)
1995-12-31
In the present paper the interaction of a wave system with a submerged or surface piercing body is studied. The wave diffraction caused by a cylinder in finite depth water and by a shoal is been computed and the results are compared with analytical solutions and experimental data. The problem is analyzed numerically in the frame of irrotational incompressible flow hypothesis. Both the linearized and the fully nonlinear mathematical models are studied. The numerical solution is gained by means of a mixed panel-desingularized formulation. An explicit time-marching algorithm updates the wave elevation and the potential at the free surface. In all cases, the numerical simulation mirrors the experimental data. In the case of the diffraction around a cylinder, the simulation confirms and extends the theoretical results of the second order analysis (Kriebel 1990, 1992): the linear model yields a very good estimation of the force amplitude acting on the body, while the wave profiles are poorly predicted when compared with the fully nonlinear simulation and the experimental data.
Directory of Open Access Journals (Sweden)
anjali devi
2015-01-01
Full Text Available The effects of nonlinear radiation on hydromagnetic boundary layer flow and heat transfer over a shrinking surface is investigated in the present work. Using suitable similarity transformations, the governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations. The resultant equations which are highly nonlinear are solved numerically using Nachtsheim Swigert shooting iteration scheme together with Fourth Order Runge Kutta method. Numerical solutions for velocity, skin friction coefficient and temperature are obtained for various values of physical parameters involved in the study namely Suction parameter, Magnetic parameter, Prandtl number, Radiation parameter and Temperature ratio parameter. Numerical values for dimensionless rate of heat transfer are also obtained for various physical parameters and are shown through tables. The analytical solution of the energy equation when the radiation term is taken in linear form is obtained using Confluent hypergeometric function.
Institute of Scientific and Technical Information of China (English)
XIAO Yong-gang; FU Yi-ming; ZHA Xu-dong
2005-01-01
Based on Reissner plate theory and Hamilton variational principle, the nonlinear equations of motion were derived for the moderate thickness rectangular plates with transverse surface penetrating crack on the two-parameter foundation. Under the condition of free boundary, a set of trial functions satisfying all boundary conditions and crack's continuous conditions were proposed. By employing the Galerkin method and the harmonic balance method, the nonlinear vibration equations were solved and the nonlinear vibration behaviors of the plate were analyzed. In numerical computation, the effects of the different location and depth of crack, the different structural parameters of plates and the different physical parameters of foundation on the nonlinear amplitude frequency response curves of the plate were discussed.
Hady, Fekry M; Ibrahim, Fouad S; Abdel-Gaied, Sahar M; Eid, Mohamed R
2012-04-22
In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles.
Alberucci, Alessandro; Laudyn, Urszula A.; Piccardi, Armando; Kwasny, Michał; Klus, Bartlomiej; Karpierz, Mirosław A.; Assanto, Gaetano
2017-07-01
We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals. We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach. Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-4'-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.
Theory of plasmonic effects in nonlinear optics: the case of graphene
Rostami, Habib; Polini, Marco
2016-01-01
We develop a microscopic large-$N$ theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory, which reduces to the well-known random phase approximation in the linear-response limit, is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional (2D) gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved by virtue of the finiteness of the quasi-homogeneous second-order nonlinear response of this inversion-symmetric 2D material.
Light-induced nonlinear effects on dispersion relation of ultracold Bose gas
Institute of Scientific and Technical Information of China (English)
胡正峰; 杜春光; 李师群
2003-01-01
We have investigated the optical properties of A-configuration ultracold dense Bose gas interacting with two laser pulses, which usually result in electromagnetically induced transparency. With the nonrelativistic quantum electrodynamics and taking into account the atomic dipole-dipole interaction and local field effect, we have derived the Maxwell-Bloch equations of the system. The dispersion relation of an ultracold Bose gas has been obtained and the light-induced nonlinear effects have been analysed. The light-induced nonlinear effects are different from the effects induced by two-body collision of Bose-Einstein condensation atoms which have a frequency shift of transparent window.
Light—induced nonlinear effects of dispersion relation of ultracold Bose gas
Institute of Scientific and Technical Information of China (English)
HuZheng-Feng; DuChunGuang; LiShi-Qun
2003-01-01
We have investigated the optical properties of A-configuration ultracold dense Bose gas interacting with two laser pulses, which usually result in electromagnetically induced transparency. With the nonrelativistic quantum electrodynamics and taking into account the atomic dipole-dipole interaction and local field effect, we have derived the Maxwell-Bloch equations of the system. The dispersion relation of an ultracold Bose gas has been obtained and the light-induced nonlinear effects have been analysed. The light-induced nonlinear effects are different from the effects induced by two-body collision of Bose-Einstein condensation atoms which have a frequency shift of transparent window.
Non-linear effects of soda taxes on consumption and weight outcomes.
Fletcher, Jason M; Frisvold, David E; Tefft, Nathan
2015-05-01
The potential health impacts of imposing large taxes on soda to improve population health have been of interest for over a decade. As estimates of the effects of existing soda taxes with low rates suggest little health improvements, recent proposals suggest that large taxes may be effective in reducing weight because of non-linear consumption responses or threshold effects. This paper tests this hypothesis in two ways. First, we estimate non-linear effects of taxes using the range of current rates. Second, we leverage the sudden, relatively large soda tax increase in two states during the early 1990s combined with new synthetic control methods useful for comparative case studies. Our findings suggest virtually no evidence of non-linear or threshold effects.
The influence of nonlinear effects on the spectral efficiency of multiinput antenna systems
Directory of Open Access Journals (Sweden)
Vishniakova J. V.
2015-08-01
Full Text Available The analysis technique and design algorithm are proposed for multiinput antenna systems, based on the mathematical model developed. The technique and algorithm described allow the analysis of a wide class of multiinput systems, in particular, MIMO systems, reconfigurable multiantenna systems, multiinput systems with nonlinear components and devices. The paper presents numerical analysis results of the intermodulation interference effect on the spectral efficiency of a multiinput system with nonlinear elements in receiving antennas, obtained using the methods, algorithms and software products developed. It is shown that in the nonlinear system intermodulation interferences appear, and the spectral efficiency of the data transmission system decays near the operating frequency due to the appearance of additional combinational components in the frequency response of the system. This effect depends on the degree of nonlinearity, radiated power, the level of interfering signals. Based on the results obtained, it was concluded that the presence of nonlinear elements and devices must be taken into account in the design and analysis processes of multiinput multiantenna systems, considering the specific types of those nonlinearities.
Energy Technology Data Exchange (ETDEWEB)
Palmiotti, Giuseppe; Salvatores, Massimo; Hursin, Mathieu; Kodeli, Ivo; Gabrielli, Fabrizio; Hummel, Andrew
2016-11-01
A critical examination of the role of uncertainty assessment, target accuracies, role of integral experiment for validation and, consequently, of data adjustments methods is underway since several years at OECD-NEA, the objective being to provide criteria and practical approaches to use effectively the results of sensitivity analyses and cross section adjustments for feedback to evaluators and experimentalists in order to improve without ambiguities the knowledge of neutron cross sections, uncertainties, and correlations to be used in a wide range of applications and to meet new requirements and constraints for innovative reactor and fuel cycle system design. An approach will be described that expands as much as possible the use in the adjustment procedure of selected integral experiments that provide information on “elementary” phenomena, on separated individual physics effects related to specific isotopes or on specific energy ranges. An application to a large experimental data base has been performed and the results are discussed in the perspective of new evaluation projects like the CIELO initiative.
Effect of four-dimensional variational data assimilation in case of nonlinear instability
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The effect of four-dimensional variational data assimilation on the reduction of the forecast errors is investigated for both stable and unstable flows. Numerical results show that the effect is generally positive. Particularly,its effect is much more significant in the presence of nonlinear instability
Sorokin, Vladislav S; Thomsen, Jon Juel
2016-02-01
The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature, nonlinear material and nonlinear inertia owing to longitudinal motions of the beam are taken into account, and (ii) mid-plane stretching nonlinearity. A novel approach is employed, the method of varying amplitudes. As a result, the isolated as well as combined effects of the considered sources of nonlinearities are revealed. It is shown that nonlinear inertia has the most substantial impact on the dispersion relation of a non-uniform beam by removing all frequency band-gaps. Explanations of the revealed effects are suggested, and validated by experiments and numerical simulation.
Pryor, P L; McGahan, J R; Hutto, C W; Williamson, J D
2000-11-01
The authors evaluated subjective estimates of the relationship between freedom and responsibility under predictions made in accordance with cognitive-experiential self-theory (CEST; V. Denes-Raj & S. Epstein, 1994; S. Epstein, A. Lipson, C. Holstein, & E. Huh, 1992; S. Epstein, R. Pacini, V. Denes-Raj, & H. Meier, 1996; L. A. Kirkpatrick & S. Epstein, 1992). Half of the participants viewed sexually stimulating primes before making judgments. The other participants viewed neutral stimuli before making judgments. Two dependent measures were used: A set of alternate-forms propositions measured perceived relationships between the variables, and response latencies were used to evaluate the hypothesis that persons operating experientially would make judgments faster than persons operating rationally. Results indicated a significant effect for the priming condition with respect to the within-subject dependent variable. In accordance with predictions, further analysis indicated that positive contingency items were endorsed less often by primed participants, and negative contingency items were endorsed more often by primed participants. Results are in line with predictions afforded by the CEST model. Implications are discussed.
Nonlinear effects of dark energy clustering beyond the acoustic scales
Energy Technology Data Exchange (ETDEWEB)
Anselmi, Stefano [Department of Physics/CERCA/ISO, Case Western Reserve University, Cleveland, OH 44106-7079 (United States); Nacir, Diana López [The Abdus Salam International Center for Theoretical Physics, Strada costiera 11, I-34151 Trieste (Italy); Sefusatti, Emiliano, E-mail: stefano.anselmi@case.edu, E-mail: dlopez_n@ictp.it, E-mail: emiliano.sefusatti@brera.inaf.it [INAF - Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Saint Lucia) (Italy)
2014-07-01
We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available.
The effect of nonlinearity in relativistic nucleon–nucleon potential
Indian Academy of Sciences (India)
B B Sahu; S K Singh; M Bhuyan; S K Patra
2014-04-01
A simple form for nucleon–nucleon (NN) potential is introduced as an alternative to the popular M3Y form using the relativistic mean field theory (RMFT) with the non-linear terms in -meson for the first time. In contrast to theM3Y form, the new interaction becomes exactly zero at a finite distance and the expressions are analogous with the M3Y terms. Further, its applicability is examined by the study of proton and cluster radioactivity by folding it with the RMFT-densities of the cluster and daughter nuclei to obtain the optical potential in the region of proton-rich nuclides just above the double magic core 100Sn. The results obtained were found comparable with the widely used M3Y interactions.
A NONLINEAR MATHEMATICAL MODEL FOR ASTHMA: EFFECT OF ENVIRONMENTAL POLLUTION
Directory of Open Access Journals (Sweden)
NARESHA RAM
2009-04-01
Full Text Available In this paper, we explore a nonlinear mathematical model to study the spread of asthma due to inhaled pollutants from industry as well as tobacco smoke from smokers in a variable size population. The model is analyzed using stability theory of differential equations and computer simulation. It is shown that with an increase in the level of air pollutants concentration, the asthmatic (diseased population increases. It is also shown that along with pollutants present in the environment, smoking (active or passive also helps in the spread of asthma. Moreover, with the increase in the rate of interaction between susceptibles and smokers, the persistence of the spread of asthma is higher. A numerical study of the model is also performed to see the role of certain key parameters on the spread of asthma and to support the analytical results.
Nonlinear Zel'dovich effect: Parametric amplification from medium rotation
Faccio, Daniele
2016-01-01
The interaction of light with rotating media has attracted recent interest for both fundamental and applied studies including rotational Doppler shift measurements. It is also possible to obtain amplification through the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed by Zel'dovich more than 40 years ago. This amplification mechanism has never been observed experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes. Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for sufficiently large rotation rates. The amplification is shown to result from breaking of anti-PT symmetry induced by the medium rotation.
Connected cruise control: modelling, delay effects, and nonlinear behaviour
Orosz, Gábor
2016-08-01
Connected vehicle systems (CVS) are considered in this paper where vehicles exchange information using wireless vehicle-to-vehicle (V2V) communication. The concept of connected cruise control (CCC) is established that allows control design at the level of individual vehicles while exploiting V2V connectivity. Due to its high level of modularity the proposed design can be applied to large heterogeneous traffic systems. The dynamics of a simple CVS is analysed in detail while taking into account nonlinearities in the vehicle dynamics as well as in the controller. Time delays that arise due to intermittencies and packet drops in the communication channels are also incorporated. The results are summarised using stability charts which allow one to select control gains to maintain stability and ensure disturbance attenuation when the delay is below a critical value.
Nonlinear Zel'dovich Effect: Parametric Amplification from Medium Rotation
Faccio, Daniele; Wright, Ewan M.
2017-03-01
The interaction of light with rotating media has attracted recent interest for both fundamental and applied studies including rotational Doppler shift measurements. It is also possible to obtain amplification through the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed by Zel'dovich more than forty years ago. This amplification mechanism has never been observed experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes. Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for sufficiently large rotation rates. The amplification is shown to result from breaking of anti-P T symmetry induced by the medium rotation.
Gaussian covariance matrices for anisotropic galaxy clustering measurements
Grieb, Jan Niklas; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Dalla Vecchia, Claudio
2016-04-01
Measurements of the redshift-space galaxy clustering have been a prolific source of cosmological information in recent years. Accurate covariance estimates are an essential step for the validation of galaxy clustering models of the redshift-space two-point statistics. Usually, only a limited set of accurate N-body simulations is available. Thus, assessing the data covariance is not possible or only leads to a noisy estimate. Further, relying on simulated realizations of the survey data means that tests of the cosmology dependence of the covariance are expensive. With these points in mind, this work presents a simple theoretical model for the linear covariance of anisotropic galaxy clustering observations with synthetic catalogues. Considering the Legendre moments (`multipoles') of the two-point statistics and projections into wide bins of the line-of-sight parameter (`clustering wedges'), we describe the modelling of the covariance for these anisotropic clustering measurements for galaxy samples with a trivial geometry in the case of a Gaussian approximation of the clustering likelihood. As main result of this paper, we give the explicit formulae for Fourier and configuration space covariance matrices. To validate our model, we create synthetic halo occupation distribution galaxy catalogues by populating the haloes of an ensemble of large-volume N-body simulations. Using linear and non-linear input power spectra, we find very good agreement between the model predictions and the measurements on the synthetic catalogues in the quasi-linear regime.
Universal Covariance Inflation Factors in the Synchronization Approach to Data Assimilation
Duane, G.; Tribbia, J.
2009-04-01
A theoretical paradigm that seems appropriate for data assimilation is that of the synchronization of loosely coupled chaotic systems. Two or more chaotic systems, loosely coupled through only a few of many degrees of freedom, fall into synchronized motion along their strange attractors under a surprisingly wide variety of conditons, despite sensitivity to differences in initial conditions. The phenomenon has been used to establish a new framework for data assimilation as the synchronization of two systems, corresponding to "truth" and "model", respectively. One seeks to introduce coupling between the two systems in a way that minimizes synchronization error. In previous work, the introduction of observational noise in the coupling channel led to a system of stochastic differential equations that could be analyzed for the optimal value of a coupling coefficient in simple cases. That optimization procedure reproduced the Kalman filter algorithm under certain linearity conditions. In the presence of nonlinearities, if one generalizes the Kalman filter in a way that corresponds to inflating background error, one can derive optimal values for the covariance inflation factor that happen to agree roughly with those used in operational practice. Further, the optimization is robust against the introduction of model error. Here we generalize these previous results in several ways: First, we show that sampling error can be introduced as multiplicative noise. Optimal inflation factors can then be calculated to take account of this additional source of error. Second, we show that the previous optimization of an idealized one-dimensional system captures the essential effects of nonlinearities in higher dimensions. Lastly, in the optimal synchronization context, we compare covariance inflation to other ways of treating nonlinearities, such as adding noise to elements of the analysis error covariance matrix. The near-universality of the traditional inflation approach is explained
Directory of Open Access Journals (Sweden)
Ghader Rezazadeh
2007-07-01
Full Text Available In this paper, the effect of residual stress on divergence instability of a rectangular microplate subjected to a nonlinear electrostatic pressure for different geometrical properties has been presented. After deriving the governing equation and using of Step-by-Step Linearization Method (SSLM, the governing nonlinear equation has been linearized. By applying the finite difference method (FDM to a rectangular mesh, the linearized equation has been discretized. The results show, residual stresses have considerable effects on Pull-in phenomena. Tensile residual stresses increase pull-in voltage and compressive decrease it. The effect of different geometrical properties on divergence instability has also been studied.
The Simulation Analysis of Nonlinear for a Power Amplifier with Memory Effects
Directory of Open Access Journals (Sweden)
Lv. Jinqiu
2014-09-01
Full Text Available For the nonlinear distortion problem of current power amplifiers (PAs with memory effects, we use goal programming to present a memoryless predistorter matrix model based on limiting baseband predistortion technique, and the normalized mean squared error (NMSE is limited in a satisfactory range while the output power is maximum. Then we propose a nonlinear power amplifier with memory effects based on back propagation neural network (BPNN with three tapped delay nodes and six single hidden layer nodes, which is single input - dual output. Simulation results show that the method proposed in this paper makes the experimental precision higher. Further, the linearization effect of power amplifiers becomes better.
Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects
Cheng, J. L.; Vermeulen, N.; Sipe, J. E.
2017-01-01
We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response. PMID:28262762
Sorensen, Patrick O.; Germino, Matthew J.; Feris, Kevin P.
2013-01-01
Precipitation amount and seasonal timing determine the duration and distribution of water available for plant and microbial activity in the cold desert sagebrush steppe. In this study, we sought to determine if a sustained shift in the amount and timing of precipitation would affect soil microbial diversity, community composition, and soil carbon (C) storage. Field plots were irrigated (+200 mm) during the dormant or growing-season for 17 years. Microbial community responses were assessed over the course of a year at two depths (15–20 cm, 95–100 cm) by terminal restriction fragment length polymorphism (T-RFLP), along with co-occurring changes in plant cover and edaphic properties. Bacterial richness, Shannon Weaver diversity, and composition in shallow soils (15–20 cm) as well as evenness in deep soils (95–100 cm) differed across irrigation treatments during July. Irrigation timing affected fungal community diversity and community composition during the dormant season and most strongly in deep soils (95–100 cm). Dormant-season irrigation increased the ratio of shrubs to forbs and reduced soil C in shallow soils by 16% relative to ambient conditions. It is unclear whether or not soil C will continue to decline with continued treatment application or if microbial adaptation could mitigate sustained soil C losses. Future changes in precipitation timing will affect soil microbes in a seasonally dependent manner and be coupled to co-varying effects of water content on vegetation and soil C.
Covariant representations of subproduct systems
Viselter, Ami
2010-01-01
A celebrated theorem of Pimsner states that a covariant representation $T$ of a $C^*$-correspondence $E$ extends to a $C^*$-representation of the Toeplitz algebra of $E$ if and only if $T$ is isometric. This paper is mainly concerned with finding conditions for a covariant representation of a \\emph{subproduct system} to extend to a $C^*$-representation of the Toeplitz algebra. This framework is much more general than the former. We are able to find sufficient conditions, and show that in important special cases, they are also necessary. Further results include the universality of the tensor algebra, dilations of completely contractive covariant representations, Wold decompositions and von Neumann inequalities.
Effect of reduction time on third order optical nonlinearity of reduced graphene oxide
Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.
2017-04-01
We report the influence of reduction time on structural, linear and nonlinear optical properties of reduced graphene oxide (rGO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned with reduction time in GO is due to the increased structural ordering because of the restoration of sp2 carbon atoms with the time of reduction. The nonlinear absorption studies by open aperture Z-scan technique exhibited a saturable absorption. The nonlinear refraction studies showed the self de focusing nature of rGO by closed aperture Z scan technique. The nonlinear absorption coefficient and saturation intensity varies with the time for reduction of GO which is attributed to the depletion of valence band and the conduction band filling effect. Our results emphasize duration for reduction of GO dependent optical nonlinearity of rGO thin films to a great extent and explore its applications Q switched mode locking laser systems for generating ultra short laser pulses and in optical sensors. The rGO coated films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.
Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling.
Deng, Qian; Liu, Liping; Sharma, Pradeep
2014-07-01
Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.
Imprint of non-linear effects on HI intensity mapping on large scales
Umeh, Obinna
2017-06-01
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.
Sato, Rodrigo; Ohnuma, Masato; Oyoshi, Keiji; Takeda, Yoshihiko
2014-09-01
The effects of size quantization on the nonlinear optical response of Ag nanoparticles are experimentally studied by spectroscopic ellipsometry and femtosecond spectroscopic pump-and-probe techniques. In the vicinity of a localized surface-plasmon resonance (2.0-3.5 eV), we have investigated the optical nonlinearity of Ag particles embedded in silica glass for particle diameters ranging from 3.0 to 16 nm. The intrinsic third-order optical susceptibility χm(3) of Ag particles exhibited significant spectral and size dependences. These results are explained as quantum and dielectric confinements and are compared to the results of theoretical quantum finite-size effects calculation for metallic particles. In light of these results, we discuss the contribution of interband transitions to the size dependence of χm(3). Quantum size effects lead to an increase in nonlinearity in small Ag particles.
Correction of non-linearity effects in detectors for electron spectroscopy
Mannella, N; Kay, A W; Nambu, A; Gresch, T; Yang, S H; Mun, B S; Bussat, J M; Rosenhahn, A; Fadley, C S
2004-01-01
Using photoemission intensities and a detection system employed by many groups in the electron spectroscopy community as an example, we have quantitatively characterized and corrected detector non-linearity effects over the full dynamic range of the system. Non-linearity effects are found to be important whenever measuring relative peak intensities accurately is important, even in the low-countrate regime. This includes, for example, performing quantitative analyses for surface contaminants or sample bulk stoichiometries, where the peak intensities involved can differ by one or two orders of magnitude, and thus could occupy a significant portion of the detector dynamic range. Two successful procedures for correcting non-linearity effects are presented. The first one yields directly the detector efficiency by measuring a flat-background reference intensity as a function of incident x-ray flux, while the second one determines the detector response from a least-squares analysis of broad-scan survey spectra at di...
Effects of breathing patterns and light exercise on linear and nonlinear heart rate variability.
Weippert, Matthias; Behrens, Kristin; Rieger, Annika; Kumar, Mohit; Behrens, Martin
2015-08-01
Despite their use in cardiac risk stratification, the physiological meaning of nonlinear heart rate variability (HRV) measures is not well understood. The aim of this study was to elucidate effects of breathing frequency, tidal volume, and light exercise on nonlinear HRV and to determine associations with traditional HRV indices. R-R intervals, blood pressure, minute ventilation, breathing frequency, and respiratory gas concentrations were measured in 24 healthy male volunteers during 7 conditions: voluntary breathing at rest, and metronome guided breathing (0.1, 0.2 and 0.4 Hz) during rest, and cycling, respectively. The effect of physical load was significant for heart rate (HR; p effect of load and breathing pattern was evident. Correlations to traditional HRV indices were modest (r from -0.14 to -0.67, p exercise does not significantly affect short-time HRV nonlinear indices, respiratory activity has to be considered as a potential contributor at rest and during light dynamic exercise.
Non-linear effects in transition edge sensors for X-ray detection
Energy Technology Data Exchange (ETDEWEB)
Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)]. E-mail: sbandler@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R.L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Murphy, K.D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sadleir, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2006-04-15
In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter.
Nonlinear effects in propagation of radiation of X-ray free-electron lasers
Nosik, V. L.
2016-05-01
Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2006-01-01
Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...
Cross-polarized wave generation by effective cubic nonlinear optical interaction.
Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M
2001-03-15
A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing.
The effective wavenumber of a pre-stressed nonlinear microvoided composite
Energy Technology Data Exchange (ETDEWEB)
Parnell, W J; Abrahams, I D, E-mail: William.Parnell@manchester.ac.uk [School of Mathematics, Alan Turing Building, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)
2011-01-01
By using nonlinear elasticity and a modified version of classical multiple scattering theory we derive an explicit form for the effective wavenumber for horizontally polarized shear (SH) elastic waves propagating through a pre-stressed inhomogeneous material consisting of well-separated cylindrical voids embedded in a neo-Hookean rubber host phase. The resulting effective (incremental) antiplane shear modulus is thus also derived.
Temperature dependent nonlinear Hall effect in macroscopic Si-MOS antidot array
Kuntsevich, A. Yu.; Shupltetsov, A. V.; Nunuparov, M. S.
2015-01-01
By measuring magnetoresistance and Hall effect in classically moderate perpendicular magnetic field in Si-MOSFET-type macroscopic antidot array we found a novel effect: nonlinear with field, temperature- and density-dependent Hall resistivity. We discuss qualitative explanation of the phenomenon and suggest that it might originate from strong temperature dependence of the resistivity and mobility in the shells of the antidots.
General covariance in computational electrodynamics
DEFF Research Database (Denmark)
Shyroki, Dzmitry; Lægsgaard, Jesper; Bang, Ole;
2007-01-01
We advocate the generally covariant formulation of Maxwell equations as underpinning some recent advances in computational electrodynamics—in the dimensionality reduction for separable structures; in mesh truncation for finite-difference computations; and in adaptive coordinate mapping as opposed...
Nonlinear topographic effects in two-layer flows
Directory of Open Access Journals (Sweden)
Peter George Baines
2016-02-01
Full Text Available We consider the nature of non-linear flow of a two-layer fluid with a rigid lid over a long obstacle, such that the flow may be assumed to be hydrostatic. Such flows can generate hydraulic jumps upstream, and the model uses a new model of internal hydraulic jumps, which results in corrections to flows that have been computed using earlier models of jumps that are now known to be incorrect. The model covers the whole range of ratios of the densities of the two fluids, and is not restricted to the Boussinesq limit. The results are presented in terms of flow types in various regions of a Froude number-obstacle height (F0 – Hm diagram, in which the Froude number F0 is based on the initial flow conditions. When compared with single-layer flow, and some previous results with two layers, some surprising and novel patterns emerge on these diagrams. Specifically, in parts of the diagram where the flow may be supercritical (F0 > 1, there are regions where hysteresis may occur, implying that the flow may have two and sometimes three multiple flow states for the same conditions (i.e. values of F0 and Hm.
Isotopic effects on non-linearity, molecular radius and intermolecular free length
Indian Academy of Sciences (India)
Ranjan Dey; Arvind K Singh; N K Soni; B S Bisht; J D Pandey
2006-08-01
Computation of non-linearity parameter (/), molecular radius (rm) and intermolecular free length (f) for H2O, C6H6, C6H12, CH3OH, C2H5OH and their deuterium-substituted compounds have been carried out at four different temperatures, viz., 293.15, 303.15, 313.15 and 323.15 K. The aim of the investigation is an attempt to study the isotopic effects on the non-linearity parameter and the physicochemical properties of the liquids, which in turn has been used to study their effect on the intermolecular interactions produced thereof.
Nonlinear Random Effects Mixture Models: Maximum Likelihood Estimation via the EM Algorithm.
Wang, Xiaoning; Schumitzky, Alan; D'Argenio, David Z
2007-08-15
Nonlinear random effects models with finite mixture structures are used to identify polymorphism in pharmacokinetic/pharmacodynamic phenotypes. An EM algorithm for maximum likelihood estimation approach is developed and uses sampling-based methods to implement the expectation step, that results in an analytically tractable maximization step. A benefit of the approach is that no model linearization is performed and the estimation precision can be arbitrarily controlled by the sampling process. A detailed simulation study illustrates the feasibility of the estimation approach and evaluates its performance. Applications of the proposed nonlinear random effects mixture model approach to other population pharmacokinetic/pharmacodynamic problems will be of interest for future investigation.
The effects of oppositely sloping boundaries with Ekman dissipation in a nonlinear baroclinic system
Weng, H.-Y.
1990-01-01
The present analytical and numerical examination of the effect of the slope Delta with dissipation delta on baroclinic flows in linear and nonlinear systems uses a modified Eady channel model with oppositely sloping top and bottom Ekman layers, and truncates the spectral wave solution up to six components. Comparisons are made wherever possible with results from beta-plane dissipative systems. In the linear system, the combined effect of Delta and delta strongly stabilizes long waves. In a nonlinear system without wave-wave interaction, Delta stabilizes the flow even for small delta and reduces the domain of vacillation while enlarging the domain of single-wave steady state.
Benoit, Michel; Yates, Marissa L.; Raoult, Cécile
2017-04-01
Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the
Nonlinear effects in the propagation of optically generated magnetostatic volume mode spin waves
van Tilburg, L. J. A.; Buijnsters, F. J.; Fasolino, A.; Rasing, T.; Katsnelson, M. I.
2017-08-01
Recent experimental work has demonstrated optical control of spin wave emission by tuning the shape of the optical pulse [Satoh et al., Nat. Photon. 6, 662 (2012), 10.1038/nphoton.2012.218]. We reproduce these results and extend the scope of the control by investigating nonlinear effects for large amplitude excitations. We observe an accumulation of spin wave power at the center of the initial excitation combined with short-wavelength spin waves. These kinds of nonlinear effects have not been observed in earlier work on nonlinearities of spin waves. Our observations pave the way for the manipulation of magnetic structures at a smaller scale than the beam focus, for instance in devices with all-optical control of magnetism.
Nonlinear frequency conversion effect in a one-dimensional graphene-based photonic crystal
Wicharn, S.; Buranasiri, P.
2015-07-01
In this research, the nonlinear frequency conversion effect based on four-wave mixing (FWM) principle in a onedimensional graphene-based photonics crystal (1D-GPC) has been investigated numerically. The 1D-GPC structure is composed of two periodically alternating material layers, which are graphene-silicon dioxide bilayer system and silicon membrane. Since, the third-order nonlinear susceptibility χ(3) of bilayer system is hundred time higher than pure silicon dioxide layer, so the enhancement of FWM response can be achieved inside the structure with optimizing photon energy being much higher than a chemical potential level (μ) of graphene sheet. In addition, the conversion efficiencies of 1DGPC structure are compared with chalcogenide based photonic structure for showing that 1D-GPC structure can enhance nonlinear effect by a factor of 100 above the chalcogenide based structure with the same structure length.
Yu, Shukai; Talbayev, Diyar
2016-01-01
We present an experimental and computational study of the nonlinear optical response of conduction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption and an amplitude-dependent group refractive index) can be understood on the qualitative level as the breakdown of the effective mass approximation. However, a predictive theoretical description of the nonlinearity has been missing. We propose a model based on the semiclassical electron dynamics, a realistic band structure, and the free electron Drude parameters to accurately calculate the experimental observables in InSb. Our results open a path to predictive modeling of the conduction-electron optical nonlinearity in semiconductors, metamaterials, as well as high-field effects in THz plasmonics.
Effects of ADC Nonlinearity on the Spurious Dynamic Range Performance of Compressed Sensing
Directory of Open Access Journals (Sweden)
Rongzong Kang
2014-01-01
Full Text Available Analog-to-information converter (AIC plays an important role in the compressed sensing system; it has the potential to significantly extend the capabilities of conventional analog-to-digital converter. This paper evaluates the impact of AIC nonlinearity on the dynamic performance in practical compressed sensing system, which included the nonlinearity introduced by quantization as well as the circuit non-ideality. It presents intuitive yet quantitative insights into the harmonics of quantization output of AIC, and the effect of other AIC nonlinearity on the spurious dynamic range (SFDR performance is also analyzed. The analysis and simulation results demonstrated that, compared with conventional ADC-based system, the measurement process decorrelates the input signal and the quantization error and alleviate the effect of other decorrelates of AIC, which results in a dramatic increase in spurious free dynamic range (SFDR.
Covariant Hyperbolization of Force-free Electrodynamics
Carrasco, Federico
2016-01-01
Force-Free Flectrodynamics (FFE) is a non-linear system of equations modeling the evolution of the electromagnetic field, in the presence of a magnetically dominated relativistic plasma. This configuration arises on several astrophysical scenarios, which represent exciting laboratories to understand physics in extreme regimes. We show that this system, when restricted to the correct constraint submanifold, is symmetric hyperbolic. In numerical applications is not feasible to keep the system in that submanifold, and so, it is necessary to analyze its structure first in the tangent space of that submanifold and then in a whole neighborhood of it. As already shown by Pfeiffer, a direct (or naive) formulation of this system (in the whole tangent space) results in a weakly hyperbolic system of evolution equations for which well-possednes for the initial value formulation does not follows. Using the generalized symmetric hyperbolic formalism due to Geroch, we introduce here a covariant hyperbolization for the FFE s...
Variance and covariance of accumulated displacement estimates.
Bayer, Matthew; Hall, Timothy J
2013-04-01
Tracking large deformations in tissue using ultrasound can enable the reconstruction of nonlinear elastic parameters, but poses a challenge to displacement estimation algorithms. Such large deformations have to be broken up into steps, each of which contributes an estimation error to the final accumulated displacement map. The work reported here measured the error variance for single-step and accumulated displacement estimates using one-dimensional numerical simulations of ultrasound echo signals, subjected to tissue strain and electronic noise. The covariance between accumulation steps was also computed. These simulations show that errors due to electronic noise are negatively correlated between steps, and therefore accumulate slowly, whereas errors due to tissue deformation are positively correlated and accumulate quickly. For reasonably low electronic noise levels, the error variance in the accumulated displacement estimates is remarkably constant as a function of step size, but increases with the length of the tracking kernel.
Jeong, Seongmook; Ju, Seongmin; Kim, Youngwoong; Watekar, Pramod R; Jeong, Hyejeong; Lee, Ho-Jae; Boo, Seongjae; Kim, Dug Young; Han, Won-Taek
2012-01-01
The dispersion-shifted fiber (DSF) incorporated with Si nanocrystals (Si-NCs) having highly nonlinear optical property was fabricated to investigate the effective supercontinuum generation characteristics by using the MCVD process and the drawing process. Optical nonlinearity was enhanced by incorporating Si nanocrystals in the core of the fiber and the refractive index profile of a dispersion-shifted fiber was employed to match its zero-dispersion wavelength to that of the commercially available pumping source for generating effective supercontinuum. The non-resonant nonlinear refractive index, n2, of the Si-NCs doped DSF measured by the cw-SPM method was measured to be 7.03 x 10(-20) [m2/W] and the coefficient of non-resonant nonlinearity, gamma, was 7.14 [W(-1) km(-1)]. To examine supercontinuum generation of the Si-NCs doped DSF, the femtosecond fiber laser with the pulse width of 150 fs (at 1560 nm) was launched into the fiber core. The output spectrum of the Si-NCs doped DSF was found to broaden from 1300 nm to wavelength well beyond 1700 nm, which can be attributed to the enhanced optical nonlinearity by Si-NCs embedded in the fiber core. The short wavelength of the supercontinuum spectrum in the Si-NCs doped DSF showed shift from 1352 nm to 1220 nm for the fiber length of 2.5 m and 200 m, respectively.
THEORETICAL EVALUATION OF NONLINEAR EFFECTS ON OPTICAL WDM NETWORKS WITH VARIOUS FIBER TYPES
Directory of Open Access Journals (Sweden)
YASIN M. KARFAA
2010-09-01
Full Text Available A theoretical study is carried out to evaluate the performance of an opticalwavelength division multiplexing (WDM network transmission system in the presenceof crosstalk due to optical fiber nonlinearities. The most significant nonlinear effects inthe optical fiber which are Cross-Phase Modulation (XPM, Four-Wave Mixing (FWM,and Stimulated Raman Scattering (SRS are investigated. Four types of optical fiber areincluded in the analysis; these are: single-mode fiber (SMF, dispersion compensationfiber (DCF, non-zero dispersion fiber (NZDF, and non-zero dispersion shifted fiber(NZDSF. The results represent the standard deviation of nonlinearity induced crosstalknoise power due to FWM and SRS, XPM power penalty for SMF, DCF, NZDF, andNZDSF types of fiber, besides the Bit Error Rate (BER for the three nonlinear effectsusing standard fiber type (SMF. It is concluded that three significant fiber nonlinearitiesare making huge limitations against increasing the launched power which is desired,otherwise, lower values of launched power limit network expansion including length,distance, covered areas, and number of users accessing the WDM network, unlesssuitable precautions are taken to neutralize the nonlinear effects. Besides, various fibertypes are not behaving similarly towards network parameters.
Adaptive Covariance Inflation in a Multi-Resolution Assimilation Scheme
Hickmann, K. S.; Godinez, H. C.
2015-12-01
When forecasts are performed using modern data assimilation methods observation and model error can be scaledependent. During data assimilation the blending of error across scales can result in model divergence since largeerrors at one scale can be propagated across scales during the analysis step. Wavelet based multi-resolution analysiscan be used to separate scales in model and observations during the application of an ensemble Kalman filter. However,this separation is done at the cost of implementing an ensemble Kalman filter at each scale. This presents problemswhen tuning the covariance inflation parameter at each scale. We present a method to adaptively tune a scale dependentcovariance inflation vector based on balancing the covariance of the innovation and the covariance of observations ofthe ensemble. Our methods are demonstrated on a one dimensional Kuramoto-Sivashinsky (K-S) model known todemonstrate non-linear interactions between scales.
Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers.
Hensley, Christopher J; Ouzounov, Dimitre G; Gaeta, Alexander L; Venkataraman, Natesan; Gallagher, Michael T; Koch, Karl W
2007-03-19
We measure the effective nonlinearity of various hollow-core photonic band-gap fibers. Our findings indicate that differences of tens of nanometers in the fiber structure result in significant changes to the power propagating in the silica glass and thus in the effective nonlinearity of the fiber. These results show that it is possible to engineer the nonlinear response of these fibers via small changes to the glass structure.
Nonlinear effects in the torsional adjustment of interacting DNA.
Kornyshev, A A; Wynveen, A
2004-04-01
DNA molecules in solution, having negatively charged phosphates and countercations readsorbed on its surface, possess a distinct charge separation motif to interact electrostatically. If their double-helical structure were ideal, duplexes in parallel juxtaposition could choose azimuthal alignment providing attraction, or at least a reduction of repulsion, between them. But duplexes are not perfect staircases and the distortions of their helical structure correlate with their base pair texts. If the patterns of distortions on the opposing molecules are uncorrelated, the mismatch will accumulate as a random walk and attraction vanishes. Based on this idea, a model of recognition of homologous sequences has been proposed [A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 86, 3666 (2001)]. But DNA has torsional elasticity. How will this help to relax a mismatch between the charge distributions on two nonhomologous DNA's? In the same work, the solution of this problem has been mapped onto a frustrated sine Gordon equation in a nonlocal random field (where the latter represents a pattern of twist angle distortions on the opposing molecules), but the results had been obtained in the limit of torsionally rigid molecules. In the present paper, by solving this equation numerically, we find a strongly nonlinear relaxation mechanism which utilizes static kink-soliton modes triggered by the "random field." In the range of parameters where the solitons do not emerge, we find good agreement with the results of a variational study [A. G. Cherstvy, A. A. Kornyshev, and S. Leikin, J. Phys. Chem. B (to be published)]. We reproduce the first-order transitions in the interaxial separation dependence, but detect also second-order or weak first-order transitions for shorter duplexes. The recognition energy between two nonhomologous DNA sequences is calculated as a function of interaxial separation and the length of juxtaposition. The soliton-caused kinky length dependence is discussed in
Nonlinear effects in the torsional adjustment of interacting DNA
Kornyshev, A. A.; Wynveen, A.
2004-04-01
DNA molecules in solution, having negatively charged phosphates and countercations readsorbed on its surface, possess a distinct charge separation motif to interact electrostatically. If their double-helical structure were ideal, duplexes in parallel juxtaposition could choose azimuthal alignment providing attraction, or at least a reduction of repulsion, between them. But duplexes are not perfect staircases and the distortions of their helical structure correlate with their base pair texts. If the patterns of distortions on the opposing molecules are uncorrelated, the mismatch will accumulate as a random walk and attraction vanishes. Based on this idea, a model of recognition of homologous sequences has been proposed [A. A. Kornyshev and S. Leikin, Phys. Rev. Lett. 86, 3666 (2001)]. But DNA has torsional elasticity. How will this help to relax a mismatch between the charge distributions on two nonhomologous DNA’s? In the same work, the solution of this problem has been mapped onto a frustrated sine Gordon equation in a nonlocal random field (where the latter represents a pattern of twist angle distortions on the opposing molecules), but the results had been obtained in the limit of torsionally rigid molecules. In the present paper, by solving this equation numerically, we find a strongly nonlinear relaxation mechanism which utilizes static kink-soliton modes triggered by the “random field.” In the range of parameters where the solitons do not emerge, we find good agreement with the results of a variational study [A. G. Cherstvy, A. A. Kornyshev, and S. Leikin, J. Phys. Chem. B (to be published)]. We reproduce the first-order transitions in the interaxial separation dependence, but detect also second-order or weak first-order transitions for shorter duplexes. The recognition energy between two nonhomologous DNA sequences is calculated as a function of interaxial separation and the length of juxtaposition. The soliton-caused kinky length dependence is
Some asymptotic properties of kriging when the covariance function is misspecified
Energy Technology Data Exchange (ETDEWEB)
Stein, M.L.; Handcock, M.S.
1989-02-01
The impact of using an incorrect covariance function of kriging predictors is investigated. Results of Stein (1988) show that the impact on the kriging predictor from not using the correct covariance function is asymptotically negligible as the number of observations increases if the covariance function used is compatible with the actual covariance function on the region of interest R. The definition and some properties of compatibility of covariance functions are given. The compatibility of generalized covariances also is defined. Compatibility supports the intuitively sensible concept that usually only the behavior near the origin of the covariance function is critical for purposes of kriging. However, the commonly used spherical covariance function is an exception: observations at a distance near the range of a spherical covariance function can have a nonnegligible effect on kriging predictors for three-dimensional processes. Finally, a comparison is made with the perturbation approach of Diamond and Armstrong (1984) and some observations of Warnes (1986) are clarified.
Unravelling Lorentz Covariance and the Spacetime Formalism
Directory of Open Access Journals (Sweden)
Cahill R. T.
2008-10-01
Full Text Available We report the discovery of an exact mapping from Galilean time and space coordinates to Minkowski spacetime coordinates, showing that Lorentz covariance and the space-time construct are consistent with the existence of a dynamical 3-space, and absolute motion. We illustrate this mapping first with the standard theory of sound, as vibrations of a medium, which itself may be undergoing fluid motion, and which is covariant under Galilean coordinate transformations. By introducing a different non-physical class of space and time coordinates it may be cast into a form that is covariant under Lorentz transformations wherein the speed of sound is now the invariant speed. If this latter formalism were taken as fundamental and complete we would be lead to the introduction of a pseudo-Riemannian spacetime description of sound, with a metric characterised by an invariant speed of sound. This analysis is an allegory for the development of 20th century physics, but where the Lorentz covariant Maxwell equations were constructed first, and the Galilean form was later constructed by Hertz, but ignored. It is shown that the Lorentz covariance of the Maxwell equations only occurs because of the use of non-physical space and time coordinates. The use of this class of coordinates has confounded 20th century physics, and resulted in the existence of a allowing dynamical 3-space being overlooked. The discovery of the dynamics of this 3-space has lead to the derivation of an extended gravity theory as a quantum effect, and confirmed by numerous experiments and observations
Unravelling Lorentz Covariance and the Spacetime Formalism
Directory of Open Access Journals (Sweden)
Cahill R. T.
2008-10-01
Full Text Available We report the discovery of an exact mapping from Galilean time and space coordinates to Minkowski spacetime coordinates, showing that Lorentz covariance and the space- time construct are consistent with the existence of a dynamical 3-space, and “absolute motion”. We illustrate this mapping first with the standard theory of sound, as vibra- tions of a medium, which itself may be undergoing fluid motion, and which is covari- ant under Galilean coordinate transformations. By introducing a different non-physical class of space and time coordinates it may be cast into a form that is covariant under “Lorentz transformations” wherein the speed of sound is now the “invariant speed”. If this latter formalism were taken as fundamental and complete we would be lead to the introduction of a pseudo-Riemannian “spacetime” description of sound, with a metric characterised by an “invariant speed of sound”. This analysis is an allegory for the development of 20th century physics, but where the Lorentz covariant Maxwell equa- tions were constructed first, and the Galilean form was later constructed by Hertz, but ignored. It is shown that the Lorentz covariance of the Maxwell equations only occurs because of the use of non-physical space and time coordinates. The use of this class of coordinates has confounded 20th century physics, and resulted in the existence of a “flowing” dynamical 3-space being overlooked. The discovery of the dynamics of this 3-space has lead to the derivation of an extended gravity theory as a quantum effect, and confirmed by numerous experiments and observations
Camporeale, E.; Pezzi, O.; Valentini, F.
2015-12-01
The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric
Covariance structure models of expectancy.
Henderson, M J; Goldman, M S; Coovert, M D; Carnevalla, N
1994-05-01
Antecedent variables under the broad categories of genetic, environmental and cultural influences have been linked to the risk for alcohol abuse. Such risk factors have not been shown to result in high correlations with alcohol consumption and leave unclear an understanding of the mechanism by which these variables lead to increased risk. This study employed covariance structure modeling to examine the mediational influence of stored information in memory about alcohol, alcohol expectancies in relation to two biologically and environmentally driven antecedent variables, family history of alcohol abuse and a sensation-seeking temperament in a college population. We also examined the effect of criterion contamination on the relationship between sensation-seeking and alcohol consumption. Results indicated that alcohol expectancy acts as a significant, partial mediator of the relationship between sensation-seeking and consumption, that family history of alcohol abuse is not related to drinking outcome and that overlap in items on sensation-seeking and alcohol consumption measures may falsely inflate their relationship.
Ivanov, D Y; Serbo, V G
2003-01-01
We consider emission of a photon by an electron in the field of a strong laser wave. Polarization effects in this process are important for a number of physical problems. We discuss a probability of this process for circularly polarized laser photons and for arbitrary polarization of all other particles. We obtain the complete set of functions which describe such a probability in a compact covariant form. Besides, we discuss an application of the obtained formulas to the problem of electron -> photon conversion at photon-photon and photon-electron colliders.
Effects of nonlinear strength parameters on stability of 3D soil slopes
Institute of Scientific and Technical Information of China (English)
高玉峰; 吴迪; 张飞; 秦红玉; 朱德胜
2016-01-01
Actual slope stability problems have three-dimensional (3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.
Nonlinear effects manifested in infrasonic signals in the region of a geometric shadow
Kulichkov, S. N.; Golikova, E. V.
2013-01-01
Nonlinear effects manifested in infrasonic signals passing through different atmospheric heights and recorded in the region of a geometric shadow have been studied. The source of infrasound was a surface explosion equivalent to 20-70 t of TNT. The frequencies of the spectral maxima of infrasonic signals, which correspond to the reflections of acoustic pulses from atmospheric inhomogeneities at different heights within the stratosphere-mesosphere-lower thermosphere layer, were calculated using the nonlinear-theory method. A satisfactory agreement between experimental and calculated data was obtained.
Directory of Open Access Journals (Sweden)
H. M. Abdelhafez
2016-03-01
Full Text Available The modified differential transform method (MDTM, Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared with the result by the MDTM and plotted in a long time domain.
Effect of loss on photon-pair generation in nonlinear waveguides arrays
Antonosyan, Diana A; Sukhorukov, Andrey A
2014-01-01
We describe theoretically the process of spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays in the presence of linear loss. We derive a set of discrete Schrodinger-type equations for the biphoton wave function, and the wave function of one photon when the other photon in a pair is lost. We demonstrate effects arising from loss-affected interference between the generated photon pairs and show that nonlinear waveguide arrays can serve as a robust loss-tolerant integrated platform for the generation of entangled photon states with non-classical spatial correlations.
Nonlinear Effect on Focusing Gain of a Focusing Transducer with a Wide Aperture Angle
Institute of Scientific and Technical Information of China (English)
LIU Ming-He; ZHANG Dong; GONG Xiu-Fen
2007-01-01
@@ Nonlinear effect on focusing gain of acoustic field radiated from a 1-MHz focusing transmitter with a wide aperture angle of 35° is theoretically and experimentally investigated. With the enhancement of nonlinearity, the focusing gains of both intensity and peak positive pressure show non-monotonic behaviour. There exist the same saturated levels at which the maximum outputs are reached and their spatial distributions are more localized. In contrast,the peak negative pressure always decreases monotonically and its spatial distribution is less localized.
Non-linear simulations of ELMs in ASDEX Upgrade including diamagnetic drift effects
Energy Technology Data Exchange (ETDEWEB)
Lessig, Alexander; Hoelzl, Matthias; Krebs, Isabel; Franck, Emmanuel; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Orain, Francois; Morales, Jorge; Becoulet, Marina [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Huysmans, Guido [ITER Organization, 13067 Saint-Paul-Lez-Durance (France)
2015-05-01
Large edge localized modes (ELMs) are a severe concern for ITER due to high transient heat loads on divertor targets and wall structures. Using the non-linear MHD code JOREK, we have performed ELM simulations for ASDEX Upgrade (AUG) including diamagnetic drift effects. The influence of diamagnetic terms onto the evolution of the toroidal mode spectrum for different AUG equilibria and the non-linear interaction of the toroidal harmonics are investigated. In particular, we confirm the diamagnetic stabilization of high mode numbers and present new features of a previously introduced quadratic mode coupling model for the early non-linear evolution of the mode structure. Preliminary comparisons of full ELM crashes with experimental observations are shown aiming at code validation and the understanding of different ELM types. Work is ongoing to include toroidal and neoclassical poloidal rotation in our simulations.
Viscous Flow over Nonlinearly Stretching Sheet with Effects of Viscous Dissipation
Directory of Open Access Journals (Sweden)
Javad Alinejad
2012-01-01
Full Text Available The flow and heat transfer characteristics of incompressible viscous flow over a nonlinearly stretching sheet with the presence of viscous dissipation is investigated numerically. The similarity transformation reduces the time-independent boundary layer equations for momentum and thermal energy into a set of coupled ordinary differential equations. The obtained equations, including nonlinear equation for the velocity field and differential equation by variable coefficient for the temperature field , are solved numerically by using the fourth order of Runge-Kutta integration scheme accompanied by shooting technique with Newton-Raphson iteration method. The effect of various values of Prandtl number, Eckert number and nonlinear stretching parameter are studied. The results presented graphically show some behaviors such as decrease in dimensionless temperature due to increase in Pr number, and curve relocations are observed when heat dissipation is considered.
Imprint of non-linear effects on HI intensity mapping on large scales
Umeh, Obinna
2016-01-01
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We consider how non-linear effects associated with the HI bias and redshift space distortions contribute to the clustering of cosmic neutral Hydrogen on large scales. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result to show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortions leads to about 10\\% modulation of the HI power spectrum on large scales.
Nonlinear effects of inertial Alfvén wave in low beta plasmas
Energy Technology Data Exchange (ETDEWEB)
Rinawa, M. L., E-mail: motilal.rinawa@gmail.com; Gaur, Nidhi, E-mail: nidhiphysics@gmail.com; Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)
2015-02-15
This paper is devoted to the study of the nonlinear interaction and propagation of high frequency pump inertial Alfvén wave (IAW) with comparatively low frequency IAW with emphasis on nonlinear effects and applications within space plasma and astrophysics for low β-plasma (β≪m{sub e}/m{sub i}). We have developed a set of dimensionless equations in the presence of ponderomotive nonlinearity due to high frequency pump IAW in the dynamics of comparatively low frequency IAW. Stability analysis and numerical simulation have been carried out for the coupled system comprising of pump IAW and low frequency IAW to study the localization and turbulent spectra, applicable to auroral region. The result reveals that localized structures become more complex and intense in nature at the quasi steady state. From the obtained result, we found that the present model may be useful to study the turbulent fluctuations in accordance with the observations of FAST/THEMIS spacecraft.
Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.
2011-01-01
Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…
Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.
2012-01-01
In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...
Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.
Gubaidullin, Amir A; Yakovenko, Anna V
2015-06-01
Acoustic streaming in a gas filled cylindrical cavity subjected to the vibration effect is investigated numerically. Both thermally insulated walls and constant temperature walls are considered. The range of vibration frequencies from low frequencies, at which the process can be described by an approximate analytical solution, to high frequencies giving rise to strong nonlinear effects is studied. Frequencies lower than the resonant one are chosen, and nonlinearity is achieved due to the large amplitude. The problem is solved in an axisymmetric statement. The dependence of acoustic streaming in narrow channels at vibration frequencies lower than the resonant one on the type of thermal boundary conditions is shown. The streaming vortices' directions of rotation in the case of constant temperature walls are found to be opposite to those in the case of thermally insulated walls. Different nonlinear effects, which increase with the frequency of vibration, are obtained. Nonlinear effects manifesting as the nonuniformity of average temperature, pressure, and density are in turn found to be influencing the streaming velocity and streaming structure.
Effects of nonlinear phase modulation on low-conversion four-wave mixing Bragg scattering
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten
We consider the effects of nonlinear phase modulation (NPM) on frequency converseon by Bragg scattering. Previously we found that arbitrary mode reshaping without temporal entanglement (separability) was possible. When NPM is included, the modes are chirped and the separability is no longer compl...
NONLINEAR OPTICAL-PROPERTIES OF LANGMUIR-BLODGETT MONOLAYERS - LOCAL-FIELD EFFECTS
CNOSSEN, G; DRABE, KE; WIERSMA, DA
1992-01-01
Detailed measurements of the macroscopic second-order optical nonlinearity chi(2) (2-omega,omega,omega) of Langmuir-Blodgett dye-doped monolayers are reported. The observed deviations from a linear behavior of chi-(2) with increasing surface density are shown to be due to local-field effects. In ord
Nonlinear optical properties of Langmuir-Blodgett monolayers : Local-field effects
Cnossen, Gerard; Drabe, Karel E.; Wiersma, Douwe A.
1992-01-01
Detailed measurements of the macroscopic second-order optical nonlinearity chi(2) (2-omega,omega,omega) of Langmuir-Blodgett dye-doped monolayers are reported. The observed deviations from a linear behavior of chi-(2) with increasing surface density are shown to be due to local-field effects. In ord
Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating
Nafari, F.; Ghoranneviss, M.
2016-08-01
In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.
THE EFFECT OF NUMERICAL INTEGRATION IN FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
N＇guimbi; Germain
2001-01-01
Abstract. The effect of numerical integration in finite element methods applied to a class of nonlinear parabolic equations is considered and some sufficient conditions on the quadrature scheme to ensure that the order of convergence is unaltered in the presence of numerical integration are given. Optimal Lz and H1 estimates for the error and its time derivative are established.
Nonlinear magneto-optical effects in cold atoms of 87Rb
Institute of Scientific and Technical Information of China (English)
He Ling-Xiang; Wang Yu-Zhu
2004-01-01
With laser-cooled cold 87Rb atoms as a magneto-optical medium, a weak right circularly polarized probe field and frequency modulation technique are used to detect the magnetic distribution of the quadrupole field. A two-peak dispersion-like signal other than that of the usual nonlinear magneto-optical effect mentioned in other papers is obtained.
Calcul Stochastique Covariant à Sauts & Calcul Stochastique à Sauts Covariants
Maillard-Teyssier, Laurence
2003-01-01
We propose a stochastic covariant calculus forcàdlàg semimartingales in the tangent bundle $TM$ over a manifold $M$. A connection on $M$ allows us to define an intrinsic derivative ofa $C^1$ curve $(Y_t)$ in $TM$, the covariantderivative. More precisely, it is the derivative of$(Y_t)$ seen in a frame moving parallelly along its projection curve$(x_t)$ on $M$. With the transfer principle, Norris defined thestochastic covariant integration along a continuous semimartingale in$TM$. We describe t...
Covariate-free and Covariate-dependent Reliability.
Bentler, Peter M
2016-12-01
Classical test theory reliability coefficients are said to be population specific. Reliability generalization, a meta-analysis method, is the main procedure for evaluating the stability of reliability coefficients across populations. A new approach is developed to evaluate the degree of invariance of reliability coefficients to population characteristics. Factor or common variance of a reliability measure is partitioned into parts that are, and are not, influenced by control variables, resulting in a partition of reliability into a covariate-dependent and a covariate-free part. The approach can be implemented in a single sample and can be applied to a variety of reliability coefficients.
The spin Hall effect as a probe of nonlinear spin fluctuations.
Wei, D H; Niimi, Y; Gu, B; Ziman, T; Maekawa, S; Otani, Y
2012-01-01
The spin Hall effect and its inverse have key roles in spintronic devices as they allow conversion of charge currents to and from spin currents. The conversion efficiency strongly depends on material details, such as the electronic band structure and the nature of impurities. Here we show an anomaly in the inverse spin Hall effect in weak ferromagnetic NiPd alloys near their Curie temperatures with a shape independent of material details, such as Ni concentrations. By extending Kondo's model for the anomalous Hall effect, we explain the observed anomaly as originating from the second-order nonlinear spin fluctuation of Ni moments. This brings to light an essential symmetry difference between the spin Hall effect and the anomalous Hall effect, which reflects the first-order nonlinear fluctuations of local moments. Our finding opens up a new application of the spin Hall effect, by which a minuscule magnetic moment can be detected.
Simulating the Effect of Non-Linear Mode-Coupling in Cosmological Parameter Estimation
Kiessling, A; Heavens, A F
2011-01-01
Fisher Information Matrix methods are commonly used in cosmology to estimate the accuracy that cosmological parameters can be measured with a given experiment, and to optimise the design of experiments. However, the standard approach usually assumes both data and parameter estimates are Gaussian-distributed. Further, for survey forecasts and optimisation it is usually assumed the power-spectra covariance matrix is diagonal in Fourier-space. But in the low-redshift Universe, non-linear mode-coupling will tend to correlate small-scale power, moving information from lower to higher-order moments of the field. This movement of information will change the predictions of cosmological parameter accuracy. In this paper we quantify this loss of information by comparing naive Gaussian Fisher matrix forecasts with a Maximum Likelihood parameter estimation analysis of a suite of mock weak lensing catalogues derived from N-body simulations, based on the SUNGLASS pipeline, for a 2-D and tomographic shear analysis of a Eucl...
Levy Matrices and Financial Covariances
Burda, Zdzislaw; Jurkiewicz, Jerzy; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail
2003-10-01
In a given market, financial covariances capture the intra-stock correlations and can be used to address statistically the bulk nature of the market as a complex system. We provide a statistical analysis of three SP500 covariances with evidence for raw tail distributions. We study the stability of these tails against reshuffling for the SP500 data and show that the covariance with the strongest tails is robust, with a spectral density in remarkable agreement with random Lévy matrix theory. We study the inverse participation ratio for the three covariances. The strong localization observed at both ends of the spectral density is analogous to the localization exhibited in the random Lévy matrix ensemble. We discuss two competitive mechanisms responsible for the occurrence of an extensive and delocalized eigenvalue at the edge of the spectrum: (a) the Lévy character of the entries of the correlation matrix and (b) a sort of off-diagonal order induced by underlying inter-stock correlations. (b) can be destroyed by reshuffling, while (a) cannot. We show that the stocks with the largest scattering are the least susceptible to correlations, and likely candidates for the localized states. We introduce a simple model for price fluctuations which captures behavior of the SP500 covariances. It may be of importance for assets diversification.
Merkel, Philipp
2012-01-01
In this paper, we recompute contributions to the spectrum of the nonlinear integrated Sachs-Wolfe (iSW)/Rees-Sciama effect in a dark energy cosmology. Focusing on the moderate nonlinear regime, all dynamical fields involved are derived from the density contrast in Eulerian perturbation theory. Shape and amplitude of the resulting angular power spectrum are similar to that derived in previous work. With our purely analytical approach we identify two distinct contributions to the signal of the nonlinear iSW-effect: the change of the gravitational self-energy density of the large scale structure with (conformal) time and gravitational lenses moving with the large scale matter stream. In the latter we recover the Birkinshaw-Gull effect. As the nonlinear iSW-effect itself is inherently hard to detect, observational discrimination between its individual contributions is almost excluded. Our analysis, however, yields valuable insights into the theory of the nonlinear iSW-effect as a post-Newtonian relativistic effec...
The effect of crack orientation on the nonlinear interaction of a P wave with an S wave
TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.
2016-06-01
Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presence and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Thomsen, Jon Juel
2009-01-01
We investigate how high-frequency (HF) excitation combined with strongly non-linear elasticity may influence the effective properties for low-frequency wave propagation. The HF effects are demonstrated for linear spring-mass chains with embedded non-linear parts. The investigated mechanical syste...
Bayesian adjustment for covariate measurement errors: a flexible parametric approach.
Hossain, Shahadut; Gustafson, Paul
2009-05-15
In most epidemiological investigations, the study units are people, the outcome variable (or the response) is a health-related event, and the explanatory variables are usually environmental and/or socio-demographic factors. The fundamental task in such investigations is to quantify the association between the explanatory variables (covariates/exposures) and the outcome variable through a suitable regression model. The accuracy of such quantification depends on how precisely the relevant covariates are measured. In many instances, we cannot measure some of the covariates accurately. Rather, we can measure noisy (mismeasured) versions of them. In statistical terminology, mismeasurement in continuous covariates is known as measurement errors or errors-in-variables. Regression analyses based on mismeasured covariates lead to biased inference about the true underlying response-covariate associations. In this paper, we suggest a flexible parametric approach for avoiding this bias when estimating the response-covariate relationship through a logistic regression model. More specifically, we consider the flexible generalized skew-normal and the flexible generalized skew-t distributions for modeling the unobserved true exposure. For inference and computational purposes, we use Bayesian Markov chain Monte Carlo techniques. We investigate the performance of the proposed flexible parametric approach in comparison with a common flexible parametric approach through extensive simulation studies. We also compare the proposed method with the competing flexible parametric method on a real-life data set. Though emphasis is put on the logistic regression model, the proposed method is unified and is applicable to the other generalized linear models, and to other types of non-linear regression models as well. (c) 2009 John Wiley & Sons, Ltd.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A novel nonlinear combination process monitoring method was proposed based on techniques with memory effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently developed statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of measurements and it is a two-phase algorithm: whitened kernel principal component analysis (KPCA) plus independent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process indicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear relationship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for long-term performance deterioration.
Multivariate covariance generalized linear models
DEFF Research Database (Denmark)
Bonat, W. H.; Jørgensen, Bent
2016-01-01
We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...... are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions...
Covariance evaluation work at LANL
Energy Technology Data Exchange (ETDEWEB)
Kawano, Toshihiko [Los Alamos National Laboratory; Talou, Patrick [Los Alamos National Laboratory; Young, Phillip [Los Alamos National Laboratory; Hale, Gerald [Los Alamos National Laboratory; Chadwick, M B [Los Alamos National Laboratory; Little, R C [Los Alamos National Laboratory
2008-01-01
Los Alamos evaluates covariances for nuclear data library, mainly for actinides above the resonance regions and light elements in the enUre energy range. We also develop techniques to evaluate the covariance data, like Bayesian and least-squares fitting methods, which are important to explore the uncertainty information on different types of physical quantities such as elastic scattering angular distribution, or prompt neutron fission spectra. This paper summarizes our current activities of the covariance evaluation work at LANL, including the actinide and light element data mainly for the criticality safety study and transmutation technology. The Bayesian method based on the Kalman filter technique, which combines uncertainties in the theoretical model and experimental data, is discussed.
Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.
Dong, Dan; Du, Enzai; Sun, Zhengzhong; Zeng, Xuetong; de Vries, Wim
2017-09-12
Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cosmic Censorship Conjecture revisited: Covariantly
Hamid, Aymen I M; Maharaj, Sunil D
2014-01-01
In this paper we study the dynamics of the trapped region using a frame independent semi-tetrad covariant formalism for general Locally Rotationally Symmetric (LRS) class II spacetimes. We covariantly prove some important geometrical results for the apparent horizon, and state the necessary and sufficient conditions for a singularity to be locally naked. These conditions bring out, for the first time in a quantitative and transparent manner, the importance of the Weyl curvature in deforming and delaying the trapped region during continual gravitational collapse, making the central singularity locally visible.
Selvendran, S.; Sivanantharaja, A.; Arivazhagan, S.; Kannan, M.
2016-09-01
We propose an index profiled, highly nonlinear ultraflattened dispersion fibre (HN-UFF) with appreciable values of fibre parameters such as dispersion, dispersion slope, effective area, nonlinearity, bending loss and splice loss. The designed fibre has normal zero flattened dispersion over S, C, L, U bands and extends up to 1.9857 μm. The maximum dispersion variation observed for this fibre is as low as 1.61 ps km-1 nm-1 over the 500-nm optical fibre transmission spectrum. This fibre also has two zero dispersion wavelengths at 1.487 and 1.9857 μm and the respective dispersion slopes are 0.02476 and 0.0068 ps nm-2 km-1. The fibre has a very low ITU-T cutoff wavelength of 1.2613 μm and a virtuous nonlinear coefficient of 9.43 W-1 km-1. The wide spectrum of zero flattened dispersion and a good nonlinear coefficient make the designed fibre very promising for different nonlinear optical signal processing applications.
Vierheilig, Carmen; Grifoni, Milena
2010-01-01
We consider a qubit coupled to a nonlinear quantum oscillator, the latter coupled to an Ohmic bath, and investigate the qubit dynamics. This composed system can be mapped onto that of a qubit coupled to an effective bath. An approximate mapping procedure to determine the spectral density of the effective bath is given. Specifically, within a linear response approximation the effective spectral density is given by the knowledge of the linear susceptibility of the nonlinear quantum oscillator. To determine the actual form of the susceptibility, we consider its periodically driven counterpart, the problem of the quantum Duffing oscillator within linear response theory in the driving amplitude. Knowing the effective spectral density, the qubit dynamics is investigated. In particular, an analytic formula for the qubit's population difference is derived. Within the regime of validity of our theory, a very good agreement is found with predictions obtained from a Bloch-Redfield master equation approach applied to the...
Energy Technology Data Exchange (ETDEWEB)
Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: luisca@sirio.ifuap.buap.mx [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: imax_aa@yahoo.com.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others
2012-04-15
Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.
The effect and design of time delay in feedback control for a nonlinear isolation system
Sun, Xiuting; Xu, Jian; Fu, Jiangsong
2017-03-01
The optimum value of time delay of active control used in a nonlinear isolation system for different types of external excitation is studied in this paper. Based on the mathematical model of the nonlinear isolator with time-delayed active control, the stability, response and displacement transmissibility of the system are analyzed to obtain the standards for appropriate values of time delay and control strengths. The effects of nonlinearity and time delay on the stability and vibration response are discussed in details. For impact excitation and random excitation, the optimal value of time delay is obtained based on the vibration dissipation time via eigenvalues analysis, while for harmonic excitation, the optimal values are determined based on multiple vibration properties including natural frequency, amplitude death region and effective isolation region by the Averaging Method. This paper establishes the relationship between the parameters and vibration properties of a nonlinear isolation system which provides the guidance for optimizing time-delayed active control for different types of excitation in engineering practices.
Effects on the Floor Response Spectra by the Nonlinear Behavior of a Seismic Base Isolation System
Energy Technology Data Exchange (ETDEWEB)
Park, Hyungkui; Kim, Jung Han; Choi, Inkil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
An evaluation of safety being carried out for various risk factors of prevents for nuclear power plant accident. In general, an evaluation of the structural integrity was performed about seismic risk. In recent years, an assessment of integrity of internal equipment being carried out for earthquake loads owing to the possibility of severe accidents caused by the destruction of internal equipment or a blackout. Floor response spectra of the structure should be sought for evaluating of the integrity of internal equipment. The floor response spectra depends on the characteristics of seismic base isolation system such as the natural frequency, damping ratio, and height of the floor of the structure. An evaluation of the structural integrity using the equivalent stiffness of the seismic base isolation system was satisfactory. In this study, the effect of the non-linearity of isolated system in the floor response spectrum of the structure is analyzed. In this study, the floor response spectrum of the seismic base isolation system by the non-linear effect of the rubber isolator was analyzed. As a result, the influence of the non-linear isolated system was increased in hi-frequency domain. In addition, each floor exhibited a more different of responses compared with the equivalent linear model of the isolated structure. The non-linearity of the isolation system of the structure was considered, because of a more reliable assessment of integrity of equipment at each floor of seismic base the isolation system.
Lee, Miriam Chang Yi; Chow, Jia Yi; Komar, John; Tan, Clara Wee Keat; Button, Chris
2014-01-01
Learning a sports skill is a complex process in which practitioners are challenged to cater for individual differences. The main purpose of this study was to explore the effectiveness of a Nonlinear Pedagogy approach for learning a sports skill. Twenty-four 10-year-old females participated in a 4-week intervention involving either a Nonlinear Pedagogy (i.e.,manipulation of task constraints including equipment and rules) or a Linear Pedagogy (i.e., prescriptive, repetitive drills) approach to learn a tennis forehand stroke. Performance accuracy scores, movement criterion scores and kinematic data were measured during pre-intervention, post-intervention and retention tests. While both groups showed improvements in performance accuracy scores over time, the Nonlinear Pedagogy group displayed a greater number of movement clusters at post-test indicating the presence of degeneracy (i.e., many ways to achieve the same outcome). The results suggest that degeneracy is effective for learning a sports skill facilitated by a Nonlinear Pedagogy approach. These findings challenge the common misconception that there must be only one ideal movement solution for a task and thus have implications for coaches and educators when designing instructions for skill acquisition.
Gravitational-wave tail effects to quartic non-linear order
Marchand, Tanguy; Faye, Guillaume
2016-01-01
Gravitational-wave tails are due to the backscattering of linear waves onto the space-time curvature generated by the total mass of the matter source. The dominant tails correspond to quadratic non-linear interactions and arise at the one-and-a-half post-Newtonian (1.5PN) order in the gravitational waveform. Also known are the "tails-of-tails", which are cubically non-linear effects appearing at the 3PN order in the waveform. Here we derive still higher non-linear tail effects, namely those associated with quartic non-linear interactions or "tails-of-tails-of-tails", which are shown to arise at the 4.5PN order. As an application we obtain at that order the complete coefficient in the total gravitational-wave energy flux of compact binary systems moving on circular orbits. Our result perfectly agrees with black-hole perturbation calculations in the limit of extreme mass ratio of the two compact objects.
Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects
Directory of Open Access Journals (Sweden)
Jie-Yu Chen
2009-05-01
Full Text Available In Atomic force microscope (AFM examination of a vibrating microcantilever, the nonlinear tip-sample interaction would greatly influence the dynamics of the cantilever. In this paper, the nonlinear dynamics and chaos of a tip-sample dynamic system being run in the tapping mode (TM were investigated by considering the effects of hydrodynamic loading and squeeze film damping. The microcantilever was modeled as a spring-mass-damping system and the interaction between the tip and the sample was described by the Lennard-Jones (LJ potential. The fundamental frequency and quality factor were calculated from the transient oscillations of the microcantilever vibrating in air. Numerical simulations were carried out to study the coupled nonlinear dynamic system using the bifurcation diagram, Poincaré maps, largest Lyapunov exponent, phase portraits and time histories. Results indicated the occurrence of periodic and chaotic motions and provided a comprehensive understanding of the hydrodynamic loading of microcantilevers. It was demonstrated that the coupled dynamic system will experience complex nonlinear oscillation as the system parameters change and the effect of squeeze film damping is not negligible on the micro-scale.
Nonlinear Effects of Laser Surface Modification of Ore Minerals
Directory of Open Access Journals (Sweden)
N.A. Leonenko
2015-12-01
Full Text Available The effect of continuous laser radiation on complex ore minerals objects containing gold, not extracted by monerd methods was investigated. It was established the formation of different structural surfaces of gold, revealed general patterns of sintering and concentration of sub-micron gold.
A Theoretical Method for Characterizing Nonlinear Effects in Paul Traps with Added Octopole Field.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Chen, Suming; Nie, Zongxiu
2015-08-01
In comparison with numerical methods, theoretical characterizations of ion motion in the nonlinear Paul traps always suffer from low accuracy and little applicability. To overcome the difficulties, the theoretical harmonic balance (HB) method was developed, and was validated by the numerical fourth-order Runge-Kutta (4th RK) method. Using the HB method, analytical ion trajectory and ion motion frequency in the superimposed octopole field, ε, were obtained by solving the nonlinear Mathieu equation (NME). The obtained accuracy of the HB method was comparable with that of the 4th RK method at the Mathieu parameter, q = 0.6, and the applicable q values could be extended to the entire first stability region with satisfactory accuracy. Two sorts of nonlinear effects of ion motion were studied, including ion frequency shift, Δβ, and ion amplitude variation, Δ(C(2n)/C0) (n ≠ 0). New phenomena regarding Δβ were observed, although extensive studies have been performed based on the pseudo-potential well (PW) model. For instance, the |Δβ| at ε = 0.1 and ε = -0.1 were found to be different, but they were the same in the PW model. This is the first time the nonlinear effects regarding Δ(C(2n)/C0) (n ≠ 0) are studied, and the associated study has been a challenge for both theoretical and numerical methods. The nonlinear effects of Δ(C(2n)/C0) (n ≠ 0) and Δβ were found to share some similarities at q < 0.6: both of them were proportional to ε, and the square of the initial ion displacement, z(0)(2).
DEFF Research Database (Denmark)
Eder, Martin Alexander; Bitsche, Robert
2015-01-01
section, that was inspired by a wind turbine blade, it is demonstrated that geometric nonlinear effects can induce an in-plane opening deformation in re-entrant corners that may decrease the fatigue life. The opening effect induces Mode-I stress intensity factors which exceed the threshold for fatigue...... for computationally efficient numerical analysis approaches of structures that comprise complex geometry and anisotropic material behaviour – such as wind turbine rotor blades....
[Clinical research XIX. From clinical judgment to analysis of covariance].
Pérez-Rodríguez, Marcela; Palacios-Cruz, Lino; Moreno, Jorge; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2014-01-01
The analysis of covariance (ANCOVA) is based on the general linear models. This technique involves a regression model, often multiple, in which the outcome is presented as a continuous variable, the independent variables are qualitative or are introduced into the model as dummy or dichotomous variables, and factors for which adjustment is required (covariates) can be in any measurement level (i.e. nominal, ordinal or continuous). The maneuvers can be entered into the model as 1) fixed effects, or 2) random effects. The difference between fixed effects and random effects depends on the type of information we want from the analysis of the effects. ANCOVA effect separates the independent variables from the effect of co-variables, i.e., corrects the dependent variable eliminating the influence of covariates, given that these variables change in conjunction with maneuvers or treatments, affecting the outcome variable. ANCOVA should be done only if it meets three assumptions: 1) the relationship between the covariate and the outcome is linear, 2) there is homogeneity of slopes, and 3) the covariate and the independent variable are independent from each other.
Zhang, Juanjuan; Wen, Jianbiao; Gao, Yuanwen
2016-06-01
In previous works, most of them employ a linear constitutive model to describe magnetocapacitance (MC) effect in magnetoelectric (ME) composites, which lead to deficiency in their theoretical results. In view of this, based on a nonlinear magnetostrictive constitutive relation and a linear piezoelectric constitutive relation, we establish a nonlinear model for MC effect in PZT-ring/Terfenol-D-strip ME composites. The numerical results in this paper coincide better with experimental data than that of a linear model, thus, it's essential to utilize a nonlinear constitutive model for predicting MC effect in ME composites. Then the influences of external magnetic fields, pre-stresses, frequencies, and geometric sizes on the MC effect are discussed, respectively. The results show that the external magnetic field is responsible for the resonance frequency shift. And the resonance frequency is sensitive to the ratio of outer and inner radius of the PZT ring. Moreover, some other piezoelectric materials are employed in this model and the corresponding MC effects are calculated, and we find that different type of piezoelectric materials affect the MC effect obviously. The proposed model is more accurate for multifunction devices designing.
Wang, Wan-Lun; Lin, Tsung-I
2014-07-30
The multivariate nonlinear mixed-effects model (MNLMM) has emerged as an effective tool for modeling multi-outcome longitudinal data following nonlinear growth patterns. In the framework of MNLMM, the random effects and within-subject errors are assumed to be normally distributed for mathematical tractability and computational simplicity. However, a serious departure from normality may cause lack of robustness and subsequently make invalid inference. This paper presents a robust extension of the MNLMM by considering a joint multivariate t distribution for the random effects and within-subject errors, called the multivariate t nonlinear mixed-effects model. Moreover, a damped exponential correlation structure is employed to capture the extra serial correlation among irregularly observed multiple repeated measures. An efficient expectation conditional maximization algorithm coupled with the first-order Taylor approximation is developed for maximizing the complete pseudo-data likelihood function. The techniques for the estimation of random effects, imputation of missing responses and identification of potential outliers are also investigated. The methodology is motivated by a real data example on 161 pregnant women coming from a study in a private fertilization obstetrics clinic in Santiago, Chile and used to analyze these data.
Large-scale portfolios using realized covariance matrix: evidence from the Japanese stock market
Masato Ubukata
2009-01-01
The objective of this paper is to examine effects of realized covariance matrix estimators based on intraday returns on large-scale minimum-variance equity portfolio optimization. We empirically assess out-of-sample performance of portfolios with different covariance matrix estimators: the realized covariance matrix estimators and Bayesian shrinkage estimators based on the past monthly and daily returns. The main results are: (1) the realized covariance matrix estimators using the past intrad...
Covariant description of isothermic surfaces
Tafel, Jacek
2014-01-01
We present a covariant formulation of the Gauss-Weingarten equations and the Gauss-Mainardi-Codazzi equations for surfaces in 3-dimensional curved spaces. We derive a coordinate invariant condition on the first and second fundamental form which is necessary and sufficient for the surface to be isothermic.
Condition Number Regularized Covariance Estimation.
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2013-06-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n" setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.
Condition Number Regularized Covariance Estimation*
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2012-01-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197
Covariation Neglect among Novice Investors
Hedesstrom, Ted Martin; Svedsater, Henrik; Garling, Tommy
2006-01-01
In 4 experiments, undergraduates made hypothetical investment choices. In Experiment 1, participants paid more attention to the volatility of individual assets than to the volatility of aggregated portfolios. The results of Experiment 2 show that most participants diversified even when this increased risk because of covariation between the returns…
Polarization effects in the non-linear Compton scattering
Ivanov, D Y; Serbo, V G
2005-01-01
We consider emission of a photon by an electron in the field of a strong laser wave. A probability of this process for circularly or linearly polarized laser photons and for arbitrary polarization of all other particles is calculated. We obtain the complete set of functions which describe such a probability in a compact invariant form. Besides, we discuss in some detail the polarization effects in the kinematics relevant to the problem of electron to photon conversion at photon-photon and electron-photon colliders.
Diffraction Interference Induced Superfocusing in Nonlinear Talbot Effect
Liu, Dongmei; Zhang, Yong; Wen, Jianming; Chen, Zhenhua; Wei, Dunzhao; Hu, Xiaopeng; Zhao, Gang; Zhu, S. N.; Xiao, Min
2014-08-01
We report a simple, novel subdiffraction method, i.e. diffraction interference induced superfocusing in second-harmonic (SH) Talbot effect, to achieve focusing size of less than λSH/4 (or λpump/8) without involving evanescent waves or subwavelength apertures. By tailoring point spread functions with Fresnel diffraction interference, we observe periodic SH subdiffracted spots over a hundred of micrometers away from the sample. Our demonstration is the first experimental realization of the Toraldo di Francia's proposal pioneered 62 years ago for superresolution imaging.
Energy Technology Data Exchange (ETDEWEB)
Pang, Yang [Columbia Univ., New York, NY (United States)]|[Brookhaven National Labs., Upton, NY (United States)
1997-09-22
Many phenomenological models for relativistic heavy ion collisions share a common framework - the relativistic Boltzmann equations. Within this framework, a nucleus-nucleus collision is described by the evolution of phase-space distributions of several species of particles. The equations can be effectively solved with the cascade algorithm by sampling each phase-space distribution with points, i.e. {delta}-functions, and by treating the interaction terms as collisions of these points. In between collisions, each point travels on a straight line trajectory. In most implementations of the cascade algorithm, each physical particle, e.g. a hadron or a quark, is often represented by one point. Thus, the cross-section for a collision of two points is just the cross-section of the physical particles, which can be quite large compared to the local density of the system. For an ultra-relativistic nucleus-nucleus collision, this could lead to a large violation of the Lorentz invariance. By using the invariance property of the Boltzmann equation under a scale transformation, a Lorentz invariant cascade algorithm can be obtained. The General Cascade Program - GCP - is a tool for solving the relativistic Boltzmann equation with any number of particle species and very general interactions with the cascade algorithm.
Nonlinear simulations of particle source effects on edge localized mode
Energy Technology Data Exchange (ETDEWEB)
Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)
2015-12-15
The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.
DEFF Research Database (Denmark)
Sorokin, Vladislav S.; Thomsen, Jon Juel
2016-01-01
The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli– Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature...
Yuan, Jian-Hui; Chen, Ni; Zhang, Yan; Mo, Hua; Zhang, Zhi-Hai
2016-03-01
Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells are studied theoretically. Both the second-harmonic generation susceptibility and nonlinear optical rectification depend dramatically on the direction and the strength of the electric field. Numerical results show that both the second-harmonic generation susceptibility and nonlinear optical rectification are always weakened as the electric field increases where the direction of the electric field is along the growth direction of the quantum wells, which is in contrast to the conventional case. However, the second-harmonic generation susceptibility is weakened, but the nonlinear optical rectification is strengthened as the electric field increases where the direction of the electric field is against the growth direction of the quantum wells. Also it is the blue (or red) shift of the resonance that is induced by increasing of the electric field when the direction of the electric field is along (or against) the growth direction of the quantum wells. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.
The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber
Directory of Open Access Journals (Sweden)
Feng-Tao He
2013-01-01
Full Text Available We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton’s dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1 if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton’s width increases, while its amplitude and wave velocity reduce. (2 If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton’s width increases, while its amplitude and the wave velocity reduce.
Toman, Matej; Štumberger, Gorazd; Štumberger, Bojan; Dolinar, Drago
Power packages for calculation of power system transients are often used when studying and designing electromagnetic power systems. An accurate model of a distribution transformer is needed in order to obtain realistic values from these calculations. This transformer model must be derived in such a way that it is applicable when calculating those operating conditions appearing in practice. Operation conditions where transformers are loaded with nonlinear and unbalanced loads are especially challenging. The purpose of this work is to derive a three-phase transformer model that is appropriate for evaluating the effects of nonlinear and unbalanced loads. A lumped parameter model instead of a finite element (FE) model is considered in order to ensure that the model can be used in power packages for the calculation of power system transients. The transformer model is obtained by coupling electric and magnetic equivalent circuits. The magnetic equivalent circuit contains only three nonlinear reluctances, which represent nonlinear behaviour of the transformer. They are calculated by the inverse Jiles-Atherton (J-A) hysteresis model, while parameters of hysteresis are identified using differential evolution (DE). This considerably improves the accuracy of the derived transformer model. Although the obtained transformer model is simple, the simulation results show good agreement between measured and calculated results.
Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams
Hong Qi
2003-01-01
A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...
Covariant Formulations of Superstring Theories.
Mikovic, Aleksandar Radomir
1990-01-01
Chapter 1 contains a brief introduction to the subject of string theory, and tries to motivate the study of superstrings and covariant formulations. Chapter 2 describes the Green-Schwarz formulation of the superstrings. The Hamiltonian and BRST structure of the theory is analysed in the case of the superparticle. Implications for the superstring case are discussed. Chapter 3 describes the Siegel's formulation of the superstring, which contains only the first class constraints. It is shown that the physical spectrum coincides with that of the Green-Schwarz formulation. In chapter 4 we analyse the BRST structure of the Siegel's formulation. We show that the BRST charge has the wrong cohomology, and propose a modification, called first ilk, which gives the right cohomology. We also propose another superparticle model, called second ilk, which has infinitely many coordinates and constraints. We construct the complete BRST charge for it, and show that it gives the correct cohomology. In chapter 5 we analyse the properties of the covariant vertex operators and the corresponding S-matrix elements by using the Siegel's formulation. We conclude that the knowledge of the ghosts is necessary, even at the tree level, in order to obtain the correct S-matrix. In chapter 6 we attempt to calculate the superstring loops, in a covariant gauge. We calculate the vacuum-to -vacuum amplitude, which is also the cosmological constant. We show that it vanishes to all loop orders, under the assumption that the free covariant gauge-fixed action exists. In chapter 7 we present our conclusions, and briefly discuss the random lattice approach to the string theory, as a possible way of resolving the problem of the covariant quantization and the nonperturbative definition of the superstrings.
High-frequency effects in 1D spring-mass systems with strongly non-linear inclusions
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Snaeland, S.O.; Thomsen, Jon Juel
2010-01-01
-like systems with embedded non-linear parts, where the masses interact with a limited set of neighbour masses. The presented analytical and numerical results show that the effective properties for LF wave propagation can be altered by establishing HF standing waves in the non-linear regions of the chain......This work generalises the possibilities to change the effective material or structural properties for low frequency (LF) wave propagation, by using high-frequency (HF) external excitation combined with strong non-linear and non-local material behaviour. The effects are demonstrated on 1D chain....... The changes affect the effective stiffness and damping of the system....
How covariant is the galaxy luminosity function?
Smith, Robert E
2012-01-01
We investigate the error properties of certain galaxy luminosity function (GLF) estimators. Using a cluster expansion of the density field, we show how, for both volume and flux limited samples, the GLF estimates are covariant. The covariance matrix can be decomposed into three pieces: a diagonal term arising from Poisson noise; a sample variance term arising from large-scale structure in the survey volume; an occupancy covariance term arising due to galaxies of different luminosities inhabiting the same cluster. To evaluate the theory one needs: the mass function and bias of clusters, and the conditional luminosity function (CLF). We use a semi-analytic model (SAM) galaxy catalogue from the Millennium run N-body simulation and the CLF of Yang et al. (2003) to explore these effects. The GLF estimates from the SAM and the CLF qualitatively reproduce results from the 2dFGRS. We also measure the luminosity dependence of clustering in the SAM and find reasonable agreement with 2dFGRS results for bright galaxies. ...
Nonlinear Quantum Hall effects in Rarita-Schwinger gas
Luo, Xi; Wan, Xiangang; Yu, Yue
2016-01-01
Emergence of higher spin relativistic fermionic materials becomes a new favorite in the study of condensed matter physics. Massive Rarita-Schwinger 3/2-spinor was known owning very exotic properties, such as the superluminal fermionic modes and even being unstable in an external magnetic field. Due to the superluminal modes and the non-trivial constraints on the Rarita-Schwinger gas, we exposit anomalous properties of the Hall effects in (2+1)-dimensions which subvert the well-known quantum Hall paradigms. First, the Hall conductance of a pure Rarita-Schwinger gas is step-like but not plateau-quantized, instead of the linear dependence on the filling factor for a pure spin-1/2 Dirac gas. In reality, the Hall conductance of the Dirac gas is of quantized integer plateaus with the unit $\\frac{e^2}h$ due to the localization away from the Landau level centers. If the general localization rule is applicable to the disordered Rarita-Schwinger gas, the Hall plateaus are also expected to appear but they are nonlinearl...
Yu, Changyuan
Chromatic dispersion, polarization mode dispersion (PMD) and nonlinear effects are important issues on the physical layer of high-speed reconfigurable WDM optical fiber communication systems. For beyond 10 Gbit/s optical fiber transmission system, it is essential that chromatic dispersion and PMD be well managed by dispersion monitoring and compensation. One the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and has applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersive and nonlinear effects in high-speed optical communication systems. We have demonstrated: (i) A novel technique for optically compensating the PMD-induced RF power fading that occurs in single-sideband (SSB) subcarrier-multiplexed systems. By aligning the polarization states of the optical carrier and the SSB, RF power fading due to all orders of PMD can be completely compensated. (ii) Chromatic-dispersion-insensitive PMD monitoring by using a narrowband FBG notch filter to recover the RF clock power for 10Gb/s NRZ data, and apply it as a control signal for PMD compensation. (iii) Chirp-free high-speed optical pulse generation with a repetition rate of 160 GHz (which is four times of the frequency of the electrical clock) using a phase modulator and polarization maintaining (PM) fiber. (iv) Polarization-insensitive all-optical wavelength conversion based on four-wave mixing in dispersion-shifted fiber (DSF) with a fiber Bragg grating and a Faraday rotator mirror. (v) Width-tunable optical RZ pulse train generation based on four-wave mixing in highly-nonlinear fiber. By electrically tuning the delay between two pump pulse trains, the pulse-width of a generated pulse train is continuously tuned. (vi) A high-speed all
Indian Academy of Sciences (India)
Tarsem Singh Gill; Harvinder Kaur
2000-11-01
The effects of nonthermal ion distribution and ﬁnite dust temperature are incorporated in the investigation of nonlinear dust acoustic waves in an unmagnetized dusty plasma. Sagdeev pseudopotential method which takes into account the full nonlinearity of plasma equations, is used here to study solitary wave solutions. Possibility of co-existence of refractive and compressive solitons as a function of Mach number, dust temperature and concentration of nonthermal ions, is considered. For the ﬁxed value of nonthermal ions, it is found that the effect of increase in dust temperature is to reduce the range of co-existence of compressive and refractive solitons. Particular concentration of nonthermal ions results in disappearance of refractive solitons while the decrease in dust temperature, at this concentration restores the lost refractive solitons.
Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime
Salavati-fard, T.; Vazifehshenas, T.
2014-12-01
We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field.
The effect of process delay on dynamical behaviors in a self-feedback nonlinear oscillator
Yao, Chenggui; Ma, Jun; Li, Chuan; He, Zhiwei
2016-10-01
The delayed feedback loops play a crucial role in the stability of dynamical systems. The effect of process delay in feedback is studied numerically and theoretically in the delayed feedback nonlinear systems including the neural model, periodic system and chaotic oscillator. The process delay is of key importance in determining the evolution of systems, and the rich dynamical phenomena are observed. By introducing a process delay, we find that it can induce bursting electric activities in the neural model. We demonstrate that this novel regime of amplitude death also exists in the parameter space of feedback strength and process delay for the periodic system and chaotic oscillator. Our results extend the effect of process delay in the paper of Zou et al.(2013) where the process delay can eliminate the amplitude death of the coupled nonlinear systems.
Investigation of nonlinear effects in the instabilities and noise radiation of supersonic jets
Janjua, S. I.; McLaughlin, D. K.
1985-01-01
The nonlinear interactions of fluctuating components which produce noise in supersonic jet flows were studied experimentally. Attention was given to spectral components interactions and the spectral effects of increasing Re. A jet exhausted in perfectly expanded conditions was monitored by microphones in the maximum noise emission direction. Trials were run at Mach 1.4 and 2.1 and the Re was varied from 5000-20,000 and 9000-25,000, respectively. Hot-wire data were gathered to examine the mode-mode interactions and a point glow discharge was used to excite the jets. The noise was found to exhibit discrete frequency components and a single tone instability at Re below 10,000. Mode interactions were found to weaken after the instabilities reached a crescendo and then decayed, leading to a nonlinear spectral broadening effect.
Jackson, E J; Coussios, C-C; Cleveland, R O
2014-06-21
Thermal ablation by high intensity focused ultrasound (HIFU) has a great potential for the non-invasive treatment of solid tumours. Due to the high pressure amplitudes involved, nonlinear acoustic effects must be understood and the relevant medium property is the parameter of nonlinearity B/A. Here, B/A was measured in ex vivo bovine liver, over a heating/cooling cycle replicating temperatures reached during HIFU ablation, adapting a finite amplitude insertion technique, which also allowed for measurement of sound-speed and attenuation. The method measures the nonlinear progression of a plane wave through liver and B/A was chosen so that numerical simulations matched the measured waveforms. To create plane-wave conditions, sinusoidal bursts were transmitted by a 100 mm diameter 1.125 MHz unfocused transducer and measured using a 15 mm diameter 2.25 MHz broadband transducer in the near field. Attenuation and sound-speed were calculated using a reflected pulse from the smaller transducer using the larger transducer as the reflecting interface. Results showed that attenuation initially decreased with heating then increased after denaturation, the sound-speed initially increased with temperature and then decreased, and B/A showed an increase with temperature but no significant post-heating change. The B/A data disagree with other reports that show a significant change and we suggest that any nonlinear enhancement in the received ultrasound signal post-treatment is likely due to acoustic cavitation rather than changes in tissue nonlinearity.
Smith, David D.
2002-01-01
This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.
Effects of Nonlinear Absorption in BK7 and Color Glasses at 355 nm
Energy Technology Data Exchange (ETDEWEB)
Adams, J J; McCarville, T; Bruere, J; McElroy, J; Peterson, J
2003-11-12
We have demonstrated a simple experimental technique that can be used to measure the nonlinear absorption coefficients in glasses. We determine BK7, UG1, and UG11 glasses to have linear absorption coefficients of 0.0217 {+-} 10% cm{sup -1}, 1.7 {+-} 10% cm{sup -1}, and 0.82 {+-} 10% cm{sup -1}, respectively, two-photon absorption cross-sections of 0.025 {+-} 20% cm/GW, 0.035 {+-} 20% cm/GW, and 0.047 {+-} 20% cm/GW, respectively, excited-state absorption cross-sections of 8.0 x 10{sup -18} {+-} 20% cm{sup 2}, 2.8 x 10{sup -16} {+-} 20% cm{sup 2}, and 5 x 10{sup -17} {+-} 20% cm{sup 2}, respectively, and solarization coefficients of 8.5 x 10{sup -20} {+-} 20% cm{sup 2}, 2.5 x 10{sup -18} {+-} 20% cm{sup 2}, and 1.3 x 10{sup -19} {+-} 20% cm{sup 2}, respectively. For our application, nonlinear effects in 10-cm of BK7 are small ({le} 2%) for 355-nm fluences < 0.2 J/cm{sup 2} for flat-top pulses. However, nonlinear effects are noticeable for 355-nm fluences at 0.8 J/cm{sup 2}. In particular, we determine a 20% increase in the instantaneous absorption from linear, a solarization rate of 4% per 100 shots, and a 10% temporal droop introduced in the pulse, for 355-nm flat-top pulses at a fluence of 0.8 J/cm{sup 2}. For 0.5-cm of UG1 absorbing glass the non-linear absorption has a similar effect as that from 10-cm of BK7 on the pulse shape; however, the effects in UG11 are much smaller.
The effects of nonlinear wave propagation on the stability of inertial cavitation
2009-01-01
In the context of forecasting temperature and pressure fields in high-intensity focussed ultrasound, the accuracy of predictive models is critical for the safety and efficacy of treatment. In such fields inertial cavitation is often observed. Classically, estimations of cavitation thresholds have been based on the assumption that the incident wave at the surface of a bubble was the same as in the far-field, neglecting the effect of nonlinear wave propagation. By modelling the incident wave as...
Polarization effects and nonlinear switching in fiber figure-eight lasers.
Stentz, A J; Boyd, R W
1994-09-15
We have developed a novel experimental procedure that allows us to quantify how polarization effects determine the passive mode locking of an optical fiber figure-eight laser. Based on our measurements, we have performed numerical simulations demonstrating that the nonlinear switching within this laser operates in a manner contrary to that described by the conventional theory of passive mode locking with a fast saturable absorber.
Energy Technology Data Exchange (ETDEWEB)
Ferraro, Rafael, E-mail: ferraro@iafe.uba.a [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)
2010-05-14
In Born-Infeld theory and other nonlinear electrodynamics, the presence of a magnetostatic field modifies the dispersion relation and the energy velocity of waves propagating in a hollow waveguide. As a consequence, the transmitted power along a waveguide suffers slight changes when a magnetostatic field is switched on and off. This tiny effect could be better tested by operating the waveguide at a frequency close to the cutoff frequency.
Nonlinear mixed effects modeling of gametocyte carriage in patients with uncomplicated malaria
Directory of Open Access Journals (Sweden)
Little Francesca
2010-02-01
Full Text Available Abstract Background Gametocytes are the sexual form of the malaria parasite and the main agents of transmission. While there are several factors that influence host infectivity, the density of gametocytes appears to be the best single measure that is related to the human host's infectivity to mosquitoes. Despite the obviously important role that gametocytes play in the transmission of malaria and spread of anti-malarial resistance, it is common to estimate gametocyte carriage indirectly based on asexual parasite measurements. The objective of this research was to directly model observed gametocyte densities over time, during the primary infection. Methods Of 447 patients enrolled in sulphadoxine-pyrimethamine therapeutic efficacy studies in South Africa and Mozambique, a subset of 103 patients who had no gametocytes pre-treatment and who had at least three non-zero gametocyte densities over the 42-day follow up period were included in this analysis. Results A variety of different functions were examined. A modified version of the critical exponential function was selected for the final model given its robustness across different datasets and its flexibility in assuming a variety of different shapes. Age, site, initial asexual parasite density (logged to the base 10, and an empirical patient category were the co-variates that were found to improve the model. Conclusions A population nonlinear modeling approach seems promising and produced a flexible function whose estimates were stable across various different datasets. Surprisingly, dihydrofolate reductase and dihydropteroate synthetase mutation prevalence did not enter the model. This is probably related to a lack of power (quintuple mutations n = 12, and informative censoring; treatment failures were withdrawn from the study and given rescue treatment, usually prior to completion of follow up.
Variations of cosmic large-scale structure covariance matrices across parameter space
Reischke, Robert; Kiessling, Alina; Schäfer, Björn Malte
2017-03-01
The likelihood function for cosmological parameters, given by e.g. weak lensing shear measurements, depends on contributions to the covariance induced by the non-linear evolution of the cosmic web. As highly non-linear clustering to date has only been described by numerical N-body simulations in a reliable and sufficiently precise way, the necessary computational costs for estimating those covariances at different points in parameter space are tremendous. In this work, we describe the change of the matter covariance and the weak lensing covariance matrix as a function of cosmological parameters by constructing a suitable basis, where we model the contribution to the covariance from non-linear structure formation using Eulerian perturbation theory at third order. We show that our formalism is capable of dealing with large matrices and reproduces expected degeneracies and scaling with cosmological parameters in a reliable way. Comparing our analytical results to numerical simulations, we find that the method describes the variation of the covariance matrix found in the SUNGLASS weak lensing simulation pipeline within the errors at one-loop and tree-level for the spectrum and the trispectrum, respectively, for multipoles up to ℓ ≤ 1300. We show that it is possible to optimize the sampling of parameter space where numerical simulations should be carried out by minimizing interpolation errors and propose a corresponding method to distribute points in parameter space in an economical way.
Modified Nonlinear Model of Arcsin-Electrodynamics
Kruglov, S. I.
2016-07-01
A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter γ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested. We have investigated the gauge covariant quantization of the nonlinear electrodynamics fields as well as the gauge fixing approach based on Dirac's brackets.
Non-linear effects on solute transfer between flowing water and a sediment bed.
Higashino, Makoto; Stefan, Heinz G
2011-11-15
A previously developed model of periodic pore water flow in space and time, and associated solute transport in a stream bed of fine sand is extended to coarse sand and fine gravel. The pore water flow immediately below the sediment/water interface becomes intermittently a non-Darcy flow. The periodic pressure and velocity fluctuations considered are induced by near-bed coherent turbulent motions in the stream flow; they penetrate from the sediment/water interface into the sediment pore system and are described by a wave number (χ) and a period (T) that are given as functions of the shear velocity (U(∗)) between the flowing water and the sediment bed. The stream bed has a flat surface without bed forms. The flow field in the sediment pore system is described by the continuity equation and a resistance law that includes both viscous (Darcy) and non-linear (inertial) effects. Simulation results show that non-linear (inertial) effects near the sediment/water interface increase flow resistance and reduce mean flow velocities. Compared to pure Darcy flow, non-linear (inertial) effects reduce solute exchange rates between overlying water and the sediment bed but only by a moderate amount (less than 50%). Turbulent coherent flow structures in the stream flow enhance solute transfer in the pore system of a stream bed compared to pure molecular diffusion, but by much less than standing surface waves or bed forms.
Ponte Castañeda, Pedro
2016-11-01
This paper presents a variational method for estimating the effective constitutive response of composite materials with nonlinear constitutive behavior. The method is based on a stationary variational principle for the macroscopic potential in terms of the corresponding potential of a linear comparison composite (LCC) whose properties are the trial fields in the variational principle. When used in combination with estimates for the LCC that are exact to second order in the heterogeneity contrast, the resulting estimates for the nonlinear composite are also guaranteed to be exact to second-order in the contrast. In addition, the new method allows full optimization with respect to the properties of the LCC, leading to estimates that are fully stationary and exhibit no duality gaps. As a result, the effective response and field statistics of the nonlinear composite can be estimated directly from the appropriately optimized linear comparison composite. By way of illustration, the method is applied to a porous, isotropic, power-law material, and the results are found to compare favorably with earlier bounds and estimates. However, the basic ideas of the method are expected to work for broad classes of composites materials, whose effective response can be given appropriate variational representations, including more general elasto-plastic and soft hyperelastic composites and polycrystals.
Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars
Denisov, V. I.; Sokolov, V. A.; Svertilov, S. I.
2017-09-01
The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and the rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.
Discrete Symmetries in Covariant LQG
Rovelli, Carlo
2012-01-01
We study time-reversal and parity ---on the physical manifold and in internal space--- in covariant loop gravity. We consider a minor modification of the Holst action which makes it transform coherently under such transformations. The classical theory is not affected but the quantum theory is slightly different. In particular, the simplicity constraints are slightly modified and this restricts orientation flips in a spinfoam to occur only across degenerate regions, thus reducing the sources of potential divergences.
Time-ordering effects in the generation of entangled photons using nonlinear optical processes.
Quesada, Nicolás; Sipe, J E
2015-03-06
We study the effects of time ordering in photon generation processes such as spontaneous parametric down-conversion (SPDC) and four wave mixing (SFWM). The results presented here are used to construct an intuitive picture that allows us to predict when time-ordering effects significantly modify the joint spectral amplitude (JSA) of the photons generated in SPDC and SFWM. These effects become important only when the photons being generated lie with the pump beam that travels through the nonlinear material for a significant amount of time. Thus sources of spectrally separable photons are ideal candidates for the observation of modifications of the JSA due to time ordering.
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten
2013-01-01
Recently, we solved the coupled-mode equations for Bragg scattering (BS) in the low- and high-conversion regimes, but without the effects of nonlinear phase modulation (NPM). We now present solutions and Green functions in the low-conversion regime that include NPM. We find that NPM does not change...... are still possible, even when the effects of NPM are included. Finally, the effects of using different input signals are considered, and we conclude that using the natural input modes of the system drastically increases the efficiency. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers...
Phenotypic covariance at species’ borders
2013-01-01
Background Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species’ borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Results Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Conclusions Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species’ borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future. PMID:23714580
Equivalence between the Covariant and Bardeen Perturbation Formalisms
Vitenti, S D P; Pinto-Neto, N
2013-01-01
In a previous work we obtained a set of necessary conditions for the linear approximation in cosmology. Here we discuss the relations of this approach with the so called covariant perturbations. It is often argued in the literature that one of the main advantages of the covariant approach to describe the cosmological perturbations is that the Bardeen formalism is coordinate dependent. In this paper we will reformulate the Bardeen approach in a completely covariant manner. For that, we introduce the notion of pure and mixed tensors that yields an adequate language to treat both perturbative approaches in a common framework. Additionally, we define full non-linear tensors that at first order correspond to the three known gauge invariant variables $\\Phi$, $\\Psi$ and $\\Xi$. We also stress that in the referred covariant approach one necessarily introduces an additional hyper-surface choice to the problem, and the same tensor combinations above at first order are also hyper-surface invariant making the gauge invari...
Energy Technology Data Exchange (ETDEWEB)
Kharkovskiy, A. I., E-mail: akharkovskiy@inbox.ru [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland); L.F. Vereshchagin Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow (Russian Federation); Shaldin, Yu. V. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland); Institute for Crystallography RAS, Lenin' s Avenue 59, 119333 Moscow (Russian Federation); Nizhankovskii, V. I. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland)
2016-01-07
The direct nonlinear magnetoelectric (ME) effect and the magnetostriction of piezoelectric CsCuCl{sub 3} single crystals were comprehensively studied over a wide temperature range in stationary magnetic fields of up to 14 T. The direct nonlinear ME effect measurements were also performed in pulsed magnetic fields up to 31 T, at liquid helium temperature in the antiferromagnetic (AF) state for the crystallographic direction in which effect has the maximum value. The nonlinear ME effect was quadratic in the paramagnetic state for the whole range of magnetic fields. In the AF state the phase transition between different configurations of spins manifested itself as plateau-like peculiarity on the nonlinear ME effect. The nonlinear ME effect was saturated by the phase transition to the spin-saturated paramagnetic state. Two contributions to the nonlinear ME effects in CsCuCl{sub 3} were extracted from the experimental data: the intrinsic ME effect originated from the magnetoelectric interactions, and the extrinsic one, which resulted from a magnetostriction-induced piezoelectric effect.
Fiber Nonlinearities: A Tutorial
Institute of Scientific and Technical Information of China (English)
Govind P. Agrawal
2003-01-01
Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..
Fiber Nonlinearities: A Tutorial
Institute of Scientific and Technical Information of China (English)
Govind; P.; Agrawal
2003-01-01
Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..
Measuring the nonlinear refractive index of graphene using the optical Kerr effect method.
Dremetsika, Evdokia; Dlubak, Bruno; Gorza, Simon-Pierre; Ciret, Charles; Martin, Marie-Blandine; Hofmann, Stephan; Seneor, Pierre; Dolfi, Daniel; Massar, Serge; Emplit, Philippe; Kockaert, Pascal
2016-07-15
By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third-order nonlinear response of graphene and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, n2=-1.1×10-13 m2/W. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature and to discuss the discrepancies, taking into account parameters such as doping.
Non-equilibrium many-body effects in driven nonlinear resonator arrays
Grujic, T; Angelakis, D G; Jaksch, D
2012-01-01
We study the non-equilibrium behavior of optically driven dissipative coupled resonator arrays. Assuming each resonator is coupled with a two-level system via a Jaynes-Cummings interaction, we calculate the many-body steady state behavior of the system under coherent pumping and dissipation. We propose and analyze the many-body phases using experimentally accessible quantities such as the total excitation number, the emitted photon spectra and photon coherence functions for different parameter regimes. In parallel, we also compare and contrast the expected behavior of this system assuming the local nonlinearity in the cavities is generated by a generic Kerr effect rather than a Jaynes-Cummings interaction. We find that the behavior of the experimentally accessible observables produced by the two models differs for realistic regimes of interactions even when the corresponding nonlinearities are of similar strength. We analyze in detail the extra features available in the Jaynes-Cummings-Hubbard (JCH) model ori...
EVALUATION OF NONLINEARITY EFFECTS ON PERFORMANCE OF DVB-H TRANSMISSION LINK
Directory of Open Access Journals (Sweden)
MD. SARWAR MORSHED
2010-08-01
Full Text Available Handheld devices of all kind have gained remarkable popularity in recent years. Choosing receiving end components for these handheld devices are critical. For example, if poorly suited and inexpensive amplifiers are chosen, then they tend to deteriorate signals. On the other hand, cheaper components are feasible for consumer product. This paper evaluates nonlinearity effects on transmission link serving Digital Video Broadcasting for Handhelds (DVB-H based on the results of software simulator. The system is tested in various receiving scenarios with presence of noise and received signal power varying from sensitivity level up to saturated nonlinear region. Neighboring DVB-H channel and close-by GSM-uplink are considered as distortion sources. The simulation results also analyze the behavior of the system in the presence of interfering signals with variouspower levels.
Theory of plasmonic effects in nonlinear optics: The case of graphene
Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco
2017-01-01
We develop a microscopic large-N theory of electron-electron interaction corrections to multilegged Feynman diagrams describing second- and third-order non-linear-response functions. Our theory, which reduces to the well-known random-phase approximation in the linear-response limit, is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order non-linear-response functions of an interacting two-dimensional (2D) gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved by virtue of the finiteness of the quasihomogeneous second-order nonlinear response of this inversion-symmetric 2D material.
Measuring the Nonlinear Refractive Index of Graphene using the Optical Kerr Effect Method
Dremetsika, Evdokia; Gorza, Simon-Pierre; Ciret, Charles; Martin, Marie-Blandine; Hofmann, Stephan; Seneor, Pierre; Dolfi, Daniel; Massar, Serge; Emplit, Philippe; Kockaert, Pascal
2016-01-01
By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third order nonlinear response of graphene at telecom wavelength, and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, $n_2 = - 1.1\\times 10^{-13} m^2/W$. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature, and to discuss the discrepancies, taking into account parameters such as doping.
Skidin, Anton S; Sidelnikov, Oleg S; Fedoruk, Mikhail P; Turitsyn, Sergei K
2016-12-26
The impact of the fiber Kerr effect on error statistics in the nonlinear (high power) transmission of the OFDM 16-QAM signal over a 2000 km EDFA-based link is examined. We observed and quantified the difference in the error statistics for constellation points located at three power-defined rings. Theoretical analysis of a trade-off between redundancy and error rate reduction using probabilistic coding of three constellation power rings decreasing the symbol-error rate of OFDM 16-QAM signal is presented. Based on this analysis, we propose to mitigate the nonlinear impairments using the adaptive modulation technique applied to the OFDM 16-QAM signal. We demonstrate through numerical modelling the system performance improvement by the adaptive modulation for the large number of OFDM subcarriers (more than 100). We also show that a similar technique can be applied to single carrier transmission.
The effect of large deformation and material nonlinearity on gel indentation
Institute of Scientific and Technical Information of China (English)
Zheng Duan; Yonghao An; Jiaping Zhang; Hanqing Jiang
2012-01-01
A gel,an aggregate of polymers with solvents,has dual attributes of solid and liquid as solvent migrates in and out of the polymer network.Indentation has recently been used to characterize the mechanical properties of gels.This paper evaluates the effects of large deformation and material nonlinearity on gel indentation through theoretical modeling and finite element analysis.It is found that large deformation significantly affects the interpretation of the experimental observations and the classical relation between indentation force and depth has limitations for large deformation.The material nonlinearity does not play a very important role on indentation experiment so that the poroelasticity is a good approximation.Based on these observations,this paper proposes an alternative approach to measure the mechanical properties of gels,namely,uniaxial compression experiment.
Non-linear dynamics of Kelvin-Helmholtz unstable magnetized jets three-dimensional effects
Keppens, R
1999-01-01
A numerical study of the Kelvin-Helmholtz instability in compressible magnetohydrodynamics is presented. The three-dimensional simulations consider shear flow in a cylindrical jet configuration, embedded in a uniform magnetic field directed along the jet axis. The growth of linear perturbations at specified poloidal and axial mode numbers demonstrate intricate non-linear coupling effects. The physical mechanims leading to induced secondary Kelvin-Helmholtz instabilities at higher mode numbers are identified. The initially weak magnetic field becomes locally dominant in the non-linear dynamics before and during saturation. Thereby, it controls the jet deformation and eventual breakup. The results are obtained using the Versatile Advection Code [G. Toth, Astrophys. Lett. Comm. 34, 245 (1996)], a software package designed to solve general systems of conservation laws. An independent calculation of the same Kelvin-Helmholtz unstable jet configuration using a three-dimensional pseudo-spectral code gives important ...
Effect of joint damping and joint nonlinearity on the dynamics of space structures
Bowden, Mary; Dugundji, John
1988-01-01
Analyses of the effect of linear joint characteristics on the vibrations of a free-free, three-joint beam model show that increasing joint damping increases resonant frequencies and increases modal damping but only to the point where the joint gets 'locked up' by damping. This behavior is different from that predicted by modeling joint damping as proportional damping. Nonlinear analyses of the three-joint model with cubic springs at the joints show all the classical single DOF nonlinear response behavior at each resonance of the multiple DOF system: nondoubling of response for a doubling of forcing amplitude, multiple solutions, jump behavior, and resonant frequency shifts. These properties can be concisely quantified by characteristic backbone curves, which show the locus of resonant peaks for increasing forcing amplitude.
Ought-approach versus ought-avoidance: nonlinear effects on arousal under achievement situations.
Stamovlasis, Dimitrios; Sideridis, Georgios D
2014-01-01
The present study examines the dimensions of oughts under a nonlinear perspective. Ought-approach and ought-avoidance have been proposed as two different dimensions of oughts, which have an opposite effect on subjects' arousal level under achievement situation. The change in arousal level measured by heart rates per minute (HRPM) was modeled as cusp catastrophe by implementing the two dimensions of oughts as the control parameters: the ought-approach as the asymmetry and the ought-avoidance as the bifurcation factor. The cusp model was proved by far superior from the three alternative linear models and provided the empirical evidence that the two dimensions of oughts are distinct and are associated with different processes. The ought-avoidance dimension being the bifurcation factor acts in a destructive manner by introducing nonlinearity and uncertainty in the self-regulation process (with regard to HRPM). The interpretation of the model is provided and implications are discussed.