WorldWideScience

Sample records for nonlinear control techniques

  1. L2-gain and passivity techniques in nonlinear control

    CERN Document Server

    van der Schaft, Arjan

    2017-01-01

    This standard text gives a unified treatment of passivity and L2-gain theory for nonlinear state space systems, preceded by a compact treatment of classical passivity and small-gain theorems for nonlinear input-output maps. The synthesis between passivity and L2-gain theory is provided by the theory of dissipative systems. Specifically, the small-gain and passivity theorems and their implications for nonlinear stability and stabilization are discussed from this standpoint. The connection between L2-gain and passivity via scattering is detailed. Feedback equivalence to a passive system and resulting stabilization strategies are discussed. The passivity concepts are enriched by a generalised Hamiltonian formalism, emphasising the close relations with physical modeling and control by interconnection, and leading to novel control methodologies going beyond passivity. The potential of L2-gain techniques in nonlinear control, including a theory of all-pass factorizations of nonlinear systems, and of parametrization...

  2. Nonlinear control techniques for an atomic force microscope system

    Institute of Scientific and Technical Information of China (English)

    Yongchun FANG; Matthew FEEMSTER; Darren DAWSON; Nader M.JALILI

    2005-01-01

    Two nonlinear control techniques are proposed for an atomic force microscope system.Initially,a learning-based control algorithm is developed for the microcantilever-sample system that achieves asymptotic cantilever tip tracking for periodic trajectories.Specifically,the control approach utilizes a learning-based feedforward term to compensate for periodic dynamics and high-gain terms to account for non-periodic dynamics.An adaptive control algorithm is then developed to achieve asymptotic cantilever tip tracking for bounded tip trajectories despite uncertainty throughout the system parameters.Simulation results are provided to illustrate the efficacy and performance of the control strategies.

  3. Higher-order techniques for some problems of nonlinear control

    Directory of Open Access Journals (Sweden)

    Sarychev Andrey V.

    2002-01-01

    Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.

  4. Nonlinear systems techniques for dynamical analysis and control

    CERN Document Server

    Lefeber, Erjen; Arteaga, Ines

    2017-01-01

    This treatment of modern topics related to the control of nonlinear systems is a collection of contributions celebrating the work of Professor Henk Nijmeijer and honoring his 60th birthday. It addresses several topics that have been the core of Professor Nijmeijer’s work, namely: the control of nonlinear systems, geometric control theory, synchronization, coordinated control, convergent systems and the control of underactuated systems. The book presents recent advances in these areas, contributed by leading international researchers in systems and control. In addition to the theoretical questions treated in the text, particular attention is paid to a number of applications including (mobile) robotics, marine vehicles, neural dynamics and mechanical systems generally. This volume provides a broad picture of the analysis and control of nonlinear systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participan...

  5. Nonlinear regulation and nonlinear H{sub {infinity}} control via the state-dependent Riccati equation technique: Part 1, theory

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, J.R.; D`Souza, C.N.; Mracek, C.P. [Air Force Armament Directorate, Eglin, FL (United States)

    1994-12-31

    A little known technique for systematically designing nonlinear regulators is analyzed. The technique consists of first using direct parameterization to bring the nonlinear system to a linear structure having state-dependent coefficients (SDC). A state-dependent Riccati equation (SDRE) is then solved at each point x along the trajectory to obtain a nonlinear feedback controller of the form u = -R{sup -1}(x)B{sup T}(x)P(x)x, where P(x) is the solution of the SDRE. In the case of scalar x, it is shown that the SDRE approach yields a control solution which satisfies all of the necessary conditions for optimality even when the state and control weightings are functions of the state. It is also shown that the solution is globally asymptotically stable. In the multivariable case, the optimality, suboptimality and stability properties of the SDRE method are investigated. Under various mild assumptions of controllability and observability, the following is shown: (a) concerning the necessary conditions for optimality, where H is the Hamiltonian of the system, H{sub u} = 0 is always satisfied and, under stability, {lambda} = -H{sub x} is asymptotically satisfied at a quadratic rate as the states are driven toward the origin, (b) if it exists, a parameter-dependent SDC parameterization can be computed such that the multivariable SDRE closed loop solution satisfies all of the necessary conditions for optimality for a given initial condition, and (c) the method is locally asymptotically stable. A general nonlinear minimum-energy (nonlinear H{sub {infinity}}) problem is then posed. For this problem, the SDRF, method involves the solution of two coupled state-dependent Riccati equations at each point x along the trajectory. In the case of full state information, again under mild assumptions of controllability and observability, it is shown that the SDRE non-linear H{sub {infinity}} controller is internally locally asymptotically stable.

  6. PERFORMANCE OF PID CONTROLLER OF NONLINEAR SYSTEM USING SWARM INTELLIGENCE TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Neeraj Jain

    2016-07-01

    Full Text Available In this paper swarm intelligence based PID controller tuning is proposed for a nonlinear ball and hoop system. Particle swarm optimization (PSO, Artificial bee colony (ABC, Bacterial foraging optimization (BFO is some example of swarm intelligence techniques which are focused for PID controller tuning. These algorithms are also tested on perturbed ball and hoop model. Integral square error (ISE based performance index is used for finding the best possible value of controller parameters. Matlab software is used for designing the ball and hoop model. It is found that these swarm intelligence techniques have easy implementation & lesser settling & rise time compare to conventional methods.

  7. Nonlinear adaptive control based on fuzzy sliding mode technique and fuzzy-based compensator.

    Science.gov (United States)

    Nguyen, Sy Dzung; Vo, Hoang Duy; Seo, Tae-Il

    2017-09-01

    It is difficult to efficiently control nonlinear systems in the presence of uncertainty and disturbance (UAD). One of the main reasons derives from the negative impact of the unknown features of UAD as well as the response delay of the control system on the accuracy rate in the real time of the control signal. In order to deal with this, we propose a new controller named CO-FSMC for a class of nonlinear control systems subjected to UAD, which is constituted of a fuzzy sliding mode controller (FSMC) and a fuzzy-based compensator (CO). Firstly, the FSMC and CO are designed independently, and then an adaptive fuzzy structure is discovered to combine them. Solutions for avoiding the singular cases of the fuzzy-based function approximation and reducing the calculating cost are proposed. Based on the solutions, fuzzy sliding mode technique, lumped disturbance observer and Lyapunov stability analysis, a closed-loop adaptive control law is formulated. Simulations along with a real application based on a semi-active train-car suspension are performed to fully evaluate the method. The obtained results reflected that vibration of the chassis mass is insensitive to UAD. Compared with the other fuzzy sliding mode control strategies, the CO-FSMC can provide the best control ability to reduce unwanted vibrations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Automatic weight determination in nonlinear model predictive control of wind turbines using swarm optimization technique

    Science.gov (United States)

    Tofighi, Elham; Mahdizadeh, Amin

    2016-09-01

    This paper addresses the problem of automatic tuning of weighting coefficients for the nonlinear model predictive control (NMPC) of wind turbines. The choice of weighting coefficients in NMPC is critical due to their explicit impact on efficiency of the wind turbine control. Classically, these weights are selected based on intuitive understanding of the system dynamics and control objectives. The empirical methods, however, may not yield optimal solutions especially when the number of parameters to be tuned and the nonlinearity of the system increase. In this paper, the problem of determining weighting coefficients for the cost function of the NMPC controller is formulated as a two-level optimization process in which the upper- level PSO-based optimization computes the weighting coefficients for the lower-level NMPC controller which generates control signals for the wind turbine. The proposed method is implemented to tune the weighting coefficients of a NMPC controller which drives the NREL 5-MW wind turbine. The results are compared with similar simulations for a manually tuned NMPC controller. Comparison verify the improved performance of the controller for weights computed with the PSO-based technique.

  9. Nonlinear control of an activated sludge aeration process: use of fuzzy techniques for tuning PID controllers.

    Science.gov (United States)

    Rodrigo, M A; Seco, A; Ferrer, J; Penya-roja, J M; Valverde, J L

    1999-01-01

    In this paper, several tuning algorithms, specifically ITAE, IMC and Cohen and Coon, were applied in order to tune an activated sludge aeration PID controller. Performance results of these controllers were compared by simulation with those obtained by using a nonlinear fuzzy PID controller. In order to design this controller, a trial and error procedure was used to determine, as a function of error at current time and at a previous time, sets of parameters (including controller gain, integral time and derivative time) which achieve satisfactory response of a PID controller actuating over the aeration process. Once these sets of data were obtained, neural networks were used to obtain fuzzy membership functions and fuzzy rules of the fuzzy PID controller.

  10. On large-scale nonlinear programming techniques for solving optimal control problems

    Energy Technology Data Exchange (ETDEWEB)

    Faco, J.L.D.

    1994-12-31

    The formulation of decision problems by Optimal Control Theory allows the consideration of their dynamic structure and parameters estimation. This paper deals with techniques for choosing directions in the iterative solution of discrete-time optimal control problems. A unified formulation incorporates nonlinear performance criteria and dynamic equations, time delays, bounded state and control variables, free planning horizon and variable initial state vector. In general they are characterized by a large number of variables, mostly when arising from discretization of continuous-time optimal control or calculus of variations problems. In a GRG context the staircase structure of the jacobian matrix of the dynamic equations is exploited in the choice of basic and super basic variables and when changes of basis occur along the process. The search directions of the bound constrained nonlinear programming problem in the reduced space of the super basic variables are computed by large-scale NLP techniques. A modified Polak-Ribiere conjugate gradient method and a limited storage quasi-Newton BFGS method are analyzed and modifications to deal with the bounds on the variables are suggested based on projected gradient devices with specific linesearches. Some practical models are presented for electric generation planning and fishery management, and the application of the code GRECO - Gradient REduit pour la Commande Optimale - is discussed.

  11. Flight control design using a blend of modern nonlinear adaptive and robust techniques

    Science.gov (United States)

    Yang, Xiaolong

    In this dissertation, the modern control techniques of feedback linearization, mu synthesis, and neural network based adaptation are used to design novel control laws for two specific applications: F/A-18 flight control and reusable launch vehicle (an X-33 derivative) entry guidance. For both applications, the performance of the controllers is assessed. As a part of a NASA Dryden program to develop and flight test experimental controllers for an F/A-18 aircraft, a novel method of combining mu synthesis and feedback linearization is developed to design longitudinal and lateral-directional controllers. First of all, the open-loop and closed-loop dynamics of F/A-18 are investigated. The production F/A-18 controller as well as the control distribution mechanism are studied. The open-loop and closed-loop handling qualities of the F/A-18 are evaluated using low order transfer functions. Based on this information, a blend of robust mu synthesis and feedback linearization is used to design controllers for a low dynamic pressure envelope of flight conditions. For both the longitudinal and the lateral-directional axes, a robust linear controller is designed for a trim point in the center of the envelope. Then by including terms to cancel kinematic nonlinearities and variations in the aerodynamic forces and moments over the flight envelope, a complete nonlinear controller is developed. In addition, to compensate for the model uncertainty, linearization error and variations between operating points, neural network based adaptation is added to the designed longitudinal controller. The nonlinear simulations, robustness and handling qualities analysis indicate that the performance is similar to or better than that for the production F/A-18 controllers. When the dynamic pressure is very low, the performance of both the experimental and the production flight controllers is degraded, but Level I handling qualities are still achieved. A new generation of Reusable Launch Vehicles

  12. Robust Control Synthesis of Polynomial Nonlinear Systems Using Sum of Squares Technique

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Chao; SUN Hong-Fei; ZENG Jian-Ping

    2013-01-01

    In this paper,sum of squares (SOS) technique is used to analyze the robust state feedback synthesis problem for a class of uncertain affine nonlinear systems with polynomial vector fields.Sufficient conditions are given to obtain the solutions to the above control problem either without or with guaranteed cost or H∞ performance objectives.Moreover,such solvable conditions can be formulated as SOS programming problems in terms of state dependent linear matrix inequalities (LMIs) which can be dealt with by the SOS technique directly.Besides,an idea is provided to describe the inverse of polynomial or even rational matrices by introducing some extra polynomials.A numerical example is presented to illustrate the effectiveness of the approach.

  13. Active control and parameter updating techniques for nonlinear thermal network models

    Science.gov (United States)

    Papalexandris, M. V.; Milman, M. H.

    The present article reports on active control and parameter updating techniques for thermal models based on the network approach. Emphasis is placed on applications where radiation plays a dominant role. Examples of such applications are the thermal design and modeling of spacecrafts and space-based science instruments. Active thermal control of a system aims to approximate a desired temperature distribution or to minimize a suitably defined temperature-dependent functional. Similarly, parameter updating aims to update the values of certain parameters of the thermal model so that the output approximates a distribution obtained through direct measurements. Both problems are formulated as nonlinear, least-square optimization problems. The proposed strategies for their solution are explained in detail and their efficiency is demonstrated through numerical tests. Finally, certain theoretical results pertaining to the characterization of solutions of the problems of interest are also presented.

  14. Adaptive Neural Control of Pure-Feedback Nonlinear Time-Delay Systems via Dynamic Surface Technique.

    Science.gov (United States)

    Min Wang; Xiaoping Liu; Peng Shi

    2011-12-01

    This paper is concerned with robust stabilization problem for a class of nonaffine pure-feedback systems with unknown time-delay functions and perturbed uncertainties. Novel continuous packaged functions are introduced in advance to remove unknown nonlinear terms deduced from perturbed uncertainties and unknown time-delay functions, which avoids the functions with control law to be approximated by radial basis function (RBF) neural networks. This technique combining implicit function and mean value theorems overcomes the difficulty in controlling the nonaffine pure-feedback systems. Dynamic surface control (DSC) is used to avoid "the explosion of complexity" in the backstepping design. Design difficulties from unknown time-delay functions are overcome using the function separation technique, the Lyapunov-Krasovskii functionals, and the desirable property of hyperbolic tangent functions. RBF neural networks are employed to approximate desired virtual controls and desired practical control. Under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced significantly, and semiglobal uniform ultimate boundedness of all of the signals in the closed-loop system is guaranteed. Simulation studies are given to demonstrate the effectiveness of the proposed design scheme.

  15. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.

    Science.gov (United States)

    Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C

    2014-03-01

    In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.

  16. Non-linear control logics for vibrations suppression: a comparison between model-based and non-model-based techniques

    Science.gov (United States)

    Ripamonti, Francesco; Orsini, Lorenzo; Resta, Ferruccio

    2015-04-01

    Non-linear behavior is present in many mechanical system operating conditions. In these cases, a common engineering practice is to linearize the equation of motion around a particular operating point, and to design a linear controller. The main disadvantage is that the stability properties and validity of the controller are local. In order to improve the controller performance, non-linear control techniques represent a very attractive solution for many smart structures. The aim of this paper is to compare non-linear model-based and non-model-based control techniques. In particular the model-based sliding-mode-control (SMC) technique is considered because of its easy implementation and the strong robustness of the controller even under heavy model uncertainties. Among the non-model-based control techniques, the fuzzy control (FC), allowing designing the controller according to if-then rules, has been considered. It defines the controller without a system reference model, offering many advantages such as an intrinsic robustness. These techniques have been tested on the pendulum nonlinear system.

  17. Robust adaptive fuzzy tracking control for a class of strict-feedback nonlinear systems based on backstepping technique

    Institute of Scientific and Technical Information of China (English)

    Min WANG; Xiuying WANG; Bing CHEN; Shaocheng TONG

    2007-01-01

    In this paper, the robust adaptive fuzzy tracking control problem is discussed for a class of perturbed strict-feedback nonlinear systems. The fuzzy logic systems in Mamdani type are used to approximate unknown nonlinear functions. A design scheme of the robust adaptive fuzzy controller is proposed by use of the backstepping technique. The proposed controller guarantees semi-global uniform ultimate boundedness of all the signals in the derived closed-loop system and achieves the good tracking performance. The possible controller singularity problem which may occur in some existing adaptive control schemes with feedback linearization techniques can be avoided. In addition, the number of the on-line adaptive parameters is not more than the order of the designed system. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed control scheme.

  18. Feedback control linear, nonlinear and robust techniques and design with industrial applications

    CERN Document Server

    Dodds, Stephen J

    2015-01-01

    This book develops the understanding and skills needed to be able to tackle original control problems. The general approach to a given control problem is to try the simplest tentative solution first and, when this is insufficient, to explain why and use a more sophisticated alternative to remedy the deficiency and achieve satisfactory performance. This pattern of working gives readers a full understanding of different controllers and teaches them to make an informed choice between traditional controllers and more advanced modern alternatives in meeting the needs of a particular plant. Attention is focused on the time domain, covering model-based linear and nonlinear forms of control together with robust control based on sliding modes and the use of state observers such as disturbance estimation. Feedback Control is self-contained, paying much attention to explanations of underlying concepts, with detailed mathematical derivations being employed where necessary. Ample use is made of diagrams to aid these conce...

  19. DSP-based Robust Nonlinear Speed Control of PM Synchronous Motor Using Adaptive and Sliding Mode Control Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Baik, I.C.; Kim, K.H.; Cho, K.Y.; Youn, M.J. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-04-01

    A DSP-based robust nonlinear speed control of a permanent magnet synchronous motor (PMSM) which is robust to unknown parameter variations and speed measurement error is presented. The model reference adaptive system (MRAS) based adaptation mechanisms for the estimation of slowly varying parameters are derived using the Lyapunov stability theory. For the disturbances or quickly varying parameters, a quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme. (author). 19 refs., 14 figs., 6 tabs.

  20. Controllability in nonlinear systems

    Science.gov (United States)

    Hirschorn, R. M.

    1975-01-01

    An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.

  1. Comparison and performance analysis of closed loop controlled nonlinear system connected PWM inverter based on hybrid technique

    Directory of Open Access Journals (Sweden)

    V.M. Deshmukh

    2015-05-01

    Full Text Available This paper proposed closed loop control of nonlinear system connected inverter based on the optimal neural controller (ONC. The novelty of the proposed method rests on the hybrid technique which is the combined performance of both, particle swarm optimization (PSO technique and Radial basis function neural network (RBFNN. It effectively optimizes the feasible solutions by updating the generations, by taking lesser time with greater reliability. In the proposed method, the PSO generates the dataset according to different loading conditions. The RBFNN is trained by using the target control signals along with the corresponding input load voltage error and change in error. Depending on the load variations, the RBFNN predicts the exact control signals of the inverter during the testing time. Since experimentation and comparison of such inverter models on hardware being relatively expensive, the proposed method is implemented in the MATLAB/Simulink platform and the performance has been validated through the comparison analysis with the conventional techniques. The comparison results have proved the superiority of the proposed method.

  2. Adaptive and Nonlinear Control

    Science.gov (United States)

    1992-02-29

    in [22], we also applied the concept of zero dynamics to the problem of exact linearization of a nonlinear control system by dynamic feedback. Exact ...nonlinear systems, although it was well-known that the conditions for exact linearization are very stringent and consequently do not apply to a broad...29th IEEE Conference n Decision and Control, Invited Paper delivered by Dr. Gilliam. Exact Linearization of Zero Dynamics, 29th IEEE Conference on

  3. Nonlinear Control of Heartbeat Models

    Directory of Open Access Journals (Sweden)

    Witt Thanom

    2011-02-01

    Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.

  4. Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique.

    Science.gov (United States)

    Song, Zhankui; Li, Hongxing; Sun, Kaibiao

    2014-01-01

    In this paper, a fast terminal sliding mode control (FTSMC) scheme with double closed loops is proposed for the spacecraft attitude control. The FTSMC laws are included both in an inner control loop and an outer control loop. Firstly, a fast terminal sliding surface (FTSS) is constructed, which can drive the inner loop tracking-error and the outer loop tracking-error on the FTSS to converge to zero in finite time. Secondly, FTSMC strategy is designed by using Lyaponov's method for ensuring the occurrence of the sliding motion in finite time, which can hold the character of fast transient response and improve the tracking accuracy. It is proved that FTSMC can guarantee the convergence of tracking-error in both approaching and sliding mode surface. Finally, simulation results demonstrate the effectiveness of the proposed control scheme.

  5. Nonlinear Control Systems

    Science.gov (United States)

    2007-03-01

    IEEE Transactions on Automatic Control , AC- 48, pp. 1712-1723, (2003). [14] C.I. Byrnes, A. Isidori...Nonlinear internal models for output regulation,” IEEE Transactions on Automatic Control , AC-49, pp. 2244-2247, (2004). [15] C.I. Byrnes, F. Celani, A...approach,” IEEE Transactions on Automatic Control , 48 (Dec. 2003), 2172–2190. 2. C. I. Byrnes, “Differential Forms and Dynamical Systems,” to appear

  6. Controllability of nonlinear systems.

    Science.gov (United States)

    Sussmann, H. J.; Jurdjevic, V.

    1972-01-01

    Discussion of the controllability of nonlinear systems described by the equation dx/dt - F(x,u). Concepts formulated by Chow (1939) and Lobry (1970) are applied to establish criteria for F and its derivatives to obtain qualitative information on sets which can be obtained from x which denotes a variable of state in an arbitrary, real, analytical manifold. It is shown that controllability implies strong accessibility for a large class of manifolds including Euclidean spaces.-

  7. Nonlinear-dynamical arrhythmia control in humans.

    Science.gov (United States)

    Christini, D J; Stein, K M; Markowitz, S M; Mittal, S; Slotwiner, D J; Scheiner, M A; Iwai, S; Lerman, B B

    2001-05-08

    Nonlinear-dynamical control techniques, also known as chaos control, have been used with great success to control a wide range of physical systems. Such techniques have been used to control the behavior of in vitro excitable biological tissue, suggesting their potential for clinical utility. However, the feasibility of using such techniques to control physiological processes has not been demonstrated in humans. Here we show that nonlinear-dynamical control can modulate human cardiac electrophysiological dynamics by rapidly stabilizing an unstable target rhythm. Specifically, in 52/54 control attempts in five patients, we successfully terminated pacing-induced period-2 atrioventricular-nodal conduction alternans by stabilizing the underlying unstable steady-state conduction. This proof-of-concept demonstration shows that nonlinear-dynamical control techniques are clinically feasible and provides a foundation for developing such techniques for more complex forms of clinical arrhythmia.

  8. Modal Identification Using OMA Techniques: Nonlinearity Effect

    Directory of Open Access Journals (Sweden)

    E. Zhang

    2015-01-01

    Full Text Available This paper is focused on an assessment of the state of the art of operational modal analysis (OMA methodologies in estimating modal parameters from output responses of nonlinear structures. By means of the Volterra series, the nonlinear structure excited by random excitation is modeled as best linear approximation plus a term representing nonlinear distortions. As the nonlinear distortions are of stochastic nature and thus indistinguishable from the measurement noise, a protocol based on the use of the random phase multisine is proposed to reveal the accuracy and robustness of the linear OMA technique in the presence of the system nonlinearity. Several frequency- and time-domain based OMA techniques are examined for the modal identification of simulated and real nonlinear mechanical systems. Theoretical analyses are also provided to understand how the system nonlinearity degrades the performance of the OMA algorithms.

  9. Noninteracting control of nonlinear systems based on relaxed control

    NARCIS (Netherlands)

    Jayawardhana, B.

    2010-01-01

    In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to

  10. Advanced nonlinear engine speed control systems

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert

    1994-01-01

    : accurately tracking of a desired engine speed in the presence of model uncertainties and severe load disturbances. This is accomplished by using advanced nonlinear control techniques such as input/output-linearization and sliding mode control. These techniques take advantage of a nonlinear model......Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one...

  11. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    Energy Technology Data Exchange (ETDEWEB)

    Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  12. Nonlinear torque and air-to-fuel ratio control of spark ignition engines using neuro-sliding mode techniques.

    Science.gov (United States)

    Huang, Ting; Javaherian, Hossein; Liu, Derong

    2011-06-01

    This paper presents a new approach for the calibration and control of spark ignition engines using a combination of neural networks and sliding mode control technique. Two parallel neural networks are utilized to realize a neuro-sliding mode control (NSLMC) for self-learning control of automotive engines. The equivalent control and the corrective control terms are the outputs of the neural networks. Instead of using error backpropagation algorithm, the network weights of equivalent control are updated using the Levenberg-Marquardt algorithm. Moreover, a new approach is utilized to update the gain of corrective control. Both modifications of the NSLMC are aimed at improving the transient performance and speed of convergence. Using the data from a test vehicle with a V8 engine, we built neural network models for the engine torque (TRQ) and the air-to-fuel ratio (AFR) dynamics and developed NSLMC controllers to achieve tracking control. The goal of TRQ control and AFR control is to track the commanded values under various operating conditions. From simulation studies, the feasibility and efficiency of the approach are illustrated. For both control problems, excellent tracking performance has been achieved.

  13. Analysis, control and optimal operations in hybrid power systems advanced techniques and applications for linear and nonlinear systems

    CERN Document Server

    Bizon, Nicu; Mahdavi Tabatabaei, Naser

    2014-01-01

    This book explains and analyzes the dynamic performance of linear and nonlinear systems, particularly for Power Systems including Hybrid Power Sources. Offers a detailed description of system stability using state space energy conservation principle, and more.

  14. Biped control via nonlinear dynamics

    Science.gov (United States)

    Hmam, Hatem M.

    1992-09-01

    This thesis applies nonlinear techniques to actuate a biped system and provides a rigorous analysis of the resulting motion. From observation of human locomotion, it is believed that the 'complex' dynamics developed by the aggregation of multiple muscle systems can be generated by a reduced order system which captures the rough details of the locomotion process. The investigation is begun with a simple model of a biped system. Since the locomotion process is cyclic in nature, we focus on applying the topologically similar concept of limit cycles to the simple model in order to generate the desired gaits. A rigorous analysis of the biped dynamics shows that the controlled motion is robust against dynamical disturbances. In addition, different biped gaits are generated by merely adjusting some of the limit cycle parameters. More dynamical and actuation complexities are then added for realism. First, two small foot components are added and the overall biped motion under the same control actuation is analyzed. Due to the physical constraints on the feet, it is shown using singular perturbation theory how the gross behavior of the biped dynamics are dictated by those of the reduced model. Next, an analysis of the biped dynamics under added nonlinear elasticities in the legs is carried out. Moreover, using a slightly modified model, forward motion is generated in the sagittal plane. At each step, a small amount of energy is consistently derived from the vertical plane and converted into a forward motion. Stability of the forward dynamics is guaranteed by appropriate foot placement. Finally, the robustness of the controlled biped dynamics is rigorously analyzed and illustrated through extensive computer simulations.

  15. Nonlinear feedback control of highly manoeuvrable aircraft

    Science.gov (United States)

    Garrard, William L.; Enns, Dale F.; Snell, S. A.

    1992-01-01

    This paper describes the application of nonlinear quadratic regulator (NLQR) theory to the design of control laws for a typical high-performance aircraft. The NLQR controller design is performed using truncated solutions of the Hamilton-Jacobi-Bellman equation of optimal control theory. The performance of the NLQR controller is compared with the performance of a conventional P + I gain scheduled controller designed by applying standard frequency response techniques to the equations of motion of the aircraft linearized at various angles of attack. Both techniques result in control laws which are very similar in structure to one another and which yield similar performance. The results of applying both control laws to a high-g vertical turn are illustrated by nonlinear simulation.

  16. Nonlinear Control Systems

    Science.gov (United States)

    2009-11-18

    analytic semigroup T(t) ~ eAl is exponentially stable (Notice that it is also a contraction semigroup ). 3. Be 3(U, Z) and P e £(W, 2) are bounded. 4. Ce...quite often in practice, .4 is self-adjoint. We also note that, since we assume (—A) is sectorial, we work with the semigroup exp(.4f) rather than...Uniform Output Regulation of Nonlinear Sys- tems: A convergent Dynamics Approach, Birkhauser, Boston, 2006. 23 135] A. Pazy, Semigroups of Linear

  17. Nonlinear Control of Magnetic Bearings

    Institute of Scientific and Technical Information of China (English)

    Khac Duc Do; Dang Hoe Nguyen; Thanh Binh Nguyen

    2010-01-01

    In this paper, recent results controling nonlinear systems with output tracking error constraints are applied to the design of new tracking controllers for magnetic bearings. The proposed controllers can force the rotor to track a bounded and sufficiently smooth refer-ence trajectory asymptotically and guarantee non-contactedness be-tween the rotor and the stator of the magnetic bearings. Simulation results are included to illustrate the effectiveness of the proposed con-trollers.

  18. Nonlinear dynamic macromodeling techniques for audio systems

    Science.gov (United States)

    Ogrodzki, Jan; Bieńkowski, Piotr

    2015-09-01

    This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.

  19. Nonlinear Phase Control and Anomalous Phase Matching in Plasmonic Metasurfaces

    CERN Document Server

    Almeida, Euclides; Prior, Yehiam

    2015-01-01

    Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute a particularly attractive set of materials. By means of modern nanolithographic fabrication techniques, flat, ultrathin optical elements may be constructed. However, in spite of their strong optical nonlinearities, plasmonic metasurfaces have so far been investigated mostly in the linear regime. Here we introduce full nonlinear phase control over plasmonic elements in metasurfaces. We show that for nonlinear interactions in a phase-gradient nonlinear metasurface a new anomalous nonlinear phase matching condition prevails, which is the nonlinear analog of the generalized Snell law demonstrated for linear metasurfaces. This phase matching condition is very different from the other known phase matching schemes. The subwavelength phase control of optical nonlinearities provides a foundation for the design of flat nonlinear optical elements based on metasurfaces. Our demonstrated flat nonlinear elements (i.e. lenses) act...

  20. Application of Optimization Techniques to a Nonlinear Problem of Communication Network Design With Nonlinear Constraints

    Science.gov (United States)

    2002-06-01

    IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 1033 Application of Optimization Techniques to a Nonlinear Problem of Communication... IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 We consider J source-destination pairs, each of which is assigned a fixed multihop...blocking probabilities are at the maximum permitted value. IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE

  1. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  2. Global satisfactory control for nonlinear integrator processes with long delay

    Institute of Scientific and Technical Information of China (English)

    Yiqun YANG; Guobo XIANG

    2007-01-01

    Integrator processes with long delay are difficult to control. Nonlinear characteristics of actuators make the control problem more challenging. A technique is proposed in this paper for global satisfactory control (GSC) of such processes with relay-type nonlinearity. An oscillatory control signal is injected into the nonlinear process; the amplitude and frequency of the oscillatory signal are designed to linearise the nonlinear process in the sense of harmonic analysis; and a state feedback controller is configured to implement GSC over the linearised process. An illustrative example is given to demonstrate the effectiveness of the proposed method.

  3. Spatial 3-D nonlinear calibration technique for PSD

    Science.gov (United States)

    Guo, Lifeng; Zhang, Guoxiong; Zheng, Qi; Gong, Qiang; Liu, Wenyao

    2006-11-01

    A 3-D nonlinear calibration technique for Position sensitive detector (PSD) in long distance laser collimating measurement is proposed. An automatic calibration system was developed to measure the nonlinearity of a 2-D PSD in 3-D space. It is mainly composed of a high accurate 2-D motorized translational stage, a high precision distance measuring device, and a computer-based data acquisition and control system. With the aid of the calibration system, the nonlinear characteristic of 2-D PSD is checked in a long collimating distance up to 78 meters. The calibration experiment was carried out for a series of distance, e.g. every 15 meters. The results showed that the nonlinearity of 2-D PSD is different evidently when the PSD element is at different distance from the laser head. One calculating method is defined to evaluate the nonlinear errors. The spatial 3-D mapping relationship between the actual displacements of the incident light and the coordinates of 2-D PSD outputs is established using a multilayer feedforward neural network.

  4. Robust Control of a Class of Uncertain Fractional-Order Chaotic Systems with Input Nonlinearity via an Adaptive Sliding Mode Technique

    Directory of Open Access Journals (Sweden)

    Xiaomin Tian

    2014-02-01

    Full Text Available In this paper, the problem of stabilizing a class of fractional-order chaotic systems with sector and dead-zone nonlinear inputs is investigated. The effects of model uncertainties and external disturbances are fully taken into account. Moreover, the bounds of both model uncertainties and external disturbances are assumed to be unknown in advance. To deal with the system’s nonlinear items and unknown bounded uncertainties, an adaptive fractional-order sliding mode (AFSM controller is designed. Then, Lyapunov’s stability theory is used to prove the stability of the designed control scheme. Finally, two simulation examples are given to verify the effectiveness and robustness of the proposed control approach.

  5. Implementation of Nonlinear Control Laws for an Optical Delay Line

    Science.gov (United States)

    Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard

    2000-01-01

    This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.

  6. Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...... for solving the nonconvex optimization problem is proposed in this paper. A simulation using the nonlinear model-based controller to control the temperature levels of an intelligent office building (PowerFlexHouse) is addressed. Its performance is compared with a linear model-based controller. The nonlinear...

  7. A nonlinear plate control without linearization

    Directory of Open Access Journals (Sweden)

    Yildirim Kenan

    2017-03-01

    Full Text Available In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.

  8. Stability analysis of embedded nonlinear predictor neural generalized predictive controller

    Directory of Open Access Journals (Sweden)

    Hesham F. Abdel Ghaffar

    2014-03-01

    Full Text Available Nonlinear Predictor-Neural Generalized Predictive Controller (NGPC is one of the most advanced control techniques that are used with severe nonlinear processes. In this paper, a hybrid solution from NGPC and Internal Model Principle (IMP is implemented to stabilize nonlinear, non-minimum phase, variable dead time processes under high disturbance values over wide range of operation. Also, the superiority of NGPC over linear predictive controllers, like GPC, is proved for severe nonlinear processes over wide range of operation. The necessary conditions required to stabilize NGPC is derived using Lyapunov stability analysis for nonlinear processes. The NGPC stability conditions and improvement in disturbance suppression are verified by both simulation using Duffing’s nonlinear equation and real-time using continuous stirred tank reactor. Up to our knowledge, the paper offers the first hardware embedded Neural GPC which has been utilized to verify NGPC–IMP improvement in realtime.

  9. Analysis and design of robust decentralized controllers for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, D.A.

    1993-07-01

    Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.

  10. Nonlinear Markov Control Processes and Games

    Science.gov (United States)

    2012-11-15

    further research we indicated possible extensions to state spaces with nontrivial geometry, to the controlled nonlinear quantum dynamic semigroups and...space nonlinear Markov semigroup is a one-parameter semigroup of (possibly nonlinear) transformations of the unit simplex in n-dimensional Euclidean...certain mixing property of nonlinear transition probabilities. In case of the semigroup parametrized by continuous time one defines its generator as the

  11. Boundary controllability for a nonlinear beam equation

    Directory of Open Access Journals (Sweden)

    Xiao-Min Cao

    2015-09-01

    Full Text Available This article concerns a nonlinear system modeling the bending vibrations of a nonlinear beam of length $L>0$. First, we derive the existence of long time solutions near an equilibrium. Then we prove that the nonlinear beam is locally exact controllable around the equilibrium in $H^4(0,L$ and with control functions in $H^2(0,T$. The approach we used are open mapping theorem, local controllability established by linearization, and the induction.

  12. Recursive design of nonlinear H∞ excitation controller

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This work is concerned with the problem of L2 gain disturbance attenuation for nonlinear systems and nonlinear robust control for power systems. In terms of the recurrence design approach proposed, the nonnegative solution of dissipative inequality and the storage function of nonlinear H∞ control for a generator excitation system are acquired. From this storage function, the excitation controller is constructed. Moreover, simulation results manifest the effectiveness of this design method.

  13. Nonlinear feedback control of Timoshenko beam

    Institute of Scientific and Technical Information of China (English)

    冯德兴; 张维弢

    1995-01-01

    This note is concerned with nonlinear boundary feedback control of a Timoshenko beam. Under some nonlinear boundary feedback control, first the nonlinear semigroup theory is used to show the existence and uniqueness of solution for the corresponding closed loop system. Then by using the Lyapunov method, it is proved that the vibration of the beam under the proposed control action decays in a negative power of time t as t→.

  14. NONLINEAR PREDICTIVE CONTROL FOR TERRAIN FOLLOWING

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A nonlinear continuous predictive control method was used for design of cruise missile terrain-following controller. A performance index which combined the tracking error and rate of tracking error is presented. Then an optimal nonlinear feedback control law is generated to minimize the performance index. The tracking performance and robustness of controller are discussed. The advantage of the control law is demonstrated by successfully designing cruise missile terrain following controllers. The results show that the controller exhibits robustness and excellent tracking performance.

  15. Neuromechanical tuning of nonlinear postural control dynamics

    Science.gov (United States)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  16. Nonlinear continua fundaments for the computational techniques

    CERN Document Server

    Dvorkin, Eduardo N

    2005-01-01

    Offers a presentation of Continuum Mechanics, oriented towards numerical applications in the nonlinear analysis of solids, structures and fluid mechanics. This book develops general curvilinear coordinator kinematics of the continuum deformation using general curvilinear coordinates.

  17. Nonlinear acoustic techniques for landmine detection.

    Science.gov (United States)

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.

  18. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  19. Nonlinear control for dual quaternion systems

    Science.gov (United States)

    Price, William D.

    The motion of rigid bodies includes three degrees of freedom (DOF) for rotation, generally referred to as roll, pitch and yaw, and 3 DOF for translation, generally described as motion along the x, y and z axis, for a total of 6 DOF. Many complex mechanical systems exhibit this type of motion, with constraints, such as complex humanoid robotic systems, multiple ground vehicles, unmanned aerial vehicles (UAVs), multiple spacecraft vehicles, and even quantum mechanical systems. These motions historically have been analyzed independently, with separate control algorithms being developed for rotation and translation. The goal of this research is to study the full 6 DOF of rigid body motion together, developing control algorithms that will affect both rotation and translation simultaneously. This will prove especially beneficial in complex systems in the aerospace and robotics area where translational motion and rotational motion are highly coupled, such as when spacecraft have body fixed thrusters. A novel mathematical system known as dual quaternions provide an efficient method for mathematically modeling rigid body transformations, expressing both rotation and translation. Dual quaternions can be viewed as a representation of the special Euclidean group SE(3). An eight dimensional representation of screw theory (combining dual numbers with traditional quaternions), dual quaternions allow for the development of control techniques for 6 DOF motion simultaneously. In this work variable structure nonlinear control methods are developed for dual quaternion systems. These techniques include use of sliding mode control. In particular, sliding mode methods are developed for use in dual quaternion systems with unknown control direction. This method, referred to as self-reconfigurable control, is based on the creation of multiple equilibrium surfaces for the system in the extended state space. Also in this work, the control problem for a class of driftless nonlinear systems is

  20. Indirect techniques for adaptive input-output linearization of non-linear systems

    Science.gov (United States)

    Teel, Andrew; Kadiyala, Raja; Kokotovic, Peter; Sastry, Shankar

    1991-01-01

    A technique of indirect adaptive control based on certainty equivalence for input output linearization of nonlinear systems is proven convergent. It does not suffer from the overparameterization drawbacks of the direct adaptive control techniques on the same plant. This paper also contains a semiindirect adaptive controller which has several attractive features of both the direct and indirect schemes.

  1. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  2. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  3. Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor.

    Science.gov (United States)

    Prakash, J; Srinivasan, K

    2009-07-01

    In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.

  4. Discrete-time nonlinear sliding mode controller

    African Journals Online (AJOL)

    user

    : Discrete-time delay system, Sliding mode control, nonlinear sliding ... The concept of the sliding mode control in recent years has drawn the ...... His area of interest is dc-dc converters, electrical vehicle and distributed generation application.

  5. Nonlinear dynamics and control of SDI structural components. Final report, September 1987-February 1990

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, A.H.; Burns, J.A.; Cliff, E.M.

    1990-05-18

    The report summarizes results of experimental and theoretical investigations into the nonlinear response and control of structural elements. Methods for the analysis and design of control procedures applicable to certain nonlinear distributed parameter systems were investigated. Analytical and computational techniques were developed for evaluating the nonlinear effects on control designs. Bench-type experiments were conducted for validating some of the theoretical results.

  6. Primary exploration of nonlinear information fusion control theory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By introducing information fusion techniques into a control field, a new theory of information fusion control (IFC) is proposed. Based on the theory of information fusion estimation, optimal control of nonlinear discrete control system is investigated. All information on control strategy, including ideal control strategy, expected object trajectory and dynamics of system, are regarded as measuring information of control strategy. Therefore, the problem of optimal control is transferred into the one of information fusion estimation. Firstly, the nonlinear information fusion estimation theorems are described. Secondly, an algorithm of nonlinear IFC theory is detailedly deduced. Finally, the simulation results of manipulator shift control are given, which show the feasibility and effectiveness of the presented algorithm.

  7. Temperature Control System Using Fuzzy Logic Technique

    Directory of Open Access Journals (Sweden)

    Isizoh A N

    2012-06-01

    Full Text Available Fuzzy logic technique is an innovative technology used in designing solutions for multi-parameter and non-linear control models for the definition of a control strategy. As a result, it delivers solutions faster than the conventional control design techniques. This paper thus presents a fuzzy logic based-temperature control system, which consists of a microcontroller, temperature sensor, and operational amplifier, Analogue to Digital Converter, display interface circuit and output interface circuit. It contains a design approach that uses fuzzy logic technique to achieve a controlled temperature output function.

  8. Observability and Controllability for Smooth Nonlinear Systems

    OpenAIRE

    Schaft, A.J. van der

    1982-01-01

    The definition of a smooth nonlinear system as proposed recently, is elaborated as a natural generalization of the more common definitions of a smooth nonlinear input-output system. Minimality for such systems can be defined in a very direct geometric way, and already implies a usual notion of observability, namely, local weak observability. As an application of this theory, it is shown that observable nonlinear Hamiltonian systems are necessarily controllable, and vice versa.

  9. Demonstration of leapfrogging for implementing nonlinear model predictive control on a heat exchanger.

    Science.gov (United States)

    Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell

    2016-01-01

    This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques.

  10. Aircraft nonlinear optimal control using fuzzy gain scheduling

    Science.gov (United States)

    Nusyirwan, I. F.; Kung, Z. Y.

    2016-10-01

    Fuzzy gain scheduling is a common solution for nonlinear flight control. The highly nonlinear region of flight dynamics is determined throughout the examination of eigenvalues and the irregular pattern of root locus plots that show the nonlinear characteristic. By using the optimal control for command tracking, the pitch rate stability augmented system is constructed and the longitudinal flight control system is established. The outputs of optimal control for 21 linear systems are fed into the fuzzy gain scheduler. This research explores the capability in using both optimal control and fuzzy gain scheduling to improve the efficiency in finding the optimal control gains and to achieve Level 1 flying qualities. The numerical simulation work is carried out to determine the effectiveness and performance of the entire flight control system. The simulation results show that the fuzzy gain scheduling technique is able to perform in real time to find near optimal control law in various flying conditions.

  11. Digital set point control of nonlinear stochastic systems

    Science.gov (United States)

    Moose, R. L.; Vanlandingham, H. F.; Zwicke, P. E.

    1978-01-01

    A technique for digital control of nonlinear stochastic plants is presented. The development achieves a practical digital algorithm with which the closed-loop system behaves in a classical Type I manner even with gross nonlinearities in the plant structure and low signal-to-noise power ratios. The design procedure is explained in detail and illustrated by an example whose simulated responses testify to the practicality of the approach.

  12. Chaos in nonlinear oscillations controlling and synchronization

    CERN Document Server

    Lakshamanan, M

    1996-01-01

    This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.

  13. FORCED OSCILLATIONS IN NONLINEAR FEEDBACK CONTROL SYSTEM

    Science.gov (United States)

    Since a nonlinear feedback control system may possess more than one type of forced oscillations, it is highly desirable to investigate the type of...method for finding the existence of forced oscillations and response curve characteristics of a nonlinear feedback control system by means of finding the...second order feedback control system are investigated; the fundamental frequency forced oscillation for a higher order system and the jump resonance

  14. Nonlinear plasmonic imaging techniques and their biological applications

    Science.gov (United States)

    Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei

    2017-01-01

    Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  15. Nonlinear plasmonic imaging techniques and their biological applications

    Directory of Open Access Journals (Sweden)

    Deka Gitanjal

    2016-07-01

    Full Text Available Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics, as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  16. Nonlinear estimation and control of automotive drivetrains

    CERN Document Server

    Chen, Hong

    2014-01-01

    Nonlinear Estimation and Control of Automotive Drivetrains discusses the control problems involved in automotive drivetrains, particularly in hydraulic Automatic Transmission (AT), Dual Clutch Transmission (DCT) and Automated Manual Transmission (AMT). Challenging estimation and control problems, such as driveline torque estimation and gear shift control, are addressed by applying the latest nonlinear control theories, including constructive nonlinear control (Backstepping, Input-to-State Stable) and Model Predictive Control (MPC). The estimation and control performance is improved while the calibration effort is reduced significantly. The book presents many detailed examples of design processes and thus enables the readers to understand how to successfully combine purely theoretical methodologies with actual applications in vehicles. The book is intended for researchers, PhD students, control engineers and automotive engineers. Hong Chen is a professor at the State Key Laboratory of Automotive Simulation and...

  17. Parameter Estimation Technique of Nonlinear Prosthetic Hand System

    Directory of Open Access Journals (Sweden)

    M.H.Jali

    2016-10-01

    Full Text Available This paper illustrated the parameter estimation technique of motorized prosthetic hand system. Prosthetic hands have become importance device to help amputee to gain a normal functional hand. By integrating various types of actuators such as DC motor, hydraulic and pneumatic as well as mechanical part, a highly useful and functional prosthetic device can be produced. One of the first steps to develop a prosthetic device is to design a control system. Mathematical modeling is derived to ease the control design process later on. This paper explained the parameter estimation technique of a nonlinear dynamic modeling of the system using Lagrangian equation. The model of the system is derived by considering the energies of the finger when it is actuated by the DC motor. The parameter estimation technique is implemented using Simulink Design Optimization toolbox in MATLAB. All the parameters are optimized until it achieves a satisfactory output response. The results show that the output response of the system with parameter estimation value produces a better response compare to the default value

  18. Boundary Controllability of Nonlinear Fractional Integrodifferential Systems

    Directory of Open Access Journals (Sweden)

    Ahmed HamdyM

    2010-01-01

    Full Text Available Sufficient conditions for boundary controllability of nonlinear fractional integrodifferential systems in Banach space are established. The results are obtained by using fixed point theorems. We also give an application for integropartial differential equations of fractional order.

  19. Active vibration control of nonlinear benchmark buildings

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xing-de; CHEN Dao-zheng

    2007-01-01

    The present nonlinear model reduction methods unfit the nonlinear benchmark buildings as their vibration equations belong to a non-affine system. Meanwhile,the controllers designed directly by the nonlinear control strategy have a high order, and they are difficult to be applied actually. Therefore, a new active vibration control way which fits the nonlinear buildings is proposed. The idea of the proposed way is based on the model identification and structural model linearization, and exerting the control force to the built model according to the force action principle. This proposed way has a better practicability as the built model can be reduced by the balance reduction method based on the empirical Grammian matrix. A three-story benchmark structure is presented and the simulation results illustrate that the proposed method is viable for the civil engineering structures.

  20. Nonlinear system compound inverse control method

    Institute of Scientific and Technical Information of China (English)

    Yan ZHANG; Zengqiang CHEN; Peng YANG; Zhuzhi YUAN

    2005-01-01

    A compound neural network is utilized to identify the dynamic nonlinear system.This network is composed of two parts: one is a linear neural network,and the other is a recurrent neural network.Based on the inverse theory a compound inverse control method is proposed.The controller has also two parts:a linear controller and a nonlinear neural network controller.The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated based on the Lyapunov theory.Simulation studies have shown that this scheme is simple and has good control accuracy and robustness.

  1. Control methods for localization of nonlinear waves

    Science.gov (United States)

    Porubov, Alexey; Andrievsky, Boris

    2017-03-01

    A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.

  2. Nonlinear predictive control in the LHC accelerator

    CERN Document Server

    Blanco, E; Cristea, S; Casas, J

    2009-01-01

    This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.

  3. Nonlinear temporal pulse cleaning techniques and application

    Institute of Scientific and Technical Information of China (English)

    Yi; Xu; Jianzhou; Wang; Yansui; Huang; Yanyan; Li; Xiaomin; Lu; Yuxin; Leng

    2013-01-01

    Two different pulse cleaning techniques for ultra-high contrast laser systems are comparably analysed in this work.The first pulse cleaning technique is based on noncollinear femtosecond optical-parametric amplification(NOPA)and second-harmonic generation(SHG)processes.The other is based on cross-polarized wave(XPW)generation.With a double chirped pulse amplifier(double-CPA)scheme,although temporal contrast enhancement in a high-intensity femtosecond Ti:sapphire chirped pulse amplification(CPA)laser system can be achieved based on both of the techniques,the two different pulse cleaning techniques still have their own advantages and are suitable for different contrast enhancement requirements of different laser systems.

  4. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David

    2015-01-01

    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  5. Nonlinear model predictive control theory and algorithms

    CERN Document Server

    Grüne, Lars

    2017-01-01

    This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...

  6. Discrete time learning control in nonlinear systems

    Science.gov (United States)

    Longman, Richard W.; Chang, Chi-Kuang; Phan, Minh

    1992-01-01

    In this paper digital learning control methods are developed primarily for use in single-input, single-output nonlinear dynamic systems. Conditions for convergence of the basic form of learning control based on integral control concepts are given, and shown to be satisfied by a large class of nonlinear problems. It is shown that it is not the gross nonlinearities of the differential equations that matter in the convergence, but rather the much smaller nonlinearities that can manifest themselves during the short time interval of one sample time. New algorithms are developed that eliminate restrictions on the size of the learning gain, and on knowledge of the appropriate sign of the learning gain, for convergence to zero error in tracking a feasible desired output trajectory. It is shown that one of the new algorithms can give guaranteed convergence in the presence of actuator saturation constraints, and indicate when the requested trajectory is beyond the actuator capabilities.

  7. Neural networks for function approximation in nonlinear control

    Science.gov (United States)

    Linse, Dennis J.; Stengel, Robert F.

    1990-01-01

    Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.

  8. Imaging of contact acoustic nonlinearity using synthetic aperture technique.

    Science.gov (United States)

    Yun, Dongseok; Kim, Jongbeom; Jhang, Kyung-Young

    2013-09-01

    The angle beam incidence and reflection technique for the evaluation of contact acoustic nonlinearity (CAN) at solid-solid contact interfaces (e.g., closed cracks) has recently been developed to overcome the disadvantage of accessing both the inner and outer surfaces of structures for attaching pulsing and receiving transducers in the through-transmission of normal incidence technique. This paper proposes a technique for B-mode imaging of CAN based on the above reflection technique, which uses the synthetic aperture focusing technique (SAFT) and short-time Fourier transform (STFT) to visualize the distribution of the CAN-induced second harmonic magnitude as well as the nonlinear parameter. In order to verify the usefulness of the proposed method, a solid-solid contact interface was tested and the change of the contact acoustic nonlinearity according to the increasing contact pressure was visualized in images of the second harmonic magnitude and the relative nonlinear parameter. The experimental results showed good agreement with the previously developed theory identifying the dependence of the scattered second harmonics on the contact pressure. This technique can be used for the detection and improvement of the sizing accuracy of closed cracks that are difficult to detect using the conventional linear ultrasonic technique.

  9. Exact Controllability for a Class of Nonlinear Evolution Control Systems

    Institute of Scientific and Technical Information of China (English)

    L¨u Yue; Li Yong

    2015-01-01

    In this paper, we study the exact controllability of the nonlinear control systems. The controllability results by using the monotone operator theory are es-tablished. No compactness assumptions are imposed in the main results.

  10. Polarization shaping for control of nonlinear propagation

    CERN Document Server

    Bouchard, Frédéric; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W

    2016-01-01

    We study the nonlinear optical propagation of two different classes of space-varying polarized light beams -- radially symmetric vector beams and Poincar\\'e beams with lemon and star topologies -- in a rubidium vapour cell. Unlike Laguerre-Gauss and other types of beams that experience modulational instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.

  11. Polarization Shaping for Control of Nonlinear Propagation.

    Science.gov (United States)

    Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W

    2016-12-02

    We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.

  12. Multiple nonlinear parameter estimation using PI feedback control

    NARCIS (Netherlands)

    Lith, van P. F.; Witteveen, H.; Betlem, B.H.L.; Roffel, B.

    2001-01-01

    Nonlinear parameters often need to be estimated during the building of chemical process models. To accomplish this, many techniques are available. This paper discusses an alternative view to parameter estimation, where the concept of PI feedback control is used to estimate model parameters. The appr

  13. On diagrammatic technique for nonlinear dynamical systems

    CERN Document Server

    Semenyakin, Mykola

    2014-01-01

    In this paper we investigate phase flows over $\\mathbb{C}^n$ and $\\mathbb{R}^n$ generated by vector fields $V=\\sum P^{i}\\partial_i$ where $P^{i}$ are finite degree polynomials. With the convenient diagrammatic technique we get expressions for evolution operators $ev\\{V|t\\}: x(0)\\mapsto x(t)$ through the series in powers of $x(0)$ and $t$, represented as sum over all trees of particular type. Estimates are made for the radius of convergence in some particular cases. The phase flows behavior in the neighborhood of vector field fixed points are examined. Resonance cases are considered separately.

  14. On diagrammatic technique for nonlinear dynamical systems

    OpenAIRE

    Semenyakin, Mykola

    2014-01-01

    In this paper we investigate phase flows over $\\mathbb{C}^n$ and $\\mathbb{R}^n$ generated by vector fields $V=\\sum P^{i}\\partial_i$ where $P^{i}$ are finite degree polynomials. With the convenient diagrammatic technique we get expressions for evolution operators $ev\\{V|t\\}: x(0)\\mapsto x(t)$ through the series in powers of $x(0)$ and $t$, represented as sum over all trees of particular type. Estimates are made for the radius of convergence in some particular cases. The phase flows behavior in...

  15. Nonlinear Robust Control for Spacecraft Attitude

    Directory of Open Access Journals (Sweden)

    Wang Lina

    2013-07-01

    Full Text Available Nonlinear robust control of the spacecraft attitude with the existence of external disturbances is considered. A robust attitude controller is designed based on the passivity approach the quaternion representation, which introduces the suppression vector of external disturbance into the control law and does not need angular velocity measurement. Stability conditions of the robust attitude controller are given. And the numerical simulation results show the effectiveness of the attitude controller.

  16. Controllability of nonlinear degenerate parabolic cascade systems

    Directory of Open Access Journals (Sweden)

    Mamadou Birba

    2016-08-01

    Full Text Available This article studies of null controllability property of nonlinear coupled one dimensional degenerate parabolic equations. These equations form a cascade system, that is, the solution of the first equation acts as a control in the second equation and the control function acts only directly on the first equation. We prove positive null controllability results when the control and a coupling set have nonempty intersection.

  17. Controller Design of High Order Nonholonomic System with Nonlinear Drifts

    Institute of Scientific and Technical Information of China (English)

    Xiu-Yun Zheng; Yu-Qiang Wu

    2009-01-01

    A controller design is proposed for a class of high order nonholonomic systems with nonlinear drifts. The purpose is to ensure a solution for the closed-loop system regulated to zero. Adding a power integrator backstepping technique and the switching control strategy are employed to design the controller. The state scaling is applied to the recursive manipulation. The simulation example demonstrates the effectiveness and robust features of the proposed method.

  18. Dynamic structural correlation via nonlinear programming techniques

    Science.gov (United States)

    Ting, T.; Ojalvo, I. U.

    1988-01-01

    A solution to the correlation between structural dynamic test results and finite element analyses of the same components is presented in this paper. Basically, the method can be categorized as a Levenberg-Marquardt type Gauss-Newton method which requires only the differences between FE modal analyses and test results and their first derivatives with respect to preassigned design variables. With proper variable normalization and equation scaling, the method has been made numerically better-conditioned and the inclusion of the Levenberg-Marquardt technique overcomes any remaining difficulty encountered in inverting singular or near-singular matrices. An important feature is that each iteration requires only one function evaluation along with the associated design sensitivity analysis and so the procedure is computationally efficient.

  19. Gradient realization of nonlinear control systems

    NARCIS (Netherlands)

    Cortes monforte, J.; Cortés, J.; Crouch, P.E.; Astolfi, A.; van der Schaft, Arjan; Gordillo, F.

    2003-01-01

    We investigate necessary and su?cient conditions under which a nonlinear afine control system with outputs can be written as a gradient control system corresponding to some pseudo-Riemannian metric defined on the state space. The results rely on a suitable notion of compatibility of the system with

  20. Controller reconfiguration for non-linear systems

    NARCIS (Netherlands)

    Kanev, S.; Verhaegen, M.

    2000-01-01

    This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m

  1. A polynomial approach to nonlinear system controllability

    NARCIS (Netherlands)

    Zheng, YF; Willems, JC; Zhang, CH

    2001-01-01

    This note uses a polynomial approach to present a necessary and sufficient condition for local controllability of single-input-single-output (SISO) nonlinear systems. The condition is presented in terms of common factors of a noncommutative polynomial expression. This result exposes controllability

  2. Nonlinear control for a class of hydraulic servo system

    Institute of Scientific and Technical Information of China (English)

    余宏; 冯正进; 王旭永

    2004-01-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.

  3. Nonlinear control for a class of hydraulic servo system

    Institute of Scientific and Technical Information of China (English)

    余宏; 冯正进; 王旭永

    2004-01-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening,friction,etc. Aside from the nonlinear nature of hydraulic dynamics,hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues,a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well,and all signals in the closed-loop system remain bounded. Moreover,a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers,this paper's robust controller based on backstepping recursive design method is easier to design,and is more suitable for implementation.

  4. Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2010-10-15

    Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters

  5. Transmitting information by controlling nonlinear oscillators

    Science.gov (United States)

    Tôrres, Leonardo A. B.; Aguirre, Luis A.

    2004-09-01

    The transmission of information relying on the perturbation of nonlinear oscillators vector fields can be approached in a unified manner. This can be accomplished by making use of the Information Transmission Via Control principle, which is stated and proved in the present work. In short, this principle establishes that any controller used to identically synchronize pairs of nonlinear oscillators, including chaotic ones as a special case, can be actually employed as demodulator/decoder in the process of information recovery. Other theoretical results related to the practical realization of the ITVC principle are presented and experimental data is provided showing a good agreement with the proposed theory.

  6. SUBOPTIMAL NONLINEAR CONTROL OF PACKAGING MACHINERY DRIVE

    OpenAIRE

    Kudin, V. F.; Toropov, A.V.

    2013-01-01

    This paper deals with the procedure of synthesis of a nonlinear position controller for the «feeder» of packaging mechanism. The mathematical model of «feeder» drive with regard to the restriction on the control output of external PLC. Linearization of nonlinear characteristic by the «secants» method is implemented and selected functional quality that defines the minimal time of transients is selected. Quality functional in the form of a quadratic functional with a variable weighting factor i...

  7. Control of nonlinear flexible space structures

    Science.gov (United States)

    Shi, Jianjun

    With the advances made in computer technology and efficiency of numerical algorithms over last decade, the MPC strategies have become quite popular among control community. However, application of MPC or GPC to flexible space structure control has not been explored adequately in the literature. The work presented in this thesis primarily focuses on application of GPC to control of nonlinear flexible space structures. This thesis is particularly devoted to the development of various approximate dynamic models, design and assessment of candidate controllers, and extensive numerical simulations for a realistic multibody flexible spacecraft, namely, Jupiter Icy Moons Orbiter (JIMO)---a Prometheus class of spacecraft proposed by NASA for deep space exploratory missions. A stable GPC algorithm is developed for Multi-Input-Multi-Output (MIMO) systems. An end-point weighting (penalty) is used in the GPC cost function to guarantee the nominal stability of the closed-loop system. A method is given to compute the desired end-point state from the desired output trajectory. The methodologies based on Fake Algebraic Riccati Equation (FARE) and constrained nonlinear optimization, are developed for synthesis of state weighting matrix. This makes this formulation more practical. A stable reconfigurable GPC architecture is presented and its effectiveness is demonstrated on both aircraft as well as spacecraft model. A representative in-orbit maneuver is used for assessing the performance of various control strategies using various design models. Different approximate dynamic models used for analysis include linear single body flexible structure, nonlinear single body flexible structure, and nonlinear multibody flexible structure. The control laws evaluated include traditional GPC, feedback linearization-based GPC (FLGPC), reconfigurable GPC, and nonlinear dissipative control. These various control schemes are evaluated for robust stability and robust performance in the presence of

  8. Cluster-based control of nonlinear dynamics

    CERN Document Server

    Kaiser, Eurika; Spohn, Andreas; Cattafesta, Louis N; Morzynski, Marek

    2016-01-01

    The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. Here, a cluster-based control framework is proposed to determine optimal control laws with respect to a cost function for unsteady flows. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a Markov model. The Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is de...

  9. Nonlinear control of the Salnikov model reaction

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    This paper explores different nonlinear control schemes, applied to a simple model reaction. The model is the Salnikov model, consisting of two ordinary differential equations. The control strategies investigated are I/O-linearisation, Exact linearisation, exact linearisation combined with LQR...... and Control Lyapunov Functions (CLF's). The results show that based on the lowest possible cost function and shortest settling time, the exact linearisation performs marginally better than the other methods....

  10. Adaptive Control of Nonlinear Flexible Systems

    Science.gov (United States)

    1994-05-26

    Proceedings of the American Control Conference , pp. 547-551, San Francisco, June 1993. 3 2 1.3 Personnel Dr. Robert Kosut and Dr. M. Giintekin Kabuli worked on...Control of Nonlinear Systems Under Matching Conditions," Proceedings of the American Control Conference , pp. 549-555, San Diego, CA, May 1990. [10] I...Poolla, P. Khargonekar, A. Tikku, J. Krause and K. Nagpal, "A time-domain ap- proach to model validation," Proceedings

  11. Unmodeled Dynamics in Robust Nonlinear Control

    Science.gov (United States)

    2000-08-01

    IEEE Transactions on Automatic Control , vol. 44, pp. 1975–1981, 1999. [6] D. Bestle...systems,” IEEE Transactions on Automatic Control , vol. 41, pp. 876–880, 1996. 95 [9] C.I. Byrnes and A. Isidori, “New results and examples in...Output-feedback stochastic nonlinear stabilization,” IEEE Transactions on Automatic Control , vol. 44, pp. 328–333, 1999. [14] J. Eker and K.J.

  12. Optimization-Based Robust Nonlinear Control

    Science.gov (United States)

    2006-08-01

    IEEE Transactions on Automatic Control , vol. 51, no. 4, pp. 661...systems with two time scales", A.R. Teel, L. Moreau and D. Nesic, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1526-1544, September 2003...Turner, L. Zaccarian, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1509- 1525, September 2003. 5. "Nonlinear Scheduled anti-windup

  13. APPLICATION OF NONLINEAR WATERMARK TECHNIQUES IN DIGITAL LIBRARIES

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A digital watermark is an invisible mark embedded in a digital image that may be used for a number of different purposes including copyright protection. Due to the urgent need for protecting the copyright of digital products in digital library, digital watermarking has been proposed as a solution to this problem. This letter describes potential situations that nonlinear theory can be used to enhance robustness and security of the watermark in digital library. Some nonlinear watermark techniques have been enumerated. Experimental results show that the proposed scheme is superior to the general watermark scheme both in security and robustness in digital library.

  14. Control of nonlinear systems with applications

    Science.gov (United States)

    Pan, Haizhou

    In practical applications of feedback control, most actuators exhibit physical constraints that limit the control amplitude and/or rate. The principal challenge of control design problem for linear systems with input constraints is to ensure closed-loop stability and yield a good transient performance in the presence of amplitude and/or rate-limited control. Since actuator saturation manifests itself as a nonlinear behavior in an otherwise linear system, the development of a nonconservative saturation control design methodology poses a significant challenge. In particular, it is well known that unstable linear systems can be stabilized using smooth controllers only in a local sense in the presence of actuator saturation. Thus, it is of paramount importance to develop a saturation control design methodology that yields a nonconservative estimate of the stability domain for closed-loop system. The first part of this research focuses on a numerically tractable formulation of the control synthesis problem for linear systems with actuator amplitude and rate saturation nonlinearity using a linear-matrix-inequality (LMI) framework. Following the recent trend in the actuator saturation control research, we (i) utilize absolute stability theory to ensure closed-loop stability and (ii) minimize a quadratic cost to account for the closed-loop system performance degradation. In order to reduce the inherent conservatism of the absolute stability based saturation control framework, we exploit stability multipliers (of, e.g., weighted circle criterion, Popov criterion, etc.). For the control of linear systems with simultaneous actuator amplitude and rate saturation nonlinearities, by virtue of a rate limiter that is predicated on designing the control amplitude and then computing the control rates, we directly account for rate constraints. Both continuous- and discrete-time systems with actuator saturation are considered. A number of design examples are presented to demonstrate

  15. Parameterized design of nonlinear feedback controllers for servo positioning systems

    Institute of Scientific and Technical Information of China (English)

    Cheng Guoyang; Jin Wenguang

    2006-01-01

    To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.

  16. Nonlinear signal-based control with an error feedback action for nonlinear substructuring control

    Science.gov (United States)

    Enokida, Ryuta; Kajiwara, Koichi

    2017-01-01

    A nonlinear signal-based control (NSBC) method utilises the 'nonlinear signal' that is obtained from the outputs of a controlled system and its linear model under the same input signal. Although this method has been examined in numerical simulations of nonlinear systems, its application in physical experiments has not been studied. In this paper, we study an application of NSBC in physical experiments and incorporate an error feedback action into the method to minimise the error and enhance the feasibility in practice. Focusing on NSBC in substructure testing methods, we propose nonlinear substructuring control (NLSC), that is a more general form of linear substructuring control (LSC) developed for dynamical substructured systems. In this study, we experimentally and numerically verified the proposed NLSC via substructuring tests on a rubber bearing used in base-isolated structures. In the examinations, NLSC succeeded in gaining accurate results despite significant nonlinear hysteresis and unknown parameters in the substructures. The nonlinear signal feedback action in NLSC was found to be notably effective in minimising the error caused by nonlinearity or unknown properties in the controlled system. In addition, the error feedback action in NLSC was found to be essential for maintaining stability. A stability analysis based on the Nyquist criterion, which is used particularly for linear systems, was also found to be efficient for predicting the instability conditions of substructuring tests with NLSC and useful for the error feedback controller design.

  17. Nonlinear ultrasonic measurements based on cross-correlation filtering techniques

    Science.gov (United States)

    Yee, Andrew; Stewart, Dylan; Bunget, Gheorghe; Kramer, Patrick; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2017-02-01

    Cyclic loading of mechanical components promotes the formation of dislocation dipoles in metals, which can serve as precursors to crack nucleation and ultimately lead to failure. In the laboratory setting, an acoustic nonlinearity parameter has been assessed as an effective indicator for characterizing the progression of fatigue damage precursors. However, the need to use monochromatic waves of medium-to-high acoustic energy has presented a constraint, making it problematic for use in field applications. This paper presents a potential approach for field measurement of acoustic nonlinearity by using general purpose ultrasonic pulser-receivers. Nonlinear ultrasonic measurements during fatigue testing were analyzed by the using contact and immersion pulse-through method. A novel cross-correlation filtering technique was developed to extract the fundamental and higher harmonic waves from the signals. As in the case of the classic harmonic generation, the nonlinearity parameters of the second and third harmonics indicate a strong correlation with fatigue cycles. Consideration was given to potential nonlinearities in the measurement system, and tests have confirmed that measured second harmonic signals exhibit a linear dependence on the input signal strength, further affirming the conclusion that this parameter relates to damage precursor formation from cyclic loading.

  18. Nonlinear System Control Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Jaroslava Žilková

    2006-10-01

    Full Text Available The paper is focused especially on presenting possibilities of applying off-linetrained artificial neural networks at creating the system inverse models that are used atdesigning control algorithm for non-linear dynamic system. The ability of cascadefeedforward neural networks to model arbitrary non-linear functions and their inverses isexploited. This paper presents a quasi-inverse neural model, which works as a speedcontroller of an induction motor. The neural speed controller consists of two cascadefeedforward neural networks subsystems. The first subsystem provides desired statorcurrent components for control algorithm and the second subsystem providescorresponding voltage components for PWM converter. The availability of the proposedcontroller is verified through the MATLAB simulation. The effectiveness of the controller isdemonstrated for different operating conditions of the drive system.

  19. Nonlinear Control of Delay and PDE Systems

    Science.gov (United States)

    Bekiaris-Liberis, Nikolaos

    In this dissertation we develop systematic procedures for the control and analysis of general nonlinear systems with delays and of nonlinear PDE systems. We design predictor feedback laws (i.e., feedback laws that use the future, rather than the current state of the system) for the compensation of delays (i.e., after the control signal reaches the system for the first time, the system behaves as there were no delay at all) that can be time-varying or state-dependent, on the input and on the state of nonlinear systems. We also provide designs of predic- tor feedback laws for linear systems with constant distributed delays and known or unknown plant parameters, and for linear systems with simultaneous known or unknown constant delays on the input and the state. Moreover, we intro- duce infinite-dimensional backstepping transformations for each particular prob-lem, which enables us to construct Lyapunov-Krasovskii functionals. With the available Lyapunov-Krasovskii functionals we study stability, as well as, robust- ness of our control laws to plant uncertainties. We deal with coupled PDE-ODE systems. We consider nonlinear systems with wave actuator dynamics, for which we design a predictor inspired feedback law. We study stability of the closed-loop system either by constructing Lyapunov functionals, or using arguments of explicit solutions. We also consider linear sys- tems with distributed actuator and sensor dynamics governed by diffusion or wave PDEs, for which we design stabilizing feedback laws. We study stability of the closed-loop systems using Lyapunov functionals that we construct with the intro- duction of infinite-dimensional transformations of forwarding type. Finally, we develop a control design methodology for coupled nonlinear first-order hyperbolic PDEs through an application to automotive catalysts.

  20. Extending the perturbation technique to the modal representation of nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, S. [Department of Electrical Engineering, Science and Research Branch, Islamic Azad University (IAU), 1477893855-14515775, Tehran (Iran); Pariz, N.; Ghazi, R. [Department of Electrical Engineering, ferdowsi University, 9177948944-1111, Mashhad (Iran)

    2009-08-15

    After a brief review of perturbation technique, using this method an approach is developed to represent and study the behavior of nonlinear dynamic power systems. For the first time in this field, perturbation technique is applied to obtain an approximate closed form expression for the zero input response of stressed power systems. In order to show the superiority of the proposed method, it has been applied to a typical nonlinear system which is a single machine infinite bus (SMIB) power system with unified power flow controller (UPFC). The accuracy and competency of this method in comparison with Modal Series method will also be validated. (author)

  1. Controller Design of Complex System Based on Nonlinear Strength

    Directory of Open Access Journals (Sweden)

    Rongjun Mu

    2015-01-01

    Full Text Available This paper presents a new idea of controller design for complex systems. The nonlinearity index method was first developed for error propagation of nonlinear system. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of the system model. The algorithm of nonlinearity index according to engineering application is first proposed in this paper. Applying this method on nonlinear systems is an effective way to measure the nonlinear strength of dynamics model over the full flight envelope. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of system model. According to the different nonlinear strength of dynamical model, the control system is designed. The simulation time of dynamical complex system is selected by the maximum value of dynamic nonlinearity indices. Take a missile as example; dynamical system and control characteristic of missile are simulated. The simulation results show that the method is correct and appropriate.

  2. Coordinated formation control of multiple nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Wei KANG; Ning XI; Jindong TAN; Yiwen ZHAO; Yuechao WANG

    2005-01-01

    A general method of controller design is developed for the purpose of formation keeping and reconfiguration of nonlinear systems with multiple subsystems,such as the formation of multiple aircraft,ground vehicles,or robot arms.The model consists of multiple nonlinear systems.Controllers are designed to keep the subsystems in a required formation and to coordinate the subsystems in the presence of environmental changes.A step-by-step algorithm of controller design is developed.Sufficient conditions for the stability of formation tracking are proved.Simulations and experiments are conducted to demonstrate some useful coordination strategies such as movement with a leader,simultaneous movement,series connection of formations,and human-machine interaction.

  3. Application of nonlinear dynamic techniques to high pressure plasma jets

    Science.gov (United States)

    Ghorui, S.; Das, A. K.

    2010-02-01

    Arcs and arc plasmas have been known and used for welding, cutting, chemical synthesis and multitude of other industrial applications for more than hundred years. Though a copious source of heat, light and active species, plasma arc is inherently unstable, turbulent and difficult to control. During recent years, primarily driven by the need of new and energy efficient materials processing, various research groups around the world have been studying new and innovative ways of looking at the issues related to arc dynamics, arc stabilization, species non equilibrium, flow and heat transfer in a stabilized arc plasma device. In this context, experimental determination of nature of arc instabilities using tools of non-linear dynamics, theoretical model formulation, prediction of instability behavior under given operating conditions and possible control methods for the observed instabilities in arcs are reviewed. Space selective probing of the zones inside arc plasma devices without disturbing the system is probably the best way to identify the originating zone of instabilities inside such devices. Existence of extremely high temperature and inaccessibility to direct experimentations due to mechanical obstructions make this task extremely difficult. Probing instabilities in otherwise inaccessible inner regions of the torches, using binary gas mixture as plasma gas is a novel technique that primarily rests on a process known as demixing in arcs. Once a binary gas mixture enters the constricted plasma column, the demixing process sets in causing spatial variations for each of the constituent gases depending on the diffusion coefficients and the gradient of the existing temperature field. By varying concentrations of the constituent gases in the feeding line, it is possible to obtain spatial variations of the plasma composition in a desired manner, enabling spatial probing of the associated zones. Detailed compositional description of different zones inside the torch may be

  4. Backstepping tracking control for nonlinear time-delay systems

    Institute of Scientific and Technical Information of China (English)

    Chen Weisheng; Li Junmin

    2006-01-01

    Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cannot be observed, the time-delay state observer is designed to estimate the system states. Domination method is used to deal with nonlinear time-delay function under the assumption that the nonlinear time-delay functions of systems satisfy Lipschitz condition. The global asymptotical tracking of the references signal is achieved and the bound of all signals of the resultant closed-loop system is also guaranteed. By constructing a Lyapunov-Krasoviskii functional, the stability of the closed-loop system is proved. The feasibility of the proposed approach is illustrated by a simulation example.

  5. Tracking controller for robot manipulators via composite nonlinear feedback law

    Institute of Scientific and Technical Information of China (English)

    Peng Wendong; Su Jianbo

    2009-01-01

    A composite nonlinear feedback tracking controller for motion control of robot manipulators is de-scribed. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.

  6. Real time simulation of nonlinear generalized predictive control for wind energy conversion system with nonlinear observer.

    Science.gov (United States)

    Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand

    2014-01-01

    In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller.

  7. Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems

    OpenAIRE

    Junhai Luo; Heng Liu

    2014-01-01

    This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of th...

  8. Integral input-to-state stability of nonlinear control systems with delays

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Wenli [Department of Economics Mathematics, South Western University of Finance and Economics, Chengdu 610074 (China)]. E-mail: zhuwl@swufe.edu.cn; Yi Zhang [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)]. E-mail: zhangyi@uestc.edu.cn

    2007-10-15

    Integral input-to-state stability is an interesting concept that has been recently introduced to nonlinear control systems. This paper generalizes this concept to nonlinear control systems with delays. These delays can be bounded, unbounded, and even infinite. Theorems for integral input-to-state stability are derived by developing the method of Razumikhin technique in the theory of functional differential equations.

  9. Internal Decoupling in Nonlinear Process Control

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1988-07-01

    Full Text Available A simple method has been investigated for the total or partial removal of the effect of non-linear process phenomena in multi-variable feedback control systems. The method is based upon computing the control variables which will drive the process at desired rates. It is shown that the effect of model errors in the linearization of the process can be partly removed through the use of large feedback gains. In practice there will be limits on how large gains can he used. The sensitivity to parameter errors is less pronounced and the transient behaviour is superior to that of ordinary PI controllers.

  10. Nonlinear Control of Hydraulic Manipulator for Decommissioning Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung-Ho; Lee, Sung-Uk; Kim, Chang-Hoi; Choi, Byung-Seon; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Robot technique is need to decommission nuclear reactor because of high radiation environment. Especially, Manipulator systems are useful for dismantling complex structure in a nuclear facility. In addition, Hydraulic system is applied to handle heavy duty object. Since hydraulic system can demonstrate high power. The manipulator with hydraulic power is already developed. To solve this problem, various nonlinear control method includes acceleration control. But, it is difficult because acceleration value is highly noisy. In this paper, the nonlinear control algorithm without acceleration control is studied. To verify, the hydraulic manipulator model had been developed. Furthermore, the numerical simulation is carried out. The nonlinear control without acceleration parameter method is developed for hydraulic manipulator. To verify control algorithm, the manipulator is modeled by MBD and the hydraulic servo system is also derived. In addition, the numerical simulation is also carried out. Especially, PID gain is determined though TDC algorithm. In the result of numerical simulation, tracking performance is good without acceleration control. Thus, the PID though TDC with SMC is good for hydraulic manipulator control.

  11. Discrete state space modeling and control of nonlinear unknown systems.

    Science.gov (United States)

    Savran, Aydogan

    2013-11-01

    A novel procedure for integrating neural networks (NNs) with conventional techniques is proposed to design industrial modeling and control systems for nonlinear unknown systems. In the proposed approach, a new recurrent NN with a special architecture is constructed to obtain discrete-time state-space representations of nonlinear dynamical systems. It is referred as the discrete state-space neural network (DSSNN). In the DSSNN, the outputs of the hidden layer neurons of the DSSNN represent the system's (pseudo) state. The inputs are fed to output neurons and the delayed outputs of the hidden layer neurons are fed to their inputs via adjustable weights. The discrete state space model of the actual system is directly obtained by training the DSSNN with the input-output data. A training procedure based on the back-propagation through time (BPTT) algorithm is developed. The Levenberg-Marquardt (LM) method with a trust region approach is used to update the DSSNN weights. Linear state space models enable to use well developed conventional analysis and design techniques. Thus, building a linear model of a system has primary importance in industrial applications. Thus, a suitable linearization procedure is proposed to derive the linear state space model from the nonlinear DSSNN representation. The controllability, observability and stability properties are examined. The state feedback controllers are designed with both the linear quadratic regulator (LQR) and the pole placement techniques. The regulator and servo control problems are both addressed. A full order observer is also designed to estimate the state variables. The performance of the proposed procedure is demonstrated by applying for both single-input single-output (SISO) and multiple-input multiple-output (MIMO) nonlinear control problems. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Constrained tracking control for nonlinear systems.

    Science.gov (United States)

    Khani, Fatemeh; Haeri, Mohammad

    2017-09-01

    This paper proposes a tracking control strategy for nonlinear systems without needing a prior knowledge of the reference trajectory. The proposed method consists of a set of local controllers with appropriate overlaps in their stability regions and an on-line switching strategy which implements these controllers and uses some augmented intermediate controllers to ensure steering the system states to the desired set points without needing to redesign the controller for each value of set point changes. The proposed approach provides smooth transient responses despite switching among the local controllers. It should be mentioned that the stability regions of the proposed controllers could be estimated off-line for a range of set-point changes. The efficiencies of the proposed algorithm are illustrated via two example simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Integral Terminal Sliding Mode Control for a Class of Nonaffine Nonlinear Systems with Uncertainty

    OpenAIRE

    Qiang Zhang; Hongliang Yu; Xiaohong Wang

    2013-01-01

    This paper is concerned with an integral terminal sliding mode tracking control for a class of uncertain nonaffine nonlinear systems. Firstly, the nonaffine nonlinear systems is approximated to facilitate the desired control design via a novel dynamic modeling technique. Next, for the unmeasured disturbance of nonlinear systems, integral terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to ...

  14. Immersion and Invariance Based Nonlinear Adaptive Flight Control

    NARCIS (Netherlands)

    Sonneveldt, L.; Van Oort, E.R.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    In this paper a theoretical framework for nonlinear adaptive flight control is developed and applied to a simplified, over-actuated nonlinear fighter aircraft model. The framework is based on a modular adaptive backstepping scheme with a new type of nonlinear estimator. The nonlinear estimator is

  15. Immersion and Invariance Based Nonlinear Adaptive Flight Control

    NARCIS (Netherlands)

    Sonneveldt, L.; Van Oort, E.R.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    In this paper a theoretical framework for nonlinear adaptive flight control is developed and applied to a simplified, over-actuated nonlinear fighter aircraft model. The framework is based on a modular adaptive backstepping scheme with a new type of nonlinear estimator. The nonlinear estimator is co

  16. Nonlinear and Variable Structure Excitation Controller for Power System Stability

    Institute of Scientific and Technical Information of China (English)

    Wang Ben; Ronnie Belmans

    2006-01-01

    A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.

  17. Advanced Wavefront Control Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    Programs at LLNL that involve large laser systems--ranging from the National Ignition Facility to new tactical laser weapons--depend on the maintenance of laser beam quality through precise control of the optical wavefront. This can be accomplished using adaptive optics, which compensate for time-varying aberrations that are often caused by heating in a high-power laser system. Over the past two decades, LLNL has developed a broad capability in adaptive optics technology for both laser beam control and high-resolution imaging. This adaptive optics capability has been based on thin deformable glass mirrors with individual ceramic actuators bonded to the back. In the case of high-power lasers, these adaptive optics systems have successfully improved beam quality. However, as we continue to extend our applications requirements, the existing technology base for wavefront control cannot satisfy them. To address this issue, this project studied improved modeling tools to increase our detailed understanding of the performance of these systems, and evaluated novel approaches to low-order wavefront control that offer the possibility of reduced cost and complexity. We also investigated improved beam control technology for high-resolution wavefront control. Many high-power laser systems suffer from high-spatial-frequency aberrations that require control of hundreds or thousands of phase points to provide adequate correction. However, the cost and size of current deformable mirrors can become prohibitive for applications requiring more than a few tens of phase control points. New phase control technologies are becoming available which offer control of many phase points with small low-cost devices. The goal of this project was to expand our wavefront control capabilities with improved modeling tools, new devices that reduce system cost and complexity, and extensions to high spatial and temporal frequencies using new adaptive optics technologies. In FY 99, the second year of

  18. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal.

    Science.gov (United States)

    Hosseinifard, Behshad; Moradi, Mohammad Hassan; Rostami, Reza

    2013-03-01

    Diagnosing depression in the early curable stages is very important and may even save the life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating depression patients and normal controls. Forty-five unmedicated depressed patients and 45 normal subjects were participated in this study. Power of four EEG bands and four nonlinear features including detrended fluctuation analysis (DFA), higuchi fractal, correlation dimension and lyapunov exponent were extracted from EEG signal. For discriminating the two groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation dimension and LR classifier among other nonlinear features. For further improvement, all nonlinear features are combined and applied to classifiers. A classification accuracy of 90% is achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm is employed to select the most important features. The proposed technique is compared and contrasted with the other reported methods and it is demonstrated that by combining nonlinear features, the performance is enhanced. This study shows that nonlinear analysis of EEG can be a useful method for discriminating depressed patients and normal subjects. It is suggested that this analysis may be a complementary tool to help psychiatrists for diagnosing depressed patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Arc-length technique for nonlinear finite element analysis

    Institute of Scientific and Technical Information of China (English)

    MEMON Bashir-Ahmed; SU Xiao-zu(苏小卒)

    2004-01-01

    Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, Received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.

  20. Control of self-organizing nonlinear systems

    CERN Document Server

    Klapp, Sabine; Hövel, Philipp

    2016-01-01

    The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.

  1. Synchronization between two different chaotic systems with nonlinear feedback control

    Institute of Scientific and Technical Information of China (English)

    Lü Ling; Guo Zhi-An; Zhang Chao

    2007-01-01

    This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback controller is designed on the basis of stability theory, and the area of feedback gain is determined. The artificial simulation results show that this control method is commendably effective and feasible.

  2. Fault detection and fault-tolerant control for nonlinear systems

    CERN Document Server

    Li, Linlin

    2016-01-01

    Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...

  3. Experimental evaluation of optimal Vehicle Dynamic Control based on the State Dependent Riccati Equation technique

    NARCIS (Netherlands)

    Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.

    2013-01-01

    Development and experimentally evaluation of an optimal Vehicle Dynamic Control (VDC) strategy based on the State Dependent Riccati Equation (SDRE) control technique is presented. The proposed nonlinear controller is based on a nonlinear vehicle model with nonlinear tire characteristics. A novel ext

  4. Experimental evaluation of optimal Vehicle Dynamic Control based on the State Dependent Riccati Equation technique

    NARCIS (Netherlands)

    Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.

    2013-01-01

    Development and experimentally evaluation of an optimal Vehicle Dynamic Control (VDC) strategy based on the State Dependent Riccati Equation (SDRE) control technique is presented. The proposed nonlinear controller is based on a nonlinear vehicle model with nonlinear tire characteristics. A novel

  5. NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    R. G. SILVA

    1999-03-01

    Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.

  6. Nonlinear Control of a Reusable Rocket Engine for Life Extension

    Science.gov (United States)

    Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok

    1998-01-01

    This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.

  7. Central suboptimal H ∞ control design for nonlinear polynomial systems

    Science.gov (United States)

    Basin, Michael V.; Shi, Peng; Calderon-Alvarez, Dario

    2011-05-01

    This article presents the central finite-dimensional H ∞ regulator for nonlinear polynomial systems, which is suboptimal for a given threshold γ with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, the article reduces the original H ∞ control problem to the corresponding optimal H 2 control problem, using this technique proposed in Doyle et al. [Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A. (1989), 'State-space Solutions to Standard H 2 and H ∞ Control Problems', IEEE Transactions on Automatic Control, 34, 831-847]. This article yields the central suboptimal H ∞ regulator for nonlinear polynomial systems in a closed finite-dimensional form, based on the optimal H 2 regulator obtained in Basin and Calderon-Alvarez [Basin, M.V., and Calderon-Alvarez, D. (2008b), 'Optimal Controller for Uncertain Stochastic Polynomial Systems', Journal of the Franklin Institute, 345, 293-302]. Numerical simulations are conducted to verify performance of the designed central suboptimal regulator for nonlinear polynomial systems against the central suboptimal H ∞ regulator available for the corresponding linearised system.

  8. Adaptive control of nonlinear underwater robotic systems

    Directory of Open Access Journals (Sweden)

    Thor I. Fossen

    1991-04-01

    Full Text Available The problem of controlling underwater mobile robots in 6 degrees of freedom (DOF is addressed. Uncertainties in the input matrix due to partly known nonlinear thruster characteristics are modeled as multiplicative input uncertainty. This paper proposes two methods to compensate for the model uncertainties: (1 an adaptive passivity-based control scheme and (2 deriving a hybrid (adaptive and sliding controller. The hybrid controller consists of a switching term which compensates for uncertainties in the input matrix and an on-line parameter estimation algorithm. Global stability is ensured by applying Barbalat's Lyapunovlike lemma. The hybrid controller is simulated for the horizontal motion of the Norwegian Experimental Remotely Operated Vehicle (NEROV.

  9. Nonlinear burn condition control in tokamaks using isotopic fuel tailoring

    Science.gov (United States)

    Boyer, Mark D.; Schuster, Eugenio

    2015-08-01

    One of the fundamental problems in tokamak fusion reactors is how to control the plasma density and temperature in order to regulate the amount of fusion power produced by the device. Control of these parameters will be critical to the success of burning plasma experiments like ITER. The most previous burn condition control efforts use either non-model based control designs or techniques based on models linearized around particular operating points. Such strategies limit the potential operational space and must be carefully retuned or redesigned to accommodate changes in operating points or plasma parameters. In this work, a nonlinear dynamic model of the spatial averages of energy and ion species densities is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The nonlinear model-based control strategy guarantees a much larger operational space than previous linear controllers. Because it is not designed around a particular operating point, the controller can be used to move from one burn condition to another. The proposed scheme first attempts to use regulation of the auxiliary heating power to reject temperature perturbations, then, if necessary, uses isotopic fuel tailoring as a way to reduce fusion heating during positive temperature perturbations. A global model of hydrogen recycling is incorporated into the model used for design and simulation, and the proposed control scheme is tested for a range of recycling model parameters. As we find the possibility of changing the isotopic mix can be limited for certain unfavorable recycling conditions, we also consider impurity injection as a back-up method for controlling the system. A simple supervisory control strategy is proposed to switch between the primary and back-up control schemes based on stability and performance criteria. A zero-dimensional simulation study is used to study the performance of the control scheme for several scenarios and model parameters. Finally, a one

  10. Conditions on Structural Controllability of Nonlinear Systems: Polynomial Method

    Directory of Open Access Journals (Sweden)

    Qiang Ma

    2011-03-01

    Full Text Available In this paper the structural controllability of a class of a nonlinear system is investigated. The transfer function (matrix of nonlinear systems is obtained by putting the nonlinear system model on non-commutative ring. Conditions of structural controllability of nonlinear systems are presented according to the criterion of linear systems structural controllability in frequency domain. An example is used to testify the presented conditions finally.

  11. μ Synthesis Method for Robust Control of Uncertain Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    μ synthesis method for robust control of uncertain nonlinear systems is propored, which is based on feedback linearization. First, nonlinear systems are linearized as controllable linear systems by I/O linearization,such that uncertain nonlinear systems are expressed as the linear fractional transformations (LFTs) on the generalized linearized plants and uncertainty.Then,linear robust controllers are obtained for the LFTs usingμsynthesis method based on H∞ optimization.Finally,the nonlinear robust controllers are constructed by combining the linear robust controllers and the nonlinear feedback.An example is given to illustrate the design.

  12. fuzzy control technique fuzzy control technique applied to modified ...

    African Journals Online (AJOL)

    eobe

    ABSTRACT. In this paper, fuzzy control technique is applied to the modified mathematical model for malaria control presented ... be devised for rule-based systems that deals with continuous ... necessary to use fuzzy logic as it is not easy to follow a particular .... point movement and control is realized and designed. (e.g. α1 ...

  13. Statistical Techniques for Project Control

    CERN Document Server

    Badiru, Adedeji B

    2012-01-01

    A project can be simple or complex. In each case, proven project management processes must be followed. In all cases of project management implementation, control must be exercised in order to assure that project objectives are achieved. Statistical Techniques for Project Control seamlessly integrates qualitative and quantitative tools and techniques for project control. It fills the void that exists in the application of statistical techniques to project control. The book begins by defining the fundamentals of project management then explores how to temper quantitative analysis with qualitati

  14. Impulse position control algorithms for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Sesekin, A. N., E-mail: sesekin@list.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation); Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation); Nepp, A. N., E-mail: anepp@urfu.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation)

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  15. Impulse position control algorithms for nonlinear systems

    Science.gov (United States)

    Sesekin, A. N.; Nepp, A. N.

    2015-11-01

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  16. Extending satisficing control strategy to slowly varying nonlinear systems

    Science.gov (United States)

    Binazadeh, T.; Shafiei, M. H.

    2013-04-01

    Based on the satisficing control strategy, a novel approach to design a stabilizing control law for nonlinear time varying systems with slowly varying parameters (slowly varying systems) is presented. The satisficing control strategy has been originally introduced for time-invariant systems; however, this technique does not have any stability proof for time varying systems. In this paper, first, a parametric version of the satisficing control strategy is developed. Then, by considering the time as a frozen parameter, the parametric satisficing control strategy is utilized. Finally, a theorem is presented which suggested a stabilizing satisficing control law for the slowly varying control systems. Moreover, in this theorem, the maximum admissible rate of change of the system dynamics is evaluated. The efficiency of the proposed approach is demonstrated by a computer simulation.

  17. On the exact controllability of a nonlinear stochastic heat equation

    Directory of Open Access Journals (Sweden)

    Bui An Ton

    2006-01-01

    Full Text Available The exact controllability of a nonlinear stochastic heat equation with null Dirichlet boundary conditions, nonzero initial and target values, and an interior control is established.

  18. Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2014-01-01

    Full Text Available This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.

  19. Sensitivity and chaos control for the forced nonlinear oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Bashkirtseva, Irina [Department of Mathematics, Ural State University, 620083 Ekaterinburg (Russian Federation); Ryashko, Lev [Department of Mathematics, Ural State University, 620083 Ekaterinburg (Russian Federation)] e-mail: lev.ryashko@usu.ru

    2005-12-01

    This paper is devoted to study the problem of controlling chaos for forced nonlinear dynamic systems. We suggest a new control technique based on sensitivity analysis. With the help of approximation of nonequilibrium quasipotential, stochastic sensitivity function (SSF) is constructed. This function is used as basic tool of a quantitative description for a system response on the random external disturbances. The possibilities of SSF to predict chaotic dynamics for the periodic and stochastic forced Brusselator are shown. The problem of chaos control based on SSF is considered. A design of attractors with the desired features by feedback regulator is discussed. Analysis of controllability and effective technique for regulator synthesis is presented. An example of suppressing chaos for Brusselator is considered.

  20. Robust Nonlinear Control of Tailless Fighter Aircraft

    Science.gov (United States)

    1999-02-01

    also resulted in 1 book chapter and 12 refereed conference papers published, to appear and submitted. These papers are listed below. 1. A.R. Teel and L...Verlag, 1999, to appear. 4 Refereed Conference Publications 11. A.R. Teel. "A nonlinear control viewpoint on anti-windup and related problems", Preprints... Drc . TS"ThCH’WCAL R~PORT HAS qSN REViEWMAND IS APPRoVvOR 0 PLnUcBL EASE’WA APR 190-12, DISTRIBUTION I YONNE MASON S7T]NQ1pROORAJMMANAGE

  1. Success Stories in Control: Nonlinear Dynamic Inversion Control

    Science.gov (United States)

    Bosworth, John T.

    2010-01-01

    NASA plays an important role in advancing the state of the art in flight control systems. In the case of Nonlinear Dynamic Inversion (NDI) NASA supported initial implementation of the theory in an aircraft and demonstration in a space vehicle. Dr. Dale Enns of Honeywell Aerospace Advanced Technology performed this work in cooperation with NASA and under NASA contract. Honeywell and Lockheed Martin were subsequently contracted by AFRL to create "Design Guidelines for Multivariable Control Theory". This foundational work directly contributed to the advancement of the technology and the credibility of the control law as a design option. As a result Honeywell collaborated with Lockheed Martin to produce a Nonlinear Dynamic Inversion controller for the X-35 and subsequently Lockheed Martin did the same for the production Lockheed Martin F-35 vehicle. The theory behind NDI is to use a systematic generalized approach to controlling a vehicle. Using general aircraft nonlinear equations of motion and onboard aerodynamic, mass properties, and engine models specific to the vehicle, a relationship between control effectors and desired aircraft motion can be formulated. Using this formulation a control combination is used that provides a predictable response to commanded motion. Control loops around this formulation shape the response as desired and provide robustness to modeling errors. Once the control law is designed it can be used on a similar class of vehicle with only an update to the vehicle specific onboard models.

  2. A novel sliding mode nonlinear proportional-integral control scheme for controlling chaos

    Institute of Scientific and Technical Information of China (English)

    Yu Dong-Chuan; Wu Ai-Guo; Yang Chao-Ping

    2005-01-01

    A novel sliding mode nonlinear proportional-integral control (SMNPIC) scheme is proposed for driving a class of time-variant chaotic systems with uncertainty to arbitrarily desired trajectory with high accuracy. The SMNPIC differs from the previous sliding mode techniques in the sense that a nonlinear proportional-integral action of sliding function is involved in control law, so that both the steady-state error and the high-frequency chattering are reduced,and meanwhile, robustness and fastness are guaranteed. In addition, the proposed SMNPIC actually acts as a class of nonlinear proportional-integral-differential (PID) controller, in which the tracking error and its derivatives up to (n-1)thorder as well as the integral of tracking error are considered, so that more useful information than traditional PID can be implemented and better dynamic and static characteristics can obtained. Its good performance for chaotic control is illustrated through a During-Holmes system with uncertainty.

  3. Approximation-Based Adaptive Tracking Control for MIMO Nonlinear Systems With Input Saturation.

    Science.gov (United States)

    Zhou, Qi; Shi, Peng; Tian, Yang; Wang, Mingyu

    2015-10-01

    In this paper, an approximation-based adaptive tracking control approach is proposed for a class of multiinput multioutput nonlinear systems. Based on the method of neural network, a novel adaptive controller is designed via backstepping design process. Furthermore, by introducing Nussbaum function, the issue of unknown control directions is handled. In the backstepping design process, the dynamic surface control technique is employed to avoid differentiating certain nonlinear functions repeatedly. Moreover, in order to reduce the number of adaptation laws, we do not use the neural networks to directly approximate the unknown nonlinear functions but the desired control signals. Finally, we provide two examples to illustrate the effectiveness of the proposed approach.

  4. Equivalent Dynamic Stiffness Mapping technique for identifying nonlinear structural elements from frequency response functions

    Science.gov (United States)

    Wang, X.; Zheng, G. T.

    2016-02-01

    A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.

  5. Boundary control of long waves in nonlinear dispersive systems

    DEFF Research Database (Denmark)

    Hasan, Agus; Foss, Bjarne; Aamo, Ole Morten

    2011-01-01

    Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher...... orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws...... that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases....

  6. Lyapunov optimal feedback control of a nonlinear inverted pendulum

    Science.gov (United States)

    Grantham, W. J.; Anderson, M. J.

    1989-01-01

    Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.

  7. Lyapunov optimal feedback control of a nonlinear inverted pendulum

    Science.gov (United States)

    Grantham, W. J.; Anderson, M. J.

    1989-01-01

    Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.

  8. Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming.

    Science.gov (United States)

    Zhong, Xiangnan; He, Haibo; Zhang, Huaguang; Wang, Zhanshan

    2014-12-01

    In this paper, we develop and analyze an optimal control method for a class of discrete-time nonlinear Markov jump systems (MJSs) with unknown system dynamics. Specifically, an identifier is established for the unknown systems to approximate system states, and an optimal control approach for nonlinear MJSs is developed to solve the Hamilton-Jacobi-Bellman equation based on the adaptive dynamic programming technique. We also develop detailed stability analysis of the control approach, including the convergence of the performance index function for nonlinear MJSs and the existence of the corresponding admissible control. Neural network techniques are used to approximate the proposed performance index function and the control law. To demonstrate the effectiveness of our approach, three simulation studies, one linear case, one nonlinear case, and one single link robot arm case, are used to validate the performance of the proposed optimal control method.

  9. Composite fuzzy sliding mode control of nonlinear singularly perturbed systems.

    Science.gov (United States)

    Nagarale, Ravindrakumar M; Patre, B M

    2014-05-01

    This paper deals with the robust asymptotic stabilization for a class of nonlinear singularly perturbed systems using the fuzzy sliding mode control technique. In the proposed approach the original system is decomposed into two subsystems as slow and fast models by the singularly perturbed method. The composite fuzzy sliding mode controller is designed for stabilizing the full order system by combining separately designed slow and fast fuzzy sliding mode controllers. The two-time scale design approach minimizes the effect of boundary layer system on the full order system. A stability analysis allows us to provide sufficient conditions for the asymptotic stability of the full order closed-loop system. The simulation results show improved system performance of the proposed controller as compared to existing methods. The experimentation results validate the effectiveness of the proposed controller.

  10. Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle.

    Science.gov (United States)

    El Majdoub, K; Giri, F; Ouadi, H; Chaoui, F Z

    2014-01-01

    The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope.

  11. The rigid-flexible nonlinear robotic manipulator: Modeling and control

    Science.gov (United States)

    Fenili, André; Balthazar, José Manoel

    2011-05-01

    The State-Dependent Riccati Equation (SDRE) control of a nonlinear rigid-flexible two link robotic manipulator is investigated. Different cases are considered assuming small deviations and large deviations from the desired final states. The nonlinear governing equations of motion are coupled, providing considerable excitation of all the nonlinear terms. The results present satisfactory final states but also undesirable overshoot.

  12. Industrial applications of advanced control techniques

    Institute of Scientific and Technical Information of China (English)

    刘国平

    2003-01-01

    This paper discusses two industrial control applications using advanced control techniques. They are theoptimal-tuning nonlinear PID control of hydraulic systems and the neural predictive control of combustor acoustic ofgas turbines. For hydraulic control systems, an optimal PID controller with inverse of dead zone is introduced toovercome the dead zone and is designed to satisfy desired time-domain performance requirements. Using the adaptivemodel, an optimal-tuning PID control scheme is proposed to provide optimal PID parameters even in the case wherethe system dynamics is time variant. For combustor acoustic control of gas turbines, a neural predictive controlstrategy is presented, which consists of three parts: an output model, output predictor and feedback controller. Theoutput model of the combustor acoustic is established using neural networks to predict the output and overcome thetime delay of the system, which is often very large, compared with the sampling period. The output-feedback con-troller is introduced which uses the output of the predictor to suppress instability in the combustion process. The a-bove control strategies are implemented in the SIMULINK/dSPACE controller development environment. Theirperformance is evaluated on the industrial hydraulic test rig and the industrial combustor test rig.

  13. A nonlinear signal-based control method and its applications to input identification for nonlinear SIMO problems

    Science.gov (United States)

    Enokida, Ryuta; Takewaki, Izuru; Stoten, David

    2014-12-01

    The problem of control system design can be conceptualised as identifying an input signal to a plant (the system to be controlled) so that the corresponding output matches that of a pre-defined reference signal. Primarily, this problem is solved via well-known techniques based upon the principle of feedback design, an essential component for ensuring stability and robustness of the controlled system. However, feedforward design techniques also have a large part to play, whereby (in the absence of feedback control and assuming that the plant is stable) a model of the plant dynamics can be used to modify the reference signal so that the resultant feedforward input signal generates a plant output signal that is sufficiently close to the original reference signal. The principal objective of this paper is to introduce a new nonlinear control method, called nonlinear signal-based control (NSBC) that can be executed as an on-line technique of feedforward compensation (used synonymously here with the phrase 'input identification') and an off-line technique of feedback compensation. NSBC determines the feedforward input signal to the plant by using an error signal, determined from the difference between the output signals from a linear model of the plant and from the nonlinear plant, under the same input signal. The efficacy of NSBC is examined via numerical examples using Matlab/Simulink and compared with alternative well-known methods based upon inverse transfer function compensation and also the method of high gain feedback control. NSBC was found to provide the most accurate input identification in all the examined cases of linear or nonlinear single-input, single-output and single-input, multi-output (SIMO) systems. Furthermore, in problems of structural and earthquake engineering, NSBC was also found to be particularly effective in estimating the original ground motion from a nonlinear SIMO system and its response.

  14. Vibration suppression of speed-controlled robots with nonlinear control

    Science.gov (United States)

    Boscariol, Paolo; Gasparetto, Alessandro

    2016-06-01

    In this paper, a simple nonlinear control strategy for the simultaneous position tracking and vibration damping of robots is presented. The control is developed for devices actuated by speed-controlled servo drives. The conditions for the asymptotic stability of the closed-loop system are derived by ensuring its passivity. The capability of achieving improved trajectory tracking and vibration suppression is shown through experimental tests conducted on a three-axis Cartesian robot. The control is aimed to be compatible with most industrial applications given the simplicity of implementation, the reduced computational requirements, and the use of joint position as the only measured signal.

  15. Distributed adaptive output consensus control of second-order systems containing unknown non-linear control gains

    Science.gov (United States)

    Wang, Gang; Wang, Chaoli; Du, Qinghui; Cai, Xuan

    2016-10-01

    In this paper, we address the output consensus problem of tracking a desired trajectory for a group of second-order agents on a directed graph with a fixed topology. Each agent is modelled by a second-order non-linear system with unknown non-linear dynamics and unknown non-linear control gains. Only a subset of the agents is given access to the desired trajectory information directly. A distributed adaptive consensus protocol driving all agents to track the desired trajectory is presented using the backstepping technique and approximation technique of Fourier series (FSs). The FS structure is taken not only for tracking the non-linear dynamics but also the unknown portion in the controller design procedure, which can avoid virtual controllers containing the uncertain terms. Stability analysis and parameter convergence of the proposed algorithm are conducted based on the Lyapunov theory and the algebraic graph theory. It is also demonstrated that arbitrary small tracking errors can be achieved by appropriately choosing design parameters. Though the proposed work is applicable for second-order non-linear systems containing unknown non-linear control gains, the proposed controller design can be easily extended to higher-order non-linear systems containing unknown non-linear control gains. Simulation results show the effectiveness of the proposed schemes.

  16. Optimal second order sliding mode control for nonlinear uncertain systems.

    Science.gov (United States)

    Das, Madhulika; Mahanta, Chitralekha

    2014-07-01

    In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty.

  17. Multigrid techniques for nonlinear eigenvalue probems: Solutions of a nonlinear Schroedinger eigenvalue problem in 2D and 3D

    Science.gov (United States)

    Costiner, Sorin; Taasan, Shlomo

    1994-01-01

    This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.

  18. Global Null Controllability of the 1-Dimensional Nonlinear Slow Diffusion Equation

    Institute of Scientific and Technical Information of China (English)

    Jean-Michel CORON; Jesús Ildefonso D(I)AZ; Abdelmalek DRICI; Tommaso MINGAZZINI

    2013-01-01

    The authors prove the global null controllability for the 1-dimensional nonlinear slow diffusion equation by using both a boundary and an internal control.They assume that the internal control is only time dependent.The proof relies on the return method in combination with some local controllability results for nondegenerate equations and rescaling techniques.

  19. Z-scan: A simple technique for determination of third-order optical nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijender, E-mail: chahal-gju@rediffmail.com [Department of Applied Science, N.C. College of Engineering, Israna, Panipat-132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in [Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Haryana (India)

    2015-08-28

    Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.

  20. Recursive design of nonlinear H _∞ excitation controller

    Institute of Scientific and Technical Information of China (English)

    卢强; 梅生伟; 申铁龙; 胡伟

    2000-01-01

    This work is concerned with the problem of L2 gain disturbance attenuation for nonlinear systems and nonlinear robust control for power systems. In terms of the recurrence design approach proposed, the nonnegative solution of dissipative inequality and the storage function of nonlinear H∞ control for a generator excitation system are acquired. From this storage function, the excitation controller is constructed. Moreover, simulation results manifest the effectiveness of this design method.

  1. Advanced nonlinear control of three phase series active power filter

    Directory of Open Access Journals (Sweden)

    Abouelmahjoub Y.

    2014-01-01

    Full Text Available The problem of controlling three-phase series active power filter (TPSAPF is addressed in this paper in presence of the perturbations in the voltages of the electrical supply network. The control objective of the TPSAPF is twofold: (i compensation of all voltage perturbations (voltage harmonics, voltage unbalance and voltage sags, (ii regulation of the DC bus voltage of the inverter. A controller formed by two nonlinear regulators is designed, using the Backstepping technique, to provide the above compensation. The regulation of the DC bus voltage of the inverter is ensured by the use of a diode bridge rectifier which its output is in parallel with the DC bus capacitor. The Analysis of controller performances is illustrated by numerical simulation in Matlab/Simulink environment.

  2. Nonlinear stochastic systems with incomplete information filtering and control

    CERN Document Server

    Shen, Bo; Shu, Huisheng

    2013-01-01

    Nonlinear Stochastic Processes addresses the frequently-encountered problem of incomplete information. The causes of this problem considered here include: missing measurements; sensor delays and saturation; quantization effects; and signal sampling. Divided into three parts, the text begins with a focus on H∞ filtering and control problems associated with general classes of nonlinear stochastic discrete-time systems. Filtering problems are considered in the second part, and in the third the theory and techniques previously developed are applied to the solution of issues arising in complex networks with the design of sampled-data-based controllers and filters. Among its highlights, the text provides: ·         a unified framework for handling filtering and control problems in complex communication networks with limited bandwidth; ·         new concepts such as random sensor and signal saturations for more realistic modeling; and ·         demonstration of the use of techniques such...

  3. Linear and Nonlinear Controllers Applied to Fixed-Wing UAV

    OpenAIRE

    Tadeo Espinoza; Alejandro Dzul; Miguel Llama

    2013-01-01

    This article presents a comparison of controllers which have been applied to a fixed‐wing Unmanned Aerial Vehicle (UAV). The comparison is realized between classical linear controllers and nonlinear control laws. The concerned linear controllers are: Proportional‐ Derivative (PD) and Proportional‐Integral‐Derivative (PID), while the nonlinear controllers are: backstepping, sliding modes, nested saturation and fuzzy control. These controllers are compared and analysed for altitude, yaw and rol...

  4. Adaptive Output Neural Network Control for a Class of Stochastic Nonlinear Systems With Dead-Zone Nonlinearities.

    Science.gov (United States)

    Wu, Li-Bing; Yang, Guang-Hong

    2017-03-01

    This paper investigates the problem of adaptive output neural network (NN) control for a class of stochastic nonaffine and nonlinear systems with actuator dead-zone inputs. First, based on the intermediate value theorem, a novel design scheme that converts the nonaffine system into the corresponding affine system is developed. In particular, the priori knowledge of the bound of the derivative of the nonaffine and nonlinear functions is removed; then, by employing NNs to approximate the appropriate nonlinear functions, the corresponding adaptive NN tracking controller with the adjustable parameter updated laws is designed through a backstepping technique. Furthermore, it is shown that all the closed-loop signals are bounded in probability, and the system output tracking error can converge to a small neighborhood in the sense of a mean quartic value. Finally, experimental simulations are provided to demonstrate the efficiency of the proposed adaptive NN tracking control method.

  5. Nonlinear and fault-tolerant flight control using multivariate splines

    NARCIS (Netherlands)

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.J.; Chu, Q.P.

    2015-01-01

    This paper presents a study on fault tolerant flight control of a high performance aircraft using multivariate splines. The controller is implemented by making use of spline model based adaptive nonlinear dynamic inversion (NDI). This method, indicated as SANDI, combines NDI control with nonlinear

  6. Nonlinear and fault-tolerant flight control using multivariate splines

    NARCIS (Netherlands)

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.J.; Chu, Q.P.

    2015-01-01

    This paper presents a study on fault tolerant flight control of a high performance aircraft using multivariate splines. The controller is implemented by making use of spline model based adaptive nonlinear dynamic inversion (NDI). This method, indicated as SANDI, combines NDI control with nonlinear c

  7. Nonlinear auto-adjusting iterative reconstruction technique for interferometric tomography

    Science.gov (United States)

    Song, Yizhong; Sun, Tao; Qu, Peishu

    2013-07-01

    A new algebraic reconstruction technique (ART), nonlinear auto-adjusting iterative reconstruction technique (NAIRT), is proposed and applied to reconstruct a section of an actual thermal air flow field. With numerical simulation, NAIRT was tested to reconstruct a complicated field to demonstrate its superior reconstructive capability. In contrast, three typical ARTs, the basic ART, simultaneous ART (SART), and a modified SART (MSART), were simulated to demonstrate the reconstructive capability improvement attained through the use of the proposed NAIRT. The calculated results were discussed with mean square error (MSE) and peak error (PE). A thermal air flow field was produced with an alcohol burner and was detected by a laser beam. With laser beam projections, a cross-section of the field was reconstructed by NAIRT. As a result, the reconstructive capability was improved much by NAIRT. The MSE decreased by 95.5%, and PE by 97.2% from that of the basic ART. Only NAIRT converged without filters while its reconstructive accuracy improved. By increasing the projections from 42 to 84, the accuracy of NAIRT without filters was improved significantly. NAIRT could effectively reconstruct the section of the thermal field. The proposed NAIRT needed no filter for its convergence and it had the highest reconstructive accuracy and simplest iterative expression of those analyzed.

  8. Design of nonlinear adaptive steam valve controllers for a turbo-generator system

    Energy Technology Data Exchange (ETDEWEB)

    Bekiaris-Liberis, N.K.; Paraskevopoulos, P.N. [National Technical Univ. of Athens Zographou, Athens (Greece); Boglou, A.K. [Technology Education Inst. of Kavala Agios Loukas, Kavala (Greece); Arvanitis, K.G.; Pasgianos, G.D. [Agricultural Univ. of Athens, Athens (Greece)

    2008-07-01

    This paper reported on a study that investigated the control of power systems consisting of interconnected networks of transmission lines linking generators and loads. Improving both small and large perturbation stability and dynamic performance is important because power systems have become less stable in the past 15 years due to the use of controllers that have been designed on the basis of linearized synchronous generators and turbine models. The high nonlinear nature of power system models and the resulting disturbances render conventional linear controller design techniques obsolete for use in power systems control. Power system engineers are becoming aware of the role of turbine steam valves in improving the dynamic stability of power systems and damping low frequency oscillations. Advanced nonlinear control strategies are needed since the conventional steam valve control theory cannot guarantee transient stability in cases where operational conditions and parameters vary considerably. A design approach to a nonlinear adaptive control system with unknown parameters was developed and applied to the turbine main steam valve control of a power system. A fourth order machine model was used along with an adaptive backstepping method to construct the Lyapunov function in order to obtain a nonlinear adaptive controller to solve the turbine fast valving nonlinear control problem. The newly designed nonlinear adaptive controller can make the resulting adaptive system asymptotically stable. The proposed controller is accompanied by a dynamic estimator of parameters and includes nonlinear damping terms, which guarantee input-output stability even without the use of the adaptive law. Simulation results showed that the proposed nonlinear adaptive controller performs better than other turbine main steam valve control techniques. It can face large parametric uncertainty and results in a closed-loop system that is able to face large and smaller disturbances, providing a

  9. Nonlinear platoon control of Arduino cars with range-limited sensors

    Science.gov (United States)

    Yue, Wei; Guo, Ge; Wang, Liyuan; Wang, Wei

    2015-05-01

    This paper investigates the problem of platoon control with sensor range limitation. A nonlinear vehicular platoon model is established, in which the sensing range constraint described by a piecewise nonlinear function is involved. Then a robust nonlinear control design method is proposed based on a disturbance observer and the backstepping technique. The results are obtained in the context of both individual vehicle stability and platoon string stability analysis, which can lead to substantially enhanced platoon control performance with a guaranteed level of attenuation of the disturbance caused by lead vehicle acceleration and wind gust. The effectiveness of the method has been shown by numerical simulations and experiments carried out with Arduino cars.

  10. An iterative symplectic pseudospectral method to solve nonlinear state-delayed optimal control problems

    Science.gov (United States)

    Peng, Haijun; Wang, Xinwei; Zhang, Sheng; Chen, Biaosong

    2017-07-01

    Nonlinear state-delayed optimal control problems have complex nonlinear characters. To solve this complex nonlinear problem, an iterative symplectic pseudospectral method based on quasilinearization techniques, the dual variational principle and pseudospectral methods is proposed in this paper. First, the proposed method transforms the original nonlinear optimal control problem into a series of linear quadratic optimal control problems. Then, a symplectic pseudospectral method is developed to solve these converted linear quadratic state-delayed optimal control problems. Coefficient matrices in the proposed method are sparse and symmetric since the dual variational principle is used, which makes the proposed method highly efficient. Converged numerical solutions with high precision can be obtained after a few iterations due to the benefit of the local pseudospectral method and quasilinearization techniques. In the numerical simulations, other numerical methods were used for comparisons. The numerical simulation results show that the proposed method is highly accurate, efficient and robust.

  11. Limit cycle analysis of active disturbance rejection control system with two nonlinearities.

    Science.gov (United States)

    Wu, Dan; Chen, Ken

    2014-07-01

    Introduction of nonlinearities to active disturbance rejection control algorithm might have high control efficiency in some situations, but makes the systems with complex nonlinearity. Limit cycle is a typical phenomenon that can be observed in the nonlinear systems, usually causing failure or danger of the systems. This paper approaches the problem of the existence of limit cycles of a second-order fast tool servo system using active disturbance rejection control algorithm with two fal nonlinearities. A frequency domain approach is presented by using describing function technique and transfer function representation to characterize the nonlinear system. The derivations of the describing functions for fal nonlinearities and treatment of two nonlinearities connected in series are given to facilitate the limit cycles analysis. The effects of the parameters of both the nonlinearity and the controller on the limit cycles are presented, indicating that the limit cycles caused by the nonlinearities can be easily suppressed if the parameters are chosen carefully. Simulations in the time domain are performed to assess the prediction accuracy based on the describing function.

  12. Nonlinear programming technique for analyzing flocculent settling data.

    Science.gov (United States)

    Rashid, Md Mamunur; Hayes, Donald F

    2014-04-01

    The traditional graphical approach for drawing iso-concentration curves to analyze flocculent settling data and design sedimentation basins poses difficulties for computer-based design methods. Thus, researchers have developed empirical approaches to analyze settling data. In this study, the ability of five empirical approaches to fit flocculent settling test data is compared. Particular emphasis is given to compare rule-based SETTLE and rule-based nonlinear programming (NLP) techniques as a viable alternative to the modeling methods of Berthouex and Stevens (1982), San (1989), and Ozer (1994). Published flocculent settling data are used to test the suitability of these empirical approaches. The primary objective, however, is to determine if the results of a NLP optimization technique are more reliable than those of other approaches. For this, mathematical curve fitting is conducted and the modeled concentration data are graphically compared to the observed data. The design results in terms of average solid removal efficiency as a function of detention times are also compared. Finally, the sum of squared errors values from these approaches are compared. The results indicate a strong correlation between observed and NLP modeled concentration data. The SETTLE and NLP approaches tend to be more conservative at lower retention times and less conservative at longer retention times. The SETTLE approach appears to be the most conservative. In terms of sum of squared errors values, NLP appears to be rank number one (i.e., best model) for eight data sets and number two for six data sets among 15 data sets. Therefore, NLP is recommended for analyzing flocculent settling data as a logical extension of other approaches. The NLP approach is further recommended as it is an optimization technique and uses conventional mathematical algorithms that can be solved using widely available software such as EXCEL and LINGO.

  13. Numerical techniques for solving nonlinear instability problems in smokeless tactical solid rocket motors. [finite difference technique

    Science.gov (United States)

    Baum, J. D.; Levine, J. N.

    1980-01-01

    The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.

  14. Robust nonlinear variable selective control for networked systems

    Science.gov (United States)

    Rahmani, Behrooz

    2016-10-01

    This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.

  15. Discrete-time inverse optimal control for nonlinear systems

    CERN Document Server

    Sanchez, Edgar N

    2013-01-01

    Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th

  16. Dynamic decoupling nonlinear control method for aircraft gust alleviation

    Science.gov (United States)

    Lv, Yang; Wan, Xiaopeng; Li, Aijun

    2008-10-01

    A dynamic decoupling nonlinear control method for MIMO system is presented in this paper. The dynamic inversion method is used to decouple the multivariable system. The nonlinear control method is used to overcome the poor decoupling effect when the system model is inaccurate. The nonlinear control method has correcting function and is expressed in analytic form, it is easy to adjust the parameters of the controller and optimize the design of the control system. The method is used to design vertical transition mode of active control aircraft for gust alleviation. Simulation results show that the designed vertical transition mode improves the gust alleviation effect about 34% comparing with the normal aircraft.

  17. Semi-global output regulation for linear systems with input saturation by composite nonlinear feedback control

    Science.gov (United States)

    Wang, Chongwen; Yu, Xiao; Lan, Weiyao

    2014-10-01

    To improve transient performance of output response, this paper applies composite nonlinear feedback (CNF) control technique to investigate semi-global output regulation problems for linear systems with input saturation. Based on a linear state feedback control law for a semi-global output regulation problem, a state feedback CNF control law is constructed by adding a nonlinear feedback part. The extra nonlinear feedback part can be applied to improve the transient performance of the closed-loop system. Moreover, an observer is designed to construct an output feedback CNF control law that also solves the semi-global output regulation problem. The sufficient solvability condition of the semi-global output regulation problem by CNF control is the same as that by linear control, but the CNF control technique can improve the transient performance. The effectiveness of the proposed method is illustrated by a disturbance rejection problem of a translational oscillator with rotational actuator system.

  18. Modeling and comparative study of linear and nonlinear controllers for rotary inverted pendulum

    Science.gov (United States)

    Lima, Byron; Cajo, Ricardo; Huilcapi, Víctor; Agila, Wilton

    2017-01-01

    The rotary inverted pendulum (RIP) is a problem difficult to control, several studies have been conducted where different control techniques have been applied. Literature reports that, although problem is nonlinear, classical PID controllers presents appropriate performances when applied to the system. In this paper, a comparative study of the performances of linear and nonlinear PID structures is carried out. The control algorithms are evaluated in the RIP system, using indices of performance and power consumption, which allow the categorization of control strategies according to their performance. This article also presents the modeling system, which has been estimated some of the parameters involved in the RIP system, using computer-aided design tools (CAD) and experimental methods or techniques proposed by several authors attended. The results indicate a better performance of the nonlinear controller with an increase in the robustness and faster response than the linear controller.

  19. Advanced nonlinear control: Robustness and stability with applications to aircraft flight control systems

    Science.gov (United States)

    Frye, Michael Takaichi

    This dissertation examines the problem of global decentralized control by output feedback for large-scale uncertain nonlinear systems whose subsystems are interconnected not only by their outputs but also by their unmeasurable states. Several innovative techniques will be developed to create decentralized output feedback controllers rendering the closed-loop systems globally asymptotically stable. This is accomplished by extending an output feedback domination design that requires only limited information about the nonlinear system. We will apply our design to lower, upper, and non-triangular nonlinear systems. A time-varying output feedback controller is also constructed for use with large-scale systems that have unknown parameters. Furthermore, a mixed large-scale system consisting of both lower and upper triangular systems is shown to be stabilizable by employing a combined high and low gain domination technique. The significance of our results is that we do not need to have prior information about the nonlinearities of the system. In addition, a new design technique was developed using homogeneous system theory, which allows for the design of nonsmooth controllers and observers to stabilize a class of feedforward system with uncontrollable and unobservable linearization. An example of a large-scale system is a group of autonomous airships performing the function of a temporary mobile cell phone network. An airship mobile cell phone network is a novel solution to the problem of maintaining communication during the advent of extensive damage to the communication infrastructure; be it from a flood, earthquake, hurricane, or terrorist attack. A first principle force-based dynamic model for the Tri-Turbofan Airship was developed and will be discussed in detail. The mathematical model was based on actual flight test data that has been collected at the Gait Analysis and Innovative Technologies Laboratory. This model was developed to research autonomous airship

  20. Emergency control of unstable behavior of nonlinear systems induced by fault

    Directory of Open Access Journals (Sweden)

    Mark A. Pinsky

    1998-01-01

    -functions significantly simplifying analysis and control of fault phenomena. The design of an mergency controller is based on the technique for computing fault-induced jumps of the system states, which is described in the paper. An emergency controller instantaneously returning states of a sample nonlinear system to its stability basin is designed.

  1. Explicit Nonlinear Model Predictive Control Theory and Applications

    CERN Document Server

    Grancharova, Alexandra

    2012-01-01

    Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

  2. Nonlinear feedback control of spatiotemporal chaos in coupled map lattices

    Directory of Open Access Journals (Sweden)

    Jin-Qing Fang

    1998-01-01

    Full Text Available We describe a nonlinear feedback functional method for study both of control and synchronization of spatiotemporal chaos. The method is illustrated by the coupled map lattices with five different connection forms. A key issue addressed is to find nonlinear feedback functions. Two large types of nonlinear feedback functions are introduced. The efficient and robustness of the method based on the flexibility of choices of nonlinear feedback functions are discussed. Various numerical results of nonlinear control are given. We have not found any difficulty for study both of control and synchronization using nonlinear feedback functional method. The method can also be extended to time continuous dynamical systems as well as to society problems.

  3. Nonlinear control of high purity distillation columns

    OpenAIRE

    Groebel, Markus; Allgöwer, Frank; Storz, Markus; Gilles, Ernst Dieter

    1994-01-01

    Two simple models of distillation columns are studied to investigate their suitability for the practical use with exact I/O-linearization. An extension of exact I/O-linearization, the asymptotically exact I/O-linearization is applied to the control of a high purity distillation column, using one of these models to derive the static state feedback law. Simulation studies demonstrate the advantage of asymptotically exact I/O-linearization versus classical exact I/O-linearization techniques. Exp...

  4. A Model Predictive Algorithm for Active Control of Nonlinear Noise Processes

    Directory of Open Access Journals (Sweden)

    Qi-Zhi Zhang

    2005-01-01

    Full Text Available In this paper, an improved nonlinear Active Noise Control (ANC system is achieved by introducing an appropriate secondary source. For ANC system to be successfully implemented, the nonlinearity of the primary path and time delay of the secondary path must be overcome. A nonlinear Model Predictive Control (MPC strategy is introduced to deal with the time delay in the secondary path and the nonlinearity in the primary path of the ANC system. An overall online modeling technique is utilized for online secondary path and primary path estimation. The secondary path is estimated using an adaptive FIR filter, and the primary path is estimated using a Neural Network (NN. The two models are connected in parallel with the two paths. In this system, the mutual disturbances between the operation of the nonlinear ANC controller and modeling of the secondary can be greatly reduced. The coefficients of the adaptive FIR filter and weight vector of NN are adjusted online. Computer simulations are carried out to compare the proposed nonlinear MPC method with the nonlinear Filter-x Least Mean Square (FXLMS algorithm. The results showed that the convergence speed of the proposed nonlinear MPC algorithm is faster than that of nonlinear FXLMS algorithm. For testing the robust performance of the proposed nonlinear ANC system, the sudden changes in the secondary path and primary path of the ANC system are considered. Results indicated that the proposed nonlinear ANC system can rapidly track the sudden changes in the acoustic paths of the nonlinear ANC system, and ensure the adaptive algorithm stable when the nonlinear ANC system is time variable.

  5. Control of an under activated unstable nonlinear object

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Skovgaard, L.; Ravn, Ole

    2001-01-01

    This paper presents a comprehensive comparative study of several nonlinear controllers for stabilisation of the under actuated unstable nonlinear object known as the Acrobot in the literature. The object is a two DOF robot arm only actuated at the elbow. The study compares several control...

  6. Reconfigurable Control of Input Affine Nonlinear Systems under Actuator Fault

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Galeazzi, Roberto

    2015-01-01

    This paper proposes a fault tolerant control method for input-affine nonlinear systems using a nonlinear reconfiguration block (RB). The basic idea of the method is to insert the RB between the plant and the nominal controller such that fault tolerance is achieved without re-designing the nominal...

  7. Analysis and Design Methods for Nonlinear Control Systems

    Science.gov (United States)

    1990-03-01

    entitled "Design of Nonlinear PID Controllers ." In this paper it is demonstrated that the extended linearization approach can be applied to standard...Sciences and Systems, Baltimore, Maryland, pp. 675-680, 1987. [3] WJ. Rugh, "Design of Nonlinear PID Controllers ," AIChE Journa Vol. 33, No. 10, pp. 1738

  8. Nonlinear superheat and capacity control of a refrigeration plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2009-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. A new low order nonlinear model of the evaporator is developed and used in a backstepping design of a nonlinear controller. The stability of the proposed method is validated theoretically by Lyapunov a...

  9. ABSOLUTE STABILITY OF GENERAL LURIE DISCRETE NONLINEAR CONTROL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    GAN Zuoxin; HAN Jingqing; ZHAO Suxia; WU Yongxian

    2002-01-01

    In the present paper, the absolute stability of general Lurie discrete nonlinear control systems has been discussed by Lyapunov function approach. A sufficient condition of absolute stability for the general Lurie discrete nonlinear control systems is derived, and some necessary and sufficient conditions are obtained in special cases. Meanwhile, we give a simple example to illustrate the effectiveness of the results.

  10. Control of an under activated unstable nonlinear object

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Skovgaard, L.; Ravn, Ole

    2001-01-01

    This paper presents a comprehensive comparative study of several nonlinear controllers for stabilisation of the under actuated unstable nonlinear object known as the Acrobot in the literature. The object is a two DOF robot arm only actuated at the elbow. The study compares several control...

  11. Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities.

    Science.gov (United States)

    Shahnazi, Reza

    2015-01-01

    An adaptive fuzzy output feedback controller is proposed for a class of uncertain MIMO nonlinear systems with unknown input nonlinearities. The input nonlinearities can be backlash-like hysteresis or dead-zone. Besides, the gains of unknown input nonlinearities are unknown nonlinear functions. Based on universal approximation theorem, the unknown nonlinear functions are approximated by fuzzy systems. The proposed method does not need the availability of the states and an observer based on strictly positive real (SPR) theory is designed to estimate the states. An adaptive robust structure is used to cope with fuzzy approximation error and external disturbances. The semi-global asymptotic stability of the closed-loop system is guaranteed via Lyapunov approach. The applicability of the proposed method is also shown via simulations.

  12. Non-linear controllers in ship tracking control system

    Institute of Scientific and Technical Information of China (English)

    LESZEK M

    2005-01-01

    The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.

  13. Fitting Nonlinear Curves by use of Optimization Techniques

    Science.gov (United States)

    Hill, Scott A.

    2005-01-01

    MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.

  14. Control mechanisms for a nonlinear model of international relations

    Energy Technology Data Exchange (ETDEWEB)

    Pentek, A.; Kadtke, J. [Univ. of California, San Diego, La Jolla, CA (United States). Inst. for Pure and Applied Physical Sciences; Lenhart, S. [Univ. of Tennessee, Knoxville, TN (United States). Mathematics Dept.; Protopopescu, V. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.

    1997-07-15

    Some issues of control in complex dynamical systems are considered. The authors discuss two control mechanisms, namely: a short range, reactive control based on the chaos control idea and a long-term strategic control based on an optimal control algorithm. They apply these control ideas to simple examples in a discrete nonlinear model of a multi-nation arms race.

  15. Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bing Hu; Wen-Hua Chen

    2007-01-01

    This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC. Different from many existing methods,this paper distinguishes stability region from conservative terminal region. With global linearization, linear differential inclusion (LDI)and linear matrix inequality (LMI) techniques, a nonlinear system is transformed into a convex set of linear systems, and then the vertices of the set are used off-line to design the controller, to estimate stability region, and also to determine a feasible initial control profile/sequence. The advantages of the proposed method are demonstrated by simulation study.

  16. Nonlinear Decoupling PID Control Using Neural Networks and Multiple Models

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.

  17. Modulation/demodulation techniques for satellite communications. Part 3: Advanced techniques. The nonlinear channel

    Science.gov (United States)

    Omura, J. K.; Simon, M. K.

    1982-01-01

    A theory for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the nonlinear satellite channel is presented. The underlying principle used throughout is the development of receiver structures based on the maximum likelihood decision rule and aproximations to it. The bit error probability transfer function bounds developed in great detail in Part 4 is applied to these modulation/demodulation techniques. The effects of the various degrees of receiver mismatch are considered both theoretically and by numerous illustrative examples.

  18. The Life-Changing Magic of Nonlinearity in Network Control

    Science.gov (United States)

    Cornelius, Sean

    The proper functioning and reliability of many man-made and natural systems is fundamentally tied to our ability to control them. Indeed, applications as diverse as ecosystem management, emergency response and cell reprogramming all, at their heart, require us to drive a system to--or keep it in--a desired state. This process is complicated by the nonlinear dynamics inherent to most real systems, which has traditionally been viewed as the principle obstacle to their control. In this talk, I will discuss two ways in which nonlinearity turns this view on its head, in fact representing an asset to the control of complex systems. First, I will show how nonlinearity in the form of multistability allows one to systematically design control interventions that can deliberately induce ``reverse cascading failures'', in which a network spontaneously evolves to a desirable (rather than a failed) state. Second, I will show that nonlinearity in the form of time-varying dynamics unexpectedly makes temporal networks easier to control than their static counterparts, with the former enjoying dramatic and simultaneous reductions in all costs of control. This is true despite the fact that temporality tends to fragment a network's structure, disrupting the paths that allow the directly-controlled or ``driver'' nodes to communicate with the rest of the network. Taken together, these studies shed new light on the crucial role of nonlinearity in network control, and provide support to the idea we can control nonlinearity, rather than letting nonlinearity control us.

  19. Dynamic modeling and nonlinear control strategy for an underactuated quad rotor rotorcraft

    Institute of Scientific and Technical Information of China (English)

    Ashfaq Ahmad MIAN; Dao-bo WANG

    2008-01-01

    In this paper, a nonlinear dynamic MIMO model of a 6-DOF underactuated quad rotor rotorcraft is derived based on Newton-Euler formalism. The derivation comprises determining equations of motion of the quad rotor in three dimensions and seeking to approximate the actuation forces through modeling of the aerodynamic coefficients and electric motor dynamics. The derived model is dynamically unstable, so a sequential nonlinear control strategy is implemented for the quad rotor. The control strategy includes exact feedback linearization technique, using the geometric methods of nonlinear control. The performance of the nonlinear control algorithm is evaluated using simulation and the results show the effectiveness of the proposed control strategy for the quad rotor rotorcraft near quasi-stationary flight.

  20. Nonlinear H∞ Optimal Control Scheme for an Underwater Vehicle with Regional Function Formulation

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2013-01-01

    Full Text Available A conventional region control technique cannot meet the demands for an accurate tracking performance in view of its inability to accommodate highly nonlinear system dynamics, imprecise hydrodynamic coefficients, and external disturbances. In this paper, a robust technique is presented for an Autonomous Underwater Vehicle (AUV with region tracking function. Within this control scheme, nonlinear H∞ and region based control schemes are used. A Lyapunov-like function is presented for stability analysis of the proposed control law. Numerical simulations are presented to demonstrate the performance of the proposed tracking control of the AUV. It is shown that the proposed control law is robust against parameter uncertainties, external disturbances, and nonlinearities and it leads to uniform ultimate boundedness of the region tracking error.

  1. Adaptive Fuzzy Robust Control for a Class of Nonlinear Systems via Small Gain Theorem

    Directory of Open Access Journals (Sweden)

    Xingjian Wang

    2013-01-01

    Full Text Available Practical nonlinear systems can usually be represented by partly linearizable models with unknown nonlinearities and external disturbances. Based on this consideration, we propose a novel adaptive fuzzy robust control (AFRC algorithm for such systems. The AFRC effectively combines techniques of adaptive control and fuzzy control, and it improves the performance by retaining the advantages of both methods. The linearizable part will be linearly parameterized with unknown but constant parameters, and the discontinuous-projection-based adaptive control law is used to compensate these parts. The Takagi-Sugeno fuzzy logic systems are used to approximate unknown nonlinearities. Robust control law ensures the robustness of closed-loop control system. A systematic design procedure of the AFRC algorithm by combining the backstepping technique and small-gain approach is presented. Then the closed-loop stability is studied by using small gain theorem, and the result indicates that the closed-loop system is semiglobally uniformly ultimately bounded.

  2. Nonlinear imaging (NIM) of flaws in a complex composite stiffened panel using a constructive nonlinear array (CNA) technique.

    Science.gov (United States)

    Malfense Fierro, Gian Piero; Meo, Michele

    2017-02-01

    Recently, there has been high interest in the capabilities of nonlinear ultrasound techniques for damage/defect detection as these techniques have been shown to be quite accurate in imaging some particular type of damage. This paper presents a Constructive Nonlinear Array (CNA) method, for the detection and imaging of material defects/damage in a complex composite stiffened panel. CNA requires the construction of an ultrasound array in a similar manner to standard phased arrays systems, which require multiple transmitting and receiving elements. The method constructively phase-match multiple captured signals at a particular position given multiple transmit positions, similar to the total focusing method (TFM) method. Unlike most of the ultrasonic linear techniques, a longer excitation signal was used to achieve a steady-state excitation at each capturing position, so that compressive and tensile stress at defect/crack locations increases the likelihood of the generation of nonlinear elastic waves. Moreover, the technique allows the reduction of instrumentation nonlinear wave generation by relying on signal attenuation to naturally filter these errors. Experimental tests were carried out on a stiffened panel with manufacturing defects. Standard industrial linear ultrasonic test were carried out for comparison. The proposed new method allows to image damages/defects in a reliable and reproducible manner and overcomes some of the main limitations of nonlinear ultrasound techniques. In particular, the effectiveness and robustness of CNA and the advantages over linear ultrasonic were clearly demonstrated allowing a better resolution and imaging of complex and realistic flaws.

  3. On the Improved Nonlinear Tracking Differentiator based Nonlinear PID Controller Design

    Directory of Open Access Journals (Sweden)

    Ibraheem Kasim Ibraheem

    2016-10-01

    Full Text Available This paper presents a new improved nonlinear tracking differentiator (INTD with hyperbolic tangent function in the state-space system. The stability and convergence of the INTD are thoroughly investigated and proved. Through the error analysis, the proposed INTD can extract differentiation of any piecewise smooth nonlinear signal to reach a high accuracy. The improved tracking differentiator (INTD has the required filtering features and can cope with the nonlinearities caused by the noise. Through simulations, the INTD is implemented as a signal’s derivative generator for the closed-loop feedback control system with a nonlinear PID controller for the nonlinear Mass-Spring-Damper system and showed that it could achieve the signal tracking and differentiation faster with a minimum mean square error.

  4. Validation of Two Nonlinear System Identification Techniques Using an Experimental Testbed

    Directory of Open Access Journals (Sweden)

    V. Lenaerts

    2004-01-01

    Full Text Available The identification of a nonlinear system is performed using experimental data and two different techniques, i.e. a method based on the Wavelet transform and the Restoring Force Surface method. Both techniques exploit the system free response and result in the estimation of linear and nonlinear physical parameters.

  5. Recent advance in nonlinear aeroelastic analysis and control of the aircraft

    Directory of Open Access Journals (Sweden)

    Xiang Jinwu

    2014-02-01

    Full Text Available A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Various structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are discussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE and fight aircrafts are studied separately. Finally, conclusions and the challenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.

  6. Recent advance in nonlinear aeroelastic analysis and control of the aircraft

    Institute of Scientific and Technical Information of China (English)

    Xiang Jinwu; Yan Yongju; Li Daochun

    2014-01-01

    A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different non-linearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Var-ious structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are dis-cussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE) and fight aircrafts are studied separately. Finally, conclusions and the chal-lenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.

  7. Active Nonlinear Feedback Control for Aerospace Systems. Processor

    Science.gov (United States)

    1990-12-01

    Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply Existence of a Linear Stabilizing Control ," IEEE Trans...799-802, 1985. 13. I. R. Petersen, "Quadratic Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply...Existence of a Linear Stabilizing Control ," IEEE Trans. Autom. Contr., Vol. AC-30, pp. 291-293, 1985. 14. B. R. Barmish and A. R. Galimidi

  8. Nonlinear and cooperative control of multiple hovercraft with input constraints

    OpenAIRE

    Dunbar, William B.; Olfati-Saber, Reza; Richard M Murray

    2003-01-01

    In this paper, we introduce an approach for distributed nonlinear control of multiple hovercraft-type underactuated vehicles with bounded and unidirectional inputs. First, a bounded nonlinear controller is given for stabilization and tracking of a single vehicle, using a cascade backstepping method. Then, this controller is combined with a distributed gradient-based control for multi-vehicle formation stabilization using formation potential functions previously constructed. The vehicles are u...

  9. Nonlinear Dynamics and Control of Flexible Structures

    Science.gov (United States)

    1991-03-01

    Freedom," Ph.D. Thesis, Department of Theoretical and Applied Mechanics, Cornell University, in preparation. 5I I URI Reorts Islam , Saiful and Mircea...Theoretical and Applied Mechanics I S. Islam Civil and Environmental Engineering I 2! I 3 URI Accomplishments 3 -Nonlinear Dynamics and Chaos in Flexible...Structures with Symmetry," 31 (1991) 265-285. Islam , S. and M. Grigoriu, "Nonlinear Random Vibration of Pin-Jointed Trusses with Imperfections," in

  10. Nonlinear terahertz metamaterials with active electrical control

    Science.gov (United States)

    Keiser, G. R.; Karl, N.; Liu, P. Q.; Tulloss, C.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Reno, J. L.; Mittleman, D. M.

    2017-09-01

    We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.

  11. Nonlinear system identification and control based on modular neural networks.

    Science.gov (United States)

    Puscasu, Gheorghe; Codres, Bogdan

    2011-08-01

    A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.

  12. Impulsive control of nonlinear systems with time-varying delays

    Institute of Scientific and Technical Information of China (English)

    Yu Yong-Bin; Bao Jing-Fu; Zhang Hong-Bin; Zhong Qi-Shui; Liao Xiao-Feng; Yu Jue-Sang

    2008-01-01

    A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.

  13. High-Order Volterra Model Predictive Control and Its Application to a Nonlinear Polymerisation Process

    Institute of Scientific and Technical Information of China (English)

    Yun Li; Hiroshi Kashiwagi

    2005-01-01

    Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order.

  14. Observer-based fault-tolerant control for a class of nonlinear networked control systems

    Science.gov (United States)

    Mahmoud, M. S.; Memon, A. M.; Shi, Peng

    2014-08-01

    This paper presents a fault-tolerant control (FTC) scheme for nonlinear systems which are connected in a networked control system. The nonlinear system is first transformed into two subsystems such that the unobservable part is affected by a fault and the observable part is unaffected. An observer is then designed which gives state estimates using a Luenberger observer and also estimates unknown parameter of the system; this helps in fault estimation. The FTC is applied in the presence of sampling due to the presence of a network in the loop. The controller gain is obtained using linear-quadratic regulator technique. The methodology is applied on a mechatronic system and the results show satisfactory performance.

  15. Distributed Cooperative Control of Nonlinear and Non-identical Multi-agent Systems

    DEFF Research Database (Denmark)

    Bidram, Ali; Lewis, Frank; Davoudi, Ali

    2013-01-01

    to the synchronization problem for an identical linear multi-agent system. The controller for each agent is designed to be fully distributed, such that each agent only requires its own information and the information of its neighbors. The proposed control method is exploited to implement the secondary voltage control......This paper exploits input-output feedback linearization technique to implement distributed cooperative control of multi-agent systems with nonlinear and non-identical dynamics. Feedback linearization transforms the synchronization problem for a nonlinear and heterogeneous multi-agent system...... for electric power microgrids. The effectiveness of the proposed control is verified by simulating a microgrid test system....

  16. A genuine nonlinear approach for controller design of a boiler-turbine system.

    Science.gov (United States)

    Yang, Shizhong; Qian, Chunjiang; Du, Haibo

    2012-05-01

    This paper proposes a genuine nonlinear approach for controller design of a drum-type boiler-turbine system. Based on a second order nonlinear model, a finite-time convergent controller is first designed to drive the states to their setpoints in a finite time. In the case when the state variables are unmeasurable, the system will be regulated using a constant controller or an output feedback controller. An adaptive controller is also designed to stabilize the system since the model parameters may vary under different operating points. The novelty of the proposed controller design approach lies in fully utilizing the system nonlinearities instead of linearizing or canceling them. In addition, the newly developed techniques for finite-time convergent controller are used to guarantee fast convergence of the system. Simulations are conducted under different cases and the results are presented to illustrate the performance of the proposed controllers.

  17. Robust receding horizon control for networked and distributed nonlinear systems

    CERN Document Server

    Li, Huiping

    2017-01-01

    This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel ...

  18. Adaptive Fuzzy Dynamic Surface Control for Uncertain Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Luo; Zhi-Hao Zhu; Xin-Ping Guan

    2009-01-01

    In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globaily uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.

  19. An Efficient Pseudospectral Method for Solving a Class of Nonlinear Optimal Control Problems

    OpenAIRE

    Emran Tohidi; Atena Pasban; Kilicman, A.; S. Lotfi Noghabi

    2013-01-01

    This paper gives a robust pseudospectral scheme for solving a class of nonlinear optimal control problems (OCPs) governed by differential inclusions. The basic idea includes two major stages. At the first stage, we linearize the nonlinear dynamical system by an interesting technique which is called linear combination property of intervals. After this stage, the linearized dynamical system is transformed into a multi domain dynamical system via computational interval partitioning. Moreover,...

  20. Nonlinear Control Structure of Grid Connected Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; Norum, Lars; Ahadpour Shal, Alireza

    2017-01-01

    in the prediction step in order to preserve the stochastic characteristics of a nonlinear system. In order to design adaptive robust control strategy and nonlinear observer, mathematical model of MMC using rotating d-q theory has been used. Digital time-domain simulation studies are carried out in the Matlab/Simulink...

  1. Nonlinear Control Structure of Grid Connected Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; Norum, Lars; Ahadpour Shal, Alireza

    2017-01-01

    in the prediction step in order to preserve the stochastic characteristics of a nonlinear system. In order to design adaptive robust control strategy and nonlinear observer, mathematical model of MMC using rotating d-q theory has been used. Digital time-domain simulation studies are carried out in the Matlab...

  2. Techniques in Linear and Nonlinear Partial Differential Equations

    Science.gov (United States)

    1991-10-21

    nonlinear partial differential equations , elliptic 15. NUMBER OF PAGES hyperbolic and parabolic. Variational methods. Vibration problems. Ordinary Five...NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS FINAL TECHNICAL REPORT PROFESSOR LOUIS NIRENBERG OCTOBER 21, 1991 NT)S CRA&I D FIC ,- U.S. ARMY RESEARCH OFFICE...Analysis and partial differential equations . ed. C. Sadowsky. Marcel Dekker (1990) 567-619. [7] Lin, Fanghua, Asymptotic behavior of area-minimizing

  3. On Stabilization of Nonlinear Distributed Parameter Port-Controlled Hamiltonian Systems via Energy-Shaping

    NARCIS (Netherlands)

    Rodríguez, Hugo; Schaft, Arjan J. van der; Ortega, Romeo

    2001-01-01

    Energy-shaping techniques have been successfully used for stabilization of nonlinear finite dimensional systems for 20 years now. In particular, for systems described by Port-Controlled Hamiltonian (PCH) models, the “control by interconnection” method provides a simple and elegant procedure for stab

  4. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy-shaping

    NARCIS (Netherlands)

    Rodríguez, Hugo; Schaft, van der Arjan J.; Ortega, Romeo

    2001-01-01

    Energy-shaping techniques have been successfully used for stabilization of nonlinear finite dimensional systems for 20 years now. In particular, for systems described by Port-Controlled Hamiltonian (PCH) models, the "control by interconnection" method provides a simple and elegant procedure for stab

  5. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  6. Measurement and fitting techniques for the assessment of material nonlinearity using nonlinear Rayleigh waves

    Energy Technology Data Exchange (ETDEWEB)

    Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)

    2015-03-31

    This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.

  7. Stochastic optimal controller design for uncertain nonlinear networked control system via neuro dynamic programming.

    Science.gov (United States)

    Xu, Hao; Jagannathan, Sarangapani

    2013-03-01

    The stochastic optimal controller design for the nonlinear networked control system (NNCS) with uncertain system dynamics is a challenging problem due to the presence of both system nonlinearities and communication network imperfections, such as random delays and packet losses, which are not unknown a priori. In the recent literature, neuro dynamic programming (NDP) techniques, based on value and policy iterations, have been widely reported to solve the optimal control of general affine nonlinear systems. However, for realtime control, value and policy iterations-based methodology are not suitable and time-based NDP techniques are preferred. In addition, output feedback-based controller designs are preferred for implementation. Therefore, in this paper, a novel NNCS representation incorporating the system uncertainties and network imperfections is introduced first by using input and output measurements for facilitating output feedback. Then, an online neural network (NN) identifier is introduced to estimate the control coefficient matrix, which is subsequently utilized for the controller design. Subsequently, the critic and action NNs are employed along with the NN identifier to determine the forward-in-time, time-based stochastic optimal control of NNCS without using value and policy iterations. Here, the value function and control inputs are updated once a sampling instant. By using novel NN weight update laws, Lyapunov theory is used to show that all the closed-loop signals and NN weights are uniformly ultimately bounded in the mean while the approximated control input converges close to its target value with time. Simulation results are included to show the effectiveness of the proposed scheme.

  8. Adaptive control method for nonlinear time-delay processes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two complex properties,varying time-delay and block-oriented nonlinearity,are very common in chemical engineering processes and not easy to be controlled by routine control methods.Aimed at these two complex properties,a novel adaptive control algorithm the basis of nonlinear OFS(orthonormal functional series) model is proposed.First,the hybrid model which combines OFS and Volterra series is introduced.Then,a stable state feedback strategy is used to construct a nonlinear adaptive control algorithm that can guarantee the closed-loop stability and can track the set point curve without steady-state errors.Finally,control simulations and experiments on a nonlinear process with varying time-delay are presented.A number of experimental results validate the efficiency and superiority of this algorithm.

  9. A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings

    Science.gov (United States)

    Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.

    1996-01-01

    A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.

  10. A BPTT-like Min-Max Optimal Control Algorithm for Nonlinear Systems

    Science.gov (United States)

    Milić, Vladimir; Kasać, Josip; Majetić, Dubravko; Šitum, Željko

    2010-09-01

    This paper presents a conjugate gradient-based algorithm for feedback min-max optimal control of nonlinear systems. The algorithm has a backward-in-time recurrent structure similar to the back propagation through time (BPTT) algorithm. The control law is given as the output of the one-layer neural network. Main contribution of the paper includes the integration of BPTT techniques, conjugate gradient methods, Adams method for solving ODEs and automatic differentiation (AD), to provide an effective, novel algorithm for solving numerically optimally min-max control problems. The proposed algorithm is applied to the rotational/translational actuator (RTAC) nonlinear benchmark problem with control and state vector constraints.

  11. Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems.

    Science.gov (United States)

    Li, Zhaoying; Zhou, Wenjie; Liu, Hao

    2016-09-01

    This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach.

  12. Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems.

    Science.gov (United States)

    Dai, Shi-Lu; Wang, Cong; Wang, Min

    2014-01-01

    This paper studies the problem of learning from adaptive neural network (NN) control of a class of nonaffine nonlinear systems in uncertain dynamic environments. In the control design process, a stable adaptive NN tracking control design technique is proposed for the nonaffine nonlinear systems with a mild assumption by combining a filtered tracking error with the implicit function theorem, input-to-state stability, and the small-gain theorem. The proposed stable control design technique not only overcomes the difficulty in controlling nonaffine nonlinear systems but also relaxes constraint conditions of the considered systems. In the learning process, the partial persistent excitation (PE) condition of radial basis function NNs is satisfied during tracking control to a recurrent reference trajectory. Under the PE condition and an appropriate state transformation, the proposed adaptive NN control is shown to be capable of acquiring knowledge on the implicit desired control input dynamics in the stable control process and of storing the learned knowledge in memory. Subsequently, an NN learning control design technique that effectively exploits the learned knowledge without re-adapting to the controller parameters is proposed to achieve closed-loop stability and improved control performance. Simulation studies are performed to demonstrate the effectiveness of the proposed design techniques.

  13. Passivation and control of partially known SISO nonlinear systems via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    Reyes-Reyes J.

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  14. Controllable spatiotemporal nonlinear effects in multimode fibres

    Science.gov (United States)

    Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.

    2015-05-01

    Multimode fibres are of interest for next-generation telecommunications systems and the construction of high-energy fibre lasers. However, relatively little work has explored nonlinear pulse propagation in multimode fibres. Here, we consider highly nonlinear ultrashort pulse propagation in the anomalous-dispersion regime of a graded-index multimode fibre. Low modal dispersion and strong nonlinear coupling between the fibre's many spatial modes result in interesting behaviour. We observe spatiotemporal effects reminiscent of nonlinear optics in bulk media—self-focusing and multiple filamentation—at a fraction of the usual power. By adjusting the spatial initial conditions, we generate on-demand, megawatt, ultrashort pulses tunable between 1,550 and 2,200 nm dispersive waves over one octave; intense combs of visible light; and a multi-octave-spanning supercontinuum. Our results indicate that multimode fibres present unique opportunities for observing new spatiotemporal dynamics and phenomena. They also enable the realization of a new type of tunable, broadband fibre source that could be useful for many applications.

  15. Control Law Design for Propofol Infusion to Regulate Depth of Hypnosis: A Nonlinear Control Strategy

    Science.gov (United States)

    Khaqan, Ali; Bilal, Muhammad; Ilyas, Muhammad; Ijaz, Bilal; Ali Riaz, Raja

    2016-01-01

    Maintaining the depth of hypnosis (DOH) during surgery is one of the major objectives of anesthesia infusion system. Continuous administration of Propofol infusion during surgical procedures is essential but increases the undue load of an anesthetist in operating room working in a multitasking setup. Manual and target controlled infusion (TCI) systems are not good at handling instabilities like blood pressure changes and heart rate variability arising due to interpatient variability. Patient safety, large interindividual variability, and less postoperative effects are the main factors to motivate automation in anesthesia. The idea of automated system for Propofol infusion excites the control engineers to come up with a more sophisticated and safe system that handles optimum delivery of drug during surgery and avoids postoperative effects. In contrast to most of the investigations with linear control strategies, the originality of this research work lies in employing a nonlinear control technique, backstepping, to track the desired hypnosis level of patients during surgery. This effort is envisioned to unleash the true capabilities of this nonlinear control technique for anesthesia systems used today in biomedical field. The working of the designed controller is studied on the real dataset of five patients undergoing surgery. The controller tracks the desired hypnosis level within the acceptable range for surgery. PMID:27293475

  16. Control Law Design for Propofol Infusion to Regulate Depth of Hypnosis: A Nonlinear Control Strategy

    Directory of Open Access Journals (Sweden)

    Ali Khaqan

    2016-01-01

    Full Text Available Maintaining the depth of hypnosis (DOH during surgery is one of the major objectives of anesthesia infusion system. Continuous administration of Propofol infusion during surgical procedures is essential but increases the undue load of an anesthetist in operating room working in a multitasking setup. Manual and target controlled infusion (TCI systems are not good at handling instabilities like blood pressure changes and heart rate variability arising due to interpatient variability. Patient safety, large interindividual variability, and less postoperative effects are the main factors to motivate automation in anesthesia. The idea of automated system for Propofol infusion excites the control engineers to come up with a more sophisticated and safe system that handles optimum delivery of drug during surgery and avoids postoperative effects. In contrast to most of the investigations with linear control strategies, the originality of this research work lies in employing a nonlinear control technique, backstepping, to track the desired hypnosis level of patients during surgery. This effort is envisioned to unleash the true capabilities of this nonlinear control technique for anesthesia systems used today in biomedical field. The working of the designed controller is studied on the real dataset of five patients undergoing surgery. The controller tracks the desired hypnosis level within the acceptable range for surgery.

  17. Nonlinear systems identification and control via dynamic multitime scales neural networks.

    Science.gov (United States)

    Fu, Zhi-Jun; Xie, Wen-Fang; Han, Xuan; Luo, Wei-Dong

    2013-11-01

    This paper deals with the adaptive nonlinear identification and trajectory tracking via dynamic multilayer neural network (NN) with different timescales. Two NN identifiers are proposed for nonlinear systems identification via dynamic NNs with different timescales including both fast and slow phenomenon. The first NN identifier uses the output signals from the actual system for the system identification. In the second NN identifier, all the output signals from nonlinear system are replaced with the state variables of the NNs. The online identification algorithms for both NN identifier parameters are proposed using Lyapunov function and singularly perturbed techniques. With the identified NN models, two indirect adaptive NN controllers for the nonlinear systems containing slow and fast dynamic processes are developed. For both developed adaptive NN controllers, the trajectory errors are analyzed and the stability of the systems is proved. Simulation results show that the controller based on the second identifier has better performance than that of the first identifier.

  18. Observer-based robust control of one-sided Lipschitz nonlinear systems.

    Science.gov (United States)

    Ahmad, Sohaira; Rehan, Muhammad; Hong, Keum-Shik

    2016-11-01

    This paper presents an observer-based controller design for the class of nonlinear systems with time-varying parametric uncertainties and norm-bounded disturbances. The design methodology, for the less conservative one-sided Lipschitz nonlinear systems, involves astute utilization of Young's inequality and several matrix decompositions. A sufficient condition for simultaneous extraction of observer and controller gains is stipulated by a numerically tractable set of convex optimization conditions. The constraints are handled by a nonlinear iterative cone-complementary linearization method in obtaining gain matrices. Further, an observer-based control technique for one-sided Lipschitz nonlinear systems, robust against L2-norm-bounded perturbations, is contrived. The proposed methodology ensures robustness against parametric uncertainties and external perturbations. Simulation examples demonstrating the effectiveness of the proposed methodologies are presented.

  19. Automated control of optical polarization for nonlinear microscopy

    Science.gov (United States)

    Brideau, Craig; Stys, Peter K.

    2012-03-01

    Laser-scanning non-linear optical techniques such as multi-photon fluorescence excitation microscopy (MPM), Second/ Third Harmonic Generation (SHG/THG), and Coherent Anti-Stokes Raman Scattering (CARS) are being utilized in research laboratories worldwide. The efficiencies of these non-linear effects are dependent on the polarization state of the excitation light relative to the orientation of the sample being imaged. In highly ordered anisotropic biological samples this effect can become pronounced and the excitation polarization can have a dramatic impact on imaging experiments. Therefore, controlling the polarization state of the exciting light is important; however this is challenging when the excitation light passes through a complex optical system. In a typical laser-scanning microscope, components such as the dichroic filters, lenses, and even mirrors can alter the polarization state of a laser beam before it reaches the sample. We present an opto-mechanical solution to compensate for the polarization effects of an optical path, and to precisely program the polarization state of the exciting laser light. The device and accompanying procedures allow the delivery of precise laser polarization states at constant average power levels to a sample during an imaging experiment.

  20. Nonlinear Multiscale Transformations: From Synchronization to Error Control

    Science.gov (United States)

    2001-07-01

    Donat Dept. Matematica Aplicada, University of Valencia, Spain. arandiga@uv. es donat uv. es Abstract Data-dependent interpolatory techniques can be used...Numer. Algorith. 23, 175-216, 2000. 5. F. Arhndiga, R. Donat, and A. Harten. Multiresolution based on weighted averages of the hat function II : Nonlinear...transforms for image coding via lifting scheme. submitted to IEEE Trans. on Image Nonlinear multiscale transformations 313 Method II ’ 1 I ŕ, 11蕀 r

  1. Stabilization and Control Models of Systems With Hysteresis Nonlinearities

    Directory of Open Access Journals (Sweden)

    Mihail E. Semenov

    2012-05-01

    Full Text Available Mechanical and economic systems with hysteresis nonlinearities are studied in article. Dissipativity condition of inverted pendulum under the hysteresis control is obtained. The solution of the optimal production strategy problem was found where price has hysteresis behaviour.

  2. Approximate viability for nonlinear evolution inclusions with application to controllability

    Directory of Open Access Journals (Sweden)

    Omar Benniche

    2016-12-01

    Full Text Available We investigate approximate viability for a graph with respect to fully nonlinear quasi-autonomous evolution inclusions. As application, an approximate null controllability result is given.

  3. Robust adaptive control of nonlinearly parameterized systems with unmodeled dynamics

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-sheng; CHEN Jiang; LI Xing-yuan

    2006-01-01

    Many physical systems such as biochemical processes and machines with friction are of nonlinearly parameterized systems with uncertainties.How to control such systems effectively is one of the most challenging problems.This paper presents a robust adaptive controller for a significant class of nonlinearly parameterized systems.The controller can be used in cases where there exist parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The design of the controller is based on the control Lyapunov function method.A dynamic signal is introduced and adaptive nonlinear damping terms are used to restrain the effects of unmodeled dynamics,nonlinear uncertainties and unknown bounded disturbances.The backstepping procedure is employed to overcome the complexity in the design.With the proposed method,the estimation of the unknown parameters of the system is not required and there is only one adaptive parameter no matter how high the order of the system is and how many unknown parameters.there are.It is proved theoretically that the proposed robust adaptive control scheme guarantees the stability of nonlinearly parameterized system.Furthermore,all the states approach the equilibrium in arbitrary precision by choosing some design constants appropriately.Simulation results illustrate the effectiveness of the proposed robust adaptive controller.

  4. Nonlinear Observers for Gyro Calibration Coupled with a Nonlinear Control Algorithm

    Science.gov (United States)

    Thienel, Julie; Sanner, Robert M.

    2003-01-01

    Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The observers are then combined. The convergence properties of all three observers, and the combined observers, are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.

  5. Optimal nonlinear feedback control of quasi-Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    1999-01-01

    An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.

  6. Nonlinear inversion flight control for a supermaneuverable aircraft

    Science.gov (United States)

    Snell, S. Antony; Garrard, William L., Jr.; Enns, Dale F.

    1990-01-01

    This paper describes the use of nonlinear dynamic inversion for the design of a flight control system for a supermaneuverable aircraft. First, the dynamics to be controlled were separated into fast and slow variables. The fast variables were the angular rates and the slow variables were the attitude angles. Then a nonlinear inversion controller was designed for the fast variables. This stabilized the longitudinal short-period and improved the lateral-directional responses over a wide range of angle of attack by making use of a combination for aerodynamic surfaces and thrust vectoring control. Outer loops were then closed to allow the pilot to control the slow dynamics, the angle of attack, side-slip angle and the velocity bank angle. Nonlinear inversion was also used to design of the outer loop control laws. The dynamic inversion control laws were compared with more conventional, gain-scheduled control laws and were shown to yield much better performance.

  7. Nonlinear identification and control a neural network approach

    CERN Document Server

    Liu, G P

    2001-01-01

    The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies . . . , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series otTers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The time for nonlinear control to enter routine application seems to be approaching. Nonlinear control has had a long gestation period but much ofthe past has been concerned with methods that involve formal nonlinear functional model representations. It seems more likely that the breakthough will come through the use of other more flexible and ame...

  8. Reconstructing the Nonlinear Dynamical Systems by Evolutionary Computation Techniques

    Institute of Scientific and Technical Information of China (English)

    LIU Minzhong; KANG Lishan

    2006-01-01

    We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems ). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.

  9. Nonlinear Spectral-Spatial Control and Localization of Supercontinuum Radiation

    Science.gov (United States)

    Neshev, Dragomir N.; Sukhorukov, Andrey A.; Dreischuh, Alexander; Fischer, Robert; Ha, Sangwoo; Bolger, Jeremy; Bui, Lam; Krolikowski, Wieslaw; Eggleton, Benjamin J.; Mitchell, Arnan; Austin, Michael W.; Kivshar, Yuri S.

    2007-09-01

    We present the first observation of spatiospectral control and localization of supercontinuum light through the nonlinear interaction of spectral components in extended periodic structures. We use an array of optical waveguides in a LiNbO3 crystal and employ the interplay between diffraction and nonlinearity to dynamically control the output spectrum of the supercontinuum radiation. This effect presents an efficient scheme for optically tunable spectral filtering of supercontinua.

  10. A Unified Pseudospectral Framework for Nonlinear Controller and Observer Design

    OpenAIRE

    Gong, Qi; Ross, I. Michael; Kang,Wei

    2007-01-01

    Proceedings of the 2007 American Control Conference Marriott Marquis Hotel at Times Square New York City, USA, July 11-13, 2007 As a result of significant progress in pseudospectral methods for real-time dynamic optimization, it has become apparent in recent years that it is possible to present a unified framework for both controller and observer design. In this paper, we present such an approach for nonlinear systems. The method can be applied to a wide variety of nonlinear systems....

  11. Research on Robust Control of Nonlinear Fuzzy VSS for Spacecraft

    Institute of Scientific and Technical Information of China (English)

    DONG Shou-quan; BI Kai-bo

    2007-01-01

    The nonlinear dynamic system of spacecraft with uncertainty and coupling is analyzed and its general dynamical equation is given. The decoupling-ability and controllability are proved. Aiming at this system, a new nonlinear decoupling controlling method is put forward by synthetically using the variable structure and fuzzy theory. The simulation results show that this method is effective in tracking performances under the existence of uncertainty and outer disturbance.

  12. Fuzzy Sliding Mode Control for Discrete Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    F.Qiao.Q.M.Zhu; A.Winfield; C.Melhuish

    2003-01-01

    Sliding mode control is introduced into classical model free fuzzy logic control for discrete time nonlinear systems with uncertainty to the design of a novel fuzzy sliding mode control to meet the requirement of necessary and sufficient reaching conditions of sliding mode control. The simulation results show that the proposed controller outperforms the original fuzzy sliding mode controller and the classical fuzzy logic controller in stability, convergence and robustness.

  13. Nonlinear Integral Sliding Mode Control for a Second Order Nonlinear System

    Directory of Open Access Journals (Sweden)

    Xie Zheng

    2015-01-01

    Full Text Available A nonlinear integral sliding-mode control (NISMC scheme is proposed for second order nonlinear systems. The new control scheme is characterized by a nonlinear integral sliding manifold which inherits the desired properties of the integral sliding manifold, such as robustness to system external disturbance. In particular, compared with four kinds of sliding mode control (SMC, the proposed control scheme is able to provide better transient performances. Furthermore, the proposed scheme ensures the zero steady-state error in the presence of a constant disturbance or an asymptotically constant disturbance is proved by Lyapunov stability theory and LaSalle invariance principle. Finally, both the theoretical analysis and simulation examples demonstrate the validity of the proposed scheme.

  14. The constructive technique and its application in solving a nonlinear reaction diffusion equation

    Institute of Scientific and Technical Information of China (English)

    Lai Shao-Yong; Guo Yun-Xi; Qing Yin; Wu Yong-Hong

    2009-01-01

    A mathematical technique based on the consideration of a nonlinear partial differential equation together with an additional condition in the form of an ordinary differential equation is employed to study a nonlinear reaction diffusion equation which describes a real process in physics and in chemistry. Several exact solutions for the equation are acquired under certain circumstances.

  15. Adaptive Neural Control Design For a Class of Nonlinear Time-delay Systems

    Institute of Scientific and Technical Information of China (English)

    FENG Ling-ling; ZHANG Wei

    2014-01-01

    This paper proposes an indirect adaptive neural control scheme for a class of nonlinear systems with time delays. Based on the backstepping technique and Lyapunov–Krasovskii functional method are combined to construct the indirect adaptive neural controller. The proposed indirect adaptive neural controller guarantees that the state variables converge to a small neighborhood of the origin and all the signals of the closed-loop system are bounded. Finally, an example is used to show the effectiveness of the proposed control strategy.

  16. Linear iterative technique for solution of nonlinear thermal network problems

    Energy Technology Data Exchange (ETDEWEB)

    Seabourn, C.M.

    1976-11-01

    A method for rapid and accurate solution of linear and/or nonlinear thermal network problems is described. It is a matrix iterative process that converges for nodal temperatures and variations of thermal conductivity with temperature. The method is computer oriented and can be changed easily for design studies.

  17. Adaptive Neural Tracking Control for a Class of Nonlinear Systems With Dynamic Uncertainties.

    Science.gov (United States)

    Wang, Huanqing; Shi, Peng; Li, Hongyi; Zhou, Qi

    2016-09-22

    This paper considers the problem of adaptive neural control of nonlower triangular nonlinear systems with unmodeled dynamics and dynamic disturbances. The design difficulties appeared in the unmodeled dynamics and nonlower triangular form are handled with a dynamic signal and a variable partition technique for the nonlinear functions of all state variables, respectively. It is shown that the proposed controller is able to ensure the semi-global boundedness of all signals of the resulting closed-loop system. Furthermore, the system output is ensured to converge to a small domain of the given trajectories. The main advantage about this research is that a neural networks-based tracking control method is developed for uncertain nonlinear systems with unmodeled dynamics and nonlower triangular form. Simulation results demonstrate the feasibility of the newly presented design techniques.

  18. Digital control of high performance aircraft using adaptive estimation techniques

    Science.gov (United States)

    Van Landingham, H. F.; Moose, R. L.

    1977-01-01

    In this paper, an adaptive signal processing algorithm is joined with gain-scheduling for controlling the dynamics of high performance aircraft. A technique is presented for a reduced-order model (the longitudinal dynamics) of a high performance STOL aircraft. The actual controller views the nonlinear behavior of the aircraft as equivalent to a randomly switching sequence of linear models taken from a preliminary piecewise-linear fit of the system nonlinearities. The adaptive nature of the estimator is necessary to select the proper sequence of linear models along the flight trajectory. Nonlinear behavior is approximated by effective switching of the linear models at random times, with durations reflecting aircraft motion in response to pilot commands.

  19. Nonlinear propagation and control of acoustic waves in phononic superlattices

    CERN Document Server

    Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J

    2015-01-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.

  20. Contribution to stability analysis of nonlinear control systems

    Directory of Open Access Journals (Sweden)

    Švarc Ivan

    2003-12-01

    Full Text Available The Popov criterion for the stability of nonlinear control systems is considered. The Popov criterion gives sufficient conditions for stability of nonlinear systems in the frequency domain. It has a direct graphical interpretation and is convenient for both design and analysis. In the article presented, a table of transfer functions of linear parts of nonlinear systems is constructed. The table includes frequency response functions and offers solutions to the stability of the given systems. The table makes a direct stability analysis of selected nonlinear systems possible. The stability analysis is solved analytically and graphically.Then it is easy to find out if the nonlinear system is or is not stable; the task that usually ranks among the difficult task in engineering practice.

  1. Nonlinear control of chaotic systems:A switching manifold approach

    Directory of Open Access Journals (Sweden)

    Jin-Qing Fang

    2000-01-01

    Full Text Available In this paper, a switching manifold approach is developed for nonlinear feed-back control of chaotic systems. The design strategy is straightforward, and the nonlinear control law is the simple bang–bang control. Yet, this control method is very effective; for instance, several desired equilibria can be stabilized by using one control law with different initial conditions. Its effectiveness is verified by both theoretical analysis and numerical simulations. The Lorenz system simulation is shown for the purpose of illustration.

  2. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    Science.gov (United States)

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  3. Nonlinear Burn Control and Operating Point Optimization in ITER

    Science.gov (United States)

    Boyer, Mark; Schuster, Eugenio

    2013-10-01

    Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

  4. Nonlinear analysis of vehicle control actuations based on controlled invariant sets

    Directory of Open Access Journals (Sweden)

    Németh Balázs

    2016-03-01

    Full Text Available In the paper, an analysis method is applied to the lateral stabilization problem of vehicle systems. The aim is to find the largest state-space region in which the lateral stability of the vehicle can be guaranteed by the peak-bounded control input. In the analysis, the nonlinear polynomial sum-of-squares programming method is applied. A practical computation technique is developed to calculate the maximum controlled invariant set of the system. The method calculates the maximum controlled invariant sets of the steering and braking control systems at various velocities and road conditions. Illustration examples show that, depending on the environments, different vehicle dynamic regions can be reached and stabilized by these controllers. The results can be applied to the theoretical basis of their interventions into the vehicle control system.

  5. Adaptive neural control of non-affine pure-feedback non-linear systems with input nonlinearity and perturbed uncertainties

    Science.gov (United States)

    Zhang, Tian-Ping; Zhu, Qing; Yang, Yue-Quan

    2012-04-01

    In this article, two robust adaptive control schemes are investigated for a class of completely non-affine pure-feedback non-linear systems with input non-linearity and perturbed uncertainties using radial basis function neural networks (RBFNNs). Based on the dynamic surface control (DSC) technique and using the quadratic Lyapunov function, the explosion of complexity in the traditional backstepping design is avoided when the gain signs are known. In addition, the unknown virtual gain signs are dealt with using the Nussbaum functions. Using the mean value theorem and Young's inequality, only one learning parameter needs to be tuned online at each step of recursion. It is proved that the proposed design method is able to guarantee semi-global uniform ultimate boundedness (SGUUB) of all signals in the closed-loop system. Simulation results verify the effectiveness of the proposed approach.

  6. Sliding mode control of switching power converters techniques and implementation

    CERN Document Server

    Tan, Siew-Chong; Tse, Chi-Kong

    2011-01-01

    Sliding Mode Control of Switching Power Converters: Techniques and Implementation is perhaps the first in-depth account of how sliding mode controllers can be practically engineered to optimize control of power converters. A complete understanding of this process is timely and necessary, as the electronics industry moves toward the use of renewable energy sources and widely varying loads that can be adequately supported only by power converters using nonlinear controllers.Of the various advanced control methods used to handle the complex requirements of power conversion systems, sliding mode c

  7. Picosecond optical nonlinearities in symmetrical and unsymmetrical phthalocyanines studied using the Z-scan technique

    Indian Academy of Sciences (India)

    S Venugopal Rao; P T Anusha; L Giribabu; Surya P Tewari

    2010-11-01

    We present our experimental results on the picosecond nonlinear optical (NLO) studies of symmetrical and unsymmetrical phthalocyanines, examined using the Z-scan technique. Both the open-aperture and closed-aperture Z-scan curves for three samples were recorded and the nonlinear coefficients were extracted from the theoretical fits. The nonlinear absorption/refraction contribution from the solvent was also identified. The observed open aperture behaviour for these molecules is understood in terms of the absorption coefficients of these molecules near 800 nm and the peak intensities used. It is established that these phthalocyanines exhibit large optical nonlinearities and, hence, are suitable for optical limiting applications.

  8. Comparative Results on 3D Navigation of Quadrotor using two Nonlinear Model based Controllers

    Science.gov (United States)

    Bouzid, Y.; Siguerdidjane, H.; Bestaoui, Y.

    2017-01-01

    Recently the quadrotors are being increasingly employed in both military and civilian areas where a broad range of nonlinear flight control techniques are successfully implemented. With this advancement, it has become necessary to investigate the efficiency of these flight controllers by studying theirs features and compare their performance. In this paper, the control of Unmanned Aerial Vehicle (UAV) quadrotor, using two different approaches, is presented. The first controller is Nonlinear PID (NLPID) whilst the second one is Nonlinear Internal Model Control (NLIMC) that are used for the stabilization as well as for the 3D trajectory tracking. The numerical simulations have shown satisfactory results using nominal system model or disturbed model for both of them. The obtained results are analyzed with respect to several criteria for the sake of comparison.

  9. Nonlinear closed loop optimal control: a modified state-dependent Riccati equation.

    Science.gov (United States)

    Rafee Nekoo, S

    2013-03-01

    The state-dependent Riccati equation (SDRE), as a controller, has been introduced and implemented since the 90s. In this article, the other aspects of this controller are declared which shows the capability of this technique. First, a general case which has control nonlinearities and time varying weighting matrix Q is solved with three approaches: exact solution (ES), online control update (OCU) and power series approximation (PSA). The proposed PSA in this paper is able to deal with time varying or state-dependent Q in nonlinear systems. As a result of having the solution of nonlinear systems with complex Q containing constraints, using OCU and proposed PSA, a method is introduced to prevent the collision of an end-effector of a robot and an obstacle which shows the adaptability of the SDRE controller. Two examples to support the idea are presented and conferred. Supplementing constraints to the SDRE via matrix Q, this approach is named a modified SDRE.

  10. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2016-05-02

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  11. Quantized pressure control in large-scale nonlinear hydraulic networks

    NARCIS (Netherlands)

    Persis, Claudio De; Kallesøe, Carsten Skovmose; Jensen, Tom Nørgaard

    2010-01-01

    It was shown previously that semi-global practical pressure regulation at designated points of a large-scale nonlinear hydraulic network is guaranteed by distributed proportional controllers. For a correct implementation of the control laws, each controller, which is located at these designated poin

  12. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  13. Neural Feedback Passivity of Unknown Nonlinear Systems via Sliding Mode Technique.

    Science.gov (United States)

    Yu, Wen

    2015-07-01

    Passivity method is very effective to analyze large-scale nonlinear systems with strong nonlinearities. However, when most parts of the nonlinear system are unknown, the published neural passivity methods are not suitable for feedback stability. In this brief, we propose a novel sliding mode learning algorithm and sliding mode feedback passivity control. We prove that for a wide class of unknown nonlinear systems, this neural sliding mode control can passify and stabilize them. This passivity method is validated with a simulation and real experiment tests.

  14. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.

    Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  15. Nonlinear Control of Heart Rate Variability in Human Infants

    Science.gov (United States)

    Sugihara, George; Allan, Walter; Sobel, Daniel; Allan, Kenneth D.

    1996-03-01

    Nonlinear analyses of infant heart rhythms reveal a marked rise in the complexity of the electrocardiogram with maturation. We find that normal mature infants (gestation >= 35 weeks) have complex and distinctly nonlinear heart rhythms (consistent with recent reports for healthy adults) but that such nonlinearity is lacking in preterm infants (gestation parasympathetic-sympathetic interaction and function are presumed to be less well developed. Our study further shows that infants with clinical brain death and those treated with atropine exhibit a similar lack of nonlinear feedback control. These three lines of evidence support the hypothesis championed by Goldberger et al. [Goldberger, A. L., Rigney, D. R. & West, B. J. (1990) Sci. Am. 262, 43-49] that autonomic nervous system control underlies the nonlinearity and possible chaos of normal heart rhythms. This report demonstrates the acquisition of nonlinear heart rate dynamics and possible chaos in developing human infants and its loss in brain death and with the administration of atropine. It parallels earlier work documenting changes in the variability of heart rhythms in each of these cases and suggests that nonlinearity may provide additional power in characterizing physiological states.

  16. Tracking Control for Switched Cascade Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dong

    2015-01-01

    Full Text Available The issue of H∞ output tracking for switched cascade nonlinear systems is discussed in this paper, where not all the linear parts of subsystems are stabilizable. The conditions of the solvability for the issue are given by virtue of the structural characteristics of the systems and the average dwell time method, in which the total activation time for stabilizable subsystems is longer than that for the unstabilizable subsystems. At last, a simulation example is used to demonstrate the validity and advantages of the proposed approach.

  17. Data Analysis Techniques for Resolving Nonlinear Processes in Plasmas : a Review

    OpenAIRE

    de Wit, T. Dudok

    1996-01-01

    The growing need for a better understanding of nonlinear processes in plasma physics has in the last decades stimulated the development of new and more advanced data analysis techniques. This review lists some of the basic properties one may wish to infer from a data set and then presents appropriate analysis techniques with some recent applications. The emphasis is put on the investigation of nonlinear wave phenomena and turbulence in space plasmas.

  18. A SELF-ADAPTIVE TECHNIQUE FOR A KIND OF NONLINEAR CONJUGATE GRADIENT METHODS

    Institute of Scientific and Technical Information of China (English)

    王丽平

    2004-01-01

    Conjugate gradient methods. are a class of important methods for unconstrained optimization, especially when the dimension is large. In 2001, Dai and Liao have proposed a new conjugate condition, based on it two nonlinear conjugate gradient methods are constructed. With trust region idea, this paper gives a self-adaptive technique for the two methods. The numerical results show that this technique works well for the given nonlinear optimization test problems.

  19. Characterization of nonlinear ultrasonic effects using the dynamic wavelet fingerprint technique

    Science.gov (United States)

    Lv, Hongtao; Jiao, Jingpin; Meng, Xiangji; He, Cunfu; Wu, Bin

    2017-02-01

    An improved dynamic wavelet fingerprint (DWFP) technique was developed to characterize nonlinear ultrasonic effects. The white area in the fingerprint was used as the nonlinear feature to quantify the degree of damage. The performance of different wavelet functions, the effect of scale factor and white subslice ratio on the nonlinear feature extraction were investigated, and the optimal wavelet function, scale factor and white subslice ratio for maximum damage sensitivity were determined. The proposed DWFP method was applied to the analysis of experimental signals obtained from nonlinear ultrasonic harmonic and wave-mixing experiments. It was demonstrated that the proposed DWFP method can be used to effectively extract nonlinear features from the experimental signals. Moreover, the proposed nonlinear fingerprint coefficient was sensitive to micro cracks and correlated well with the degree of damage.

  20. Nonlinear Predictive Control for PEMFC Stack Operation Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.

  1. Nonlinear Direct Robust Adaptive Control Using Lyapunov Method

    Directory of Open Access Journals (Sweden)

    Chunbo Xiu

    2013-07-01

    Full Text Available    The problem of robust adaptive stabilization of a class of multi-input nonlinear systems with arbitrary unknown parameters and unknown structure of bounded variation have been considered. By employing the direct adaptive and control Lyapunov function method, a robust adaptive controller is designed to complete the globally adaptive stability of the system states. By employing our result, a kind of nonlinear system is analyzed, the concrete form of the control law is given and the meaningful quadratic control Lyapunov function for the system is constructed. Simulation of parallel manipulator is provided to illustrate the effectiveness of the proposed method.

  2. A non-linear UAV altitude PSO-PD control

    Science.gov (United States)

    Orlando, Calogero

    2015-12-01

    In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.

  3. Robust stabilization for a class of nonlinear networked control systems

    Institute of Scientific and Technical Information of China (English)

    Jinfeng GAO; Hongye SU; Xiaofu JI; Jian CHU

    2008-01-01

    The problem of robust stabilization for a class of uncertain networked control systems(NCSs)with nonlinearities satisfying a given sector condition is investigated in this paper.By introducing a new model of NCSs with parameter uncertainty,network.induced delay,nonlinearity and data packet dropout in the transmission,a strict linear matrix inequality(LMI)criterion is proposed for robust stabilization of the uncenmn nonlinear NCSs based on the Lyapunov stability theory.The maximum allowable transfer interval(MATI)can be derived by solving the feasibility problem of the corresponding LMI.Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.

  4. Control design approaches for nonlinear systems using multiple models

    Institute of Scientific and Technical Information of China (English)

    Junyong ZHAI; Shumin FEI; Feipeng DA

    2007-01-01

    It is difficult to realize control for some complex nonlinear systems operated in different operating regions.Based on developing local models for different operating regions of the process, a novel algorithm using multiple models is proposed. It utilizes dynamic model bank to establish multiple local models, and their membership functions are defined according to respective regions. Then the nonlinear system is approximated to a weighted combination of the local models.The stability of the nonlinear system is proven. Finally, simulations are given to demonstrate the validity of the proposed method.

  5. An approximation theory for nonlinear partial differential equations with applications to identification and control

    Science.gov (United States)

    Banks, H. T.; Kunisch, K.

    1982-01-01

    Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.

  6. Fast numerical methods for mixed-integer nonlinear model-predictive control

    CERN Document Server

    Kirches, Christian

    2011-01-01

    Christian Kirches develops a fast numerical algorithm of wide applicability that efficiently solves mixed-integer nonlinear optimal control problems. He uses convexification and relaxation techniques to obtain computationally tractable reformulations for which feasibility and optimality certificates can be given even after discretization and rounding.

  7. ADAPTIVE H-INFINITY CONTROL OF A CLASS OF UNCERTAIN NONLINEAR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    MU Xiao-wu; GUO Xiao-li; CHENG Gui-fang

    2006-01-01

    It is concerned with the problem of disturbance attenuation with stability for uncertain nonlinear systems by adaptive output feedback. By a partial-state observer and Backstepping technique, an adaptive output feedback controller was constructed, which can solve the standard gain disturbance attenuation problem with internal stability.

  8. On global controllability of affine nonlinear systems with a triangular-like structure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we investigate a class of affine nonlinear systems with a triangular-like structure and present its necessary and sufficient condition for global controllability,by using the techniques developed by Sun Yimin and Guo Lei recently.Furthermore,we will give two examples to illustrate its application.

  9. Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.

    Science.gov (United States)

    Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G

    2016-07-01

    We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.

  10. Variable structure control of nonlinear systems through simplified uncertain models

    Science.gov (United States)

    Sira-Ramirez, Hebertt

    1986-01-01

    A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.

  11. Mathematical Systems Theory : from Behaviors to Nonlinear Control

    CERN Document Server

    Julius, A; Pasumarthy, Ramkrishna; Rapisarda, Paolo; Scherpen, Jacquelien

    2015-01-01

    This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The first volume of this two-volume work covers a variety of topics related to nonlinear and hybrid control systems. After giving a detailed account of the state of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of nonlinear and hybrid control systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the worksho...

  12. Galerkin approximations of nonlinear optimal control problems in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Mickael D. Chekroun

    2017-07-01

    Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.

  13. Intelligent Tracking Control for a Class of Uncertain High-Order Nonlinear Systems.

    Science.gov (United States)

    Zhao, Xudong; Shi, Peng; Zheng, Xiaolong; Zhang, Jianhua

    2016-09-01

    This brief is concerned with the problem of intelligent tracking control for a class of high-order nonlinear systems with completely unknown nonlinearities. An intelligent adaptive control algorithm is presented by combining the adaptive backstepping technique with the neural networks' approximation ability. It is shown that the practical output tracking performance of the system is achieved using the proposed state-feedback controller under two mild assumptions. In particular, by introducing a parameter in the derivations, the tracking error between the time-varying target signal and the output can be reduced via tuning the controller design parameters. Moreover, in order to solve the problem of overparameterization, which is a common issue in adaptive control design, a controller with one adaptive law is also designed. Finally, simulation results are given to show the effectiveness of the theoretical approaches and the potential of the proposed new design techniques.

  14. Distributed Adaptive Containment Control for a Class of Nonlinear Multiagent Systems With Input Quantization.

    Science.gov (United States)

    Wang, Chenliang; Wen, Changyun; Hu, Qinglei; Wang, Wei; Zhang, Xiuyu

    2017-05-05

    This paper is devoted to distributed adaptive containment control for a class of nonlinear multiagent systems with input quantization. By employing a matrix factorization and a novel matrix normalization technique, some assumptions involving control gain matrices in existing results are relaxed. By fusing the techniques of sliding mode control and backstepping control, a two-step design method is proposed to construct controllers and, with the aid of neural networks, all system nonlinearities are allowed to be unknown. Moreover, a linear time-varying model and a similarity transformation are introduced to circumvent the obstacle brought by quantization, and the controllers need no information about the quantizer parameters. The proposed scheme is able to ensure the boundedness of all closed-loop signals and steer the containment errors into an arbitrarily small residual set. The simulation results illustrate the effectiveness of the scheme.

  15. Hierarchical robust nonlinear switching control design for propulsion systems

    Science.gov (United States)

    Leonessa, Alexander

    1999-09-01

    The desire for developing an integrated control system- design methodology for advanced propulsion systems has led to significant activity in modeling and control of flow compression systems in recent years. In this dissertation we develop a novel hierarchical switching control framework for addressing the compressor aerodynamic instabilities of rotating stall and surge. The proposed control framework accounts for the coupling between higher-order modes while explicitly addressing actuator rate saturation constraints and system modeling uncertainty. To develop a hierarchical nonlinear switching control framework, first we develop generalized Lyapunov and invariant set theorems for nonlinear dynamical systems wherein all regularity assumptions on the Lyapunov function and the system dynamics are removed. In particular, local and global stability theorems are given using lower semicontinuous Lyapunov functions. Furthermore, generalized invariant set theorems are derived wherein system trajectories converge to a union of largest invariant sets contained in intersections over finite intervals of the closure of generalized Lyapunov level surfaces. The proposed results provide transparent generalizations to standard Lyapunov and invariant set theorems. Using the generalized Lyapunov and invariant set theorems, a nonlinear control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving system equilibria is developed. Specifically, using equilibria- dependent Lyapunov functions, a hierarchical nonlinear control strategy is developed that stabilizes a given nonlinear system by stabilizing a collection of nonlinear controlled subsystems. The switching nonlinear controller architecture is designed based on a generalized lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized system equilibria. The proposed framework provides a

  16. A Novel Analog-to-digital conversion Technique using nonlinear duty-cycle modulation

    Directory of Open Access Journals (Sweden)

    Jean Mbihi

    2012-06-01

    Full Text Available A new type of analog-to-digital conversion technique is presented in this paper. The interfacing hardware is a very simple nonlinear circuit with 1-bit modulated output. As a implication, behind the hardware simplicity retained is hidden a dreadful nonlinear duty-cycle modulation ratio. However, the overall nonlinear behavior embeds a sufficiently wide linear range, for a rigorous digital reconstitution of the analog input signal using a standard linear filter. Simulation and experimental results obtained using a well tested prototyping system, show the feasibility and good quality of the proposed conversion technique.

  17. Nondestructive evaluation of notched cracks in mortars by nonlinear ultrasonic technique

    Science.gov (United States)

    Chen, Jun; Ren, Jun; Yin, Tingyuan

    2016-04-01

    In this paper, a nonlinear ultrasonic technique is used to nondestructively characterise concentrated defects in cement-based materials. Cracks are artificially notched in mortar samples and five different crack widths are used to simulate increased damage of samples. The relative ratio of second harmonic amplitude to the square of fundamental ultrasonic signal amplitude is defined as the damage indicator of the nonlinear ultrasonic technique, which is measured for mortar samples in conjunction with a typical linear nondestructive evaluation parameter - ultrasonic pulse velocity. It is found that both linear and nonlinear damage parameters have a good correlation with the change of crack width, while the nonlinearity parameter shows a better sensitivity to the width increase. In addition, the nonlinearity parameter presents an exponential increase with the crack growth, indicating an accelerating nonlinear ultrasonic response of materials to increased internal damage in the late phase. The results demonstrate that the nonlinear ultrasonic technique based on the second harmonic principle keeps the high sensitivity to the isolated cracks in cement-based materials, similarly to the case of distributed cracks in previous studies. The developed technique could thus be a useful experimental tool for the assessment of concentrated damage of concrete structures.

  18. On nonlinear dynamics and control of a robotic arm with chaos

    Directory of Open Access Journals (Sweden)

    Felix J. L. P.

    2014-01-01

    Full Text Available In this paper a robotic arm is modelled by a double pendulum excited in its base by a DC motor of limited power via crank mechanism and elastic connector. In the mathematical model, a chaotic motion was identified, for a wide range of parameters. Controlling of the chaotic behaviour of the system, were implemented using, two control techniques, the nonlinear saturation control (NSC and the optimal linear feedback control (OLFC. The actuator and sensor of the device are allowed in the pivot and joints of the double pendulum. The nonlinear saturation control (NSC is based in the order second differential equations and its action in the pivot/joint of the robotic arm is through of quadratic nonlinearities feedback signals. The optimal linear feedback control (OLFC involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system to a desired periodic orbit, and control a feedback control to bring the trajectory of the system to the desired orbit. Simulation results, including of uncertainties show the feasibility of the both methods, for chaos control of the considered system.

  19. Output Feedback Control for a Class of Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    Keylan Alimhan; Hiroshi Inaba

    2006-01-01

    This paper studies the global stabilization problem by an output controller for a family of uncertain nonlinear systems satisfying some relaxed triangular-type conditions and with dynamics which may not be exactly known. Using a feedback domination design method, we explicitly construct a dynamic output compensator which globally stabilizes such an uncertain nonlinear system. The usefulness of our result is illustrated with an example.

  20. Nonlinear analysis and control of a continuous fermentation process

    DEFF Research Database (Denmark)

    Szederkényi, G.; Kristensen, Niels Rode; Hangos, K.M

    2002-01-01

    open-loop system properties, to explore the possible control difficulties and to select the system output to be used in the control structure. A wide range of controllers are tested including pole placement and LQ controllers, feedback and input–output linearization controllers and a nonlinear...... controller based on direct passivation. The comparison is based on time-domain performance and on investigating the stability region, robustness and tuning possibilities of the controllers. Controllers using partial state feedback of the substrate concentration and not directly depending on the reaction rate...... are recommended for the simple fermenter. Passivity based controllers have been found to be globally stable, not very sensitive to the uncertainties in the reaction rate and controller parameter but they require full nonlinear state feedback....

  1. Lyapunov based nonlinear control of electrical and mechanical systems

    Science.gov (United States)

    Behal, Aman

    fusing a filtered tracking error transformation with the dynamic oscillator design presented in [20]. The proposed tracking controller yields a GUUB result for the regulation problem also. In the final chapter, a nonlinear controller is designed for the kinematic model of an underactuated rigid spacecraft that ensures uniform, ultimately bounded (UUB) tracking provided the initial errors are selected sufficiently small. The result is achieved via a judicious formulation of the spacecraft kinematics and the novel design of a Lyapunov-based controller. It is also demonstrated how standard backstepping control techniques can be fused with the kinematic controller to solve the full-order regulation problem for an axisymmetric spacecraft. Simulation results are included to demonstrate the efficacy of the proposed algorithm. 1It is to be noted that the controller presented in [16] was originally designed to obtain exponential rotor position /rotor flux tracking for the full-order induction motor model (i.e., stator current dynamics are included).

  2. Introduction to the special issue on Advances in intelligent nonlinear control for robotic systems

    Institute of Scientific and Technical Information of China (English)

    Chee Khiang PANG; Huajin TANG; Qing Wei JIA

    2010-01-01

    @@ In the last two decades, robotic systems have achieved wide applications in every aspect of human society, including industrial manufacturing, automotive production, medical devices, and social lives. With the diversity of application do-mains, control techniques have pervaded from industrial robot manipulators, wheeled or legged mobile robots, unmanned autonomous aerial, ground, and underwater vehicles, to humanoid robots, and haptic devices, etc. The growing number of applications of robotics and increasing requirements for system stability, reliability, and safety, are posing new and challenging theoretical and technological problems for modeling and control of these highly nonlinear systems. Control of these complex systems is highly challenging due to the inherent nonlinear response and strong heterogeneity in dif-ferent parts as computers, sensors, hardware objects, etc. As such, novel nonlinear control strategies are essential to the advancement of robotic systems and corresponding technologies.

  3. Nonlinear Electrical Circuit Oscillator Control Based on Backstepping Method: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Mahsa Khoeiniha

    2012-01-01

    Full Text Available This paper investigated study of dynamics of nonlinear electrical circuit by means of modern nonlinear techniques and the control of a class of chaotic system by using backstepping method based on Lyapunov function. The behavior of such nonlinear system when they are under the influence of external sinusoidal disturbances with unknown amplitudes has been considered. The objective is to analyze the performance of this system at different amplitudes of disturbances. We illustrate the proposed approach for controlling duffing oscillator problem to stabilize this system at the equilibrium point. Also Genetic Algorithm method (GA for computing the parameters of controller has been used. GA can be successfully applied to achieve a better controller. Simulation results have shown the effectiveness of the proposed method.

  4. The coordinated control of SVC and excitation of generators in power systems with nonlinear loads

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Yingqin; Wang, Jie [Department of Electrical Engineering, Shanghai Jiaotong University, 1954 Hua Shan Road, Shanghai 200030 (China)

    2005-10-01

    Based on the feedback linearized technique and control of differential and algebraic systems, the exact linearization design is presented in this paper for SVC (static var compensator) and generator excitation controllers in power systems with nonlinear loads. It can improve both the power angle stability of generators and the voltage behavior at the SVC location. Simulation results indicate that this control method has a good effect and superiority. (author)

  5. Nonlinear Robust Control Theory and Applications

    Science.gov (United States)

    1997-01-18

    IEEE Transactions on Automatic Control , pp. 228-238...34Robustness in the presence of mixed parametric uncertainty and unmodelled dynamics," IEEE Transactions on Automatic Control , pp. 25-38, 1991. 8 [10...Letter, 1994. [14] B. Moore, "Principal component analysis of linear systems: Controllability, observ- ability and model reduction," IEEE Transactions on Automatic Control ,

  6. Theory, Methods, and Applications of Nonlinear Control

    Science.gov (United States)

    2012-08-29

    IEEE Transactions on Automatic Control , Volume...tracking control using input-to-state stability,” IEEE Transactions on Automatic Control , Volume 57, Number 5, May 2012, pp. 1320-1326. [MZ12a... Transactions on Automatic Control , Volume 55, Number 4, April 2010, pp. 841-854. 4 [MM10b] Mazenc, F., and M. Malisoff, “Stabilization of

  7. Dichotomy of nonlinear systems: Application to chaos control of nonlinear electronic circuit

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinzhi [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)]. E-mail: jinzhiw@pku.edu.cn; Duan Zhisheng [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China); Huang Lin [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)

    2006-02-27

    In this Letter a new method of chaos control for Chua's circuit and the modified canonical Chua's electrical circuit is proposed by using the results of dichotomy in nonlinear systems. A linear feedback control based on linear matrix inequality (LMI) is given such that chaos oscillation or hyperchaos phenomenon of circuit systems injected control signal disappear. Numerical simulations are presented to illustrate the efficiency of the proposed method.

  8. Nonlinear Control and Discrete Event Systems

    Science.gov (United States)

    Meyer, George; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possesses much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.

  9. Active control of chirality in nonlinear metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yu; Chai, Zhen; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2015-03-02

    An all-optical tunabe chirality is realized in a photonic metamaterial, the metamolecule of which consists of a nonlinear nano-Au:polycrystalline indium-tin oxide layer sandwiched between two L-shaped gold nano-antennas twisted 90° with each other. The maximum circular dichroism reached 30%. Under excitation of a 40 kW/cm{sup 2} weak pump light, the peak in the circular dichroism shifts 45 nm in the short-wavelength direction. An ultrafast response time of 35 ps is maintained. This work not only opens up the possibility for the realization of ultralow-power and ultrafast all-optical tunable chirality but also offers a way to construct ultrahigh-speed on-chip biochemical sensors.

  10. Terminal Sliding Modes In Nonlinear Control Systems

    Science.gov (United States)

    Venkataraman, Subramanian T.; Gulati, Sandeep

    1993-01-01

    Control systems of proposed type called "terminal controllers" offers increased precision and stability of robotic operations in presence of unknown and/or changing parameters. Systems include special computer hardware and software implementing novel control laws involving terminal sliding modes of motion: closed-loop combination of robot and terminal controller converge, in finite time, to point of stable equilibrium in abstract space of velocity and/or position coordinates applicable to particular control problem.

  11. Controlling nonlinear waves in excitable media

    Energy Technology Data Exchange (ETDEWEB)

    Puebla, Hector [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, Azcapotzalco 02200, DF, Mexico (Mexico)], E-mail: hpuebla@correo.azc.uam.mx; Martin, Roland [Laboratoire de Modelisation et d' Imagerie en Geosciences, CNRS UMR and INRIA Futurs Magique-3D, Universite de Pau (France); Alvarez-Ramirez, Jose [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa (Mexico); Aguilar-Lopez, Ricardo [Departamento de Biotecnologia y Bioingenieria, CINVESTAV-IPN (Mexico)

    2009-01-30

    A new feedback control method is proposed to control the spatio-temporal dynamics in excitable media. Applying suitable external forcing to the system's slow variable, successful suppression and control of propagating pulses as well as spiral waves can be obtained. The proposed controller is composed by an observer to infer uncertain terms such as diffusive transport and kinetic rates, and an inverse-dynamics feedback function. Numerical simulations shown the effectiveness of the proposed feedback control approach.

  12. Nonlinear State Space Modeling and System Identification for Electrohydraulic Control

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2013-01-01

    Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.

  13. Variable universe stable adaptive fuzzy control of nonlinear system

    Institute of Scientific and Technical Information of China (English)

    李洪兴; 苗志宏; 王加银

    2002-01-01

    A kind of stable adaptive fuzzy control of nonlinear system is implemented using variable universe method. First of all, the basic structure of variable universe adaptive fuzzy controllers is briefly introduced. Then the contraction-expansion factor that is a key tool of variable universe method is defined by means of integral regulation idea, and a kind of adaptive fuzzy controllers is designed by using such a contraction-expansion factor. The simulation on first order nonlinear system is done. Secondly, it is proved that the variable universe adaptive fuzzy control is asymptotically stable by use of Lyapunov theory. The simulation on the second order nonlinear system shows that its simulation effect is also quite good. Finally a useful tool, called symbolic factor, is proposed, which may be of universal significance. It can greatly reduce the settling time and enhance the robustness of the system.

  14. Controlling chaos based on an adaptive nonlinear compensator mechanism

    Institute of Scientific and Technical Information of China (English)

    Tian Ling-Ling; Li Dong-Hai; Sun Xian-Fang

    2008-01-01

    The control problems of chaotic systems are investigated in the presence of parametric uncertainty and persistent external disturbances based on nonlinear control theory.By using a designed nonlinear compensator mechanism,the system deterministic nonlinearity,parametric uncertainty and disturbance effect can be compensated effectively.The renowned chaotic Lorenz system subjected to parametric variations and external disturbances is studied as an illustrative example.From the Lyapunov stability theory,sufficient conditions for choosing control parameters to guarantee chaos control are derived.Several experiments are carried out,including parameter change experiments,set-point change experiments and disturbance experiments.Simulation results indicate that the chaotic motion can be regulated not only to steady states but also to any desired periodic orbits with great immunity to parametric variations and external disturbances.

  15. EDITORIAL: Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems

    Science.gov (United States)

    Denz, Cornelia; Simoni, Francesco

    2009-03-01

    Nonlinearities are becoming more and more important for a variety of applications in nanosciences, bio-medical sciences, information processing and photonics. For applications at the crossings of these fields, especially microscopic and nanoscopic imaging and manipulation, nonlinearities play a key role. They may range from simple nonlinear parameter changes up to applications in manipulating, controlling and structuring material by light, or the manipulation of light by light itself. It is this area between basic nonlinear optics and photonic applications that includes `hot' topics such as ultra-resolution optical microscopy, micro- and nanomanipulation and -structuring, or nanophotonics. This special issue contains contributions in this field, many of them from the International Conference on Nonlinear Microscopy and Optical Control held in conjunction with a network meeting of the ESF COST action MP0604 `Optical Micromanipulation by Nonlinear Nanophotonics', 19-22 February 2008, Münster, Germany. Throughout this special issue, basic investigations of material structuring by nonlinear light--matter interaction, light-induced control of nanoparticles, and novel nonlinear material investigation techniques, are presented, covering the basic field of optical manipulation and control. These papers are followed by impressive developments of optical tweezers. Nowadays, optical phase contrast tweezers, twin and especially multiple beam traps, develop particle control in a new dimension: particles can be arranged, sorted and identified with high throughput. One of the most prominent forthcoming applications of optical tweezers is in the field of microfluidics. The action of light on fluids will open new horizons in microfluidic manipulation and control. The field of optical manipulation and control is a very broad field that has developed in an impressive way, in a short time, in Europe with the installation of the MP0604 network. Top researchers from 19 countries are

  16. Position Control of Pneumatic Actuator Using Self-Regulation Nonlinear PID

    Directory of Open Access Journals (Sweden)

    Syed Najib Syed Salim

    2014-01-01

    Full Text Available The enhancement of nonlinear PID (N-PID controller for a pneumatic positioning system is proposed to improve the performance of this controller. This is executed by utilizing the characteristic of rate variation of the nonlinear gain that is readily available in N-PID controller. The proposed equation, namely, self-regulation nonlinear function (SNF, is used to reprocess the error signal with the purpose of generating the value of the rate variation, continuously. With the addition of this function, a new self-regulation nonlinear PID (SN-PID controller is proposed. The proposed controller is then implemented to a variably loaded pneumatic actuator. Simulation and experimental tests are conducted with different inputs, namely, step, multistep, and random waveforms, to evaluate the performance of the proposed technique. The results obtained have been proven as a novel initiative at examining and identifying the characteristic based on a new proposal controller resulting from N-PID controller. The transient response is improved by a factor of 2.2 times greater than previous N-PID technique. Moreover, the performance of pneumatic positioning system is remarkably good under various loads.

  17. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.

    Science.gov (United States)

    Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin

    2013-03-01

    In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control.

  18. An analysis of a new nonlinear estimation technique: The state-dependent Ricatti equation method

    Science.gov (United States)

    Ewing, Craig Michael

    1999-10-01

    Research into nonlinear estimation techniques for terminal homing missiles has been conducted for many decades. The terminal state estimator, also called the guidance filter, is responsible for providing accurate estimates of target motion for use in guiding the missile to a collision course with the target. Some form of the extended-Kalman filter (EKF) has become the standard estimation technique employed in most modern weapon guidance systems. EKF linearization of nonlinear dynamics and/or measurements can cause problems of divergence when confronted by highly nonlinear conditions. The objective of this dissertation is to analyze a new nonlinear estimation technique that is based on the parameterization of the nonlinearities. This parameterization converts the nonlinear estimation problem into the form of a steady-state continuous Kalman filtering problem with state-dependent coefficients. This new technique, called the state-dependent Ricatti equation filter (SDREF), allows the nonlinearities of the system to be fully incorporated into the filter design, before stochastic uncertainties are imposed, without the need for linearization. The SDREF was investigated in three problems: an exoatmospheric, terminal homing, ballistic-missile intercept problem; a highly nonlinear pendulum example; and an algorithmic loss of observability problem. The exoatmospheric guidance problem examined nonlinear measurements with linear dynamics. To investigate the SDREF when used with a combination of nonlinear dynamics and nonlinear measurements, a highly nonlinear, two-state pendulum problem was also examined. While these problems were useful in gaining insight into the performance characteristics of the SDREF, no formal proof of stability could be determined for the original formulation of the estimator. The original SDREF solved an algebraic SDRE that arose from an infinite-time horizon formulation of the nonlinear filtering problem. A modification to the SDREF formulation was

  19. Integral sliding mode control for a class of nonlinear neutral systems with time-varying delays

    Institute of Scientific and Technical Information of China (English)

    Lou Xu-Yang; Cui Bao-Tong

    2008-01-01

    This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feasibility of the proposed technique.

  20. Adaptive neural network tracking control for a class of unknown nonlinear time-delay systems

    Institute of Scientific and Technical Information of China (English)

    Chen Weisheng; Li Junmin

    2006-01-01

    For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example.

  1. Nonlinear H-infinity control of nuclear steam generators

    Science.gov (United States)

    Ramalho, Fernando Pinto

    Motivated by the fact that problems related to the control of steam generators are responsible for a significant amount of downtime in nuclear power plants, this thesis investigates the applicability of linear and nonlinear Hinfinity theory to the control of nuclear steam generators. A nonlinear model based on mass, energy, and momentum balances was developed for a U-tube steam generator, with the water level and steam quality at the exit of the riser considered as state variables. In this model the steam flow to the turbines and the heat flow from the primary to the secondary side are represented as disturbances affecting the system, while the feedwater flow is used to compensate for changes in the water level. The performance specifications for the feedback loop are encoded using weight functions incorporated into an augmented plant, and the control problem is formulated to minimize the effects of disturbances on the controlled variables. The solution of the optimization problem is reduced to the solution of a set of differential equations, which, in the linear case, is equivalent to the solution of Riccati equations. The linear Hinfinity controller and filter were obtained for the U-tube steam generator with and without weight functions, and simulations for a 50 s ramp transient resulting in 50% decrease in the heat and steam flows were performed over 300 s. The use of weights provided less variation in the water level, and an excellent noise rejection capability was observed. For the nonlinear Hinfinity formulation a finite-difference method was used to solve the state and costate equations numerically for optimal feedwater flow minimizing water level variations. The combined solution of the state equation in the forward direction and the costate equations in the backward direction converged in 10 iteractions. The nonlinear controller results in less variation in the water level than the corresponding linear Hinfinity controller, demonstrating the feasibility

  2. Robust Adaptive Control of Multivariable Nonlinear Systems

    Science.gov (United States)

    2011-03-28

    IEEE Transactions on Automatic Control , 42(9): 1200-1221, 1997. 6. D. Li, N. Hovakimyan...limitations of performance,” IEEE Transactions on Automatic Control , vol. 52, no. 7, pp. 1604–1615, 2008. 8. X. Wang, N. Hovakimyan, 1L Adaptive...550-564, 2010. 5. C. Cao, N. Hovakimyan, Stability Margins of 1L Adaptive Control Architecture, IEEE Transactions on Automatic Control , vol. 55,

  3. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  4. On a Highly Nonlinear Self-Obstacle Optimal Control Problem

    Energy Technology Data Exchange (ETDEWEB)

    Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)

    2015-10-15

    We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.

  5. UAV Formation Flight Based on Nonlinear Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Zhou Chao

    2012-01-01

    Full Text Available We designed a distributed collision-free formation flight control law in the framework of nonlinear model predictive control. Formation configuration is determined in the virtual reference point coordinate system. Obstacle avoidance is guaranteed by cost penalty, and intervehicle collision avoidance is guaranteed by cost penalty combined with a new priority strategy.

  6. Exact controllability for a nonlinear stochastic wave equation

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are L 2 ( G × H −1 ( G with G being a bounded open subset of R 3 and the nonlinear terms having at most a linear growth.

  7. Control Lyapunov Stabilization of Nonlinear Systems with Structural Uncertainty

    Institute of Scientific and Technical Information of China (English)

    CAI Xiu-shan; HAN Zheng-zhi; TANG Hou-jun

    2005-01-01

    This paper deals with global stabilization problem for the nonlinear systems with structural uncertainty.Based on control Lyapunov function, a sufficient and necessary condition for the globally and asymptotically stabilizing the equailibrium of the closed system is given. Moreovery, an almost smooth state feedback control law is constructed. The simulation shows the effectiveness of the method.

  8. Nonlinear Passive Control and Observer Design for Ships

    Directory of Open Access Journals (Sweden)

    Thor Inge Fossen

    2000-07-01

    Full Text Available Starting with passivity of the ambient water-ship system this article proceeds with nonlinear observer design, design of dynamic ship positioning systems and weather optimal positioning control systems exploiting the passivity properties of the vessel and the surrounding water. The article gives an overview of methods for passive ship control and observer design.

  9. On a state space approach to nonlinear H∞ control

    NARCIS (Netherlands)

    Schaft, van der A.J.

    1991-01-01

    We study the standard H∞ optimal control problem using state feedback for smooth nonlinear control systems. The main theorem obtained roughly states that the L2-induced norm (from disturbances to inputs and outputs) can be made smaller than a constant γ > 0 if the corresponding H∞ norm for the syste

  10. Discontinuous stabilization of nonlinear systems : Quantized and switching controls

    NARCIS (Netherlands)

    Ceragioli, Francesca; De Persis, Claudio

    2007-01-01

    In this paper we consider the classical problem of stabilizing nonlinear systems in the case the control laws take values in a discrete set. First, we present a robust control approach to the problem. Then, we focus on the class of dissipative systems and rephrase classical results available for thi

  11. Nonlinear Superheat Control of a Refrigeration Plant using Backstepping

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2008-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The main idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design...

  12. GA-Based Fuzzy Sliding Mode Controller for Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    W. L. Chiang

    2008-11-01

    Full Text Available Generally, the greatest difficulty encountered when designing a fuzzy sliding mode controller (FSMC or an adaptive fuzzy sliding mode controller (AFSMC capable of rapidly and efficiently controlling complex and nonlinear systems is how to select the most appropriate initial values for the parameter vector. In this paper, we describe a method of stability analysis for a GA-based reference adaptive fuzzy sliding model controller capable of handling these types of problems for a nonlinear system. First, we approximate and describe an uncertain and nonlinear plant for the tracking of a reference trajectory via a fuzzy model incorporating fuzzy logic control rules. Next, the initial values of the consequent parameter vector are decided via a genetic algorithm. After this, an adaptive fuzzy sliding model controller, designed to simultaneously stabilize and control the system, is derived. The stability of the nonlinear system is ensured by the derivation of the stability criterion based upon Lyapunov's direct method. Finally, an example, a numerical simulation, is provided to demonstrate the control methodology.

  13. Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction

    Science.gov (United States)

    Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-01-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952

  14. Dielectric Optical-Controlled Magnifying Lens by Nonlinear Negative Refraction

    CERN Document Server

    Cao, Jianjun; Zheng, Yuanlin; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2014-01-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive index. Recent advancements in nanotechnology enable novel lenses, such as, superlens, hyperlens, Luneburg lens, with sub-wavelength resolution capabilities by specially designing materials' refractive indices with meta-materials and transformation optics. However, these artificially nano/micro engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here we experimentally demonstrate for the first time a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applicat...

  15. Control Configuration Selection for Multivariable Nonlinear Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Komareji, Mohammad

    2012-01-01

    Control configuration selection is the procedure of choosing the appropriate input and output pairs for the design of SISO (or block) controllers. This step is an important prerequisite for a successful industrial control strategy. In industrial practices, it is often the case that systems, which...

  16. Differential geometry techniques for sets of nonlinear partial differential equations

    Science.gov (United States)

    Estabrook, Frank B.

    1990-01-01

    An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.

  17. Robust control methods for nonlinear systems with uncertain dynamics and unknown control direction

    Science.gov (United States)

    Ton, Chau T.

    Robust nonlinear control design strategies using sliding mode control (SMC) and integral SMC (ISMC) are developed, which are capable of achieving reliable and accurate tracking control for systems containing dynamic uncertainty, unmodeled disturbances, and actuator anomalies that result in an unknown and time-varying control direction. In order to ease readability of this dissertation, detailed explanations of the relevant mathematical tools is provided, including stability denitions, Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other basic nonlinear control tools. The contributions of the dissertation are three novel control algorithms for three different classes of nonlinear systems: single-input multipleoutput (SIMO) systems, systems with model uncertainty and bounded disturbances, and systems with unknown control direction. Control design for SIMO systems is challenging due to the fact that such systems have fewer actuators than degrees of freedom to control (i.e., they are underactuated systems). While traditional nonlinear control methods can be utilized to design controllers for certain classes of cascaded underactuated systems, more advanced methods are required to develop controllers for parallel systems, which are not in a cascade structure. A novel control technique is proposed in this dissertation, which is shown to achieve asymptotic tracking for dual parallel systems, where a single scalar control input directly aects two subsystems. The result is achieved through an innovative sequential control design algorithm, whereby one of the subsystems is indirectly stabilized via the desired state trajectory that is commanded to the other subsystem. The SIMO system under consideration does not contain uncertainty or disturbances. In dealing with systems containing uncertainty in the dynamic model, a particularly challenging situation occurs when uncertainty exists in the input-multiplicative gain matrix. Moreover, special

  18. Combining Artificial Intelligence and Robust Techniques with MRAC in Fault Tolerant Control

    OpenAIRE

    Vargas Martínez, Adriana

    2011-01-01

    The investigation of this thesis presents different approaches for Fault Tolerant Control based on Model Reference Adaptive Control, Artificial Neural Networks, PID controller optimized by a Genetic Algorithm, Nonlinear, Robust and Linear Parameter Varying (LPV) control for Linear Time Invariant (LTI), LPV and nonlinear systems. All of the above techniques are integrated in different controller�s structures to prove their ability to accommodate a fault. Modern systems and their challenging op...

  19. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  20. Controlling ultrafast currents by the non-linear photogalvanic effect

    CERN Document Server

    Wachter, Georg; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim

    2015-01-01

    We theoretically investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femto-second optical laser pulses. Ab-initio simulations based on time-dependent density functional theory predict ultrafast DC currents that can be viewed as a non-linear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity I_c ~ 3.8*10^13 W/cm2. We trace this switching to the transition from non-linear polarization currents to the tunneling excitation regime. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. We find the ultrafast current control by the non-linear photogalvanic effect to be remarkably robust and insensitive to laser-pulse shape and carrier-envelope phase.

  1. Robust adaptive output feedback control of nonlinearly parameterized systems

    Institute of Scientific and Technical Information of China (English)

    LIU Yusheng; LI Xingyuan

    2007-01-01

    The ideas of adaptive nonlinear damping and changing supply functions were used to counteract the effects of parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The high-gain observer was used to estimate the state of the system.A robust adaptive output feedback control scheme was proposed for nonlinearly parameterized systems represented by inputoutput models.The scheme does not need to estimate the unknown parameters nor add a dynamical signal to dominate the effects of unmodeled dynamics.It is proven that the proposed control scheme guarantees that all the variables in the closed-loop system are bounded and the mean-square tracking error can be made arbitrarily small by choosing some design parameters appropriately.Simulation results have illustrated the effectiveness of the proposed robust adaptive control scheme.

  2. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    Science.gov (United States)

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  3. Chattering free adaptive fuzzy terminal sliding mode control for second order nonlinear system

    Institute of Scientific and Technical Information of China (English)

    Jinkun LIU; Fuchun SUN

    2006-01-01

    A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization technique to cancel the nonlinearities. By using a function-augmented sliding hyperplane, it is guaranteed that the output tracking error converges to zero in finite time which can be set arbitrarily. The proposed scheme eliminates reaching phase problem, so that the closed-loop system always shows invariance property to parameter uncertainties. Fuzzy logic systems are used to approximate the unknown system functions and switch item. Robust adaptive law is proposed to reduce approximation errors between true nonlinear functions and fuzzy systems, thus chattering phenomenon can be eliminated. Stability of the proposed control scheme is proved and the scheme is applied to an inverted pendulum system. Simulation studies are provided to confirm performance and effectiveness of the proposed control approach.

  4. Nonlinear Filtering Techniques Comparison for Battery State Estimation

    Directory of Open Access Journals (Sweden)

    Aspasia Papazoglou

    2014-09-01

    Full Text Available The performance of estimation algorithms is vital for the correct functioning of batteries in electric vehicles, as poor estimates will inevitably jeopardize the operations that rely on un-measurable quantities, such as State of Charge and State of Health. This paper compares the performance of three nonlinear estimation algorithms: the Extended Kalman Filter, the Unscented Kalman Filter and the Particle Filter, where a lithium-ion cell model is considered. The effectiveness of these algorithms is measured by their ability to produce accurate estimates against their computational complexity in terms of number of operations and execution time required. The trade-offs between estimators' performance and their computational complexity are analyzed.

  5. Parallel Computation for Developing Nonlinear Control Procedures.

    Science.gov (United States)

    1981-07-01

    and Himmelblau E35] indicate that the BFS rule is generally preferable to the DFP and SR1 updates because of its reliability of convergence for a wide...New York, 1972, pp. 149-170. 35. Himmelblau , D. M., "A Uniform Evaluation of Unconstrained Optimiza- tion Techniques," in: Nurierical Methods for

  6. Measurements of nonlinear optical properties of PVDF/ZnO using Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Shanshool, Haider Mohammed, E-mail: haidshan62@gmail.com [Ministry of Science and Technology, Baghdad (Iraq); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, Serdang (Malaysia); Abdullah, Ibtisam Yahya [Department of Physics, College of Science, University of Mosul, Mosul (Iraq)

    2015-10-15

    The nonlinear optical properties of ZnO nanoparticles dispersed in poly (vinylidene fluoride) (PVDF) polymer are investigated. PVDF/ZnO nanocomposites were prepared by mixing different concentrations of ZnO nanoparticles, as the filler, with PVDF, as the polymer matrix, using casting method. Acetone was used as a solvent for the polymer. FTIR spectra of the samples were analyzed thus confirming the formation of α and β phases. The absorbance spectra of the samples were obtained, thereby showing high absorption in the UV region. The linear absorption coefficient was calculated. The single-beam Z-scan technique was used to measure the nonlinear refractive index and the nonlinear absorption coefficient of the PVDF/ZnO nanocomposite samples. We observed that the nonlinear refractive index is in the order of 10{sup -13} cm{sup 2}/W with the negative sign, whereas the nonlinear absorption coefficient is in the order of 10{sup -8} cm/W. (author)

  7. Transient stability improvement by nonlinear controllers based on tracking

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Juan M. [Centro de Investigacion y Estudios Avanzados, Guadalajara, Mexico. Av. Cientifica 1145. Col. El Bajio. Zapopan, Jal. 45015 (Mexico); Arroyave, Felipe Valencia; Correa Gutierrez, Rosa Elvira [Universidad Nacional de Colombia, Sede Medellin. Facultad de Minas, Escuela de Mecatronica (Colombia)

    2011-02-15

    This paper deals with the control problem in multi-machine electric power systems, which represent complex great scale nonlinear systems. Thus, the controller design is a challenging problem. These systems are subjected to different perturbations, such as short circuits, connection and/or disconnection of loads, lines, or generators. Then, the utilization of controllers which guarantee good performance under those perturbations is required in order to provide electrical energy to the loads with admissible stability margins. The proposed controllers are based on a systematic strategy, which calculate nonlinear controllers for generating units in a power plant, both for voltage and velocity regulation. The formulation allows designing controllers in a multi-machine power system without intricate calculations. Results on a power system of the open research indicate the proposition's suitability. The problem is formulated as a tracking problem. The designed controllers may be implemented in any electric power system. (author)

  8. Lessons from the quantum control landscape: Robust optimal control of quantum systems and optimal control of nonlinear Schrodinger equations

    Science.gov (United States)

    Hocker, David Lance

    The control of quantum systems occurs across a broad range of length and energy scales in modern science, and efforts have demonstrated that locating suitable controls to perform a range of objectives has been widely successful. The justification for this success arises from a favorable topology of a quantum control landscape, defined as a mapping of the controls to a cost function measuring the success of the operation. This is summarized in the landscape principle that no suboptimal extrema exist on the landscape for well-suited control problems, explaining a trend of successful optimizations in both theory and experiment. This dissertation explores what additional lessons may be gleaned from the quantum control landscape through numerical and theoretical studies. The first topic examines the experimentally relevant problem of assessing and reducing disturbances due to noise. The local curvature of the landscape is found to play an important role on noise effects in the control of targeted quantum unitary operations, and provides a conceptual framework for assessing robustness to noise. Software for assessing noise effects in quantum computing architectures was also developed and applied to survey the performance of current quantum control techniques for quantum computing. A lack of competition between robustness and perfect unitary control operation was discovered to fundamentally limit noise effects, and highlights a renewed focus upon system engineering for reducing noise. This convergent behavior generally arises for any secondary objective in the situation of high primary objective fidelity. The other dissertation topic examines the utility of quantum control for a class of nonlinear Hamiltonians not previously considered under the landscape principle. Nonlinear Schrodinger equations are commonly used to model the dynamics of Bose-Einstein condensates (BECs), one of the largest known quantum objects. Optimizations of BEC dynamics were performed in which the

  9. Compensation techniques for non-linearities in H-bridge inverters

    Directory of Open Access Journals (Sweden)

    Daniel Zammit

    2016-12-01

    Full Text Available This paper presents compensation techniques for component non-linearities in H-bridge inverters as those used in grid-connected photovoltaic (PV inverters. Novel compensation techniques depending on the switching device current were formulated to compensate for the non-linearities in inverter circuits caused by the voltage drops on the switching devices. Both simulation and experimental results will be presented. Testing was carried out on a PV inverter which was designed and constructed for this research. Very satisfactory results were obtained from all the compensation techniques presented, however the exact compensation method was the most effective, providing the highest reduction in harmonics.

  10. Optimization of nonlinear controller with an enhanced biogeography approach

    Directory of Open Access Journals (Sweden)

    Mohammed Salem

    2014-07-01

    Full Text Available This paper is dedicated to the optimization of nonlinear controllers basing of an enhanced Biogeography Based Optimization (BBO approach. Indeed, The BBO is combined to a predator and prey model where several predators are used with introduction of a modified migration operator to increase the diversification along the optimization process so as to avoid local optima and reach the optimal solution quickly. The proposed approach is used in tuning the gains of PID controller for nonlinear systems. Simulations are carried out over a Mass spring damper and an inverted pendulum and has given remarkable results when compared to genetic algorithm and BBO.

  11. An efficient and simple approximate technique for solving nonlinear initial and boundary-value problems

    Science.gov (United States)

    Kounadis, A. N.

    1992-05-01

    An efficient and easily applicable, approximate analytic technique for the solution of nonlinear initial and boundary-value problems associated with nonlinear ordinary differential equations (O.D.E.) of any order and variable coefficients, is presented. Convergence, uniqueness and upper bound error estimates of solutions, obtained by the successive approximations scheme of the proposed technique, are thoroughly established. Important conclusions regarding the improvement of convergence for large time and large displacement solutions in case of nonlinear initial-value problems are also assessed. The proposed technique is much more efficient than the perturbations schemes for establishing the large postbuckling response of structural systems. The efficiency, simplicity and reliability of the proposed technique is demonstrated by two illustrative examples for which available numerical results exist.

  12. Nonlinear Dynamics and Control of Flexible Structures

    Science.gov (United States)

    1990-10-10

    control problem is to drive the outputs asymptotically to zero. Since output regulation problem seeks to enforce the set of constraints I hi() = , i = 1...K an m x m constant matrix, solves the output regulation problem if sliding can be achieved. In sliding the equivalent control is, Uq = -B(x)-KAz - B

  13. Motor Control Research Requires Nonlinear Dynamics

    Science.gov (United States)

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  14. Motor Control Research Requires Nonlinear Dynamics

    Science.gov (United States)

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  15. A new approach of binary addition and subtraction by non-linear material based switching technique

    Indian Academy of Sciences (India)

    Archan Kumar Das; Partha Partima Das; Sourangshu Mukhopadhyay

    2005-02-01

    Here, we refer a new proposal of binary addition as well as subtraction in all-optical domain by exploitation of proper non-linear material-based switching technique. In this communication, the authors extend this technique for both adder and subtractor accommodating the spatial input encoding system.

  16. A fuzzy robust control scheme for vibration suppression of a nonlinear electromagnetic-actuated flexible system

    Science.gov (United States)

    Tavakolpour-Saleh, A. R.; Haddad, M. A.

    2017-03-01

    In this paper, a novel robust vibration control scheme, namely, one degree-of-freedom fuzzy active force control (1DOF-FAFC) is applied to a nonlinear electromagnetic-actuated flexible plate system. First, the flexible plate with clamped-free-clamped-free (CFCF) boundary conditions is modeled and simulated. Then, the validity of the simulation platform is evaluated through experiment. A nonlinear electromagnetic actuator is developed and experimentally modeled through a parametric system identification scheme. Next, the obtained nonlinear model of the actuator is applied to the simulation platform and performance of the proposed control technique in suppressing unwanted vibrations is investigated via simulation. A fuzzy controller is applied to the robust 1DOF control scheme to tune the controller gain using acceleration feedback. Consequently, an intelligent self-tuning vibration control strategy based on an inexpensive acceleration sensor is proposed in the paper. Furthermore, it is demonstrated that the proposed acceleration-based control technique owns the benefits of the conventional velocity feedback controllers. Finally, an experimental rig is developed to investigate the effectiveness of the 1DOF-FAFC scheme. It is found that the first, second, and third resonant modes of the flexible system are attenuated up to 74%, 81%, and 90% respectively through which the effectiveness of the proposed control scheme is affirmed.

  17. Nonlinear Control Strategies for Bioprocesses: Sliding Mode Control versus Vibrational Control

    OpenAIRE

    Selisteanu, Dan; Petre, Emil; Popescu, Dorin; Bobasu, Eugen

    2008-01-01

    In this work, two nonlinear high-frequency control strategies for bioprocesses are proposed: a feedback sliding mode control law and a vibrational control strategy. In order to implement these strategies, a prototype bioprocess that is carried out in a Continuous Stirred Tank Bioreactor was considered. First, a discontinuous feedback law was designed using the exact linearization and by imposing a SMC that stabilizes the output of the bioprocess. When some state variables used in the control ...

  18. A nonlinear regression model-based predictive control algorithm.

    Science.gov (United States)

    Dubay, R; Abu-Ayyad, M; Hernandez, J M

    2009-04-01

    This paper presents a unique approach for designing a nonlinear regression model-based predictive controller (NRPC) for single-input-single-output (SISO) and multi-input-multi-output (MIMO) processes that are common in industrial applications. The innovation of this strategy is that the controller structure allows nonlinear open-loop modeling to be conducted while closed-loop control is executed every sampling instant. Consequently, the system matrix is regenerated every sampling instant using a continuous function providing a more accurate prediction of the plant. Computer simulations are carried out on nonlinear plants, demonstrating that the new approach is easily implemented and provides tight control. Also, the proposed algorithm is implemented on two real time SISO applications; a DC motor, a plastic injection molding machine and a nonlinear MIMO thermal system comprising three temperature zones to be controlled with interacting effects. The experimental closed-loop responses of the proposed algorithm were compared to a multi-model dynamic matrix controller (MPC) with improved results for various set point trajectories. Good disturbance rejection was attained, resulting in improved tracking of multi-set point profiles in comparison to multi-model MPC.

  19. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    Directory of Open Access Journals (Sweden)

    Izhal Abdul Halin

    2009-11-01

    Full Text Available The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.

  20. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    Science.gov (United States)

    Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan

    2009-01-01

    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region. PMID:22303133

  1. Optimal Control Of Nonlinear Wave Energy Point Converters

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten

    2013-01-01

    In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity and acceleration of the floater. However, a non-causal integral control component dependent...... idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states......, absorbs almost the same power as the optimal controller....

  2. Study on metal nanoparticles induced third-order optical nonlinearity in phenylhydrazone derivatives with DFWM technique

    Science.gov (United States)

    Sudheesh, P.; Rao, D. Mallikharjuna; Chandrasekharan, K.

    2014-01-01

    The third-order nonlinear optical properties of newly synthesized phenylhydrazone derivatives and the influence of noble metal nanoparticles (Ag & Au) on their nonlinear optical responses were investigated by employing Degenerate Four wave Mixing (DFWM) technique with a 7 nanosecond, 10Hz Nd: YAG laser pulses at 532nm. Metal nanoparticles were prepared by laser ablation and the particle formation was confirmed using UV-Visible spectroscopy, Transmission Electron Microscopy (TEM). The nonlinear optical susceptibility were measured and found to be of the order 10-13esu. The results are encouraging and conclude that the materials are promising candidate for future optical device applications.

  3. Receding horizon control of nonlinear systems: A control Lyapunov function approach

    Science.gov (United States)

    Jadbabaie, Ali

    With the advent of faster and cheaper computers, optimization based control methodologies have become a viable candidate for control of nonlinear systems. Over the past twenty years, a group of such control schemes have, been successfully used in the process control industry where the processes are either intrinsically stable or have very large time constants. The purpose of this thesis is to provide a theoretical framework for synthesis of a class of optimization based control schemes, known as receding horizon control techniques for nonlinear systems such as unmanned aerial vehicles. It is well known that unconstrained infinite horizon optimal control may be used to construct a stabilizing controller for a nonlinear system. In this thesis, we show that similar stabilization results may be achieved using unconstrained finite horizon optimal control. The key idea is to approximate the tail of the infinite horizon cost-to-go using, as terminal cost, an appropriate control Lyapunov function (CLF). A CLF can be thought of as generalization of the concept of a Lyapunov function to systems with inputs. Roughly speaking, the terminal CLF should provide an (incremental) upper bound on the cost. In this fashion, important stability characteristics may be retained without the use of terminal constraints such as those employed by a number of other researchers. The absence of constraints allows a significant speedup in computation. Furthermore, it is shown that in order to guarantee stability, it suffices to satisfy an improvement property, thereby, relaxing the requirement, that truly optimal trajectories be found. We provide a complete analysis of the stability and region of attraction/operation properties of receding horizon control strategies that utilize finite horizon approximations in the proposed class. It is shown that the guaranteed region of operation contains that of the CLF controller and may be made as large as desired by increasing the optimization horizon

  4. Adaptive Fuzzy Containment Control for Uncertain Nonlinear Multiagent Systems

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2014-01-01

    Full Text Available This paper considers the containment control problem for uncertain nonlinear multiagent systems under directed graphs. The followers are governed by nonlinear systems with unknown dynamics while the multiple leaders are neighbors of a subset of the followers. Fuzzy logic systems (FLSs are used to identify the unknown dynamics and a distributed state feedback containment control protocol is proposed. This result is extended to the output feedback case, where observers are designed to estimate the unmeasurable states. Then, an output feedback containment control scheme is presented. The developed state feedback and output feedback containment controllers guarantee that the states of all followers converge to the convex hull spanned by the dynamic leaders. Based on Lyapunov stability theory, it is proved that the containment control errors are uniformly ultimately bounded (UUB. An example is provided to show the effectiveness of the proposed control method.

  5. Adaptive Control of Nonlinear Flexible Systems

    Science.gov (United States)

    1993-01-18

    disturbances. The following example illustrates the need for a robust state-feedback law and the sensi- tivity of the exact - linearization based control law... exact linearization , one can bring an input-output approach to a particular case of certainty- equivalence based adaptive control design. We now...are available for this model, exact linearization can be performed. Let C(s) be the compensator that is being used so far in the previous three

  6. INTERVAL ROBUST CONTROL FOR NONLINEAR FLAT SYSTEMS

    OpenAIRE

    2013-01-01

    Esta tesis se enfoca principalmente en el control robusto de sistemas no lineales planos. El objetivo principal es determinar una familia de controladores robustos con la finalidad de asegurar el cumplimiento de un conjunto de especificaciones deseadas bajo incertidumbre paramétrica en el proceso. La familia de controladores robustos se determina con un nuevo enfoque de control robusto posibilistico conjuntamente con la teoría de los sistemas planos. Las especificaciones e incertidumbre param...

  7. Development of a nonlinear ultrasonic NDE technique for detection of kissing bonds in composites

    Science.gov (United States)

    Alston, Jonathan; Croxford, Anthony; Potter, Jack; Blanloeuil, Philippe

    2017-04-01

    The development of low-cost bonded assembly of composite aerospace structures ideally requires an NDE method to detect the presence of poor quality, weak bonds or kissing bonds. Such interfaces can introduce nonlinearity as a result of contact nonlinearity where an ultrasonic wave is distorted when it interacts with the interface. In general, the nonlinear elastic behaviour of these interfaces will generate harmonics but they can be lost among the harmonics generated by other nonlinearities present in the experimental system. The technique developed in this research is a non-collinear method; this involves the interaction of two ultrasonic beams, and it allows the removal of virtually all system nonlinearity except for that produced in the region where the two beams overlap. The frequencies of the two beams and the angle between are varied during the experiment. By measuring the nonlinear mixing response as these two parameters are swept through a `fingerprint' of the nonlinear properties in the interaction region can be obtained. This fingerprint has been shown to contain information about the bulk material and the interface status. Work is ongoing to understand which features in the fingerprints reliably correlate with particular material or interface properties. To build this understanding a greatly simplified kissing bond, a compression loaded aluminium-aluminium interface, has been tested. Modelling of the nonlinear behaviour of the aluminium interface has also been conducted.

  8. Nonlinear Control Synthesis for Electrical Power Systems Using Controllable Series Capacitors

    CERN Document Server

    Manjarekar, N S

    2012-01-01

    In this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesis techniques. For this transient stabilization problem the actuator considered is a power electronic device, a controllable series capacitor (CSC). The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model. To start with, the CSC is modeled by the injection model which is based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes a complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC) methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system. Further, IDA-PBC is used to derive stab...

  9. Designing a Robust Nonlinear Dynamic Inversion Controller for Spacecraft Formation Flying

    Directory of Open Access Journals (Sweden)

    Inseok Yang

    2014-01-01

    Full Text Available The robust nonlinear dynamic inversion (RNDI control technique is proposed to keep the relative position of spacecrafts while formation flying. The proposed RNDI control method is based on nonlinear dynamic inversion (NDI. NDI is nonlinear control method that replaces the original dynamics into the user-selected desired dynamics. Because NDI removes nonlinearities in the model by inverting the original dynamics directly, it also eliminates the need of designing suitable controllers for each equilibrium point; that is, NDI works as self-scheduled controller. Removing the original model also provides advantages of ease to satisfy the specific requirements by simply handling desired dynamics. Therefore, NDI is simple and has many similarities to classical control. In real applications, however, it is difficult to achieve perfect cancellation of the original dynamics due to uncertainties that lead to performance degradation and even make the system unstable. This paper proposes robustness assurance method for NDI. The proposed RNDI is designed by combining NDI and sliding mode control (SMC. SMC is inherently robust using high-speed switching inputs. This paper verifies similarities of NDI and SMC, firstly. And then RNDI control method is proposed. The performance of the proposed method is evaluated by simulations applied to spacecraft formation flying problem.

  10. Nonlinear Adaptive Control Using Gaussian Networks with Composite Adaptation for Improved Convergence

    OpenAIRE

    Fabri, S.; Kadirkamanathan, V.

    1996-01-01

    The use of composite adaptive laws for control of the affine class of nonlinear systems having unknown dynamics is proposed. These dynamics are approximated by Gaussian radial basis function neural networks whose parameters are updated by a composite law that is driven by both tracking and estimation errors, combining techniques used in direct and indirect adaptive control. This is motivated by the need to improve the speed of convergence of the unknown parameters, hence resulting in a better...

  11. Correction of Phase Distortion by Nonlinear Optical Techniques

    Science.gov (United States)

    1981-05-01

    ward wave oscillators and distributed feedback lasers, occur even in the presence of pump attenuation. It is obvious that pump depletion effects...a*. Efl v* Z* ^iCVb^^f-V VEfl> (4-3-2) Ik -VE +^ V,2 E - n— p p 2k T p 2nc W {M[(I +1 )En - (E -E*) t...offset techniques. (1) Since the pumps may be arranged to be non-counterpropagating with angle offset techniques, feedback of the pump into the

  12. Model algorithm control using neural networks for input delayed nonlinear control system

    Institute of Scientific and Technical Information of China (English)

    Yuanliang Zhang; Kil To Chong

    2015-01-01

    The performance of the model algorithm control method is partial y based on the accuracy of the system’s model. It is diffi-cult to obtain a good model of a nonlinear system, especial y when the nonlinearity is high. Neural networks have the ability to“learn”the characteristics of a system through nonlinear mapping to rep-resent nonlinear functions as wel as their inverse functions. This paper presents a model algorithm control method using neural net-works for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one pro-duces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to il ustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems.

  13. Grid-connected of photovoltaic module using nonlinear control

    DEFF Research Database (Denmark)

    El Fadil, H.; Giri, F.; Guerrero, Josep M.

    2012-01-01

    The problem of controlling single-phase grid connected photovoltaic (PV) system is considered. The control objective is fourfold: (i) asymptotic stability of the closed loop system, (ii) maximum power point tracking (MPPT) of PV module (iii) tight regulation of the DC bus voltage, and (iv) unity......, for the nonlinear characteristic of PV panel. It is formally shown, through theoretical analysis and simulation results, that the proposed controller does achieve its objectives....

  14. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....

  15. Nonlinear Control of Induction Motors: A Performance Study

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Vadstrup, P.; Børsting, H.

    1998-01-01

    A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers...... for the field amplitude and the motor torque. The method is compared with the traditional Rotor Field Oriented Control method as regards variations in rotor resistance an magnetizing inductance...

  16. Neuro-fuzzy predictive control for nonlinear application

    Institute of Scientific and Technical Information of China (English)

    CHEN Dong-xiang; WANG Gang; LV Shi-xia

    2008-01-01

    Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. The neuro-fuzzy predictor has the capability of achieving high predictive accuracy due to its nonlinear mapping and interpolation features, and adaptively updating network parameters by a learning procedure to re-duce the model errors caused by changes of the process under control. To cope with the difficult problem of non-linear optimization, Pepanaqi method was applied to search the optimal or suboptimal solution. Comparisons were made among the objective function values of alternatives in initial space. The search was then confined to shrink the smaller region according to results of comparisons. The convergent point was finally approached to be considered as the optimal or suboptimal solution. Experimental results of the neuro-fuzzy predictive control for drier application reveal that the proposed control scheme has less tracking errors and can smooth control actions, which is applicable to changes of drying condition.

  17. Input-output-controlled nonlinear equation solvers

    Science.gov (United States)

    Padovan, Joseph

    1988-01-01

    To upgrade the efficiency and stability of the successive substitution (SS) and Newton-Raphson (NR) schemes, the concept of input-output-controlled solvers (IOCS) is introduced. By employing the formal properties of the constrained version of the SS and NR schemes, the IOCS algorithm can handle indefiniteness of the system Jacobian, can maintain iterate monotonicity, and provide for separate control of load incrementation and iterate excursions, as well as having other features. To illustrate the algorithmic properties, the results for several benchmark examples are presented. These define the associated numerical efficiency and stability of the IOCS.

  18. Robust Stabilization of Nonlinear Systems with Uncertain Varying Control Coefficient

    Directory of Open Access Journals (Sweden)

    Zaiyue Yang

    2014-01-01

    Full Text Available This paper investigates the stabilization problem for a class of nonlinear systems, whose control coefficient is uncertain and varies continuously in value and sign. The study emphasizes the development of a robust control that consists of a modified Nussbaum function to tackle the uncertain varying control coefficient. By such a method, the finite-time escape phenomenon has been prevented when the control coefficient is crossing zero and varying its sign. The proposed control guarantees the asymptotic stabilization of the system and boundedness of all closed-loop signals. The control performance is illustrated by a numerical simulation.

  19. Bounded Nonlinear Control of a Rotating Pendulum System

    Science.gov (United States)

    Luyckx, L.; Loccufier, M.; Noldus, E.

    2004-08-01

    We are interested in the output feedback control of mechanical systems governed by the Euler-Lagrange formalism. The systems are collocated actuator-sensor controlled and underactuated. We present a design method by means of a specific example : the set point control of a rotating pendulum. We use constrained output feedback, whereby the control inputs satisfy a priori imposed upper bounds. The closed loop stability analysis relies on the direct method of Liapunov. This results in a frequency criterion on the controller's linear dynamic component and some restrictions on its nonlinearities. The control parameters are tuned for maximizing closed loop damping.

  20. Nonlinear system PID-type multi-step predictive control

    Institute of Scientific and Technical Information of China (English)

    Yan ZHANG; Zengqiang CHEN; Zhuzhi YUAN

    2004-01-01

    A compound neural network was constructed during the process of identification and multi-step prediction. Under the PlD-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller' s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance.

  1. Nonlinear H-ininity state feedback controllers:

    DEFF Research Database (Denmark)

    Cromme, Marc; Møller-Pedersen, Jens; Pagh Petersen, Martin

    1997-01-01

    From a general point of view the state feedback H∞ suboptimal control problem is reasonably well understood. Important problems remain with regard to a priori information of the size of the neighbourhood where the local state feedback H∞ problem is solvable. This problem is solved regionally (sem...

  2. Nonlinear Modeling and Neuro-Fuzzy Control of PEMFC

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The proton exchange membrane generation technology is highly efficient, and clean and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online.This paper analyzed the characters of the PEMFC; and used the approach and self-study ability of artificial neural networks to build the model of nonlinear system, and adopted the adaptive neural-networks fuzzy infer system to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusted the model parameters to control online. The model and control were implemented in SIMULINK environment.The results of simulation show the test data and model have a good agreement. The model is useful for the optimal and real time control of PEMFC system.

  3. Chaos Control in Nonlinear Systems Using the Generalized Backstopping Method

    Directory of Open Access Journals (Sweden)

    A. R. Sahab

    2008-01-01

    Full Text Available One of the most important nonlinear systems for checking the abilities of control methods is chaos. In this study chaos in Lorenz system was used for checking abilities of new control method. This new method to control nonlinear systems was called Generalized Backstepping method because of its similarity to Backstepping but its abilities to control more systems than Backstepping. This new method was applied to Lorenz system in three ways: 1.Stabilized states of equations. 2. Track step response. 3. Track sinusoidal response. In every way, simulations proved abilities of method. Comparing this new method with Backstepping showed that in this method, states stabilize at zero in shorter time than Backstepping and input control is more limited. So new method not only is used in more systems but also has better response.

  4. Sensitivity optimization of the one beam Z-scan technique and a Z-scan technique immune to nonlinear absorption.

    Science.gov (United States)

    Dávila Pintle, José A; Lara, Edmundo Reynoso; Iturbe Castillo, Marcelo D

    2013-07-01

    It is presented a criteria for selecting the optimum aperture radius for the one beam Z-scan technique (OBZT), based on the analysis of the transmittance of the aperture. It is also presented a modification to the OBZT by directly measuring the beam radius in the far field with a rotating disk, which allows to determine simultaneously the non-linear absorptive coefficient and non-linear refractive index, much less sensitive to wave front distortions caused by inhomogeneities of the sample with a negligible loss of signal to noise ratio. It is demonstrated its equivalence to the OBZT.

  5. Incremental approximate dynamic programming for nonlinear flight control design

    NARCIS (Netherlands)

    Zhou, Y.; Van Kampen, E.J.; Chu, Q.P.

    2015-01-01

    A self-learning adaptive flight control design for non-linear systems allows reliable and effective operation of flight vehicles in a dynamic environment. Approximate dynamic programming (ADP) provides a model-free and computationally effective process for designing adaptive linear optimal

  6. Networked control of nonlinear systems under Denial-of-Service

    NARCIS (Netherlands)

    De Persis, C.; Tesi, P.

    2016-01-01

    We investigate the analysis and design of a control strategy for nonlinear systems under Denial-of-Service attacks. Based on an ISS-Lyapunov function analysis, we provide a characterization of the maximal percentage of time that feedback information can be lost without resulting in instability of th

  7. Identification of uncertain nonlinear systems for robust fuzzy control.

    Science.gov (United States)

    Senthilkumar, D; Mahanta, Chitralekha

    2010-01-01

    In this paper, we consider fuzzy identification of uncertain nonlinear systems in Takagi-Sugeno (T-S) form for the purpose of robust fuzzy control design. The uncertain nonlinear system is represented using a fuzzy function having constant matrices and time varying uncertain matrices that describe the nominal model and the uncertainty in the nonlinear system respectively. The suggested method is based on linear programming approach and it comprises the identification of the nominal model and the bounds of the uncertain matrices and then expressing the uncertain matrices into uncertain norm bounded matrices accompanied by constant matrices. It has been observed that our method yields less conservative results than the other existing method proposed by Skrjanc et al. (2005). With the obtained fuzzy model, we showed the robust stability condition which provides a basis for different robust fuzzy control design. Finally, different simulation examples are presented for identification and control of uncertain nonlinear systems to illustrate the utility of our proposed identification method for robust fuzzy control.

  8. On global asymptotic controllability of planar affine nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    SUN Yimin; GUO Lei

    2005-01-01

    In this paper, we present a necessary and sufficient condition for globally asymptotic controllability of the general planar affine nonlinear systems with single-input.This result is obtained by introducing a new method in the analysis, which is based on the use of some basic results in planar topology and in the geometric theory of ordinary differential equations.

  9. Distributed control design for nonlinear output agreement in convergent systems

    NARCIS (Netherlands)

    Weitenberg, Erik; De Persis, Claudio

    2015-01-01

    This work studies the problem of output agreement in homogeneous networks of nonlinear dynamical systems under time-varying disturbances using controllers placed at the nodes of the networks. For the class of contractive systems, necessary and sufficient conditions for output agreement are derived,

  10. Modeling and nonlinear heading control for sailing yachts

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2011-01-01

    This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen's compact notation for marine vehicles, we first describe a nonlinear 4-DOF dynamic model for a sailing yacht, including roll. Starting from this model, we then design ...

  11. Modeling and nonlinear heading control for sailing yachts

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2014-01-01

    This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen’s compact notation for marine vehicles, we first describe a nonlinear four-degree-of-freedom (DOF) dynamic model for a sailing yacht, including roll. Our model also inc...

  12. Advanced Phase noise modeling techniques of nonlinear microwave devices

    OpenAIRE

    Prigent, M.; J. C. Nallatamby; R. Quere

    2004-01-01

    In this paper we present a coherent set of tools allowing an accurate and predictive design of low phase noise oscillators. Advanced phase noise modelling techniques in non linear microwave devices must be supported by a proven combination of the following : - Electrical modeling of low-frequency noise of semiconductor devices, oriented to circuit CAD . The local noise sources will be either cyclostationary noise sources or quasistationary noise sources. - Theoretic...

  13. Nonlinear control synthesis for electrical power systems using controllable series capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Manjarekar, N.S.; Banavar, Ravi N. [Indian Institute of Technology Bombay, Mumbai (India). Systems and Control Engineering

    2012-07-01

    In this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesis techniques. For this transient stabilization problem the actuator considered is a power electronic device, a controllable series capacitor (CSC). The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model. To start with, the CSC is modeled by the injection model which is based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector g(x) in the open loop system takes a complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC) methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system. Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system. Next, we consider a different control methodology, immersion and invariance (I and I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I and I, we incorporate the power balance algebraic constraints in the load bus to the SMIB swing equation, and extend the design philosophy to a class of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machine system with two load buses and a CSC. The controller performances are validated through simulations for all cases.

  14. Nonlinear Motion Control of a Rotary Wing Vehicle Powered by Four Rotors

    Directory of Open Access Journals (Sweden)

    S. Araujo–Estrada

    2009-10-01

    Full Text Available This paper presents a solution to the motion control problem for a rotary wing vehicle powered by four rotors. It is considered that the rotary wing vehicle performs an indoor low speed flight mission so that aerodynamic effects are not taken into account. The proposed controller is based on a combination of the well–known backstepping nonlinear control design technique and bounded controllers. It is shown that the resulting closed—loop dynamics evolves inside a set where singularities are avoided. Numerical simulations show the performance of the proposed controller.

  15. Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics.

    Science.gov (United States)

    Heydari, Ali; Balakrishnan, Sivasubramanya N

    2013-01-01

    To synthesize fixed-final-time control-constrained optimal controllers for discrete-time nonlinear control-affine systems, a single neural network (NN)-based controller called the Finite-horizon Single Network Adaptive Critic is developed in this paper. Inputs to the NN are the current system states and the time-to-go, and the network outputs are the costates that are used to compute optimal feedback control. Control constraints are handled through a nonquadratic cost function. Convergence proofs of: 1) the reinforcement learning-based training method to the optimal solution; 2) the training error; and 3) the network weights are provided. The resulting controller is shown to solve the associated time-varying Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution. Performance of the new synthesis technique is demonstrated through different examples including an attitude control problem wherein a rigid spacecraft performs a finite-time attitude maneuver subject to control bounds. The new formulation has great potential for implementation since it consists of only one NN with single set of weights and it provides comprehensive feedback solutions online, though it is trained offline.

  16. Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity

    Science.gov (United States)

    Yin, Jiu-Li; Zhao, Liu-Wei; Tian, Li-Xin

    2014-02-01

    The nonlinear Schrödinger equation with Kerr law nonlinearity in the two-frequency interference is studied by the numerical method. Chaos occurs easily due to the absence of damping. This phenomenon will cause the distortion in the process of information transmission. We find that fiber-optic transmit signals still present chaotic phenomena if the control intensity is smaller. With the increase of intensity, the fiber-optic signal can stay in a stable state in some regions. When the strength is suppressed to a certain value, an unstable phenomenon of the fiber-optic signal occurs. Moreover we discuss the sensitivities of the parameters to be controlled. The results show that the linear term coefficient and the environment of two quite different frequences have less effects on the fiber-optic transmission. Meanwhile the phenomena of vibration, attenuation and escape occur in some regions.

  17. Non-linear controls on the persistence of La Nina

    Science.gov (United States)

    Di Nezio, P. N.; Deser, C.

    2013-12-01

    Non-linear controls on the persistence of La Nina Pedro DiNezio and Clara Deser Up to half of the observed La Nina events last for two years or more. Most El Nino events, in contrast, last no longer than one year. The physical processes causing this asymmetry in the duration of warm and cold ENSO events is unknown. The persistence of La Nina, not only exacerbates the climate impacts, especially in regions prone to drought, but also is highly unpredictable. In this talk we will explore the nonlinear processes that generate the persistence of La Nina in observations and in CCSM4 - a coupled climate model that simulates this feature realistically. First, we develop a non-linear delayed-oscillator model (nonlinDO) based on CCSM4's heat budget. All positive and negative feedbacks of nonlinDO capture the nonlinear and seasonal dependence exhibited by CCSM4. The nonlinear behavior is due to: 1) weaker atmospheric damping of cold events with respect to warm events, 2) stronger wind response for large warm events, and 3) weaker coupling between thermocline and sea-surface temperature anomalies when the thermocline deepens. We force the simple model with white Gaussian noise resulting in seasonal modulation of variance and skewness, and a spectral peak, that are in agreement with CCSM4. Sensitivity experiments with nonlinDO show that the thermocline nonlinearity (3) is the sole process controlling the duration of La Nina events. Linear ENSO theory indicates that La Nina events drive a delayed thermocline deepening that leads to their demise. However, the thermocline nonlinearity (3) renders this response ineffective as La Nina events become stronger. This diminishing of the delayed-thermocline feedback prevents the equatorial Pacific from returning to neutral or warm conditions and cold conditions persist for a second year. Observations show evidence for this thermocline nonlinearity suggesting that this process could be at work in the real world. Last, we show evidence that

  18. Machine learning control taming nonlinear dynamics and turbulence

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R

    2017-01-01

    This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading r...

  19. Nonlinear time-series-based adaptive control applications

    Science.gov (United States)

    Mohler, R. R.; Rajkumar, V.; Zakrzewski, R. R.

    1991-01-01

    A control design methodology based on a nonlinear time-series reference model is presented. It is indicated by highly nonlinear simulations that such designs successfully stabilize troublesome aircraft maneuvers undergoing large changes in angle of attack as well as large electric power transients due to line faults. In both applications, the nonlinear controller was significantly better than the corresponding linear adaptive controller. For the electric power network, a flexible AC transmission system with series capacitor power feedback control is studied. A bilinear autoregressive moving average reference model is identified from system data, and the feedback control is manipulated according to a desired reference state. The control is optimized according to a predictive one-step quadratic performance index. A similar algorithm is derived for control of rapid changes in aircraft angle of attack over a normally unstable flight regime. In the latter case, however, a generalization of a bilinear time-series model reference includes quadratic and cubic terms in angle of attack.

  20. A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations

    KAUST Repository

    Guermond, Jean-Luc

    2014-01-01

    © 2014 Society for Industrial and Applied Mathematics. This paper proposes an explicit, (at least) second-order, maximum principle satisfying, Lagrange finite element method for solving nonlinear scalar conservation equations. The technique is based on a new viscous bilinear form introduced in Guermond and Nazarov [Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 198-213], a high-order entropy viscosity method, and the Boris-Book-Zalesak flux correction technique. The algorithm works for arbitrary meshes in any space dimension and for all Lipschitz fluxes. The formal second-order accuracy of the method and its convergence properties are tested on a series of linear and nonlinear benchmark problems.

  1. Nonlinear Feedforward Control for Wind Disturbance Rejection on Autonomous Helicopter

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; A. Danapalasingam, Kumeresan

    2010-01-01

    for the purpose. The model is inverted for the calculation of rotor collective and cyclic pitch angles given the wind disturbance. The control strategy is then applied on a small helicopter in a controlled wind environment and flight tests demonstrates the effectiveness and advantage of the feedforward controller.......This paper presents the design and verification of a model based nonlinear feedforward controller for wind disturbance rejection on autonomous helicopters. The feedforward control is based on a helicopter model that is derived using a number of carefully chosen simplifications to make it suitable...

  2. IMPULSIVE CONTROL OF CHAOTIC ATTRACTORS IN NONLINEAR CHAOTIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    马军海; 任彪; 陈予恕

    2004-01-01

    Based on the study from both domestic and abroad, an impulsive control scheme on chaotic attractors in one kind of chaotic system is presented.By applying impulsive control theory of the universal equation, the asymptotically stable condition of impulsive control on chaotic attractors in such kind of nonlinear chaotic system has been deduced, and with it, the upper bond of the impulse interval for asymptotically stable control was given. Numerical results are presented, which are considered with important reference value for control of chaotic attractors.

  3. Fractional Order Nonlinear Feedback Controller Design for PMSM Drives

    Directory of Open Access Journals (Sweden)

    Jian-Ping Wen

    2013-01-01

    Full Text Available Fractional order integral is introduced into active disturbance rejection controller (ADRC to establish the structure of fractional order proportional integral controller (FPI. Fractional order ADRC (FADRC is designed by replacing the nonlinear state error feedback control law using nonlinear function combination in ADRC with FPI, which can combine the high performance of ADRC estimating disturbances with the characteristics of fractional order calculus more really describing the physical object and spreading the stable region of the system parameters. The proposed FADRC is applied to permanent magnet synchronous motor (PMSM speed servo system in order to improve robustness of system against the disturbances. Compared with ADRC, simulation results verify that the proposed control method has given very good robust results and fast speed tracking performance.

  4. From linear to nonlinear control means: a practical progression.

    Science.gov (United States)

    Gao, Zhiqiang

    2002-04-01

    With the rapid advance of digital control hardware, it is time to take the simple but effective proportional-integral-derivative (PID) control technology to the next level of performance and robustness. For this purpose, a nonlinear PID and active disturbance rejection framework are introduced in this paper. It complements the existing theory in that (1) it actively and systematically explores the use of nonlinear control mechanisms for better performance, even for linear plants; (2) it represents a control strategy that is rather independent of mathematical models of the plants, thus achieving inherent robustness and reducing design complexity. Stability analysis, as well as software/hardware test results, are presented. It is evident that the proposed framework lends itself well in seeking innovative solutions to practical problems while maintaining the simplicity and the intuitiveness of the existing technology.

  5. Nonlinear model predictive control of a packed distillation column

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, A.A.; Edgar, T.F. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1993-10-01

    A rigorous dynamic model based on fundamental chemical engineering principles was formulated for a packed distillation column separating a mixture of cyclohexane and n-heptane. This model was simplified to a form suitable for use in on-line model predictive control calculations. A packed distillation column was operated at several operating conditions to estimate two unknown model parameters in the rigorous and simplified models. The actual column response to step changes in the feed rate, distillate rate, and reboiler duty agreed well with dynamic model predictions. One unusual characteristic observed was that the packed column exhibited gain-sign changes, which are very difficult to treat using conventional linear feedback control. Nonlinear model predictive control was used to control the distillation column at an operating condition where the process gain changed sign. An on-line, nonlinear model-based scheme was used to estimate unknown/time-varying model parameters.

  6. Structure-based control of complex networks with nonlinear dynamics

    CERN Document Server

    Zañudo, Jorge G T; Albert, Réka

    2016-01-01

    Given the network of interactions underlying a complex system, what can we learn about controlling such a system solely from its structure? Over a century of research in control theory has given us tools to answer this question, which were widely applied in science and engineering. Yet the current tools do not always consider the inherently nonlinear dynamics of real systems and the naturally occurring system states in their definition of "control", a term whose interpretation varies across disciplines. Here we use a new mathematical framework for structure-based control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors and which are guaranteed to be effective regardless of the dynamic details and parameters of the underlying system. We use this framework on several real networks, compar...

  7. Robust Nonlinear Control with Compensation Operator for a Peltier System

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wen

    2014-01-01

    Full Text Available Robust nonlinear control with compensation operator is presented for a Peltier actuated system, where the compensation operator is designed by using a predictive model on heat radiation. For the Peltier system, the heat radiation is related to the fourth power of temperature. So, the heat radiation is affected evidently by the temperature when it is high and temperature difference between the system and environment is large. A new nonlinear model with the heat radiation is set up for the system according to some thermal conduction laws. To ensure robust stability of the nonlinear system, operator based robust right coprime factorization design is considered. Also, a compensation operator based on a predictive model is proposed to cancel effect of the heat radiation, where the predictive model is set up by using radial basis kernel function based SVM (support vector machine method. Finally, simulation results are given to show the effectiveness of the proposed scheme.

  8. Variance-Constrained Multiobjective Control and Filtering for Nonlinear Stochastic Systems: A Survey

    Directory of Open Access Journals (Sweden)

    Lifeng Ma

    2013-01-01

    Full Text Available The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H2/H∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out.

  9. H∞ reference tracking control design for a class of nonlinear systems with time-varying delays

    Institute of Scientific and Technical Information of China (English)

    Mei-qin LIU; Hai-yang CHEN; Sen-lin ZHANG

    2015-01-01

    This paper investigates the H∞ trajectory tracking control for a class of nonlinear systems with time-varying delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. A unifi ed model consisting of a linear delayed dynamic system and a bounded static nonlinear operator is introduced, which covers most of the nonlinear systems with bounded nonlinear terms, such as the one-link robotic manipulator, chaotic systems, complex networks, the continuous stirred tank reactor (CSTR), and the standard genetic regulatory network (SGRN). First, the defi nition of the tracking control is given. Second, the H∞ performance analysis of the closed-loop system including this unifi ed model, reference model, and state feedback controller is presented. Then criteria on the tracking controller design are derived in terms of LMIs such that the output of the closed-loop system tracks the given reference signal in the H∞ sense. The reference model adopted here is modifi ed to be more fl exible. A scaling factor is introduced to deal with the disturbance such that the control precision is improved. Finally, a CSTR system is provided to demonstrate the effectiveness of the established control laws.

  10. Controlling near shore nonlinear surging waves through bottom boundary conditions

    CERN Document Server

    Mukherjee, Abhik; Kundu, Anjan

    2016-01-01

    Instead of taking the usual passive view for warning of near shore surging waves including extreme waves like tsunamis, we aim to study the possibility of intervening and controlling nonlinear surface waves through the feedback boundary effect at the bottom. It has been shown through analytic result that the controlled leakage at the bottom may regulate the surface solitary wave amplitude opposing the hazardous variable depth effect. The theoretical results are applied to a real coastal bathymetry in India.

  11. Stabilization of discrete nonlinear systems based on control Lyapunov functions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The stabilization of discrete nonlinear systems is studied.Based on control Lyapunov functions,asufficient and necessary condition for a quadratic function to be a control Lyapunov function is given.From this condition,a continuous state feedback law is constructed explicitly.It can globally asymptotically stabilize the equilibrium of the closed-loop system.A simulation example shows the effectiveness of the proposed method.

  12. Key techniques of automatic gauge control and profile control for aluminium strip and foil

    Institute of Scientific and Technical Information of China (English)

    LI Mou-wei; LIU Hong-fei; WANG Xiang-li; TONG Chao-nan; YIN Feng-fu; BIAN Xin-xiao; ZHANG Lei

    2006-01-01

    Such characteristics of aluminium strip and foil as soft and thin gauge make tension control one of the key techniques for automation gauge control(AGC). To avoid the disadvantage of traditional mathematical control method which is unfitful for nonlinear hysteresis, the technique for tension AGC fuzzy control was developed and thickness deviation more than 3% of product thickness was achieved consequently in 1 350 mm cold rolling mill of aluminium strip and foil. Additionally, because the gauge of aluminium strip and foil is thin, stage-cooling roll method becomes a key technique for profile control. So stage-cooling roll intelligent control method is developed and pre-coated aluminum foil with good profile less than 10 I (the relative differences in elongation of 0.01% ) is produced using the profile control system in 1 400 mm cold rolling mill of aluminium strip and foil.

  13. Identification of damage in a suspension component using narrowband and broadband nonlinear signal processing techniques

    Science.gov (United States)

    Haroon, Muhammad; Adams, Douglas E.

    2007-04-01

    Fatigue tests on a stabilizer bar link of an automotive suspension system are used to initiate a crack and grow the crack size. During these tests, slow sine sweeps are used to extract narrowband restoring forces across the stabilizer bar link. The restoring forces are shown to characterize the nonlinear changes in component internal forces due to crack growth. Broadband frequency response domain techniques are used to analyze the durability response data. Nonlinear frequency domain models of the dynamic transmissibility across the cracked region are shown to change as a function of crack growth. Higher order spectra are used to show the increase in nonlinear coupling of response frequency components with the appearance and growth of the crack. It is shown that crack growth can be detected and characterized by the changes in nonlinear indicators.

  14. Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique

    Science.gov (United States)

    Zongo, S.; Sanusi, K.; Britton, J.; Mthunzi, P.; Nyokong, T.; Maaza, M.; Sahraoui, B.

    2015-08-01

    We have investigated the nonlinear optical properties, including the optical limiting behaviour for five different concentrations of laccaic acid dye in solution and a thin film obtained through doping in poly (methyl methacrylate) (PMMA) polymer. The experiments were performed by using single beam Z-scan technique at 532 nm with 10 ns, 10 Hz Nd:YAG laser pulses excitation. From the open-aperture Z-scan data, we derived that the laccaic dye samples exhibit strong two photon absorption (2PA). The nonlinear refractive index was determined through the closed aperture Z-scan data. The estimated absorption coefficient β2, nonlinear refractive index n2 and second order hyperpolarizability γ were found to be of the order of 10-10 m/W, 10-9 esu and 10-32 esu, respectively. The Z-scan study reveals that the natural laccaic acid dye emerges as a promising material for third order nonlinear optical devices application.

  15. A nonlinear robust PI controller for an uncertain system

    Science.gov (United States)

    Aguilar-Ibañez, Carlos; Mendoza-Mendoza, Julio A.; Suarez-Castanon, Miguel S.; Davila, Jorge

    2014-05-01

    This paper presents a smooth control strategy for the regulation problem of an uncertain system, which assures uniform ultimate boundedness of the closed-loop system inside of the zero-state neighbourhood. This neighbourhood can be made arbitrarily small. To this end, a class of nonlinear proportional integral controllers or PI controllers was designed. The behaviour of this controller emulates very close a sliding mode controller. To accomplish this behaviour saturation functions were combined with traditional PI controller. The controller did not need a high-gain controller or a sliding mode controller to accomplish robustness against unmodelled persistent perturbations. The obtained closed-solution has a finite time of convergence in a small vicinity. The corresponding stability convergence analysis was done applying the traditional Lyapunov method. Numerical simulations were carried out to assess the effectiveness of the obtained controller.

  16. Stabilization of nonlinear systems with parametric uncertainty using variable structure techniques

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, D.A. [Oak Ridge National Lab., TN (United States); Oezguener, Ue. [Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering

    1995-07-01

    The authors present a result on the robust stabilization of a class of nonlinear systems exhibiting parametric uncertainty. They consider feedback linearizable nonlinear systems with a vector of unknown constant parameters perturbed about a known value. A Taylor series of the system about the nominal parameter vector coupled with a feedback linearizing control law yields a linear system plus nonlinear perturbations. Via a structure matching condition, a variable structure control law is shown to exponentially stabilize the full system. The novelty of the result is that the linearizing coordinates are completely known since they are defined about the nominal parameter vector, and fewer restrictions are imposed on the nonlinear perturbations than elsewhere in the literature.

  17. Techniques of Ultrasound Cavitation Control

    Directory of Open Access Journals (Sweden)

    S. P. Skvortsov

    2015-01-01

    Full Text Available The control methods of ultrasonic cavitation applied now within the range from 20 kHz to 80 kHz use either control of ultrasound source parameters (amplitude, acoustic power, etc. or control of one of the cavitation effects (erosion of materials, sonoluminescence, power of acoustic noise, etc.. These methods provide effective management of technological processes, however, make it impossible to relate the estimated effect with parameters of pulsations of cavitation bubbles. This is, mainly, due to influence of a number of uncontrollable parameters, in particular, such as temperature, composition of liquid, gas content, etc. as well as because of the difficulty to establish interrelation between the estimated effect and parameters of pulsations. As a result, in most cases it is difficult to compare controlled parameters of ultrasonic cavitation among themselves, and quantitative characteristics of processes become depending on the type of ultrasonic installation and conditions of their measurement.In this regard, methods to determine parameters of bubble pulsations through sounding a cavitation area by low-intensity laser radiation or to record cavitation noise sub-harmonics reflecting dynamics of changing radius of cavitation bubbles are of interest. The method of optical sounding, via the analysis of spectral components of a scattered signal recorded by a photo-detector, allows us to define a phase of the bubbles collapse with respect to the sound wave and a moving speed of the bubbles wall, as well as to estimate a cavitation index within the light beam section.The method to record sub-harmonicas of cavitation noise allows us to define parameters of pulsations, average for cavitation areas.The above methods allow us both to study mechanisms of cavitation action and to form quantitative criteria of its efficiency based on the physical processes, rather than their consequences and are convenient for arranging a feedback in the units using

  18. Adaptive control of Hammerstein-Wiener nonlinear systems

    Science.gov (United States)

    Zhang, Bi; Hong, Hyokchan; Mao, Zhizhong

    2016-07-01

    The Hammerstein-Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein-Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.

  19. A Nonlinear Flow Control Scheme Under Capacity Constraints

    Institute of Scientific and Technical Information of China (English)

    Yi Fan; Zhong-Ping Jiang

    2005-01-01

    We present a nonlinear flow control scheme based on a buffer management model with physical constraints. It extends previous result of Pitsillides et al. in [6] by improving the queue length regulation for better service of network traffics. Besides a single node system, we also address the decentralized control of many cascaded nodes. The proposed discontinuous controller asymptotically regulates the buffer queue length at the output port of a router/switch to a constant reference value, under unknown time varying interfering traffics and saturation constraints on control input and states. Its continuous approximation achieves practical regulation with an ultimate bound on the regulation error tunable by a design parameter.

  20. Control of terahertz nonlinear transmission with electrically gated graphene metadevices

    Science.gov (United States)

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. K.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-02-01

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.

  1. Control of terahertz nonlinear transmission with electrically gated graphene metadevices

    Science.gov (United States)

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. k.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-01-01

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms. PMID:28216677

  2. Nonlinear model predictive control of managed pressure drilling.

    Science.gov (United States)

    Nandan, Anirudh; Imtiaz, Syed

    2017-07-01

    A new design of nonlinear model predictive controller (NMPC) is proposed for managed pressure drilling (MPD) system. The NMPC is based on output feedback control architecture and employs offset-free formulation proposed in [1]. NMPC uses active set method for computing control inputs. The controller implements an automatic switching from constant bottom hole pressure (CBHP) regulation to flow control mode in the event of a reservoir kick. In the flow control mode the controller automatically raises the bottom hole pressure setpoint, and thereby keeps the reservoir fluid flow to the surface within a tunable threshold. This is achieved by exploiting constraint handling capability of NMPC. In addition to kick mitigation the controller demonstrated good performance in containing the bottom hole pressure (BHP) during the pipe connection sequence. The controller also delivered satisfactory performance in the presence of measurement noise and uncertainty in the system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Nonlinear Analysis and Intelligent Control of Integrated Vehicle Dynamics

    Directory of Open Access Journals (Sweden)

    C. Huang

    2014-01-01

    Full Text Available With increasing and more stringent requirements for advanced vehicle integration, including vehicle dynamics and control, traditional control and optimization strategies may not qualify for many applications. This is because, among other factors, they do not consider the nonlinear characteristics of practical systems. Moreover, the vehicle wheel model has some inadequacies regarding the sideslip angle, road adhesion coefficient, vertical load, and velocity. In this paper, an adaptive neural wheel network is introduced, and the interaction between the lateral and vertical dynamics of the vehicle is analyzed. By means of nonlinear analyses such as the use of a bifurcation diagram and the Lyapunov exponent, the vehicle is shown to exhibit complicated motions with increasing forward speed. Furthermore, electric power steering (EPS and active suspension system (ASS, which are based on intelligent control, are used to reduce the nonlinear effect, and a negotiation algorithm is designed to manage the interdependences and conflicts among handling stability, driving smoothness, and safety. Further, a rapid control prototype was built using the hardware-in-the-loop simulation platform dSPACE and used to conduct a real vehicle test. The results of the test were consistent with those of the simulation, thereby validating the proposed control.

  4. Prescribed Performance Fuzzy Adaptive Output-Feedback Control for Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed approach.

  5. Nonlinear optical techniques for imaging and manipulating the mouse central nervous system

    Science.gov (United States)

    Farrar, Matthew John

    The spinal cord of vertebrates serves as the conduit for somatosensory information and motor control, as well as being the locus of neural circuits that govern fast reflexes and patterned behaviors, such as walking in mammals or swimming in fish. Consequently, pathologies of the spinal cord -such as spinal cord injury (SCI)- lead to loss of motor control and sensory perception, with accompanying decline in life expectancy and quality of life. Despite the devastating effects of these diseases, few therapies exist to substantially ameliorate patient outcome. In part, studies of spinal cord pathology have been limited by the inability to perform in vivo imaging at the level of cellular processes. The focus of this thesis is to present the underlying theory for and demonstration of novel multi-photon microscopy (MPM) and optical manipulation techniques as they apply to studies the mouse central nervous system (CNS), with an emphasis on the spinal cord. The scientific findings which have resulted from the implementation of these techniques are also presented. In particular, we have demonstrated that third harmonic generation is a dye-free method of imaging CNS myelin, a fundamental constituent of the spinal cord that is difficult to label using exogenous dyes and/or transgenic constructs. Since gaining optical access to the spinal cord is a prerequisite for spinal cord imaging, we review our development of a novel spinal cord imaging chamber and surgical procedure which allowed us to image for multiple weeks following implantation without the need for repeated surgeries. We also have used MPM to characterize spinal venous blood flow before and after point occlusions. We review a novel nonlinear microscopy technique that may serve to show optical interfaces in three dimensions inside scattering tissue. Finally, we discuss a model and show results of optoporation, a means of transfecting cells with genetic constructs. Brief reviews of MPM and SCI are also presented.

  6. Approximate controllability of Sobolev type fractional stochastic nonlocal nonlinear differential equations in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Mourad Kerboua

    2014-12-01

    Full Text Available We introduce a new notion called fractional stochastic nonlocal condition, and then we study approximate controllability of class of fractional stochastic nonlinear differential equations of Sobolev type in Hilbert spaces. We use Hölder's inequality, fixed point technique, fractional calculus, stochastic analysis and methods adopted directly from deterministic control problems for the main results. A new set of sufficient conditions is formulated and proved for the fractional stochastic control system to be approximately controllable. An example is given to illustrate the abstract results.

  7. Design of a multivariable neural controller for control of a nonlinear MIMO plant

    Directory of Open Access Journals (Sweden)

    Bańka Stanisław

    2014-06-01

    Full Text Available The paper presents the training problem of a set of neural nets to obtain a (gain-scheduling, adaptive multivariable neural controller for control of a nonlinear MIMO dynamic process represented by a mathematical model of Low-Frequency (LF motions of a drillship over the drilling point at the sea bottom. The designed neural controller contains a set of neural nets that determine values of its parameters chosen on the basis of two measured auxiliary signals. These are the ship’s current forward speed measured with respect to water and the systematically calculated difference between the course angle and the sea current (yaw angle. Four different methods for synthesis of multivariable modal controllers are used to obtain source data for training the neural controller with parameters reproduced by neural networks. Neural networks are designed on the basis of 3650 modal controllers obtained with the use of the pole placement technique after having linearized the model of LF motions made by the vessel at its nominal operating points in steady states that are dependent on the specified yaw angle and the sea current velocity. The final part of the paper includes simulation results of system operation with a neural controller along with conclusions and final remarks.

  8. Recent advance in nonlinear aeroelastic analysis and control of the aircraft

    OpenAIRE

    Xiang Jinwu; Yan Yongju; Li Daochun

    2014-01-01

    A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretica...

  9. Modular design of adaptive robust controller for strict-feedback stochastic nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; XI Hong-sheng; JI Hai-bo; KANG Yu

    2006-01-01

    A modular approach of the estimation-based design in adaptive linear control systems has been extended to the adaptive robust control of strict-feedback stochastic nonlinear systems with additive standard Wiener noises and constant unknown parameters.By using It(o)'s differentiation rule, nonlinear damping and adaptive Backstepping procedure,the input-to-state stable controller of global stabilization in probability is developed,which guarantees that system states are bounded and the system has a robust stabilization.According to Swapping technique,we develop two filters and convert dynamic parametric models into static ones to which the gradient update law is designed.Transient performance of the system is estimated by the norm of error.Results of simulation show the effectiveness of the control algorithms.The modular design,which has a concise hierarchy,is more flexible and versatile than a Lyapunov-based algorithm.

  10. Robust Adaptive Backstepping Control Design for a Nonlinear Hydraulic-Mechanical System

    DEFF Research Database (Denmark)

    Choux, Martin; Karimi, Hamid Reza; Hovland, Geir

    2009-01-01

    converge to zero despite the uncertainties in the system according to the Barbalat lemma. The resulting controllers are able to take into account the interval uncertainties in Coulomb friction parameters and in the internal leakage parameters in the cylinders. Two adaptation laws are obtained by using......The complex dynamics that characterize hydraulic systems make it difficult for the control design to achieve prescribed goals in an efficient manner. In this paper, we present the design and analysis of a robust nonlinear controller for a nonlinear hydraulic-mechanical (NHM) system. The system...... consists of an electrohydraulic servo valve and two hydraulic cylinders. Specifically, by considering a part of the dynamics of the NHM system as a norm-bounded uncertainty, two adaptive controllers are developed based on the backstepping technique that ensure the tracking error signals asymptotically...

  11. Backstepping adaptive fuzzy control of uncertain nonlinear systems against actuator faults

    Institute of Scientific and Technical Information of China (English)

    Ping LI; Guanghong YANG

    2009-01-01

    A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory.Using backstepping technique,a novel adaptive fuzzy control approach is proposed to accommodate the uncertain actuator faults during operation and deal with the external disturbances though the systems cannot be linearized by feedback.The considered faults are modeled as both loss of effectiveness and lock-in-place (stuck at some unknown place).It is proved that the proposed control scheme can guarantee all signals of the closed-loop system to be semi-globally uniformly ultimately bounded and the tracking error between the system output and the reference signal converge to a small neighborhood of zero,though the nonlinear functions of the controlled system as well as the actuator faults and the external disturbances are all unknown.Simulation results demonstrate the effectiveness of the control approach.

  12. Study of Super-Twisting sliding mode control for U model based nonlinear system

    OpenAIRE

    Zhang, Jianhua; Li, Yang; Xueli WU; Jianan HUO; Shenyang ZHUANG

    2016-01-01

    The Super-Twisting control algorithm is adopted to analyze the U model based nonlinear control system in order to solve the controller design problems of non-affine nonlinear systems. The non-affine nonlinear systems are studied, the neural network approximation of the nonlinear function is performed, and the Super-Twisting control algorithm is used to control. The convergence of the Super-Twisting algorithm is proved by selecting an appropriate Lyapunov function. The Matlab simulation is car...

  13. HMM Speaker Identification Using Linear and Non-linear Merging Techniques

    CERN Document Server

    Mahola, Unathi; Marwala, Tshilidzi

    2007-01-01

    Speaker identification is a powerful, non-invasive and in-expensive biometric technique. The recognition accuracy, however, deteriorates when noise levels affect a specific band of frequency. In this paper, we present a sub-band based speaker identification that intends to improve the live testing performance. Each frequency sub-band is processed and classified independently. We also compare the linear and non-linear merging techniques for the sub-bands recognizer. Support vector machines and Gaussian Mixture models are the non-linear merging techniques that are investigated. Results showed that the sub-band based method used with linear merging techniques enormously improved the performance of the speaker identification over the performance of wide-band recognizers when tested live. A live testing improvement of 9.78% was achieved

  14. Dynamic Structure Neural Networks for Stable Adaptive Control of Nonlinear Systems

    OpenAIRE

    Fabri, S.; Kadirkamanathan, V.

    1994-01-01

    An adaptive control technique, using dynamic structure Gaussian radical basis function neural networks, that grow in time according to the location of the system's state in space is presented for the affine class of nonlinear systems having unknown or partially known dynamics. The method results in a network that is economic in terms of network size, for cases where the state spans only a small subset of state space, by utilising less basis functions than would have been the case if basis fun...

  15. Design of a Discrete Tracking Controller for a Magnetic Levitation System: A Nonlinear Rational Model Approach

    Directory of Open Access Journals (Sweden)

    Fernando Gómez-Salas

    2015-01-01

    Full Text Available This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.

  16. Efficient Control of Nonlinear Noise-Corrupted Systems Using a Novel Model Predictive Control Framework

    OpenAIRE

    Weissel, Florian; Huber, Marco F.; Hanebeck, Uwe D.

    2007-01-01

    Model identification and measurement acquisition is always to some degree uncertain. Therefore, a framework for Nonlinear Model Predictive Control (NMPC) is proposed that explicitly considers the noise influence on nonlinear dynamic systems with continuous state spaces and a finite set of control inputs in order to significantly increase the control quality. Integral parts of NMPC are the prediction of system states over a finite horizon as well as the problem specific modeling of reward func...

  17. Self-Organized Biological Dynamics and Nonlinear Control

    Science.gov (United States)

    Walleczek, Jan

    2006-04-01

    The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological

  18. FBFN-based adaptive repetitive control of nonlinearly parameterized systems

    Institute of Scientific and Technical Information of China (English)

    Wenli Sun; Hong Cai; Fu Zhao

    2013-01-01

    An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy ba-sis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mecha-nism. Based on the Lyapunov stability theory, an adaptive repeti-tive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the control er singularity problem is solved. The proposed approach does not require an exact structure of the sys-tem dynamics, and the proposed control er is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simula-tion results demonstrate the effectiveness of the proposed method.

  19. Nonlinear Dynamics of Controlled Synchronizations of Manipulator System

    Directory of Open Access Journals (Sweden)

    Qingkai Han

    2014-01-01

    Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.

  20. On discrete control of nonlinear systems with applications to robotics

    Science.gov (United States)

    Eslami, Mansour

    1989-01-01

    Much progress has been reported in the areas of modeling and control of nonlinear dynamic systems in a continuous-time framework. From implementation point of view, however, it is essential to study these nonlinear systems directly in a discrete setting that is amenable for interfacing with digital computers. But to develop discrete models and discrete controllers for a nonlinear system such as robot is a nontrivial task. Robot is also inherently a variable-inertia dynamic system involving additional complications. Not only the computer-oriented models of these systems must satisfy the usual requirements for such models, but these must also be compatible with the inherent capabilities of computers and must preserve the fundamental physical characteristics of continuous-time systems such as the conservation of energy and/or momentum. Preliminary issues regarding discrete systems in general and discrete models of a typical industrial robot that is developed with full consideration of the principle of conservation of energy are presented. Some research on the pertinent tactile information processing is reviewed. Finally, system control methods and how to integrate these issues in order to complete the task of discrete control of a robot manipulator are also reviewed.

  1. Optical nonlinearity of organic dyes as studied by Z-scan and transient grating techniques

    Indian Academy of Sciences (India)

    Umakanta Tripathy; R Justin Rajesh; Prem B Bisht; A Subrahamanyam

    2002-12-01

    The excited state absorption cross-section of 5,5′-dichloro-11-diphenylamino- 3,3′-diethyl-10,12-ethylinethiatricarbocyanine perchlorate (IR140) have been measured by using a single beam transmission technique. Z-scan experiments have been used to find out a few nonlinear parameters. The excited state relaxation times have also been measured by using laser induced transient grating (LITG) technique.

  2. GDTM-Padé technique for the non-linear differential-difference equation

    Directory of Open Access Journals (Sweden)

    Lu Jun-Feng

    2013-01-01

    Full Text Available This paper focuses on applying the GDTM-Padé technique to solve the non-linear differential-difference equation. The bell-shaped solitary wave solution of Belov-Chaltikian lattice equation is considered. Comparison between the approximate solutions and the exact ones shows that this technique is an efficient and attractive method for solving the differential-difference equations.

  3. Adaptive, Small-Rotation-Based, Corotational Technique for Analysis of 2D Nonlinear Elastic Frames

    Directory of Open Access Journals (Sweden)

    Jaroon Rungamornrat

    2014-01-01

    Full Text Available This paper presents an efficient and accurate numerical technique for analysis of two-dimensional frames accounted for both geometric nonlinearity and nonlinear elastic material behavior. An adaptive remeshing scheme is utilized to optimally discretize a structure into a set of elements where the total displacement can be decomposed into the rigid body movement and one possessing small rotations. This, therefore, allows the force-deformation relationship for the latter part to be established based on small-rotation-based kinematics. Nonlinear elastic material model is integrated into such relation via the prescribed nonlinear moment-curvature relationship. The global force-displacement relation for each element can be derived subsequently using corotational formulations. A final system of nonlinear algebraic equations along with its associated gradient matrix for the whole structure is obtained by a standard assembly procedure and then solved numerically by Newton-Raphson algorithm. A selected set of results is then reported to demonstrate and discuss the computational performance including the accuracy and convergence of the proposed technique.

  4. Soft Computing Techniques for Process Control Applications

    Directory of Open Access Journals (Sweden)

    Rahul Malhotra

    2011-09-01

    Full Text Available Technological innovations in soft computing techniques have brought automation capabilities to new levelsof applications. Process control is an important application of any industry for controlling the complexsystem parameters, which can greatly benefit from such advancements. Conventional control theory isbased on mathematical models that describe the dynamic behaviour of process control systems. Due to lackin comprehensibility, conventional controllers are often inferior to the intelligent controllers. Softcomputing techniques provide an ability to make decisions and learning from the reliable data or expert’sexperience. Moreover, soft computing techniques can cope up with a variety of environmental and stabilityrelated uncertainties. This paper explores the different areas of soft computing techniques viz. Fuzzy logic,genetic algorithms and hybridization of two and abridged the results of different process control casestudies. It is inferred from the results that the soft computing controllers provide better control on errorsthan conventional controllers. Further, hybrid fuzzy genetic algorithm controllers have successfullyoptimized the errors than standalone soft computing and conventional techniques.

  5. Indirect robust control of agile missile via Theta-D technique

    Directory of Open Access Journals (Sweden)

    Di Zhou

    2014-09-01

    Full Text Available An agile missile with tail fins and pulse thrusters has continuous and discontinuous control inputs. This brings certain difficulty to the autopilot design and stability analysis. Indirect robust control via Theta-D technique is employed to handle this problem. An acceleration tracking system is formulated based on the nonlinear dynamics of agile missile. Considering the dynamics of actuators, there is an error between actual input and computed input. A robust control problem is formed by treating the error as input uncertainty. The robust control is equivalent to a nonlinear quadratic optimal control of the nominal system with a modified performance index including uncertainty bound. Theta-D technique is applied to solve the nonlinear optimal control problem to obtain the final control law. Numerical results show the effectiveness and robustness of the proposed strategy.

  6. Nonlinear spin control by terahertz-driven anisotropy fields

    Science.gov (United States)

    Baierl, S.; Hohenleutner, M.; Kampfrath, T.; Zvezdin, A. K.; Kimel, A. V.; Huber, R.; Mikhaylovskiy, R. V.

    2016-11-01

    Future information technologies, such as ultrafast data recording, quantum computation or spintronics, call for ever faster spin control by light. Intense terahertz pulses can couple to spins on the intrinsic energy scale of magnetic excitations. Here, we explore a novel electric dipole-mediated mechanism of nonlinear terahertz-spin coupling that is much stronger than linear Zeeman coupling to the terahertz magnetic field. Using the prototypical antiferromagnet thulium orthoferrite (TmFeO3), we demonstrate that resonant terahertz pumping of electronic orbital transitions modifies the magnetic anisotropy for ordered Fe3+ spins and triggers large-amplitude coherent spin oscillations. This mechanism is inherently nonlinear, it can be tailored by spectral shaping of the terahertz waveforms and its efficiency outperforms the Zeeman torque by an order of magnitude. Because orbital states govern the magnetic anisotropy in all transition-metal oxides, the demonstrated control scheme is expected to be applicable to many magnetic materials.

  7. Non-linear and adaptive control of a refrigeration system

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2011-01-01

    In a refrigeration process heat is absorbed in an evaporator by evaporating a flow of liquid refrigerant at low pressure and temperature. Controlling the evaporator inlet valve and the compressor in such a way that a high degree of liquid filling in the evaporator is obtained at all compressor...... are capable of adapting to variety of systems. This paper proposes a novel method for superheat and capacity control of refrigeration systems; namely by controlling the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed...

  8. Stabilization of nonlinear systems based on robust control Lyapunov function

    Institute of Scientific and Technical Information of China (English)

    CAI Xiu-shan; HAN Zheng-zhi; LU Gan-yun

    2007-01-01

    This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunov function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.

  9. Boundary control of nonlinear coupled heat systems using backstepping

    KAUST Repository

    Bendevis, Paul

    2016-10-20

    A state feedback boundary controller is designed for a 2D coupled PDE system modelling heat transfer in a membrane distillation system for water desalination. Fluid is separated into two compartments with nonlinear coupling at a membrane boundary. The controller sets the temperature on one boundary in order to track a temperature difference across the membrane boundary. The control objective is achieved by an extension of backstepping methods to these coupled equations. Stability of the target system via Lyapunov like methods, and the invertibility of the integral transformation are used to show the stability of the tracking error.

  10. A New Family of Nonlinear Observers for SI Engine Air/Fuel Ratio Control

    DEFF Research Database (Denmark)

    Jensen, P. B.; Olsen, M. B.; Poulsen, J.;

    1997-01-01

    The paper treats a newly developed set of nonlinear observers for advanced spark ignition engine control.......The paper treats a newly developed set of nonlinear observers for advanced spark ignition engine control....

  11. Limits of localized control in extended nonlinear systems

    Science.gov (United States)

    Handel, Andreas

    We investigate the limits of localized linear control in spatially extended, nonlinear systems. Spatially extended, nonlinear systems can be found in virtually every field of engineering and science. An important category of such systems are fluid flows. Fluid flows play an important role in many commercial applications, for instance in the chemical, pharmaceutical and food-processing industries. Other important fluid flows include air- or water flows around cars, planes or ships. In all these systems, it is highly desirable to control the flow of the respective fluid. For instance control of the air flow around an airplane or car leads to better fuel-economy and reduced noise production. Usually, it is impossible to apply control everywhere. Consider an airplane: It would not be feasibly to cover the whole body of the plane with control units. Instead, one can place the control units at localized regions, such as points along the edge of the wings, spaced as far apart from each other as possible. These considerations lead to an important question: For a given system, what is the minimum number of localized controllers that still ensures successful control? Too few controllers will not achieve control, while using too many leads to unnecessary expenses and wastes resources. To answer this question, we study localized control in a class of model equations. These model equations are good representations of many real fluid flows. Using these equations, we show how one can design localized control that renders the system stable. We study the properties of the control and derive several expressions that allow us to determine the limits of successful control. We show how the number of controllers that are needed for successful control depends on the size and type of the system, as well as the way control is implemented. We find that especially the nonlinearities and the amount of noise present in the system play a crucial role. This analysis allows us to determine under

  12. An open plus nonlinear closed loop control of chaotic oscillators

    Institute of Scientific and Technical Information of China (English)

    陈立群

    2002-01-01

    An open plus nonlinear closed loop control law is presented for chaotic oscillations described by a set of non-autonomous second-order ordinary differential equations. It is proven that the basins of entrainment are global whenthe right-hand sides of the equations are given by arbitrary polynomial functions. The forced Duffing oscillator and theforced van der Pol oscillator are treated as numerical examples to demonstrate the applications of the method.

  13. Controlled opacity in a class of nonlinear dielectric media

    CERN Document Server

    Bittencourt, Eduardo; De Lorenci, Vitorio A; Klippert, Renato

    2016-01-01

    Motivated by new technologies on designing and tailoring metamaterials, we seek for properties of certain classes of nonlinear optical materials that allow room for a reversibly controlled opacityto-transparency phase transition through the application of external electromagnetic fields. We examine some mathematically simple models for the dielectric parameters of the medium, and compute the relevant geometric quantities that describe the speed and polarization of light rays.

  14. Controlled opacity in a class of nonlinear dielectric media

    Science.gov (United States)

    Bittencourt, E.; Camargo, G. H. S.; De Lorenci, V. A.; Klippert, R.

    2017-03-01

    Motivated by new technologies for designing and tailoring metamaterials, we seek properties for certain classes of nonlinear optical materials that allow room for a reversibly controlled opacity-to-transparency phase transition through the application of external electromagnetic fields. We examine some mathematically simple models for the dielectric parameters of the medium and compute the relevant geometric quantities that describe the speed and polarization of light rays.

  15. OUTPUT FEEDBACK CONTROL FOR MIMO NONLINEAR SYSTEMS WITH EXOGENOUS SIGNALS

    Institute of Scientific and Technical Information of China (English)

    Ying ZHOU; Yuqiang WU

    2006-01-01

    The paper addresses the global output tracking of a class of multi-input multi-output(MIMO) nonlinear systems affected by disturbances, which are generated by a known exosystem. An adaptive controller is designed based on the proposed observer and the backstepping approach to asymptotically track arbitrary reference signal and to guarantee the boundedness of all the signals in the closed loop system. Finally, the numerical simulation results illustrate the effectiveness of the proposed scheme.

  16. Tracking control of a flexible beam by nonlinear boundary feedback

    Directory of Open Access Journals (Sweden)

    Bao-Zhu Guo

    1995-01-01

    Full Text Available This paper is concerned with tracking control of a dynamic model consisting of a flexible beam rotated by a motor in a horizontal plane at the one end and a tip body rigidly attached at the free end. The well-posedness of the closed loop systems considering the dissipative nonlinear boundary feedback is discussed and the asymptotic stability about difference energy of the hybrid system is also investigated.

  17. Discrete-Time Nonlinear Control of VSC-HVDC System

    Directory of Open Access Journals (Sweden)

    TianTian Qian

    2015-01-01

    Full Text Available Because VSC-HVDC is a kind of strong nonlinear, coupling, and multi-input multioutput (MIMO system, its control problem is always attracting much attention from scholars. And a lot of papers have done research on its control strategy in the continuous-time domain. But the control system is implemented through the computer discrete sampling in practical engineering. It is necessary to study the mathematical model and control algorithm in the discrete-time domain. The discrete mathematical model based on output feedback linearization and discrete sliding mode control algorithm is proposed in this paper. And to ensure the effectiveness of the control system in the quasi sliding mode state, the fast output sampling method is used in the output feedback. The results from simulation experiment in MATLAB/SIMULINK prove that the proposed discrete control algorithm can make the VSC-HVDC system have good static, dynamic, and robust characteristics in discrete-time domain.

  18. Fuzzy fractional order sliding mode controller for nonlinear systems

    Science.gov (United States)

    Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.

    2010-04-01

    In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.

  19. Sensor Fault Tolerant Generic Model Control for Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally because of its robust control performance. If a fault occurs in the sensor, a sensor bias vector is then introduced to the output equation of the process model. The sensor bias vector is estimated on-line during every control period using the STF. The estimated sensor bias vector is used to develop a fault detection mechanism to supervise the sensors. When a sensor fault occurs, the conventional GMC is switched to a fault tolerant control scheme, which is, in essence, a state estimation and output prediction based GMC. The laboratory experimental results on a three-tank system demonstrate the effectiveness of the proposed Sensor Fault Tolerant Generic Model Control (SFTGMC) approach.

  20. Robust direct adaptive fuzzy control for nonlinear MIMO systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huaguang; ZHANG Mingjun

    2006-01-01

    For a class of nonlinear multi-input multi-output systems with uncertainty, a robust direct adaptive fuzzy control scheme was proposed. The feedback control law and adaptive law for parameters were derived based on Lyapunov design approach. The overall control scheme can guarantee that the tracking error converges in the small neighborhood of origin, and all signals of the closed-loop system are uniformly bounded. The main advantage of the proposed control scheme is that in each subsystem only one parameter vector needs to be adjusted on-line in the adaptive mechanism, and so the on-line computing burden is reduced. In addition, the proposed control scheme is a smooth control with no chattering phenomena. A simulation example was proposed to demonstrate the effectiveness of the proposed control algorithm.

  1. Augmented Nonlinear Controller for Maximum Power-Point Tracking with Artificial Neural Network in Grid-Connected Photovoltaic Systems

    OpenAIRE

    2016-01-01

    Photovoltaic (PV) systems have non-linear characteristics that generate maximum power at one particular operating point. Environmental factors such as irradiance and temperature variations greatly affect the maximum power point (MPP). Diverse offline and online techniques have been introduced for tracking the MPP. Here, to track the MPP, an augmented-state feedback linearized (AFL) non-linear controller combined with an artificial neural network (ANN) is proposed. This approach linearizes the...

  2. Robust Stability for Nonlinear Systems with Time-Varying Delay and Uncertainties via the H∞ Quasi-Sliding Mode Control

    OpenAIRE

    Yi-You Hou; Zhang-Lin Wan

    2014-01-01

    This paper considers the problem of the robust stability for the nonlinear system with time-varying delay and parameters uncertainties. Based on the H∞ theorem, Lyapunov-Krasovskii theory, and linear matrix inequality (LMI) optimization technique, the H∞ quasi-sliding mode controller and switching function are developed such that the nonlinear system is asymptotically stable in the quasi-sliding mode and satisfies the disturbance attenuation (H∞-norm performance). The effectiveness and accura...

  3. PI controller based model reference adaptive control for nonlinear ...

    African Journals Online (AJOL)

    user

    which can deal effectively for real-time online computer control. The NN of the ..... applications such as machine tools, industrial robot control, position control, and other engineering practices. .... Transactions on Mechatronics, vol.1, no.2, pp.

  4. Controlling ultrafast currents by the nonlinear photogalvanic effect

    Science.gov (United States)

    Wachter, Georg; Sato, Shunsuke A.; Floss, Isabella; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim

    2015-12-01

    We investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femtosecond optical laser pulses. Ab initio simulations based on time-dependent density functional theory predict ultrafast direct currents that can be viewed as a nonlinear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity of about {I}{{c}}˜ 3× {10}13 W cm-2. We trace this switching to the transition from nonlinear polarisation currents to the tunnelling excitation regime. The latter is found to be sensitive to the relative orientation between laser polarisation and chemical bonds. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. While two temporally separated laser pulses lead to currents along one direction their temporal overlap can reverse the current. We find the ultrafast current control by the nonlinear photogalvanic effect to be remarkably robust and insensitive to the laser-pulse shape and the carrier-envelope phase.

  5. To sample or not to sample: Self-triggered control for nonlinear systems

    CERN Document Server

    Anta, Adolfo

    2008-01-01

    Feedback control laws have been traditionally implemented in a periodic fashion on digital hardware. Although periodicity simplifies the analysis of the mismatch between the control design and its digital implementation, it also leads to conservative usage of resources such as CPU utilization in the case of embedded control. We present a novel technique that abandons the periodicity assumption by using the current state of the plant to decide the next time instant in which the state should be measured, the control law computed, and the actuators updated. This technique, termed self-triggered control, is developed for two classes of nonlinear control systems, namely, state-dependent homogeneous systems and polynomial systems. The wide applicability of the proposed results is illustrated in two well known physical examples: a jet engine compressor and the rigid body.

  6. Comparative Analysis of Linear and Nonlinear Pattern Synthesis of Hemispherical Antenna Array Using Adaptive Evolutionary Techniques

    Directory of Open Access Journals (Sweden)

    K. R. Subhashini

    2014-01-01

    synthesis is termed as the variation in the element excitation amplitude and nonlinear synthesis is process of variation in element angular position. Both ADE and AFA are a high-performance stochastic evolutionary algorithm used to solve N-dimensional problems. These methods are used to determine a set of parameters of antenna elements that provide the desired radiation pattern. The effectiveness of the algorithms for the design of conformal antenna array is shown by means of numerical results. Comparison with other methods is made whenever possible. The results reveal that nonlinear synthesis, aided by the discussed techniques, provides considerable enhancements compared to linear synthesis.

  7. A simple nonlinear PD controller for integrating processes.

    Science.gov (United States)

    Dey, Chanchal; Mudi, Rajani K; Simhachalam, Dharmana

    2014-01-01

    Many industrial processes are found to be integrating in nature, for which widely used Ziegler-Nichols tuned PID controllers usually fail to provide satisfactory performance due to excessive overshoot with large settling time. Although, IMC (Internal Model Control) based PID controllers are capable to reduce the overshoot, but little improvement is found in the load disturbance response. Here, we propose an auto-tuning proportional-derivative controller (APD) where a nonlinear gain updating factor α continuously adjusts the proportional and derivative gains to achieve an overall improved performance during set point change as well as load disturbance. The value of α is obtained by a simple relation based on the instantaneous values of normalized error (eN) and change of error (ΔeN) of the controlled variable. Performance of the proposed nonlinear PD controller (APD) is tested and compared with other PD and PID tuning rules for pure integrating plus delay (IPD) and first-order integrating plus delay (FOIPD) processes. Effectiveness of the proposed scheme is verified on a laboratory scale servo position control system.

  8. Nonlinear control of ships minimizing the position tracking errors

    Directory of Open Access Journals (Sweden)

    Svein P. Berge

    1999-07-01

    Full Text Available In this paper, a nonlinear tracking controller with integral action for ships is presented. The controller is based on state feedback linearization. Exponential convergence of the vessel-fixed position and velocity errors are proven by using Lyapunov stability theory. Since we only have two control devices, a rudder and a propeller, we choose to control the longship and the sideship position errors to zero while the heading is stabilized indirectly. A Virtual Reference Point (VRP is defined at the bow or ahead of the ship. The VRP is used for tracking control. It is shown that the distance from the center of rotation to the VRP will influence on the stability of the zero dynamics. By selecting the VRP at the bow or even ahead of the bow, the damping in yaw can be increased and the zero dynamics is stabilized. Hence, the heading angle will be less sensitive to wind, currents and waves. The control law is simulated by using a nonlinear model of the Japanese training ship Shiojimaru with excellent results. Wind forces are added to demonstrate the robustness and performance of the integral controller.

  9. Robust reliable guaranteed cost control for nonlinear singular stochastic systems with time delay

    Institute of Scientific and Technical Information of China (English)

    Zhang Aiqing; Fang Huajing

    2008-01-01

    To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems,the Takagi-Sugeno(T-S)fuzzy model is used to represent a nonlinear singular stochastic system with norm-bounded parameter uncertainties and time delay.Based on the linear matrix inequality(LMI)techniques and stability theory of stochastic differential equations,a stochastic Lyapunov function method is adopted to design a state feedback fuzzy controller.The resulting closed-loop fuzzy system is robustly reliable stochastically stable,and the corresponding quadratic cost function is guarauteed to be no more than a certain upper bound for all admissible uncertainties,as well as different actuator fault cases.A sufficient condition of existence and design method of robust reliable guaranteed cost controller is presented.Finally,a numerical simulation is given to illustrate the effectiveness of the proposed method.

  10. Asymptotic regulation of cascade systems with unknown control directions and nonlinear parameterization

    Institute of Scientific and Technical Information of China (English)

    Qiangde WANG; Chunling WEI; Yuqiang WU

    2009-01-01

    A robust partial-state feedback asymptotic regulating control scheme is developed for a class of cascade systems with both nonlinear uncertainties and unknown control directions.A parameter separation technique is introduced to separate the time-varying uncertainty and the unmeasurable state from nonlinear functions.Then,the Nussbaum-type gain method together with the idea of changing supply functions is adopted in the design of a smooth partial-state regulator that can ensure all the signals of the closed-loop system are globally uniformly bounded.Especially,the system state asymptotically converges to zero.The design procedure is illustrated through an example and the simulation results show that the controller is feasible and effective.

  11. Direct adaptive control for a class of MIMO nonlinear discrete-time systems

    Institute of Scientific and Technical Information of China (English)

    Lei Li; Zhizhong Mao

    2014-01-01

    This paper considers the problem of adaptive con-trol for a class of multiple input multiple output (MIMO) nonlinear discrete-time systems based on input-output model with unknown interconnections between subsystems. Based on the Taylor ex-pand technology, an equivalent model in affine-like form is derived for the original nonaffine nonlinear system. Then a direct adap-tive neural network (NN) control er is implemented based on the affine-like model. By finding an orthogonal matrix to tune the NN weights, the closed-loop system is proven to be semiglobal y uni-formly ultimately bounded. The σ-modification technique is used to remove the requirement of persistence excitation during the adaptation. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.

  12. Adaptive nearly optimal control for a class of continuous-time nonaffine nonlinear systems with inequality constraints.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-01-01

    The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies.

  13. Optimal control of nonlinear continuous-time systems in strict-feedback form.

    Science.gov (United States)

    Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani

    2015-10-01

    This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.

  14. Nonlinear Adaptive Dynamic Output-Feedback Power-Level Control of Nuclear Heating Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-01-01

    Full Text Available Due to the high safety performance of small nuclear reactors, there is a promising future for small reactors. Nuclear heating reactor (NHR is a small reactor that has many advanced safety features such as the integrated arrangement, natural circulation at any power levels, self-pressurization, hydraulic control rod driving, and passive residual heating removing and can be applied to the fields of district heating, seawater desalination, and electricity production. Since the NHR dynamics has strong nonlinearity and uncertainty, it is meaningful to develop the nonlinear adaptive power-level control technique. From the idea of physically based control design method, a novel nonlinear adaptive power-level control is given for the NHR in this paper. It is theoretically proved that this newly built controller does not only provide globally asymptotic closed-loop stability but is also adaptive to the system uncertainty. Numerical simulation results show the feasibility of this controller and the relationship between the performance and controller parameters.

  15. Passive Control and ε-Bound Estimation of Singularly Perturbed Systems with Nonlinear Nonlinearities

    Directory of Open Access Journals (Sweden)

    Linna Zhou

    2013-01-01

    Full Text Available This paper considers the problems of passivity analysis and synthesis of singularly perturbed systems with nonlinear uncertainties. By a novel storage function depending on the singular perturbation parameter ε, a new method is proposed to estimate the ε-bound, such that the system is passive when the singular perturbation parameter is lower than the ε-bound. Furthermore, a controller design method is proposed to achieve a predefined ε-bound. The proposed results are shown to be less conservative than the existing ones because the adopted storage function is more general. Finally, an RLC circuit is presented to illustrate the advantages and effectiveness of the proposed methods.

  16. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  17. A geometrical approach to control and controllability of nonlinear dynamical networks.

    Science.gov (United States)

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-04-14

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control.

  18. Robust adaptive fuzzy control scheme for nonlinear system with uncertainty

    Institute of Scientific and Technical Information of China (English)

    Mingjun ZHANG; Huaguang ZHANG

    2006-01-01

    In this paper, a robust adaptive fuzzy control scheme for a class of nonlinear system with uncertainty is proposed. First, using prior knowledge about the plant we obtain a fuzzy model, which is called the generalized fuzzy hyperbolic model (GFHM). Secondly, for the case that the states of the system are not available an observer is designed and a robust adaptive fuzzy output feedback control scheme is developed. The overall control system guarantees that the tracking error converges to a small neighborhood of origin and that all signals involved are uniformly bounded. The main advantages of the proposed control scheme are that the human knowledge about the plant under control can be used to design the controller and only one parameter in the adaptive mechanism needs to be on-line adjusted.

  19. Multivariable nonlinear control of STATCOM for synchronous generator stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, N.C. [Multimedia Univ., Melaka (Malaysia). Faculty of Engineering and Technology; Panigrahi, B.K.; Panda, G. [Multimedia Univ., Selangor (Malaysia); Dash, P.K. [National Inst. of Technology, Rourkela (India)

    2004-01-01

    A static synchronous compensator (STATCOM) is a typical flexible ac transmission system device playing a vital role as a stability aid for small and large transient disturbances in an interconnected power system. This article deals with design and evaluation of a feedback linearizing nonlinear controller for STATCOM installed in a single-machine infinite-bus power system. In addition to the coordinated control of ac and dc bus voltages, the proposed controller also provides good damping to the electromechanical oscillation of the synchronous generator under transient disturbances. The efficiency of the control strategy is evaluated by computer simulation studies. The comparative study of these results with the conventional cascade control structure establishes the elegance of the proposed control scheme. (author)

  20. SUCCESSIVELY ITERATIVE TECHNIQUE OF SIGN-CHANGING SOLUTION TO A NONLINEAR THIRD-ORDER BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The iterative technique of sign-changing solution is studied for a nonlinear third-order two-point boundary value problem, where the nonlinear term has the time sin-gularity. By applying the monotonically iterative technique, an existence theorem is established and two useful iterative schemes are obtained.