Nonlinearity, Conservation Law and Shocks
Indian Academy of Sciences (India)
However, genuine nonlinearity is always present in an ideal gas. The conservation form of the equation (25) brings in shocks which cut off the growing part of the amplitUde as shown in. Figure 15. Acknowledgements. The author sincerely thanks the two referees whose valuable comments led to an improvement of the ...
Entropy viscosity method for nonlinear conservation laws
Guermond, Jean-Luc
2011-05-01
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.
Entropy viscosity method for nonlinear conservation laws
Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan
2011-01-01
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.
Nonlinear Conservation Laws and Finite Volume Methods
Leveque, Randall J.
Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References
Variational approaches to conservation laws for a nonlinear ...
African Journals Online (AJOL)
The conservation laws of a nonlinear evolution equation of time dependent variable coefficients of damping and dispersion is studied. The equation under consideration is not derivable from a variational principle which means that one cannot appeal to the Noether theorem to determine the conservation laws. We utilize the ...
Convergence of spectral methods for nonlinear conservation laws. Final report
International Nuclear Information System (INIS)
Tadmor, E.
1987-08-01
The convergence of the Fourier method for scalar nonlinear conservation laws which exhibit spontaneous shock discontinuities is discussed. Numerical tests indicate that the convergence may (and in fact in some cases must) fail, with or without post-processing of the numerical solution. Instead, a new kind of spectrally accurate vanishing viscosity is introduced to augment the Fourier approximation of such nonlinear conservation laws. Using compensated compactness arguments, it is shown that this spectral viscosity prevents oscillations, and convergence to the unique entropy solution follows
Nonlinear MHD-equations: symmetries, solutions and conservation laws
International Nuclear Information System (INIS)
Samokhin, A.V.
1985-01-01
To investigate stability and nonlinear effects in a high-temperature plasma the system of two scalar nonlinear equations is considered. The algebra of classical symmetries of this system and a certain natural part of its conservation laws are described. It is shown that first, with symmetries one can derive invariant (self-similar) solutions, second, acting with symmetry on the known solution the latter can be included into parametric family
Propagation of multidimensional nonlinear waves and kinematical conservation laws
Prasad, Phoolan
2017-01-01
This book formulates the kinematical conservation laws (KCL), analyses them and presents their applications to various problems in physics. Finally, it addresses one of the most challenging problems in fluid dynamics: finding successive positions of a curved shock front. The topics discussed are the outcome of collaborative work that was carried out mainly at the Indian Institute of Science, Bengaluru, India. The theory presented in the book is supported by referring to extensive numerical results. The book is organised into ten chapters. Chapters 1–4 offer a summary of and briefly discuss the theory of hyperbolic partial differential equations and conservation laws. Formulation of equations of a weakly nonlinear wavefront and those of a shock front are briefly explained in Chapter 5, while Chapter 6 addresses KCL theory in space of arbitrary dimensions. The remaining chapters examine various analyses and applications of KCL equations ending in the ultimate goal-propagation of a three-dimensional curved sho...
Finite difference techniques for nonlinear hyperbolic conservation laws
International Nuclear Information System (INIS)
Sanders, R.
1985-01-01
The present study is concerned with numerical approximations to the initial value problem for nonlinear systems of conservative laws. Attention is given to the development of a class of conservation form finite difference schemes which are based on the finite volume method (i.e., the method of averages). These schemes do not fit into the classical framework of conservation form schemes discussed by Lax and Wendroff (1960). The finite volume schemes are specifically intended to approximate solutions of multidimensional problems in the absence of rectangular geometries. In addition, the development is reported of different schemes which utilize the finite volume approach for time discretization. Particular attention is given to local time discretization and moving spatial grids. 17 references
International Nuclear Information System (INIS)
Ibragimov, N Kh; Avdonina, E D
2013-01-01
The method of nonlinear self-adjointness, which was recently developed by the first author, gives a generalization of Noether's theorem. This new method significantly extends approaches to constructing conservation laws associated with symmetries, since it does not require the existence of a Lagrangian. In particular, it can be applied to any linear equations and any nonlinear equations that possess at least one local conservation law. The present paper provides a brief survey of results on conservation laws which have been obtained by this method and published mostly in recent preprints of the authors, along with a method for constructing exact solutions of systems of partial differential equations with the use of conservation laws. In most cases the solutions obtained by the method of conservation laws cannot be found as invariant or partially invariant solutions. Bibliography: 23 titles
Painleve analysis, conservation laws, and symmetry of perturbed nonlinear equations
International Nuclear Information System (INIS)
Basak, S.; Chowdhury, A.R.
1987-01-01
The authors consider the Lie-Backlund symmetries and conservation laws of a perturbed KdV equation and NLS equation. The arbitrary coefficients of the perturbing terms can be related to the condition of existence of nontrivial LB symmetry generators. When the perturbed KdV equation is subjected to Painleve analysis a la Weiss, it is found that the resonance position changes compared to the unperturbed one. They prove the compatibility of the overdetermined set of equations obtained at the different stages of recursion relations, at least for one branch. All other branches are also indicated and difficulties associated them are discussed considering the perturbation parameter epsilon to be small. They determine the Lax pair for the aforesaid branch through the use of Schwarzian derivative. For the perturbed NLS equation they determine the conservation laws following the approach of Chen and Liu. From the recurrence of these conservation laws a Lax pair is constructed. But the Painleve analysis does not produce a positive answer for the perturbed NLS equation. So here they have two contrasting examples of perturbed nonlinear equations: one passes the Painleve test and its Lax pair can be found from the analysis itself, but the other equation does not meet the criterion of the Painleve test, though its Lax pair is found in another way
Analysis of the Symmetries and Conservation Laws of the Nonlinear Jaulent-Miodek Equation
Directory of Open Access Journals (Sweden)
Mehdi Nadjafikhah
2014-01-01
Full Text Available Lie symmetry method is performed for the nonlinear Jaulent-Miodek equation. We will find the symmetry group and optimal systems of Lie subalgebras. The Lie invariants associated with the symmetry generators as well as the corresponding similarity reduced equations are also pointed out. And conservation laws of the J-M equation are presented with two steps: firstly, finding multipliers for computation of conservation laws and, secondly, symbolic computation of conservation laws will be applied.
International Nuclear Information System (INIS)
Bokhari A H; Zaman F D; Fakhar K; Kara A H
2011-01-01
First, we studied the invariance properties of the Kadomstev—Petviashvili equation with power law nonlinearity. Then, we determined the complete class of conservation laws and stated the corresponding conserved densities which are useful in finding the conserved quantities of the equation. The point symmetry generators were also used to reduce the equation to an exact solution and to verify the invariance properties of the conserved flows. (general)
Conservation laws for certain time fractional nonlinear systems of partial differential equations
Singla, Komal; Gupta, R. K.
2017-12-01
In this study, an extension of the concept of nonlinear self-adjointness and Noether operators is proposed for calculating conserved vectors of the time fractional nonlinear systems of partial differential equations. In our recent work (J Math Phys 2016; 57: 101504), by proposing the symmetry approach for time fractional systems, the Lie symmetries for some fractional nonlinear systems have been derived. In this paper, the obtained infinitesimal generators are used to find conservation laws for the corresponding fractional systems.
On a quantum version of conservation laws for derivative nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Sen, S.; Chowdhury, A.R.
1988-01-01
The authors derived the quantum mechanical versions of infinite number of conservation laws associated with Derivative Nonlinear Schrodinger equation with the help of a methodology used in string theory. The renormalised version of the conserved quantities are obtained with explicit forms of the counter terms
Infinite sets of conservation laws for linear and nonlinear field equations
International Nuclear Information System (INIS)
Mickelsson, J.
1984-01-01
The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of the space-time symmetry group is established. It is shown that each symmetric element of the enveloping algebra of the space-time symmetry group of a linear field equation generates a one-parameter group of symmetries of the field equation. The cases of the Maxwell and Dirac equations are studied in detail. Then it is shown that (at least in the sense of a power series in the 'coupling constant') the conservation laws of the linear case can be deformed to conservation laws of a nonlinear field equation which is obtained from the linear one by adding a nonlinear term invariant under the group of space-time symmetries. As an example, our method is applied to the Korteweg-de Vries equation and to the massless Thirring model. (orig.)
Conservation Laws and Traveling Wave Solutions of a Generalized Nonlinear ZK-BBM Equation
Directory of Open Access Journals (Sweden)
Khadijo Rashid Adem
2014-01-01
Full Text Available We study a generalized two-dimensional nonlinear Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM equation, which is in fact Benjamin-Bona-Mahony equation formulated in the ZK sense. Conservation laws for this equation are constructed by using the new conservation theorem due to Ibragimov and the multiplier method. Furthermore, traveling wave solutions are obtained by employing the (G'/G-expansion method.
Hsiao, Ling
2000-01-01
This volume resulted from a year-long program at the Morningside Center of Mathematics at the Academia Sinica in Beijing. It presents an overview of nonlinear conversation laws and introduces developments in this expanding field. Xin's introductory overview of the subject is followed by lecture notes of leading experts who have made fundamental contributions to this field of research. A. Bressan's theory of L^1-well-posedness for entropy weak solutions to systems of nonlinear hyperbolic conversation laws in the class of viscosity solutions is one of the most important results in the past two decades; G. Chen discusses weak convergence methods and various applications to many problems; P. Degond details mathematical modelling of semi-conductor devices; B. Perthame describes the theory of asymptotic equivalence between conservation laws and singular kinetic equations; Z. Xin outlines the recent development of the vanishing viscosity problem and nonlinear stability of elementary wave-a major focus of research in...
International Nuclear Information System (INIS)
Zhao Dun; Zhang Yujuan; Lou Weiwei; Luo Honggang
2011-01-01
By constructing nonisospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, we investigate the nonautonomous nonlinear Schroedinger (NLS) equations which have been used to describe the Feshbach resonance management in matter-wave solitons in Bose-Einstein condensate and the dispersion and nonlinearity managements for optical solitons. It is found that these equations are some special cases of a new integrable model of nonlocal nonautonomous NLS equations. Based on the Lax pairs, the Darboux transformation and conservation laws are explored. It is shown that the local external potentials would break down the classical infinite number of conservation laws. The result indicates that the integrability of the nonautonomous NLS systems may be nontrivial in comparison to the conventional concept of integrability in the canonical case.
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
Fisher, Travis C.; Carpenter, Mark H.; Nordstroem, Jan; Yamaleev, Nail K.; Swanson, R. Charles
2011-01-01
Simulations of nonlinear conservation laws that admit discontinuous solutions are typically restricted to discretizations of equations that are explicitly written in divergence form. This restriction is, however, unnecessary. Herein, linear combinations of divergence and product rule forms that have been discretized using diagonal-norm skew-symmetric summation-by-parts (SBP) operators, are shown to satisfy the sufficient conditions of the Lax-Wendroff theorem and thus are appropriate for simulations of discontinuous physical phenomena. Furthermore, special treatments are not required at the points that are near physical boundaries (i.e., discrete conservation is achieved throughout the entire computational domain, including the boundaries). Examples are presented of a fourth-order, SBP finite-difference operator with second-order boundary closures. Sixth- and eighth-order constructions are derived, and included in E. Narrow-stencil difference operators for linear viscous terms are also derived; these guarantee the conservative form of the combined operator.
On the structure on non-local conservation laws in the two-dimensional non-linear sigma-model
International Nuclear Information System (INIS)
Zamolodchikov, Al.B.
1978-01-01
The non-local conserved charges are supposed to satisfy a special multiplicative law in the space of asymptotic states of the non-linear sigma-model. This supposition leads to factorization equations for two-particle scattering matrix elements and determines to some extent the action of these charges in the asymptotic space. Their conservation turns out to be consistent with the factorized S-matrix of the non-linear sigma-model. It is shown also that the factorized sine-Gordon S-matrix is consistent with a similar family of conservation laws
Waves, conservation laws and symmetries of a third-order nonlinear ...
African Journals Online (AJOL)
order is under consideration. Important properties concerning advanced character such like conservation laws and the equation of continuity are given. Characteristic wave properties such like dispersion relations and both the group and phase ...
Construction of local and non-local conservation laws for non-linear field equations
International Nuclear Information System (INIS)
Vladimirov, V.S.; Volovich, I.V.
1984-08-01
A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)
Infinite sets of conservation laws for linear and non-linear field equations
International Nuclear Information System (INIS)
Niederle, J.
1984-01-01
The work was motivated by a desire to understand group theoretically the existence of an infinite set of conservation laws for non-interacting fields and to carry over these conservation laws to the case of interacting fields. The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of its space-time symmetry group was established. It is shown that in the case of the Korteweg-de Vries (KdV) equation to each symmetry of the corresponding linear equation delta sub(o)uxxx=u sub() determined by an element of the enveloping algebra of the space translation algebra, there corresponds a symmetry of the full KdV equation
International Nuclear Information System (INIS)
Tadmor, E.
1988-07-01
A convergence theory for semi-discrete approximations to nonlinear systems of conservation laws is developed. It is shown, by a series of scalar counter-examples, that consistency with the conservation law alone does not guarantee convergence. Instead, a notion of consistency which takes into account both the conservation law and its augmenting entropy condition is introduced. In this context it is concluded that consistency and L(infinity)-stability guarantee for a relevant class of admissible entropy functions, that their entropy production rate belongs to a compact subset of H(loc)sup -1 (x,t). One can now use compensated compactness arguments in order to turn this conclusion into a convergence proof. The current state of the art for these arguments includes the scalar and a wide class of 2 x 2 systems of conservation laws. The general framework of the vanishing viscosity method is studied as an effective way to meet the consistency and L(infinity)-stability requirements. How this method is utilized to enforce consistency and stability for scalar conservation laws is shown. In this context we prove, under the appropriate assumptions, the convergence of finite difference approximations (e.g., the high resolution TVD and UNO methods), finite element approximations (e.g., the Streamline-Diffusion methods) and spectral and pseudospectral approximations (e.g., the Spectral Viscosity methods)
Lafitte, Pauline; Melis, Ward; Samaey, Giovanni
2017-07-01
We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.
Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru
2018-04-01
This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.
Conservation Laws in Biochemical Reaction Networks
DEFF Research Database (Denmark)
Mahdi, Adam; Ferragut, Antoni; Valls, Claudia
2017-01-01
We study the existence of linear and nonlinear conservation laws in biochemical reaction networks with mass-action kinetics. It is straightforward to compute the linear conservation laws as they are related to the left null-space of the stoichiometry matrix. The nonlinear conservation laws...... are difficult to identify and have rarely been considered in the context of mass-action reaction networks. Here, using the Darboux theory of integrability, we provide necessary structural (i.e., parameterindependent) conditions on a reaction network to guarantee the existence of nonlinear conservation laws...
International Nuclear Information System (INIS)
Fakhar, K.; Kara, A. H.
2011-01-01
A large class of partial differential equations in the modelling of ocean waves are due to Ostrovsky. We determine the invariance properties (through the Lie point symmetry generators) and construct classes of conservation laws for some of the models. In the latter case, the method involves finding the ‘multipliers’ associated with the conservation laws with a stronger emphasis on the ‘higher-order’ ones. The relationship between the symmetries and conservation laws is investigated by considering the invariance properties of the multipliers. (general)
International Nuclear Information System (INIS)
Goldhaber, M.
1988-01-01
For quite a while it has been realized that some discrete quantum numbers are conserved in some interactions but not in others. The most conspicuous cases are parity P, charge conjugation C, and the product CP which are conserved in strong and electromagnetic interactions but not in weak interactions. The question arises whether for some of the other conserved quantities, which are conserved in strong, electromagnetic and weak interactions, there is an interaction intermediate in strength between weak and gravitational which violates these quantum numbers, e.g., baryon number B and lepton number L. The possibility exists that these conservation laws, if they are broken at all, are only broken by the gravitational force which would make the mass of an intermediate boson which induces the break-down equal to the Planck mass. (orig.)
Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.
2018-01-01
The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.
Numerical solutions of conservation laws
International Nuclear Information System (INIS)
Shu, C.W.
1986-01-01
In the computation of conservation laws u/sub t/ + f(u)/sub x/ 0, TVD (total-variation-diminishing) schemes have been very successful. TVB (total-variation-bounded) schemes share most the advantages and may remove some of the disadvantages (e.g. local degeneracy of accuracy at critical points) TVD schemes. Included in this dissertation are a class of m-step Runge-Kutta type TVD schemes with CFL number equaling m; a procedure to obtain uniformly high order in space TVB schemes; a class of TVD high order time discretizations; a special boundary treatment which keeps the high order of the scheme up to the boundary and preserves the TVB properties in the nonlinear scalar and linear system cases; a discrete entropy inequality for a modified Lax-Wendroff scheme applied to Burgers' equation; and discusses about error propagation in large regions
Relativistic dynamics without conservation laws
Rothenstein, Bernhard; Popescu, Stefan
2006-01-01
We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.
Space, time and conservation laws
International Nuclear Information System (INIS)
Aronov, R.A.; Ugarov, V.A.
1978-01-01
The Neter theorem establishing correspondence between conservation laws and symmetry properties (space and time in particular) is considered. The theorem is based on one of the possible ways of finding equations of motion for a physical system. From a certain expression (action functional) equations of motion for a system can be obtained which do not contain new physical assertions in principal in comparison with the Newtonian laws. Neter suggested a way of deriving conservation laws by transforming space and time coordinates. Neter theorem consequences raise a number of problems: 1). Are conservation laws (energy, momentum) consequences of space and time symmetry properties. 2). Is it possible to obtain conservation laws in theory neglecting equations of motion. 3). What is of the primary importance: equations of motion, conservation laws or properties of space and time symmetry. It is shown that direct Neter theorem does not testify to stipulation of conservation laws by properties of space and time symmetry and symmetry properties of other non-space -time properties of material systems in objective reality. It says nothing of whether there is any subordination between symmetry properties and conservation laws
Cubication of conservative nonlinear oscillators
International Nuclear Information System (INIS)
Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.
Conservation laws shape dissipation
Rao, Riccardo; Esposito, Massimiliano
2018-02-01
Starting from the most general formulation of stochastic thermodynamics—i.e. a thermodynamically consistent nonautonomous stochastic dynamics describing systems in contact with several reservoirs—we define a procedure to identify the conservative and the minimal set of nonconservative contributions in the entropy production. The former is expressed as the difference between changes caused by time-dependent drivings and a generalized potential difference. The latter is a sum over the minimal set of flux-force contributions controlling the dissipative flows across the system. When the system is initially prepared at equilibrium (e.g. by turning off drivings and forces), a finite-time detailed fluctuation theorem holds for the different contributions. Our approach relies on identifying the complete set of conserved quantities and can be viewed as the extension of the theory of generalized Gibbs ensembles to nonequilibrium situations.
Diffusion Processes Satisfying a Conservation Law Constraint
Directory of Open Access Journals (Sweden)
J. Bakosi
2014-01-01
Full Text Available We investigate coupled stochastic differential equations governing N nonnegative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires a set of fluctuating variables to be nonnegative and (if appropriately normalized sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the nonnegativity and the unit-sum conservation law constraints are satisfied as the variables evolve in time. We investigate the consequences of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.
Solutions and conservation laws of Benjamin–Bona–Mahony ...
Indian Academy of Sciences (India)
obtained with power-law and dual power-law nonlinearities. The Lie group analysis as ... The notion of conservation laws plays an important role in the solution process of differential ... For the theory and applications of Lie group analysis the ...
International Nuclear Information System (INIS)
Ivanov, G.G.
1985-01-01
In the non linear delta-model conserved tensor currents connected with the isometrical, homothetic and affine motions in the space Vsup(N) of the chiral field values are constructed. New classes of the exact solutions are obtained in the SO(3) and SO(5) invariant delta-models using the connection between the groups of isometrical and homothetic motions in the space-time and isometrical motions in Vsup(N). Some methods of obtaining exact solutions in 4-dimensional delta-model with non trivial topological charge are considered
Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Sun, Yan
2017-07-01
Subpicosecond or femtosecond optical pulse propagation in the inhomogeneous fiber can be described by a higher-order nonlinear Schrödinger equation with variable coefficients, which is investigated in the paper. Via the Ablowitz-Kaup-Newell-Segur system and symbolic computation, the Lax pair and infinitely-many conservation laws are deduced. Based on the Lax pair and a modified Darboux transformation technique, the first- and second-order rogue wave solutions are constructed. Effects of the groupvelocity dispersion and third-order dispersion on the properties of the first- and second-order rouge waves are graphically presented and analyzed: The groupvelocity dispersion and third-order dispersion both affect the ranges and shapes of the first- and second-order rogue waves: The third-order dispersion can produce a skew angle of the first-order rogue wave and the skew angle rotates counterclockwise with the increase of the groupvelocity dispersion, when the groupvelocity dispersion and third-order dispersion are chosen as the constants; When the groupvelocity dispersion and third-order dispersion are taken as the functions of the propagation distance, the linear, X-shaped and parabolic trajectories of the rogue waves are obtained.
Conservation laws with coinciding smooth solutions but different conserved variables
Colombo, Rinaldo M.; Guerra, Graziano
2018-04-01
Consider two hyperbolic systems of conservation laws in one space dimension with the same eigenvalues and (right) eigenvectors. We prove that solutions to Cauchy problems with the same initial data differ at third order in the total variation of the initial datum. As a first application, relying on the classical Glimm-Lax result (Glimm and Lax in Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs of the American Mathematical Society, No. 101. American Mathematical Society, Providence, 1970), we obtain estimates improving those in Saint-Raymond (Arch Ration Mech Anal 155(3):171-199, 2000) on the distance between solutions to the isentropic and non-isentropic inviscid compressible Euler equations, under general equations of state. Further applications are to the general scalar case, where rather precise estimates are obtained, to an approximation by Di Perna of the p-system and to a traffic model.
Hall magnetohydrodynamics: Conservation laws and Lyapunov stability
International Nuclear Information System (INIS)
Holm, D.D.
1987-01-01
Hall electric fields produce circulating mass flow in confined ideal-fluid plasmas. The conservation laws, Hamiltonian structure, equilibrium state relations, and Lyapunov stability conditions are presented here for ideal Hall magnetohydrodynamics (HMHD) in two and three dimensions. The approach here is to use the remarkable array of nonlinear conservation laws for HMHD that follow from its Hamiltonian structure in order to construct explicit Lyapunov functionals for the HMHD equilibrium states. In this way, the Lyapunov stability analysis provides classes of HMHD equilibria that are stable and whose linearized initial-value problems are well posed (in the sense of possessing continuous dependence on initial conditions). Several examples are discussed in both two and three dimensions
Massively parallel computation of conservation laws
Energy Technology Data Exchange (ETDEWEB)
Garbey, M [Univ. Claude Bernard, Villeurbanne (France); Levine, D [Argonne National Lab., IL (United States)
1990-01-01
The authors present a new method for computing solutions of conservation laws based on the use of cellular automata with the method of characteristics. The method exploits the high degree of parallelism available with cellular automata and retains important features of the method of characteristics. It yields high numerical accuracy and extends naturally to adaptive meshes and domain decomposition methods for perturbed conservation laws. They describe the method and its implementation for a Dirichlet problem with a single conservation law for the one-dimensional case. Numerical results for the one-dimensional law with the classical Burgers nonlinearity or the Buckley-Leverett equation show good numerical accuracy outside the neighborhood of the shocks. The error in the area of the shocks is of the order of the mesh size. The algorithm is well suited for execution on both massively parallel computers and vector machines. They present timing results for an Alliant FX/8, Connection Machine Model 2, and CRAY X-MP.
Discontinuous Galerkin Method for Hyperbolic Conservation Laws
Mousikou, Ioanna
2016-11-11
Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.
Discontinuous Galerkin Method for Hyperbolic Conservation Laws
Mousikou, Ioanna
2016-01-01
Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect the formation of shock waves. We consider one-dimensional systems of hyperbolic conservation laws and produce approximations using finite difference, finite volume and finite element methods. Due to stability issues of classical finite element methods for hyperbolic conservation laws, we study the discontinuous Galerkin method, which was recently introduced. The method involves completely discontinuous basis functions across each element and it can be considered as a combination of finite volume and finite element methods. We illustrate the implementation of discontinuous Galerkin method using Legendre polynomials, in case of scalar equations and in case of quasi-linear systems, and we review important theoretical results about stability and convergence of the method. The applications of finite volume and discontinuous Galerkin methods to linear and non-linear scalar equations, as well as to the system of elastodynamics, are exhibited.
A Kinematic Conservation Law in Free Surface Flow
Gavrilyuk , Sergey; Kalisch , Henrik; Khorsand , Zahra
2015-01-01
The Green-Naghdi system is used to model highly nonlinear weakly dispersive waves propagating at the surface of a shallow layer of a perfect fluid. The system has three associated conservation laws which describe the conservation of mass, momentum, and energy due to the surface wave motion. In addition, the system features a fourth conservation law which is the main focus of this note. It will be shown how this fourth conservation law can be interpreted in terms of a concrete kinematic quanti...
Front tracking for hyperbolic conservation laws
Holden, Helge
2002-01-01
Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm.
Nonlinearity, Conservation Law and Shocks
Indian Academy of Sciences (India)
Almost all natural phenomena, and social and economic changes, .... reference moving with velocity c also by the same symbol x and ... abstract as can be seen from the publication of the book Shock Waves and Reaction Diffusion Equation.
Law of nonlinear flow in saturated clays and radial consolidation
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.
Hyperbolic Conservation Laws and Related Analysis with Applications
Holden, Helge; Karlsen, Kenneth
2014-01-01
This book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws and related analysis with applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results on liquid crystals, conservation laws with discontinuous flux functions, and applications to sedimentation. Also included are articles on recent advances in the Euler equations and the Navier-Stokes-Fourier-Poisson system, in addition to new results on collective phenomena described by the Cucker-Smale model. The Workshop on Hyperbolic Conservation Laws and Related Analysis with Applications at the International Centre for Mathematical Sciences (Edinburgh, UK) held in Edinburgh, September 2011, produced this fine collection of original research and survey articles. Many leading mathematicians attended the event and submitted their contributions for this volume. It is addressed to researchers and graduate students inter...
Front tracking for hyperbolic conservation laws
Holden, Helge
2015-01-01
This is the second edition of a well-received book providing the fundamentals of the theory hyperbolic conservation laws. Several chapters have been rewritten, new material has been added, in particular, a chapter on space dependent flux functions, and the detailed solution of the Riemann problem for the Euler equations. Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. From the reviews of the first edition: "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts ...
Asymptotic Conservation Laws in Classical Field Theory
International Nuclear Information System (INIS)
Anderson, I.M.; Torre, C.G.
1996-01-01
A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation laws, such as the Arnowitt-Deser-Misner energy in general relativity. copyright 1996 The American Physical Society
Gravitation SL(2,C) gauge theory and conservation laws
Carmeli, Moshe; Nissani, Noah
1990-01-01
This monograph gives a comprehensive presentation of the SL(2,C) Gauge Theory of Gravitation along with some recent developments in the problem of Conservation Laws in General Relativity. Emphasis is put on quadratic Lagrangians which yield the Einstein field equations, as compared with Hilbert's original linear Langrangian, thus gravitation follows the other Gauge Fields all of which are derived from nonlinear Lagrangians.
2×2 systems of conservation laws with L data
Bianchini, Stefano; Colombo, Rinaldo M.; Monti, Francesca
Consider a hyperbolic system of conservation laws with genuinely nonlinear characteristic fields. We extend the classical Glimm-Lax (1970) result [13, Theorem 5.1] proving the existence of solutions for L initial datum, relaxing the assumptions taken therein on the geometry of the shock-rarefaction curves.
Institute of Scientific and Technical Information of China (English)
施伟辰; 高庆海; 李欢欢
2006-01-01
对基于Lagrange框架描述的非均匀弹性材料的Lagrange泛函应用Noether原理,开展材料的几何非线性弹性动力学场守恒律的研究,并给出其物质空间守恒律与物质平衡定律之间关系的清晰图景.研究发现,质量密度和弹性系数需满足一组一阶线性偏微分方程,该组方程不但包含来自Newton力学时-空观的全部时-空对称变换,而且控制着材料物质空间守恒律的存在性和存在的形式.特别需指出的是,惯性坐标系的平移和旋转是Lagrange泛函的对称变换,这些对称变换可导致均匀材料的物质空间守恒律和非均匀材料的物质平衡定律,但是时-空坐标的标度改变并不是对称变换.然而,若质量密度和弹性系数满足由上述方程简化而来的一组特殊的一阶线性偏微分方程,则时-空坐标的标度改变可成为Lagrange泛函的对称变换并导致相关守恒律的存在,但此时与该守恒律关联的物质平衡定律仍然不存在.为构造适合力学分析的功能梯度材料的物质空间守恒律,进行了质量密度和弹性系数需满足的方程的应用研究.对于粘合于基底的功能梯度材料层,给出全部非平凡的物质空间守恒律.%By applying Noether's theorem to the Lagrangian density of non-homogenous elastic materials in the so-called Lagrangian framework, conservation laws in geometrically nonlinear elasto-dynamic field have been studied, and a clear picture of relations between the conservation laws in material space and the material balance laws is given. It is found that the mass density and Lamé's moduli have to satisfy a set of first-order linear partial differential equations, which contain all the symmetry-transformations of space-time based on Newtonian viewpoint of mechanics. The existence and existent forms of conservation laws in material space are governed by these equations. Especially, translation and rotation of coordinates are symmetry
Kac-Moody-Virasoro Symmetries and Related Conservation Laws
International Nuclear Information System (INIS)
Lou, S. Y.; Jia, M.; Tang, X. Y.
2010-01-01
In this report, some important facts on the symmetries and conservation laws of high dimensional integrable systems are discussed. It is summarized that almost all the known (2+1)-dimensional integrable models possess the Kac-Moody-Virasoro (KMV) symmetry algebras. One knows that infinitely many partial differential equations may possess a same KMV symmetry algebra. It is found that the KMV symmetry groups can be explicitly obtained by using some direct methods. For some quite general variable coefficient nonlinear systems, their sufficient and necessary condition for the existence of the KMV symmetry algebra is they can be changed to the related known constant coefficient models. Finally, it is found that every one symmetry may be related to infinitely many conservation laws and then infinitely many models may possess a same set of infinitely many conservation laws.
Conservation Law Enforcement Program Standardization
National Research Council Canada - National Science Library
Rogers, Stan
2004-01-01
The ultimate goal of standardization is to develop a safe and effective program that is recognized within the USAF, DoD, and by other Federal and state law enforcement agencies, and the general public...
Reduced energy conservation law for magnetized plasma
International Nuclear Information System (INIS)
Sosenko, P.P.; Decyk, V.K.
1994-01-01
A global energy conservation law for a magnetized plasma is studied within the context of a quasiparticle description. A reduced energy conservation law is derived for low-frequency, as compared to the gyromagnetic frequency, plasma motions with regard to both non-uniform mean flows and fluctuations in the plasma. The mean value of plasma energy is calculated and sufficient stability conditions for non-equilibrium plasmas are derived. (orig.)
Determination of regression laws: Linear and nonlinear
International Nuclear Information System (INIS)
Onishchenko, A.M.
1994-01-01
A detailed mathematical determination of regression laws is presented in the article. Particular emphasis is place on determining the laws of X j on X l to account for source nuclei decay and detector errors in nuclear physics instrumentation. Both linear and nonlinear relations are presented. Linearization of 19 functions is tabulated, including graph, relation, variable substitution, obtained linear function, and remarks. 6 refs., 1 tab
Conservation laws and nuclear transport models
International Nuclear Information System (INIS)
Gale, C.; Das Gupta, S.
1990-01-01
We discuss the consequences of energy and angular momentum conservation for nucleon-nucleon scattering in a nuclear environment during high-energy heavy-ion collisions. We describe algorithms that ensure stricter enforcement of such conservation laws within popular microscopic models of intermediate-energy heavy-ion collisions. We find that the net effects on global observables are small
Feinberg, G.; Weinberg, S.
1961-02-01
A multiplicative selection rule for mu meson-electron transitions is proposed. A "muon parity" = -1 is considered for the muon and its neutrino, while the "muon parity" for all other particles is +1. The selection rule then states that (-1) exp(no. of initial (-1) parity particles) = (-1) exp(no. of final (-1) parity particles). Several reactions that are forbidden by an additive law but allowed by the multiplicative law are suggested; these reactions include mu{sup +} .> e{sup +} + nu{sub mu} + {ovr nu}{sub e}, e{sup -} + e{sup -} .> mu{sup -} + mu{sup -}, and muonium .> antimuonium (mu{sup +} + e{sup -} .> mu{sup -} + e{sup +}). An intermediate-boson hypothesis is suggested. (T.F.H.)
Renormalization, averaging, conservation laws and AdS (in)stability
International Nuclear Information System (INIS)
Craps, Ben; Evnin, Oleg; Vanhoof, Joris
2015-01-01
We continue our analytic investigations of non-linear spherically symmetric perturbations around the anti-de Sitter background in gravity-scalar field systems, and focus on conservation laws restricting the (perturbatively) slow drift of energy between the different normal modes due to non-linearities. We discover two conservation laws in addition to the energy conservation previously discussed in relation to AdS instability. A similar set of three conservation laws was previously noted for a self-interacting scalar field in a non-dynamical AdS background, and we highlight the similarities of this system to the fully dynamical case of gravitational instability. The nature of these conservation laws is best understood through an appeal to averaging methods which allow one to derive an effective Lagrangian or Hamiltonian description of the slow energy transfer between the normal modes. The conservation laws in question then follow from explicit symmetries of this averaged effective theory.
Italian energy conservation laws: Implementation problems
International Nuclear Information System (INIS)
Anon.
1993-01-01
Italian energy conservation Law No. 9 was designed to reduce Italy's worrisome 82% dependency on foreign energy supplies by encouraging the development and use of renewable energy sources, fuel diversification and auto-production/cogeneration by private industry. Law No. 10 was intended to promote energy conservation initiatives especially with regard to the efficient use of energy for space heating in public buildings. Both of these legal incentives have encountered great difficulties in implementation due to the inability of the Government to provide the necessary timely and sufficient start-up funds, as well as, due to the excessive bureaucratism that was built into the administrative procedures
The conservation laws for deformed classical models
International Nuclear Information System (INIS)
Klimek, M.
1994-01-01
The problem of deriving the conservation laws for deformed linear equations of motion is investigated. The conserved currents are obtained in explicit form and used in the construction of constants of motion. The equations for the set of non-interacting oscillators with arbitrary scale-time as well as the κ-Klein-Gordon equation are considered as an example of application of the method. (author) 9 refs
The structure of additive conservation laws
International Nuclear Information System (INIS)
Helmut Reen
1979-01-01
All additive conserved quantities are listed for a system with short range central force interaction between the particles: a special case shows up in Boltzmann H-theorem and his derivation of the Maxwell velocity distribution. It is concluded that in classical mechanics of mass points there are no other additive conservation laws besides of energy, momentum, angular momentum and center of mass motion. A generator is considered of a symmetry transformation defined as integral over a conserved local current density where the latter, in general, needs not be covariant under translations
Symmetries, conservation laws and least action
International Nuclear Information System (INIS)
Maher, P.J.
1982-01-01
This article is a non-technical account of some recent work on the connection between symmetries and conservation laws. This recent work-which uses the modern algebraic concept of naturality-yields a new interpretation of the variational, or least action, principle. (author)
The tensorial conservation law in general relativity
International Nuclear Information System (INIS)
Zhao, M.G.
1984-01-01
A general tensorial conservation law is formulated by starting from the invariance of the gravitational Lagrangian density. Utilising this new formula, the author derives some reasonable results for the mass-energy distribution which are in accordance with the Newtonian formulae. (author)
Application of polynomial preconditioners to conservation laws
Geurts, Bernardus J.; van Buuren, R.; Lu, H.
2000-01-01
Polynomial preconditioners which are suitable in implicit time-stepping methods for conservation laws are reviewed and analyzed. The preconditioners considered are either based on a truncation of a Neumann series or on Chebyshev polynomials for the inverse of the system-matrix. The latter class of
Truncated Wigner dynamics and conservation laws
Drummond, Peter D.; Opanchuk, Bogdan
2017-10-01
Ultracold Bose gases can be used to experimentally test many-body theory predictions. Here we point out that both exact conservation laws and dynamical invariants exist in the topical case of the one-dimensional Bose gas, and these provide an important validation of methods. We show that the first four quantum conservation laws are exactly conserved in the approximate truncated Wigner approach to many-body quantum dynamics. Center-of-mass position variance is also exactly calculable. This is nearly exact in the truncated Wigner approximation, apart from small terms that vanish as N-3 /2 as N →∞ with fixed momentum cutoff. Examples of this are calculated in experimentally relevant, mesoscopic cases.
Averaged multivalued solutions and time discretization for conservation laws
International Nuclear Information System (INIS)
Brenier, Y.
1985-01-01
It is noted that the correct shock solutions can be approximated by averaging in some sense the multivalued solution given by the method of characteristics for the nonlinear scalar conservation law (NSCL). A time discretization for the NSCL equation based on this principle is considered. An equivalent analytical formulation is shown to lead quite easily to a convergence result, and a third formulation is introduced which can be generalized for the systems of conservation laws. Various numerical schemes are constructed from the proposed time discretization. The first family of schemes is obtained by using a spatial grid and projecting the results of the time discretization. Many known schemes are then recognized (mainly schemes by Osher, Roe, and LeVeque). A second way to discretize leads to a particle scheme without space grid, which is very efficient (at least in the scalar case). Finally, a close relationship between the proposed method and the Boltzmann type schemes is established. 14 references
Hunting, law enforcement, and African primate conservation.
N'Goran, Paul K; Boesch, Christophe; Mundry, Roger; N'Goran, Eliezer K; Herbinger, Ilka; Yapi, Fabrice A; Kühl, Hjalmar S
2012-06-01
Primates are regularly hunted for bushmeat in tropical forests, and systematic ecological monitoring can help determine the effect hunting has on these and other hunted species. Monitoring can also be used to inform law enforcement and managers of where hunting is concentrated. We evaluated the effects of law enforcement informed by monitoring data on density and spatial distribution of 8 monkey species in Taï National Park, Côte d'Ivoire. We conducted intensive surveys of monkeys and looked for signs of human activity throughout the park. We also gathered information on the activities of law-enforcement personnel related to hunting and evaluated the relative effects of hunting, forest cover and proximity to rivers, and conservation effort on primate distribution and density. The effects of hunting on monkeys varied among species. Red colobus monkeys (Procolobus badius) were most affected and Campbell's monkeys (Cercopithecus campbelli) were least affected by hunting. Density of monkeys irrespective of species was up to 100 times higher near a research station and tourism site in the southwestern section of the park, where there is little hunting, than in the southeastern part of the park. The results of our monitoring guided law-enforcement patrols toward zones with the most hunting activity. Such systematic coordination of ecological monitoring and law enforcement may be applicable at other sites. ©2012 Society for Conservation Biology.
Hyperbolic conservation laws in continuum physics
Dafermos, Constantine M
2016-01-01
This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conser...
Residual distribution for general time-dependent conservation laws
International Nuclear Information System (INIS)
Ricchiuto, Mario; Csik, Arpad; Deconinck, Herman
2005-01-01
We consider the second-order accurate numerical solution of general time-dependent hyperbolic conservation laws over unstructured grids in the framework of the Residual Distribution method. In order to achieve full conservation of the linear, monotone and first-order space-time schemes of (Csik et al., 2003) and (Abgrall et al., 2000), we extend the conservative residual distribution (CRD) formulation of (Csik et al., 2002) to prismatic space-time elements. We then study the design of second-order accurate and monotone schemes via the nonlinear mapping of the local residuals of linear monotone schemes. We derive sufficient and necessary conditions for the well-posedness of the mapping. We prove that the schemes obtained with the CRD formulation satisfy these conditions by construction. Thus the nonlinear schemes proposed in this paper are always well defined. The performance of the linear and nonlinear schemes are evaluated on a series of test problems involving the solution of the Euler equations and of a two-phase flow model. We consider the resolution of strong shocks and complex interacting flow structures. The results demonstrate the robustness, accuracy and non-oscillatory character of the proposed schemes. d schemes
International energy conservation: comparative law and policy
Energy Technology Data Exchange (ETDEWEB)
1979-02-01
Ernest C. Baynard III, in the Foreword to the conference, told of the purpose of the conference - to compare and discuss the policies and laws that highly industrialized nations have used and considered to meet the challenge of energy conservation. The following countries participated in the conference: U.K.; Australia; Federal Republic of Germany; Japan; France; Canada; Sweden; Italy; the Netherlands; and the U.S. The IEA and the Commission of the European Communities also participated. The conference format consisted of ministerial addresses to the conference, interspersed with panel discussions focusing on energy conservation in transportation, industry, agriculture, and utilities; residential, commercial, and industrial buildings; and emergency situations. There was also a panel discussion on the role of government in energy conservation and energy information collection. The panels were composed of participating countries' representatives. (MCW)
Compensatory Measures in European Nature Conservation Law
Directory of Open Access Journals (Sweden)
Geert Van Hoorick
2014-05-01
Full Text Available The Birds and Habitats Directives are the cornerstones of EU nature conservation law, aiming at the conservation of the Natura 2000 network, a network of protected sites under these directives, and the protection of species. The protection regime for these sites and species is not absolute: Member States may, under certain conditions, allow plans or projects that can have an adverse impact on nature. In this case compensatory measures can play an important role in safeguarding the Natura 2000 network and ensuring the survival of the protected species.This contribution analyses whether taking compensatory measures is always obligatory, and discusses the aim and the characteristics of compensatory measures, in relation to other kinds of measures such as mitigation measures, usual nature conservation measures, and former nature development measures, and to the assessment of the adverse impact caused by the plan or project and of the alternative solutions. The questions will be discussed in light of the contents of the legislation, the guidance and practice by the European Commission, (legal doctrine and case law, mainly of the Court of Justice of the European Union.
Conservation laws and symmetries in stochastic thermodynamics.
Polettini, Matteo; Bulnes-Cuetara, Gregory; Esposito, Massimiliano
2016-11-01
Phenomenological nonequilibrium thermodynamics describes how fluxes of conserved quantities, such as matter, energy, and charge, flow from outer reservoirs across a system and how they irreversibly degrade from one form to another. Stochastic thermodynamics is formulated in terms of probability fluxes circulating in the system's configuration space. The consistency of the two frameworks is granted by the condition of local detailed balance, which specifies the amount of physical quantities exchanged with the reservoirs during single transitions between configurations. We demonstrate that the topology of the configuration space crucially determines the number of independent thermodynamic affinities (forces) that the reservoirs generate across the system and provides a general algorithm that produces the fundamental affinities and their conjugate currents contributing to the total dissipation, based on the interplay between macroscopic conservations laws for the currents and microscopic symmetries of the affinities.
Lie symmetry analysis and conservation laws for the time fractional fourth-order evolution equation
Directory of Open Access Journals (Sweden)
Wang Li
2017-06-01
Full Text Available In this paper, we study Lie symmetry analysis and conservation laws for the time fractional nonlinear fourth-order evolution equation. Using the method of Lie point symmetry, we provide the associated vector fields, and derive the similarity reductions of the equation, respectively. The method can be applied wisely and efficiently to get the reduced fractional ordinary differential equations based on the similarity reductions. Finally, by using the nonlinear self-adjointness method and Riemann-Liouville time-fractional derivative operator as well as Euler-Lagrange operator, the conservation laws of the equation are obtained.
Approximate spacetime symmetries and conservation laws
Energy Technology Data Exchange (ETDEWEB)
Harte, Abraham I [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)], E-mail: harte@uchicago.edu
2008-10-21
A notion of geometric symmetry is introduced that generalizes the classical concepts of Killing fields and other affine collineations. There is a sense in which flows under these new vector fields minimize deformations of the connection near a specified observer. Any exact affine collineations that may exist are special cases. The remaining vector fields can all be interpreted as analogs of Poincare and other well-known symmetries near timelike worldlines. Approximate conservation laws generated by these objects are discussed for both geodesics and extended matter distributions. One example is a generalized Komar integral that may be taken to define the linear and angular momenta of a spacetime volume as seen by a particular observer. This is evaluated explicitly for a gravitational plane wave spacetime.
The Conservation Principles and Kepler's Laws of Planetary Motion
Motz, Lloyd
1975-01-01
Derives Kepler's three laws of planetary motion algebraically from conservation principles without introducing Newton's law of force explicitly. This procedure can be presented to students who have had no more than high school algebra. (Author)
Conservation laws for steady flow and solitons in a multifluid plasma revisited
International Nuclear Information System (INIS)
Mace, R. L.; McKenzie, J. F.; Webb, G. M.
2007-01-01
The conservation laws used in constructing the governing equations for planar solitons in multifluid plasmas are revisited. In particular, the concept of generalized vorticity facilitates the derivation of some general ''Bernoulli theorems,'' which reduce, in specific instances, to conservation laws previously deduced by other means. These theorems clarify the underlying physical principles that give rise to the conserved quantities. As an example of the usefulness of the techniques, even for relatively simple flows and progressive waves, the equations governing stationary nonlinear whistler waves propagating parallel to an ambient magnetic field are derived using generalized vorticity concepts
Symmetries and Conservation Laws in Classical and Quantum ...
Indian Academy of Sciences (India)
sriranga
and conservation principles in the Lagrangian and. Hamiltonian ... theory. V Balakrishnan – his research interests are statistical phys- ics, stochastic .... We can appreciate this difference in yet another way: ... principles and conservation laws.
Layer-Mean Quantities, Local Conservation Laws, and Vorticity
International Nuclear Information System (INIS)
Camassa, R.; Levermore, C.D.
1997-01-01
We derive local conservation laws for layer-mean quantities in two general settings. When applied to Euler flows, the first of these settings yields well-known local conservation laws for quantities averaged between material surfaces. The second, however, leads to new local conservation laws for quantities involving the vorticity that are averaged between arbitrary surfaces. These produce the crucial vorticity conservation laws in shallow water models that admit nonhydrostatic and noncolumnar motion. Moreover, they seem to lie outside the Hamiltonian paradigm of fluid dynamics. The formalism generalizes to skew-symmetric matrix fields; applications to electromagnetism are suggested. copyright 1997 The American Physical Society
A Taylor weak-statement algorithm for hyperbolic conservation laws
Baker, A. J.; Kim, J. W.
1987-01-01
Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law system, is developed herein that embeds a set of parameters eligible for constraint according to specification of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one dozen independently derived CFD algorithms published over the past several decades for the high speed flow problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical results for definitive linear and nonlinear test problems permit direct quantitative performance comparisons.
Conservation laws arising in the study of forward-forward Mean-Field Games
Gomes, Diogo A.; Nurbekyan, Levon; Sedjro, Marc
2017-01-01
We consider forward-forward Mean Field Game (MFG) models that arise in numerical approximations of stationary MFGs. First, we establish a link between these models and a class of hyperbolic conservation laws as well as certain nonlinear wave equations. Second, we investigate existence and long-time behavior of solutions for such models.
1/N perturbation theory and quantum conservation laws for supersymmetrical chiral field. 2
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Krivoshchekov, V.K.; Medvedev, P.B.; Gosudarstvennyj Komitet Standartov Soveta Ministrov SSSR, Moscow; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental'noj Fiziki)
1980-01-01
The renormalizability of the supersymmetric chiral model (supersymmetric nonlinear σ-model) is proved in the framework of the 1/N perturbation theory expansion proposed in the previous paper. The renormalizability proof is essentially based on the quantum supersymmetric chirality condition. The supersymmetric formulation of equations of motion is given. The first non-trivial quantum conservation laws are derived
Conservation laws arising in the study of forward-forward Mean-Field Games
Gomes, Diogo A.
2017-04-24
We consider forward-forward Mean Field Game (MFG) models that arise in numerical approximations of stationary MFGs. First, we establish a link between these models and a class of hyperbolic conservation laws as well as certain nonlinear wave equations. Second, we investigate existence and long-time behavior of solutions for such models.
Solutions and Conservation Laws of a (2+1-Dimensional Boussinesq Equation
Directory of Open Access Journals (Sweden)
Letlhogonolo Daddy Moleleki
2013-01-01
Full Text Available We study a nonlinear evolution partial differential equation, namely, the (2+1-dimensional Boussinesq equation. For the first time Lie symmetry method together with simplest equation method is used to find the exact solutions of the (2+1-dimensional Boussinesq equation. Furthermore, the new conservation theorem due to Ibragimov will be utilized to construct the conservation laws of the (2+1-dimensional Boussinesq equation.
Conservation laws and covariant equations of motion for spinning particles
Obukhov, Yuri N.; Puetzfeld, Dirk
2015-01-01
We derive the Noether identities and the conservation laws for general gravitational models with arbitrarily interacting matter and gravitational fields. These conservation laws are used for the construction of the covariant equations of motion for test bodies with minimal and nonminimal coupling.
Quasilocal conservation laws in the quantum Hirota model
International Nuclear Information System (INIS)
Zadnik, Lenart; Prosen, Tomaž
2017-01-01
The extensivity of the quantum Hirota model’s conservation laws on a 1 + 1 dimensional lattice is considered. This model can be interpreted in terms of an integrable many-body quantum Floquet dynamics. We establish the procedure to generate a continuous family of quasilocal conservation laws from the conserved operators proposed by Faddeev and Volkov. The Hilbert–Schmidt kernel which allows the calculation of inner products of these new conservation laws is explicitly computed. This result has potential applications in quantum quench and transport problems in integrable quantum field theories. (paper)
Nonlocal symmetries and nonlocal conservation laws of Maxwell's equations
International Nuclear Information System (INIS)
Anco, S.C.; Bluman, G.
1997-01-01
Nonlocal symmetries are obtained for Maxwell's equations in three space-time dimensions through the use of two potential systems involving scalar and vector potentials for the electromagnetic field. Corresponding nonlocal conservation laws are derived from these symmetries. The conservation laws yield nine functionally independent constants of motion which cannot be expressed in terms of the constants of motion arising from local conservation laws for space-time symmetries. These nine constants of motion represent additional conserved quantities for the electromagnetic field in three space endash time dimensions. copyright 1997 American Institute of Physics
Power laws and elastic nonlinearity in materials with complex microstructure
Energy Technology Data Exchange (ETDEWEB)
Scalerandi, M., E-mail: marco.scalerandi@infm.polito.it
2016-01-28
Nonlinear ultrasonic methods have been widely used to characterize the microstructure of damaged solids and consolidated granular media. Besides distinguishing between materials exhibiting classical nonlinear behaviors from those exhibiting hysteresis, it could be of importance the discrimination between ultrasonic indications from different physical sources (scatterers). Elastic hysteresis could indeed be due to dislocations, grain boundaries, stick-slip at interfaces, etc. Analyzing data obtained on various concrete samples, we show that the power law behavior of the nonlinear indicator vs. the energy of excitation could be used to classify different microscopic features. In particular, the power law exponent ranges between 1 and 3, depending on the nature of nonlinearity. We also provide a theoretical interpretation of the collected data using models for clapping and hysteretic nonlinearities. - Highlights: • Several materials exhibit a nontrivial nonlinear elastic behavior which can be ascribed to different physical sources. • The quantitative nonlinear response is dependent on the type of microstructure present in the material. • A nonlinear indicator could be defined which depends on the excitation energy of the sample. • Assuming a power law dependence, the exponent depends on the microstructure of the material and could evolve in time. • Experimental results on concrete are discussed and a theoretical description is proposed.
Violations of conservation laws in viscous liquid dynamics
DEFF Research Database (Denmark)
Dyre, Jeppe
2007-01-01
The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover,......, although particle number conservation applies strictly for any liquid, the solidity of viscous liquids implies that even this conservation law is apparently violated in coarse-grained descriptions of density fluctuations.......The laws expressing conservation of momentum and energy apply to any isolated system, but these laws are violated for highly viscous liquids under laboratory conditions because of the unavoidable interactions with the measuring equipment over the long times needed to study the dynamics. Moreover...
Solutions and conservation laws of Benjamin–Bona–Mahony
Indian Academy of Sciences (India)
In this paper, exact solutions of Benjamin–Bona–Mahony–Peregrine equation are obtained with power-law and dual power-law nonlinearities. The Lie group analysis as well as the simplest equation method are used to carry out the integration of these equations. The solutions obtained are cnoidal waves, periodic solutions ...
Local conservation laws for principle chiral fields (d=1)
International Nuclear Information System (INIS)
Cherednik, I.V.
1979-01-01
The Beklund transformation for chiral fields in the two-dimensional Minkovski space is found. As a result an infinite series of conservation laws for principle chiral Osub(n) fields (d=1) has been built. It is shown that these laws are local, the infinite series of global invariants which do not depend on xi, eta, and which is rather rapidly decrease along xi (or along eta) solutions being connected with these laws (xi, eta - coordinates of the light cone). It is noted that with the help of the construction proposed it is possible to obtain conservation laws of principle chiral G fields, including G in the suitable ortogonal groups. Symmetry permits to exchange xi and eta. The construction of conservation laws may be carried out without supposition that lambda has a multiplicity equal to 1, however the proof of the locality applied does not transfer on the laws obtained
Institute of Scientific and Technical Information of China (English)
李凯辉; 刘汉泽; 辛祥鹏
2016-01-01
The symmetries, conservation laws and exact solutions to the nonlinear partial differential equations play a signif-icant role in nonlinear science and mathematical physics. Symmetry is derived from physics, and it is a mathematical description for invariance. Symmetry group theory plays an important role in constructing explicit solutions, whether the equations are integrable or not. By using the symmetry method, an original nonlinear system can be reduced to a system with fewer independent variables through any given subgroup. But, since there are almost always an infinite number of such subgroups, it is usually not feasible to list all possible group invariant solutions to the system. It is anticipated to find all those equivalent group invariant solutions, that is to say, to construct the one-dimensional optimal system for the Lie algebra. Construction of explicit forms of conservation laws is meaningful, as they are used for developing the appropriate numerical methods and for making mathematical analyses, in particular, of existence, uniqueness and stability. In addition, the existence of a large number of conservation laws of a partial differential equation (system) is a strong indication of its integrability. The similarity solutions are of importance for investigating the long-time behavior, blow-up profile and asymptotic phenomena of a non-linear system. For instance, in some circumstance, the asymptotic behaviors of finite-mass solutions of non-linear diffusion equation with non-linear source term are described by an explicit self-similar solution, etc. However, how to tackle these matters is a complicated problem that challenges researchers to be solved. In this paper, by using the symmetry method, we obtain the symmetry reduction, optimal systems, and many new exact group invariant solution of a fifth-order nonlinear wave equation. By Lie symmetry analysis method, the point symmetries and an optimal system of the equation are obtained. The exact power
Interference and the Law of Energy Conservation
Drosd, Robert; Minkin, Leonid; Shapovalov, Alexander S.
2014-01-01
Introductory physics textbooks consider interference to be a process of redistribution of energy from the wave sources in the surrounding space resulting in constructive and destructive interferences. As one can expect, the total energy flux is conserved. However, one case of apparent non-conservation energy attracts great attention. Imagine that…
The Fourier law in a momentum-conserving chain
Giardinà, C.; Kurchan, J.
2005-01-01
We introduce a family of models for heat conduction with and without momentum conservation. They are analytically solvable in the high temperature limit and can also be efficiently simulated. In all cases the Fourier law is verified in one dimension.
Direct Construction of Conservation Laws from Field Equations
International Nuclear Information System (INIS)
Anco, S.C.; Bluman, G.
1997-01-01
This Letter presents an algorithm to obtain all local conservation laws for any system of field equations. The algorithm uses a formula which directly generates the conservation laws and does not depend on the system having a Lagrangian formulation, in contrast to Noether close-quote s theorem which requires a Lagrangian. Several examples are considered including dissipative systems inherently having no Lagrangian. copyright 1997 The American Physical Society
Analysis of self-similar solutions of multidimensional conservation laws
Energy Technology Data Exchange (ETDEWEB)
Keyfitz, Barbara Lee [The Ohio State Univ., Columbus, OH (United States)
2014-02-15
This project focused on analysis of multidimensional conservation laws, specifically on extensions to the study of self-siminar solutions, a project initiated by the PI. In addition, progress was made on an approach to studying conservation laws of very low regularity; in this research, the context was a novel problem in chromatography. Two graduate students in mathematics were supported during the grant period, and have almost completed their thesis research.
Conservation law of plants' energy value dependence of plants ...
African Journals Online (AJOL)
The plants differences in biochemical composition are analyzed, and the conservation law of energy value in plants is obtained. The link between the need for the nutrients and the plants biochemical composition is examined, Liebig's law is specified. Keywords: plant's biochemical composition, biochemistry, energy value in ...
A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system
International Nuclear Information System (INIS)
Cai Jia-Xiang; Wang Yu-Shun
2013-01-01
We derive a new method for a coupled nonlinear Schrödinger system by using the square of first-order Fourier spectral differentiation matrix D 1 instead of traditional second-order Fourier spectral differentiation matrix D 2 to approximate the second derivative. We prove the proposed method preserves the charge and energy conservation laws exactly. In numerical tests, we display the accuracy of numerical solution and the role of the nonlinear coupling parameter in cases of soliton collisions. Numerical experiments also exhibit the excellent performance of the method in preserving the charge and energy conservation laws. These numerical results verify that the proposed method is both a charge-preserving and an energy-preserving algorithm
Conservation Laws for Partially Conservative Variable Mass Systems via d'Alembert's Principle
Institute of Scientific and Technical Information of China (English)
AFTAB Ahmed; NASEER Ahmed; QUDRAT Khan
2008-01-01
Conservation laws for partially conservative variable mass dynamical systems under symmetric infinitesimal transformations are determined. A generalization of Lagrange-d'Alembert's principle for a variable mass system in terms of asynchronous virtual variation is presented. The generalized Killing equations are obtained such that their solution yields the transformations and the associated conservation laws. An example illustrative of the theory is furnished at the end as well.
Conservation Laws for Partially Conservative Variable Mass Systems via d'Alembert's Principle
International Nuclear Information System (INIS)
Ahmed, Aftab; Ahmed, Naseer; Khan, Qudrat
2008-01-01
Conservation laws for partially conservative variable mass dynamical systems under symmetric infinitesimal transformations are determined. A generalization of Lagrange-d'Alembert's principle for a variable mass system in terms of asynchronous virtual variation is presented. The generalized Killing equations are obtained such that their solution yields the transformations and the associated conservation laws. An example illustrative of the theory is furnished at the end as well. (the physics of elementary particles and fields)
Symmetry Principles and Conservation Laws in Atomic and ...
Indian Academy of Sciences (India)
Symmetry Principles and Conservation Laws in. Atomic and Subatomic Physics – 2. P C Deshmukh .... dicated that parity conservation, though often assumed, had not been verified in weak interactions. Acting on ... The gauge bosons W§ have a charge of +1 and −1 unit, but the Z0 boson of the standard model is neutral.
Conservation laws and geometry of perturbed coset models
Bakas, Ioannis
1994-01-01
We present a Lagrangian description of the $SU(2)/U(1)$ coset model perturbed by its first thermal operator. This is the simplest perturbation that changes sign under Krammers--Wannier duality. The resulting theory, which is a 2--component generalization of the sine--Gordon model, is then taken in Minkowski space. For negative values of the coupling constant $g$, it is classically equivalent to the $O(4)$ non--linear $\\s$--model reduced in a certain frame. For $g > 0$, it describes the relativistic motion of vortices in a constant external field. Viewing the classical equations of motion as a zero curvature condition, we obtain recursive relations for the infinitely many conservation laws by the abelianization method of gauge connections. The higher spin currents are constructed entirely using an off--critical generalization of the $W_{\\infty}$ generators. We give a geometric interpretation to the corresponding charges in terms of embeddings. Applications to the chirally invariant $U(2)$ Gross--Neveu model ar...
On the structure of the new electromagnetic conservation laws
International Nuclear Information System (INIS)
Edgar, S Brian
2004-01-01
New electromagnetic conservation laws have recently been proposed: in the absence of electromagnetic currents, the trace of the Chevreton superenergy tensor, H ab is divergence free in four-dimensional (a) Einstein spacetimes for test fields, and (b) Einstein-Maxwell spacetimes. Subsequently it has been pointed out, in analogy with flat spaces, that for Ricci-flat spacetimes the trace of the Chevreton superenergy tensor H ab can be rearranged in the form of a generalized wave operator □ L acting on the energy-momentum tensor T ab of the test fields, i.e., H ab □ L T ab /2. In this letter we show, for Einstein-Maxwell spacetimes in the full nonlinear theory, that, although, the trace of the Chevreton superenergy tensor H ab can again be rearranged in the form of a generalized wave operator □ G acting on the electromagnetic energy-momentum tensor, in this case the result is also crucially dependent on Einstein's equations; hence we argue that the divergence-free property of the tensor H ab = □ G T ab /2 has significant independent content beyond that of the divergence-free property of T ab . (letter to the editor)
Power-law and runaway growth in conserved aggregation systems
International Nuclear Information System (INIS)
Yamamoto, Hiroshi; Ohtsuki, Toshiya; Fujihara, Akihiro; Tanimoto, Satoshi
2006-01-01
The z-transform technique is used to analyze the Smoluchowski coagulation equation for conserved aggregation systems. A universal power law with the exponent -5/2 appears when a total 'mass' has a certain critical value. Below the threshold, ordinary scaling relations hold and the system exhibits a behavior like usual critical phenomena. Above the threshold, in contrast, the excess amount of mass coagulates into a runaway member, and remaining members follow the power law. Here the runaway growth coexists with the power law. It is argued that these behaviors are observed universally in conserved aggregation processes
Entropy Viscosity Method for High-Order Approximations of Conservation Laws
Guermond, J. L.
2010-09-17
A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.
Entropy Viscosity Method for High-Order Approximations of Conservation Laws
Guermond, J. L.; Pasquetti, R.
2010-01-01
A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.
Magnetohydrodynamics and fluid dynamics action principles and conservation laws
Webb, Gary
2018-01-01
This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helici...
Global Format for Conservative Time Integration in Nonlinear Dynamics
DEFF Research Database (Denmark)
Krenk, Steen
2014-01-01
The widely used classic collocation-based time integration procedures like Newmark, Generalized-alpha etc. generally work well within a framework of linear problems, but typically may encounter problems, when used in connection with essentially nonlinear structures. These problems are overcome....... In the present paper a conservative time integration algorithm is developed in a format using only the internal forces and the associated tangent stiffness at the specific time integration points. Thus, the procedure is computationally very similar to a collocation method, consisting of a series of nonlinear...... equivalent static load steps, easily implemented in existing computer codes. The paper considers two aspects: representation of nonlinear internal forces in a form that implies energy conservation, and the option of an algorithmic damping with the purpose of extracting energy from undesirable high...
A Note on Weak Solutions of Conservation Laws and Energy/Entropy Conservation
Gwiazda, Piotr; Michálek, Martin; Świerczewska-Gwiazda, Agnieszka
2018-03-01
A common feature of systems of conservation laws of continuum physics is that they are endowed with natural companion laws which are in such cases most often related to the second law of thermodynamics. This observation easily generalizes to any symmetrizable system of conservation laws; they are endowed with nontrivial companion conservation laws, which are immediately satisfied by classical solutions. Not surprisingly, weak solutions may fail to satisfy companion laws, which are then often relaxed from equality to inequality and overtake the role of physical admissibility conditions for weak solutions. We want to answer the question: what is a critical regularity of weak solutions to a general system of conservation laws to satisfy an associated companion law as an equality? An archetypal example of such a result was derived for the incompressible Euler system in the context of Onsager's conjecture in the early nineties. This general result can serve as a simple criterion to numerous systems of mathematical physics to prescribe the regularity of solutions needed for an appropriate companion law to be satisfied.
Conservation laws for multidimensional systems and related linear algebra problems
International Nuclear Information System (INIS)
Igonin, Sergei
2002-01-01
We consider multidimensional systems of PDEs of generalized evolution form with t-derivatives of arbitrary order on the left-hand side and with the right-hand side dependent on lower order t-derivatives and arbitrary space derivatives. For such systems we find an explicit necessary condition for the existence of higher conservation laws in terms of the system's symbol. For systems that violate this condition we give an effective upper bound on the order of conservation laws. Using this result, we completely describe conservation laws for viscous transonic equations, for the Brusselator model and the Belousov-Zhabotinskii system. To achieve this, we solve over an arbitrary field the matrix equations SA=A t S and SA=-A t S for a quadratic matrix A and its transpose A t , which may be of independent interest
A Kirchhoff-like conservation law in Regge calculus
International Nuclear Information System (INIS)
Gentle, Adrian P; Kheyfets, Arkady; McDonald, Jonathan R; Miller, Warner A
2009-01-01
Simplicial lattices provide an elegant framework for discrete spacetimes. The inherent orthogonality between a simplicial lattice and its circumcentric dual yields an austere representation of spacetime which provides a conceptually simple form of Einstein's geometric theory of gravitation. A sufficient understanding of simplicial spacetimes has been demonstrated in the literature for spacetimes devoid of all non-gravitational sources. However, this understanding has not been adequately extended to non-vacuum spacetime models. Consequently, a deep understanding of the diffeomorphic structure of the discrete theory is lacking. Conservation laws and symmetry properties are attractive starting points for coupling matter with the lattice. We present a simplicial form of the contracted Bianchi identity which is based on the E Cartan moment of rotation operator. This identity manifests itself in the conceptually simple form of a Kirchhoff-like conservation law. This conservation law enables one to extend Regge calculus to non-vacuum spacetimes and provides a deeper understanding of the simplicial diffeomorphism group.
Invariance analysis and conservation laws of the wave equation on ...
Indian Academy of Sciences (India)
in [7], the more interesting case being the latter since these lead to conservation laws via ... obtained and, hence, more conservation laws are classified. .... −2r2 sin θurt − 2r sin θut + 2r sin θ. (. 1 −. 2t r. ) ur + 2t sin θur. +r2 sin θ. (. 1 −. 2t r. ) urr + cos θuθ + sin θuθθ = 0,. (15) and then ¯X2 = u∂u + t∂t + r∂r leads to dt t. = dr.
Wu, S. Q.; Cai, X.
2000-01-01
Four classical laws of black hole thermodynamics are extended from exterior (event) horizon to interior (Cauchy) horizon. Especially, the first law of classical thermodynamics for Kerr-Newman black hole (KNBH) is generalized to those in quantum form. Then five quantum conservation laws on the KNBH evaporation effect are derived in virtue of thermodynamical equilibrium conditions. As a by-product, Bekenstein-Hawking's relation $ S=A/4 $ is exactly recovered.
International Nuclear Information System (INIS)
Wu, S.Q.; Cai, X.
2000-01-01
Four classical laws of black-hole thermodynamics are extended from exterior (event) horizon to interior (Cauchy) horizon. Especially, the first law of classical thermodynamics for Kerr-Newman black hole (KNBH) is generalized to those in quantum form. Then five quantum conservation laws on the KNBH evaporation effect are derived in virtue of thermodynamical equilibrium conditions. As a by-product, Bekenstein-Haw king's relation S=A/4 is exactly recovered
Infinite set of conservation laws for relativistic string
International Nuclear Information System (INIS)
Isaev, A.P.
1981-01-01
The solution of the Cauchy problem has been found. An infinite class of conserving values Jsub(α) for a free closed relativistic string has been constructed. Jsub(α) values characterize three-parametric generating functions of conservation laws. It is shown using particular examples that it is necessary to order subintegral expressions of quantum values Jsub(α) and do not disturb a property of commutativity with a hamiltonian to attach sense to these values [ru
Notes on the Mass Definition with Covariant Conservation Law
Fujimura, Jun
1990-01-01
Mass definition based on the conservation law of some physical quantities is investigated, adopting the 2nd rank tensor in four space world as the conserving quantity. It is shown that the scalar function appeared as coefficients in the general expression of this tensor quantity should be independent on s, s being the line element of the world line, under the postulate that the trajectories of free particle must be geodesic lines of the world. Discussions are made on this constant factor whic...
Enforcing conservation laws in nonequilibrium cluster perturbation theory
Gramsch, Christian; Potthoff, Michael
2017-05-01
Using the recently introduced time-local formulation of the nonequilibrium cluster perturbation theory (CPT), we construct a generalization of the approach such that macroscopic conservation laws are respected. This is achieved by exploiting the freedom for the choice of the starting point of the all-order perturbation theory in the intercluster hopping. The proposed conserving CPT is a self-consistent propagation scheme which respects the conservation of energy, particle number, and spin, which treats short-range correlations exactly up to the linear scale of the cluster, and which represents a mean-field-like approach on length scales beyond the cluster size. Using Green's functions, conservation laws are formulated as local constraints on the local spin-dependent particle and the doublon density. We consider them as conditional equations to self-consistently fix the time-dependent intracluster one-particle parameters. Thanks to the intrinsic causality of the CPT, this can be set up as a step-by-step time propagation scheme with a computational effort scaling linearly with the maximum propagation time and exponentially in the cluster size. As a proof of concept, we consider the dynamics of the two-dimensional, particle-hole-symmetric Hubbard model following a weak interaction quench by simply employing two-site clusters only. Conservation laws are satisfied by construction. We demonstrate that enforcing them has strong impact on the dynamics. While the doublon density is strongly oscillating within plain CPT, a monotonic relaxation is observed within the conserving CPT.
Directory of Open Access Journals (Sweden)
Fucai You
2014-01-01
Full Text Available A six-component super-Ablowitz-Kaup-Newell-Segur (-AKNS hierarchy is proposed by the zero curvature equation associated with Lie superalgebras. Supertrace identity is used to furnish the super-Hamiltonian structures for the resulting nonlinear superintegrable hierarchy. Furthermore, we derive the infinite conservation laws of the first two nonlinear super-AKNS equations in the hierarchy by utilizing spectral parameter expansions. PACS: 02.30.Ik; 02.30.Jr; 02.20.Sv.
Khumaeni, A.; Tanaka, S.; Kobayashi, A.; Lee, Y. I.; Kurniawan, K. H.; Ishii, K.; Kagawa, K.
2008-01-01
Equipment for demonstrating Newton's third law and the energy conservation law in mechanics have successfully been constructed utilizing fine spherical plastic beads in place of metal ball bearings. To demonstrate Newton's third law, special magnetized Petri dishes were employed as objects, while to examine the energy conservation law, a…
Noether Symmetries and Covariant Conservation Laws in Classical, Relativistic and Quantum Physics
Directory of Open Access Journals (Sweden)
Lorenzo Fatibene
2010-04-01
Full Text Available We review the Lagrangian formulation of (generalised Noether symmetries in the framework of Calculus of Variations in Jet Bundles, with a special attention to so-called “Natural Theories” and “Gauge-Natural Theories” that include all relevant Field Theories and physical applications (from Mechanics to General Relativity, to Gauge Theories, Supersymmetric Theories, Spinors, etc.. It is discussed how the use of Poincar´e–Cartan forms and decompositions of natural (or gauge-natural variational operators give rise to notions such as “generators of Noether symmetries”, energy and reduced energy flow, Bianchi identities, weak and strong conservation laws, covariant conservation laws, Hamiltonian-like conservation laws (such as, e.g., so-calledADMlaws in General Relativity with emphasis on the physical interpretation of the quantities calculated in specific cases (energy, angular momentum, entropy, etc.. A few substantially new and very recent applications/examples are presented to better show the power of the methods introduced: one in Classical Mechanics (definition of strong conservation laws in a frame-independent setting and a discussion on the way in which conserved quantities depend on the choice of an observer; one in Classical Field Theories (energy and entropy in General Relativity, in its standard formulation, in its spin-frame formulation, in its first order formulation “à la Palatini” and in its extensions to Non-Linear Gravity Theories; one in Quantum Field Theories (applications to conservation laws in Loop Quantum Gravity via spin connections and Barbero–Immirzi connections.
Cayley number and conservation laws for elementary particles
International Nuclear Information System (INIS)
Vollendorf, F.
1975-01-01
It is shown that the five conservation laws of charge, hyper-charge, barion number and the two lepton numbers lead to the construction of a commutative non-associative 24 dimensional linear algebra. Each element of the algebra is an ordered set of three Cayley numbers. (orig.) [de
The symmetries and conservation laws of some Gordon-type
Indian Academy of Sciences (India)
Conservation laws; Milne space-time; Gordon-type equations. Abstract. In this letter, the Lie point symmetries of a class of Gordon-type wave equations that arise in the Milne space-time are presented ... Pramana – Journal of Physics | News.
Symmetries and conservation laws of the damped harmonic oscillator
Indian Academy of Sciences (India)
We work with a formulation of Noether-symmetry analysis which uses the properties of infinitesimal point transformations in the space-time variables to establish the association between symmetries and conservation laws of a dynamical system. Here symmetries are expressed in the form of generators. We have studied the ...
Helicity and other conservation laws in perfect fluid motion
Serre, Denis
2018-03-01
In this review paper, we discuss helicity from a geometrical point of view and see how it applies to the motion of a perfect fluid. We discuss its relation with the Hamiltonian structure, and then its extension to arbitrary space dimensions. We also comment about the existence of additional conservation laws for the Euler equation, and its unlikely integrability in Liouville's sense.
Energy conservation law for randomly fluctuating electromagnetic fields
International Nuclear Information System (INIS)
Gbur, G.; Wolf, E.; James, D.
1999-01-01
An energy conservation law is derived for electromagnetic fields generated by any random, statistically stationary, source distribution. It is shown to provide insight into the phenomenon of correlation-induced spectral changes. The results are illustrated by an example. copyright 1999 The American Physical Society
Calorimeter energy calibration using the energy conservation law
Indian Academy of Sciences (India)
A new calorimeter energy calibration method was developed for the proposed ILC detectors. The method uses the center-of-mass energy of the accelerator as the reference. It has been shown that using the energy conservation law it is possible to make ECAL and HCAL cross calibration to reach a good energy resolution ...
Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions
Miller, Christopher J.
2011-01-01
A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.
ADM pseudotensors, conserved quantities and covariant conservation laws in general relativity
International Nuclear Information System (INIS)
Fatibene, L.; Ferraris, M.; Francaviglia, M.; Lusanna, L.
2012-01-01
The ADM formalism is reviewed and techniques for decomposing generic components of metric, connection and curvature are obtained. These techniques will turn out to be enough to decompose not only Einstein equations but also covariant conservation laws. Then a number of independent sets of hypotheses that are sufficient (though not necessary) to obtain standard ADM quantities (and Hamiltonian) from covariant conservation laws are considered. This determines explicitly the range in which standard techniques are equivalent to covariant conserved quantities. The Schwarzschild metric in different coordinates is then considered, showing how the standard ADM quantities fail dramatically in non-Cartesian coordinates or even worse when asymptotically flatness is not manifest; while, in view of their covariance, covariant conservation laws give the correct result in all cases. - Highlights: ► In the paper ADM conserved quantities for GR are obtained from augmented conservation laws. ► Boundary conditions for this to be possible are considered and compared with the literature. ► Some different forms of Schwarzschild solutions are considered as simple examples of different boundary conditions.
Conservation laws in the quantum mechanics of closed systems
International Nuclear Information System (INIS)
Hartle, J.B.; Laflamme, R.; Marolf, D.
1995-01-01
We investigate conservation laws in the quantum mechanics of closed systems and begin by reviewing an argument that exact decoherence implies the exact conservation of quantities that commute with the Hamiltonian. However, we also show that decoherence limits the alternatives that can be included in sets of histories that assess the conservation of these quantities. In the case of charge and energy, these limitations would be severe were these quantities not coupled to a gauge field. However, for the realistic cases of electric charge coupled to the electromagnetic field and mass coupled to spacetime curvature, we show that when alternative values of charge and mass decohere they always decohere exactly and are exactly conserved. Further, while decohering histories that describe possible changes in time of the total charge and mass are also subject to the limitations mentioned above, we show that these do not, in fact, restrict physical alternatives and are therefore not really limitations at all
Contractive relaxation systems and interacting particles for scalar conservation laws
International Nuclear Information System (INIS)
Katsoulakis, M.A.; Tzavaras, A.E.
1996-01-01
We consider a class of semi linear hyperbolic systems with relaxation that are contractive in the L 1 -norm and admit invariant regions. We show that, as the relaxation parameter ξ goes to zero, their solutions converge to a weak solution of the scalar multidimensional conversation law that satisfies the Kruzhkov conditions. In the case of one space dimension, we propose certain interacting particle systems, whose mesoscopic limit is the systems with relaxation and their macroscopic dynamics is described by entropy solutions of a scalar conservation law. (author)
Quantum-mechanical Green's functions and nonlinear superposition law
International Nuclear Information System (INIS)
Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P. de T.S.
1986-01-01
The quantum-mechanical Green's function is derived for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field. (Author) [pt
Quantum-mechanical Green's function and nonlinear superposition law
International Nuclear Information System (INIS)
Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P.T.S.
1986-01-01
It is derived the quantum-mechanical Green's function for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic-oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field
Numerical methods for Eulerian and Lagrangian conservation laws
Després, Bruno
2017-01-01
This book focuses on the interplay between Eulerian and Lagrangian conservation laws for systems that admit physical motivation and originate from continuum mechanics. Ultimately, it highlights what is specific to and beneficial in the Lagrangian approach and its numerical methods. The two first chapters present a selection of well-known features of conservation laws and prepare readers for the subsequent chapters, which are dedicated to the analysis and discretization of Lagrangian systems. The text is at the frontier of applied mathematics and scientific computing and appeals to students and researchers interested in Lagrangian-based computational fluid dynamics. It also serves as an introduction to the recent corner-based Lagrangian finite volume techniques.
Physical conservation laws and the β-decay of nuclei
International Nuclear Information System (INIS)
Bagge, E.
1975-04-01
The law of conservation of energy is extended to the region of the Dirac states of negative energy. When particles are produced or disappear, energy changes occur in the negative energy region which can be seen in the positive energy region. The law of conservation of energy then says that the total change in energy is equal to naught. The same is valid for translations and angular momentum. The way in which completely occupied states change energy and momentum is not shown. The β-decay of the neutron is considered as pair production in which an electron is emitted and a positron is bonded to the neutron. Neutrinos are not produced. The latest results on neutrino experiments on accelerators are not discussed. (BJ/LH) [de
On 'conflict of conservation laws in cyclotron radiation'
International Nuclear Information System (INIS)
White, S.M.; Parle, A.J.
1985-01-01
The authors reconsider the apparent conflict of conservation laws in cyclotron radiation, and show that earlier workers in this field did not correctly include the effects of radiation reaction in their calculations. When a 'recoil' term, calculated using relativistic quantum theory, is included in the angular momentum of the particle the conflict disappears. It is found that the guiding centre of the particle drifts outwards during cyclotron radiation. (author)
Determination of constants of factorized pairing force from conservation laws
International Nuclear Information System (INIS)
Voronkov, Yu.P.; Mikhajlov, V.M.
1975-01-01
The constants of a factorized interaction in the particle-particle channel are evaluated on the basis of average field parameters and Cooper pairing. The relations between the constants of multipole particle-particle forces are derived for the spherical nuclei. The constants of the quadrupole pairing are obtained for deformed nuclei from the angular momentum conservation law. The calculated constants are compared with empiricalones
Different realizations of Cooper-Frye sampling with conservation laws
Schwarz, C.; Oliinychenko, D.; Pang, L.-G.; Ryu, S.; Petersen, H.
2018-01-01
Approaches based on viscous hydrodynamics for the hot and dense stage and hadronic transport for the final dilute rescattering stage are successfully applied to the dynamic description of heavy ion reactions at high beam energies. One crucial step in such hybrid approaches is the so-called particlization, which is the transition between the hydrodynamic description and the microscopic degrees of freedom. For this purpose, individual particles are sampled on the Cooper-Frye hypersurface. In this work, four different realizations of the sampling algorithms are compared, with three of them incorporating the global conservation laws of quantum numbers in each event. The algorithms are compared within two types of scenarios: a simple ‘box’ hypersurface consisting of only one static cell and a typical particlization hypersurface for Au+Au collisions at \\sqrt{{s}{NN}}=200 {GeV}. For all algorithms the mean multiplicities (or particle spectra) remain unaffected by global conservation laws in the case of large volumes. In contrast, the fluctuations of the particle numbers are affected considerably. The fluctuations of the newly developed SPREW algorithm based on the exponential weight, and the recently suggested SER algorithm based on ensemble rejection, are smaller than those without conservation laws and agree with the expectation from the canonical ensemble. The previously applied mode sampling algorithm produces dramatically larger fluctuations than expected in the corresponding microcanonical ensemble, and therefore should be avoided in fluctuation studies. This study might be of interest for the investigation of particle fluctuations and correlations, e.g. the suggested signatures for a phase transition or a critical endpoint, in hybrid approaches that are affected by global conservation laws.
Construction of elasto-plastic boundaries using conservation laws
Senashov, S.; Filyushina, E.; Gomonova, O.
2015-01-01
The solution of elasto-plastic problems is one of the most complicated and actual problems of solid mechanics. Traditionally, these problems are solved by the methods of complex analysis, calculus of variations or semi-inverse methods. Unfortunately, all these methods can be applied to a limited number of problems only. In this paper, a technique of conservation laws is used. This technique allows constructing analytical formulas to determine the elasto-plastic boundary for a wide class of pr...
Post-Newtonian conservation laws in rigid quasilocal frames
International Nuclear Information System (INIS)
McGrath, Paul L; Chanona, Melanie; Epp, Richard J; Mann, Robert B; Koop, Michael J
2014-01-01
In recent work we constructed completely general conservation laws for energy (McGrath et al 2012 Class. Quantum Grav. 29 215012) and linear and angular momentum (Epp et al 2013 Class. Quantum Grav. 30 195019) of extended systems in general relativity based on the notion of a rigid quasilocal frame (RQF). We argued at a fundamental level that these RQF conservation laws are superior to conservation laws based on the local stress–energy–momentum tensor of matter because (1) they do not rely on spacetime symmetries and (2) they properly account for both matter and gravitational effects. Moreover, they provide simple, exact, operational expressions for fluxes of gravitational energy and linear and angular momentum. In this paper we derive the form of these laws in a general first post-Newtonian (1PN) approximation, and then apply these approximate laws to the problem of gravitational tidal interactions. We obtain formulas for tidal heating and tidal torque that agree with the literature, but without resorting to the use of pseudotensors. We describe the physical mechanism of these tidal interactions not in the traditional terms of a Newtonian gravitational force, but in terms of a much simpler and universal mechanism that is an exact, quasilocal manifestation of the equivalence principle in general relativity. As concrete examples, we look at the tidal heating of Jupiter’s moon Io and angular momentum transfer in the Earth–Moon system that causes a gradual spin-down of the Earth and recession of the Moon. In both examples we find agreement with observation. (paper)
International Nuclear Information System (INIS)
Li Xinyue; Zhao Qiulan
2009-01-01
Two hierarchies of nonlinear integrable positive and negative lattice equations are derived from a discrete spectral problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws about the positive hierarchy.
An exactly conservative particle method for one dimensional scalar conservation laws
International Nuclear Information System (INIS)
Farjoun, Yossi; Seibold, Benjamin
2009-01-01
A particle scheme for scalar conservation laws in one space dimension is presented. Particles representing the solution are moved according to their characteristic velocities. Particle interaction is resolved locally, satisfying exact conservation of area. Shocks stay sharp and propagate at correct speeds, while rarefaction waves are created where appropriate. The method is variation diminishing, entropy decreasing, exactly conservative, and has no numerical dissipation away from shocks. Solutions, including the location of shocks, are approximated with second order accuracy. Source terms can be included. The method is compared to CLAWPACK in various examples, and found to yield a comparable or better accuracy for similar resolutions.
The role of angular momentum conservation law in statistical mechanics
Directory of Open Access Journals (Sweden)
I.M. Dubrovskii
2008-12-01
Full Text Available Within the limits of Khinchin ideas [A.Y. Khinchin, Mathematical Foundation of Statistical Mechanics. NY, Ed. Dover, 1949] the importance of momentum and angular momentum conservation laws was analyzed for two cases: for uniform magnetic field and when magnetic field is absent. The law of momentum conservation does not change the density of probability distribution in both cases, just as it is assumed in the conventional theory. It is shown that in systems where the kinetic energy depends only on particle momenta canonically conjugated with Cartesian coordinates being their diagonal quadric form,the angular momentum conservation law changes the density of distribution of the system only in case the full angular momentum of a system is not equal to zero. In the gas of charged particles in a uniform magnetic field the density of distribution also varies if the angular momentum is zero [see Dubrovskii I.M., Condensed Matter Physics, 2206, 9, 23]. Two-dimensional gas of charged particles located within a section of an endless strip filled with gas in magnetic field is considered. Under such conditions the angular momentum is not conserved. Directional particle flows take place close to the strip boundaries, and, as a consequence, the phase trajectory of the considered set of particles does not remain within the limited volume of the phase space. In order to apply a statistical thermodynamics method, it was suggested to consider near-boundary trajectories relative to a reference system that moves uniformly. It was shown that if the diameter of an orbit having average thermal energy is much smaller than a strip width, the corrections to thermodynamic functions are small depending on magnetic field. Only the average velocity of near-boundary particles that form near-boundary electric currents creating the paramagnetic moment turn out to be essential.
Ibragimov, Ranis N.
2018-03-01
The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.
The Conservation Status of Eagles in South African Law
Directory of Open Access Journals (Sweden)
JC Knobel
2013-12-01
Full Text Available This contribution is an introductory survey and preliminary evaluation of the conservation status of eagles in South African law. The methodology is primarily an interdisciplinary literature study of legal texts and texts from the natural sciences. Eagles are some of the largest and most powerful avian predators, and the human response to their presence is dualistic and polarised. At the one extreme, many people admire eagles, while at the other extreme they are perceived as a threat to economic and other interests, and may even be actively persecuted in a conviction that they are vermin. This duality in the human perception of eagles is also prevalent in South Africa and complicates their conservation. The mobility of eagles and other birds of prey means that they cannot be restrained by fencing national parks and other protected areas, and this heightens the likelihood of their entering into conflict with human interests. The conservation problems faced by eagles in South Africa can broadly be divided into direct and indirect threats. Direct threats include the intentional killing of eagles, and trade in eagles and their eggs. Indirect threats include non-targeted poisoning (where poisoned bait is used to control other predators, but eagles find the bait, feed on it, and succumb; habitat loss; mortality induced by dangerous structures; and disturbance. The legal status of eagles is influenced by a large body of legislative provisions, ranging from international and regional legal instruments, through national legislation, to provincial legislative measures. An overview of these provisions is given, with concise explanations of how they apply to the legal status of eagles and other birds of prey in South Africa. The conservation status of eagles in South African law is subsequently evaluated by considering the contribution of the applicable laws to three main types of conservation interventions. In respect of the first, habitat preservation
Effects of collisions on conservation laws in gyrokinetic field theory
Energy Technology Data Exchange (ETDEWEB)
Sugama, H.; Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Watanabe, T.-H. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)
2015-08-15
Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.
International Nuclear Information System (INIS)
Zhang Zaiyun; Liu Zhenhai; Miao Xiujin; Chen Yuezhong
2011-01-01
In this Letter, we investigate the perturbed nonlinear Schroedinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.
Reductions and conservation laws for BBM and modified BBM equations
Directory of Open Access Journals (Sweden)
Khorshidi Maryam
2016-01-01
Full Text Available In this paper, the classical Lie theory is applied to study the Benjamin-Bona-Mahony (BBM and modified Benjamin-Bona-Mahony equations (MBBM to obtain their symmetries, invariant solutions, symmetry reductions and differential invariants. By observation of the the adjoint representation of Mentioned symmetry groups on their Lie algebras, we find the primary classification (optimal system of their group-invariant solutions which provides new exact solutions to BBM and MBBM equations. Finally, conservation laws of the BBM and MBBM equations are presented. Some aspects of their symmetry properties are given too.
Symmetry and conservation laws in particle physics in the fifties
International Nuclear Information System (INIS)
Michel, L.
1989-01-01
This paper puzzles over why symmetry, so central to particle physics today, was so little attended to in the 1950s when the need for it was becoming profound, with the notion of parity violation and other break-downs in conservation laws, such as angular momentum and charge conjugation. Group theory, including Lie groups, would also have helped understanding of the particle physics discoveries of the 1950s such as strange particles, resonances, and associated production. They were adopted ten years too late by the physics community. (UK)
Multi-component WKI equations and their conservation laws
Energy Technology Data Exchange (ETDEWEB)
Qu Changzheng [Department of Mathematics, Northwest University, Xi' an 710069 (China) and Center for Nonlinear Studies, Northwest University, Xi' an 710069 (China)]. E-mail: qu_changzheng@hotmail.com; Yao Ruoxia [Department of Computer Sciences, East China Normal University, Shanghai 200062 (China); Department of Computer Sciences, Weinan Teacher' s College, Weinan 715500 (China); Liu Ruochen [Department of Mathematics, Northwest University, Xi' an 710069 (China)
2004-10-25
In this Letter, a two-component WKI equation is obtained by using the fact that when curvature and torsion of a space curve satisfy the vector modified KdV equation, a graph of the curve satisfies the two-component WKI equation, which is a natural generalization to the WKI equation. It is shown that the two-component WKI equation can be solved in terms of the extended WKI scheme, and it admits an infinite number of conservation laws. In the same vein, a n-component generalization to the WKI equation is proposed.
Conformal conservation laws for second-order scalar fields
International Nuclear Information System (INIS)
Blakeskee, J.S.; Logan, J.D.
1976-01-01
It is considered an action integral over space-time whose Lagrangian depends upon a scalar field an upon derivatives of the field function up to second order. From invariance identities obtained by the authors in an earlier work it is shown how a new proof of Noether's theorem for this second-order problem follows in the multiple integral case. Finally, conservation laws are written down in the case that the given action integral be invariant under the fifteen-parameter special conformal group
Conservation laws and mass distribution in the planet formation process
International Nuclear Information System (INIS)
Farinella, P.; Paolicchi, P.
1977-01-01
Within the framework of the nebular theory of the origin of the solar system, conservation laws are applied to the condensation of a ring-shaped cloud of orbiting particles. The final configuration is assumed to be a point-like planet in a circular orbit around the Sun. On this ground, it is possible to relate the masses of the planets with the interplanetary distances. This relation is confirmed satisfactorily by the observed masses and orbital radii of several planets and satellites of the solar system. (Auth.)
Systems of conservation laws with third-order Hamiltonian structures
Ferapontov, Evgeny V.; Pavlov, Maxim V.; Vitolo, Raffaele F.
2018-02-01
We investigate n-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in P^{n+2} satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space W of dimension n+2 , classify n-tuples of skew-symmetric 2-forms A^{α } \\in Λ ^2(W) such that φ _{β γ }A^{β }\\wedge A^{γ }=0, for some non-degenerate symmetric φ.
High-resolution finite-difference algorithms for conservation laws
International Nuclear Information System (INIS)
Towers, J.D.
1987-01-01
A new class of Total Variation Decreasing (TVD) schemes for 2-dimensional scalar conservation laws is constructed using either flux-limited or slope-limited numerical fluxes. The schemes are proven to have formal second-order accuracy in regions where neither u/sub x/ nor y/sub y/ vanishes. A new class of high-resolution large-time-step TVD schemes is constructed by adding flux-limited correction terms to the first-order accurate large-time-step version of the Engquist-Osher scheme. The use of the transport-collapse operator in place of the exact solution operator for the construction of difference schemes is studied. The production of spurious extrema by difference schemes is studied. A simple condition guaranteeing the nonproduction of spurious extrema is derived. A sufficient class of entropy inequalities for a conservation law with a flux having a single inflection point is presented. Finite-difference schemes satisfying a discrete version of each entropy inequality are only first-order accurate
A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
International Nuclear Information System (INIS)
Wei Han-yu; Xia Tie-cheng
2016-01-01
A new six-component super soliton hierarchy is obtained based on matrix Lie super algebras. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. After that, the self-consistent sources of the new six-component super soliton hierarchy are presented. Furthermore, we establish the infinitely many conservation laws for the integrable super soliton hierarchy. (paper)
Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension
International Nuclear Information System (INIS)
Papalexandris, M.V.; Leonard, A.; Dimotakis, P.E.
1997-01-01
The present work is concerned with an application of the theory of characteristics to conservation laws with source terms in one space dimension, such as the Euler equations for reacting flows. Space-time paths are introduced on which the flow/chemistry equations decouple to a characteristic set of ODE's for the corresponding homogeneous laws, thus allowing the introduction of functions analogous to the Riemann invariants in classical theory. The geometry of these paths depends on the spatial gradients of the solution. This particular decomposition can be used in the design of efficient unsplit algorithms for the numerical integration of the equations. As a first step, these ideas are implemented for the case of a scalar conservation law with a nonlinear source term. The resulting algorithm belongs to the class of MUSCL-type, shock-capturing schemes. Its accuracy and robustness are checked through a series of tests. The stiffness of the source term is also studied. Then, the algorithm is generalized for a system of hyperbolic equations, namely the Euler equations for reacting flows. A numerical study of unstable detonations is performed. 57 refs
DEFF Research Database (Denmark)
Bache, Morten; Moses, J.; Wise, F.W.
2010-01-01
Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)].......Erratum for [M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007)]....
Local conservation law and dark radiation in cosmological braneworld
International Nuclear Information System (INIS)
Minamitsuji, Masato; Sasaki, Misao
2004-01-01
In the context of the Randall-Sundrum (RS) single-brane scenario, we discuss the bulk geometry and dynamics of a cosmological brane in terms of the local energy conservation law which exists for the bulk that allows slicing with a maximally symmetric three-space. This conservation law enables us to define a local mass in the bulk. We show that there is a unique generalization of the dark radiation on the brane, which is given by the local mass. We find there also exists a conserved current associated with the Weyl tensor, and the corresponding local charge, which we call the Weyl charge, is given by the sum of the local mass and a certain linear combination of the components of the bulk energy-momentum tensor. This expression of the Weyl charge relates the local mass to the projected Weyl tensor, E μν , which plays a central role in the geometrical formalism of the RS braneworld. On the brane, in particular, this gives a decomposition of the projected Weyl tensor into the local mass and the bulk energy-momentum tensor. Then, as an application of these results, we consider a null dust model for the bulk energy-momentum tensor and discuss the black hole formation in the bulk. We investigate the causal structure by identifying the locus of the apparent horizon and clarify possible brane trajectories in the bulk. We find that the brane stays always outside the black hole as long as it is expanding. We also find an upper bound on the value of the Hubble parameter in terms of the matter energy density on the brane, irrespective of the energy flux emitted from the brane
Lagrange and Noether analysis of polarization laws of conservation for electromagnetic field
International Nuclear Information System (INIS)
Krivskij, I.Yu.; Simulik, V.M.
1988-01-01
Both well-known Bessel-Hagen conservation laws and conservation laws of polarized character are derived for electromagnetic field in the Lagrange approach to electrodynamics in terms of intensities (without using the A μ potentials as variation variables). The laws mentioned are derived according to Noether theorem because symmetry to which such concervation laws correspond is lost during the transition from intensities to potentials. Based on Noether theorem (and its generalization for Naeik's symmetries) and Lagrange function scalar in relation to complete Poincare group in terms of intensity tensor, a convenient formula for calculating and values conserved for electromagnetic field is derived which sets up a physically adequate symmetry operator -conservation law correlation and thus links the presence of conservation laws of polarized character with symmetry properties of Maxwell equations. Adiabaticity of conservation laws of polarized character under the presence of interaction with currents and charges is indicated
Directory of Open Access Journals (Sweden)
Emrullah Yaşar
Full Text Available In this paper Lie symmetry analysis of the seventh-order time fractional Sawada–Kotera–Ito (FSKI equation with Riemann–Liouville derivative is performed. Using the Lie point symmetries of FSKI equation, it is shown that it can be transformed into a nonlinear ordinary differential equation of fractional order with a new dependent variable. In the reduced equation the derivative is in Erdelyi–Kober sense. Furthermore, adapting the Ibragimov’s nonlocal conservation method to time fractional partial differential equations, we obtain conservation laws of the underlying equation. In addition, we construct some exact travelling wave solutions for the FSKI equation using the sub-equation method. Keywords: Fractional Sawada–Kotera–Ito equation, Lie symmetry, Riemann–Liouville fractional derivative, Conservation laws, Exact solutions
International Nuclear Information System (INIS)
Shelkovich, V M
2008-01-01
This is a survey of some results and problems connected with the theory of generalized solutions of quasi-linear conservation law systems which can admit delta-shaped singularities. They are the so-called δ-shock wave type solutions and the recently introduced δ (n) -shock wave type solutions, n=1,2,..., which cannot be included in the classical Lax-Glimm theory. The case of δ- and δ'-shock waves is analyzed in detail. A specific analytical technique is developed to deal with such solutions. In order to define them, some special integral identities are introduced which extend the concept of weak solution, and the Rankine-Hugoniot conditions are derived. Solutions of Cauchy problems are constructed for some typical systems of conservation laws. Also investigated are multidimensional systems of conservation laws (in particular, zero-pressure gas dynamics systems) which admit δ-shock wave type solutions. A geometric aspect of such solutions is considered: they are connected with transport and concentration processes, and the balance laws of transport of 'volume' and 'area' to δ- and δ'-shock fronts are derived for them. For a 'zero-pressure gas dynamics' system these laws are the mass and momentum transport laws. An algebraic aspect of these solutions is also considered: flux-functions are constructed for them which, being non-linear, are nevertheless uniquely defined Schwartz distributions. Thus, a singular solution of the Cauchy problem generates algebraic relations between its components (distributions).
Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa
2018-06-01
In this work, we investigate the Lie symmetry analysis, exact solutions and conservation laws (Cls) to the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGDK) equation with Riemann-Liouville (RL) derivative. The time fractional CDGDK is reduced to nonlinear ordinary differential equation (ODE) of fractional order. New exact traveling wave solutions for the time fractional CDGDK are obtained by fractional sub-equation method. In the reduced equation, the derivative is in Erdelyi-Kober (EK) sense. Ibragimov's nonlocal conservation method is applied to construct Cls for time fractional CDGDK.
Existence of traveling waves for diffusive-dispersive conservation laws
Directory of Open Access Journals (Sweden)
Cezar I. Kondo
2013-02-01
Full Text Available In this work we show the existence existence and uniqueness of traveling waves for diffusive-dispersive conservation laws with flux function in $C^{1}(mathbb{R}$, by using phase plane analysis. Also we estimate the domain of attraction of the equilibrium point attractor corresponding to the right-hand state. The equilibrium point corresponding to the left-hand state is a saddle point. According to the phase portrait close to the saddle point, there are exactly two semi-orbits of the system. We establish that only one semi-orbit come in the domain of attraction and converges to $(u_{-},0$ as $yo -infty$. This provides the desired saddle-attractor connection.
Global conservation laws and femtoscopy of small systems
International Nuclear Information System (INIS)
Chajecki, Zbigniew; Lisa, Mike
2008-01-01
It is increasingly important to understand, in detail, two-pion correlations measured in p+p and d+A collisions. In particular, one wishes to understand the femtoscopic correlations to compare to similar measurements in heavy-ion collisions. However, in the low-multiplicity final states of these systems, global conservation laws generate significant N-body correlations that project onto the two-pion space in nontrivial ways and complicate the femtoscopic analysis. We discuss a formalism to calculate and account for these correlations in collisions dominated by a single particle species (e.g., pions). We also discuss effects on two-particle correlations between nonidentical particles, the understanding of which may be important in the study of femtoscopic space-time asymmetries
The origin of the energy-momentum conservation law
Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.
2017-09-01
The interplay between the action-reaction principle and the energy-momentum conservation law is revealed by the examples of the Maxwell-Lorentz and Yang-Mills-Wong theories, and general relativity. These two statements are shown to be equivalent in the sense that both hold or fail together. Their mutual agreement is demonstrated most clearly in the self-interaction problem by taking account of the rearrangement of degrees of freedom appearing in the action of the Maxwell-Lorentz and Yang-Mills-Wong theories. The failure of energy-momentum conservation in general relativity is attributed to the fact that this theory allows solutions having nontrivial topologies. The total energy and momentum of a system with nontrivial topological content prove to be ambiguous, coordinatization-dependent quantities. For example, the energy of a Schwarzschild black hole may take any positive value greater than, or equal to, the mass of the body whose collapse is responsible for forming this black hole. We draw the analogy to the paradoxial Banach-Tarski theorem; the measure becomes a poorly defined concept if initial three-dimensional bounded sets are rearranged in topologically nontrivial ways through the action of free non-Abelian isometry groups.
A fast conservative spectral solver for the nonlinear Boltzmann collision operator
International Nuclear Information System (INIS)
Gamba, Irene M.; Haack, Jeffrey R.; Hu, Jingwei
2014-01-01
We present a conservative spectral method for the fully nonlinear Boltzmann collision operator based on the weighted convolution structure in Fourier space developed by Gamba and Tharkabhushnanam. This method can simulate a broad class of collisions, including both elastic and inelastic collisions as well as angularly dependent cross sections in which grazing collisions play a major role. The extension presented in this paper consists of factorizing the convolution weight on quadrature points by exploiting the symmetric nature of the particle interaction law, which reduces the computational cost and memory requirements of the method to O(M 2 N 4 logN) from the O(N 6 ) complexity of the original spectral method, where N is the number of velocity grid points in each velocity dimension and M is the number of quadrature points in the factorization, which can be taken to be much smaller than N. We present preliminary numerical results
A general qualitative theory of conservation laws, their violation and other spontaneous phenomena
International Nuclear Information System (INIS)
Tahir Shah, K.
1976-10-01
A general theory of conservation laws and other invariants for a physical system through equivalence relations are formulated. The conservation laws are classified according to the type of equivalence relation; group equivalence, homotopical equivalence and other types of equivalence relations giving respective kinds of conservation laws. The stability properties in the topological (and differentiable) sense are discussed using continuous deformations with respect to control parameters. The conservation laws due to the abelian symmetries are shown to be stable through application of well-known theorems
Divergence-Measure Fields, Sets of Finite Perimeter, and Conservation Laws
Chen, Gui-Qiang; Torres, Monica
2005-02-01
Divergence-measure fields in L∞ over sets of finite perimeter are analyzed. A notion of normal traces over boundaries of sets of finite perimeter is introduced, and the Gauss-Green formula over sets of finite perimeter is established for divergence-measure fields in L∞. The normal trace introduced here over a class of surfaces of finite perimeter is shown to be the weak-star limit of the normal traces introduced in Chen & Frid [6] over the Lipschitz deformation surfaces, which implies their consistency. As a corollary, an extension theorem of divergence-measure fields in L∞ over sets of finite perimeter is also established. Then we apply the theory to the initial-boundary value problem of nonlinear hyperbolic conservation laws over sets of finite perimeter.
The laws of conservation of physics and the β-decay of atomic nuclei
International Nuclear Information System (INIS)
Bagge, E.R.
1976-01-01
The laws of conservation of energy, the momentum of translation and the angular momentum of a system form a closed unit according to Noether's theorem. A generalisation of these laws taking into account the states of negative energies must therefore comprise all laws of conservation. A new interpretation of the β-decay without neutrinos should thus take the law of conservation of energy at the β-continuum for the world and anti-world as motivation to demand corresponding laws of conservation for the linear momentum and the spin and it will be shown that this new interpretation of the laws of conservation exactly suffices to interpret all characteristic phenomena of β-decay in a manner free of contradiction. (orig.) [de
Unimodular Einstein-Cartan gravity: Dynamics and conservation laws
Bonder, Yuri; Corral, Cristóbal
2018-04-01
Unimodular gravity is an interesting approach to address the cosmological constant problem, since the vacuum energy density of quantum fields does not gravitate in this framework, and the cosmological constant appears as an integration constant. These features arise as a consequence of considering a constrained volume element 4-form that breaks the diffeomorphisms invariance down to volume preserving diffeomorphisms. In this work, the first-order formulation of unimodular gravity is presented by considering the spin density of matter fields as a source of spacetime torsion. Even though the most general matter Lagrangian allowed by the symmetries is considered, dynamical restrictions arise on their functional dependence. The field equations are obtained and the conservation laws associated with the symmetries are derived. It is found that, analogous to torsion-free unimodular gravity, the field equation for the vierbein is traceless; nevertheless, torsion is algebraically related to the spin density as in standard Einstein-Cartan theory. The particular example of massless Dirac spinors is studied, and comparisons with standard Einstein-Cartan theory are shown.
Infinitely many conservation laws for the discrete KdV equation
International Nuclear Information System (INIS)
Rasin, Alexander G; Schiff, Jeremy
2009-01-01
Rasin and Hydon (2007 J. Phys. A: Math. Theor. 40 12763-73) suggested a way to construct an infinite number of conservation laws for the discrete KdV equation (dKdV), by repeated application of a certain symmetry to a known conservation law. It was not decided, however, whether the resulting conservation laws were distinct and nontrivial. In this paper we obtain the following results: (1) we give an alternative method to construct an infinite number of conservation laws using a discrete version of the Gardner transformation. (2) We give a direct proof that the conservation laws obtained by the method of Rasin and Hydon are indeed distinct and nontrivial. (3) We consider a continuum limit in which the dKdV equation becomes a first-order eikonal equation. In this limit the two sets of conservation laws become the same, and are evidently distinct and nontrivial. This proves the nontriviality of the conservation laws constructed by the Gardner method, and gives an alternative proof of the nontriviality of the conservation laws constructed by the method of Rasin and Hydon
Institute of Scientific and Technical Information of China (English)
戴安民
2003-01-01
The purpose is to reestablish the coupled conservation laws, the local conservation equations and the jump conditions of mass and inertia for polar continuum theories. In this connection the new material derivatives of the deformation gradient, the line element, the surface element and the volume element were derived and the generalized Reynolds transport theorem was presented. Combining these conservation laws of mass and inertia with the balance laws of momentum, angular momentum and energy derived in our previous papers of this series, a rather complete system of coupled basic laws and principles for polar continuum theories is constituted on the whole. From this system the coupled nonlocal balance equations of mass, inertia, momentum, angular momentum and energy may be obtained by the usual localization.
A disturbance decoupling nonlinear control law for variable speed wind turbines
DEFF Research Database (Denmark)
Thomsen, Sven Creutz; Poulsen, Niels Kjølstad
2007-01-01
This paper describes a nonlinear control law for controlling variable speed wind turbines using feedback linearization. The novel aspect of the control law is its ability to decouple the effect of wind fluctuations. Furthermore, the transformation to feedback linearizable coordinates is chosen...
Bonito, Andrea; Guermond, Jean-Luc; Popov, Bojan
2013-01-01
We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method
A Nonlinear Fuel Optimal Reaction Jet Control Law
National Research Council Canada - National Science Library
Breitfeller, Eric
2002-01-01
We derive a nonlinear fuel optimal attitude control system (ACS) that drives the final state to the desired state according to a cost function that weights the final state angular error relative to the angular rate error...
Conservation laws in quantum mechanics on a Riemannian manifold
International Nuclear Information System (INIS)
Chepilko, N.M.
1992-01-01
In Refs. 1-5 the quantum dynamics of a particle on a Riemannian manifold V n is considered. The advantage of Ref. 5, in comparison with Refs. 1-4, is the fact that in it the differential-geometric character of the theory and the covariant definition (via the known Lagrangian of the particle) of the algebra of quantum-mechanical operators on V n are mutually consistent. However, in Ref. 5 the procedure for calculating the expectation values of operators from the known wave function of the particle is not discussed. In the authors view, this question is problematical and requires special study. The essence of the problem is that integration on a Riemannian manifold V n , unlike that of a Euclidean manifold R n , is uniquely defined only for scalars. For this reason, the calculation of the expectation value of, e.g., the operator of the momentum or angular momentum of a particle on V n is not defined in the usual sense. However, this circumstance was not taken into account by the authors of Refs. 1-4, in which quantum mechanics on a Riemannian manifold V n was studied. In this paper the author considers the conservation laws and a procedure for calculating observable quantities in the classical mechanics (Sec. 2) and quantum mechanics (Sec. 3) of a particle on V n . It is found that a key role here is played by the Killing vectors of the Riemannian manifold V n . It is shown that the proposed approach to the problem satisfies the correspondence principle for both the classical and the quantum mechanics of a particle on a Euclidean manifold R n
Consequences of nonlinear heat transport laws on expected plasma profiles
International Nuclear Information System (INIS)
Lackner, K.
1987-03-01
The expected variation of plasma pressure profiles against changes in power deposition is investigated by using a simple linear heat transport law as well as a quadratic one. Applying the quadratic transport law it can be shown that the stiffening of the resulting profiles is sufficient to understand the experimentally measured phenomenon of 'profile consistence' without further assumptions of nonlocal effects. (orig.) [de
A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu, Wei; Tie-cheng, Xia
2016-01-01
A new six-component super soliton hierarchy is obtained based on matrix Lie super algebras. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. After that, the self-consistent sources of the new six-component super soliton hierarchy are presented. Furthermore, we establish the infinitely many conservation laws for the integrable super soliton hierarchy. Project supported by the National Natural Science Foundation of China (Grant Nos. 11547175, 11271008 and 61072147), the First-class Discipline of University in Shanghai, China, and the Science and Technology Department of Henan Province, China (Grant No. 152300410230).
International Nuclear Information System (INIS)
Fukutani, Yo; Imamura, Fumihiko; Tokunaga, Takeshi; Sato, Ichiro
2015-01-01
We propose a quantitative evaluation method of overall tsunami risk that the entire facility group over a wide area holds. We considerably reduced the calculation cost for tsunami inundation depth by adopting the evaluation method using energy conservation law as compared with the evaluation method using non-linear long wave equation. For financial institutions such as banks and insurance companies with contractors over a wide area and business companies with multiple their assets and facilities in various places, the proposed evaluation method in this study could be a useful approach to implement their risk-based management decisions for tsunami risk. (author)
Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics
International Nuclear Information System (INIS)
Webb, G M; Zank, G P
2009-01-01
Scaling symmetries of the planar, one-dimensional gas dynamic equations with adiabatic index γ are used to obtain Lagrangian and Eulerian conservation laws associated with the symmetries. The known Eulerian symmetry operators for the scaling symmetries are converted to the Lagrangian form, in which the Eulerian spatial position of the fluid element is given in terms of the Lagrangian fluid labels. Conditions for a linear combination of the three scaling symmetries to be a divergence or variational symmetry of the action are established. The corresponding Lagrangian and Eulerian form of the conservation laws are determined by application of Noether's theorem. A nonlocal conservation law associated with the scaling symmetries is obtained by applying a nonlocal symmetry operator to the scaling symmetry-conserved vector. An action principle incorporating known conservation laws using Lagrangian constraints is developed. Noether's theorem for the constrained action principle gives the same formulas for the conserved vector as the classical Noether theorem, except that the Lie symmetry vector field now includes the effects of nonlocal potentials. Noether's theorem for the constrained action principle is used to obtain nonlocal conservation laws. The scaling symmetry conservation laws only apply for special forms of the entropy of the gas.
Directory of Open Access Journals (Sweden)
Fu Yuhua
2014-06-01
Full Text Available Neutrosophy is a new branch of philosophy, and "Quad-stage" (Four stages is the expansion of Hegel’s triad thesis, antithesis, synthesis of development. Applying Neutrosophy and "Quad-stage" method, the purposes of this paper are expanding Newton Mechanics and making it become New Newton Mechanics (NNW taking law of conservation of energy as unique source law. In this paper the examples show that in some cases other laws may be contradicted with the law of conservation of energy. The original Newton's three laws and the law of gravity, in principle can be derived by the law of conservation of energy. Through the example of free falling body, this paper derives the original Newton's second law by using the law of conservation of energy, and proves that there is not the contradiction between the original law of gravity and the law of conservation of energy; and through the example of a small ball rolls along the inclined plane (belonging to the problem cannot be solved by general relativity that a body is forced to move in flat space, derives improved Newton's second law and improved law of gravity by using law of conservation of energy. Whether or not other conservation laws (such as the law of conservation of momentum and the law of conservation of angular momentum can be utilized, should be tested by law of conservation of energy. When the original Newton's second law is not correct, then the laws of conservation of momentum and angular momentum are no longer correct; therefore the general forms of improved law of conservation of momentum and improved law of conservation of angular momentum are presented. In the cases that law of conservation of energy cannot be used effectively, New Newton Mechanics will not exclude that according to other theories or accurate experiments to derive the laws or formulas to solve some specific problems. For example, with the help of the result of general relativity, the improved Newton's formula of universal
Numerical viscosity of entropy stable schemes for systems of conservation laws. Final Report
International Nuclear Information System (INIS)
Tadmor, E.
1985-11-01
Discrete approximations to hyperbolic systems of conservation laws are studied. The amount of numerical viscosity present in such schemes is quantified and related to their entropy stability by means of comparison. To this end conservative schemes which are also entropy conservative are constructed. These entropy conservative schemes enjoy second-order accuracy; moreover, they admit a particular interpretation within the finite-element frameworks, and hence can be formulated on various mesh configurations. It is then shown that conservative schemes are entropy stable if and only if they contain more viscosity than the mentioned above entropy conservative ones
Institute of Scientific and Technical Information of China (English)
ZHANG RongPei; YU XiJun; LI MingJun; LI XiangGui
2017-01-01
In this study,we present a conservative local discontinuous Galerkin (LDG) method for numerically solving the two-dimensional nonlinear Schr(o)dinger (NLS) equation.The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux.The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central,alternative and upwind-based flux.We will propose two kinds of time discretization methods for the semi-discrete formulation.One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation.The other one is Krylov implicit integration factor (ⅡF) method which demands much less computational effort.Various numerical experiments are presented to demonstrate the conservation law of mass and energy,the optimal rates of convergence,and the blow-up phenomenon.
On 'conflict of conservation laws in cyclotron radiation'
International Nuclear Information System (INIS)
DasGupta, P.
1984-01-01
It is shown that conservation of energy, linear momentum and angular momentum are all compatible with each other in the case of an electron undergoing cyclotron emission in a uniform and constant magnetic field. The flaw in the argument of previous workers claiming the incompatibility of the conservation principles is also pointed out. (author)
EL-Kalaawy, O. H.
2018-02-01
We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.
Lehoucq, R B; Sears, Mark P
2011-09-01
The purpose of this paper is to derive the energy and momentum conservation laws of the peridynamic nonlocal continuum theory using the principles of classical statistical mechanics. The peridynamic laws allow the consideration of discontinuous motion, or deformation, by relying on integral operators. These operators sum forces and power expenditures separated by a finite distance and so represent nonlocal interaction. The integral operators replace the differential divergence operators conventionally used, thereby obviating special treatment at points of discontinuity. The derivation presented employs a general multibody interatomic potential, avoiding the standard assumption of a pairwise decomposition. The integral operators are also expressed in terms of a stress tensor and heat flux vector under the assumption that these fields are differentiable, demonstrating that the classical continuum energy and momentum conservation laws are consequences of the more general peridynamic laws. An important conclusion is that nonlocal interaction is intrinsic to continuum conservation laws when derived using the principles of statistical mechanics.
The Conservation Status of Eagles in South African Law | Knobel ...
African Journals Online (AJOL)
... and succumb); habitat loss; mortality induced by dangerous structures; and disturbance. ... prey species that are not Critically Endangered, Endangered, or Vulnerable, ... Better application of the existing laws could be achieved by improving ...
Weak asymptotic solution for a non-strictly hyperbolic system of conservation laws-II
Directory of Open Access Journals (Sweden)
Manas Ranjan Sahoo
2016-04-01
Full Text Available In this article we introduce a concept of entropy weak asymptotic solution for a system of conservation laws and construct the same for a prolonged system of conservation laws which is highly non-strictly hyperbolic. This is first done for Riemann type initial data by introducing $\\delta,\\delta',\\delta''$ waves along a discontinuity curve and then for general initial data by piecing together the Riemann solutions.
Tendril perversion-a physical implication of the topological conservation law
International Nuclear Information System (INIS)
Pieranski, Piotr; Baranska, Justyna; Skjeltorp, Arne
2004-01-01
Tendril perversion-a phenomenon ruled by the topological conservation law-is presented. A contemporary, quantitative analysis of the phenomenon is confronted with its qualitative, intuitive analysis carried out by Charles Darwin. The linking number, twist and writhe are defined. The topological conservation law is introduced. The Gauss formula for calculating the linking number and the Calugareanu formula for calculating writhe are derived and discussed using physical arguments
Tendril perversion-a physical implication of the topological conservation law
Energy Technology Data Exchange (ETDEWEB)
Pieranski, Piotr [Laboratory of Computational Physics and Semiconductors, Poznan University of Technology, Nieszawska 13A, 60 965 Poznan (Poland); Baranska, Justyna [Laboratory of Computational Physics and Semiconductors, Poznan University of Technology, Nieszawska 13A, 60 965 Poznan (Poland); Skjeltorp, Arne [Institute for Energy Technology, Kjeller (Norway)
2004-09-10
Tendril perversion-a phenomenon ruled by the topological conservation law-is presented. A contemporary, quantitative analysis of the phenomenon is confronted with its qualitative, intuitive analysis carried out by Charles Darwin. The linking number, twist and writhe are defined. The topological conservation law is introduced. The Gauss formula for calculating the linking number and the Calugareanu formula for calculating writhe are derived and discussed using physical arguments.
Bianchi-Baecklund transformations, conservation laws, and linearization of various field theories
International Nuclear Information System (INIS)
Chau Wang, L.L.
1980-01-01
The discussion includes: the Sine-Gordon equation, parametric Bianchi-Baecklund transformations and the derivation of local conservation laws; chiral fields, parametric Bianchi-Baecklund transformations, local and non-local conservation laws, and linearization; super chiral fields, a parallel development similar to the chiral field; and self-dual Yang-Mills fields in 4-dimensional Euclidean space; loop-cpace chiral equations, parallel development but with subtlety
the conservation status of eagles in south african law
African Journals Online (AJOL)
10332324
The conservation threats to eagles in South Africa may be classified into two broad ..... 3.1.6 The Convention on Persistent Organic Pollutants (2001) (the ...... South Africa has highly advanced biodiversity legislation in place, but merely having.
Nearly auto-parallel maps and conservation laws on curved spaces
International Nuclear Information System (INIS)
Vacaru, S.
1994-01-01
The theory of nearly auto-parallel maps (na-maps, generalization of conformal transforms) of Einstein-Cartan spaces is formulated. The transformation laws of geometrical objects and gravitational and matter field equations under superpositions of na-maps are considered. A special attention is paid to the very important problem of definition of conservation laws for gravitational fields. (Author)
Simple connection between conservation laws in the Korteweg--de Vriesand sine-Gordon systems
International Nuclear Information System (INIS)
Chodos, A.
1980-01-01
An infinite sequence of conserved quantities follows from the Lax representation in both the Korteweg--de Vries and sine-Gordon systems. We show that these two sequences are related by a simple substitution. In an appendix, two different methods of deriving conservation laws from the Lax representation are presented
International Nuclear Information System (INIS)
Nordbrock, U.; Kienzler, R.
2007-01-01
Conservation laws are a recognized tool in physical and engineering sciences. The classical procedure to construct conservation laws is to apply Noether's Theorem. It requires the existence of a Lagrange-function for the system under consideration. Two unknown sets of functions have to be found. A broader class of such laws is obtainable, if Noether's Theorem is used together with the Bessel-Hagen extension, raising the number of sets of unknown functions to three. By using the recently developed Neutral-Action Method, the same conservation laws can be obtained by calculating only one unknown set of functions. Moreover the Neutral Action Method can also be applied in the absence of a Lagrangian, since only the governing differential equations are required for this procedure. In the paper, an application of this method to the Schroedinger equation is presented. (authors)
Metric theories of gravity perturbation and conservation laws
Petrov, Alexander N; Lompay, Robert R; Tekin, Bayram
2017-01-01
By focusing on the most popular pertubation methods this monograph aspires to give a unified overview and comparison of ways to construct conserved quantities and study symmetries in general relativity. The main emphasis lies on the field-theoretical formulation of pertubations, the canonical Noether approach and the Belinfante procedure of symmetrisation.
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-04-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.
Scaling and scale invariance of conservation laws in Reynolds transport theorem framework
Haltas, Ismail; Ulusoy, Suleyman
2015-07-01
Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.
On conservation laws for models in discrete, noncommutative and fractional differential calculus
International Nuclear Information System (INIS)
Klimek, M.
2001-01-01
We present the general method of derivation the explicit form of conserved currents for equations built within the framework of discrete, noncommutative or fractional differential calculus. The procedure applies to linear models with variable coefficients including also nonlinear potential part. As an example an equation on quantum plane, nonlinear Toda lattice model and homogeneous equation of fractional diffusion in 1+1 dimensions are studied
Fu, Yangyang; Parsey, Guy M.; Verboncoeur, John P.; Christlieb, Andrew J.
2017-11-01
In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.
A nonlinear CDM based damage growth law for ductile materials
Gautam, Abhinav; Priya Ajit, K.; Sarkar, Prabir Kumar
2018-02-01
A nonlinear ductile damage growth criterion is proposed based on continuum damage mechanics (CDM) approach. The model is derived in the framework of thermodynamically consistent CDM assuming damage to be isotropic. In this study, the damage dissipation potential is also derived to be a function of varying strain hardening exponent in addition to damage strain energy release rate density. Uniaxial tensile tests and load-unload-cyclic tensile tests for AISI 1020 steel, AISI 1030 steel and Al 2024 aluminum alloy are considered for the determination of their respective damage variable D and other parameters required for the model(s). The experimental results are very closely predicted, with a deviation of 0%-3%, by the proposed model for each of the materials. The model is also tested with predictabilities of damage growth by other models in the literature. Present model detects the state of damage quantitatively at any level of plastic strain and uses simpler material tests to find the parameters of the model. So, it should be useful in metal forming industries to assess the damage growth for the desired deformation level a priori. The superiority of the new model is clarified by the deviations in the predictability of test results by other models.
Symmetries and conservation laws in non-Hermitian field theories
Alexandre, Jean; Millington, Peter; Seynaeve, Dries
2017-09-01
Anti-Hermitian mass terms are considered, in addition to Hermitian ones, for P T -symmetric complex-scalar and fermionic field theories. In both cases, the Lagrangian can be written in a manifestly symmetric form in terms of the P T -conjugate variables, allowing for an unambiguous definition of the equations of motion. After discussing the resulting constraints on the consistency of the variational procedure, we show that the invariance of a non-Hermitian Lagrangian under a continuous symmetry transformation does not imply the existence of a corresponding conserved current. Conserved currents exist, but these are associated with transformations under which the Lagrangian is not invariant and which reflect the well-known interpretation of P T -symmetric theories in terms of systems with gain and loss. A formal understanding of this unusual feature of non-Hermitian theories requires a careful treatment of Noether's theorem, and we give specific examples for illustration.
Nonlinear quenches of power-law confining traps in quantum critical systems
International Nuclear Information System (INIS)
Collura, Mario; Karevski, Dragi
2011-01-01
We describe the coherent quantum evolution of a quantum many-body system with a time-dependent power-law confining potential. The amplitude of the inhomogeneous potential is driven in time along a nonlinear ramp which crosses a critical point. Using Kibble-Zurek-like scaling arguments we derive general scaling laws for the density of excitations and energy excess generated during the nonlinear sweep of the confining potential. It is shown that, with respect to the sweeping rate, the densities follow algebraic laws with exponents that depend on the space-time properties of the potential and on the scaling dimensions of the densities. We support our scaling predictions with both analytical and numerical results on the Ising quantum chain with an inhomogeneous transverse field varying in time.
Soft black hole absorption rates as conservation laws
International Nuclear Information System (INIS)
Avery, Steven G.; Schwab, Burkhard UniversityW.
2017-01-01
The absorption rate of low-energy, or soft, electromagnetic radiation by spherically symmetric black holes in arbitrary dimensions is shown to be fixed by conservation of energy and large gauge transformations. We interpret this result as the explicit realization of the Hawking-Perry-Strominger Ward identity for large gauge transformations in the background of a non-evaporating black hole. Along the way we rederive and extend previous analytic results regarding the absorption rate for the minimal scalar and the photon.
Soft black hole absorption rates as conservation laws
Energy Technology Data Exchange (ETDEWEB)
Avery, Steven G. [Brown University, Department of Physics,182 Hope St, Providence, RI, 02912 (United States); Michigan State University, Department of Physics and Astronomy,East Lansing, MI, 48824 (United States); Schwab, Burkhard UniversityW. [Harvard University, Center for Mathematical Science and Applications,1 Oxford St, Cambridge, MA, 02138 (United States)
2017-04-10
The absorption rate of low-energy, or soft, electromagnetic radiation by spherically symmetric black holes in arbitrary dimensions is shown to be fixed by conservation of energy and large gauge transformations. We interpret this result as the explicit realization of the Hawking-Perry-Strominger Ward identity for large gauge transformations in the background of a non-evaporating black hole. Along the way we rederive and extend previous analytic results regarding the absorption rate for the minimal scalar and the photon.
An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws
Borges, Rafael; Carmona, Monique; Costa, Bruno; Don, Wai Sun
2008-03-01
In this article we develop an improved version of the classical fifth-order weighted essentially non-oscillatory finite difference scheme of [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202-228] (WENO-JS) for hyperbolic conservation laws. Through the novel use of a linear combination of the low order smoothness indicators already present in the framework of WENO-JS, a new smoothness indicator of higher order is devised and new non-oscillatory weights are built, providing a new WENO scheme (WENO-Z) with less dissipation and higher resolution than the classical WENO. This new scheme generates solutions that are sharp as the ones of the mapped WENO scheme (WENO-M) of Henrick et al. [A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys. 207 (2005) 542-567], however with a 25% reduction in CPU costs, since no mapping is necessary. We also provide a detailed analysis of the convergence of the WENO-Z scheme at critical points of smooth solutions and show that the solution enhancements of WENO-Z and WENO-M at problems with shocks comes from their ability to assign substantially larger weights to discontinuous stencils than the WENO-JS scheme, not from their superior order of convergence at critical points. Numerical solutions of the linear advection of discontinuous functions and nonlinear hyperbolic conservation laws as the one dimensional Euler equations with Riemann initial value problems, the Mach 3 shock-density wave interaction and the blastwave problems are compared with the ones generated by the WENO-JS and WENO-M schemes. The good performance of the WENO-Z scheme is also demonstrated in the simulation of two dimensional problems as the shock-vortex interaction and a Mach 4.46 Richtmyer-Meshkov Instability (RMI) modeled via the two dimensional Euler equations.
Identifying all moiety conservation laws in genome-scale metabolic networks.
De Martino, Andrea; De Martino, Daniele; Mulet, Roberto; Pagnani, Andrea
2014-01-01
The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.
Identifying all moiety conservation laws in genome-scale metabolic networks.
Directory of Open Access Journals (Sweden)
Andrea De Martino
Full Text Available The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.
Bonito, Andrea
2013-10-03
We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method is shown to be stable independently of the polynomial degree of the space approximation under the standard CFL condition. © 2013 American Mathematical Society.
Analytical Solutions to Nonlinear Conservative Oscillator with Fifth-Order Nonlinearity
DEFF Research Database (Denmark)
Sfahania, M. G.; Ganji, S. S.; Barari, Amin
2010-01-01
This paper describes analytical and numerical methods to analyze the steady state periodic response of an oscillator with symmetric elastic and inertia nonlinearity. A new implementation of the homotopy perturbation method (HPM) and an ancient Chinese method called the max-min approach are presen...
Searching for Conservation Laws in Brain Dynamics—BOLD Flux and Source Imaging
Directory of Open Access Journals (Sweden)
Henning U. Voss
2014-07-01
Full Text Available Blood-oxygen-level-dependent (BOLD imaging is the most important noninvasive tool to map human brain function. It relies on local blood-flow changes controlled by neurovascular coupling effects, usually in response to some cognitive or perceptual task. In this contribution we ask if the spatiotemporal dynamics of the BOLD signal can be modeled by a conservation law. In analogy to the description of physical laws, which often can be derived from some underlying conservation law, identification of conservation laws in the brain could lead to new models for the functional organization of the brain. Our model is independent of the nature of the conservation law, but we discuss possible hints and motivations for conservation laws. For example, globally limited blood supply and local competition between brain regions for blood might restrict the large scale BOLD signal in certain ways that could be observable. One proposed selective pressure for the evolution of such conservation laws is the closed volume of the skull limiting the expansion of brain tissue by increases in blood volume. These ideas are demonstrated on a mental motor imagery fMRI experiment, in which functional brain activation was mapped in a group of volunteers imagining themselves swimming. In order to search for local conservation laws during this complex cognitive process, we derived maps of quantities resulting from spatial interaction of the BOLD amplitudes. Specifically, we mapped fluxes and sources of the BOLD signal, terms that would appear in a description by a continuity equation. Whereas we cannot present final answers with the particular analysis of this particular experiment, some results seem to be non-trivial. For example, we found that during task the group BOLD flux covered more widespread regions than identified by conventional BOLD mapping and was always increasing during task. It is our hope that these results motivate more work towards the search for conservation
Multiplicity fluctuations in a hadron gas with exact conservation laws
International Nuclear Information System (INIS)
Becattini, Francesco; Keraenen, Antti; Ferroni, Lorenzo; Gabbriellini, Tommaso
2005-01-01
The study of fluctuations of particle multiplicities in relativistic heavy-ion reactions has drawn much attention in recent years, because they have been proposed as a probe for underlying dynamics and possible formation of quark-gluon plasma. Thus it is of uttermost importance to describe the baseline of statistical fluctuations in the hadron gas phase in a correct way. We performed a comprehensive study of multiplicity distributions in the full ideal hadron-resonance gas in different ensembles, namely grand canonical, canonical, and microcanonical, by using two different methods: Asymptotic expansions and full Monte Carlo simulations. The method based on asymptotic expansion allows a quick numerical calculation of dispersions in the hadron gas with three conserved charges at the primary hadron level, while the Monte Carlo simulation is suitable for studying the effect of resonance decays. Even though mean multiplicities converge to the same values, major differences in fluctuations for these ensembles persist in the thermodynamic limit, as pointed out in recent studies. We observe that this difference is ultimately related to the nonadditivity of the variances in the ensembles with exact conservation of extensive quantities
Barker, Blake; Jung, Soyeun; Zumbrun, Kevin
2018-03-01
Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability conditions - remains an interesting open problem.
International Nuclear Information System (INIS)
Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2009-01-01
In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+αxx+βx 3 +γx=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+αx q x+βx 2q+1 =0, where α, β, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.
Conservation law for distributed entanglement of formation and quantum discord
International Nuclear Information System (INIS)
Fanchini, Felipe F.; Cornelio, Marcio F.; Oliveira, Marcos C. de; Caldeira, Amir O.
2011-01-01
We present a direct relation, based upon a monogamic principle, between entanglement of formation (EOF) and quantum discord (QD), showing how they are distributed in an arbitrary tripartite pure system. By extending it to a paradigmatic situation of a bipartite system coupled to an environment, we demonstrate that the EOF and the QD obey conservation relation. By means of this relation we show that in the deterministic quantum computer with one pure qubit the protocol has the ability to rearrange the EOF and the QD, which implies that quantum computation can be understood on a different basis as a coherent dynamics where quantum correlations are distributed between the qubits of the computer. Furthermore, for a tripartite mixed state we show that the balance between distributed EOF and QD results in a stronger version of the strong subadditivity of entropy.
Conservation Laws for Gyrokinetic Equations for Large Perturbations and Flows
Dimits, Andris
2017-10-01
Gyrokinetic theory has proved to be very useful for the understanding of magnetized plasmas, both to simplify analytical treatments and as a basis for efficient numerical simulations. Gyrokinetic theories were previously developed in two extended orderings that are applicable to large fluctuations and flows as may arise in the tokamak edge and scrapeoff layer. In the present work, we cast the resulting equations in a field-theoretical variational form, and derive, up to second order in the respective orderings, the associated global and local energy and (linear and toroidal) momentum conservation relations that result from Noether's theorem. The consequences of these for the various possible choices of numerical discretization used in gyrokinetic simulations are considered. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and supported by the U.S. DOE, OFES.
International Nuclear Information System (INIS)
Havas, P.
1978-01-01
The various classical or quantum mechanical equations describing a system of N particles with central two-body interactions are invariant under the 10 transformations of the Galilei group, and for interaction potential inversely proportional to the squares of the particle separations also under two further transformations. From the invariance of the corresponding classical and quantum mechanical variation principles under this 12-parameter conformal extension of the Galilei group, the 'Jacobi-Schroedinger group', the 12 well-known conservation laws of Newtonian dynamics as well as 12 local conservation laws implied by the Schroedinger equation are obtained via Noether's theorem. Under appropriate conditions on the wave functions, these local laws yield 12 global conservation laws which are analogous to the Newtonian ones. The Hamiltonian-Jacobi equation implies a classical equation differing from the Schroedinger equation only by a potential-like term involving the Van Vleck determinant, from which 12 local balance equations and the corresponding global equations are obtained, which under certain conditions reduce the true conservation laws. (Auth.)
On double reductions from symmetries and conservation laws for a damped Boussinesq equation
International Nuclear Information System (INIS)
Gandarias, M.L.; Rosa, M.
2016-01-01
In this work, we study a Boussinesq equation with a strong damping term from the point of view of the Lie theory. We derive the classical Lie symmetries admitted by the equation as well as the reduced ordinary differential equations. Some nontrivial conservation laws are derived by using the multipliers method. Taking into account the relationship between symmetries and conservation laws and applying the double reduction method, we obtain a direct reduction of order of the ordinary differential equations and in particular a kink solution.
Directory of Open Access Journals (Sweden)
Letlhogonolo Daddy Moleleki
2014-01-01
Full Text Available We analyze the (3+1-dimensional Boussinesq equation, which has applications in fluid mechanics. We find exact solutions of the (3+1-dimensional Boussinesq equation by utilizing the Lie symmetry method along with the simplest equation method. The solutions obtained are traveling wave solutions. Moreover, we construct the conservation laws of the (3+1-dimensional Boussinesq equation using the new conservation theorem, which is due to Ibragimov.
Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws
Hundsdorfer, Willem
2014-08-27
An error analysis is presented for explicit partitioned Runge–Kutta methods and multirate methods applied to conservation laws. The interfaces, across which different methods or time steps are used, lead to order reduction of the schemes. Along with cell-based decompositions, also flux-based decompositions are studied. In the latter case mass conservation is guaranteed, but it will be seen that the accuracy may deteriorate.
On the checking of electric charge conservation law and the pauli principle
International Nuclear Information System (INIS)
Okun', L.B.
1989-01-01
This is a short critical review of the attempts to check the accuracy with which are carried out in experiment the electric charge conservation law and the Pauli principle. The absence of the inwardly noncontradictory phenomenological theory is emphasized, which could describe the charge conservation and/or the Pauli principle violation. Under charge nonconservation longitudinal photons are of a principal importance. New suggestions concerning the principle Puli checking are discussed
Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws
Hundsdorfer, Willem; Ketcheson, David I.; Savostianov, Igor
2014-01-01
An error analysis is presented for explicit partitioned Runge–Kutta methods and multirate methods applied to conservation laws. The interfaces, across which different methods or time steps are used, lead to order reduction of the schemes. Along with cell-based decompositions, also flux-based decompositions are studied. In the latter case mass conservation is guaranteed, but it will be seen that the accuracy may deteriorate.
Conservation laws, vertex corrections, and screening in Raman spectroscopy
Maiti, Saurabh; Chubukov, Andrey V.; Hirschfeld, P. J.
2017-07-01
We present a microscopic theory for the Raman response of a clean multiband superconductor, with emphasis on the effects of vertex corrections and long-range Coulomb interaction. The measured Raman intensity, R (Ω ) , is proportional to the imaginary part of the fully renormalized particle-hole correlator with Raman form factors γ (k ⃗) . In a BCS superconductor, a bare Raman bubble is nonzero for any γ (k ⃗) and diverges at Ω =2 Δmax , where Δmax is the largest gap along the Fermi surface. However, for γ (k ⃗) = constant, the full R (Ω ) is expected to vanish due to particle number conservation. It was sometimes stated that this vanishing is due to the singular screening by long-range Coulomb interaction. In our general approach, we show diagrammatically that this vanishing actually holds due to vertex corrections from the same short-range interaction that gives rise to superconductivity. We further argue that long-range Coulomb interaction does not affect the Raman signal for any γ (k ⃗) . We argue that vertex corrections eliminate the divergence at 2 Δmax . We also argue that vertex corrections give rise to sharp peaks in R (Ω ) at Ω <2 Δmin (the minimum gap along the Fermi surface), when Ω coincides with the frequency of one of the collective modes in a superconductor, e.g., Leggett and Bardasis-Schrieffer modes in the particle-particle channel, and an excitonic mode in the particle-hole channel.
Probing Fundamental Symmetries: Questioning the Very Basics of Conservation Laws
Mohanmurthy, Prajwal
2017-09-01
Is the Lorentz-CPT symmetry, a core component of the standard model, valid? To what extent are the CP and T symmetries broken in the strong sector? What are we doing about the existing strong-CP problem? Do neutrons oscillate (like neutral kaons) or break the (Baryon - Lepton) number conservation? In this presentation, we will go over some of the experiments probing fundamental symmetries trying to answer the above questions. I will, very briefly, introduce the CompEx & nEx experiments probing the Lorentz symmetry in the electromagnetic (EM) sector, the nEDM experiment probing CP and T symmetries in the strong sector, NStar experiment searching for neutron oscillations, MASS & BDX experiments searching for axion like particles & dark matter. We will then briefly touch upon the highlights of these experiments and focus on the path we are taking towards answering those questions while also connecting the dots [experiments] with CEU. PM would like to acknowledge support from SERI SNSF Grant 2015.0594.
Probing the design of grand unification through conservation laws
International Nuclear Information System (INIS)
Pati, J.C.
1981-01-01
The purpose of this talk is to note a few special consequences of gauging ''maximal'' quark-lepton symmetries such as SO(16), which is the maximal symmetry for a single family of fermions. Within these symmetries, violations for B, L and F are spontaneous rather than explicit. Furthermore these symmetries as a rule permit intermediate mass scales approx.(10 3 -10 6 GeV) and (10 8 -10 11 GeV) filling the so-called grand plateau between 10 2 and 10 15 GeV. It has been shown in earlier papers that within these symmetries proton may decay via four alternative models: i.e. proton→one or three leptons or antileptons plus mesons; some of which can coexist. It is now observed that even n-n-bar oscillations can coexist with (B-L) conserving proton-decays of the type p→e + π 0 etc. without posing any conflict with the cosmological generation of baryon-excess; both these processes can possess measurable strengths so as to be amenable to forthcoming searches. Search for alternative decay modes of proton and n-n-bar oscillations, even as processes in second and third generation experiments, would provide valuable information on the question of intermediate mass-scales and thereby on the design of grand unification
Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere
Straus, D. M.
1983-01-01
The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eliassen-Palm flux are also discussed.
Guermond, Jean-Luc; Nazarov, Murtazo; Popov, Bojan; Yang, Yong
2014-01-01
© 2014 Society for Industrial and Applied Mathematics. This paper proposes an explicit, (at least) second-order, maximum principle satisfying, Lagrange finite element method for solving nonlinear scalar conservation equations. The technique is based on a new viscous bilinear form introduced in Guermond and Nazarov [Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 198-213], a high-order entropy viscosity method, and the Boris-Book-Zalesak flux correction technique. The algorithm works for arbitrary meshes in any space dimension and for all Lipschitz fluxes. The formal second-order accuracy of the method and its convergence properties are tested on a series of linear and nonlinear benchmark problems.
Predominant natural red-shift of quasi-conservative nonlinear systems
International Nuclear Information System (INIS)
Pugno, Nicola Maria; Carpinteri, Alberto; Delsanto, Pier Paolo
2009-01-01
Recent discoveries of nonclassical nonlinear phenomena are attracting a large interest in the scientific community, especially in material science. In spite of this, the natural frequency shift related to the appearance of such phenomena remains partially unclear. In this paper, we apply the general and only recently developed Interaction Box Formalism for investigating if a universality in the natural frequency shift of quasi-conservative nonlinear systems exists. Such universality clearly emerges as a rupture in the symmetry, usually leading to a red-shift, quantifiable as a function of the higher- and sub-harmonic generation.
A general nonlinear evolution equation for irreversible conservative approach to stable equilibrium
International Nuclear Information System (INIS)
Beretta, G.P.
1986-01-01
This paper addresses a mathematical problem relevant to the question of nonequilibrium and irreversibility, namely, that of ''designing'' a general evolution equation capable of describing irreversible but conservative relaxtion towards equilibrium. The objective is to present an interesting mathematical solution to this design problem, namely, a new nonlinear evolution equation that satisfies a set of very stringent relevant requirements. Three different frameworks are defined from which the new equation could be adopted, with entirely different interpretations. Some useful well-known mathematics involving Gram determinants are presented and a nonlinear evolution equation is given which meets the stringent design specifications
Symmetry and conservation law structures of some anti-self-dual ...
Indian Academy of Sciences (India)
2016-09-28
Sep 28, 2016 ... (2016) 87: 64 c Indian Academy of Sciences. DOI 10.1007/s12043-016-1258-y. Symmetry and conservation law structures of some anti-self-dual (ASD) manifolds. J BASINGWA1, A H KARA1,∗, ASHFAQUE H BOKHARI2, R A MOUSA2 and F D ZAMAN2. 1School of Mathematics, University of the ...
Conservation laws for a system of two point masses in general relativity
International Nuclear Information System (INIS)
Damour, Thibaut; Deruelle, Nathalie
1981-01-01
We study the symmetries of the generalized lagrangian of two point masses, in the post-post newtonian approximation of General Relativity. We deduce, via Noether's theorem, conservation laws for energy, linear and angular momentum, as well as a generalisation of the center-of-mass theorem [fr
Conservation laws in disordered electron systems: Thermodynamic limit and configurational averaging
Czech Academy of Sciences Publication Activity Database
Janiš, Václav; Kolorenč, Jindřich
2004-01-01
Roč. 241, č. 9 (2004), s. 2032-2042 ISSN 0370-1972 R&D Projects: GA ČR GA202/04/1055 Institutional research plan: CEZ:AV0Z1010914 Keywords : conservation laws * noninteracting disordered electrons * diffusion pole Subject RIV: BE - Theoretical Physics Impact factor: 0.982, year: 2004
From conservation laws to port-Hamiltonian representations of distributed-parameter systems
Maschke, B.M.; van der Schaft, Arjan; Piztek, P.
Abstract: In this paper it is shown how the port-Hamiltonian formulation of distributed-parameter systems is closely related to the general thermodynamic framework of systems of conservation laws and closure equations. The situation turns out to be similar to the lumped-parameter case where the
Conservation laws and self-consistent sources for a super-CKdV equation hierarchy
International Nuclear Information System (INIS)
Li Li
2011-01-01
From the super-matrix Lie algebras, we consider a super-extension of the CKdV equation hierarchy in the present Letter, and propose the super-CKdV hierarchy with self-consistent sources. Furthermore, we establish the infinitely many conservation laws for the integrable super-CKdV hierarchy.
Conservation laws in the SLsub(2,C) gauge theory of gravitation
International Nuclear Information System (INIS)
Nissani, N.
1983-01-01
A one-parameter family of new Lagrangian densities for the SLsub(2,C) gauge theory of gravitation is proposed. The relation between the laws of conservation and the SLsub(2,C) symmetry of general relativity through the Noether theorem is investigated
On the coupling of systems of hyperbolic conservation laws with ordinary differential equations
International Nuclear Information System (INIS)
Borsche, Raul; Colombo, Rinaldo M; Garavello, Mauro
2010-01-01
Motivated by applications to the piston problem, to a manhole model, to blood flow and to supply chain dynamics, this paper deals with a system of conservation laws coupled with a system of ordinary differential equations. The former is defined on a domain with boundary and the coupling is provided by the boundary condition. For each of the examples considered, numerical integrations are provided
On a kind of Noether symmetries and conservation laws in k-cosymplectic field theory
International Nuclear Information System (INIS)
Marrero, Juan Carlos; Roman-Roy, Narciso; Salgado, Modesto; Vilarino, Silvia
2011-01-01
This paper is devoted to studying symmetries of certain kinds of k-cosymplectic Hamiltonian systems in first-order classical field theories. Thus, we introduce a particular class of symmetries and study the problem of associating conservation laws to them by means of a suitable generalization of Noether's theorem.
Symmetry and conservation law structures of some anti-self-dual
Indian Academy of Sciences (India)
The ASD systems and manifolds have been studied via a number of approaches and their origins have been well documented. In this paper, we look at the symmetry structures, variational symmetries and related concepts around the associated conservation laws for a number of such manifolds.
Generalized internal long wave equations: construction, hamiltonian structure and conservation laws
International Nuclear Information System (INIS)
Lebedev, D.R.
1982-01-01
Some aspects of the theory of the internal long-wave equations (ILW) are considered. A general class of the ILW type equations is constructed by means of the Zakharov-Shabat ''dressing'' method. Hamiltonian structure and infinite numbers of conservation laws are introduced. The considered equations are shown to be Hamiltonian in the so-called second Hamiltonian structu
Sensitivity analysis of 1−d steady forced scalar conservation laws
Czech Academy of Sciences Publication Activity Database
Ersoy, M.; Feireisl, Eduard; Zuazua, E.
2013-01-01
Roč. 254, č. 9 (2013), s. 3817-3834 ISSN 0022-0396 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : sensitivity * scalar conservation law * control Subject RIV: BA - General Mathematics Impact factor: 1.570, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022039613000892#
Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law
Wei Cai; Yanyan Zhang
2016-01-01
We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.
Exact solutions for a discrete unidimensional Boltzmann model satisfying all conservation laws
International Nuclear Information System (INIS)
Cornille, H.
1989-01-01
We consider a four-velocity discrete and unidimensional Boltzmann model. The mass, momentum and energy conservation laws being satisfied we can define a temperature. We report the exact positive solutions which have been found: periodic in the space and propagating or not when the time is growing, shock waves similarity solutions and (1 + 1)-dimensional solutions [fr
Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces
Schaft, A.J. van der
1983-01-01
A system theoretic framework is given for the description of Hamiltonian systems with external forces and partial observations of the state. It is shown how symmetries and conservation laws can be defined within this framework. A generalization of Noether's theorem is obtained. Finally a precise
Lax pairs and conservation laws for two differential-difference systems
International Nuclear Information System (INIS)
Li Chunxia
2003-01-01
A coupled extended Lotka-Volterra lattice and a special Toda lattice are derived from the existing bilinear equations. Starting from the corresponding bilinear Baecklund transformation, Lax pairs for these two differential-difference systems are obtained. Furthermore, an infinite number of conservation laws for the differential-difference equations are deduced from the Lax pairs in a systematic way
Conservation laws for two (2 + 1)-dimensional differential-difference systems
International Nuclear Information System (INIS)
Yu Guofu; Tam, H.-W.
2006-01-01
Two integrable differential-difference equations are considered. One is derived from the discrete BKP equation and the other is a symmetric (2 + 1)-dimensional Lotka-Volterra equation. An infinite number of conservation laws for the two differential-difference equations are deduced
Conservation laws and self-consistent sources for a super-CKdV equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Li Li, E-mail: li07099@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2011-03-14
From the super-matrix Lie algebras, we consider a super-extension of the CKdV equation hierarchy in the present Letter, and propose the super-CKdV hierarchy with self-consistent sources. Furthermore, we establish the infinitely many conservation laws for the integrable super-CKdV hierarchy.
International Nuclear Information System (INIS)
Alexander, P.
1993-01-01
A hydromagnetic equation system for the interplanetary collisionless solar wind is used to derive a set of conservation laws for that medium. It is found that every equation of the original system, including the closure relation, is related to one conservation law. The set that has been derived does not only include the traditional laws, but also a new one for the magnetic moment of the electrons. The conservation set is then used to obtain the space constants for the solar coronal expansion. The new law yields a constant that has not been predicted by other models
Background Killing vectors and conservation laws in Rosen's bimetric theories of gravitation
International Nuclear Information System (INIS)
Israelit, M.
1979-01-01
The problem of global energy, linear momentum, and angular momentum in Rosen's bimetric theories of gravitation is considered from the point of view of motions of the background space-time. It turns out that by means of background Killing vectors global mechanical integrals for matter and field can be defined in a correct manner. For the flat-background bimetric theory conditions are obtained which have been imposed on the algebraic structure of the matter tensor Tsub(μ)sup(ν) in order to get global mechanical conservation laws. For bimetric gravitation theories based on a cosmological (nonflat) background the set of Killing vectors is found. For these theories the obtained restrictions on the algebraic structure of Tsub(μ)sup(ν) lead to global generation laws (instead of conservation laws in the flat-background theory) for mechanical quantities. In particular cases the generation effect vanishes and then conservation laws exist. By means of the method developed in this paper, Rosen's homogeneous isotropic universe in the framework of the cosmological-background bimetric theory with k = 1 is considered. It turns out that such a universe does not generate globally, but will generate locally. The global energy of this universe is found to be zero. (author)
Kleinstein, G. G.; Gunzburger, M. D.
1976-01-01
An integral conservation law for wave numbers is considered. In order to test the validity of the proposed conservation law, a complete solution for the reflection and transmission of an acoustic wave impinging normally on a material interface moving at a constant speed is derived. The agreement between the frequency condition thus deduced from the dynamic equations of motion and the frequency condition derived from the jump condition associated with the integral equation supports the proposed law as a true conservation law. Additional comparisons such as amplitude discontinuities and Snells' law in a moving media further confirm the stated proposition. Results are stated concerning frequency and wave number relations across a shock front as predicted by the proposed conservation law.
Nonlinear and linear wave equations for propagation in media with frequency power law losses
Szabo, Thomas L.
2003-10-01
The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.
Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.
2018-06-01
A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.
Conservative fourth-order time integration of non-linear dynamic systems
DEFF Research Database (Denmark)
Krenk, Steen
2015-01-01
An energy conserving time integration algorithm with fourth-order accuracy is developed for dynamic systems with nonlinear stiffness. The discrete formulation is derived by integrating the differential state-space equations of motion over the integration time increment, and then evaluating...... the resulting time integrals of the inertia and stiffness terms via integration by parts. This process introduces the time derivatives of the state space variables, and these are then substituted from the original state-space differential equations. The resulting discrete form of the state-space equations...... is a direct fourth-order accurate representation of the original differential equations. This fourth-order form is energy conserving for systems with force potential in the form of a quartic polynomial in the displacement components. Energy conservation for a force potential of general form is obtained...
On 2X2 systems of conservation laws with fluxes that are entropies
Directory of Open Access Journals (Sweden)
Michael Junk
2003-03-01
Full Text Available In this article, we study systems of conservation laws with two dependent and two independent variables which have the property that the fluxes are entropies. Several characterizations of such flux functions are presented. It turns out, that the corresponding systems automatically possess a large class of additional entropies, they are closely related to a kinetic equation, and, in the case of strict hyperbolicity, they can be decoupled into two independent Burgers' equations. The isentropic Euler equations with zero or cubic pressure laws are the most prominent examples of such systems, but other examples are also presented.
Dynamic bounds for power and efficiency of non-ideal energy converters under nonlinear transfer laws
International Nuclear Information System (INIS)
Sieniutycz, Stanislaw
2009-01-01
We present a thermodynamic approach to simulation and modeling of nonlinear energy converters, in particular radiation engines. Novel results are obtained especially for dynamical engines when the temperature of the propelling medium decreases in time due to a continual decrease of the medium's internal energy caused by the power production. Basic thermodynamic principles determine the converter's efficiency and work limits in terms of the entropy production. The real work is a cumulative effect obtained in a system of a resource fluid, a sequence of engines, and an infinite bath. Nonlinear modeling involves dynamic optimization in which the classical expression for efficiency at maximum power is generalized to endoirreversible machines and nonlinear transfer laws. The primary result is a finite-rate generalization of the classical, reversible work potential (exergy). The generalized work function depends on thermal coordinates and a dissipation index, h, i.e. a Hamiltonian of the minimum entropy production problem. This generalized work function implies stronger bounds on work delivered or supplied than the reversible work potential. The role of the nonlinear analyses and dynamic optimization is shown especially for radiation engines. As an example of the kinetic work limit, generalized exergy of radiation fluid is estimated in terms of finite rates, quantified by the Hamiltonian h
Rarefaction and shock waves for multi-dimensional hyperbolic conservation laws
International Nuclear Information System (INIS)
Dening, Li
1991-01-01
In this paper, the author wants to show the local existence of a solution of combination of shock and rarefaction waves for the multi-dimensional hyperbolic system of conservation laws. The typical example he has in mind is the Euler equations for compressible fluid. More generally, he studies the hyperbolic system of conservation laws ∂ t F 0 (u) + Σ j=1 n ∂ x j F j (u)=0 where u=(u 1 ....,u m ) and F j (u), j=0,...,n are m-dimensional vector-valued functions. He'll impose some conditions in the following on the systems (1.2). All these conditions are satisfied by the Euler equations
International Nuclear Information System (INIS)
Zhao Gang-Ling; Chen Li-Qun; Fu Jing-Li; Hong Fang-Yu
2013-01-01
In this paper, Noether symmetry and Mei symmetry of discrete nonholonomic dynamical systems with regular and the irregular lattices are investigated. Firstly, the equations of motion of discrete nonholonomic systems are introduced for regular and irregular lattices. Secondly, for cases of the two lattices, based on the invariance of the Hamiltomian functional under the infinitesimal transformation of time and generalized coordinates, we present the quasi-extremal equation, the discrete analogues of Noether identity, Noether theorems, and the Noether conservation laws of the systems. Thirdly, in cases of the two lattices, we study the Mei symmetry in which we give the discrete analogues of the criterion, the theorem, and the conservative laws of Mei symmetry for the systems. Finally, an example is discussed for the application of the results
On the application of subcell resolution to conservation laws with stiff source terms
International Nuclear Information System (INIS)
Chang, S.
1989-11-01
LeVeque and Yee recently investigated a one-dimensional scalar conservation law with stiff source terms modeling the reacting flow problems and discovered that for the very stiff case most of the current finite difference methods developed for non-reacting flows would produce wrong solutions when there is a propagating discontinuity. A numerical scheme, essentially nonoscillatory/subcell resolution - characteristic direction (ENO/SRCD), is proposed for solving conservation laws with stiff source terms. This scheme is a modification of Harten's ENO scheme with subcell resolution, ENO/SR. The locations of the discontinuities and the characteristic directions are essential in the design. Strang's time-splitting method is used and time evolutions are done by advancing along the characteristics. Numerical experiment using this scheme shows excellent results on the model problem of LeVeque and Yee. Comparisons of the results of ENO, ENO/SR, and ENO/SRCD are also presented
Rudra, Shubhobrata; Maitra, Madhubanti
2017-01-01
This book presents a novel, generalized approach to the design of nonlinear state feedback control laws for a large class of underactuated mechanical systems based on application of the block backstepping method. The control law proposed here is robust against the effects of model uncertainty in dynamic and steady-state performance and addresses the issue of asymptotic stabilization for the class of underactuated mechanical systems. An underactuated system is defined as one for which the dimension of space spanned by the configuration vector is greater than that of the space spanned by the control variables. Control problems concerning underactuated systems currently represent an active field of research due to their broad range of applications in robotics, aerospace, and marine contexts. The book derives a generalized theory of block backstepping control design for underactuated mechanical systems, and examines several case studies that cover interesting examples of underactuated mechanical systems. The math...
International Nuclear Information System (INIS)
Haug, E.; Rouvray, A.L. de; Nguyen, Q.S.
1977-01-01
This study proposes a general nonlinear algorithm stability criterion; it introduces a nonlinear algorithm, easily implemented in existing incremental/iterative codes, and it applies the new scheme beneficially to problems of linear elastic dynamic snap buckling. Based on the concept of energy conservation, the paper outlines an algorithm which degenerates into the trapezoidal rule, if applied to linear systems. The new algorithm conserves energy in systems having elastic potentials up to the fourth order in the displacements. This is true in the important case of nonlinear total Lagrange formulations where linear elastic material properties are substituted. The scheme is easily implemented in existing incremental-iterative codes with provisions for stiffness reformation and containing the basic Newmark scheme. Numerical analyses of dynamic stability can be dramatically sensitive to amplitude errors, because damping algorithms may mask, and overestimating schemes may numerically trigger, the physical instability. The newly proposed scheme has been applied with larger time steps and less cost to the dynamic snap buckling of simple one and multi degree-of-freedom structures for various initial conditions
Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef
2018-05-01
This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.
Symmetries and conservation laws for a sixth-order Boussinesq equation
International Nuclear Information System (INIS)
Recio, E.; Gandarias, M.L.; Bruzón, M.S.
2016-01-01
This paper considers a generalization depending on an arbitrary function f(u) of a sixth-order Boussinesq equation which arises in shallow water waves theory. Interestingly, this equation admits a Hamiltonian formulation when written as a system. A classification of point symmetries and conservation laws in terms of the function f(u) is presented for both, the generalized Boussinesq equation and the equivalent Hamiltonian system.
Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law
Directory of Open Access Journals (Sweden)
Wei Cai
2016-01-01
Full Text Available We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.
A conservation law, entropy principle and quantization of fractal dimensions in hadron interactions
Czech Academy of Sciences Publication Activity Database
Zborovský, Imrich
2018-01-01
Roč. 33, č. 10 (2018), č. článku 1850057. ISSN 0217-751X R&D Projects: GA MŠk(CZ) LG15052 Institutional support: RVO:61389005 Keywords : Hadron interactions * self-similarity * fractality * conservation laws * quanta Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.597, year: 2016
LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models
Gueuvoghlanian, E. P.
2001-08-01
A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.
Stationarity-conservation laws for fractional differential equations with variable coefficients
Energy Technology Data Exchange (ETDEWEB)
Klimek, Malgorzata [Institute of Mathematics and Computer Science, Technical University of Czestochowa, Czestochowa (Poland)
2002-08-09
In this paper, we study linear fractional differential equations with variable coefficients. It is shown that, by assuming some conditions for the coefficients, the stationarity-conservation laws can be derived. The area where these are valid is restricted by the asymptotic properties of solutions of the respective equation. Applications of the proposed procedure include the fractional Fokker-Planck equation in (1+1)- and (d+1)-dimensional space and the fractional Klein-Kramers equation. (author)
Stationarity-conservation laws for fractional differential equations with variable coefficients
International Nuclear Information System (INIS)
Klimek, Malgorzata
2002-01-01
In this paper, we study linear fractional differential equations with variable coefficients. It is shown that, by assuming some conditions for the coefficients, the stationarity-conservation laws can be derived. The area where these are valid is restricted by the asymptotic properties of solutions of the respective equation. Applications of the proposed procedure include the fractional Fokker-Planck equation in (1+1)- and (d+1)-dimensional space and the fractional Klein-Kramers equation. (author)
Higher conservation laws for ten-dimensional supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Abdalla, E.; Forger, M.; Freiburg Univ.; Jacques, M.
1988-01-01
It is shown that ten-dimensional supersymmetric Yang-Mills theories are integrable systems, in the (weak) sense of admitting a (superspace) Lax representation for their equations of motion. This is achieved by means of an explicit proof that the equations of motion are not only a consequence of but in fact fully equivalent to the superspace constraint F αβ =0. Moreover, a procedure for deriving infinite series of non-local conservation laws is outlined. (orig.)
International Nuclear Information System (INIS)
Anykeyev, V.B.; Zhigunov, V.P.; Spiridonov, A.A.
1981-01-01
Special choice of parameters for minimization is offered in the problem of improving estimates for particle momenta in the vertex of the event with the use of 4-momentum conservation law. This choice permits to use any unconditional minimization method instead of that of Lagrange multipliers. The above method is used when analysing the data on the K - +p→n + anti k 0 +π 0 reaction [ru
International Nuclear Information System (INIS)
Amitava Choudhuri; Subrata Ghosh; Talukdar, B.
2011-01-01
We identify two alternative Lagrangian representations for the damped harmonic oscillator characterised by a frictional coefficient γ. The first one is explicitly time independent while the second one involves time parameter explicitly. With separate attention to both Lagrangians we make use of the Noether theorem to compute the variational symmetries and conservation laws in order to study how association between them changes as one goes from one representation to the other. In the case of time independent representation squeezing symmetry leads to conservation of angular momentum for γ = 0, while for the time-dependent Lagrangian the same conserved quantity results from rotational invariance. The Lie algebra (g) of the symmetry vectors that leaves the action corresponding to the time-independent Lagrangian invariant is semi-simple. On the other hand, g is only a simple Lie algebra for the action characterised by the time-dependent Lagrangian. (authors)
Balsara, Dinshaw S.; Dumbser, Michael
2015-04-01
Multidimensional Riemann solvers that have internal sub-structure in the strongly-interacting state have been formulated recently (D.S. Balsara (2012, 2014) [5,16]). Any multidimensional Riemann solver operates at the grid vertices and takes as its input all the states from its surrounding elements. It yields as its output an approximation of the strongly interacting state, as well as the numerical fluxes. The multidimensional Riemann problem produces a self-similar strongly-interacting state which is the result of several one-dimensional Riemann problems interacting with each other. To compute this strongly interacting state and its higher order moments we propose the use of a Galerkin-type formulation to compute the strongly interacting state and its higher order moments in terms of similarity variables. The use of substructure in the Riemann problem reduces numerical dissipation and, therefore, allows a better preservation of flow structures, like contact and shear waves. In this second part of a series of papers we describe how this technique is extended to unstructured triangular meshes. All necessary details for a practical computer code implementation are discussed. In particular, we explicitly present all the issues related to computational geometry. Because these Riemann solvers are Multidimensional and have Self-similar strongly-Interacting states that are obtained by Consistency with the conservation law, we call them MuSIC Riemann solvers. (A video introduction to multidimensional Riemann solvers is available on http://www.elsevier.com/xml/linking-roles/text/html". The MuSIC framework is sufficiently general to handle general nonlinear systems of hyperbolic conservation laws in multiple space dimensions. It can also accommodate all self-similar one-dimensional Riemann solvers and subsequently produces a multidimensional version of the same. In this paper we focus on unstructured triangular meshes. As examples of different systems of conservation laws we
A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.
Nicolle, S; Vezin, P; Palierne, J-F
2010-03-22
Biological soft tissues exhibit a strongly nonlinear viscoelastic behaviour. Among parenchymous tissues, kidney and liver remain less studied than brain, and a first goal of this study is to report additional material properties of kidney and liver tissues in oscillatory shear and constant shear rate tests. Results show that the liver tissue is more compliant but more strain hardening than kidney. A wealth of multi-parameter mathematical models has been proposed for describing the mechanical behaviour of soft tissues. A second purpose of this work is to develop a new constitutive law capable of predicting our experimental data in the both linear and nonlinear viscoelastic regime with as few parameters as possible. We propose a nonlinear strain-hardening fractional derivative model in which six parameters allow fitting the viscoelastic behaviour of kidney and liver tissues for strains ranging from 0.01 to 1 and strain rates from 0.0151 s(-1) to 0.7s(-1). Copyright (c) 2009 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Basini, Giuseppe; Capozziello, Salvatore; Longo, Giuseppe
2003-01-01
We propose a new approach in which several paradoxes and shortcomings of modern physics can be solved because conservation laws are always conserved. Directly due to the fact that conservation laws can never be violated, the symmetry of the theory leads to the very general consequence that backward and forward time evolution are both allowed. The generalization of the approach to five dimensions, each one with real physical meaning, leads to the derivation of particle masses as a result of a process of embedding
International Nuclear Information System (INIS)
Jang, T. S.; Kwon, S. H.; Han, S. L.
2009-01-01
A novel procedure is proposed to identify the functional form of nonlinear restoring forces in the nonlinear oscillatory motion of a conservative system. Although the problem of identification has a unique solution, formulation results in a Volterra-type of integral equation of the 'first' kind: the solution lacks stability because the integral equation is the 'first' kind. Thus, the new problem at hand is ill-posed. Inevitable small errors during the identification procedure can make the prediction of nonlinear restoring forces useless. We overcome the difficulty by using a stabilization technique of Landweber's regularization in this study. The capability of the proposed procedure is investigated through numerical examples
Family of two-dimensional Born-Infeld equations and a system of conservation laws
International Nuclear Information System (INIS)
Koiv, M.; Rosenhaus, V.
1979-01-01
Lower-order conserved quantities, the ''currents'', for two-dimensional Lorentz-invariant Born-Infeld equation are considered. The currents are divided into pairs, which contain a class (basic currents) leading to the family equations. The basic currents determine the transformations between the solutions of the Born-Infeld eqution family. The equations belonging to the family are fully hodograph-invariant, partly hodograph-invariant, and effectively linear, i.e. non-linear equations with linear image of hodograph transformation
Quasilocal conservation laws in XXZ spin-1/2 chains: Open, periodic and twisted boundary conditions
Directory of Open Access Journals (Sweden)
Tomaž Prosen
2014-09-01
Full Text Available A continuous family of quasilocal exact conservation laws is constructed in the anisotropic Heisenberg (XXZ spin-1/2 chain for periodic (or twisted boundary conditions and for a set of commensurate anisotropies densely covering the entire easy plane interaction regime. All local conserved operators follow from the standard (Hermitian transfer operator in fundamental representation (with auxiliary spin s=1/2, and are all even with respect to a spin flip operation. However, the quasilocal family is generated by differentiation of a non-Hermitian highest weight transfer operator with respect to a complex auxiliary spin representation parameter s and includes also operators of odd parity. For a finite chain with open boundaries the time derivatives of quasilocal operators are not strictly vanishing but result in operators localized near the boundaries of the chain. We show that a simple modification of the non-Hermitian transfer operator results in exactly conserved, but still quasilocal operators for periodic or generally twisted boundary conditions. As an application, we demonstrate that implementing the new exactly conserved operator family for estimating the high-temperature spin Drude weight results, in the thermodynamic limit, in exactly the same lower bound as for almost conserved family and open boundaries. Under the assumption that the bound is saturating (suggested by agreement with previous thermodynamic Bethe ansatz calculations we propose a simple explicit construction of infinite time averages of local operators such as the spin current.
Theoretical Maxwell's Equations, Gauge Field and Their Universality Based on One Conservation Law
Institute of Scientific and Technical Information of China (English)
Liu Changmao
2005-01-01
The notion of the inner product of vectors is extended to tensors of different orders, which may replace the vector product usually. The essences of the differential and the codifferential forms are pointed out: they represent the tangent surface and the normal surface fluxes of a tensor, respectively. The definitions of the divergence and the curl of a 2D surface flux of a tensor are obtained.Maxwell's equations, namely, the construction law of field, which were usually established based on two conservation laws of electric charge and imaginary magnetic charge, are derived by the author only by using one conservation law ( mass or fluid flux quantity and so on) and the feature of central field ( or its composition). By the feature of central field ( or its composition), the curl of 2D flux is zero. Both universality of gauge field and the difficulty of magnetic monopole theory ( a magnetic monopole has no effect on electric current just like a couple basing no effect on the sum of forces) are presented: magnetic monopole has no the feature of magnet. Finally it is pointed out that the base of relation of mass and energy is already involved in Maxwell's equations.
International Nuclear Information System (INIS)
Polettini, Matteo; Esposito, Massimiliano
2014-01-01
In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks “in a box”, whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s Y between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s Y . We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction
Polettini, Matteo; Esposito, Massimiliano
2014-07-14
In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s(Y) between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s(Y). We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.
Application of He's homotopy perturbation method to conservative truly nonlinear oscillators
International Nuclear Information System (INIS)
Belendez, A.; Belendez, T.; Marquez, A.; Neipp, C.
2008-01-01
We apply He's homotopy perturbation method to find improved approximate solutions to conservative truly nonlinear oscillators. This approach gives us not only a truly periodic solution but also the period of the motion as a function of the amplitude of oscillation. We find that this method works very well for the whole range of parameters in the case of the cubic oscillator, and excellent agreement of the approximate frequencies with the exact one has been demonstrated and discussed. For the second order approximation we have shown that the relative error in the analytical approximate frequency is approximately 0.03% for any parameter values involved. We also compared the analytical approximate solutions and the Fourier series expansion of the exact solution. This has allowed us to compare the coefficients for the different harmonic terms in these solutions. The most significant features of this method are its simplicity and its excellent accuracy for the whole range of oscillation amplitude values and the results reveal that this technique is very effective and convenient for solving conservative truly nonlinear oscillatory systems
Test of post-newtonian conservation laws in the binary system PSR 1913+16
International Nuclear Information System (INIS)
Will, C.M.
1976-01-01
Observations that set upper limits on secular changes in the pulsar period and orbital period in the binary system PSR 1913+16 may provide a test of post-Newtonian conservation laws. According to some metric theories of gravitation, the center of mass of a binary system may be accelerated in the direction of the periastron of the orbit because of a violation of post-Newtonian momentum conservation. In the binary system PSR 1913+16, this effect could produce secular changes in both pulsar and orbital periods (changing overall Doppler shift) as large as two parts in 10 6 per year. The size of the effect is proportional to the sine of the angle of periastron, to the difference in the masses of the components of the binary system, and to the combination of parametrized post-Newtonian parameters α 3 +zeta 2 -zeta/subw/. This combination is zero in any theory that predicts conserved total momentum for isolated systems (including general relativity and Brans-Dicke theory). Although solar-system experiments constrain α 3 and zeta/subw/ to be small, no decent direct limit has been placed on zeta 2 . Other possible sources of secular period changes in PSR 1913+16 are discussed and compared with this effect. It is also shown that a breakdown in the equality of active and passive gravitational masses (violation of ''Newton's third law'') leads only to periodic, unobservable orbital effects in a system like PSR 1913+16
International Nuclear Information System (INIS)
Wang, L.C.
1980-01-01
Baecklund Transformations (BT) and the derivation of local conservation laws are first reviewed in the classic case of the Sine-Gordon equation. The BT, conservation laws (local and nonlocal), and the inverse-scattering formulation are discussed for the chiral and the self-dual Yang-Mills fields. Their possible applications to the loop formulation for the Yang-Mills fields are mentioned. 55 references, 1 figure
Testing the Law of One Price under Nonlinearity for Egg Market of Selected Provinces of Iran
Directory of Open Access Journals (Sweden)
M. Ghahremanzadeh
2016-05-01
Full Text Available Introduction: Regarding to the ever-increasing consumption of egg and consequently enhancement of its production during recent years, consideration to this output's market integration has special importance. Considering the fact that information on market integration may provide specific evidence as to the competitiveness of market, the effectiveness of arbitrage and the efficiency of pricing could be, likewise, useful to guide subsequent interventions aimed at improving the performance of market. In this context, in present study, validity of Law of One Price (LOP will be tested in the egg market and among selected provinces. Materials and Methods: Nonlinearity naturally extracted from local market due to existence of transportation and other transaction costs, so common cointegration test results are not suitable for market integration. In this study, at first, for being sure that series follow nonlinear behavior, Luukkonen et al. (1988 and BDS nonlinearity tests were used. Then for testing Law of One price in the egg market, nonlinear unit root test proposed by Emmanouilides and Fousekis (2012, which is an auxiliary regression for ESTAR model, was used. The data are daily retail prices of egg with the sample period ranging from April 2006 to march 2014 for north-west provinces of Iran including West Azerbaijan, East Azerbaijan, Ardebil, Tehran and Zanjan, which were obtained from State Live Stock Affairs Logistics Incorporated Company. Results and Discussion: Based on the DF-GLS unit root test, the null hypothesis of unit root for egg price differentials was rejected. So, all series of price differentials are stationary. In the next step nonlinearity of price differentials of egg between two provinces was examined. In BDS test, at the beginning, an ARMA model was estimated then the test was carried out to the residual of estimated model with embedding dimension (m 2-8 and the dimensional distance (ε chosen equals to 0.5 and 2 times of
International Nuclear Information System (INIS)
Kita, Takafumi
2009-01-01
Quantum-field-theoretic descriptions of interacting condensed bosons have suffered from the lack of self-consistent approximation schemes satisfying Goldstone's theorem and dynamical conservation laws simultaneously. We present a procedure to construct such approximations systematically by using either an exact relation for the interaction energy or the Hugenholtz-Pines relation to express the thermodynamic potential in a Luttinger-Ward form. Inspection of the self-consistent perturbation expansion up to the third order with respect to the interaction shows that the two relations yield a unique identical result at each order, reproducing the conserving-gapless mean-field theory [T. Kita, J. Phys. Soc. Jpn. 74, 1891 (2005)] as the lowest-order approximation. The uniqueness implies that the series becomes exact when infinite terms are retained. We also derive useful expressions for the entropy and superfluid density in terms of Green's function and a set of real-time dynamical equations to describe thermalization of the condensate.
Equations of motion and conservation laws in a theory of stably stratified turbulence
Energy Technology Data Exchange (ETDEWEB)
L' vov, Victor S; Rudenko, Oleksii [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)], E-mail: oleksii.rudenko@weizmann.ac.il
2008-12-15
This paper is part of an invited talk given at the international conference 'Turbulent Mixing and Beyond'. We consider non-isothermal fluid flows and revise simplifications of basic hydrodynamic equations for such flows, arriving eventually at a generalization of the Oberbeck-Boussinesq approximation valid for arbitrary equation of state including both non-ideal gases as well as liquids. The proposed approach is based on a suggested general definition of potential temperature. Special attention is paid to the energy conservation principle: the proposed approximation exactly preserves the total mechanical energy by approximate equations of motion. It is emphasized explicitly the importance for any turbulent boundary layer model to respect the conservation laws.
A second-order iterative implicit-explicit hybrid scheme for hyperbolic systems of conservation laws
International Nuclear Information System (INIS)
Dai, Wenlong; Woodward, P.R.
1996-01-01
An iterative implicit-explicit hybrid scheme is proposed for hyperbolic systems of conservation laws. Each wave in a system may be implicitly, or explicitly, or partially implicitly and partially explicitly treated depending on its associated Courant number in each numerical cell, and the scheme is able to smoothly switch between implicit and explicit calculations. The scheme is of Godunov-type in both explicit and implicit regimes, is in a strict conservation form, and is accurate to second-order in both space and time for all Courant numbers. The computer code for the scheme is easy to vectorize. Multicolors proposed in this paper may reduce the number of iterations required to reach a converged solution by several orders for a large time step. The feature of the scheme is shown through numerical examples. 38 refs., 12 figs
Discrete conservation laws and the convergence of long time simulations of the mkdv equation
Gorria, C.; Alejo, M. A.; Vega, L.
2013-02-01
Pseudospectral collocation methods and finite difference methods have been used for approximating an important family of soliton like solutions of the mKdV equation. These solutions present a structural instability which make difficult to approximate their evolution in long time intervals with enough accuracy. The standard numerical methods do not guarantee the convergence to the proper solution of the initial value problem and often fail by approaching solutions associated to different initial conditions. In this frame the numerical schemes that preserve the discrete invariants related to some conservation laws of this equation produce better results than the methods which only take care of a high consistency order. Pseudospectral spatial discretization appear as the most robust of the numerical methods, but finite difference schemes are useful in order to analyze the rule played by the conservation of the invariants in the convergence.
ON HAMILTONIAN FORMULATIONS AND CONSERVATION LAWS FOR PLATE THEORIES OF VEKUA-AMOSOV TYPE
Directory of Open Access Journals (Sweden)
Sergey I. Zhavoronok
2017-12-01
Full Text Available Some variants of the generalized Hamiltonian formulation of the plate theory of I. N. Vekua – A. A. Amosov type are presented. The infinite dimensional formulation with one evolution variable, or an “instantaneous” formalism, as well as the de Donder – Weyl one are considered, and their application to the numerical simulation of shell and plate dynamics is briefly discussed. The main conservation laws are formulated for the general plate theory of Nth order, and the possible motion integrals are introduced
Group theoretical construction of two-dimensional models with infinite sets of conservation laws
International Nuclear Information System (INIS)
D'Auria, R.; Regge, T.; Sciuto, S.
1980-01-01
We explicitly construct some classes of field theoretical 2-dimensional models associated with symmetric spaces G/H according to a general scheme proposed in an earlier paper. We treat the SO(n + 1)/SO(n) and SU(n + 1)/U(n) case, giving their relationship with the O(n) sigma-models and the CP(n) models. Moreover, we present a new class of models associated to the SU(n)/SO(n) case. All these models are shown to possess an infinite set of local conservation laws. (orig.)
International Nuclear Information System (INIS)
Wang Ling; Dong Zhongzhou; Liu Xiqiang
2008-01-01
By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.
Local conservation laws and the structure of the many-body localized states.
Serbyn, Maksym; Papić, Z; Abanin, Dmitry A
2013-09-20
We construct a complete set of local integrals of motion that characterize the many-body localized (MBL) phase. Our approach relies on the assumption that local perturbations act locally on the eigenstates in the MBL phase, which is supported by numerical simulations of the random-field XXZ spin chain. We describe the structure of the eigenstates in the MBL phase and discuss the implications of local conservation laws for its nonequilibrium quantum dynamics. We argue that the many-body localization can be used to protect coherence in the system by suppressing relaxation between eigenstates with different local integrals of motion.
Fast sweeping methods for hyperbolic systems of conservation laws at steady state II
Engquist, Björn; Froese, Brittany D.; Tsai, Yen-Hsi Richard
2015-04-01
The idea of using fast sweeping methods for solving stationary systems of conservation laws has previously been proposed for efficiently computing solutions with sharp shocks. We further develop these methods to allow for a more challenging class of problems including problems with sonic points, shocks originating in the interior of the domain, rarefaction waves, and two-dimensional systems. We show that fast sweeping methods can produce higher-order accuracy. Computational results validate the claims of accuracy, sharp shock curves, and optimal computational efficiency.
Conservation laws and radiation in the scale covariant theory of gravitation
International Nuclear Information System (INIS)
Beesham, A.
1988-01-01
The conservation laws for mass, energy, and momentum are derived in the scale covariant theory of gravitation. The entropy problem which exists in the standard Friedmann-Lemaitre-Robertson-Walker models can be solved in the present context. Since the weak and strong energy conditions may be violated, a big bang singularity may be avoided, in contrast to general relativity. Since beta is shown to be constant during the radiation-dominated era, the difficulties in the theory associated with nucleosynthesis are avoided. 10 references
Convergence of a continuous BGK model for initial boundary-value problems for conservation laws
Directory of Open Access Journals (Sweden)
Driss Seghir
2001-11-01
Full Text Available We consider a scalar conservation law in the quarter plane. This equation is approximated in a continuous kinetic Bhatnagar-Gross-Krook (BGK model. The convergence of the model towards the unique entropy solution is established in the space of functions of bounded variation, using kinetic entropy inequalities, without special restriction on the flux nor on the equilibrium problem's data. As an application, we establish the hydrodynamic limit for a $2imes2$ relaxation system with general data. Also we construct a new family of convergent continuous BGK models with simple maxwellians different from the $chi$ models.
Basic conservation laws in the electromagnetic theory of cyclotron radiation: further analysis
International Nuclear Information System (INIS)
Lieu, R.; Leahy, D.A.
1984-01-01
The conflict of basic conservation laws in cyclotron radiation is considered in more general terms, taking into account relativistic effects of the electron. Also investigated are the effects due to the most important approximation in cyclotron theory, viz the omission of radiation back reaction. The conclusions are (i) the disagreement is of a magnitude considerably larger than any errors introduced by the approximation; (ii) the 'degree of conflict' attains its maximum in relativistic velocities, when the energy loss to radiation can approach the total energy of the electron. (author)
Conservation laws for voter-like models on random directed networks
International Nuclear Information System (INIS)
Ángeles Serrano, M; Klemm, Konstantin; Vazquez, Federico; Eguíluz, Víctor M; San Miguel, Maxi
2009-01-01
We study the voter model, under node and link update, and the related invasion process on a single strongly connected component of a directed network. We implement an analytical treatment in the thermodynamic limit using the heterogeneous mean-field assumption. From the dynamical rules at the microscopic level, we find the equations for the evolution of the relative densities of nodes in a given state on heterogeneous networks with arbitrary degree distribution and degree–degree correlations. We prove that conserved quantities as weighted linear superpositions of spin states exist for all three processes and, for uncorrelated directed networks, we derive their specific expressions. We also discuss the time evolution of the relative densities that decay exponentially to a homogeneous stationary value given by the conserved quantity. The conservation laws obtained in the thermodynamic limit for a system that does not order in that limit determine the probabilities of reaching the absorbing state for a finite system. The contribution of each degree class to the conserved quantity is determined by a local property. Depending on the dynamics, the highest contribution is associated with influential nodes reaching a large number of outgoing neighbors, not too influenceable ones with a low number of incoming connections, or both at the same time
A high-order finite-volume method for hyperbolic conservation laws on locally-refined grids
Energy Technology Data Exchange (ETDEWEB)
McCorquodale, Peter; Colella, Phillip
2011-01-28
We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on Cartesian grids with multiple levels of refinement. The underlying method is a generalization of that in [5] to nonlinear systems, and is based on using fourth-order accurate quadratures for computing fluxes on faces, combined with fourth-order accurate Runge?Kutta discretization in time. To interpolate boundary conditions at refinement boundaries, we interpolate in time in a manner consistent with the individual stages of the Runge-Kutta method, and interpolate in space by solving a least-squares problem over a neighborhood of each target cell for the coefficients of a cubic polynomial. The method also uses a variation on the extremum-preserving limiter in [8], as well as slope flattening and a fourth-order accurate artificial viscosity for strong shocks. We show that the resulting method is fourth-order accurate for smooth solutions, and is robust in the presence of complex combinations of shocks and smooth flows.
International Nuclear Information System (INIS)
Yee, H.C.; Shinn, J.L.
1986-12-01
Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated
International Nuclear Information System (INIS)
Yee, H.C.; Shinn, J.L.
1987-01-01
Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogeneous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated. 46 references
A Fourier transform method for Vsin i estimations under nonlinear Limb-Darkening laws
Energy Technology Data Exchange (ETDEWEB)
Levenhagen, R. S., E-mail: ronaldo.levenhagen@gmail.com [Universidade Federal de São Paulo, Depto. Ciências Exatas e da Terra, Rua Prof. Arthur Riedel, 275, Jd. Eldorado, CEP 09972-270 Diadema, SP (Brazil)
2014-12-10
Star rotation offers us a large horizon for the study of many important physical issues pertaining to stellar evolution. Currently, four methods are widely used to infer rotation velocities, namely those related to line width calibrations, on the fitting of synthetic spectra, interferometry, and on Fourier transforms (FTs) of line profiles. Almost all of the estimations of stellar projected rotation velocities using the Fourier method in the literature have been addressed with the use of linear limb-darkening (LD) approximations during the evaluation of rotation profiles and their cosine FTs, which in certain cases, lead to discrepant velocity estimates. In this work, we introduce new mathematical expressions of rotation profiles and their Fourier cosine transforms assuming three nonlinear LD laws—quadratic, square-root, and logarithmic—and study their applications with and without gravity-darkening (GD) and geometrical flattening (GF) effects. Through an analysis of He I models in the visible range accounting for both limb and GD, we find out that, for classical models without rotationally driven effects, all the Vsin i values are too close to each other. On the other hand, taking into account GD and GF, the Vsin i obtained with the linear law result in Vsin i values that are systematically smaller than those obtained with the other laws. As a rule of thumb, we apply these expressions to the FT method to evaluate the projected rotation velocity of the emission B-type star Achernar (α Eri).
Conservation laws and stress-energy-momentum tensors for systems with background fields
Energy Technology Data Exchange (ETDEWEB)
Gratus, Jonathan, E-mail: j.gratus@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Obukhov, Yuri N., E-mail: yo@thp.uni-koeln.de [Institute for Theoretical Physics, University of Cologne, 50923 Koeln (Germany); Tucker, Robin W., E-mail: r.tucker@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)
2012-10-15
This article attempts to delineate the roles played by non-dynamical background structures and Killing symmetries in the construction of stress-energy-momentum tensors generated from a diffeomorphism invariant action density. An intrinsic coordinate independent approach puts into perspective a number of spurious arguments that have historically lead to the main contenders, viz the Belinfante-Rosenfeld stress-energy-momentum tensor derived from a Noether current and the Einstein-Hilbert stress-energy-momentum tensor derived in the context of Einstein's theory of general relativity. Emphasis is placed on the role played by non-dynamical background (phenomenological) structures that discriminate between properties of these tensors particularly in the context of electrodynamics in media. These tensors are used to construct conservation laws in the presence of Killing Lie-symmetric background fields. - Highlights: Black-Right-Pointing-Pointer The role of background fields in diffeomorphism invariant actions is demonstrated. Black-Right-Pointing-Pointer Interrelations between different stress-energy-momentum tensors are emphasised. Black-Right-Pointing-Pointer The Abraham and Minkowski electromagnetic tensors are discussed in this context. Black-Right-Pointing-Pointer Conservation laws in the presence of nondynamic background fields are formulated. Black-Right-Pointing-Pointer The discussion is facilitated by the development of a new variational calculus.
Kooijman; Kooi; Hallam
1999-04-07
Rules for energy uptake, and subsequent utilization, form the basis of population dynamics and, therefore, explain the dynamics of the ecosystem structure in terms of changes in standing crops and size distributions of individuals. Mass fluxes are concomitant with energy flows and delineate functional aspects of ecosystems by defining the roles of individuals and populations. The assumption of homeostasis of body components, and an assumption about the general structure of energy budgets, imply that mass fluxes can be written as weighted sums of three organizing energy fluxes with the weight coefficients determined by the conservation law of mass. These energy fluxes are assimilation, maintenance and growth, and provide a theoretical underpinning of the widely applied empirical method of indirect calorimetry, which relates dissipating heat linearly to three mass fluxes: carbon dioxide production, oxygen consumption and N-waste production. A generic approach to the stoichiometry of population energetics from the perspective of the individual organism is proposed and illustrated for heterotrophic organisms. This approach indicates that mass transformations can be identified by accounting for maintenance requirements and overhead costs for the various metabolic processes at the population level. The theoretical background for coupling the dynamics of the structure of communities to nutrient cycles, including the water balance, as well as explicit expressions for the dissipating heat at the population level are obtained based on the conservation law of energy. Specifications of the general theory employ the Dynamic Energy Budget model for individuals. Copyright 1999 Academic Press.
International Nuclear Information System (INIS)
Zhu, Zuo-nong; Tam, Hon-Wah; Ding, Qing
2003-01-01
In this Letter, by means of considering matrix form of a new Schroedinger discrete spectral operator equation, and constructing opportune time evolution equations, and using discrete zero curvature representation, two discrete integrable lattice hierarchies proposed by Boiti et al. [J. Phys. A: Math. Gen. 36 (2003) 139] are re-derived. From the matrix Lax representations, we demonstrate the existence of infinitely many conservation laws for the two lattice hierarchies and give the corresponding conserved densities and the associated fluxes by means of formulae. Thus their integrability is further confirmed. Specially we obtain the infinitely many conservation laws for a new discrete version of the KdV equation. A connection between the conservation laws of the discrete KdV equation and the ones of the KdV equation is discussed by two examples
Fulcher, Lewis P.
1979-01-01
Presents an exact solution to the nonlinear Faraday's law problem of a rod sliding on frictionless rails with resistance. Compares the results with perturbation calculations based on the methods of Poisson and Pincare and of Kryloff and Bogoliuboff. (Author/GA)
Hamiltonian structures of some non-linear evolution equations
International Nuclear Information System (INIS)
Tu, G.Z.
1983-06-01
The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)
Chai, Jun; Tian, Bo; Zhen, Hui-Ling; Sun, Wen-Rong; Liu, De-Yin
2017-04-01
Effects of quantic nonlinearity on the propagation of the ultrashort optical pulses in a non-Kerr medium, like an optical fiber, can be described by a perturbed nonlinear Schrödinger equation with the power law nonlinearity, which is studied in this paper from a planar-dynamic-system view point. We obtain the equivalent two-dimensional planar dynamic system of such an equation, for which, according to the bifurcation theory and qualitative theory, phase portraits are given. Through the analysis of those phase portraits, we present the relations among the Hamiltonian, orbits of the dynamic system and types of the analytic solutions. Analytic expressions of the periodic-wave solutions, kink- and bell-shaped solitary-wave solutions are derived, and we find that the periodic-wave solutions can be reduced to the kink- and bell-shaped solitary-wave solutions.
Balaji, Nidish Narayanaa; Krishna, I. R. Praveen; Padmanabhan, C.
2018-05-01
The Harmonic Balance Method (HBM) is a frequency-domain based approximation approach used for obtaining the steady state periodic behavior of forced dynamical systems. Intrinsically these systems are non-autonomous and the method offers many computational advantages over time-domain methods when the fundamental period of oscillation is known (generally fixed as the forcing period itself or a corresponding sub-harmonic if such behavior is expected). In the current study, a modified approach, based on He's Energy Balance Method (EBM), is applied to obtain the periodic solutions of conservative systems. It is shown that by this approach, periodic solutions of conservative systems on iso-energy manifolds in the phase space can be obtained very efficiently. The energy level provides the additional constraint on the HBM formulation, which enables the determination of the period of the solutions. The method is applied to the linear harmonic oscillator, a couple of nonlinear oscillators, the elastic pendulum and the Henon-Heiles system. The approach is used to trace the bifurcations of the periodic solutions of the last two, being 2 degree-of-freedom systems demonstrating very rich dynamical behavior. In the process, the advantages offered by the current formulation of the energy balance is brought out. A harmonic perturbation approach is used to evaluate the stability of the solutions for the bifurcation diagram.
Energy Technology Data Exchange (ETDEWEB)
Karlsen, Kenneth Hvistendal; Risebro, Nils Henrik
2000-09-01
We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a ''rough'' coefficient function k(x). we show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations as well as new convergence results for their finite difference approximations. In the inviscid case, we also provide a rate of convergence. Our convergence proofs are based on deriving a series of a priori estimates and using a general L{sup p} compactness criterion. (author)
Higher order Godunov methods for general systems of hyperbolic conservation laws
International Nuclear Information System (INIS)
Bell, J.B.; Colella, P.; Trangenstein, J.A.
1989-01-01
We describe an extension of higher order Godunov methods to general systems of hyperbolic conservation laws. This extension allow the method to be applied to problems that are not strictly hyperbolic and exhibit local linear degeneracies in the wave fields. The method constructs an approximation of the Riemann problem from local wave information. A generalization of the Engquist--Osher flux for systems is then used to compute a numerical flux based on this approximation. This numerical flux replaces the Godunov numerical flux in the algorithm, thereby eliminating the need for a global Riemann problem solution. The additional modifications to the Godunov methodology that are needed to treat loss of strict hyperbolicity are described in detail. The method is applied to some simple model problems for which the glocal analytic structure is known. The method is also applied to the black-oil model for multiphase flow in petroleum reservoirs. copyright 1989 Academic Press, Inc
Angular momentum conservation law in light-front quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.; /SLAC /Stanford U.
2017-03-01
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.
International Nuclear Information System (INIS)
Werner, K.D.
1990-01-01
In this paper we introduce briefly the Geometrical Shock Correction (GSC) method and consider various fields of applications, with special emphasis on two-phase flow problems in porous media. Some test problems are taken from this field. GSC is a very efficient numerical method for constructing the entropy solution of the Cauchy problem of scalar hyperboli conservation laws (with source term) in one space dimension and in specific two-dimensional cases. The novelty consists in constructing the solution at an arbitrary fixed time t=T>0 in one time step, based on transporting the initial values along characteristics and, if shocks appear, on a correction of the multivalued relation by a geometrical averaging technique. (orig.) With 7 figs [de
International Nuclear Information System (INIS)
Botchorishvili, Ramaz; Pironneau, Olivier
2003-01-01
We develop here a new class of finite volume schemes on unstructured meshes for scalar conservation laws with stiff source terms. The schemes are of equilibrium type, hence with uniform bounds on approximate solutions, valid in cell entropy inequalities and exact for some equilibrium states. Convergence is investigated in the framework of kinetic schemes. Numerical tests show high computational efficiency and a significant advantage over standard cell centered discretization of source terms. Equilibrium type schemes produce accurate results even on test problems for which the standard approach fails. For some numerical tests they exhibit exponential type convergence rate. In two of our numerical tests an equilibrium type scheme with 441 nodes on a triangular mesh is more accurate than a standard scheme with 5000 2 grid points
Tutcuoglu, A.; Majidi, C.
2014-12-01
Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.
Non-linear laws of echoic memory and auditory change detection in humans.
Inui, Koji; Urakawa, Tomokazu; Yamashiro, Koya; Otsuru, Naofumi; Nishihara, Makoto; Takeshima, Yasuyuki; Keceli, Sumru; Kakigi, Ryusuke
2010-07-03
The detection of any abrupt change in the environment is important to survival. Since memory of preceding sensory conditions is necessary for detecting changes, such a change-detection system relates closely to the memory system. Here we used an auditory change-related N1 subcomponent (change-N1) of event-related brain potentials to investigate cortical mechanisms underlying change detection and echoic memory. Change-N1 was elicited by a simple paradigm with two tones, a standard followed by a deviant, while subjects watched a silent movie. The amplitude of change-N1 elicited by a fixed sound pressure deviance (70 dB vs. 75 dB) was negatively correlated with the logarithm of the interval between the standard sound and deviant sound (1, 10, 100, or 1000 ms), while positively correlated with the logarithm of the duration of the standard sound (25, 100, 500, or 1000 ms). The amplitude of change-N1 elicited by a deviance in sound pressure, sound frequency, and sound location was correlated with the logarithm of the magnitude of physical differences between the standard and deviant sounds. The present findings suggest that temporal representation of echoic memory is non-linear and Weber-Fechner law holds for the automatic cortical response to sound changes within a suprathreshold range. Since the present results show that the behavior of echoic memory can be understood through change-N1, change-N1 would be a useful tool to investigate memory systems.
Target Tracking in 3-D Using Estimation Based Nonlinear Control Laws for UAVs
Directory of Open Access Journals (Sweden)
Mousumi Ahmed
2016-02-01
Full Text Available This paper presents an estimation based backstepping like control law design for an Unmanned Aerial Vehicle (UAV to track a moving target in 3-D space. A ground-based sensor or an onboard seeker antenna provides range, azimuth angle, and elevation angle measurements to a chaser UAV that implements an extended Kalman filter (EKF to estimate the full state of the target. A nonlinear controller then utilizes this estimated target state and the chaser’s state to provide speed, flight path, and course/heading angle commands to the chaser UAV. Tracking performance with respect to measurement uncertainty is evaluated for three cases: (1 stationary white noise; (2 stationary colored noise and (3 non-stationary (range correlated white noise. Furthermore, in an effort to improve tracking performance, the measurement model is made more realistic by taking into consideration range-dependent uncertainties in the measurements, i.e., as the chaser closes in on the target, measurement uncertainties are reduced in the EKF, thus providing the UAV with more accurate control commands. Simulation results for these cases are shown to illustrate target state estimation and trajectory tracking performance.
International Nuclear Information System (INIS)
Qian, Hong
2014-01-01
We propose a mathematical formulation of the zeroth law of thermodynamics and develop a stochastic dynamical theory, with a consistent irreversible thermodynamics, for systems possessing sustained conservative stationary current in phase space while in equilibrium with a heat bath. The theory generalizes underdamped mechanical equilibrium: dx=gdt+{−D∇ϕdt+√(2D)dB(t)}, with ∇⋅g=0 and {⋯} respectively representing phase-volume preserving dynamics and stochastic damping. The zeroth law implies stationary distribution u ss (x)=e −ϕ(x) . We find an orthogonality ∇ϕ⋅g=0 as a hallmark of the system. Stochastic thermodynamics based on time reversal (t,ϕ,g)→(−t,ϕ,−g) is formulated: entropy production e p # (t)=−dF(t)/dt; generalized “heat” h d # (t)=−dU(t)/dt, U(t)=∫ R n ϕ(x)u(x,t)dx being “internal energy”, and “free energy” F(t)=U(t)+∫ R n u(x,t)lnu(x,t)dx never increases. Entropy follows (dS)/(dt) =e p # −h d # . Our formulation is shown to be consistent with an earlier theory of P. Ao. Its contradistinctions to other theories, potential-flux decomposition, stochastic Hamiltonian system with even and odd variables, Klein–Kramers equation, Freidlin–Wentzell's theory, and GENERIC, are discussed.
Delzanno, G. L.
2015-11-01
A spectral method for the numerical solution of the multi-dimensional Vlasov-Maxwell equations is presented. The plasma distribution function is expanded in Fourier (for the spatial part) and Hermite (for the velocity part) basis functions, leading to a truncated system of ordinary differential equations for the expansion coefficients (moments) that is discretized with an implicit, second order accurate Crank-Nicolson time discretization. The discrete non-linear system is solved with a preconditioned Jacobian-Free Newton-Krylov method. It is shown analytically that the Fourier-Hermite method features exact conservation laws for total mass, momentum and energy in discrete form. Standard tests involving plasma waves and the whistler instability confirm the validity of the conservation laws numerically. The whistler instability test also shows that we can step over the fastest time scale in the system without incurring in numerical instabilities. Some preconditioning strategies are presented, showing that the number of linear iterations of the Krylov solver can be drastically reduced and a significant gain in performance can be obtained.
International Nuclear Information System (INIS)
Bender, B.; Sparwasser, R.
1988-01-01
Environmental law is discussed exhaustively in this book. Legal and scientific fundamentals are taken into account, a systematic orientation is given, and hints for further information are presented. The book covers general environmental law, plan approval procedures, protection against nuisances, atomic law and radiation protection law, water protection law, waste management law, laws on chemical substances, conservation law. (HSCH) [de
Kersten, P.H.M.
1988-01-01
By the introduction of nonlocal basonic and fermionic variables we construct a recursion symmetry of the super KdV equation, leading to a hierarchy of bosonic symmetries and one of fermionic symmetries. The hierarchies of bosonic and fermionic conservation laws arise in a natural way in the
Gandiwa, E.; Zisadza-Gandiwa, P.; Mango, L.; Jakarasi, J.
2014-01-01
Globally, pressure from the illegal harvesting of wildlife is a recurrent issue for protected area management. In order to ensure the effective conservation of wildlife resources, law enforcement has been identified as one of the most important components of protected area management. Our study
Non-linear laws of echoic memory and auditory change detection in humans
Directory of Open Access Journals (Sweden)
Takeshima Yasuyuki
2010-07-01
Full Text Available Abstract Background The detection of any abrupt change in the environment is important to survival. Since memory of preceding sensory conditions is necessary for detecting changes, such a change-detection system relates closely to the memory system. Here we used an auditory change-related N1 subcomponent (change-N1 of event-related brain potentials to investigate cortical mechanisms underlying change detection and echoic memory. Results Change-N1 was elicited by a simple paradigm with two tones, a standard followed by a deviant, while subjects watched a silent movie. The amplitude of change-N1 elicited by a fixed sound pressure deviance (70 dB vs. 75 dB was negatively correlated with the logarithm of the interval between the standard sound and deviant sound (1, 10, 100, or 1000 ms, while positively correlated with the logarithm of the duration of the standard sound (25, 100, 500, or 1000 ms. The amplitude of change-N1 elicited by a deviance in sound pressure, sound frequency, and sound location was correlated with the logarithm of the magnitude of physical differences between the standard and deviant sounds. Conclusions The present findings suggest that temporal representation of echoic memory is non-linear and Weber-Fechner law holds for the automatic cortical response to sound changes within a suprathreshold range. Since the present results show that the behavior of echoic memory can be understood through change-N1, change-N1 would be a useful tool to investigate memory systems.
Macroscopic law of conservation revealed in the population dynamics of Toll-like receptor signaling
Directory of Open Access Journals (Sweden)
Selvarajoo Kumar
2011-04-01
Full Text Available Abstract Stimulating the receptors of a single cell generates stochastic intracellular signaling. The fluctuating response has been attributed to the low abundance of signaling molecules and the spatio-temporal effects of diffusion and crowding. At population level, however, cells are able to execute well-defined deterministic biological processes such as growth, division, differentiation and immune response. These data reflect biology as a system possessing microscopic and macroscopic dynamics. This commentary discusses the average population response of the Toll-like receptor (TLR 3 and 4 signaling. Without requiring detailed experimental data, linear response equations together with the fundamental law of information conservation have been used to decipher novel network features such as unknown intermediates, processes and cross-talk mechanisms. For single cell response, however, such simplicity seems far from reality. Thus, as observed in any other complex systems, biology can be considered to possess order and disorder, inheriting a mixture of predictable population level and unpredictable single cell outcomes.
Li, Yanning
2014-03-01
This article presents a new optimal control framework for transportation networks in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi (H-J) equation and the commonly used triangular fundamental diagram, we pose the problem of controlling the state of the system on a network link, in a finite horizon, as a Linear Program (LP). We then show that this framework can be extended to an arbitrary transportation network, resulting in an LP or a Quadratic Program. Unlike many previously investigated transportation network control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e., discontinuities in the state of the system). As it leverages the intrinsic properties of the H-J equation used to model the state of the system, it does not require any approximation, unlike classical methods that are based on discretizations of the model. The computational efficiency of the method is illustrated on a transportation network. © 2014 IEEE.
Li, Yanning
2013-10-01
This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using boundary flow control, as a Linear Program. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP (or MILP if the objective function depends on boolean variables). Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality. © 2013 IEEE.
Li, Yanning; Canepa, Edward S.; Claudel, Christian
2014-01-01
This article presents a new optimal control framework for transportation networks in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi (H-J) equation and the commonly used triangular fundamental diagram, we pose the problem of controlling the state of the system on a network link, in a finite horizon, as a Linear Program (LP). We then show that this framework can be extended to an arbitrary transportation network, resulting in an LP or a Quadratic Program. Unlike many previously investigated transportation network control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e., discontinuities in the state of the system). As it leverages the intrinsic properties of the H-J equation used to model the state of the system, it does not require any approximation, unlike classical methods that are based on discretizations of the model. The computational efficiency of the method is illustrated on a transportation network. © 2014 IEEE.
Li, Yanning; Canepa, Edward S.; Claudel, Christian G.
2013-01-01
This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using boundary flow control, as a Linear Program. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP (or MILP if the objective function depends on boolean variables). Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality. © 2013 IEEE.
Efficient robust control of first order scalar conservation laws using semi-analytical solutions
Li, Yanning; Canepa, Edward S.; Claudel, Christian G.
2014-01-01
This article presents a new robust control framework for transportation problems in which the state is modeled by a first order scalar conservation law. Using an equivalent formulation based on a Hamilton-Jacobi equation, we pose the problem of controlling the state of the system on a network link, using initial density control and boundary flow control, as a Linear Program. We then show that this framework can be extended to arbitrary control problems involving the control of subsets of the initial and boundary conditions. Unlike many previously investigated transportation control schemes, this method yields a globally optimal solution and is capable of handling shocks (i.e. discontinuities in the state of the system). We also demonstrate that the same framework can handle robust control problems, in which the uncontrollable components of the initial and boundary conditions are encoded in intervals on the right hand side of inequalities in the linear program. The lower bound of the interval which defines the smallest feasible solution set is used to solve the robust LP/MILP. Since this framework leverages the intrinsic properties of the Hamilton-Jacobi equation used to model the state of the system, it is extremely fast. Several examples are given to demonstrate the performance of the robust control solution and the trade-off between the robustness and the optimality.
Energy Technology Data Exchange (ETDEWEB)
1979-02-21
This report provides an overview of the activities and achievements of the executive branch of the Federal Government in implementing the energy conservation requirements and provisions of section 381 of the Energy Policy and Conservation Act (EPCA) of 1975 (Public Law 94-163). The report describes Federal actions to develop procurement policies that promote energy conservation and efficiency, develop a Federal 10-Year Buildings Energy Conservation Plan, develop responsible public education and information programs, encourage energy conservation and energy efficiency, and promote vanpooling and carpooling arrangements. About half of the Nation's energy is used in our homes and automobiles. Another 48 percent is used by State and local governments, business and insutry, in providing needed goods and services. The Federal Government is the Nation's largest energy user, accouting for 2.2 percent of the total national energy used in 1977. This energy is used by nearly 6 million people in more than 400 thousand buildings and in the operation of more than 600 thousand vehicles. While energy conservation and energy efficiency measures alone cannot solve our immediate problems, they are an essential part of our transition to an era of scarce and expensive energy supplies.
Directory of Open Access Journals (Sweden)
Stephen C. Anco
2017-02-01
Full Text Available A conservation law theorem stated by N. Ibragimov along with its subsequent extensions are shown to be a special case of a standard formula that uses a pair consisting of a symmetry and an adjoint-symmetry to produce a conservation law through a well-known Fréchet derivative identity. Furthermore, the connection of this formula (and of Ibragimov’s theorem to the standard action of symmetries on conservation laws is explained, which accounts for a number of major drawbacks that have appeared in recent work using the formula to generate conservation laws. In particular, the formula can generate trivial conservation laws and does not always yield all non-trivial conservation laws unless the symmetry action on the set of these conservation laws is transitive. It is emphasized that all local conservation laws for any given system of differential equations can be found instead by a general method using adjoint-symmetries. This general method is a kind of adjoint version of the standard Lie method to find all local symmetries and is completely algorithmic. The relationship between this method, Noether’s theorem and the symmetry/adjoint-symmetry formula is discussed.
Waves, conservation laws and symmetries of a third-order nonlinear ...
African Journals Online (AJOL)
user
We observe that a linear part of the wave vector is overlaid. .... Eq.(1) admits the three-dimensional Lie algebra L of its classical ...... He did his diploma thesis titled 'Systematic in the physics of elementary particles focusing the quarkonium ...
Pozo, Carlos; Marín-Sanguino, Alberto; Alves, Rui; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Sorribas, Albert
2011-08-25
Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Directory of Open Access Journals (Sweden)
Sorribas Albert
2011-08-01
Full Text Available Abstract Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Conservation laws with non-convex flux and applications to two-phase flow in porous media
Energy Technology Data Exchange (ETDEWEB)
Tegnander, Cathrine
1998-12-31
This thesis deals with conservation laws, which form a family of partial differential equations (PDEs) describing conservation of mass, momentum and energy. The first part studies some theoretical aspects of conservation laws: (1) Scalar hyperbolic conservation laws with a non-convex flux function, where time dependent decay estimates are mainly obtained by a front tracking technique, (2) Convergence of solutions for a finite difference scheme given by a class of one dimensional parabolic systems. The second part of the thesis applies the theory to multiphase flow in porous media. A number of mathematical models for multiphase flow in groundwater are studied. Techniques to improve the study of simulations of oil, gas and water phases in reservoirs such as in the North Sea are discussed. Upscaling of a refinement of the permeability field is evaluated using a flow simulation. This is done by a study of the preserving of the rank of a number of realizations with respect to the cumulative production parameter. Finally, the importance of selection of numerical methods in the simulations are exemplified by considering various splitting techniques. The numerical methods of front tracking and finite difference schemes and finite element methods are used. 98 refs., 24 figs., 18 tabs.
Du, Xia-Xia; Tian, Bo; Chai, Jun; Sun, Yan; Yuan, Yu-Qiang
2017-11-01
In this paper, we investigate a (3+1)-dimensional modified Zakharov-Kuznetsov equation, which describes the nonlinear plasma-acoustic waves in a multicomponent magnetised plasma. With the aid of the Hirota method and symbolic computation, bilinear forms and one-, two- and three-soliton solutions are derived. The characteristics and interaction of the solitons are discussed graphically. We present the effects on the soliton's amplitude by the nonlinear coefficients which are related to the ratio of the positive-ion mass to negative-ion mass, number densities, initial densities of the lower- and higher-temperature electrons and ratio of the lower temperature to the higher temperature for electrons, as well as by the dispersion coefficient, which is related to the ratio of the positive-ion mass to the negative-ion mass and number densities. Moreover, using the Lie symmetry group theory, we derive the Lie point symmetry generators and the corresponding symmetry reductions, through which certain analytic solutions are obtained via the power series expansion method and the (G'/G) expansion method. We demonstrate that such an equation is strictly self-adjoint, and the conservation laws associated with the Lie point symmetry generators are derived.
A Semi-Analytical Approach for the Response of Nonlinear Conservative Systems
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Barari, Amin; Fooladi, M
2011-01-01
This work applies Parameter expanding method (PEM) as a powerful analytical technique in order to obtain the exact solution of nonlinear problems in the classical dynamics. Lagrange method is employed to derive the governing equations. The nonlinear governing equations are solved analytically by ...
International Nuclear Information System (INIS)
Asanov, G.S.
1979-01-01
It is shown the description of gravitational field in the riemannian space-time by means of the absolute parallelism structure makes it possible to formulate an integrable covariant law of energy-momentum conservation for gravitational field, by imposing on the energy-momentum tensor the condition of vanishing of the covariant divergence (in the sense of the absolute parallelism). As a result of taking into account covariant constraints for the tetrads of the absolute parallelism, the Lagrangian density turns out to be not geometrised anymore and leads to the unambiguous conservation law of the type mentioned in the N-body problem. Covariant field equations imply the existence of the special euclidean coordinates outside of static neighbourhoods of gravitationing bodies. In these coordinates determined by the tetrads of the absolute parallelism, the linear approximation is not connected with any noncovariant assumptions
Directory of Open Access Journals (Sweden)
MOHAMED BAHITA
2012-02-01
Full Text Available In this paper, a direct adaptive control scheme for a class of nonlinear systems is proposed. The architecture employs a Gaussian radial basis function (RBF network to construct an adaptive controller. The parameters of the adaptive controller are adapted and changed according to a law derived using Lyapunov stability theory. The centres of the RBF network are adapted on line using the k-means algorithm. Asymptotic Lyapunov stability is established without the use of a supervisory (compensatory term in the control law and with the tracking errors converging to a neighbourhood of the origin. Finally, a simulation is provided to explore the feasibility of the proposed neuronal controller design method.
Blas, H.; do Bonfim, A. C. R.; Vilela, A. M.
2017-05-01
Deformations of the focusing non-linear Schrödinger model (NLS) are considered in the context of the quasi-integrability concept. We strengthen the results of JHEP 09 (2012) 103 10.1007/JHEP06(2015)177" TargetType="URL"/> for bright soliton collisions. We addressed the focusing NLS as a complement to the one in JHEP 03 (2016) 005 10.1007/JHEP06(2015)177" TargetType="URL"/> , in which the modified defocusing NLS models with dark solitons were shown to exhibit an infinite tower of exactly conserved charges. We show, by means of analytical and numerical methods, that for certain two-bright-soliton solutions, in which the modulus and phase of the complex modified NLS field exhibit even parities under a space-reflection symmetry, the first four and the sequence of even order charges are exactly conserved during the scattering process of the solitons. We perform extensive numerical simulations and consider the bright solitons with deformed potential V=2η /2+\\upepsilon{({|ψ |}^2)}^{2+\\upepsilon},\\upepsilon \\in \\mathbb{R},η <0 . However, for two-soliton field components without definite parity we also show numerically the vanishing of the first non-trivial anomaly and the exact conservation of the relevant charge. So, the parity symmetry seems to be a sufficient but not a necessary condition for the existence of the infinite tower of conserved charges. The model supports elastic scattering of solitons for a wide range of values of the amplitudes and velocities and the set { η, ɛ}. Since the NLS equation is ubiquitous, our results may find potential applications in several areas of non-linear science.
Nonlinear hyperbolic waves in multidimensions
Prasad, Phoolan
2001-01-01
The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...
Helmholtz solitons in power-law optical materials
International Nuclear Information System (INIS)
Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.
2007-01-01
A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
Directory of Open Access Journals (Sweden)
Hendrik Schoukens
2014-05-01
Full Text Available For years, the predicament of many of the European protected habitats and species in the Flemish Region, as in many other Member States, passed relatively unnoticed. The lack of proper rules and clear implementation rules fuelled the impression amongst project developers and planning authorities that the impacts of project developments on biodiversity did not really warrant closer assessment. However, in the past ten years, strict national case law has significantly altered this view. Faced with tighter judicial scrutiny, the Habitats and Birds Directives were seen as an important obstacle to project development. Hence mitigation and compensation have now come up as novel approaches to better align spatial aspirations with the conservation of nature. In reality, mitigation was often used as a cover-up for projects that would not fit the strict requirements enshrined in the derogatory clauses. Interestingly, the Belgian Council of State showed itself quite cautious in reasserting the lax view of some planning authorities on mitigation and compensation. In reviewing the legality of several new approaches to mitigation and compensation, the Belgian Council of State, which was initially very cautious in quashing decisions that would actually jeopardise major infrastructure developments, has rendered some compelling rulings on the specific application of mitigation and compensatory measures in a spatial planning context. By letting the objectives of EU nature conservation law prevail in the face of economic interests, the recent case law of the Belgian Council of State can be seen as a remarkable example of judicial environmental activism.
Control Law Design for Twin Rotor MIMO System with Nonlinear Control Strategy
Directory of Open Access Journals (Sweden)
M. Ilyas
2016-01-01
Full Text Available Modeling of complex air vehicles is a challenging task due to high nonlinear behavior and significant coupling effect between rotors. Twin rotor multi-input multioutput system (TRMS is a laboratory setup designed for control experiments, which resembles a helicopter with unstable, nonlinear, and coupled dynamics. This paper focuses on the design and analysis of sliding mode control (SMC and backstepping controller for pitch and yaw angle control of main and tail rotor of the TRMS under parametric uncertainty. The proposed control strategy with SMC and backstepping achieves all mentioned limitations of TRMS. Result analysis of SMC and backstepping control schemes elucidates that backstepping provides efficient behavior with the parametric uncertainty for twin rotor system. Chattering and oscillating behaviors of SMC are removed with the backstepping control scheme considering the pitch and yaw angle for TRMS.
Noteboom, H.P.
1985-01-01
The IUCN/WWF Plants Conservation Programme 1984 — 1985. World Wildlife Fund chose plants to be the subject of their fund-raising campaign in the period 1984 — 1985. The objectives were to: 1. Use information techniques to achieve the conservation objectives of the Plants Programme – to save plants;
National Audubon Society, New York, NY.
This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…
On phase, action and canonical conservation laws in kinematic-wave theory
International Nuclear Information System (INIS)
Maugin, G.A.
2008-01-01
Canonical equations of energy and momentum are constructed in the kinematic-wave theory of waves in a continuum. This is done in analogy with what is achieved in nonlinear continuum mechanics. The starting point is a generalized balance of wave action. The standard formulas are recovered when the system follows from the averaged-Lagrangian variational formulation of Whitham
International Nuclear Information System (INIS)
Belanger, M.
1998-09-01
The Union quebecoise pour la conservation de la nature (UQCN) is an association of 5000 members that is active in the field of nature conservation and environmental protection. Comments made by the UQCN to the Parliamentary Commission on Transport and the Environment on the proposed law on the security of dams are summarized. A number of general and specific comments were made concerning access to information, the process of authorisation, and the definition of high-volume dams. Concern was also expressed about the lack of clear indication of how the plans for the management of dam security and water reservoirs will be coordinated among the various agencies that represent the various users of the river system
International Nuclear Information System (INIS)
Tretyak, V.I.; Gaida, R.P.
1980-01-01
Symmetry properties of the single-time relativistic Lagrangian of an N-particle-system corresponding to the many-time action of the Fokker-type, which are a function of derivatives of particle coordinates with respect to time up to infinite order, are investigated. The conditions for quasi-invariance for such a Lagrangian, with respect to a representation of an arbitrary group in infinite continuation of configuration space of the system, are discussed. Using these conditions a general expression for the Lagrangian, securing Poincare covariance of corresponding equations of motion, is found, and the conservation laws related to this covariance are formulated. In the case of tensor interaction, the expansion of conserved quantities in c -1 up to terms of the order c -4 is performed. (author)
Energy Technology Data Exchange (ETDEWEB)
Prior, C R [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics
1977-06-27
Angular momentum in axisymmetric space-times is investigated. The conclusions lead to a general definition suitable for all asymptotically-flat spaces which is valid both at infinity and on the event horizon of a black hole. This first paper restricts attention to considerations at infinity. Working in terms of the spin coefficient formalism, the field equations are solved asymptotically at large distances and the definition is evaluated. A conservation law is derived and finally the effect on the angular momentum of a supertranslation of the coordinates is discussed.
Mansuripur, Masud
2012-05-11
The Lorentz law of force is the fifth pillar of classical electrodynamics, the other four being Maxwell's macroscopic equations. The Lorentz law is the universal expression of the force exerted by electromagnetic fields on a volume containing a distribution of electrical charges and currents. If electric and magnetic dipoles also happen to be present in a material medium, they are traditionally treated by expressing the corresponding polarization and magnetization distributions in terms of bound-charge and bound-current densities, which are subsequently added to free-charge and free-current densities, respectively. In this way, Maxwell's macroscopic equations are reduced to his microscopic equations, and the Lorentz law is expected to provide a precise expression of the electromagnetic force density on material bodies at all points in space and time. This Letter presents incontrovertible theoretical evidence of the incompatibility of the Lorentz law with the fundamental tenets of special relativity. We argue that the Lorentz law must be abandoned in favor of a more general expression of the electromagnetic force density, such as the one discovered by Einstein and Laub in 1908. Not only is the Einstein-Laub formula consistent with special relativity, it also solves the long-standing problem of "hidden momentum" in classical electrodynamics.
Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads
Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.
2001-01-01
Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.
Kuramochi, Yui; Ueda, Masahito
2015-03-01
We consider the information flow on a system observable X corresponding to a positive-operator-valued measure under a quantum measurement process Y described by a completely positive instrument from the viewpoint of the relative entropy. We establish a sufficient condition for the relative-entropy conservation law which states that the average decrease in the relative entropy of the system observable X equals the relative entropy of the measurement outcome of Y , i.e., the information gain due to measurement. This sufficient condition is interpreted as an assumption of classicality in the sense that there exists a sufficient statistic in a joint successive measurement of Y followed by X such that the probability distribution of the statistic coincides with that of a single measurement of X for the premeasurement state. We show that in the case when X is a discrete projection-valued measure and Y is discrete, the classicality condition is equivalent to the relative-entropy conservation for arbitrary states. The general theory on the relative-entropy conservation is applied to typical quantum measurement models, namely, quantum nondemolition measurement, destructive sharp measurements on two-level systems, a photon counting, a quantum counting, homodyne and heterodyne measurements. These examples except for the nondemolition and photon-counting measurements do not satisfy the known Shannon-entropy conservation law proposed by Ban [M. Ban, J. Phys. A: Math. Gen. 32, 1643 (1999), 10.1088/0305-4470/32/9/012], implying that our approach based on the relative entropy is applicable to a wider class of quantum measurements.
International Nuclear Information System (INIS)
Keraenen, A.; Suhonen, E.; Cleymans, J.
1999-01-01
The production of hadrons in relativistic heavy ion collisions is studied using a statistical ensemble with thermal and chemical equilibrium. Special attention is given to exact conservation laws, i.e. certain charges are treated canonically instead of using the usual grand canonical approach. For small systems, the exact conservation of baryon number, strangeness and electric charge is to be taken into account. We have derived compact, analytical expressions for particle abundances in such ensemble. As an application, the change in K/π ratios in AGS experiments with different interaction system sizes is well reproduced. The canonical treatment of three charges becomes impractical very quickly with increasing system size. Thus, we focus our attention on exact conservation of strangeness, and treat baryon number and electric charge grand canonically. We present expressions for particle abundances in such ensemble as well, and apply them to reproduce the large variety of particle ratios in GSI SIS 2 A GeV Ni-Ni experiments. At the energies considered here, the exact strangeness conservation fully accounts for strange particle suppression, and no extra chemical factor is needed. (author)
A novel nonlinear nano-scale wear law for metallic brake pads.
Patil, Sandeep P; Chilakamarri, Sri Harsha; Markert, Bernd
2018-05-03
In the present work, molecular dynamics simulations were carried out to investigate the temperature distribution as well as the fundamental friction characteristics such as the coefficient of friction and wear in a disc-pad braking system. A wide range of constant velocity loadings was applied on metallic brake pads made of aluminium, copper and iron with different rotating speeds of a diamond-like carbon brake disc. The average temperature of Newtonian atoms and the coefficient of friction of the brake pad were investigated. The resulting relationship of the average temperature with the speed of the disc as well as the applied loading velocity can be described by power laws. The quantitative description of the volume lost from the brake pads was investigated, and it was found that the volume lost increases linearly with the sliding distance. Our results show that Archard's linear wear law is not applicable to a wide range of normal loads, e.g., in cases of low normal load where the wear rate was increased considerably and in cases of high load where there was a possibility of severe wear. In this work, a new formula for the brake pad wear in a disc brake assembly is proposed, which displays a power law relationship between the lost volume of the metallic brake pads per unit sliding distance and the applied normal load with an exponent of 0.62 ± 0.02. This work provides new insights into the fundamental understanding of the wear mechanism at the nano-scale leading to a new bottom-up wear law for metallic brake pads.
Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law
Yongyi, Gao; Zhixiao, Su
In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.
Recent publications on environmental law
International Nuclear Information System (INIS)
Lohse, S.
1991-01-01
The bibliography contains references to publications covering the following subject fields: General environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (orig.) [de
Control Law Design for Propofol Infusion to Regulate Depth of Hypnosis: A Nonlinear Control Strategy
Directory of Open Access Journals (Sweden)
Ali Khaqan
2016-01-01
Full Text Available Maintaining the depth of hypnosis (DOH during surgery is one of the major objectives of anesthesia infusion system. Continuous administration of Propofol infusion during surgical procedures is essential but increases the undue load of an anesthetist in operating room working in a multitasking setup. Manual and target controlled infusion (TCI systems are not good at handling instabilities like blood pressure changes and heart rate variability arising due to interpatient variability. Patient safety, large interindividual variability, and less postoperative effects are the main factors to motivate automation in anesthesia. The idea of automated system for Propofol infusion excites the control engineers to come up with a more sophisticated and safe system that handles optimum delivery of drug during surgery and avoids postoperative effects. In contrast to most of the investigations with linear control strategies, the originality of this research work lies in employing a nonlinear control technique, backstepping, to track the desired hypnosis level of patients during surgery. This effort is envisioned to unleash the true capabilities of this nonlinear control technique for anesthesia systems used today in biomedical field. The working of the designed controller is studied on the real dataset of five patients undergoing surgery. The controller tracks the desired hypnosis level within the acceptable range for surgery.
Higher derivative extensions of 3d Chern-Simons models: conservation laws and stability
International Nuclear Information System (INIS)
Kaparulin, D.S.; Karataeva, I.Yu.; Lyakhovich, S.L.
2015-01-01
We consider the class of higher derivative 3d vector field models with the field equation operator being a polynomial of the Chern-Simons operator. For the nth-order theory of this type, we provide a general recipe for constructing n-parameter family of conserved second rank tensors. The family includes the canonical energy-momentum tensor, which is unbounded, while there are bounded conserved tensors that provide classical stability of the system for certain combinations of the parameters in the Lagrangian. We also demonstrate the examples of consistent interactions which are compatible with the requirement of stability. (orig.)
Generalized non-linear Schroedinger hierarchy
International Nuclear Information System (INIS)
Aratyn, H.; Gomes, J.F.; Zimerman, A.H.
1994-01-01
The importance in studying the completely integrable models have became evident in the last years due to the fact that those models present an algebraic structure extremely rich, providing the natural scenery for solitons description. Those models can be described through non-linear differential equations, pseudo-linear operators (Lax formulation), or a matrix formulation. The integrability implies in the existence of a conservation law associated to each of degree of freedom. Each conserved charge Q i can be associated to a Hamiltonian, defining a time evolution related to to a time t i through the Hamilton equation ∂A/∂t i =[A,Q i ]. Particularly, for a two-dimensions field theory, infinite degree of freedom exist, and consequently infinite conservation laws describing the time evolution in space of infinite times. The Hamilton equation defines a hierarchy of models which present a infinite set of conservation laws. This paper studies the generalized non-linear Schroedinger hierarchy
Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations
International Nuclear Information System (INIS)
Hong Jialin; Li Chun
2006-01-01
In this paper, we consider the multi-symplectic Runge-Kutta (MSRK) methods applied to the nonlinear Dirac equation in relativistic quantum physics, based on a discovery of the multi-symplecticity of the equation. In particular, the conservation of energy, momentum and charge under MSRK discretizations is investigated by means of numerical experiments and numerical comparisons with non-MSRK methods. Numerical experiments presented reveal that MSRK methods applied to the nonlinear Dirac equation preserve exactly conservation laws of charge and momentum, and conserve the energy conservation in the corresponding numerical accuracy to the method utilized. It is verified numerically that MSRK methods are stable and convergent with respect to the conservation laws of energy, momentum and charge, and MSRK methods preserve not only the inner geometric structure of the equation, but also some crucial conservative properties in quantum physics. A remarkable advantage of MSRK methods applied to the nonlinear Dirac equation is the precise preservation of charge conservation law
Data planning and analysis for synthesis of multidimensional laws (nonlinear multifactor analysis)
International Nuclear Information System (INIS)
Mordashev, V. M.
2010-01-01
The methodology of data planning and analysis for synthesis of multidimensional laws using visualization is described along with the ensuing method of numerical data approximation by functions with “separable” variables. The method is developed for the cases of source data presented as (a) a table where all cells are filled, (b) an orthogonal table where quite certain cells are filled, and (c) a table where, generally speaking, arbitrary cells are not filled. The method was successfully applied for different problems of nuclear science and technology.
Arnscheidt, Julia
2009-01-01
This book is about the politics of nature conservation in late New Order and early Reformasi Indonesia. It approaches the subject through discourse analysis. Understanding politics as a struggle for discourse hegemony it analyses both processes of policy- and lawmaking in Jakarta and of
Evaluation of the Learning Process of Students Reinventing the General Law of Energy Conservation
Logman, Paul; Kaper, Wolter; Ellermeijer, Ton
2015-01-01
To investigate the relationship between context and concept we have constructed a conceptual learning path in which students reinvent the concept of energy conservation and embedded this path in two authentic practices. A comparison of the expected learning outcome with actual student output for the most important steps in the learning path gives…
MIGRATION AND CONSERVATION: FRAMEWORKS, GAPS, AND SYNERGIES IN SCIENCE, LAW, AND MANAGEMENT.
Meretsky, Vicky J; Atwell, Jonathan W; Hyman, Jeffrey B
2011-01-01
Migratory animals provide unique spectacles of cultural, ecological, and economic importance. However, the process of migration is a source of risk for migratory species as human actions increasingly destroy and fragment habitat, create obstacles to migration, and increase mortality along the migration corridor. As a result, many migratory species are declining in numbers. In the United States, the Endangered Species Act provides some protection against extinction for such species, but no protection until numbers are severely reduced, and no guarantee of recovery to population levels associated with cultural, ecological, or economic significance. Although groups of species receive some protection from statutes such as the Migratory Bird Treaty Act and Marine Mammal Protection Act, there is no coordinated system for conservation of migratory species. In addition, information needed to protect migratory species is often lacking, limiting options for land and wildlife managers who seek to support these species. In this Article, we outline the existing scientific, legal, and management information and approaches to migratory species. Our objective is to assess present capacity to protect the species and the phenomenon of migration, and we argue that al three disciplines are necessary for effective conservation. We find significant capacity to support conservation in all three disciplines, but no organization around conservation of migration within any discipline or among the three disciplines. Areas of synergy exist among the disciplines but not as a result of any attempt for coordination. As a result, significant gaps in information and capacity exist that must be addressed if effective conservation of migratory species is to be undertaken. We suggest that all three disciplines cooperate to identify the most pressing research needs, so that these can become targets for relevant funding sources. We identify areas of current risk to migratory species that represent gaps
International Nuclear Information System (INIS)
Zhestkov, S.V.; Romanenko, A.A.
2009-01-01
The problem of existence of soliton-like solutions of (1+1), (2+1), (3+1)-dimensional Schrodinger equations with the third power nonlinearity law is investigated. The numerical-analytical method of constructing solitons is developed. (authors)
International Nuclear Information System (INIS)
Miskovic, Olivera; Olea, Rodrigo
2011-01-01
Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.
Liu, Ren; Zhao, Yuejin; Chen, Haihong; Liang, Xiuying; Yang, Ming
2017-12-01
Industrial boilers are widely applied in such fields as factory power, building heating, and people’s lives; China is the world’s largest producer and user of industrial boilers, with very high annual energy consumption; clear requirements have been put forward by China on the energy efficiency since the “11th Five-year Plan” with the hope to save energy and reduce emission by means of energy efficiency standards and regulations on the supervision and control of various special equipment. So far, the energy efficiency of industrial boilers in China has been improved significantly but there is still a gap with the EU states. This paper analyzes the policies of energy efficiency, implementation models and methods of supervision and implementation at the EU level from laws, regulations, directives as well as standards; the paper also puts forward suggestions of energy conserving and emission reduction on the improvement of energy conserving capacity of industrial boilers in China through studying the legislations and measures of the developed countries in energy conserving of boilers.
Conservative Chaos Generators with CCII+ Based on Mathematical Model of Nonlinear Oscillator
Directory of Open Access Journals (Sweden)
J. Slezak
2008-09-01
Full Text Available In this detailed paper, several novel oscillator's configurations which consist only of five positive second generation current conveyors (CCII+ are presented and experimentally verified. Each network is able to generate the conservative chaotic attractors with the certain degree of the structural stability. It represents a class of the autonomous deterministic dynamical systems with two-segment piecewise linear (PWL vector fields suitable also for the theoretical analysis. Route to chaos can be traced and observed by a simple change of the external dc voltage. Advantages and other possible improvements are briefly discussed in the text.
Does price efficiency increase with trading volume? Evidence of nonlinearity and power laws in ETFs
Caginalp, Gunduz; DeSantis, Mark
2017-02-01
Whether efficiency increases with increasing volume is an important issue that may illuminate trader strategies and distinguish between market theories. This relationship is tested using 124,236 daily observations comprising 68 large and liquid U.S. equity exchange traded funds (ETFs). ETFs have the advantage that efficiency can be measured in terms of the deviation between the trading price and the underlying net asset value that is reported each day. Our findings support the hypothesis that the relationship between volume and efficiency is nonlinear. Indeed, efficiency increases as volume increases from low to moderately high levels, but then decreases as volume increases further. The first part tends to support the idea that higher volume simply facilitates transactions and maintains efficiency, while the latter part, i.e., even higher volumes, supports the ansatz that increased volume is associated with increased speculation that ignores valuation and decreases efficiency. The results are consistent with the hypothesis that valuation is only part of the motivation for traders. Our methodology accounts for fund heterogeneity and contemporaneous correlations. Similar results are obtained when daily price volatility is introduced as an additional independent variable.
Directory of Open Access Journals (Sweden)
Alina BOGOI
2016-12-01
Full Text Available Supersonic/hypersonic flows with strong shocks need special treatment in Computational Fluid Dynamics (CFD in order to accurately capture the discontinuity location and his magnitude. To avoid numerical instabilities in the presence of discontinuities, the numerical schemes must generate low dissipation and low dispersion error. Consequently, the algorithms used to calculate the time and space-derivatives, should exhibit a low amplitude and phase error. This paper focuses on the comparison of the numerical results obtained by simulations with some high resolution numerical schemes applied on linear and non-linear one-dimensional conservation low. The analytical solutions are provided for all benchmark tests considering smooth periodical conditions. All the schemes converge to the proper weak solution for linear flux and smooth initial conditions. However, when the flux is non-linear, the discontinuities may develop from smooth initial conditions and the shock must be correctly captured. All the schemes accurately identify the shock position, with the price of the numerical oscillation in the vicinity of the sudden variation. We believe that the identification of this pure numerical behavior, without physical relevance, in 1D case is extremely useful to avoid problems related to the stability and convergence of the solution in the general 3D case.
Directory of Open Access Journals (Sweden)
Robin Margaret Warner
2014-05-01
Full Text Available As global shipping intensifies and technological advances provide more opportunities to access the resources of the high seas and the deep seabed beyond national jurisdiction (ABNJ, the catalogue of threats to the marine environment and its biodiversity increase commensurately. Beyond these threats, new and emerging uses of ABNJ including more intrusive marine scientific research, bio-prospecting, deep seabed mining and environmental modification activities to mitigate the effects of climate change have the potential to harm the highly interconnected and sensitive ecosystems of the open ocean and the deep seabed if not sustainably managed now and into the future. Modern conservation norms such as environmental impact assessment, marine protected areas, marine spatial planning and development mechanisms such as technology transfer and capacity building are under developed in the legal and institutional framework for ABNJ. This article examines key normative features of the legal and institutional framework for ABNJ and their applicability to conservation of marine biodiversity, gaps and disconnects in that framework and ongoing global initiatives to develop more effective governance structures. It discusses some of the options being considered in the UN Ad Hoc Informal Open-ended Working Group to study issues related to the conservation and sustainable use of marine biodiversity in areas beyond national jurisdiction (BBNJ Working Group to evolve the legal and institutional framework for conservation and sustainable use of marine biodiversity in ABNJ and their current and future relevance for the law of the sea. It concludes that the discussions in the BBNJ Working Group and related initiatives in the Convention on Biological Diversity (CBD and at regional level have demonstrated that a more integrated legal and institutional structure is needed to address growing threats to marine biodiversity in ABNJ.
Modeling nonlinear problems in the mechanics of strings and rods the role of the balance laws
O'Reilly, Oliver M
2017-01-01
This book presents theories of deformable elastic strings and rods and their application to broad classes of problems. Readers will gain insights into the formulation and analysis of models for mechanical and biological systems. Emphasis is placed on how the balance laws interplay with constitutive relations to form a set of governing equations. For certain classes of problems, it is shown how a balance of material momentum can play a key role in forming the equations of motion. The first half of the book is devoted to the purely mechanical theory of a string and its applications. The second half of the book is devoted to rod theories, including Euler’s theory of the elastica, Kirchhoff ’s theory of an elastic rod, and a range of Cosserat rod theories. A variety of classic and recent applications of these rod theories are examined. Two supplemental chapters, the first on continuum mechanics of three-dimensional continua and the second on methods from variational calculus, are included to provide relevant ...
Energy Technology Data Exchange (ETDEWEB)
Fu, Yao, E-mail: Yao.Fu@colorado.edu; Song, Jeong-Hoon, E-mail: JH.Song@colorado.edu
2015-08-01
Heat flux expressions are derived for multibody potential systems by extending the original Hardy's methodology and modifying Admal & Tadmor's formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i.e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic–continuum bridging.
International Nuclear Information System (INIS)
Fu, Yao; Song, Jeong-Hoon
2015-01-01
Heat flux expressions are derived for multibody potential systems by extending the original Hardy's methodology and modifying Admal & Tadmor's formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i.e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic–continuum bridging
International Nuclear Information System (INIS)
Auluck, S. K. H.
2014-01-01
Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance
Energy Technology Data Exchange (ETDEWEB)
Auluck, S. K. H., E-mail: skhauluck@gmail.com, E-mail: skauluck@barc.gov.in [Physics Group, Bhabha Atomic Research Center, Mumbai (India)
2014-09-15
Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.
New results on the mathematical problems in nonlinear physics
International Nuclear Information System (INIS)
1980-01-01
The main topics treated in this report are: I) Existence of generalized Lagrangians. II) Conserved densities for odd-order polynomial evolution equations and linear evolution systems. III ) Conservation laws for Klein-Gordon, Di rae and Maxwell equations. IV) Stability conditions for finite-energy solutions of a non-linear Klein-Gordon equation. V) Hamiltonian approach to non-linear evolution equations and Backlund transformations. VI) Anharmonic vibrations: Status of results and new possible approaches. (Author) 83 refs
International Nuclear Information System (INIS)
Ketteler, G.; Kippels, K.
1988-01-01
In section I 'Basic principles' the following topics are considered: Constitutional-legal aspects of environmental protection, e.g. nuclear hazards and the remaining risk; European environmental law; international environmental law; administrative law, private law and criminal law relating to the environment; basic principles of environmental law, the instruments of public environmental law. Section II 'Special areas of law' is concerned with the law on water and waste, prevention of air pollution, nature conservation and care of the countryside. Legal decisions and literature up to June 1988 have been taken into consideration. (orig./RST) [de
A conservation law, entropy principle and quantization of fractal dimensions in hadron interactions
Zborovský, I.
2018-04-01
Fractal self-similarity of hadron interactions demonstrated by the z-scaling of inclusive spectra is studied. The scaling regularity reflects fractal structure of the colliding hadrons (or nuclei) and takes into account general features of fragmentation processes expressed by fractal dimensions. The self-similarity variable z is a function of the momentum fractions x1 and x2 of the colliding objects carried by the interacting hadron constituents and depends on the momentum fractions ya and yb of the scattered and recoil constituents carried by the inclusive particle and its recoil counterpart, respectively. Based on entropy principle, new properties of the z-scaling concept are found. They are conservation of fractal cumulativity in hadron interactions and quantization of fractal dimensions characterizing hadron structure and fragmentation processes at a constituent level.
Conservation laws and two-dimensional black holes in dilaton gravity
Mann, R. B.
1993-05-01
A very general class of Lagrangians which couple scalar fields to gravitation and matter in two spacetime dimensions is investigated. It is shown that a vector field exists along whose flow lines the stress-energy tensor is conserved, regardless of whether or not the equations of motion are satisfied or if any Killing vectors exist. Conditions necessary for the existence of Killing vectors are derived. A new set of two-dimensional (2D) black-hole solutions is obtained for one particular member within this class of Lagrangians, which couples a Liouville field to 2D gravity in a novel way. One solution of this theory bears an interesting resemblance to the 2D string-theoretic black hole, yet contains markedly different thermodynamic properties.
Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws
von Keyserlingk, C. W.; Rakovszky, Tibor; Pollmann, Frank; Sondhi, S. L.
2018-04-01
Thermalization and scrambling are the subject of much recent study from the perspective of many-body quantum systems with locally bounded Hilbert spaces ("spin chains"), quantum field theory, and holography. We tackle this problem in 1D spin chains evolving under random local unitary circuits and prove a number of exact results on the behavior of out-of-time-ordered commutators (OTOCs) and entanglement growth in this setting. These results follow from the observation that the spreading of operators in random circuits is described by a "hydrodynamical" equation of motion, despite the fact that random unitary circuits do not have locally conserved quantities (e.g., no conserved energy). In this hydrodynamic picture, quantum information travels in a front with a "butterfly velocity" vB that is smaller than the light-cone velocity of the system, while the front itself broadens diffusively in time. The OTOC increases sharply after the arrival of the light cone, but we do not observe a prolonged exponential regime of the form ˜eλL(t -x /v ) for a fixed Lyapunov exponent λL. We find that the diffusive broadening of the front has important consequences for entanglement growth, leading to an entanglement velocity that can be significantly smaller than the butterfly velocity. We conjecture that the hydrodynamical description applies to more generic Floquet ergodic systems, and we support this idea by verifying numerically that the diffusive broadening of the operator wavefront also holds in a more traditional nonrandom Floquet spin chain. We also compare our results to Clifford circuits, which have less rich hydrodynamics and consequently trivial OTOC behavior, but which can nevertheless exhibit linear entanglement growth and thermalization.
Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations
Abdulwahhab, Muhammad Alim
2016-10-01
Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.
Li, Meng; Gu, Xian-Ming; Huang, Chengming; Fei, Mingfa; Zhang, Guoyu
2018-04-01
In this paper, a fast linearized conservative finite element method is studied for solving the strongly coupled nonlinear fractional Schrödinger equations. We prove that the scheme preserves both the mass and energy, which are defined by virtue of some recursion relationships. Using the Sobolev inequalities and then employing the mathematical induction, the discrete scheme is proved to be unconditionally convergent in the sense of L2-norm and H α / 2-norm, which means that there are no any constraints on the grid ratios. Then, the prior bound of the discrete solution in L2-norm and L∞-norm are also obtained. Moreover, we propose an iterative algorithm, by which the coefficient matrix is independent of the time level, and thus it leads to Toeplitz-like linear systems that can be efficiently solved by Krylov subspace solvers with circulant preconditioners. This method can reduce the memory requirement of the proposed linearized finite element scheme from O (M2) to O (M) and the computational complexity from O (M3) to O (Mlog M) in each iterative step, where M is the number of grid nodes. Finally, numerical results are carried out to verify the correction of the theoretical analysis, simulate the collision of two solitary waves, and show the utility of the fast numerical solution techniques.
International Nuclear Information System (INIS)
Anon.
1980-01-01
This pocketbook contains major federal regulations on environmental protection. They serve to protect and cultivate mankind's natural foundations of life, to preserve the environment. The environmental law is devided as follows: Constitutional law on the environment, common administrative law on the environment, special administrative law on the environment including conservation of nature and preservation of rural amenities, protection of waters, waste management, protection against nuisances, nuclear energy and radiation protection, energy conservation, protection against dangerous substances, private law relating to the environment, criminal law relating to the environment. (HSCH) [de
International Nuclear Information System (INIS)
Uzhinskij, V.V.; Shmakov, S.Yu.
1988-01-01
A method is suggested which enables one to take unto account the Fermi motion of nuclear nucleons in Monte-Carlo simulation of exclusive states in hadron-nucleus and nucleus-nucleus interactions and, in hadron-hadron interaction simulation, to take into account the quark transverse momentum without violation of the energy-momentum conservation law
Frehner, Marcel; Amschwand, Dominik; Gärtner-Roer, Isabelle
2016-04-01
Rockglaciers consist of unconsolidated rock fragments (silt/sand-rock boulders) with interstitial ice; hence their creep behavior (i.e., rheology) may deviate from the simple and well-known flow-laws for pure ice. Here we constrain the non-linear viscous flow law that governs rockglacier creep based on geomorphological observations. We use the Murtèl rockglacier (upper Engadin valley, SE Switzerland) as a case study, for which high-resolution digital elevation models (DEM), time-lapse borehole deformation data, and geophysical soundings exist that reveal the exterior and interior architecture and dynamics of the landform. Rockglaciers often feature a prominent furrow-and-ridge topography. For the Murtèl rockglacier, Frehner et al. (2015) reproduced the wavelength, amplitude, and distribution of the furrow-and-ridge morphology using a linear viscous (Newtonian) flow model. Arenson et al. (2002) presented borehole deformation data, which highlight the basal shear zone at about 30 m depth and a curved deformation profile above the shear zone. Similarly, the furrow-and-ridge morphology also exhibits a curved geometry in map view. Hence, the surface morphology and the borehole deformation data together describe a curved 3D geometry, which is close to, but not quite parabolic. We use a high-resolution DEM to quantify the curved geometry of the Murtèl furrow-and-ridge morphology. We then calculate theoretical 3D flow geometries using different non-linear viscous flow laws. By comparing them to the measured curved 3D geometry (i.e., both surface morphology and borehole deformation data), we can determine the most adequate flow-law that fits the natural data best. Linear viscous models result in perfectly parabolic flow geometries; non-linear creep leads to localized deformation at the sides and bottom of the rockglacier while the deformation in the interior and top are less intense. In other words, non-linear creep results in non-parabolic flow geometries. Both the
Third Conference on nonlinear science and complexity (NSC)
Machado, José; Baleanu, Dumitru; Dynamical Systems and Methods
2012-01-01
Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles,analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers:\\ Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics. Mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies. Nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial l...
Rotating black string with nonlinear source
International Nuclear Information System (INIS)
Hendi, S. H.
2010-01-01
In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.
Mathematical problems in non-linear Physics: some results
International Nuclear Information System (INIS)
1979-01-01
The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)
International Nuclear Information System (INIS)
Zhang Dajun; Chen Dengyuan
2004-01-01
Solitons, negatons, positons, rational-like solutions and mixed solutions of a non-isospectral equation, the Korteweg-de Vries equation with loss and non-uniformity terms, are obtained through the Wronskian technique. The non-isospectral characteristics of the motion behaviours of some solutions are described with some figures made by using Mathematica. We also derive an infinite number of conservation laws of the equation
Recent publications on environmental law
International Nuclear Information System (INIS)
Lohse, S.
1988-01-01
The bibliography contains 1235 references to publications covering the following subject fields: general environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (HP) [de
Recent publications on environmental law
International Nuclear Information System (INIS)
Lohse, S.
1989-01-01
The bibliography contains 1160 references to publications covering the following subject fields: General environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (orig./HP) [de
Miller, Christopher J.
2011-01-01
A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.
Energy Technology Data Exchange (ETDEWEB)
NONE
1980-07-01
The main topics treated in this report are: I) Existence of generalized Lagrangians. II) Conserved densities for odd-order polynomial evolution equations and linear evolution systems. III ) Conservation laws for Klein-Gordon, Di rae and Maxwell equations. IV) Stability conditions for finite-energy solutions of a non-linear Klein-Gordon equation. V) Hamiltonian approach to non-linear evolution equations and Backlund transformations. VI) Anharmonic vibrations: Status of results and new possible approaches. (Author) 83 refs.
On the Definition of Energy for a Continuum, Its Conservation Laws, and the Energy-Momentum Tensor
Directory of Open Access Journals (Sweden)
Mayeul Arminjon
2016-01-01
Full Text Available We review the energy concept in the case of a continuum or a system of fields. First, we analyze the emergence of a true local conservation equation for the energy of a continuous medium, taking the example of an isentropic continuum in Newtonian gravity. Next, we consider a continuum or a system of fields in special relativity: we recall that the conservation of the energy-momentum tensor contains two local conservation equations of the same kind as before. We show that both of these equations depend on the reference frame and that, however, they can be given a rigorous meaning. Then, we review the definitions of the canonical and Hilbert energy-momentum tensors from a Lagrangian through the principle of stationary action in general space-time. Using relatively elementary mathematics, we prove precise results regarding the definition of the Hilbert tensor field, its uniqueness, and its tensoriality. We recall the meaning of its covariant conservation equation. We end with a proof of uniqueness of the energy density and flux, when both depend polynomially on the fields.
Laurençot, Philippe
2018-03-01
Uniqueness of mass-conserving self-similar solutions to Smoluchowski's coagulation equation is shown when the coagulation kernel K is given by K(x,x_*)=2(x x_*)^{-α } , (x,x_*)\\in (0,∞)^2 , for some α >0.
International Nuclear Information System (INIS)
Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ofer, D.; Levin, A.; Sarid, E.; Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ben-Dor, G.; Erez, L.; Erez, G.; Yosef-Hai, A.; Alon, U.; Arazi, L.
2000-01-01
The late-time nonlinear evolution of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated using a statistical mechanics model based on single-mode and bubble-competition physics at al Atwood numbers (A) and full numerical simulations in two and three dimensions. It is shown that the RT mixing zone bubble and spike fronts evolve as h∼α.A.gt 2 with different values of α for the bubble and spike fronts. The RM mixing zone fronts evolve as h∼θ with different values of θ for bubbles and spikes. Similar analysis yields a linear growth with time of the Kelvin-Helmholtz mixing zone. The dependence of the RT and RM scaling parameters on A and the dimensionality will be discussed. The 3-D predictions are found to be in good agreement with recent Linear Electric Motor (LEM) experiments. (authors)
Erler, Norbert; Groß, Michael
2015-05-01
Since many years the relevance of fibre-reinforced polymers is steadily increasing in fields of engineering, especially in aircraft and automotive industry. Due to the high strength in fibre direction, but the possibility of lightweight construction, these composites replace more and more traditional materials as metals. Fibre-reinforced polymers are often manufactured from glass or carbon fibres as attachment parts or from steel or nylon cord as force transmission parts. Attachment parts are mostly subjected to small strains, but force transmission parts usually suffer large deformations in at least one direction. Here, a geometrically nonlinear formulation is necessary. Typical examples are helicopter rotor blades, where the fibres have the function to stabilize the structure in order to counteract large centrifugal forces. For long-run analyses of rotor blade deformations, we have to apply numerically stable time integrators for anisotropic materials. This paper presents higher-order accurate and numerically stable time stepping schemes for nonlinear elastic fibre-reinforced continua with anisotropic stress behaviour.
Nonlinear dynamics and control of a vibrating rectangular plate
Shebalin, J. V.
1983-01-01
The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.
Directory of Open Access Journals (Sweden)
Waldyr A. Rodrigues
2016-01-01
Full Text Available We discuss the physics of interacting fields and particles living in a de Sitter Lorentzian manifold (dSLM, a submanifold of a 5-dimensional pseudo-Euclidean (5dPE equipped with a metric tensor inherited from the metric of the 5dPE space. The dSLM is naturally oriented and time oriented and is the arena used to study the energy-momentum conservation law and equations of motion for physical systems living there. Two distinct de Sitter space-time structures MdSL and MdSTP are introduced given dSLM, the first equipped with the Levi-Civita connection of its metric field and the second with a metric compatible parallel connection. Both connections are used only as mathematical devices. Thus, for example, MdSL is not supposed to be the model of any gravitational field in the General Relativity Theory (GRT. Misconceptions appearing in the literature concerning the motion of free particles in dSLM are clarified. Komar currents are introduced within Clifford bundle formalism permitting the presentation of Einstein equation as a Maxwell like equation and proving that in GRT there are infinitely many conserved currents. We prove that in GRT even when the appropriate Killing vector fields exist it is not possible to define a conserved energy-momentum covector as in special relativistic theories.
Perdigão, R. A. P.
2017-12-01
Predictability assessments are traditionally made on a case-by-case basis, often by running the particular model of interest with randomly perturbed initial/boundary conditions and parameters, producing computationally expensive ensembles. These approaches provide a lumped statistical view of uncertainty evolution, without eliciting the fundamental processes and interactions at play in the uncertainty dynamics. In order to address these limitations, we introduce a systematic dynamical framework for predictability assessment and forecast, by analytically deriving governing equations of predictability in terms of the fundamental architecture of dynamical systems, independent of any particular problem under consideration. The framework further relates multiple uncertainty sources along with their coevolutionary interplay, enabling a comprehensive and explicit treatment of uncertainty dynamics along time, without requiring the actual model to be run. In doing so, computational resources are freed and a quick and effective a-priori systematic dynamic evaluation is made of predictability evolution and its challenges, including aspects in the model architecture and intervening variables that may require optimization ahead of initiating any model runs. It further brings out universal dynamic features in the error dynamics elusive to any case specific treatment, ultimately shedding fundamental light on the challenging issue of predictability. The formulated approach, framed with broad mathematical physics generality in mind, is then implemented in dynamic models of nonlinear geophysical systems with various degrees of complexity, in order to evaluate their limitations and provide informed assistance on how to optimize their design and improve their predictability in fundamental dynamical terms.
Nonlinear generalization of special relativity
International Nuclear Information System (INIS)
Winterberg, F.
1985-01-01
In Poincares axiomatic formulation special relativity is a derived consequence of a true Lorentz contraction, for a rod in absolute motion through a substratum. Furthermore, Lorentz had shown that the rod contraction can be understood by an inverse square law interaction and therefore special relativity derived from more fundamental principles. The derivation by Lorentz shows that the root of the divergence problems is the singular inverse square law. By replacing the inverse square law with a regular one through the introduction of a finite length, the author has succeeded in deriving a nonlinear generalization of special relativity which eliminates all infinities. Besides the relative velocities, these nonlinear transformation equations also contain absolute velocities against a substratum, but in the limit of small energies they go over into the linear Lorentz transformations. Depending on the smallness of the fundamental length, departures from special relativity can be observed only at very high energies. The theorem that the velocity of light is the same in all reference systems still holds and likewise the conservation laws for energy and momentum
Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Wang, Xiu-Bin; Zhang, Tian-Tian
2018-05-01
We consider the generalised dispersive modified Benjamin-Bona-Mahony equation, which describes an approximation status for long surface wave existed in the non-linear dispersive media. By employing the truncated Painlevé expansion method, we derive its non-local symmetry and Bäcklund transformation. The non-local symmetry is localised by a new variable, which provides the corresponding non-local symmetry group and similarity reductions. Moreover, a direct method can be provided to construct a kind of finite symmetry transformation via the classic Lie point symmetry of the normal prolonged system. Finally, we find that the equation is a consistent Riccati expansion solvable system. With the help of the Jacobi elliptic function, we get its interaction solutions between solitary waves and cnoidal periodic waves.
International Nuclear Information System (INIS)
Panov, E Yu
1999-01-01
We consider a hyperbolic system of conservation laws on the space of symmetric second-order matrices. The right-hand side of this system contains the functional calculus operator f-bar(U) generated in the general case only by a continuous scalar function f(u). For these systems we define and describe the set of singular entropies, introduce the concept of generalized entropy solutions of the corresponding Cauchy problem, and investigate the properties of generalized entropy solutions. We define the class of strong generalized entropy solutions, in which the Cauchy problem has precisely one solution. We suggest a condition on the initial data under which any generalized entropy solution is strong, which implies its uniqueness. Under this condition we establish that the 'vanishing viscosity' method converges. An example shows that in the general case there can be more than one generalized entropy solution
International Nuclear Information System (INIS)
Panov, E Yu
2000-01-01
Many-dimensional non-strictly hyperbolic systems of conservation laws with a radially degenerate flux function are considered. For such systems the set of entropies is defined and described, the concept of generalized entropy solution of the Cauchy problem is introduced, and the properties of generalized entropy solutions are studied. The class of strong generalized entropy solutions is distinguished, in which the Cauchy problem in question is uniquely soluble. A condition on the initial data is described that ensures that the generalized entropy solution is strong and therefore unique. Under this condition the convergence of the 'vanishing viscosity' method is established. An example presented in the paper shows that a generalized entropy solution is not necessarily unique in the general case
Motsepa, Tanki; Masood Khalique, Chaudry
2018-05-01
In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.
Siswaningsih, W.; Nahadi; Firmansyah, D. R.
2018-05-01
The purpose of this research is to develop the instrument of performance assessment of law of mass conservation using self and peer assessment technique that meet valid and reliable criteria. The instrument components consist of task and rubric. The method used is development and validation.Value of the instrument reliability obtained from twice observations that are at four and six students every group with three same observers. Cronbach alpha value for four and six students every group consecutively are 0.94 and 0.76, indicating that value shows that the instrument is reliable. Optimum amount of the students that can be observed are four students. The implementation of the instrument to limited group of students showed that All of the students give positive responses to the instrument used with the interpretation of questionnaire scores >90% that categorized as good.
Wiafe, Edward Debrah
2016-01-01
The wildlife laws of Ghana alienated the rural communities from forests and material well-being depended upon for their livelihood and this manifests itself in the progressive conflict between the park patrol staff and poachers from the fringes of the protected areas. The main aim of this study was to determine the impact of quantification of patrol efforts on indicators of illegal hunting activities that occur in rainforest protected areas, as a result of monitoring patrol operations and modifying the original plan. The specific objectives were to determine the optimal patrol efforts necessary to reduce illegal wildlife use to minimal; and the influence of the rainfall and seasonal activities on illegal wildlife use. The results indicated that as the patrol efforts increased the encounter with illegal wildlife use also increased until a certain point that the encounter rates started decreasing. Neither rainfall nor seasonal activities influenced the illegal activities and the patrol efforts. The protection staff of rainforest protected areas would work effectively to bring down illegal wildlife off-take to the barest minimum if monitored, quantified and provide feed-back. Illegal wildlife off-take can also be reduced by the protection staff if the original plans are made flexible to be adjusted. Recommendations for further studies have been made.
Three religious rules of nonlinear physics
International Nuclear Information System (INIS)
Yankov, V.V.
1993-01-01
The theory of strong turbulence is a part of nonlinear physics. The three open-quotes religious rulesclose quotes of nonlinear physics present a heuristic viewpoint that can be used to qualitatively predict the evolution of nonlinear systems. These rules are as follows. (1) The basic results can be obtained from the conservation laws. If some kind of process is not forbidden by these laws, it generally occurs. If it doesn't this means that another conserved quantity imposing the constraint is being missed. (2) The universal law of open-quotes 20/80close quotes takes place: 20% of people drink 80% of beer. In other words, interesting processes usually take place in localized structures occupying a small share of volume. The localized structures interact weakly and therefore maintain their identity. For this reason they are universal and can be investigated. (3) The open-quotes general situationclose quotes is nonintegrable. The special case of exact solutions in integrable models represent a degenerate (nontypical) behavior. Particular exact solutions cannot be taken as representative solutions unless they are attractors. The presence of attractors simplifies the analysis and clarifies the situation. In plasma physics one deals with infinite-dimensional (PDE) systems distributed in space. The application of the religious rules 1 and 2 then leads to the following. If the conservation laws do not prohibit the development of singularities they do occur. If the singularities are prohibited, then stable localized structures take place. Solitons (or solitary waves) and vortices are examples of such stable structures. Wave collapse, wave-breaking, shock waves, magnetic reconnection and singularities in ideal Euler liquid are the examples of singularities. According to rule 3, exact solutions are very essential if they are attractors in some sense. Analysis of this problem is presented for solitons in nonintegrable wave systems and 2D vortices
Variational principle for nonlinear gyrokinetic Vlasov--Maxwell equations
International Nuclear Information System (INIS)
Brizard, Alain J.
2000-01-01
A new variational principle for the nonlinear gyrokinetic Vlasov--Maxwell equations is presented. This Eulerian variational principle uses constrained variations for the gyrocenter Vlasov distribution in eight-dimensional extended phase space and turns out to be simpler than the Lagrangian variational principle recently presented by H. Sugama [Phys. Plasmas 7, 466 (2000)]. A local energy conservation law is then derived explicitly by the Noether method. In future work, this new variational principle will be used to derive self-consistent, nonlinear, low-frequency Vlasov--Maxwell bounce-gyrokinetic equations, in which the fast gyromotion and bounce-motion time scales have been eliminated
Conservation laws and gravitational radiation
International Nuclear Information System (INIS)
Rastall, P.
1977-01-01
A total stress-momentum is defined for gravitational fields and their sources. The Lagrangian density is slightly different from that in the previous version of the theory, and the field equations are considerably simplified. The post-Newtonian approximation of the theory is unchanged. The existence and nature of weak gravitational waves are discussed. (author)
Collisions of Two Spatial Solitons in Inhomogeneous Nonlinear Media
International Nuclear Information System (INIS)
Zhong Weiping; Yi Lin; Yang Zhengping; Xie Ruihua; Milivoj, Belic; Chen Goong
2008-01-01
Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through
A semi-discrete integrable multi-component coherently coupled nonlinear Schrödinger system
International Nuclear Information System (INIS)
Zhao, Hai-qiong; Yuan, Jinyun
2016-01-01
A new integrable semi-discrete version is proposed for the multi-component coherently coupled nonlinear Schrödinger equation. The integrability of the semi-discrete system is confirmed by existence of Lax pair and infinite number of conservation laws. With the aid of gauge transformations, explicit formulas for N -fold Darboux transformations are derived whereby some physically important solutions of the system are presented. Furthermore, the theory of the semi-discrete system including Lax pair, Darboux transformations, exact solutions and infinite number of conservation laws are shown for their continuous counterparts in the continuous limit. (paper)
Symmetry, phase modulation and nonlinear waves
Bridges, Thomas J
2017-01-01
Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.
Special discontinuities in nonlinearly elastic media
Chugainova, A. P.
2017-06-01
Solutions of a nonlinear hyperbolic system of equations describing weakly nonlinear quasitransverse waves in a weakly anisotropic elastic medium are studied. The influence of small-scale processes of dissipation and dispersion is investigated. The small-scale processes determine the structure of discontinuities (shocks) and a set of discontinuities with a stationary structure. Among the discontinuities with a stationary structure, there are special ones that, in addition to relations following from conservation laws, satisfy additional relations required for the existence of their structure. In the phase plane, the structure of such discontinuities is represented by an integral curve joining two saddles. Special discontinuities lead to nonunique self-similar solutions of the Riemann problem. Asymptotics of non-self-similar problems for equations with dissipation and dispersion are found numerically. These asymptotics correspond to self-similar solutions of the problems.
Brock, Phyllis; And Others
This instructional unit for secondary school students is designed to integrate facts and concepts of energy, environment, and economics into the study of the process of making and applying a law (the fifty-five mile-per-hour speed limit law). The unit contains activities on the legislative process designed to fit into traditional segments of…
A reliable treatment for nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Khani, F.; Hamedi-Nezhad, S.; Molabahrami, A.
2007-01-01
Exp-function method is used to find a unified solution of nonlinear wave equation. Nonlinear Schroedinger equations with cubic and power law nonlinearity are selected to illustrate the effectiveness and simplicity of the method. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear equation
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Environmental law. 3. rev. ed.
International Nuclear Information System (INIS)
Anon.
1985-01-01
This pocketbook contains major federal regulations on environmental protection. They serve to protect and cultivate mankind's natural foundations of life, to preserve the environment. The environmental law is devided as follows: Constitutional law on the environment, common administrative law on the environment, special administrative law on the environment including conservation of nature and preservation of rural amenities, protection of waters, waste management, protection against nuisances, nuclear energy and radiation protection, energy conservation, protection against dangerous substances, private law relating to the environment, criminal law relating to the environment. (orig.) [de
Nonlinear Klein-Gordon soliton mechanics
International Nuclear Information System (INIS)
Reinisch, G.
1992-01-01
Nonlinear Klein-Gordon solitary waves - or solitons in a loose sense - in n+1 dimensions, driven by very general external fields which must only satisfy continuity - together with regularity conditions at the boundaries of the system, obey a quite simple equation of motion. This equation is the exact generalization to this dynamical system of infinite number of degrees of freedom - which may be conservative or not - of the second Newton's law setting the basis of material point mechanics. In the restricted case of conservative nonlinear Klein-Gordon systems, where the external driving force is derivable from a potential energy, we recover the generalized Ehrenfest theorem which was itself the extension to such systems of the well-known Ehrenfest theorem in quantum mechanics. This review paper first displays a few (of one-dimensional sine-Gordon type) typical examples of the basic difficulties related to the trial construction of solitary-waves is proved and the derivation of the previous sine-Gordon examples from this theorem is displayed. Two-dimensional nonlinear solitary-wave patterns are considered, as well as a special emphasis is put on the applications to space-time complexity of 1-dim. sine-Gordon systems
Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.
Meair, Jonathan; Jacquod, Philippe
2013-02-27
We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.
Nonlinearity and disorder: Classification and stability of nonlinear impurity modes
DEFF Research Database (Denmark)
Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole
2001-01-01
We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...... the case of a power-law nonlinearity in detail. We discuss several scenarios of the instability-induced dynamics of the nonlinear impurity modes, including the mode decay or switching to a new stable state, and collapse at the impurity site....
Introducing Conservation of Momentum
Brunt, Marjorie; Brunt, Geoff
2013-01-01
The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…
Bound state solution of the Grassmannian nonlinear sigma model with fermions
International Nuclear Information System (INIS)
Abdalla, E.; Lima-Santos, A.
1987-11-01
We construct the s matrix for bound state (gauge-invariant) scattering for nonlinear sigma models defined on the manifold SU(N)/S(U(p)x (lower casex)U(n-p)) with fermions. It is not possible to compute gauge non-singlet matrix elements. In the present language they are not submitted to sufficiently many constraints derived from higher conservation laws. (author) [pt
[Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
1994-01-01
Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile
SOLUTION OF HARMONIC OSCILLATOR OF NONLINEAR MASTER SCHRÃ–DINGER
Directory of Open Access Journals (Sweden)
T B Prayitno
2012-02-01
Full Text Available We have computed the solution of a nonrelativistic particle motion in a harmonic oscillator potential of the nonlinear master SchrÃ¶dinger equation. The equation itself is based on two classical conservation laws, the Hamilton-Jacobi and the continuity equations. Those two equations give each contribution for the definition of quantum particle. We also prove that the solution canâ€™t be normalized. Â Keywords : harmonic oscillator, nonlinear SchrÃ¶dinger.
Auluck, S. K. H.
2017-11-01
This paper continues earlier discussion [S. K. H. Auluck, Phys. Plasmas 21, 102515 (2014)] concerning the formulation of conservation laws of mass, momentum, and energy in a local curvilinear coordinate system in the dense plasma focus. This formulation makes use of the revised Gratton-Vargas snowplow model [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], which provides an analytically defined imaginary surface in three dimensions which resembles the experimentally determined shape of the plasma. Unit vectors along the local tangent to this surface, along the azimuth, and along the local normal define a right-handed orthogonal local curvilinear coordinate system. The simplifying assumption that physical quantities have significant variation only along the normal enables writing laws of conservation of mass, momentum, and energy in the form of effectively one-dimensional hyperbolic conservation law equations using expressions for various differential operators derived for this coordinate system. This formulation demonstrates the highly non-trivial result that the axial magnetic field and toroidally streaming fast ions, experimentally observed by multiple prestigious laboratories, are natural consequences of conservation of mass, momentum, and energy in the curved geometry of the dense plasma focus current sheath. The present paper continues the discussion in the context of a 3-region shock structure similar to the one experimentally observed: an unperturbed region followed by a hydrodynamic shock containing some current followed by a magnetic piston. Rankine-Hugoniot conditions are derived, and expressions are obtained for the specific volumes and pressures using the mass-flux between the hydrodynamic shock and the magnetic piston and current fraction in the hydrodynamic shock as unknown parameters. For the special case of a magnetic piston that remains continuously in contact with the fluid being pushed, the theory gives closed form algebraic results for the
Boriev, I. A.
2018-03-01
Astronomical data indicate a presence of dark matter (DM) in the space, what is necessary for explanation of observed dynamics of the galaxies within Newtonian mechanics. DM, at its very low density (∼10-26kg/m3), constitutes main part of the matter in the Universe, 10 times the mass of all visible cosmic bodies. No doubt, namely properties of DM, which fills space, must determine its physical properties and fundamental physical laws. Taking into account observed properties of cosmic microwave background radiation (CMBR), whose energy is ∼90% of all cosmic radiation, and understanding that this radiation is produced by DM motion, conservation laws of classical physics and principles of quantum mechanics receive their materialistic substantiation. Thus, CMBR high homogeneity and isotropy (∼10-4), and hence the same properties of DM (and space) justify momentum and angular momentum conservation laws, respectively, according to E. Noether's theorems. CMBR has black body spectrum at ∼2.7K with maximum wavelength ∼1.9·10-3m, what allows calculate the value of mechanical action produced by DM thermal motion (∼7·10-34 J·s). This value corresponds well to the Planck’s constant, which is the mechanical action too, what gives materialistic basis for all principles of quantum mechanics. Obtained results directly confirm the reality of DM existence, and show that CMBR is an observed display of DM thermal motion. Understanding that namely from DM occur known creation of electron-positron pairs as contrarily rotating material vortexes (according to their spins) let substantiate positron nature of ball lightning what first explains all its observed specific properties.
DEFF Research Database (Denmark)
Föh, Kennet Fischer; Mandøe, Lene; Tinten, Bjarke
Business Law is a translation of the 2nd edition of Erhvervsjura - videregående uddannelser. It is an educational textbook for the subject of business law. The textbook covers all important topic?s within business law such as the Legal System, Private International Law, Insolvency Law, Contract law......, Instruments of debt and other claims, Sale of Goods and real estate, Charges, mortgages and pledges, Guarantees, Credit agreements, Tort Law, Product liability and Insurance, Company law, Market law, Labour Law, Family Law and Law of Inheritance....
Hyperbolicity of the Nonlinear Models of Maxwell's Equations
Serre, Denis
. We consider the class of nonlinear models of electromagnetism that has been described by Coleman & Dill [7]. A model is completely determined by its energy density W(B,D). Viewing the electromagnetic field (B,D) as a 3×2 matrix, we show that polyconvexity of W implies the local well-posedness of the Cauchy problem within smooth functions of class Hs with s>1+d/2. The method follows that designed by Dafermos in his book [9] in the context of nonlinear elasticity. We use the fact that B×D is a (vectorial, non-convex) entropy, and we enlarge the system from 6 to 9 equations. The resulting system admits an entropy (actually the energy) that is convex. Since the energy conservation law does not derive from the system of conservation laws itself (Faraday's and Ampère's laws), but also needs the compatibility relations divB=divD=0 (the latter may be relaxed in order to take into account electric charges), the energy density is not an entropy in the classical sense. Thus the system cannot be symmetrized, strictly speaking. However, we show that the structure is close enough to symmetrizability, so that the standard estimates still hold true.
Conserved quantities for generalized KdV equations
International Nuclear Information System (INIS)
Calogero, F.; Rome Univ.; Degasperis, A.; Rome Univ.
1980-01-01
It is noted that the nonlinear evolution equation usub(t) = α(t)usub(xxx) - 6ν(t) usub(x)u, u is identical to u(x,t), possesses three (and, in some cases, four) conserved quantities, that are explicitly displayed. These results are of course relevant only to the cases in which this evolution equation is not known to possess an infinite number of conserved quantities. Purpose and scope of this paper is to report three or four simple conservation laws possessed by the evolution equation usub(t) = α(t)usub(xxx) - 6ν(t)usub(x)u, u is identical to u(x,t). (author)
The Use of Nonlinear Constitutive Equations to Evaluate Draw Resistance and Filter Ventilation
Directory of Open Access Journals (Sweden)
Eitzinger B
2014-12-01
Full Text Available This study investigates by nonlinear constitutive equations the influence of tipping paper, cigarette paper, filter, and tobacco rod on the degree of filter ventilation and draw resistance. Starting from the laws of conservation, the path to the theory of fluid dynamics in porous media and Darcy's law is reviewed and, as an extension to Darcy's law, two different nonlinear pressure drop-flow relations are proposed. It is proven that these relations are valid constitutive equations and the partial differential equations for the stationary flow in an unlit cigarette covering anisotropic, inhomogeneous and nonlinear behaviour are derived. From these equations a system of ordinary differential equations for the one-dimensional flow in the cigarette is derived by averaging pressure and velocity over the cross section of the cigarette. By further integration, the concept of an electrical analog is reached and discussed in the light of nonlinear pressure drop-flow relations. By numerical calculations based on the system of ordinary differential equations, it is shown that the influence of nonlinearities cannot be neglected because variations in the degree of filter ventilation can reach up to 20% of its nominal value.
Introduction to nonlinear science
Nicolis, G
1995-01-01
One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...
Features and states of microscopic particles in nonlinear quantum-mechanics systems
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this paper,we present the elementary principles of nonlinear quantum mechanics(NLQM),which is based on some problems in quantum mechanics.We investigate in detail the motion laws and some main properties of microscopic particles in nonlinear quantum systems using these elementary principles.Concretely speaking,we study in this paper the wave-particle duality of the solution of the nonlinear Schr6dinger equation,the stability of microscopic particles described by NLQM,invariances and conservation laws of motion of particles,the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations,the classical rule of microscopic particle motion,the mechanism and rules of particle collision,the features of reflection and the transmission of particles at interfaces,and the uncertainty relation of particle motion as well as the eigenvalue and eigenequations of particles,and so on.We obtained the invariance and conservation laws of mass,energy and momentum and angular momenturn for the microscopic particles,which are also some elementary and universal laws of matter in the NLQM and give further the methods and ways of solving the above questions.We also find that the laws of motion of microscopic particles in such a case are completely different from that in the linear quantum mechanics(LQM).They have a lot of new properties;for example,the particles possess the real wave-corpuscle duality,obey the classical rule of motion and conservation laws of energy,momentum and mass,satisfy minimum uncertainty relation,can be localized due to the nonlinear interaction,and its position and momentum can also be determined,etc.From these studies,we see clearly that rules and features of microscopic particle motion in NLQM is different from that in LQM.Therefore,the NLQM is a new physical theory,and a necessary result of the development of quantum mechanics and has a correct representation of describing microscopic particles in nonlinear systems,which can
Energy Technology Data Exchange (ETDEWEB)
Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)
2015-02-10
The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.
International Nuclear Information System (INIS)
Lohse, S.; Doerner, E.
1992-01-01
The bibliography contains 1685 references to publications covering the following subject fields: General environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (orig.) [de
Directory of Open Access Journals (Sweden)
T. Hayat
2018-03-01
Full Text Available Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy’s law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined. Keywords: Porous medium, Heat generation/absorption, SWCNTs and MWCNTs, Nonlinear radiation
Energy Technology Data Exchange (ETDEWEB)
Cui, Jianbo, E-mail: jianbocui@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Hong, Jialin, E-mail: hjl@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Liu, Zhihui, E-mail: liuzhihui@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Zhou, Weien, E-mail: weienzhou@nudt.edu.cn [College of Science, National University of Defense Technology, Changsha 410073 (China)
2017-08-01
We indicate that the nonlinear Schrödinger equation with white noise dispersion possesses stochastic symplectic and multi-symplectic structures. Based on these structures, we propose the stochastic symplectic and multi-symplectic methods, which preserve the continuous and discrete charge conservation laws, respectively. Moreover, we show that the proposed methods are convergent with temporal order one in probability. Numerical experiments are presented to verify our theoretical results.
International Nuclear Information System (INIS)
Cui, Jianbo; Hong, Jialin; Liu, Zhihui; Zhou, Weien
2017-01-01
We indicate that the nonlinear Schrödinger equation with white noise dispersion possesses stochastic symplectic and multi-symplectic structures. Based on these structures, we propose the stochastic symplectic and multi-symplectic methods, which preserve the continuous and discrete charge conservation laws, respectively. Moreover, we show that the proposed methods are convergent with temporal order one in probability. Numerical experiments are presented to verify our theoretical results.
An accurate nonlinear Monte Carlo collision operator
International Nuclear Information System (INIS)
Wang, W.X.; Okamoto, M.; Nakajima, N.; Murakami, S.
1995-03-01
A three dimensional nonlinear Monte Carlo collision model is developed based on Coulomb binary collisions with the emphasis both on the accuracy and implementation efficiency. The operator of simple form fulfills particle number, momentum and energy conservation laws, and is equivalent to exact Fokker-Planck operator by correctly reproducing the friction coefficient and diffusion tensor, in addition, can effectively assure small-angle collisions with a binary scattering angle distributed in a limited range near zero. Two highly vectorizable algorithms are designed for its fast implementation. Various test simulations regarding relaxation processes, electrical conductivity, etc. are carried out in velocity space. The test results, which is in good agreement with theory, and timing results on vector computers show that it is practically applicable. The operator may be used for accurately simulating collisional transport problems in magnetized and unmagnetized plasmas. (author)
Hesselink, M.W.; Gibbons, M.T.
2014-01-01
The concept of civil law has two distinct meanings. that is, disputes between private parties (individuals, corporations), as opposed to other branches of the law, such as administrative law or criminal law, which relate to disputes between individuals and the state. Second, the term civil law is
Network evolution by nonlinear preferential rewiring of edges
Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie
2011-06-01
The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.
Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics
Directory of Open Access Journals (Sweden)
Ahmad Sheykhi
2014-01-01
Full Text Available We construct a new class of charged rotating black string solutions coupled to dilaton and exponential nonlinear electrodynamic fields with cylindrical or toroidal horizons in the presence of a Liouville-type potential for the dilaton field. Due to the presence of the dilaton field, the asymptotic behaviors of these solutions are neither flat nor (AdS. We analyze the physical properties of the solutions in detail. We compute the conserved and thermodynamic quantities of the solutions and verify the first law of thermodynamics on the black string horizon. When the nonlinear parameter β2 goes to infinity, our results reduce to those of black string solutions in Einstein-Maxwell-dilaton gravity.
Balance laws and centro velocity in dissipative systems
van Groesen, Embrecht W.C.; Mainardi, F.
1990-01-01
Starting with a density that is conserved for a dynamical system when dissipation is ignored, a local conservation law is derived for which the total flux (integrated over the spatial domain) is unique. When dissipation is incorporated, the conservation law becomes a balance law. The contribution
Health care law versus constitutional law.
Hall, Mark A
2013-04-01
National Federation of Independent Business v. Sebelius, the Supreme Court's ruling on the Patient Protection and Affordable Care Act, is a landmark decision - both for constitutional law and for health care law and policy. Others will study its implications for constitutional limits on a range of federal powers beyond health care. This article considers to what extent the decision is also about health care law, properly conceived. Under one view, health care law is the subdiscipline that inquires how courts and government actors take account of the special features of medicine that make legal or policy issues especially problematic - rather than regarding health care delivery and finance more generically, like most any other economic or social enterprise. Viewed this way, the opinions from the Court's conservative justices are mainly about general constitutional law principles. In contrast, Justice Ruth Bader Ginsburg's dissenting opinion for the four more liberal justices is just as much about health care law as it is about constitutional law. Her opinion gives detailed attention to the unique features of health care finance and delivery in order to inform her analysis of constitutional precedents and principles. Thus, the Court's multiple opinions give a vivid depiction of the compelling contrasts between communal versus individualistic conceptions of caring for those in need, and between health care and health insurance as ordinary commodities versus ones that merit special economic, social, and legal status.
International Nuclear Information System (INIS)
Brassier, Stephane
1998-01-01
The Magnetohydrodynamic (MHD) equations represent the coupling between fluid dynamics equations and Maxwell's equations. We consider here a new MHD model with two temperatures. A Roe scheme is first constructed in the one dimensional case, for a multi-species model and a general equation of state. The multidimensional case is treated thanks to the Powell approach. The notion of Roe-Powell matrix, generalization of the notion of Roe matrix for multidimensional MHD, allows us to develop an original scheme on a curvilinear grid. We focus on a second part on the modelling of a Plasma Opening Switch (POS). A front-tracking method is first set up, in order to correctly handle the deformation of the front between the vacuum and the plasma. Besides, by taking into account a general Ohm's law, we have to deal with the Hall effect, which leads to nonlinear transport equations with discontinuous coefficients. Several numerical schemes are proposed and tested on a variety of test cases. This work has allowed us to construct an industrial MHD code, intended to handle complex flows and in particular to correctly simulate the behaviour of the POS. (author) [fr
Local instant conservation equations
International Nuclear Information System (INIS)
Delaje, Dzh.
1984-01-01
Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface
DEFF Research Database (Denmark)
Langsted, Lars Bo; Garde, Peter; Greve, Vagn
<> book contains a thorough description of Danish substantive criminal law, criminal procedure and execution of sanctions. The book was originally published as a monograph in the International Encyclopaedia of Laws/Criminal Law....... book contains a thorough description of Danish substantive criminal law, criminal procedure and execution of sanctions. The book was originally published as a monograph in the International Encyclopaedia of Laws/Criminal Law....
Collapse of nonlinear Langmuir waves
International Nuclear Information System (INIS)
Malkin, V.M.
1986-01-01
The dispersion of sufficiently intensive Langmuir waves is determined by intrinsic (electron) nonlinearity. During Langmuir collapse the wave energy density required for the appearance of electron nonlinearity is attained, generally speaking, prior to the development of dissipative processes. Up to now, the effect of electron nonlinearity on the collapse dynamics and spectrum of strong Langmuir turbulence ( which may be very appreciable ) has not been studied extensively because of the difficulty of describing nonlinear Langmuir waves. In the present paper the positive determinacy of the electron nonlinear hamiltonian is proven, the increment of modulation instability of a nonlinear Langmuir wave cluster localized in a cavity is calculated, and the universal law of their collapse is found
International Nuclear Information System (INIS)
Boyd, R.W.
1992-01-01
Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics
Directory of Open Access Journals (Sweden)
Harold J. Berman
1999-03-01
Full Text Available In the third millennium of the Christian era, which is characterised by the emergence of a world economy and eventually a world society, the concept of world law is needed to embrace not only the traditional disciplines of public international law, and comparative law, but also the common underlying legal principles applicable in world trade, world finance, transnational transfer of technology and other fields of world economic law, as well as in such emerging fields as the protection of the world's environment and the protection of universal human rights. World law combines inter-state law with the common law of humanity and the customary law of various world communities.
DEFF Research Database (Denmark)
Webb, Garry; Sørensen, Mads Peter; Brio, Moysey
2004-01-01
the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr nonlinearity, are shown to reduce...... the properties of Maxwell's equations in nonlinear optics, without resorting to the commonly used nonlinear Schr\\"odinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to nonlinear sideband wave interactions. This is important in femto......-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field $E$, in terms of the the canonical variables, with possible multiple real roots for $E$. In order...
Non-linear numerical studies of the tearing mode
International Nuclear Information System (INIS)
Schnack, D.D. Jr.
1978-01-01
A non-linear, time dependent, hydromagnetic model is developed and applied to the tearing mode, one of a class of instabilities which can occur in a magnetically confined plasma when the constraint of infinite conductivity is relaxed. The model is based on the eight partial differential equations of resistive magnetohydrodynamics (MHD). The equations are expressed as a set of conservation laws which conserves magnetic flux, momentum, mass, and total energy. These equations are then written in general, orthogonal, curvilinear coordinates in two space dimensions, so that the model can readily be applied to a variety of geometries. No assumption about the ordering of terms is made. The resulting equations are then solved by the method of finite differences on an Eulerian mesh. The model is applied to several geometries
Some contributions to non-linear physic: Mathematical problems
International Nuclear Information System (INIS)
1981-01-01
The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of ζ/ζ u α , |α | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs
Environmental law. 6. rev. and enlarged ed.
International Nuclear Information System (INIS)
1991-01-01
This pocketbook contains major federal regulation on environmental protection. They serve to protect and cultivate mankind's natural foundations of life, to preserve the environment. The environments law is devided as follows: Constitutional law on the environment. Common administative law on the environment, special administrative law on the environment including conservation of nature and preservation of rural amenities, protection of waters waste management, protection against nuisances, nuclear energy are radiation protection, energy conservation, protection against dangerous substances, private law relating to the environment, criminal law relating to the environment. The transitional provisons required for estaslishing the unified Germany are given in an annex. (orig.) [de
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Second Law of Thermodynamics Applied to Metabolic Networks
Nigam, R.; Liang, S.
2003-01-01
We present a simple algorithm based on linear programming, that combines Kirchoff's flux and potential laws and applies them to metabolic networks to predict thermodynamically feasible reaction fluxes. These law's represent mass conservation and energy feasibility that are widely used in electrical circuit analysis. Formulating the Kirchoff's potential law around a reaction loop in terms of the null space of the stoichiometric matrix leads to a simple representation of the law of entropy that can be readily incorporated into the traditional flux balance analysis without resorting to non-linear optimization. Our technique is new as it can easily check the fluxes got by applying flux balance analysis for thermodynamic feasibility and modify them if they are infeasible so that they satisfy the law of entropy. We illustrate our method by applying it to the network dealing with the central metabolism of Escherichia coli. Due to its simplicity this algorithm will be useful in studying large scale complex metabolic networks in the cell of different organisms.
Spinning solitons in cubic-quintic nonlinear media
Indian Academy of Sciences (India)
Spinning solitons in cubic-quintic nonlinear media ... features of families of bright vortex solitons (doughnuts, or 'spinning' solitons) in both conservative and dissipative cubic-quintic nonlinear media. ... Pramana – Journal of Physics | News.
Experimental tests of coherence and entanglement conservation under unitary evolutions
Černoch, Antonín; Bartkiewicz, Karol; Lemr, Karel; Soubusta, Jan
2018-04-01
We experimentally demonstrate the migration of coherence between composite quantum systems and their subsystems. The quantum systems are implemented using polarization states of photons in two experimental setups. The first setup is based on a linear optical controlled-phase quantum gate and the second scheme utilizes effects of nonlinear optics. Our experiment allows one to verify the relation between correlations of the subsystems and the coherence of the composite system, which was given in terms of a conservation law for maximal accessible coherence by Svozilík et al. [J. Svozilík et al., Phys. Rev. Lett. 115, 220501 (2015), 10.1103/PhysRevLett.115.220501]. We observe that the maximal accessible coherence is conserved for the implemented class of global evolutions of the composite system.
Directory of Open Access Journals (Sweden)
G. P. Tolstopiatenko
2014-01-01
Full Text Available At the origin of the International Law Department were such eminent scientists, diplomats and teachers as V.N. Durdenevsky, S.B. Krylov and F.I. Kozhevnikov. International law studies in USSR and Russia during the second half of the XX century was largely shaped by the lawyers of MGIMO. They had a large influence on the education in the international law in the whole USSR, and since 1990s in Russia and other CIS countries. The prominence of the research of MGIMO international lawyers was due to the close connections with the international practice, involving international negotiations in the United Nations and other international fora, diplomatic conferences and international scientific conferences. This experience is represented in the MGIMO handbooks on international law, which are still in demand. The Faculty of International Law at MGIMO consists of seven departments: Department of International Law, Department of Private International and Comparative Law; Department of European Law; Department of Comparative Constitutional Law; Department of Administrative and Financial Law; Department of Criminal Law, Department Criminal Procedure and Criminalistics. Many Russian lawyers famous at home and abroad work at the Faculty, contributing to domestic and international law studies. In 1947 the Academy of Sciences of the USSR published "International Law" textbook which was the first textbook on the subject in USSR. S.B. Krylov and V.N. Durdenevsky were the authors and editors of the textbook. First generations of MGIMO students studied international law according to this textbook. All subsequent books on international law, published in the USSR, were based on the approach to the teaching of international law, developed in the textbook by S.B. Krylov and V.N. Durdenevsky. The first textbook of international law with the stamp of MGIMO, edited by F.I. Kozhevnikov, was published in 1964. This textbook later went through five editions in 1966, 1972
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Shaw, Malcolm N
2017-01-01
International Law is the definitive and authoritative text on the subject, offering Shaw's unbeatable combination of clarity of expression and academic rigour and ensuring both understanding and critical analysis in an engaging and authoritative style. Encompassing the leading principles, practice and cases, and retaining and developing the detailed references which encourage and assist the reader in further study, this new edition motivates and challenges students and professionals while remaining accessible and engaging. Fully updated to reflect recent case law and treaty developments, this edition contains an expanded treatment of the relationship between international and domestic law, the principles of international humanitarian law, and international criminal law alongside additional material on international economic law.
Nonlinear Binormal Flow of Vortex Filaments
Strong, Scott; Carr, Lincoln
2015-11-01
With the current advances in vortex imaging of Bose-Einstein condensates occurring at the Universities of Arizona, São Paulo and Cambridge, interest in vortex filament dynamics is experiencing a resurgence. Recent simulations, Salman (2013), depict dissipative mechanisms resulting from vortex ring emissions and Kelvin wave generation associated with vortex self-intersections. As the local induction approximation fails to capture reconnection events, it lacks a similar dissipative mechanism. On the other hand, Strong&Carr (2012) showed that the exact representation of the velocity field induced by a curved segment of vortex contains higher-order corrections expressed in powers of curvature. This nonlinear binormal flow can be transformed, Hasimoto (1972), into a fully nonlinear equation of Schrödinger type. Continued transformation, Madelung (1926), reveals that the filament's square curvature obeys a quasilinear scalar conservation law with source term. This implies a broader range of filament dynamics than is possible with the integrable linear binormal flow. In this talk we show the affect higher-order corrections have on filament dynamics and discuss physical scales for which they may be witnessed in future experiments. Partially supported by NSF.
Additive versus multiplicative muon conservation
International Nuclear Information System (INIS)
Nemethy, P.
1981-01-01
Experimental elucidation of the question of muon conservation is reviewed. It is shown that neutral-current experiments have not yet yielded information about muonium-antimuonium conversion at the weak-interaction level and that all the charged-current experiments agree that there is no evidence for a multiplicative law. The best limits, from the muon-decay neutrino experiment at LAMPF and from the inverse muon-decay experiment in the CERN neutrino beam, definitely exclude multiplicative law schemes with a branching ratio R approximately 1/2. It is concluded that unless the dynamics conspire to make a multiplicative law with very small R it would appear that muon conservation obeys conserved additive lepton flavor law. (U.K.)
Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús
2018-01-01
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...
Environmental law. 2. rev. and enl. ed.; Umweltrecht
Energy Technology Data Exchange (ETDEWEB)
Erbguth, W. [Rostock Univ. (Germany); Schlacke, S. [Bremen Univ. (Germany)
2008-07-01
The text book under consideration is addressed to students of jurisprudence. It enables an entrance into the general environment law and into selected areas of the special environment law in a clear and systematic form. After an introduction of fundamental principles of the environment law, the book consists of the following topics: Basic principles of the environment law; environmental constitutional law; instruments of the environment law; legal protection in the environment law; environmental European right; environmental international law; pollution protection law; wilderness protection act and landscape conservation act, water protection right, act on recycling and waste management, soil conservation law and contaminated site law, genetic engineering law, sea environment law for the protection of the North Sea and Baltic Sea, energy right.
Hayat, T.; Ullah, Siraj; Khan, M. Ijaz; Alsaedi, A.; Zaigham Zia, Q. M.
2018-03-01
Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy's law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Directory of Open Access Journals (Sweden)
PATRICIO F. PELLET
2005-03-01
Full Text Available El 99,8 % del territorio donde se sustenta la biodiversidad es rural y ha estado tradicionalmente regulado por legislación dispersa, sectorial e inorgánica. La legislación moderna, más holística, como la Ley de Bases Generales del Medio Ambiente adolece de imperfecciones relacionadas con la vigencia, la interpretación y, sobre todo, el que la ley se haga cumplir. En este trabajo argumentamos que la aplicación de modelos tomados de la literatura ecológica buscando apoyar la biología de conservación puede ser complementada fuertemente si es acompañada de una medición de la superficie territorial (cantidad y distribución en el espacio efectivamente afectada por la legislación vigente de protección ambiental. Nuestro trabajo intenta dar respuesta a la pregunta ¿cuánto es lo que efectivamente, en superficie, queda protegido si se hace cumplir la ley? Para esto hemos expresado cartográficamente textos legales relacionados con el bosque nativo, analizamos la complejidad y los efectos de su aplicación y demostramos que basta hacer cumplir la ley para asegurar un mínimo en que, además de aumentar la superficie protegida, aumenta la conectividad y cambian los patrones de fragmentación. La metodología muestra claras ventajas relacionadas con su aplicación para el monitoreo, planificación y control de efectividad de programas socialesAbout 99.8 % of the land sustaining biodiversity in Chile is rural and regulated by legislation, which has been qualified as disperse, too specific or inorganic. Even though modern legislation like (Chilean Law of Environmental Basis tends to be more holistic in nature, serious imperfections connected with applicability, interpretation and, mainly enforcement still prevails. We argue here that any search for, or application of, ecological models as a support for conservation biology could be strongly complemented by a measurement of the land surface (amount and spatial distribution effectively affected
International Nuclear Information System (INIS)
Kloepfer, M.
1989-01-01
This comprehensive reference book on environmental law and practice also is a valuable textbook for students specializing in the field. The entire law on pollution control and environmental protection is presented in an intelligent system, covering the latest developments in the Federal and Land legislation, public environmental law, and the related provisions in the fields of civil law and criminal law. The national survey is rounded up by information concerning the international environmental law, environmental law of the European Communities, and of other foreign countries as e.g. Austria and Switzerland. The author also reviews conditions in neighbouring fields such as technology and labour law, environmental economy, environmental policy. Special attention is given to current topics, as e.g. relating to genetic engineering, disused landfills or industrial sites, soil protection, transport of hazardous goods, liability for damage to forests, atomic energy law, and radiation protection law. The latest publishing dates of literature and court decisions considered in the book are in the first months of 1989. (RST) [de
National Research Council Canada - National Science Library
Drazin, P. G
1992-01-01
This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...
Gasinski, Leszek
2005-01-01
Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.
Drikakis, D.
2002-07-01
The paper describes the use of numerical methods for hyperbolic conservation laws as an embedded turbulence modelling approach. Different Godunov-type schemes are utilized in computations of Burgers' turbulence and a two-dimensional mixing layer. The schemes include a total variation diminishing, characteristic-based scheme which is developed in this paper using the flux limiter approach. The embedded turbulence modelling property of the above methods is demonstrated through coarsely resolved large eddy simulations with and without subgrid scale models. Copyright
International Nuclear Information System (INIS)
Triffterer, O.
1980-01-01
In the draft proposed by the legal advisory board the law for the controlling of environmental criminality was promulgated on 28th March 1980. The present commentary therefore - as seen from the results - corresponds in essential to the original assessment of the governmental draft. However, an introduction into the problems of environmental law precedes this commentary for the better unterstanding of all those not acquainted with pollution law and the whole legal matter. (orig./HP) [de
International Nuclear Information System (INIS)
Karastoyanov, A.
1990-01-01
The relativistic law of momentum transformation shows that the sum of momenta of even isolated particles is not invariable in all inertial reference systems. This is connected with the relativistic change of kinetic energy and mass of a system of particles in result of internal interactions. The paper proposes a short and simple proof on the necessity of potential momentum. The momentum conservation law (for all interactions in the Minkowski world) is expressed in a generalized form. The constancy of the sum of kinetic and potential momentum of closed system of particles is shown. The energy conservation is a necessary condition. The potential momentum is defined as usual (e.g. as in the Berkeley Physics Course). (author). 13 refs
Eliazar, Iddo
2017-11-01
Aging means that as things grow old their remaining expected lifetimes lessen. Either faster or slower, most of the things we encounter in our everyday lives age with time. However, there are things that do quite the opposite - they anti-age: as they grow old their remaining expected lifetimes increase rather than decrease. A quantitative formulation of anti-aging is given by the so-called ;Lindy's Law;. In this paper we explore Lindy's Law and its connections to Pareto's Law, to Zipf's Law, and to socioeconomic inequality.
Nonlinear optics principles and applications
Li, Chunfei
2017-01-01
This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...
Elementary derivation of Kepler's laws
International Nuclear Information System (INIS)
Vogt, E.
1995-02-01
A simple derivation of all three so-called Kepler Laws is presented in which the orbits, bound and unbound, follow directly and immediately from conservation of energy and angular momentum. The intent is to make this crowning achievement of Newtonian Mechanics easily accessible to students in introductory physics courses. The method is also extended to simplify the derivation of the Rutherford Scattering Law. (author). 4 refs., 3 figs
International Nuclear Information System (INIS)
2016-01-01
This section treats of the following case laws: 1 - Case Law France: Conseil d'etat decision, 22 February 2016, EDF v. Republic and Canton of Geneva relative to the Bugey nuclear power plant (No. 373516); United States: Brodsky v. US Nuclear Regulatory Commission, 650 Fed. Appx. 804 (2. Cir. 2016)
Manitoba Dept. of Education, Winnipeg.
This publication outlines a law course intended as part of a business education program in the secondary schools of Manitoba, Canada. The one credit course of study should be taught over a period of 110-120 hours of instruction. It provides students with an introduction to the principles, practices, and consequences of law with regard to torts,…
International Nuclear Information System (INIS)
Vakhnenko, Oleksiy O.; Vakhnenko, Vyacheslav O.
2014-01-01
The new integrable semidiscrete multicomponent nonlinear system characterized by two coupling parameters is presented. Relying upon the lowest local conservation laws the concise form of the system is given and its selfconsistent symmetric parametrization in terms of four independent field variables is found. The comprehensive analysis of quartic dispersion equation for the system low-amplitude excitations is made. The criteria distinguishing the domains of stability and instability of low-amplitude excitations are formulated and a collection of qualitatively distinct realizations of a dispersion law are graphically presented. The loop-like structure of a low-amplitude dispersion law of reduced system emerging within certain windows of adjustable coupling parameter turns out to resemble the loop-like structure of a dispersion law typical of beam-plasma oscillations. Basing on the peculiarities of low-amplitude dispersion law as the function of adjustable coupling parameter it is possible to predict the windows of spontaneous symmetry breaking even without an explicit knowledge of the system Lagrangian function. Having been rewritten in terms of properly chosen modified field variables the reduced four wave integrable system can be qualified as consisting of two coupled nonlinear lattice subsystems, namely the self-dual ladder network and the vibrational ones
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...
Time-dependent nonlinear cosmic ray shocks confirming abstract
International Nuclear Information System (INIS)
Dorfi, E.A.
1985-01-01
Numerical studies of time dependent cosmic ray shock structures in planar geometry are interesting because analytical time-independent solutions are available which include the non-linear reactions on the plasma flow. A feature of these time asymptotic solutions is that for higher Mach numbers (M approximately 5) and for a low cosmic ray upstream pressure the solution is not uniquely determined by the usual conservation laws of mass, momentum and energy. These numerical solutions clearly indicate that much work needs to be done before we understand shock acceleration as a time dependent process. The slowness of the process is possibly due to the fact that there is a diffusive flux into the downstream region in addition to the usual advective losses. Analytic investigations of this phenomenon are required
Thermal conductivity in one-dimensional nonlinear systems
Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo
2000-03-01
Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.
Nonlinear wave-beam kinetic equilibrium in decelerating systems
International Nuclear Information System (INIS)
Grishin, V.K.; Shaposhnikova, E.N.
1981-01-01
The equilibrium state of the wave-beam system arising during the interaction of a particle beam and excited electromagnetic wave has been investigated on the basis of the analysis of the exact polution of a non-linear self-consistent linear equation using the complete system of conservation laws. A waveguide with a dielectric filler, into which a monoenergetic particle beam magnetized in a transverse plane is continuously injected, is used as a model of an decelerating system. A dispersion equation describing the system state and expression for the evaluation of efficiency of the beam energy conversion to the field energy have been obtained. It is concluded that larae fields and high efficiency of energy conversion are achieved during the marked beam reconstruction. States with different values of current and beam velocity but similar amplitudes of a longitudinal field are possible in the system considered [ru
INTERFERENCES OF THE ENVIRONMENTAL LAW WITH THE URBAN LAW
Directory of Open Access Journals (Sweden)
Elena IFTIME
2014-06-01
Full Text Available Addressing the large, complex issue of influences that urbanization can have on the environment, requires first of all, some general considerations on the interferences between the urban law and the environmental law. The urban law investigates and regulates the affecting and planning of the urban space. Therefore, this type of regulations are at the interference with the environmental law , which, inter alia , deals with the protection and conservation of the environment in the urban settlements, in the built space and also the ecological deployment of the activities in this space. The interaction between the two is becoming increasingly important especially when the urban law is increasingly correlated with the environmental protection, the natural space and the ecological activities.
DEFF Research Database (Denmark)
Sadl, Urska
2013-01-01
Reasoning of the Court of Justice of the European Union – Constr uction of arguments in the case-law of the Court – Citation technique – The use of formulas to transform case-law into ‘law’ – ‘Formulaic style’ – European citizenship as a fundamental status – Ruiz Zambrano – Reasoning from...
Nonlinear adaptive PID control for greenhouse environment based on RBF network.
Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui
2012-01-01
This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.
Thermodynamic instability of nonlinearly charged black holes in gravity's rainbow
Energy Technology Data Exchange (ETDEWEB)
Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Panahiyan, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Panah, B.E.; Momennia, M. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2016-03-15
Motivated by the violation of Lorentz invariance in quantum gravity, we study black hole solutions in gravity's rainbow in the context of Einstein gravity coupled with various models of nonlinear electrodynamics. We regard an energy dependent spacetime and obtain the related metric functions and electric fields. We show that there is an essential singularity at the origin which is covered by an event horizon. We also compute the conserved and thermodynamical quantities and examine the validity of the first law of thermodynamics in the presence of rainbow functions. Finally, we investigate the thermal stability conditions for these black hole solutions in the context of canonical ensemble. We show that the thermodynamical structure of the solutions depends on the choices of nonlinearity parameters, charge, and energy functions. (orig.)
Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field
Moawad, S. M.; Moawad
2013-10-01
The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.
The Earth, the Moon and Conservation of Momentum
Brunt, Marjorie; Brunt, Geoff
2013-01-01
We consider the application of both conservation of momentum and Newton's laws to the Moon in an assumed circular orbit about the Earth. The inadequacy of some texts in applying Newton's laws is considered.
Time series with tailored nonlinearities
Räth, C.; Laut, I.
2015-10-01
It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.
International Nuclear Information System (INIS)
Pascal, Maurice.
1979-01-01
This book on nuclear law is the first of a series of analytical studies to be published by the French Energy Commission (CEA) concerning all the various nuclear activities. It describes national and international legislation applicable in France covering the following main sectors: the licensing procedure for nuclear installations, the law of the sea and nuclear law, the legal system governing radioisotopes, the transport of radioactive materials, third party liability and insurance and radiation protection. In each chapter, the overall analysis is supplemented by the relevant regulatory texts and by organisation charts in annex. (NEA) [fr
Tisdell, Clement A.
2010-01-01
This paper outlines the significance of the concept of conservation value and discusses ways in which it is determined paying attention to views stemming from utilitarian ethics and from deontological ethics. The importance of user costs in relation to economic decisions about the conservation and use of natural resources is emphasised. Particular attention is given to competing views about the importance of conserving natural resources in order to achieve economic sustainability. This then l...
Doranda Maracineanu
2009-01-01
The law system of a State represents the body of rules passed or recognized by that State inorder to regulate the social relationships, rules that must be freely obeyed by their recipients, otherwisethe State intervening with its coercive power. Throughout the development of the society, pedants havebeen particularly interested in the issue of law systems, each supporting various classifications; theclassification that has remained is the one distinguishing between the Anglo-Saxon, the Roman-...
Nonlinear waves and weak turbulence
Zakharov, V E
1997-01-01
This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincaré normal forms, and the inverse scattering method.