Asymptotic stability for a class of boundary control systems with non-linear damping
Zwart, Heiko J.; Ramirez, Hector; Le Gorrec, Yann
2016-01-01
The asymptotic stability of boundary controlled port-Hamiltonian systems defined on a 1D spatial domain interconnected to a class of non-linear boundary damping is addressed. It is shown that if the port-Hamiltonian system is approximately observable, then any boundary damping which behaves linear
Asymptotic stability for a class of boundary control systems with non-linear damping
Zwart, Heiko J.; Ramirez, Hector; Le Gorrec, Yann
2016-01-01
The asymptotic stability of boundary controlled port-Hamiltonian systems defined on a 1D spatial domain interconnected to a class of non-linear boundary damping is addressed. It is shown that if the port-Hamiltonian system is approximately observable, then any boundary damping which behaves linear for small velocities asymptotically stabilizes the system.
INITIAL BOUNDARY VALUE PROBLEM FOR A DAMPED NONLINEAR HYPERBOLIC EQUATION
Institute of Scientific and Technical Information of China (English)
陈国旺
2003-01-01
In the paper, the existence and uniqueness of the generalized global solution and the classical global solution of the initial boundary value problems for the nonlinear hyperbolic equationare proved by Galerkin method and the sufficient conditions of blow-up of solution in finite time are given.
Attractor of Beam Equation with Structural Damping under Nonlinear Boundary Conditions
Directory of Open Access Journals (Sweden)
Danxia Wang
2015-01-01
Full Text Available Simultaneously, considering the viscous effect of material, damping of medium, and rotational inertia, we study a kind of more general Kirchhoff-type extensible beam equation utt-uxxtt+uxxxx-σ(∫0l(ux2dxuxx-ϕ(∫0l(ux2dxuxxt=q(x, in [0,L]×R+ with the structural damping and the rotational inertia term. Little attention is paid to the longtime behavior of the beam equation under nonlinear boundary conditions. In this paper, under nonlinear boundary conditions, we prove not only the existence and uniqueness of global solutions by prior estimates combined with some inequality skills, but also the existence of a global attractor by the existence of an absorbing set and asymptotic compactness of corresponding solution semigroup. In addition, the same results also can be proved under the other nonlinear boundary conditions.
Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions
Jameson Graber, P.; Shomberg, Joseph L.
2016-04-01
We establish the well-posedness of a strongly damped semilinear wave equation equipped with nonlinear hyperbolic dynamic boundary conditions. Results are carried out with the presence of a parameter distinguishing whether the underlying operator is analytic, α >0 , or only of Gevrey class, α =0 . We establish the existence of a global attractor for each α \\in ≤ft[0,1\\right], and we show that the family of global attractors is upper-semicontinuous as α \\to 0. Furthermore, for each α \\in ≤ft[0,1\\right] , we show the existence of a weak exponential attractor. A weak exponential attractor is a finite dimensional compact set in the weak topology of the phase space. This result ensures the corresponding global attractor also possesses finite fractal dimension in the weak topology; moreover, the dimension is independent of the perturbation parameter α. In both settings, attractors are found under minimal assumptions on the nonlinear terms.
Said-Houari, Belkacem
2012-09-01
The goal of this work is to study a model of the viscoelastic wave equation with nonlinear boundary/interior sources and a nonlinear interior damping. First, applying the Faedo-Galerkin approximations combined with the compactness method to obtain existence of regular global solutions to an auxiliary problem with globally Lipschitz source terms and with initial data in the potential well. It is important to emphasize that it is not possible to consider density arguments to pass from regular to weak solutions if one considers regular solutions of our problem where the source terms are locally Lipschitz functions. To overcome this difficulty, we use an approximation method involving truncated sources and adapting the ideas in [13] to show that the existence of weak solutions can still be obtained for our problem. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term, then the solution ceases to exist and blows up in finite time provided that the initial data are large enough.
Nonlinear theory of magnetic Landau damping
Energy Technology Data Exchange (ETDEWEB)
Kirpichnikov, A.P.; Yusupov, I.U.
1978-05-01
The nonlinear Cerenkov damping of helical electromagnetic waves in a magnetized plasma is analyzed. The nonlinear mechanism which leads to oscillations in the wave amplitude and limits the damping is the trapping of resonant particles in the potential well of the wave, as in the O'Neil problem. The factors of the type exp (-..cap alpha..t/sup 2/) in the expression for the nonlinear damping rate for a Maxwellian particle distribution lead to a damping of the amplitude oscillations of the helical wave which is much more rapid than for a plasma wave.
Nonlinear damping identification from transient data
Smith, Clifford B.; Wereley, Norman M.
1999-06-01
To study new damping augmentation methods for helicopter rotor systems, accurate and reliable nonlinear damping identification techniques are needed. For example, current studies on applications of magnetorheological (MR) dampers for rotor stability augmentation suggest that a strong Coulomb damping characteristic will be manifested as the field applied to the MR fluid is maximized. Therefore, in this work, a single degree of freedom (SDOF) system having either nonlinear Coulomb or quadratic damping is considered. This paper evaluates three analyses for identifying damping from transient test data; an FFT-based moving block analysis, an analysis based on a periodic Fourier series decomposition, and a Hilbert transform based technique. Analytical studies are used to determine the effects of block length, noise, and error in identified modal frequency on the accuracy of the identified damping level. The FFT-based moving block has unacceptable performance for systems with nonlinear damping. These problems were remedied in the Fourier series based analysis and acceptable performance is obtained for nonlinear damping identification from both this technique and the Hilbert transform based method. To more closely simulate a helicopter rotor system test, these techniques were then applied to a signal composed of two closely spaced modes. This data was developed to simulate a response containing the first lag and 1/rev modes. The primary mode of interest (simulated lag mode) had either Coulomb or quadratic damping, and the close mode (1/rev) was either undamped or had a specified viscous damping level. A comprehensive evaluation of the effects of close mode amplitude, frequency, and damping level was performed. A classifier was also developed to identify the dominant damping mechanism in a signal of 'unknown' composition. This classifier is based on the LMS error of a fit of the analytical envelope expression to the experimentally identified envelope signal. In most
Simplified Model of Nonlinear Landau Damping
Energy Technology Data Exchange (ETDEWEB)
N. A. Yampolsky and N. J. Fisch
2009-07-16
The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.
Analysis of nonlinear damping properties of carbon
Kazakova, Olga I.; Smolin, Igor Yu.; Bezmozgiy, Iosif M.
2016-11-01
This paper describes research results of nonlinear damping properties of carbon fiber reinforced plastics. The experimental and computational research is performed on flat composite specimens with the gradual structure complication (from 1 to 12 layers). Specimens are subjected to three types of testing which are modal, harmonic and transient analyses. Relationships between the amplitude response and damping ratio are obtained by means of the analysis of variance as the result of this research.
Nonlinear Landau damping of Alfven waves.
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
The Nonlinear Spatial Damping Rate in QGP
Jiarong, L
1998-01-01
The derivative expansion method has been used to solve the semiclassical kinetic equations of quark-gluon plasma (QGP). The nonlinear spatial damping rate, the imaginary part of the wave vector, for the longitudinal secondary color waves in the long wavelength limit has been calculated numerically.
Nonlinear Landau damping and Alfven wave dissipation
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Nonlinear Landau damping in quark-gluon plasma
Xiaofei, Zhang; Jiarong, Li
1995-08-01
The semiclassical kinetic equations for the quark-gluon plasma (QGP) are discussed by the multiple time-scale method. The mechanism of nonlinear Landau damping owing to non-Abelian and nonlinear wave-particle interactions in QGP is investigated, and the nonlinear Landau damping rate for the longitudinal color eigenwaves in the long-wavelength limit is calculated.
EXISTENCE OF TIME PERIODIC SOLUTIONS FOR A DAMPED GENERALIZED COUPLED NONLINEAR WAVE EQUATIONS
Institute of Scientific and Technical Information of China (English)
房少梅; 郭柏灵
2003-01-01
The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time periodic solutions, a priori estimate and Laray-Schauder fixed point theorem to prove the convergence of the approximate solutions, the existence of time periodic solutions for a damped generalized coupled nonlinear wave equations can be obtained.
The structural damping of composite beams with tapered boundaries
Coni, M.; Benchekchou, B.; White, R. G.
1994-11-01
Most metallic and composite structures of conventional construction are lightly damped. It is obviously advantageous, in terms of response to in-service dynamic loading, if damping can be increased with minimal weight addition. This report describes finite element analyses and complementary experiments carried out on composite, carbon fiber reinforced plastic, beams with tapered boundaries composed of layers of highly damped composite material. It is shown that modal damping of the structure may be significantly increased by this method.
Nonlinear Landau damping in the ionosphere
Kiwamoto, Y.; Benson, R. F.
1979-01-01
A model which explains the nonresonant waves which produce the diffuse resonance observed near 3/2 f(H) by the Alouette and Isis topside sounders, where f(H) is the ambient electron cyclotron frequency, is presented. These waves are the result of plasma wave instabilities driven by anisotropic electron velocity distributions initiated by the high-power short-duration sounder pulse. Calculations of the nonlinear wave-particle coupling coefficients show that the diffuse resonance wave can be maintained by nonlinear Landau damping of the sounder-stimulated 2f(H) wave which is observed with a time duration longer than that of the diffuse resonance wave. The time duration of the diffuse resonance is determined by the transit time of the instability-generated and nonlinearly maintained diffuse resonance wave from the remote short-lived hot region back to the antenna. The model is consistent with the Alouette/Isis observations and it demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.
BOUNDARY LAYER AND VANISHING DIFFUSION LIMIT FOR NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
彭艳
2014-01-01
In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameterαgoes to zero.
Notes on the nonlinear beam dynamics with strong damping in the CLIC Damping Ring
Levichev, Eugene; Shatilov, Dmitry
2010-01-01
The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear dependence of the betatron tune on the amplitude. This nonlinearity is produced by the strong chromatic sextupoles, wiggler nonlinear field components and, again, by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping for the original lattice of the CLIC DR (May 2005). Geneva, Switzerland June 2010 CLIC – Note – 850
Nonlinear damped Schrodinger equation in two space dimensions
Directory of Open Access Journals (Sweden)
Tarek Saanouni
2015-04-01
Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.
Uniform Stability of Damped Nonlinear Vibrations of an Elastic String
Indian Academy of Sciences (India)
Ganesh C Gorain; Sujit K Bose
2003-11-01
Here we are concerned about uniform stability of damped nonlinear transverse vibrations of an elastic string fixed at its two ends. The vibrations governed by nonlinear integro-differential equation of Kirchoff type, is shown to possess energy uniformly bounded by exponentially decaying function of time. The result is achieved by considering an energy-like Lyapunov functional for the system.
Inverse design of nonlinearity in energy harvesters for optimum damping
Ghandchi Tehrani, Maryam; Elliott, S. J.
2016-09-01
This paper presents the inverse design method for the nonlinearity in an energy harvester in order to achieve an optimum damping. A single degree-of-freedom electromechanical oscillator is considered as an energy harvester, which is subjected to a harmonic base excitation. The harvester has a limited throw due to the physical constraint of the device, which means that the amplitude of the relative displacement between the mass of the harvester and the base cannot exceed a threshold when the device is driven at resonance and beyond a particular amplitude. This physical constraint requires the damping of the harvester to be adjusted for different excitation amplitudes, such that the relative displacement is controlled and maintained below the limit. For example, the damping can be increased to reduce the amplitude of the relative displacement. For high excitation amplitudes, the optimum damping is, therefore, dependent on the amplitude of the base excitation, and can be synthesised by a nonlinear function. In this paper, a nonlinear function in the form of a bilinear is considered to represent the damping model of the device. A numerical optimisation using Matlab is carried out to fit a curve to the amplitude-dependent damping in order to determine the optimum bilinear model. The nonlinear damping is then used in the time-domain simulations and the relative displacement and the average harvested power are obtained. It is demonstrated that the proposed nonlinear damping can maintain the relative displacement of the harvester at its maximum level for a wide range of excitation, therefore providing the optimum condition for power harvesting.
Nonlinear damping calculation in cylindrical gear dynamic modeling
Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc
2012-04-01
The nonlinear dynamic problem posed by cylindrical gear systems has been extensively covered in the literature. Nonetheless, a significant proportion of the mechanisms involved in damping generation remains to be investigated and described. The main objective of this study is to contribute to this task. Overall, damping is assumed to consist of three sources: surrounding element contribution, hysteresis of the teeth, and oil squeeze damping. The first two contributions are considered to be commensurate with the supported load; for its part however, squeeze damping is formulated using expressions developed from the Reynolds equation. A lubricated impact analysis between the teeth is introduced in this study for the minimum film thickness calculation during contact losses. The dynamic transmission error (DTE) obtained from the final model showed close agreement with experimental measurements available in the literature. The nonlinear damping ratio calculated at different mesh frequencies and torque amplitudes presented average values between 5.3 percent and 8 percent, which is comparable to the constant 8 percent ratio used in published numerical simulations of an equivalent gear pair. A close analysis of the oil squeeze damping evidenced the inverse relationship between this damping effect and the applied load.
Exponential Attractor for the Boussinesq Equation with Strong Damping and Clamped Boundary Condition
Fan Geng; Ruizhai Li; Xiaojun Zhang; Xiangyu Ge
2016-01-01
The paper studies the existence of exponential attractor for the Boussinesq equation with strong damping and clamped boundary condition utt-Δu+Δ2u-Δut-Δg(u)=f(x). The main result is concerned with nonlinearities g(u) with supercritical growth. In that case, we construct a bounded absorbing set with further regularity and obtain quasi-stability estimates. Then the exponential attractor is established in natural energy space V2×H.
Nonlinear Dynamics of A Damped Magnetic Oscillator
Kim, S Y
1999-01-01
We consider a damped magnetic oscillator, consisting of a permanent magnet in a periodically oscillating magnetic field. A detailed investigation of the dynamics of this dissipative magnetic system is made by varying the field amplitude $A$. As $A$ is increased, the damped magnetic oscillator, albeit simple looking, exhibits rich dynamical behaviors such as symmetry-breaking pitchfork bifurcations, period-doubling transitions to chaos, symmetry-restoring attractor-merging crises, and saddle-node bifurcations giving rise to new periodic attractors. Besides these familiar behaviors, a cascade of ``resurrections'' (i.e., an infinite sequence of alternating restabilizations and destabilizations) of the stationary points also occurs. It is found that the stationary points restabilize (destabilize) through alternating subcritical (supercritical) period-doubling and pitchfork bifurcations. We also discuss the critical behaviors in the period-doubling cascades.
Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach
2012-01-01
The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the...
Forced wave motion with internal and boundary damping.
Louw, Tobias; Whitney, Scott; Subramanian, Anu; Viljoen, Hendrik
2012-01-01
A d'Alembert-based solution of forced wave motion with internal and boundary damping is presented with the specific intention of investigating the transient response. The dynamic boundary condition is a convenient method to model the absorption and reflection effects of an interface without considering coupled PDE's. Problems with boundary condition of the form [Formula: see text] are not self-adjoint which greatly complicates solution by spectral analysis. However, exact solutions are found with d'Alembert's method. Solutions are also derived for a time-harmonically forced problem with internal damping and are used to investigate the effect of ultrasound in a bioreactor, particularly the amount of energy delivered to cultured cells. The concise form of the solution simplifies the analysis of acoustic field problems.
Quantum corrections to nonlinear ion acoustic wave with Landau damping
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)
2014-07-15
Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.
The Nonlinear Landau Damping Rate of a Driven Plasma Wave
Energy Technology Data Exchange (ETDEWEB)
Benisti, D; Strozzi, D J; Gremillet, L; Morice, O
2009-08-04
In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
Nonlinear echoes and Landau damping with insufficient regularity
Bedrossian, Jacob
2016-01-01
We prove that the theorem of Mouhot and Villani on Landau damping near equilibrium for the Vlasov-Poisson equations on $\\mathbb T \\times \\mathbb R$ cannot, in general, be extended to Sobolev spaces. This is demonstrated by constructing a sequence of homogeneous background distributions and arbitrarily small perturbations in $H^s$ which deviate arbitrarily far from free transport for long times (in a sense to be made precise). The density experiences a sequence of nonlinear oscillations that damp at a rate which is arbitrarily slow compared to the predictions of the linearized Vlasov equations. The nonlinear instability is due to the repeated re-excitation of a resonance known as a plasma echo. The results hold for a specific, small background distribution, but include both electrostatic and gravitational interactions.
Damping of nonlinear standing kink oscillations: a numerical study
Magyar, N
2016-01-01
We aim to study the standing fundamental kink mode of coronal loops in the nonlinear regime, investigating the changes in energy evolution in the cross-section and oscillation amplitude of the loop which are related to nonlinear effects, in particular to the development of the Kelvin-Helmholtz instability (KHI). We run idea, high-resolution three-dimensional (3D) magnetohydrodynamics (MHD) simulations, studying the influence of the initial velocity amplitude and the inhomogeneous layer thickness. We model the coronal loop as a straight, homogeneous magnetic flux tube with an outer inhomogeneous layer, embedded in a straight, homogeneous magnetic field. We find that, for low amplitudes which do not allow for the KHI to develop during the simulated time, the damping time agrees with the theory of resonant absorption. However, for higher amplitudes, the presence of KHI around the oscillating loop can alter the loop's evolution, resulting in a significantly faster damping than predicted by the linear theory in so...
Quadratic and Cubic Nonlinear Oscillators with Damping and Their Applications
Li, Jibin; Feng, Zhaosheng
We apply the qualitative theory of dynamical systems to study exact solutions and the dynamics of quadratic and cubic nonlinear oscillators with damping. Under certain parametric conditions, we also consider the van der Waals normal form, Chaffee-Infante equation, compound Burgers-KdV equation and Burgers-KdV equation for explicit representations of kink-profile wave solutions and unbounded traveling wave solutions.
Conservation laws of inviscid Burgers equation with nonlinear damping
Abdulwahhab, Muhammad Alim
2014-06-01
In this paper, the new conservation theorem presented in Ibragimov (2007) [14] is used to find conservation laws of the inviscid Burgers equation with nonlinear damping ut+g(u)ux+λh(u)=0. We show that this equation is both quasi self-adjoint and self-adjoint, and use these concepts to simplify conserved quantities for various choices of g(u) and h(u).
Oscillation criteria for nonlinear fractional differential equation with damping term
Directory of Open Access Journals (Sweden)
Bayram Mustafa
2016-01-01
Full Text Available In this paper, we study the oscillation of solutions to a non-linear fractional differential equation with damping term. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. By using a variable transformation, a generalized Riccati transformation, inequalities, and integration average techniquewe establish new oscillation criteria for the fractional differential equation. Several illustrative examples are also given.
Estimation on nonlinear damping in second order distributed parameter systems
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1989-01-01
An approximation and convergence theory for the identification of nonlinear damping in abstract wave equations is developed. It is assumed that the unknown dissipation mechanism to be identified can be described by a maximal monotone operator acting on the generalized velocity. The stiffness is assumed to be linear and symmetric. Functional analytic techniques are used to establish that solutions to a sequence of finite dimensional (Galerkin) approximating identification problems in some sense approximate a solution to the original infinite dimensional inverse problem.
Nonlinear-damping continuation of the nonlinear Schr\\"odinger equation - a numerical study
Fibich, G
2011-01-01
We study the nonlinear-damping continuation of singular solutions of the critical and supercritical NLS. Our simulations suggest that for generic initial conditions that lead to collapse in the undamped NLS, the solution of the weakly-damped NLS $$ i\\psi_t(t,\\X)+\\Delta\\psi+|\\psi|^{p-1}\\psi+i\\delta|\\psi|^{q-1}\\psi=0,\\qquad0<\\delta \\ll 1, $$ is highly asymmetric with respect to the singularity time, and the post-collapse defocusing velocity of the singular core goes to infinity as the damping coefficient $\\delta$ goes to zero. In the special case of the minimal-power blowup solutions of the critical NLS, the continuation is a minimal-power solution with a higher (but finite) defocusing velocity, whose magnitude increases monotonically with the nonlinear damping exponent $q$.
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim
1996-01-01
We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schrodinger equation (NLS). Using a collective approach, we find that for initial conditions where total collapse occurs in the unperturbed NLS, the presence of the damping term will instead in an exponenti......We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schrodinger equation (NLS). Using a collective approach, we find that for initial conditions where total collapse occurs in the unperturbed NLS, the presence of the damping term will instead...
Critical exponent for damped wave equations with nonlinear memory
Fino, Ahmad
2010-01-01
We consider the Cauchy problem in $\\mathbb{R}^n,$ $n\\geq 1,$ for a semilinear damped wave equation with nonlinear memory. Global existence and asymptotic behavior as $t\\to\\infty$ of small data solutions have been established in the case when $1\\leq n\\leq3.$ Moreover, we derive a blow-up result under some positive data for in any dimensional space. It turns out that the critical exponent indeed coincides with the one to the corresponding semilinear heat equation.
Boundary induced nonlinearities at small Reynolds numbers
Sbragaglia, M.; Sugiyama, K.
2007-01-01
We investigate the importance of boundary slip at finite Reynolds numbers for mixed boundary conditions. Nonlinear effects are induced by the non-homogeneity of the boundary condition and change the symmetry properties of the flow with an overall mean flow reduction. To explain the observed drag
Conformal structure-preserving method for damped nonlinear Schrödinger equation
Fu, Hao; Zhou, Wei-En; Qian, Xu; Song, Song-He; Zhang, Li-Ying
2016-11-01
In this paper, we propose a conformal momentum-preserving method to solve a damped nonlinear Schrödinger (DNLS) equation. Based on its damped multi-symplectic formulation, the DNLS system can be split into a Hamiltonian part and a dissipative part. For the Hamiltonian part, the average vector field (AVF) method and implicit midpoint method are employed in spatial and temporal discretizations, respectively. For the dissipative part, we can solve it exactly. The proposed method conserves the conformal momentum conservation law in any local time-space region. With periodic boundary conditions, this method also preserves the total conformal momentum and the dissipation rate of momentum exactly. Numerical experiments are presented to demonstrate the conservative properties of the proposed method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11571366, 11501570, and 11601514) and the Open Foundation of State Key Laboratory of High Performance Computing of China (Grant No. JC15-02-02).
Goodrich, John W.
2017-01-01
This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].
Boundary Controllability of Nonlinear Fractional Integrodifferential Systems
Directory of Open Access Journals (Sweden)
Ahmed HamdyM
2010-01-01
Full Text Available Sufficient conditions for boundary controllability of nonlinear fractional integrodifferential systems in Banach space are established. The results are obtained by using fixed point theorems. We also give an application for integropartial differential equations of fractional order.
Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach
Directory of Open Access Journals (Sweden)
S. L. Han
2012-01-01
Full Text Available The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the information insufficiency in parameter of interests or errors in measurement. The probability space is estimated using Markov chain Monte Carlo (MCMC. The applicability of the proposed method is demonstrated through numerical experiment and particular application to a realistic problem related to ship roll motion.
The nonlinear fixed gravimetric boundary value problem
Institute of Scientific and Technical Information of China (English)
于锦海; 朱灼文
1995-01-01
The properly-posedness of the nonlinear fixed gravimetric boundary value problem is shown with the help of nonlinear functional analysis and a new iterative method to solve the problem is also given, where each step of the iterative program is reduced to solving one and the same kind of oblique derivative boundary value problem with the same type. Furthermore, the convergence of the iterative program is proved with Schauder estimate of elliptic differential equation.
Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene
Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A.
2011-06-01
The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes and graphene sheets. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.
Nonlinear Boundary Stabilization of Nonuniform Timoshenko Beam
Institute of Scientific and Technical Information of China (English)
Qing-xu Yan; Hui-chao Zou; De-xing Feng
2003-01-01
In this paper, the stabilization problem of nonuniform Timoshenko beam by some nonlinear boundary feedback controls is considered. By virtue of nonlinear semigroup theory, energy-perturbed approach and exponential multiplier method, it is shown that the vibration of the beam under the proposed control action decays exponentially or in negative power of time t as t →∞.
A new method to solve the damped nonlinear Klein-Gordon equation
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper discusses a damped nonlinear Klein-Gordon equation in the reproducing kernel space and provides a new method for solving the damped nonlinear Klein-Gordon equation based on the reproducing kernel space.Two numerical examples are given for illustrating the feasibility and accuracy of the method.
Landau damping and steepening of interplanetary nonlinear hydromagnetic waves
Barnes, A.; Chao, J. K.
1977-01-01
According to collisionless shock theories, the thickness of a shock front should be of the order of the characteristic lengths of the plasmas (the Debye length, the proton and Larmor radii, etc.). Chao and Lepping (1974), found, however, that 30% of the observed interplanetary shocks at 1 AU have thicknesses much larger than these characteristic lengths. It is the objective of the present paper to investigate whether the competition between nonlinear steepening and Landau damping can result in a wave of finite width that does not steepen into a shock. A heuristic model of such a wave is developed and tested by the examples of two structures that are qualitatively shocklike, but thicker than expected from theory. It is found that both events are in the process of steepening and their limiting thicknesses due to Landau damping are greater than the corresponding proton Larmor radius for both structures as observed at Mariner 5 (nearer the sun than 1 AU) but are comparable to the proton Larmor radius for Explorer (near 1 AU) observations.
Validation of a Hertzian contact model with nonlinear damping
Sierakowski, Adam
2015-11-01
Due to limited spatial resolution, most disperse particle simulation methods rely on simplified models for incorporating short-range particle interactions. In this presentation, we introduce a contact model that combines the Hertz elastic restoring force with a nonlinear damping force, requiring only material properties and no tunable parameters. We have implemented the model in a resolved-particle flow solver that implements the Physalis method, which accurately captures hydrodynamic interactions by analytically enforcing the no-slip condition on the particle surface. We summarize the results of a few numerical studies that suggest the validity of the contact model over a range of particle interaction intensities (i.e., collision Stokes numbers) when compared with experimental data. This work was supported by the National Science Foundation under Grant Number CBET1335965 and the Johns Hopkins University Modeling Complex Systems IGERT program.
Nonlinear interaction of waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1979-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed by using the method of multiple scales. For the case of two waves, a strong nonlinear interaction exists if one of the frequencies w2 is twice the other frequency w1. Numerical results for flow past a flat plate show that this interaction mechanism is strongly destabilizing even in regions where either the fundamental or its harmonic is damped in the absence of the interaction. For the case of three waves, a strong nonlinear interaction exists when w3 = w2- w1. This combination resonance causes the amplitude of the wave with the difference frequency w3 to multiply many times in magnitude in a short distance even if it is damped in the absence of the interaction. The initial amplitudes play a dominant role in determining the changes in the amplitudes of the waves in both of these mechanisms.
Scott, Robert C.; Bartels, Robert E.
2009-01-01
This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.
On aspects of boundary damping for cables and vertical beams
Hijmissen, J.W.
2008-01-01
Elastic structures are susceptible to wind- and earthquake-induced vibrations. These vibrations can damage a structure or cause human discomfort. To suppress structural vibrations, various types of damping mechanisms, active or passive, can be applied. In this thesis the model of a weakly damped, st
Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping
Directory of Open Access Journals (Sweden)
Jieqiong Wu
2015-09-01
Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.
Topological invariants in nonlinear boundary value problems
Energy Technology Data Exchange (ETDEWEB)
Vinagre, Sandra [Departamento de Matematica, Universidade de Evora, Rua Roma-tilde o Ramalho 59, 7000-671 Evora (Portugal)]. E-mail: smv@uevora.pt; Severino, Ricardo [Departamento de Matematica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)]. E-mail: ricardo@math.uminho.pt; Ramos, J. Sousa [Departamento de Matematica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)]. E-mail: sramos@math.ist.utl.pt
2005-07-01
We consider a class of boundary value problems for partial differential equations, whose solutions are, basically, characterized by the iteration of a nonlinear function. We apply methods of symbolic dynamics of discrete bimodal maps in the interval in order to give a topological characterization of its solutions.
Equivalent Representation Form of Oscillators with Elastic and Damping Nonlinear Terms
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
Full Text Available In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others.
Chen, Shao-Tuan; Du, Sijun; Arroyo, Emmanuelle; Jia, Yu; Seshia, Ashwin
2017-10-01
This paper presents a novel application of utilising nonlinear air damping as a soft mechanical stopper to increase the shock reliability for microelectromechanical systems (MEMS) vibration energy harvesters. The theoretical framework for nonlinear air damping is constructed for MEMS vibration energy harvesters operating in different air pressure levels, and characterisation experiments are conducted to establish the relationship between air pressure and nonlinear air damping coefficient for rectangular cantilever MEMS micro cantilevers with different proof masses. Design guidelines on choosing the optimal air pressure level for different MEMS vibration energy harvesters based on the trade-off between harvestable energy and the device robustness are presented, and random excitation experiments are performed to verify the robustness of MEMS vibration energy harvesters with nonlinear air damping as soft stoppers to limit the maximum deflection distance and increase the shock reliability of the device.
Yang, Zhijian; Liu, Zhiming
2017-03-01
The paper investigates the well-posedness and the longtime dynamics of the quasilinear wave equations with structural damping and supercritical nonlinearities: {{u}tt}- Δ u+{{≤ft(- Δ \\right)}α}{{u}t}-\
Equivalent Mathematical Representation of Second-Order Damped, Driven Nonlinear Oscillators
Alex Elías-Zúñiga; Oscar Martínez-Romero
2013-01-01
The aim of this paper focuses on applying a nonlinearization method to transform forced, damped nonlinear equations of motion of oscillatory systems into the well-known forced, damped Duffing equation. The accuracy obtained from the derived equivalent equations of motion is evaluated by studying the amplitude-time, the phase portraits, and the continuous wavelet transform diagrams of the cubic-quintic Duffing equation, the generalized pendulum equation, the power-form elastic term oscillator,...
Saviz, M. R.
2015-11-01
In this paper a nonlinear approach to studying the vibration characteristic of laminated composite plate with surface-bonded piezoelectric layer/patch is formulated, based on the Green Lagrange type of strain-displacements relations, by incorporating higher-order terms arising from nonlinear relations of kinematics into mathematical formulations. The equations of motion are obtained through the energy method, based on Lagrange equations and by using higher-order shear deformation theories with von Karman-type nonlinearities, so that transverse shear strains vanish at the top and bottom surfaces of the plate. An isoparametric finite element model is provided to model the nonlinear dynamics of the smart plate with piezoelectric layer/ patch. Different boundary conditions are investigated. Optimal locations of piezoelectric patches are found using a genetic algorithm to maximize spatial controllability/observability and considering the effect of residual modes to reduce spillover effect. Active attenuation of vibration of laminated composite plate is achieved through an optimal control law with inequality constraint, which is related to the maximum and minimum values of allowable voltage in the piezoelectric elements. To keep the voltages of actuator pairs in an allowable limit, the Pontryagin’s minimum principle is implemented in a system with multi-inequality constraint of control inputs. The results are compared with similar ones, proving the accuracy of the model especially for the structures undergoing large deformations. The convergence is studied and nonlinear frequencies are obtained for different thickness ratios. The structural coupling between plate and piezoelectric actuators is analyzed. Some examples with new features are presented, indicating that the piezo-patches significantly improve the damping characteristics of the plate for suppressing the geometrically nonlinear transient vibrations.
Damping solitary wave under the second and third boundary condition of a viscous plasma
Li, G.; Ren, Y.-Q.
2016-08-01
In this paper, the solitary waves of a viscous plasma confined in a cylindrical pipe is investigated under two types of boundary condition. By using the reductive perturbation theory, a quasi-KdV equation is derived and a damping solitary wave is obtained. It is found that the damping rate increases with the viscosity coefficient of the plasma ν ' increasing and the radius of the cylindrical pipe R decreasing for second and third boundary condition. The magnitude of the damping rate is also dominated by boundary condition type. From the fact that the amplitude reduces rapidly when R approaches zero or ν ' approaches infinite, we confirm the existence of a damping solitary wave.
NONLINEAR DYNAMICS OF LATERAL MICRO-RESONATOR INCLUDING VISCOUS AIR DAMPING
Institute of Scientific and Technical Information of China (English)
GAO Rong; WANG Xiaojing; WANG Min; YU Maohua; XIE Mingchun
2007-01-01
The nonlinear dynamics of the lateral micro-resonator including the air damping effect is researched. The air damping force is varied periodically during the resonator oscillating, and the air damp coefficient can not be fixed as a constant. Therefore the linear dynamic analysis which used the constant air damping coefficient can not describe the actual dynamic characteristics of the micro-resonator. The nonlinear dynamic model including the air damping force is established. On the base of Navier-Stokes equation and nonlinear dynamical equation, a coupled fluid-solid numerical simulation method is developed and demonstrates that damping force is a vital factor in micro-comb structures. Compared with existing experimental result, the nonlinear numerical value has quite good agreement with it. The differences of the amplitudes (peak) between the experimental data and the results by the linear model and the nonlinear model are 74.5% and 6% respectively. Nonlinear numerical value is more exact than linear value and the method can be applied in other micro-electro-mechanical systeme (MEMS) structures to simulate the dynamic performance.
Lp-decay rates to nonlinear diffusion waves for p-system with nonlinear damping
Institute of Scientific and Technical Information of China (English)
ZHU Changjiang; JIANG Mina
2006-01-01
In this paper, we study the Lp (2 ≤ p ≤ +∞) convergence rates of the solutions to the Cauchy problem of the so-called p-system with nonlinear damping. Precisely, we show that the corresponding Cauchy problem admits a unique global solution (v(x,t),u(x,t)) and such a solution tends time-asymptotically to the corresponding nonlinear diffusion wave (-v(x, t), -u(x, t)) governed by the classical Darcy's law provided that the corresponding prescribed initial error function (w0(x), z0(x))lies in (H3 × H2) (R) and |v+ - v-| + ‖w0‖3 + ‖z0‖2 is sufficiently small.Furthermore, the Lp (2 ≤ p ≤ +∞) convergence rates of the solutions are also obtained.
An analytical solution to the equation of motion for the damped nonlinear pendulum
DEFF Research Database (Denmark)
Johannessen, Kim
2014-01-01
An analytical approximation of the solution to the differential equation describing the oscillations of the damped nonlinear pendulum at large angles is presented. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical...... of the damped nonlinear pendulum is presented, and it is shown that the period of oscillation is dependent on time. It is established that, in general, the period is longer than that of a linearized model, asymptotically approaching the period of oscillation of a damped linear pendulum....
Effect of joint damping and joint nonlinearity on the dynamics of space structures
Bowden, Mary; Dugundji, John
1988-01-01
Analyses of the effect of linear joint characteristics on the vibrations of a free-free, three-joint beam model show that increasing joint damping increases resonant frequencies and increases modal damping but only to the point where the joint gets 'locked up' by damping. This behavior is different from that predicted by modeling joint damping as proportional damping. Nonlinear analyses of the three-joint model with cubic springs at the joints show all the classical single DOF nonlinear response behavior at each resonance of the multiple DOF system: nondoubling of response for a doubling of forcing amplitude, multiple solutions, jump behavior, and resonant frequency shifts. These properties can be concisely quantified by characteristic backbone curves, which show the locus of resonant peaks for increasing forcing amplitude.
Vibrations of stretched damped beams under non-ideal boundary conditions
Indian Academy of Sciences (India)
Hakan Boyaci
2006-02-01
A simply supported damped Euler–Bernoulli beam with immovable end conditions are considered. The concept of non-ideal boundary conditions is applied to the beam problem. In accordance, the boundaries are assumed to allow small deﬂections and moments. Approximate analytical solution of the problem is found using the method of multiple scales, a perturbation technique.
Breatherlike excitations in discrete lattices with noise and nonlinear damping
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri B.; Johansson, Magnus
1997-01-01
We discuss the stability of highly localized, ''breatherlike,'' excitations in discrete nonlinear lattices under the influence of thermal fluctuations. The particular model considered is the discrete nonlinear Schrodinger equation in the regime of high nonlinearity, where temperature effects...
Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping
Directory of Open Access Journals (Sweden)
Eleni Bisognin
2007-01-01
Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Institute of Scientific and Technical Information of China (English)
Z.-K.Peng; Z.-Q.Lang; G.Meng; S.A.Billings
2012-01-01
In the present study,the Volterra series theory is adopted to theoretically investigate the force transmissibility of multiple degrees of freedom (MDOF) structures,in which an isolator with nonlinear anti-symmetric viscous damping is assembled.The results reveal that the anti-symmetric nonlinear viscous damping can significantly reduce the force transmissibility over all resonance regions for MDOF structures with little effect on the transmissibility over non-resonant and isolation regions.The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to solve the dilemma occurring in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant frequencies but increases the transmissibility over non-resonant frequency regions.This work is an extension of a previous study in which MDOF structures installed on the mount through an isolator with cubic nonlinear damping are considered.The theoretical analysis results are also verified by simulation studies.
Nonlinear evolution of the modulational instability under weak forcing and damping
Directory of Open Access Journals (Sweden)
J. Touboul
2010-12-01
Full Text Available The evolution of modulational instability, or Benjamin-Feir instability is investigated within the framework of the two-dimensional fully nonlinear potential equations, modified to include wind forcing and viscous dissipation. The wind model corresponds to the Miles' theory. The introduction of dissipation in the equations is briefly discussed. Evolution of this instability in the presence of damping was considered by Segur et al. (2005a and Wu et al. (2006. Their results were extended theoretically by Kharif et al. (2010 who considered wind forcing and viscous dissipation within the framework of a forced and damped nonlinear Schrödinger equation. The marginal stability curve derived from the fully nonlinear numerical simulations coincides with the curve obtained by Kharif et al. (2010 from a linear stability analysis. Furthermore, it is found that the presence of wind forcing promotes the occurrence of a permanent frequency-downshifting without invoking damping due to breaking wave phenomenon.
Acceleration Control in Nonlinear Vibrating Systems based on Damped Least Squares
Pilipchuk, V N
2011-01-01
A discrete time control algorithm using the damped least squares is introduced for acceleration and energy exchange controls in nonlinear vibrating systems. It is shown that the damping constant of least squares and sampling time step of the controller must be inversely related to insure that vanishing the time step has little effect on the results. The algorithm is illustrated on two linearly coupled Duffing oscillators near the 1:1 internal resonance. In particular, it is shown that varying the dissipation ratio of one of the two oscillators can significantly suppress the nonlinear beat phenomenon.
Analytical investigation of machining chatter by considering the nonlinearity of process damping
Ahmadi, Keivan
2017-04-01
In this paper, the well-established problem of self-excited vibrations in machining is revisited to include the nonlinearity of process damping at the tool and workpiece interface. Machining dynamics is modeled using a time-delayed system with nonlinear damping, and the method of averaging is used to obtain the amplitude of the resulting limit cycles. As a result, an analytical relationship is presented to establish the stability charts corresponding with arbitrary limit cycles in machining systems. The presented analytical solutions are verified using experiments and numerical solutions.
Energy Technology Data Exchange (ETDEWEB)
Rajkumar, V. [ABB Transmission Technology Institute, Raleigh, NC (United States); Mohler, R.R. [Oregon State Univ., Corvallis, OR (United States)
1994-12-31
This paper presents a framework for the development of discrete-time, nonlinear predictive controllers using thyristor-controlled-series-capacitors and phasor measurements of bus voltage magnitude and angle, for the stabilization and rapid damping of multimachine power systems which are subjected to large disturbances. When the faults of concern are large, the nonlinear predictive controllers are used to return the power system state to a small region about the post-fault equilibrium. In this region, linear controllers provide local asymptotic stability and rapid damping. Simulation results are provided on a sample four-machine power system.
Gerbi, Stéphane
2011-12-01
In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.
On the strongly damped wave equation and the heat equation with mixed boundary conditions
Directory of Open Access Journals (Sweden)
Aloisio F. Neves
2000-01-01
Full Text Available We study two one-dimensional equations: the strongly damped wave equation and the heat equation, both with mixed boundary conditions. We prove the existence of global strong solutions and the existence of compact global attractors for these equations in two different spaces.
Global Well-Posedness for Cubic NLS with Nonlinear Damping
Antonelli, Paolo
2010-11-04
We study the Cauchy problem for the cubic nonlinear Schrödinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions. © Taylor & Francis Group, LLC.
Chen, D
The $\\textbf{DA}$rk $\\textbf{M}$atter $\\textbf{P}$article $\\textbf{E}$xplorer (DAMPE) experiment is a high-energy astroparticle physics satellite mission to search for Dark Matter signatures in space, study the cosmic ray spectrum and composition up to 100 TeV, and perform high-energy gamma astronomy. The launch is planned for end 2015, initially for 3 years, to compliment existing space missions FERMI, AMS and CALET.
Chortis, Dimitris I
2013-01-01
This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...
SOLVABILITY FOR NONLINEAR ELLIPTIC EQUATION WITH BOUNDARY PERTURBATION
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The solvability of nonlinear elliptic equation with boundary perturbation is considered. The perturbed solution of original problem is obtained and the uniformly valid expansion of solution is proved.
Differentiability at lateral boundary for fully nonlinear parabolic equations
Ma, Feiyao; Moreira, Diego R.; Wang, Lihe
2017-09-01
For fully nonlinear uniformly parabolic equations, the first derivatives regularity of viscosity solutions at lateral boundary is studied under new Dini type conditions for the boundary, which is called Reifenberg Dini conditions and is weaker than usual Dini conditions.
The Effect of Nonlinear Landau Damping on Ultrarelativistic Beam Plasma Instabilities
Chang, Philip; Lamberts, Astrid
2014-01-01
Very-high energy gamma-rays from extragalactic sources pair-produce off of the extragalactic background light, yielding an electron-positron pair beam. This pair beam is unstable to various plasma instabilities, especially the "oblique" instability, which can be the dominant cooling mechanism for the beam. However, recently, it has been claimed that nonlinear Landau damping renders it physically irrelevant by reducing the effective damping rate to a low level. Here, we show with numerical calculations that the effective damping rate is $8\\times 10^{-4}$ of the growth rate of the linear instability, which is sufficient for the "oblique" instability to be the dominant cooling mechanism of these pair beams. In particular, we show that previous estimates of this rate ignored the exponential cutoff in the scattering amplitude at large wavenumber and assumed that the damping of scattered waves entirely depends on collisions, ignoring collisionless processes. We find that the total wave energy eventually grows to ap...
Solutions, bifurcations and chaos of the nonlinear Schrodinger equation with weak damping
Institute of Scientific and Technical Information of China (English)
彭解华; 唐驾时; 于德介; 颜家壬; 海文华
2002-01-01
Using the wave packet theory, we obtain all the solutions of the weakly damped nonlinear Schrodinger equation.These solutions are the static solution, and solutions of planar wave, solitary wave, shock wave and elliptic functionwave and chaos. The bifurcation phenomenon exists in both steady and non-steady solutions. The chaotic and periodicmotions can coexist in a certain parametric space region.
Global well-posedness for nonlinear Schrodinger equations with energy-critical damping
Directory of Open Access Journals (Sweden)
Binhua Feng
2015-01-01
Full Text Available We consider the Cauchy problem for the nonlinear Schrodinger equations with energy-critical damping. We prove the existence of global in-time solutions for general initial data in the energy space. Our results extend some results from [1,2].
On Landau damping of dipole modes by non-linear space charge and octupoles
Möhl, D
1995-01-01
The joint effect of space-charge non-linearities and octupole lenses is important for Landau damping of coherent instabilities. The octupole strength required for stabilisation can depend strongly on the sign of the excitation current of the lenses. This note tries to extend results, previously obtained for coasting beams and rigid bunches, to more general head--tail modes.
Nonlinear damped oscillators on Riemannian manifolds: Numerical simulation
Fiori, Simone
2017-06-01
Nonlinear oscillators are ubiquitous in sciences, being able to model the behavior of complex nonlinear phenomena, as well as in engineering, being able to generate repeating (i.e., periodic) or non-repeating (i.e., chaotic) reference signals. The state of the classical oscillators known from the literature evolves in the space Rn , typically with n = 1 (e.g., the famous van der Pol vacuum-tube model), n = 2 (e.g., the FitzHugh-Nagumo model of spiking neurons) or n = 3 (e.g., the Lorenz simplified model of turbulence). The aim of the current paper is to present a general scheme for the numerical differential-geometry-based integration of a general second-order, nonlinear oscillator model on Riemannian manifolds and to present several instances of such model on manifolds of interest in sciences and engineering, such as the Stiefel manifold and the space of symmetric, positive-definite matrices.
Reliability optimization of friction-damped systems using nonlinear modes
Krack, Malte; Tatzko, Sebastian; Panning-von Scheidt, Lars; Wallaschek, Jörg
2014-06-01
A novel probabilistic approach for the design of mechanical structures with friction interfaces is proposed. The objective function is defined as the probability that a specified performance measure of the forced vibration response is achieved subject to parameter uncertainties. The practicability of the approach regarding the extensive amount of required design evaluations is strictly related to the computational efficiency of the nonlinear dynamic analysis. Therefore, it is proposed to employ a recently developed parametric reduced order model (ROM) based on nonlinear modes of vibration, which can facilitate a decrease of the computational burden by several orders of magnitude.
Analysis of Dynamic Model of a Structure with Nonlinear Damped Behavior
Directory of Open Access Journals (Sweden)
G. Domairry
2010-04-01
Full Text Available In this work, it has been attempted to analytically treat the nonlinear behavior of structures. Since analysing nonlinear problems is of great difficulty, different numerical methods and software are advised to treat such problems. Despite the increasing expenses of building structures to maintain their linear behavior, nonlinearity has been inevitable, and therefore, nonlinear analysis has beenof great importance to the scientists in the field. As structures confront lateral forces and intense earthquakes especially near fault regions, a part of the structure remains linear, but some part of itbehaves nonlinearly for example dampers, columns and beams. This is simulated by a damped in nonlinear oscillator. In this paper, the nonlinear equation of oscillator with damping which has nonlinear behavior is representative of the dynamic behavior of a structure has been solved analytically. In the end, the obtained results are compared with numerical ones and shown in graphs and in tables;analytical solutions are in good agreement with those of the numerical method.
NONLINEAR FLUID DAMPING IN STRUCTURE-WAKE OSCILLATORS IN MODELING VORTEX-INDUCED VIBRATIONS
Institute of Scientific and Technical Information of China (English)
LIN Li-ming; LING Guo-can; WU Ying-xiang; ZENG Xiao-hui
2009-01-01
A Nonlinear Fluid Damping(NFD)in the form of the square-velocity is applied in the response analysis of Vortex-Induced Vibrations(VIV).Its nonlinear hydrodynamic effects on the coupled wake and structure oscillators are investigated.A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics,such as the amplification of body displacement at lock-in and frequency lock-in,both at high and low mass ratios.Particularly,the predicted peak amplitude of the body in the Griffin plot is in good agreement with experimental data and empirical equation,indicating the significant effect of the NFD on the structure motion.
On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams
Energy Technology Data Exchange (ETDEWEB)
Alexahin, Y. [Fermilab; Gianfelice-Wendt, E. [Fermilab; Lebedev, V. [Fermilab; Valishev, A. [Fermilab
2016-09-30
Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift can be created without destroying the dynamic aperture.
Directory of Open Access Journals (Sweden)
S. L. Han
2012-01-01
Full Text Available The nonlinear responses of ship rolling motion characterized by a roll damping moment are of great interest to naval architects and ocean engineers. Modeling and identification of the nonlinear damping moment are essential to incorporate the inherent nonlinearity in design, analysis, and control of a ship. A stochastic nonparametric approach for identification of nonlinear damping in the general mechanical system has been presented in the literature (Han and Kinoshits 2012. The method has been also applied to identification of the nonlinear damping moment of a ship at zero-forward speed (Han and Kinoshits 2013. In the presence of forward speed, however, the characteristic of roll damping moment of a ship is significantly changed due to the lift effect. In this paper, the stochastic inverse method is applied to identification of the nonlinear damping moment of a ship moving at nonzero-forward speed. The workability and validity of the method are verified with laboratory tests under controlled conditions. In experimental trials, two different types of ship rolling motion are considered: time-dependent transient motion and frequency-dependent periodic motion. It is shown that this method enables the inherent nonlinearity in damping moment to be estimated, including its reliability analysis.
Global attractors for damped abstract nonlinear hyperbolic systems
Pinter, Gabriella Agnes
1997-12-01
This dissertation is concerned with the long time dynamics of a class of damped abstract hyperbolic systems that arise in the study of certain smart material structures, namely elastomers. The term smart material refers to a material capable of both sensing and responding actively to outside excitation. These properties make smart materials a prime canditate for actuation and sensing in next generation control systems. However, modeling and numerically simulating their behavior poses several difficulties. In this work we consider a model for elastomers developed by H. T. Banks, N. J. Lybeck, B. C. Munoz, L. C. Yanyo, formulate this model as an abstract evolution system, and study the long time behavior of its solutions. We remark that the question of existence and uniqueness of solutions for this class of systems is a challenging problem and was only recently solved by H. T. Banks, D. S. Gilliam and V. I. Shubov. Concerning the long time dynamics of the problem, we first prove that the system generates a weak dynamical system, and possesses a weak global attractor. Our main result is the existence of a "strong" dynamical system which has a compact global attractor. With the help of a Lyapunov function we are able to characterize the structure of this attractor. We also give a theorem that guarantees the stability of the global attractor with respect to varying parameters in the system. Our last result concerns the uniform differentiability of the dynamical system.
Passamonti, A
2011-01-01
We study the damping of the gravitational radiation-driven f-mode instability in ro- tating neutron stars by nonlinear bulk viscosity in the so-called supra-thermal regime. In this regime the dissipative action of bulk viscosity is known to be enhanced as a result of nonlinear contributions with respect to the oscillation amplitude. Our anal- ysis of the f-mode instability is based on a time-domain code that evolves linear perturbations of rapidly rotating polytropic neutron star models. The extracted mode frequency and eigenfunctions are subsequently used in standard energy integrals for the gravitational wave growth and viscous damping. We find that nonlinear bulk vis- cosity has a moderate impact on the size of the f-mode instability window, becoming an important factor and saturating the mode's growth at a relatively large oscillation amplitude. We show that a similar result holds for the damping of the inertial r-mode instability by nonlinear bulk viscosity. In addition, we show that the action of bulk v...
Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects
Directory of Open Access Journals (Sweden)
Jie-Yu Chen
2009-05-01
Full Text Available In Atomic force microscope (AFM examination of a vibrating microcantilever, the nonlinear tip-sample interaction would greatly influence the dynamics of the cantilever. In this paper, the nonlinear dynamics and chaos of a tip-sample dynamic system being run in the tapping mode (TM were investigated by considering the effects of hydrodynamic loading and squeeze film damping. The microcantilever was modeled as a spring-mass-damping system and the interaction between the tip and the sample was described by the Lennard-Jones (LJ potential. The fundamental frequency and quality factor were calculated from the transient oscillations of the microcantilever vibrating in air. Numerical simulations were carried out to study the coupled nonlinear dynamic system using the bifurcation diagram, Poincaré maps, largest Lyapunov exponent, phase portraits and time histories. Results indicated the occurrence of periodic and chaotic motions and provided a comprehensive understanding of the hydrodynamic loading of microcantilevers. It was demonstrated that the coupled dynamic system will experience complex nonlinear oscillation as the system parameters change and the effect of squeeze film damping is not negligible on the micro-scale.
Asymptotic behavior of solutions to nonlinear parabolic equation with nonlinear boundary conditions
Directory of Open Access Journals (Sweden)
Diabate Nabongo
2008-01-01
Full Text Available We show that solutions of a nonlinear parabolic equation of second order with nonlinear boundary conditions approach zero as t approaches infinity. Also, under additional assumptions, the solutions behave as a function determined here.
Institute of Scientific and Technical Information of China (English)
Xiang LI; Wei-guo ZHANG; Zheng-ming LI
2014-01-01
This paper aims at analyzing the shapes of the bounded traveling wave solu-tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi-tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi-mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so-lutions. It can be seen that the error is infinitesimal decreasing in the exponential form.
Boundary control of long waves in nonlinear dispersive systems
DEFF Research Database (Denmark)
Hasan, Agus; Foss, Bjarne; Aamo, Ole Morten
2011-01-01
Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher...... orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws...... that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases....
Institute of Scientific and Technical Information of China (English)
Mai Tong; Thomas Liebner
2007-01-01
In a viscous damping device under cyclic loading, after the piston reaches a peak stroke, the reserve movement that follows may sometimes experience a short period of delayed or significantly reduced device force output. A similar delay or reduced device force output may also occur at the damper's initial stroke as it moves away from its neutral position.This phenomenon is referred to as the effect of "deadzone". The deadzone can cause a loss of energy dissipation capacity and less efficient vibration control. It is prominent in small amplitude vibrations. Although there are many potential causes of deadzone such as environmental factors, construction, material aging, and manufacture quality, in this paper, its general effect in linear and nonlinear viscous damping devices is analyzed. Based on classical dynamics and damping theory, a simple model is developed to capture the effect of deadzone in terms of the loss of energy dissipation capacity. The model provides several methods to estimate the loss of energy dissipation within the deadzone in linear and sublinear viscous fluid dampers.An empirical equation of loss of energy dissipation capacity versus deadzone size is formulated, and the equivalent reduction of effective damping in SDOF systems has been obtained. A laboratory experimental evaluation is carried out to verify the effect of deadzone and its numerical approximation. Based on the analysis, a modification is suggested to the corresponding formulas in FEMA 356 for calculation of equivalent damping ifa deadzone is to be considered.
Nonlinear damping of a finite amplitude whistler wave due to modified two stream instability
Energy Technology Data Exchange (ETDEWEB)
Saito, Shinji, E-mail: saito@stelab.nagoya-u.ac.jp [Graduate School of Science, Nagoya University, Nagoya (Japan); Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya (Japan); Nariyuki, Yasuhiro, E-mail: nariyuki@edu.u-toyama.ac.jp [Faculty of Human Development, University of Toyama, Toyama (Japan); Umeda, Takayuki, E-mail: umeda@stelab.nagoya-u.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya (Japan)
2015-07-15
A two-dimensional, fully kinetic, particle-in-cell simulation is used to investigate the nonlinear development of a parallel propagating finite amplitude whistler wave (parent wave) with a wavelength longer than an ion inertial length. The cross field current of the parent wave generates short-scale whistler waves propagating highly oblique directions to the ambient magnetic field through the modified two-stream instability (MTSI) which scatters electrons and ions parallel and perpendicular to the magnetic field, respectively. The parent wave is largely damped during a time comparable to the wave period. The MTSI-driven damping process is proposed as a cause of nonlinear dissipation of kinetic turbulence in the solar wind.
Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties
de Ceglia, Domenico; Campione, Salvatore; Vincenti, Maria Antonietta; Capolino, Filippo; Scalora, Michael
2013-01-01
We investigate second harmonic generation, low-threshold multistability, all-optical switching, and inherently nonlocal effects due to the free-electron gas pressure in an epsilon-near-zero (ENZ) metamaterial slab made of cylindrical, plasmonic nanoshells illuminated by TM-polarized light. Damping compensation in the ENZ frequency region, achieved by using gain medium inside the shells' dielectric cores, enhances the nonlinear properties. Reflection is inhibited and the electric field compone...
A note on a strongly damped wave equation with fast growing nonlinearities
2015-01-01
A note on a strongly damped wave equation with fast growing nonlinearities Varga Kalantarov and Sergey Zelik Citation: Journal of Mathematical Physics 56, 011501 (2015); doi: 10.1063/1.4905234 View online: http://dx.doi.org/10.1063/1.4905234 View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/56/1?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Local well-posedness for nonlinear Klein-Gordon equation with weak and strong d...
Wind farm non-linear control for damping electromechanical oscillations of power systems
Energy Technology Data Exchange (ETDEWEB)
Fernandez, R.D. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Laboratorio de Electronica. Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000 Comodoro Rivadavia (Argentina); Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Mantz, R.J. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, CICpba, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina)
2008-10-15
This paper deals with the non-linear control of wind farms equipped with doubly fed induction generators (DFIGs). Both active and reactive wind farm powers are employed in two non-linear control laws in order to increase the damping of the oscillation modes of a power system. The proposed strategy is derived from the Lyapunov Theory and is independent of the network topology. In this way, the strategy can be added to the central controller as another added control function. Finally, some simulations, showing the oscillation modes of a power system, are presented in order to support the theoretical considerations demonstrating the potential contributions of both control laws. (author)
Directory of Open Access Journals (Sweden)
H. M. Abdelhafez
2016-03-01
Full Text Available The modified differential transform method (MDTM, Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared with the result by the MDTM and plotted in a long time domain.
On the Energetics of a Damped Beam-Like Equation for Different Boundary Conditions
Directory of Open Access Journals (Sweden)
SAJAD HUSSAIN SANDILO
2017-04-01
Full Text Available In this paper, the energy estimates for a damped linear homogeneous beam-like equation will be considered. The energy estimates will be studied for different BCs (Boundary Conditions for the axially moving continuum. The problem has physical and engineering application. The applications are mostly occurring in models of conveyor belts and band-saw blades. The research study is focused on the Dirichlet, the Neumann and the Robin type of BCs. From physical point of view, the considered mathematical model expounds the transversal vibrations of a moving belt system or moving band-saw blade. It is assumed that a viscous damping parameter and the horizontal velocity are positive and constant. It will be shown in this paper that change in geometry or the physics of the boundaries can affect the stability properties of the system in general and stability depends on the axial direction of the motion. In all cases of the BCs, it will be shown that there is energy decay due to viscous damping parameter and it will also be shown that in some cases there is no conclusion whether the beam energy decreases or increases. The detailed physical interpretation of all terms and expressions is provided and studied in detail.
Nonlinear damping effects in spin torque dynamics of magnetic tunnel junctions
Barsukov, Igor; Chen, Yu-Jin; Lee, Han Kyu; Goncalves, Alexandre; Katine, Jordan; Arias, Rodrigo; Ivanov, Boris; Krivorotov, Ilya
2015-03-01
Performance of nanoscale spin torque devices such as memory (STT-MRAM) and auto-oscillators critically depends on magnetic relaxation. It is commonly assumed that magnetization dynamics in the presence of spin torque can be understood as simple competition between antidamping arising from spin torque and Gilbert damping of the free layer. However our experiments reveal that the situation is more complex and that nonlinear damping processes in the free layer of magnetic tunnel junction (MTJ) nanopillars can strongly alter spin torque driven dynamics. We study elliptical MTJ nanopillars with in-plane magnetizations of the free layer and SAF layers by spin torque ferromagnetic resonance. We find an excitation spectrum associated with standing spin waves of the free layer. By varying the external field, the energy of a higher-order spin wave mode becomes twice the energy of the main mode. This opens up a nonlinear, resonant relaxation channel, giving rise to a damping increase of approximately 20 percent. With increasing spin torque provided by a DC bias current, we find that this relaxation channel competes with antidamping in a nonlinear manner, increasingly contributing to and even dominating the relaxation at subcritical currents.
Chatterjee, Debjani; Misra, A P
2015-12-01
The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' q-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Saberian and Esfandyari-Kalejahi, Phys. Rev. E 87, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schrödinger (NLS) equation with a nonlocal nonlinear term ∝P∫|ϕ(ξ',τ)|(2)dξ'ϕ/(ξ-ξ') [where P denotes the Cauchy principal value, ϕ is the small-amplitude electrostatic (complex) potential, and ξ and τ are the stretched coordinates in MST], which appears due to the wave-particle resonance. It is found that a subregion 1/3Landau damping) due to the nonlocal nonlinearity in the NLS equation. Furthermore, the effect of the nonlinear Landau damping is to slow down the amplitude of the wave envelope, and the corresponding decay rate can be faster the larger is the number of superthermal particles in pair plasmas.
THIRD-ORDER NONLINEAR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM
Institute of Scientific and Technical Information of China (English)
王国灿; 金丽
2002-01-01
Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solutions method of third order nonlinear boundary value problems by making use of Volterra type integral operator was established.Specific upper and lower solutions were constructed, and existence and asymptotic estimates of solutions under suitable conditions were obtained.The result shows that it seems to be new to apply these techniques to solving these kinds of third order singularly perturbed boundary value problem. An example is given to demonstrate the applications.
Boundary controllability for a nonlinear beam equation
Directory of Open Access Journals (Sweden)
Xiao-Min Cao
2015-09-01
Full Text Available This article concerns a nonlinear system modeling the bending vibrations of a nonlinear beam of length $L>0$. First, we derive the existence of long time solutions near an equilibrium. Then we prove that the nonlinear beam is locally exact controllable around the equilibrium in $H^4(0,L$ and with control functions in $H^2(0,T$. The approach we used are open mapping theorem, local controllability established by linearization, and the induction.
Nonlinear Vibrations of Timoshenko Beams with Various Boundary Conditions
Institute of Scientific and Technical Information of China (English)
郭强; 刘曦; 钟宏志
2004-01-01
This paper is concerned with the effects of boundary conditions on the large-amplitude free vibrations of Timoshenko beams. The effects of nonlinear terms on the frequency of Timoshenko beams with simply supported ends (supported-supported, SS), clamped ends (clamped-clamped, CC) and one end simply supported and the other end clamped (clamped-supported, CS) are discussed in detail. Given a specific vibration amplitude, the change of nonlinear frequency according to the effects of boundary conditions is always in the following descending order: SS, CS, and CC. It is found that the slenderness ratio has a significant influence on the nonlinear frequency. For slender beams, the nonlinear effects of bending curvature and shear strain are negligible regardless of the boundary conditions. For short beams and especially for those of large amplitude vibrations, however, the nonlinear effects of bending curvature and shear strain become noticeable in the following ascending order: SS, CS, and CC.
NONLINEAR BOUNDARY STABILIZATION OF WAVE EQUATIONS WITH VARIABLE C OEFFICIENTS
Institute of Scientific and Technical Information of China (English)
冯绍继; 冯德兴
2003-01-01
The wave equation with variable coefficients with a nonlinear dissipative boundary feedbackis studied. By the Riemannian geometry method and the multiplier technique, it is shown thatthe closed loop system decays exponentially or asymptotically, and hence the relation betweenthe decay rate of the system energy and the nonlinearity behavior of the feedback function isestablished.
Robust Monotone Iterates for Nonlinear Singularly Perturbed Boundary Value Problems
Directory of Open Access Journals (Sweden)
Boglaev Igor
2009-01-01
Full Text Available This paper is concerned with solving nonlinear singularly perturbed boundary value problems. Robust monotone iterates for solving nonlinear difference scheme are constructed. Uniform convergence of the monotone methods is investigated, and convergence rates are estimated. Numerical experiments complement the theoretical results.
Nonlinear Second-Order Multivalued Boundary Value Problems
Indian Academy of Sciences (India)
Leszek Gasiński; Nikolaos S Papageorgiou
2003-08-01
In this paper we study nonlinear second-order differential inclusions involving the ordinary vector -Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Using notions and techniques from the nonlinear operatory theory and from multivalued analysis, we obtain solutions for both the `convex' and `nonconvex' problems. Finally, we present the cases of special interest, which fit into our framework, illustrating the generality of our results.
Institute of Scientific and Technical Information of China (English)
Shitao LIU; Roberto TRIGGIANI
2011-01-01
The authors study the inverse problem of recovering damping coefficients for two coupled hyperbolic PDEs with Neumann boundary conditions by means of an additional measurement of Dirichlet boundary traces of the two solutions on a suitable,explicit subportion Γ1 of the boundary Γ,and over a computable time interval T ＞ 0.Under sharp conditions on Γ0 =Γ\\Γ1,T ＞ 0,the uniqueness and stability of the damping coefficients are established.The proof uses critically the Carleman estimate due to Lasiecka et al.in 2000,together with a convenient tactical route "post-Carleman estimates" suggested by Isakov in 2006.
Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties
de Ceglia, Domenico; Vincenti, Maria Antonietta; Capolino, Filippo; Scalora, Michael
2013-01-01
We investigate second harmonic generation, low-threshold multistability, all-optical switching, and inherently nonlocal effects due to the free-electron gas pressure in an epsilon-near-zero (ENZ) metamaterial slab made of cylindrical, plasmonic nanoshells illuminated by TM-polarized light. Damping compensation in the ENZ frequency region, achieved by using gain medium inside the shells' dielectric cores, enhances the nonlinear properties. Reflection is inhibited and the electric field component normal to the slab interface is enhanced near the effective pseudo-Brewster angle, where the effective \\epsilon-near-zero condition triggers a non-resonant, impedance-matching phenomenon. We show that the slab displays a strong effective, spatial nonlocality associated with leaky modes that are mediated by the compensation of damping. The presence of these leaky modes then induces further spectral and angular conditions where the local fields are enhanced, thus opening new windows of opportunity for the enhancement of ...
THE EFFECT OF NONLINEAR LANDAU DAMPING ON ULTRARELATIVISTIC BEAM PLASMA INSTABILITIES
Energy Technology Data Exchange (ETDEWEB)
Chang, Philip; Lamberts, Astrid [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Broderick, Avery E.; Shalaby, Mohamad [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Pfrommer, Christoph [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Puchwein, Ewald, E-mail: chang65@uwm.edu [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)
2014-12-20
Very high energy gamma-rays from extragalactic sources produce pairs from the extragalactic background light, yielding an electron-positron pair beam. This pair beam is unstable to various plasma instabilities, especially the ''oblique'' instability, which can be the dominant cooling mechanism for the beam. However, recently, it has been claimed that nonlinear Landau damping renders it physically irrelevant by reducing the effective damping rate to a low level. Here we show with numerical calculations that the effective damping rate is 8 × 10{sup –4} the growth rate of the linear instability, which is sufficient for the ''oblique'' instability to be the dominant cooling mechanism of these pair beams. In particular, we show that previous estimates of this rate ignored the exponential cutoff in the scattering amplitude at large wave numbers and assumed that the damping of scattered waves entirely depends on collisions, ignoring collisionless processes. We find that the total wave energy eventually grows to approximate equipartition with the beam by increasingly depositing energy into long-wavelength modes. As we have not included the effect of nonlinear wave-wave interactions on these long-wavelength modes, this scenario represents the ''worst case'' scenario for the oblique instability. As it continues to drain energy from the beam at a faster rate than other processes, we conclude that the ''oblique'' instability is sufficiently strong to make it the physically dominant cooling mechanism for high-energy pair beams in the intergalactic medium.
Yang, Pengju; Guo, Lixin
2016-11-01
Based on the Lombardini et al. model that can predict the hydrodynamic damping of rough sea surfaces in the presence of monomolecular slicks and the "choppy wave" model (CWM) that can describe the nonlinear interactions between ocean waves, the modeling of time-varying nonlinear sea surfaces damped by natural or organic sea slicks is presented in this paper. The polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence is utilized for evaluating co- and cross-polarized backscattered echoes from clean and contaminated CWM nonlinear sea surfaces. The influence of natural sea slicks on Doppler shift and spectral bandwidth of radar sea echoes is investigated in detail by comparing the polarimetric Doppler spectra of contaminated sea surfaces with those of clean sea surfaces. A narrowing of Doppler spectra in the presence of oil slicks is observed for both co- and cross-polarization, which is qualitatively consistent with wave-tank measurements. Simulation results also show that the Doppler shifts in slicks can increase or decrease, depending on incidence angles and polarizations.
Energy Technology Data Exchange (ETDEWEB)
Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190, Toyama City, Toyama 930-8555 (Japan); Hada, T. [Department of Earth System Science and Technology, Kyushu University, 6-1, Kasuga City, Fukuoka 816-8580 (Japan); Tsubouchi, K., E-mail: nariyuki@edu.u-toyama.ac.jp [Graduate School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)
2014-10-01
The damping process of field-aligned, low-frequency right-handed polarized nonlinear Alfvén waves (NAWs) in solar wind plasmas with and without proton beams is studied by using a two-dimensional ion hybrid code. The numerical results show that the obliquely propagating kinetic Alfvén waves (KAWs) excited by beam protons affect the damping of the low-frequency NAW in low beta plasmas, while the nonlinear wave-wave interaction between parallel propagating waves and nonlinear Landau damping due to the envelope modulation are the dominant damping process in high beta plasmas. The nonlinear interaction between the NAWs and KAWs does not cause effective energy transfer to the perpendicular direction. Numerical results suggest that while the collisionless damping due to the compressibility of the envelope-modulated NAW plays an important role in the damping of the field-aligned NAW, the effect of the beam instabilities may not be negligible in low beta solar wind plasmas.
The transition from the classical to the quantum regime in nonlinear Landau damping
Brodin, G; Mendonca, J T
2015-01-01
Starting from the Wigner-Moyal equation coupled to Poisson's equation, a simplified set of equations describing nonlinear Landau damping of Langmuir waves is derived. This system is studied numerically, with a particular focus on the transition from the classical to the quantum regime. In the quantum regime several new features are found. This includes a quantum modified bounce frequency, and the discovery that bounce-like amplitude oscillations can take place even in the absence of trapped particles. The implications of our results are discussed.
Boundary control of nonlinear coupled heat systems using backstepping
Bendevis, Paul
2016-10-20
A state feedback boundary controller is designed for a 2D coupled PDE system modelling heat transfer in a membrane distillation system for water desalination. Fluid is separated into two compartments with nonlinear coupling at a membrane boundary. The controller sets the temperature on one boundary in order to track a temperature difference across the membrane boundary. The control objective is achieved by an extension of backstepping methods to these coupled equations. Stability of the target system via Lyapunov like methods, and the invertibility of the integral transformation are used to show the stability of the tracking error.
Hu, Weipeng; Deng, Zichen; Yin, Tingting
2017-01-01
Exploring the dynamic behaviors of the damping nonlinear Schrödinger equation (NLSE) with periodic perturbation is a challenge in the field of nonlinear science, because the numerical approaches available for damping-driven dynamic systems may exhibit the artificial dissipation in different degree. In this paper, based on the generalized multi-symplectic idea, the local energy/momentum loss expressions as well as the approximate symmetric form of the linearly damping NLSE with periodic perturbation are deduced firstly. And then, the local energy/momentum losses are separated from the simulation results of the NLSE with small linear damping rate less than the threshold to insure structure-preserving properties of the scheme. Finally, the breakup process of the multisoliton state is simulated and the bifurcation of the discrete eigenvalues of the associated Zakharov-Shabat spectral problem is obtained to investigate the variation of the velocity as well as the amplitude of the solitons during the splitting process.
Nonlinear Vibration Characteristics of a Flexible Blade with Friction Damping due to Tip-Rub
Directory of Open Access Journals (Sweden)
Dengqing Cao
2011-01-01
Full Text Available An approximate approach is proposed in this paper for analyzing the two-dimensional friction contact problem so as to compute the dynamic response of a structure constrained by friction interfaces due to tip-rub. The dynamical equation of motion for a rotational cantilever blade in a centrifugal force field is established. Flow-induced distributed periodic forces and the internal material damping in the blade are accounted for in the governing equation of motion. The Galerkin method is employed to obtain a three-degree-of-freedom oscillator with friction damping due to tip-rub. The combined motion of impact and friction due to tip-rub produced a piecewise linear vibration which is actually nonlinear. Thus, a complete vibration cycle is divided into successive intervals. The system possesses linear vibration characteristic during each of these intervals, which can be determined using analytical solution forms. Numerical simulation shows that the parameters such as gap of the tip and the rotational speed of the blades have significant effects on the dynamical responses of the system. Finally, the nonlinear vibration characteristics of the blade are investigated in terms of the Poincare graph, and the frequency spectrum of the responses and the amplitude-frequency curves.
Nonlinear Boundary Dynamics and Chiral Symmetry in Holographic QCD
Albrecht, Dylan; Wilcox, Ronald J
2011-01-01
In the hard-wall model of holographic QCD we find that nonlinear boundary dynamics are required in order to maintain the correct pattern of explicit and spontaneous chiral symmetry breaking beyond leading order in the pion fields. With the help of a field redefinition, we demonstrate that the requisite nonlinear boundary conditions are consistent with the Sturm-Liouville structure required for the Kaluza-Klein decomposition of bulk fields. Observables insensitive to the chiral limit receive only small corrections in the improved description, and classical calculations in the hard-wall model remain surprisingly accurate.
Critical Exponents for Fast Diffusion Equations with Nonlinear Boundary Sources
Institute of Scientific and Technical Information of China (English)
WANG LU-SHENG; WANG ZE-JIA
2011-01-01
In this paper, we study the large time behavior of solutions to a class of fast diffusion equations with nonlinear boundary sources on the exterior domain of the unit ball. We are interested in the critical global exponent q0 and the critical Fujita exponent qc for the problem considered, and show that q0 ＝ qc for the multidimensional Non-Newtonian polytropic filtration equation with nonlinear boundary sources, which is quite different from the known results that q0 ＜ qc for the onedimensional case; moreover, the value is different from the slow case.
QUASILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS WITH DISCONTINUOUS NONLINEARITIES
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In this paper we shall consider a discontinuous nonlinear nonmonotone elliptic boundary value problem, i.e. a quasilinear elliptic hemivariational inequality. This kind of problems is strongly motivated by various problems in mechanics. By use of the notion of the generalized gradient of Clarke and the theory of pseudomonotone operators, we will prove the existence of solutions.
Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions
Directory of Open Access Journals (Sweden)
Ahmet Batal
2016-08-01
Full Text Available In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t+\\lambda|u(0,t|^ru(0,t=0,\\quad \\lambda\\in\\mathbb{R}-\\{0\\},\\; r> 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\\mathbb{R}_+$ with $s\\in (\\frac{1}{2},\\frac{7}{2}-\\{\\frac{3}{2}\\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t=h(t$ where $h\\in H^{\\frac{2s-1}{4}}(0,T$.
Oscillation criteria for third order nonlinear delay differential equations with damping
Directory of Open Access Journals (Sweden)
Said R. Grace
2015-01-01
Full Text Available This note is concerned with the oscillation of third order nonlinear delay differential equations of the form \\[\\label{*} \\left( r_{2}(t\\left( r_{1}(ty^{\\prime}(t\\right^{\\prime}\\right^{\\prime}+p(ty^{\\prime}(t+q(tf(y(g(t=0.\\tag{\\(\\ast\\}\\] In the papers [A. Tiryaki, M. F. Aktas, Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl. 325 (2007, 54-68] and [M. F. Aktas, A. Tiryaki, A. Zafer, Oscillation criteria for third order nonlinear functional differential equations, Applied Math. Letters 23 (2010, 756-762], the authors established some sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates or converges to zero, provided that the second order equation \\[\\left( r_{2}(tz^{\\prime }(t\\right^{\\prime}+\\left(p(t/r_{1}(t\\right z(t=0\\tag{\\(\\ast\\ast\\}\\] is nonoscillatory. Here, we shall improve and unify the results given in the above mentioned papers and present some new sufficient conditions which insure that any solution of equation (\\(\\ast\\ oscillates if equation (\\(\\ast\\ast\\ is nonoscillatory. We also establish results for the oscillation of equation (\\(\\ast\\ when equation (\\(\\ast\\ast\\ is oscillatory.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
With the aid of a nonlinear transformation, a class of nonlinear convectiondiffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given
Non-linear signal detection improvement by radiation damping in single-pulse NMR spectra.
Schlagnitweit, Judith; Morgan, Steven W; Nausner, Martin; Müller, Norbert; Desvaux, Hervé
2012-02-01
When NMR lines overlap and at least one of them is affected by radiation damping, the resonance line shapes of all lines are no longer Lorentzian. We report the appearance of narrow signal distortions, which resemble hole-burnt spectra. This new experimental phenomenon facilitates the detection of tiny signals hidden below the main resonance. Theoretical analysis based on modified Maxwell-Bloch equations shows that the presence of strong transverse magnetization creates a feedback through the coil, which influences the magnetization of all spins with overlapping resonance lines. In the time domain this leads to cross-precession terms between magnetization densities, which ultimately cause non-linear behavior. Numerical simulations corroborate this interpretation.
Non-linear collisionless damping of Weibel turbulence in relativistic blast waves
Lemoine, Martin
2014-01-01
The Weibel/filamentation instability is known to play a key role in the physics of weakly magnetized collisionless shock waves. From the point of view of high energy astrophysics, this instability also plays a crucial role because its development in the shock precursor populates the downstream with a small-scale magneto-static turbulence which shapes the acceleration and radiative processes of suprathermal particles. The present work discusses the physics of the dissipation of this Weibel-generated turbulence downstream of relativistic collisionless shock waves. It calculates explicitly the first-order non-linear terms associated to the diffusive nature of the particle trajectories. These corrections are found to systematically increase the damping rate, assuming that the scattering length remains larger than the coherence length of the magnetic fluctuations. The relevance of such corrections is discussed in a broader astrophysical perspective, in particular regarding the physics of the external relativistic ...
Nonlinear interaction of two waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1980-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed using the method of multiple scales. Numerical results for flow past a flat plate show that the spatial detuning wipes out resonant interactions unless the initial amplitudes are very large. Thus, a wave having a moderate amplitude has little influence on its subharmonic although it has a strong influence on its second harmonic. Moreover, two waves having moderate amplitudes have a strong influence on their difference frequency. The results show that the difference frequency can be very unstable when generated by the nonlinear interaction, even though it may be stable when introduced by itself in the boundary layer.
Controlling near shore nonlinear surging waves through bottom boundary conditions
Mukherjee, Abhik; Kundu, Anjan
2016-01-01
Instead of taking the usual passive view for warning of near shore surging waves including extreme waves like tsunamis, we aim to study the possibility of intervening and controlling nonlinear surface waves through the feedback boundary effect at the bottom. It has been shown through analytic result that the controlled leakage at the bottom may regulate the surface solitary wave amplitude opposing the hazardous variable depth effect. The theoretical results are applied to a real coastal bathymetry in India.
On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions
Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai
1993-01-01
Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the ...
Tracking control of a flexible beam by nonlinear boundary feedback
Directory of Open Access Journals (Sweden)
Bao-Zhu Guo
1995-01-01
Full Text Available This paper is concerned with tracking control of a dynamic model consisting of a flexible beam rotated by a motor in a horizontal plane at the one end and a tip body rigidly attached at the free end. The well-posedness of the closed loop systems considering the dissipative nonlinear boundary feedback is discussed and the asymptotic stability about difference energy of the hybrid system is also investigated.
Viscous Boundary Layer Damping of R-Modes in Neutron Stars
Bildsten, L; Bildsten, Lars; Ushomirsky, Greg
1999-01-01
Recent work has raised the exciting possibility that r-modes (Rossby waves) in rotating neutron star cores might be strong gravitational wave sources. We estimate the effect of a solid crust on their viscous damping rate and show that the dissipation rate in the viscous boundary layer between the oscillating fluid and the nearly static crust is >10^5 times higher than that from the shear throughout the interior. This increases the minimum frequency for the onset of the gravitational r-mode instability to at least 500 Hz when the core temperature is less than 10^10 K. It eliminates the conflict of the r-mode instability with the accretion-driven spin-up scenario for millisecond radio pulsars and makes it unlikely that the r-mode instability is active in accreting neutron stars. For newborn neutron stars, the formation of a solid crust shortly after birth affects their gravitational wave spin-down and hence detectability by ground-based interferometric gravitational wave detectors.
RESTRICTED NONLINEAR APPROXIMATION AND SINGULAR SOLUTIONS OF BOUNDARY INTEGRAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
Reinhard Hochmuth
2002-01-01
This paper studies several problems, which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1 ] are chosen as a starting point for characterizations of functions in Besov spaces B , (0,1) with 0＜σ＜∞ and (1+σ)-1＜τ＜∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.
ON NONLINEAR STABILITY IN NONPARALLEL BOUNDARY LAYER FLOW
Institute of Scientific and Technical Information of China (English)
TANG Deng-bin; WANG Wei-zhi
2004-01-01
The nonlinear stability problem in nonparallel boundary layer flow for two-dimensional disturbances was studied by using a newly presented method called Parabolic Stability Equations (PSE). A series of new modes generated by the nonlinear interaction of disturbance waves were tabulately analyzed, and the Mean Flow Distortion (MFD) was numerically given. The computational techniques developed, including the higher-order spectral method and the more effective algebraic mapping, increased greatly the numerical accuracy and the rate of convergence. With the predictor-corrector approach in the marching procedure, the normalization condition was satisfied, and the stability of numerical calculation could be ensured. With different initial amplitudes, the nonlinear stability of disturbance wave was studied. The results of examples show good agreement with the data given by the DNS using the full Navier-Stokes equations.
Asymptotic analysis of a vibrating cantilever with a nonlinear boundary
Institute of Scientific and Technical Information of China (English)
C.; W.; LIM
2009-01-01
Nonlinear vibration of a cantilever in a contact atomic force microscope is analyzed via an asymptotic approach. The asymptotic solution is sought for a beam equation with a nonlinear boundary condition. The steady-state responses are determined in primary resonance and subharmonic resonance. The relations between the response amplitudes and the excitation frequencies and amplitudes are derived from the solvability condition. Multivaluedness occurs in the relations as a consequence of the nonlinearity. The stability of steady-state responses is analyzed by use of the Lyapunov linearized stability theory. The stability analysis predicts the jumping phenomenon for certain parameters. The curves of the response amplitudes changing with the excitation frequencies are numerically compared with those obtained via the method of multiple scales. The calculation results demonstrate that the two methods predict the same varying tendencies while there are small quantitative differences.
Asymptotic analysis of a vibrating cantilever with a nonlinear boundary
Institute of Scientific and Technical Information of China (English)
CHEN LiQun; C.W.LIM; HU QingQuan; DING Hu
2009-01-01
Nonlinear vibration of a cantilever in a contact atomic force microscope is analyzed via an asymptotic approach.The asymptotic solution is sought for a beam equation with a nonlinear boundary condition.The steady-state responses are determined in primary resonance and subharmonic resonance.The relations between the response amplitudes and the excitation frequencies and amplitudes are derived from the solvability condition.Multivaluedness occurs in the relations as a consequence of the nonlinearity.The stability of steady-state responses is analyzed by use of the Lyapunov linearized sta-bility theory.The stability analysis predicts the jumping phenomenon for certain parameters.The curves of the response amplitudes changing with the excitation frequencies are numerically compared with those obtained via the method of multiple scales.The calculation results demonstrate that the two methods predict the same varying tendencies while there are small quantitative differences.
Asymptotic analysis of a vibrating cantilever with a nonlinear boundary
Chen, Liqun; Lim, C. W.; Hu, Qingquan; Ding, Hu
2009-09-01
Nonlinear vibration of a cantilever in a contact atomic force microscope is analyzed via an asymptotic approach. The asymptotic solution is sought for a beam equation with a nonlinear boundary condition. The steady-state responses are determined in primary resonance and subharmonic resonance. The relations between the response amplitudes and the excitation frequencies and amplitudes are derived from the solvability condition. Multivaluedness occurs in the relations as a consequence of the nonlinearity. The stability of steady-state responses is analyzed by use of the Lyapunov linearized stability theory. The stability analysis predicts the jumping phenomenon for certain parameters. The curves of the response amplitudes changing with the excitation frequencies are numerically compared with those obtained via the method of multiple scales. The calculation results demonstrate that the two methods predict the same varying tendencies while there are small quantitative differences.
Directory of Open Access Journals (Sweden)
Yan Zhao
2014-01-01
Full Text Available This paper is focused on studying approximate damped oscillatory solutions of the compound KdV-Burgers-type equation with nonlinear terms of any order. By the theory and method of planar dynamical systems, existence conditions and number of bounded traveling wave solutions including damped oscillatory solutions are obtained. Utilizing the undetermined coefficients method, the approximate solutions of damped oscillatory solutions traveling to the left are presented. Error estimates of these approximate solutions are given by the thought of homogeneous principle. The results indicate that errors between implicit exact damped oscillatory solutions and approximate damped oscillatory solutions are infinitesimal decreasing in the exponential form.
Nonlinear Vibration Analysis of Moving Strip with Inertial Boundary Condition
Directory of Open Access Journals (Sweden)
Chong-yi Gao
2015-01-01
Full Text Available According to the movement mechanism of strip and rollers in tandem mill, the strip between two stands was simplified to axially moving Euler beam and the rollers were simplified to the inertial component on the fixed axis rotation, namely, inertial boundary. Nonlinear vibration mechanical model of Euler beam with inertial boundary conditions was established. The transverse and longitudinal motion equations were derived based on Hamilton’s principle. Kantorovich averaging method was employed to discretize the motion equations and the inertial boundary equations, and the solutions were obtained using the modified iteration method. Depending on numerical calculation, the amplitude-frequency responses of Euler beam were determined. The axial velocity, tension, and rotational inertia have strong influences on the vibration characteristics. The results would provide an important theoretical reference to control and analyze the vertical vibration of moving strip in continuous rolling process.
Energy Technology Data Exchange (ETDEWEB)
Siewe, M. Siewe [Laboratoire de Mecanique, Departement de Physique, Faculte des sciences, Universite de Yaounde I, B.P. 812 Yaounde (Cameroon); Cao, Hongjun [Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044 (China); Nonlinear Dynamics and Chaos Group, Departamento de Fisica, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain); Sanjuan, Miguel A.F. [Nonlinear Dynamics and Chaos Group, Departamento de Fisica, Universidad Rey Juan Carlos, Tulipan s/n, 28933 Mostoles, Madrid (Spain)], E-mail: miguel.sanjuan@urjc.es
2009-02-15
The Rayleigh oscillator is one canonical example of self-excited systems. However, simple generalizations of such systems, such as the Rayleigh-Duffing oscillator, have not received much attention. The presence of a cubic term makes the Rayleigh-Duffing oscillator a more complex and interesting case to analyze. In this work, we use analytical techniques such as the Melnikov theory, to obtain the threshold condition for the occurrence of Smale-horseshoe type chaos in the Rayleigh-Duffing oscillator. Moreover, we examine carefully the phase space of initial conditions in order to analyze the effect of the nonlinear damping, and in particular how the basin boundaries become fractalized.
Boundary-Value Problems for Weakly Nonlinear Delay Differential Systems
Directory of Open Access Journals (Sweden)
A. Boichuk
2011-01-01
Full Text Available Conditions are derived of the existence of solutions of nonlinear boundary-value problems for systems of n ordinary differential equations with constant coefficients and single delay (in the linear part and with a finite number of measurable delays of argument in nonlinearity: ż(t=Az(t-τ+g(t+εZ(z(hi(t,t,ε, t∈[a,b], assuming that these solutions satisfy the initial and boundary conditions z(s:=ψ(s if s∉[a,b], lz(⋅=α∈Rm. The use of a delayed matrix exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit and analytical form of sufficient conditions for the existence of solutions in a given space and, moreover, to the construction of an iterative process for finding the solutions of such problems in a general case when the number of boundary conditions (defined by a linear vector functional l does not coincide with the number of unknowns in the differential system with a single delay.
A nonlinear wave equation with a nonlinear integral equation involving the boundary value
Directory of Open Access Journals (Sweden)
Thanh Long Nguyen
2004-09-01
Full Text Available We consider the initial-boundary value problem for the nonlinear wave equation $$displaylines{ u_{tt}-u_{xx}+f(u,u_{t}=0,quad xin Omega =(0,1,; 0
Local absorbing boundary conditions for nonlinear wave equation on unbounded domain.
Li, Hongwei; Wu, Xiaonan; Zhang, Jiwei
2011-09-01
The numerical solution of the nonlinear wave equation on unbounded spatial domain is considered. The artificial boundary method is introduced to reduce the nonlinear problem on unbounded spatial domain to an initial boundary value problem on a bounded domain. Using the unified approach, which is based on the operator splitting method, we construct the efficient nonlinear local absorbing boundary conditions for the nonlinear wave equation, and give the stability analysis of the resulting boundary conditions. Finally, several numerical examples are given to demonstrate the effectiveness of our method.
Institute of Scientific and Technical Information of China (English)
莫嘉琪
2003-01-01
The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence and asymptotic behavior of solution for initial boundary value problems were studied.
THREE POINT BOUNDARY VALUE PROBLEMS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
Mujeeb ur Rehman; Rahmat Ali Khan; Naseer Ahmad Asif
2011-01-01
In this paper,we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type cDδ0+u(t) =f(t,u(t),cDσ0+u(t)),t ∈[0,T],u(0) =αu(η),u(T) =βu(η),where1 ＜δ＜2,0＜σ＜ 1,α,β∈R,η∈(0,T),αη(1-β)+(1-α)(T-βη) ≠0 and cDoδ+,cDσ0+ are the Caputo fractional derivatives.We use Schauder fixed point theorem and contraction mapping principle to obtain existence and uniqueness results.Examples are also included to show the applicability of our results.
DEFF Research Database (Denmark)
Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit
2015-01-01
Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilit......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... studied in the numerical simulation. It is shown that the one-mode model is able to predict the sloshing force and the damped structural response accurately, since the primary damping effect on the structure is achieved by the first sloshing mode of the fluid. Although it is unable to predict the fluid...
DEFF Research Database (Denmark)
Yao, Wei; Fang, Jiakun; Zhao, Ping
2013-01-01
the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency...... oscillations under different operating conditions and is superior to the lead-lag damping controller tuned by EA....
Nonlinear Vibrations of Multiwalled Carbon Nanotubes under Various Boundary Conditions
Directory of Open Access Journals (Sweden)
Hossein Aminikhah
2011-01-01
Full Text Available The present work deals with applying the homotopy perturbation method to the problem of the nonlinear oscillations of multiwalled carbon nanotubes embedded in an elastic medium under various boundary conditions. A multiple-beam model is utilized in which the governing equations of each layer are coupled with those of its adjacent ones via the van der Waals interlayer forces. The amplitude-frequency curves for large-amplitude vibrations of single-walled, double-walled, and triple-walled carbon nanotubes are obtained. The influences of some commonly used boundary conditions, changes in material constant of the surrounding elastic medium, and variations of the nanotubes geometrical parameters on the vibration characteristics of multiwalled carbon nanotubes are discussed. The comparison of the generated results with those from the open literature illustrates that the solutions obtained are of very high accuracy and clarifies the capability and the simplicity of the present method. It is worthwhile to say that the results generated are new and can be served as a benchmark for future works.
Institute of Scientific and Technical Information of China (English)
崔霞
2002-01-01
Alternating direction finite element (ADFE) scheme for d-dimensional nonlinear system of parabolic integro-differential equations is studied. By using a local approximation based on patches of finite elements to treat the capacity term qi(u), decomposition of the coefficient matrix is realized; by using alternating direction, the multi-dimensional problem is reduced to a family of single space variable problems, calculation work is simplified; by using finite element method, high accuracy for space variant is kept; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity of the coefficients and boundary conditions is treated; by introducing Ritz-Volterra projection, the difficulty coming from the memory term is solved. Finally, by using various techniques for priori estimate for differential equations, the unique resolvability and convergence properties for both FE and ADFE schemes are rigorously demonstrated, and optimal H1 and L2norm space estimates and O((△t)2) estimate for time variant are obtained.
Directory of Open Access Journals (Sweden)
Imran Talib
2015-12-01
Full Text Available In this article, study the existence of solutions for the second-order nonlinear coupled system of ordinary differential equations $$\\displaylines{ u''(t=f(t,v(t,\\quad t\\in [0,1],\\cr v''(t=g(t,u(t,\\quad t\\in [0,1], }$$ with nonlinear coupled boundary conditions $$\\displaylines{ \\phi(u(0,v(0,u(1,v(1,u'(0,v'(0=(0,0, \\cr \\psi(u(0,v(0,u(1,v(1,u'(1,v'(1=(0,0, }$$ where $f,g:[0,1]\\times \\mathbb{R}\\to \\mathbb{R}$ and $\\phi,\\psi:\\mathbb{R}^6\\to \\mathbb{R}^2$ are continuous functions. Our main tools are coupled lower and upper solutions, Arzela-Ascoli theorem, and Schauder's fixed point theorem.
Initial-boundary value problems for a class of nonlinear thermoelastic plate equations
Institute of Scientific and Technical Information of China (English)
Zhang Jian-Wen; Rong Xiao-Liang; Wu Run-Heng
2009-01-01
This paper studies initial-boundary value problems for a class of nonlinear thermoelastic plate equations. Under some certain initial data and boundary conditions,it obtains an existence and uniqueness theorem of global weak solutions of the nonlinear thermoelstic plate equations,by means of the Galerkin method. Moreover,it also proves the existence of strong and classical solutions.
Jang, Jae K.; Erkintalo, Miro; Luo, Kathy; Oppo, Gian-Luca; Coen, Stéphane; Murdoch, Stuart G.
2016-03-01
We report studies of controlled interactions of localised dissipative structures in a system described by the AC-driven damped nonlinear Schrödinger equation (equivalent to the Lugiato-Lefever model). Extensive numerical simulations reveal a variety of interaction scenarios that are governed by the properties of the system driver, notably its gradients. In our experiments, performed with a nonlinear optical fibre (Kerr) resonator, the phase profile of the driver is used to induce interactions of the dissipative structures on demand. We observe both merging and annihilation of localised structures, i.e. interactions governed by the dissipative, out-of-equilibrium nature of the system. These interactions fundamentally differ from those typically found for conventional conservative solitons.
Stochastic viscosity solution for stochastic PDIEs with nonlinear Neumann boundary condition
Aman, Auguste
2010-01-01
This paper is an attempt to extend the notion of viscosity solution to nonlinear stochastic partial differential integral equations with nonlinear Neumann boundary condition. Using the recently developed theory on generalized backward doubly stochastic differential equations driven by a L\\'evy process, we prove the existence of the stochastic viscosity solution, and further extend the nonlinear Feynman-Kac formula.
Institute of Scientific and Technical Information of China (English)
SU XIN-WEI
2011-01-01
This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects. The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in [B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Analysis: Hybrid Systems, 3(2009), 251258].
Energy Technology Data Exchange (ETDEWEB)
Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.; Ebels, U. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); Delaët, B. [CEA-LETI, MINATEC, DRT/LETI/DIHS, 38054 Grenoble (France)
2015-05-11
The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currents and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.
Positive solutions of quasilinear parabolic systems with nonlinear boundary conditions
Pao, C. V.; Ruan, W. H.
2007-09-01
The aim of this paper is to investigate the existence, uniqueness, and asymptotic behavior of solutions for a coupled system of quasilinear parabolic equations under nonlinear boundary conditions, including a system of quasilinear parabolic and ordinary differential equations. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system as well as the uniqueness of a positive steady-state solution. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients Di(ui) may have the property Di(0)=0 for some or all i. Our approach to the problem is by the method of upper and lower solutions and its associated monotone iterations. It is shown that the time-dependent solution converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a porous medium type of problem, a heat-transfer problem, and a two-component competition model in ecology. These applications illustrate some very interesting distinctive behavior of the time-dependent solutions between density-independent and density-dependent diffusions.
On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions
Mancinelli, P J; Ganon, G; Dekel, A; Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai
1993-01-01
Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the mean error in the approximated relative density perturbation, $\\delta$, is smaller than 0.06, and the dispersion is 0.1. The \\rms\\ error in the estimated velocity is smaller than 60\\kms, and the dispersion is 40\\kms. For smoothing of 500\\kms\\ these numbers increase by about a factor $\\sim 2$ for $\\delta < 4-5$, but deteriorate at higher densities. The other approximations are comparable to those of Nusser \\etal for smoothing of 1000\\kms, but are much less successful for the smaller smoothing of 500\\kms.
Directory of Open Access Journals (Sweden)
Juan Carlos Ceballos V.
2005-10-01
Full Text Available The exact boundary controllability of the higher order nonlinear Schrodinger equation with constant coefficients on a bounded domain with various boundary conditions is studied. We derive the exact boundary controllability for this equation for sufficiently small initial and final states.
Reche-López, Pedro; Hernández, Erwin
2014-01-01
In the context of wave-like phenomena, Fourier pseudospectral time-domain (PSTD) algorithms are some of the most efficient time-domain numerical methods for engineering applications. One important drawback of these methods is the so-called Gibbs phenomenon. This error can be avoided by using absorbing boundary conditions (ABC) at the end of the simulations. However, there is an important lack of ABC using a PSTD methods on a wave equation. In this paper, we present an ABC model based on a PSTD damped wave equation with an absorption parameter that depends on the position. Some examples of optimum variation profiles are studied analytically and numerically. Finally, the results of this model are also compared to another ABC model based on an hybrid formulation of the scalar perfectly matched layer. PMID:24737966
Existence and asymptotic behavior of the wave equation with dynamic boundary conditions
Graber, Philip Jameson
2012-03-07
The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time. © 2012 Springer Science+Business Media, LLC.
Existence and Asymptotic Behavior of the Wave Equation with Dynamic Boundary Conditions
Energy Technology Data Exchange (ETDEWEB)
Graber, Philip Jameson, E-mail: pjg9g@virginia.edu [University of Virginia, Department of Mathematics (United States); Said-Houari, Belkacem, E-mail: belkacem.saidhouari@kaust.edu.sa [King Abdullah University of Science and Technology (KAUST), Division of Mathematical and Computer Sciences and Engineering (Saudi Arabia)
2012-08-15
The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time.
Analysis on Forced Vibration of Thin-Wall Cylindrical Shell with Nonlinear Boundary Condition
Directory of Open Access Journals (Sweden)
Qiansheng Tang
2016-01-01
Full Text Available Forced vibration of thin-wall cylindrical shell under nonlinear boundary condition was discussed in this paper. The nonlinear boundary was modeled as supported clearance in one end of shell and the restraint was assumed as linearly elastic in the radial direction. Based on Sanders’ shell theory, Lagrange equation was utilized to derive the nonlinear governing equations of cylindrical shell. The displacements in three directions were represented by beam functions and trigonometric functions. In the study of nonlinear dynamic responses of thin-wall cylindrical shell with supported clearance under external loads, the Newmark method is used to obtain time history, frequency spectrum plot, phase portraits, Poincare section, bifurcation diagrams, and three-dimensional spectrum plot with different parameters. The effects of external loads, supported clearance, and support stiffness on nonlinear dynamics behaviors of cylindrical shell with nonlinear boundary condition were discussed.
Phase-locking phenomena and excitation of damped and driven nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Shagalov, A G [Institute of Metal Physics, Ekaterinburg 620041 (Russian Federation); Rasmussen, J Juul; Naulin, V [Risoe-DTU, Building 128, PO Box 49, DK-4000 Roskilde (Denmark)], E-mail: shagalov@imp.uran.ru, E-mail: jens.juul.rasmussen@risoe.dk, E-mail: volker.naulin@risoe.dk
2009-01-30
Resonant phase-locking phenomena ('autoresonance') in the van der Pol-Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi-stable states. We find the range of parameters of the oscillator, the thresholds and the appropriate control paths where autoresonant excitation of high amplitude oscillations is possible.
Phase-locking phenomena and excitation of damped and driven nonlinear oscillators
DEFF Research Database (Denmark)
Shagalov, A.G.; Juul Rasmussen, Jens; Naulin, Volker
2009-01-01
Resonant phase-locking phenomena ('autoresonance') in the van der Pol Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi......-stable states. We find the range of parameters of the oscillator, the thresholds and the appropriate control paths where autoresonant excitation of high amplitude oscillations is possible....
Energy Technology Data Exchange (ETDEWEB)
Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics
2017-06-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Zou, Li; Liang, Songxin; Li, Yawei; Jeffrey, David J.
2017-03-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Boundary regularity for some nonlinear elliptic degenerate equations. Technical summary report
Energy Technology Data Exchange (ETDEWEB)
Brezis, H.; Lions, P.
1979-08-01
Special solutions of the Yang-Mills field equations of theoretical physics may be obtained by solving a boundary value problem for a nonlinear elliptic equation in a two dimensional half space. This equation degenerates at the boundary of the region and this degeneracy makes it a delicate matter to study how the solutions behave near the boundary. In this work it is proved that the weak solutions previously known to exist are in fact smooth up to the boundary.
Direct approach for solving nonlinear evolution and two-point boundary value problems
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2013-12-01
Time-delayed nonlinear evolution equations and boundary value problems have a wide range of applications in science and engineering. In this paper, we implement the differential transform method to solve the nonlinear delay differential equation and boundary value problems. Also, we present some numerical examples including time-delayed nonlinear Burgers equation to illustrate the validity and the great potential of the differential transform method. Numerical experiments demonstrate the use and computational efﬁciency of the method. This method can easily be applied to many nonlinear problems and is capable of reducing the size of computational work.
Institute of Scientific and Technical Information of China (English)
唐登斌; 夏浩
2002-01-01
The nonlinear evolution problem in nonparallel boundary layer stability was studied. The relative parabolized stability equations of nonlinear nonparallel boundary layer were derived. The developed numerical method, which is very effective, was used to study the nonlinear evolution of T-S disturbance wave at finite amplitudes. Solving nonlinear equations of different modes by using predictor-corrector and iterative approach, which is uncoupled between modes, improving computational accuracy by using high order compact differential scheme, satisfying normalization condition, determining tables of nonlinear terms at different modes, and implementing stably the spatial marching, were included in this method. With different initial amplitudes, the nonlinear evolution of T-S wave was studied. The nonlinear nonparallel results of examples compare with data of direct numerical simulations (DNS) using full Navier- Stokes equations.
Energy Decay and Boundary Control for Distributed Parameter Systems with Viscoelastic Damping
1989-07-24
In [241 Y. Renardy used bifurcation theory techniques to investigate the stability of plane two-layer Couette - Poiseuille flow . The center manifold... Couette - Poiseuille flow of two fluids in a channel, Physics of Fluids, to appear. 25. T. Svobodny, Stability of nonlinear observers for dissipative ODEs...stability of various steady arrangements in two-fluid flows , and the appearance of new arrangements from unstable ones [8, 10, 24]. A two-layer Couette flow
Antoniou, F.
2014-06-23
The theoretical minimum emittance cells are the optimal configurations for achieving the absolute minimum emittance, if specific optics constraints are satisfied at the middle of the cell's dipole. Linear lattice design options based on an analytical approach for the theoretical minimum emittance cells are presented in this paper. In particular the parametrization of the quadrupole strengths and optics functions with respect to the emittance and drift lengths is derived. A multi-parametric space can be then created with all the cell parameters, from which one can chose any of them to be optimized. An application of this approach are finally presented for the linear and non-linear optimization of the CLIC Pre-damping rings.
Institute of Scientific and Technical Information of China (English)
JIANG Tie-zheng; CHEN Chen; CAO Guo-yun
2006-01-01
The main objectives of this paper are to simultaneously improve power system damping and to maintain voltage at the static var compensator (SVC) location bus simultaneously.A new controller for SVC with closed-form analytic solution nonlinear optimal predictive control (NOPC) law was presented.The controller does not require online optimization and the huge calculation burden can be avoided,so that the demand of real-time control can be satisfied.In addition,there are only two design parameters,which are the predictive period and control order;so it is easy to implement and test in practical use.Simulation results have shown that the controller can not only attenuate power system oscillation effectively but can also maintain voltage at the SVC bus location.
Fatigue crack damage detection using subharmonic component with nonlinear boundary condition
Energy Technology Data Exchange (ETDEWEB)
Wu, Weiliang, E-mail: wwl@whu.edu.cn; Qu, Wenzhong, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com; Xiao, Li, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com [Department of Engineering Mechanics, Wuhan University, Wuhan, Hubei (China); Shen, Yanfeng, E-mail: shen5@email.sc.edu; Giurgiutiu, Victor, E-mail: victorg@sc.edu [Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina (United States)
2015-03-31
In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come from the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from
Brahim Tellab; Kamel Haouam
2016-01-01
In this paper, we investigate the existence and uniqueness of solutions for second order nonlinear fractional differential equation with integral boundary conditions. Our result is an application of the Banach contraction principle and the Krasnoselskii fixed point theorem.
Eigenvalue Problem for Nonlinear Fractional Differential Equations with Integral Boundary Conditions
Directory of Open Access Journals (Sweden)
Guotao Wang
2014-01-01
Full Text Available By employing known Guo-Krasnoselskii fixed point theorem, we investigate the eigenvalue interval for the existence and nonexistence of at least one positive solution of nonlinear fractional differential equation with integral boundary conditions.
Institute of Scientific and Technical Information of China (English)
LiHongyu; SunJingxian
2005-01-01
By using topological method, we study a class of boundary value problem for a system of nonlinear ordinary differential equations. Under suitable conditions,we prove the existence of positive solution of the problem.
Institute of Scientific and Technical Information of China (English)
Fa-yong Zhang
2004-01-01
The three-dimensional nonlinear Schrodinger equation with weakly damped that possesses a global attractor are considered. The dynamical properties of the discrete dynamical system which generate by a class of finite difference scheme are analysed. The existence of global attractor is proved for the discrete dynamical system.
Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial slip at
Directory of Open Access Journals (Sweden)
Swati Mukhopadhyay
2013-12-01
Full Text Available The boundary layer flow of a viscous incompressible fluid toward a porous nonlinearly stretching sheet is considered in this analysis. Velocity slip is considered instead of no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equation corresponding to the momentum equation into nonlinear ordinary differential equation. Numerical solution of this equation is obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter.
Nonlinear solution for radiation boundary condition of heat transfer process in human eye.
Dehghani, A; Moradi, A; Dehghani, M; Ahani, A
2011-01-01
In this paper we propose a new method based on finite element method for solving radiation boundary condition of heat equation inside the human eye and other applications. Using this method, we can solve heat equation inside human eye without need to model radiation boundary condition to a robin boundary condition. Using finite element method we can obtain a nonlinear equation, and finally we use nonlinear algorithm to solve it. The human eye is modeled as a composition of several homogeneous regions. The Ritz method in the finite element method is used for solving heat differential equation. Applying the boundary conditions, the heat radiation condition and the robin condition on the cornea surface of the eye and on the outer part of sclera are used, respectively. Simulation results of solving nonlinear boundary condition show the accuracy of the proposed method.
Institute of Scientific and Technical Information of China (English)
Long Shuyao; Zhang Qin
2000-01-01
In this paper the dual reciprocity boundary element method is employed to solve nonlinear differential equation 2 u + u + εu3 = b. Results obtained in an example have a good agreement with those by FEM and show the applicability and simplicity of dual reciprocity method(DRM) in solving nonlinear dif ferential equations.
Directory of Open Access Journals (Sweden)
George L. Karakostas
2006-08-01
Full Text Available We provide sufficient conditions for the existence of positive solutions of a three-point boundary value problem concerning a second order delay differential equation with damping and forcing term whose the delayed part is an actively bounded function, a meaning introduced in [19]. By writing the damping term as a difference of two factors one can extract more information on the solutions. (For instance, in an application, given in the last section, we can give the exact value of the norm of the solution.
Energy Technology Data Exchange (ETDEWEB)
Zhang, H. [Univ. of Texas, Austin, TX (United States). Dept. of Mathematics
1994-10-01
In this paper the author considers a nonlinear evolution problem denoted in the paper as P. Problem (P) arises in the study of thermal evaporation of atoms and molecules from locally heated surface regions (spikes) invoked as one of several mechanisms of ion-bombardment-induced particle emission (sputtering). Then in the case of particle-induced evaporation, the Stefan-Boltzman law of heat loss by radiation is replaced by some activation law describing the loss of heat by evaporation. The equation in P is the so-called degenerate diffusion problem, which has been extensively studied in recent years. However, when dealing with the nonlinear flux boundary condition, {beta}({center_dot}) is usually assumed to be monotene. The purpose of this paper is to provide a general theory for problem P under a different assumption on {beta}({center_dot}), i.e., Lipschitz continuity instead of monotonicity. The main idea of the proof used here is to choose an appropriate test function from the corresponding linearized dual space of the solution. The similar idea has been used by many authors, e.g., Aronson, Crandall and Peletier, Bertsch and Hilhorst and Friedman. The author follows the proof of Bertsch and Hilhorst. The paper is organized as follows. They begin by stating the precise assumptions on the functions involved in P and by defining a weak solution. Then, in Section 2 they prove the existence of the solution by the method of parabolic regularization. The uniqueness is proved in Section 3. Finally, they study the large time behavior of the solution in Section 4.
A NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEM FOR THE HEAT EQUATIONS
Institute of Scientific and Technical Information of China (English)
YANJINHAI
1996-01-01
The existenoe and limit hehaviour of the solution for a kind of nonloeal noulinear boundary value condition on a part of the boundary is studied for the heat equation, which physicallymeans that the potential is the function of the total flux. When this part of boundary shrinks to a point in a certain way, this condition either results in a Dirac measure or simply disappears in the corresponding problem.
Energy Technology Data Exchange (ETDEWEB)
Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)
2003-05-07
A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.
A study of nonlinear radiation damping by matching analytic and numerical solutions
Anderson, J. L.; Hobill, D. W.
1988-04-01
In the present use of a mixed analytic-numerical matching scheme to study a linear oscillator that is coupled to a nonlinear field, the approximate causal solution constructed in the radiation zone was matched to a finite-differencing scheme-derived numerical solution in the inner zone. The required agreement of the two solutions in the overlap region permitted the extension of the numerical scheme arbitrarily into the future. The late time behavior of the system in all studied cases was independent of initial conditions. The linearized 'monopole energy loss' formula breaks down in cases of either fast motions or strong nonlinearities.
Lie and Conditional Symmetries of a Class of Nonlinear (1 + 2-Dimensional Boundary Value Problems
Directory of Open Access Journals (Sweden)
Roman Cherniha
2015-08-01
Full Text Available A new definition of conditional invariance for boundary value problems involving a wide range of boundary conditions (including initial value problems as a special case is proposed. It is shown that other definitions worked out in order to find Lie symmetries of boundary value problems with standard boundary conditions, followed as particular cases from our definition. Simple examples of direct applicability to the nonlinear problems arising in applications are demonstrated. Moreover, the successful application of the definition for the Lie and conditional symmetry classification of a class of (1 + 2-dimensional nonlinear boundary value problems governed by the nonlinear diffusion equation in a semi-infinite domain is realised. In particular, it is proven that there is a special exponent, k ≠ —2, for the power diffusivity uk when the problem in question with non-vanishing flux on the boundary admits additional Lie symmetry operators compared to the case k ≠ —2. In order to demonstrate the applicability of the symmetries derived, they are used for reducing the nonlinear problems with power diffusivity uk and a constant non-zero flux on the boundary (such problems are common in applications and describing a wide range of phenomena to (1 + 1-dimensional problems. The structure and properties of the problems obtained are briefly analysed. Finally, some results demonstrating how Lie invariance of the boundary value problem in question depends on the geometry of the domain are presented.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper is concerned with the existence of extreme solutions to three-point boundary value problems with nonlinear boundary conditions for a class of first order impulsive differential equations. We obtain suficient conditions for the existence of extreme solutions by the upper and lower solutions method coupled with a monotone iterative technique.
Existence of Solutions for Nonlinear Four-Point -Laplacian Boundary Value Problems on Time Scales
Directory of Open Access Journals (Sweden)
Topal SGulsan
2009-01-01
Full Text Available We are concerned with proving the existence of positive solutions of a nonlinear second-order four-point boundary value problem with a -Laplacian operator on time scales. The proofs are based on the fixed point theorems concerning cones in a Banach space. Existence result for -Laplacian boundary value problem is also given by the monotone method.
Jeltsema, Dimitri; Ortega, Romeo; Scherpen, Jacquelien M.A.
2004-01-01
Stabilization of nonlinear feedback passive systems is achieved assigning a storage function with a minimum at the desired equilibrium. For physical systems a natural candidate storage function is the difference between the stored and the supplied energies—leading to the so-called energy-balancing c
Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations.
Zhang, Jiwei; Xu, Zhenli; Wu, Xiaonan
2008-08-01
An efficient method is proposed for numerical solutions of nonlinear Schrödinger equations on an unbounded domain. Through approximating the kinetic energy term by a one-way equation and uniting it with the potential energy equation, absorbing boundary conditions are designed to truncate the unbounded domain, which are in nonlinear form and can perfectly absorb waves outgoing from the boundaries of the truncated computational domain. The stability of the induced initial boundary value problem defined on the computational domain is examined by a normal mode analysis. Numerical examples are given to illustrate the stable and tractable advantages of the method.
Institute of Scientific and Technical Information of China (English)
鲁世平
2003-01-01
By employing the theory of differential inequality and some analysis methods, a nonlinear boundary value problem subject to a general kind of second-order Volterra functional differential equation was considered first. Then, by constructing the right-side layer function and the outer solution, a nonlinear boundary value problem subject to a kind of second- order Volterra functional differential equation with a small parameter was studied further. By using the differential mean value theorem and the technique of upper and lower solution, a new result on the existence of the solutions to the boundary value problem is obtained, and a uniformly valid asymptotic expansions of the solution is given as well.
Multiple nested basin boundaries in nonlinear driven oscillators☆
Zhang, Yongxiang; Xie, Xiangpeng; Luo, Guanwei
2017-03-01
A special type of basins of attraction for high-period coexisting attractors is investigated, which basin boundaries possess multiple nested structures in a driven oscillator. We analyze the global organization of basins and discuss the mechanism for the appearance of layered structures. The unstable periodic orbits and unstable limit cycle are also detected in the oscillator. The basin organization is governed by the ordering of regular saddles and the regular saddle connections are the interrupted by the unstable limit cycle. Wada basin boundary with different Wada number is discovered. Wada basin boundaries for the hidden and rare attractors are also verified.
Tommasini, Mirko; Misseroni, Diego; Bigoni, Davide
2016-01-01
Elastic structures loaded by nonconservative positional forces are prone to instabilities induced by dissipation: it is well-known in fact that internal viscous damping destabilizes the marginally stable Ziegler's pendulum and Pfluger column (of which the Beck's column is a special case), two structures loaded by a tangential follower force. The result is the so-called 'destabilization paradox', where the critical force for flutter instability decreases by an order of magnitude when the coefficient of internal damping becomes infinitesimally small. Until now external damping, such as that related to air drag, is believed to provide only a stabilizing effect, as one would intuitively expect. Contrary to this belief, it will be shown that the effect of external damping is qualitatively the same as the effect of internal damping, yielding a pronounced destabilization paradox. Previous results relative to destabilization by external damping of the Ziegler's and Pfluger's elastic structures are corrected in a defi...
Torres Cedillo, Sergio G.; Bonello, Philip
2016-01-01
The high pressure (HP) rotor in an aero-engine assembly cannot be accessed under operational conditions because of the restricted space for instrumentation and high temperatures. This motivates the development of a non-invasive inverse problem approach for unbalance identification and balancing, requiring prior knowledge of the structure. Most such methods in the literature necessitate linear bearing models, making them unsuitable for aero-engine applications which use nonlinear squeeze-film damper (SFD) bearings. A previously proposed inverse method for nonlinear rotating systems was highly limited in its application (e.g. assumed circular centered SFD orbits). The methodology proposed in this paper overcomes such limitations. It uses the Receptance Harmonic Balance Method (RHBM) to generate the backward operator using measurements of the vibration at the engine casing, provided there is at least one linear connection between rotor and casing, apart from the nonlinear connections. A least-squares solution yields the equivalent unbalance distribution in prescribed planes of the rotor, which is consequently used to balance it. The method is validated on distinct rotordynamic systems using simulated casing vibration readings. The method is shown to provide effective balancing under hitherto unconsidered practical conditions. The repeatability of the method, as well as its robustness to noise, model uncertainty and balancing errors, are satisfactorily demonstrated and the limitations of the process discussed.
Chatterjee, D
2015-01-01
The nonlinear theory of amplitude modulation of electrostatic wave envelopes in a collisionless electron-positron (EP) pair plasma is studied by using a set of Vlasov-Poisson equations in the context of Tsallis' $q$-nonextensive statistics. In particular, the previous linear theory of Langmuir oscillations in EP plasmas [Phys. Rev. E {\\bf87}, 053112 (2013)] is rectified and modified. Applying the multiple scale technique (MST), it is shown that the evolution of electrostatic wave envelopes is governed by a nonlinear Schr{\\"o}dinger (NLS) equation with a nonlocal nonlinear term $\\propto {\\cal{P}}\\int|\\phi(\\xi',\\tau)|^2d\\xi'\\phi/(\\xi-\\xi') $ [where ${\\cal P}$ denotes the Cauchy principal value, $\\phi$ is the small-amplitude electrostatic (complex) potential, and $\\xi$ and $\\tau$ are the stretched coordinates in MST] which appears due to the wave-particle resonance. It is found that a subregion $1/3
Institute of Scientific and Technical Information of China (English)
高永馨
2002-01-01
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equation y(4n)= f( t,y,y' ,y",… ,y(4n－1) ) (a) with the boundary conditions g2i(y(2i) (a) ,y(2i+1) (a)) = 0,h2i(y(2i) (c) ,y(2i+1) (c)) = 0, (I= 0,1,…,2n － 1 ) (b) where the functions f, gi and hi are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equation y(n) = f(t,y,y',y",… ,y(n－1)) many results have been given at the present time. But the existence of solutions of boundary value problem (a), (b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, I.e. Existence of solutions of the boundary value problem. Y(4n) = f(t,y,y',y",… ,y(4n－1) ) a2iy(2i) (at) + a2i+1y(2i+1) (a) = b2i ,c2iy(2O ( c ) + c2i+1y(2i+1) ( c ) = d2i, ( I = 0,1 ,…2n － 1) has not been dealt with in previous works.
A Reaction-diffusion System with Nonlinear Absorption Terms and Boundary Flux
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper deals with a reaction-diffusion system with nonlinear absorption terms and boundary flux. As results of interactions among the six nonlinear terms in the system, some sufficient conditions on global existence and finite time blow-up of the solutions are described via all the six nonlinear exponents appearing in the six nonlinear terms. In addition, we also show the influence of the coefficients of the absorption terms as well as the geometry of the domain to the global existence and finite time blow-up of the solutions for some cases. At last, some numerical results are given.
Subharmonic Route to Boundary-Layer Transition - Critical Layer Nonlinearity
Mankbadi, Reda R.
1991-01-01
The linear and nonlinear dynamics of a triad of initially linear stability waves comprising a single plane wave at fundamental frequency and two symmetric oblique waves with half the frequency and streamwise wave number of the plane wave are presented. Analysis is performed for the initial nonlinear development of the waves where the order of the oblique waves' amplitude is equal to or less than that of the plane wave. Results show that the fundamental basically follows the linear theory, while the subharmonic follows an exponential-of-an-exponential growth.
Nonlinear wave propagation through a ferromagnet with damping in (2+1) dimensions
Indian Academy of Sciences (India)
S G Bindu; V C Kuriakose
2000-02-01
We investigate how dissipation and nonlinearity can affect the electromagnetic wave propagating through a saturated ferromagnet in the presence of an external magnetic ﬁeld in (2+1) dimensions. The propagation of electromagnetic waves through a ferromagnet under an external magnetic ﬁeld in the presence of dissipative effect has been studied using reductive perturbation method. It is found that to the lowest order of perturbation the system of equations for the electromagnetic waves in a ferromagnet can be reduced to an integro-differential equation.
Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows
Energy Technology Data Exchange (ETDEWEB)
Xu, X Q; Belli, E; Bodi, K; Candy, J; Chang, C S; Cohen, B I; Cohen, R H; Colella, P; Dimits, A M; Dorr, M R; Gao, Z; Hittinger, J A; Ko, S; Krasheninnikov, S; McKee, G R; Nevins, W M; Rognlien, T D; Snyder, P B; Suh, J; Umansky, M V
2008-09-18
We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.
On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics
Directory of Open Access Journals (Sweden)
Jun Wang
2011-01-01
Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.
A Nonlinear Stability Theory for Plane Boundary-Layer Flows
1980-07-01
flows , Poiseuille flows and Couette flows . For example, 3 for plane Polseutlle flow with...published results for plane Poiseuille flow and the Orr-Sonunerfeld solutions for ~lasius flow and a numerical solution of Navier-Stokes flow along a flat...TWO-POINT BOUNDARY-VALUE PROBLEM .......... 21 4. NUMERICAL RESULTS ............................................. 44 4.1 Plane Poiseuille Flow
Nonlinear boundary value problem for biregular functions in Clifford analysis
Institute of Scientific and Technical Information of China (English)
黄沙
1996-01-01
The biregular function in Clifford analysis is discussed. Plemelj’s formula is obtained andnonlinear boundary value problem: is considered. Applying the methodof integral equations and Schauder fixed-point theorem, the existence of solution for the above problem is proved.
On approximation of nonlinear boundary integral equations for the combined method
Energy Technology Data Exchange (ETDEWEB)
Gregus, M.; Khoromsky, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.
1989-09-22
The nonlinear boundary integral equations that arise in research of nonlinear magnetostatic problems are investigated in combined formulation on an unbounded domain. Approximations of the derived operator equations are studied based on the Galerkin method. The investigated boundary operators are strongly monotone, Lipschitz-continuous, potential and have a symmetrical Gateaux derivative. The error estimates of the Galerkin's approximation in Sobolev spaces of fractional powers are obtained using the above-mentioned properties of the operators, too. The problem has been studied on surfaces in two and three-dimensional spaces. We answer also some questions on convergence connected with the discretized systems of equations. 21 refs.
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
Directory of Open Access Journals (Sweden)
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation.
Wu, Rengmao; Xu, Liang; Liu, Peng; Zhang, Yaqin; Zheng, Zhenrong; Li, Haifeng; Liu, Xu
2013-01-15
We propose an approach to deal with the problem of freeform surface illumination design without assuming any symmetry based on the concept that this problem is similar to the problem of optimal mass transport. With this approach, the freeform design is converted into a nonlinear boundary problem for the elliptic Monge-Ampére equation. The theory and numerical method are given for solving this boundary problem. Experimental results show the feasibility of this approach in tackling this freeform design problem.
Nonlinear boundary value problems for first order impulsive integro-differential equations
Directory of Open Access Journals (Sweden)
Xinzhi Liu
1989-01-01
Full Text Available In this paper, we investigate a class of first order impulsive integro-differential equations subject to certain nonlinear boundary conditions and prove, with the help of upper and lower solutions, that the problem has a solution lying between the upper and lower solutions. We also develop monotone iterative technique and show the existence of multiple solutions of a class of periodic boundary value problems.
Boundary layers for self-similar viscous approximations of nonlinear hyperbolic systems
Christoforou, Cleopatra
2011-01-01
We provide a precise description of the set of residual boundary conditions generated by the self-similar viscous approximation introduced by Dafermos et al. We then apply our results, valid for both conservative and non conservative systems, to the analysis of the boundary Riemann problem and we show that, under appropriate assumptions, the limits of the self-similar and the classical vanishing viscosity approximation coincide. We require neither genuinely nonlinearity nor linear degeneracy of the characteristic fields.
Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet
Masood Khan; Hashim
2015-01-01
This article studies the Carreau viscosity model (which is a generalized Newtonian model) and then use it to obtain a formulation for the boundary layer equations of the Carreau fluid. The boundary layer flow and heat transfer to a Carreau model over a nonlinear stretching surface is discussed. The Carreau model, adequate for many non-Newtonian fluids, is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical ...
Weakly nonlinear stability of vicsous vortices in three-dimensional boundary layers
Bassom, Andrew P.; Otto, S. R.
1993-01-01
Attention is given to the weakly nonlinear stability of essentially viscous vortices in 3D boundary layers. These modes are unstable in the absence of crossflow, but the imposition of small crossflow has a stabilizing effect. Bassom and Hall (1991) demonstrated the existence of neutrally stable vortices for certain crossflow/wave number combinations, and the weakly nonlinear stability properties of these disturbances are described. It is shown that the effect of crossflow is to stabilize the nonlinear modes, and the present calculations allow stable finite-amplitude vortices to be found. Predictions are made concerning the likelihood of observing some of these viscous modes within a practical setting.
Nonlinear vibrations of shallow shells with complex boundary: R-functions method and experiments
Kurpa, Lidia; Pilgun, Galina; Amabili, Marco
2007-10-01
Geometrically nonlinear vibrations of shallow circular cylindrical panels with complex shape of the boundary are considered. The R-functions theory and variational methods are used to study the problem. The R-functions method (RFM) allows constructing in analytical form the sequence of basis functions satisfying the given boundary conditions in case of complex shape of the boundary. The problem is reduced to a single second-order differential equation with quadratic and cubic nonlinear terms. The method developed has been initially applied to study free vibrations of shallow circular cylindrical panels with rectangular base for different boundary conditions: (i) clamped edges, (ii) in-plane immovable simply supported edges, (iii) classically simply supported edges, and (iv) in-plane free simply supported edges. Then, the same approach is applied to a shell with complex shape of the boundary. Experiments have been conducted on an aluminum panel with complex shape of the boundary in order to identify the nonlinear response of the fundamental mode; these experimental results have been compared to numerical results.
Directory of Open Access Journals (Sweden)
Liang Fei
2011-01-01
Full Text Available Abstract In this paper, we consider the system of nonlinear viscoelastic equations u t t - Δ u + ∫ 0 t g 1 ( t - τ Δ u ( τ d τ - Δ u t = f 1 ( u , v , ( x , t ∈ Ω × ( 0 , T , v t t - Δ v + ∫ 0 t g 2 ( t - τ Δ v ( τ d τ - Δ v t = f 2 ( u , v , ( x , t ∈ Ω × ( 0 , T with initial and Dirichlet boundary conditions. We prove that, under suitable assumptions on the functions gi , fi (i = 1, 2 and certain initial data in the stable set, the decay rate of the solution energy is exponential. Conversely, for certain initial data in the unstable set, there are solutions with positive initial energy that blow up in finite time. 2000 Mathematics Subject Classifications: 35L05; 35L55; 35L70.
Institute of Scientific and Technical Information of China (English)
Jingsun Yao; Jiaqi Mo
2005-01-01
The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original problem is obtained. Using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. And then using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems is studied. Finally the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.
A smart nonstandard finite difference scheme for second order nonlinear boundary value problems
Erdogan, Utku; Ozis, Turgut
2011-01-01
A new kind of finite difference scheme is presented for special second order nonlinear two point boundary value problems. An artificial parameter is introduced in the scheme. Symbolic computation is proposed for the construction of the scheme. Local truncation error of the method is discussed. Numer
A smart nonstandard finite difference scheme for second order nonlinear boundary value problems
Erdogan, Utku; Ozis, Turgut
2011-01-01
A new kind of finite difference scheme is presented for special second order nonlinear two point boundary value problems. An artificial parameter is introduced in the scheme. Symbolic computation is proposed for the construction of the scheme. Local truncation error of the method is discussed.
Directory of Open Access Journals (Sweden)
Jiqiang Jiang
2012-01-01
Full Text Available We consider the existence of positive solutions for a class of nonlinear integral boundary value problems for fractional differential equations. By using some fixed point theorems, the existence and multiplicity results of positive solutions are obtained. The results obtained in this paper improve and generalize some well-known results.
Institute of Scientific and Technical Information of China (English)
Yepeng Xing; Qiong Wang; Valery G. Romanovski
2009-01-01
We prove several new comparison results and develop the monotone iterative tech-nique to show the existence of extremal solutions to a kind of periodic boundary value problem (PBVP) for nonlinear integro-differential equation of mixed type on time scales.
Positive Solutions of a Nonlinear Fourth-order Integral Boundary Value Problem
Directory of Open Access Journals (Sweden)
Benaicha Slimane
2016-07-01
Full Text Available In this paper, the existence of positive solutions for a nonlinear fourth-order two-point boundary value problem with integral condition is investigated. By using Krasnoselskii’s fixed point theorem on cones, sufficient conditions for the existence of at least one positive solutions are obtained.
THE NONLINEAR BOUNDARY VALUE PROBLEM FOR A CLASS OF INTEGRO-DIFFERENTIAL SYSTEM
Institute of Scientific and Technical Information of China (English)
Rongrong Tang
2006-01-01
In this paper, using the theory of differential inequalities, we study the nonlinear boundary value problem for a class of integro-differential system. Under appropriate assumptions, the existence of solution is proved and the uniformly valid asymptotic expansions for arbitrary n-th order approximation and the estimation of remainder term are obtained simply and conveniently.
EXISTENCE AND UNIQUENESS RESULTS FOR NONLINEAR THIRD-ORDER BOUNDARY VALUE PROBLEM
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper,we investigate a nonlinear third-order three-point boundary value problem. By several well-known fixed point theorems,the existence of positive solutions is discussed. Besides,the uniqueness results are obtained by imposing growth restrictions on f.
Existence Theorems for Nonlinear Boundary Value Problems for Second Order Differential Inclusions
Kandilakis, Dimitrios A.; Papageorgiou, Nikolaos S.
1996-11-01
In this paper we consider a nonlinear two-point boundary value problem for second order differential inclusions. Using the Leray-Schauder principle and its multivalued analog due to Dugundji-Granas, we prove existence theorems for convex and nonconvex problems. Our results are quite general and incorporate as special cases several classes of problems which are of interest in the literature.
Institute of Scientific and Technical Information of China (English)
Yaohong LI; Xiaoyan ZHANG
2013-01-01
In this paper,we consider boundary value problems for systems of nonlinear thirdorder differential equations.By applying the fixed point theorems of cone expansion and compression of norm type and Leggett-Williams fixed point theorem,the existence of multiple positive solutions is obtained.As application,we give some examples to demonstrate our results.
Existence of three solutions for impulsive nonlinear fractional boundary value problems
Directory of Open Access Journals (Sweden)
Shapour Heidarkhani
2017-01-01
Full Text Available In this work we present new criteria on the existence of three solutions for a class of impulsive nonlinear fractional boundary-value problems depending on two parameters. We use variational methods for smooth functionals defined on reflexive Banach spaces in order to achieve our results.
Existence of Two Solutions of Nonlinear m-Point Boundary Value Problems
Institute of Scientific and Technical Information of China (English)
任景莉; 葛渭高
2003-01-01
Sufficient conditions for the existence of at least two positive solutions of a nonlinear m-points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.
Roul, Pradip
2016-06-01
This paper presents a new iterative technique for solving nonlinear singular two-point boundary value problems with Neumann and Robin boundary conditions. The method is based on the homotopy perturbation method and the integral equation formalism in which a recursive scheme is established for the components of the approximate series solution. This method does not involve solution of a sequence of nonlinear algebraic or transcendental equations for the unknown coefficients as in some other iterative techniques developed for singular boundary value problems. The convergence result for the proposed method is established in the paper. The method is illustrated by four numerical examples, two of which have physical significance: The first problem is an application of the reaction-diffusion process in a porous spherical catalyst and the second problem arises in the study of steady-state oxygen-diffusion in a spherical cell with Michaelis-Menten uptake kinetics.
Nonlinear nonuniform torsional vibrations of bars by the boundary element method
Sapountzakis, E. J.; Tsipiras, V. J.
2010-05-01
In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross-section taking into account the effect of geometrical nonlinearity. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are supported by the most general torsional boundary conditions. The transverse displacement components are expressed so as to be valid for large twisting rotations (finite displacement-small strain theory), thus the arising governing differential equations and boundary conditions are in general nonlinear. The resulting coupling effect between twisting and axial displacement components is considered and torsional vibration analysis is performed in both the torsional pre- or post-buckled state. A distributed mass model system is employed, taking into account the warping, rotatory and axial inertia, leading to the formulation of a coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an "average" axial displacement of the cross-section of the bar. The numerical solution of the aforementioned initial boundary value problem is performed using the analog equation method, a BEM based method, leading to a system of nonlinear differential-algebraic equations (DAE), which is solved using an efficient time discretization scheme. Additionally, for the free vibrations case, a nonlinear generalized eigenvalue problem is formulated with respect to the fundamental mode shape at the points of reversal of motion after ignoring the axial inertia to verify the accuracy of the proposed method. The problem is solved using the direct iteration technique (DIT), with a geometrically linear fundamental mode shape as a starting vector. The validity of negligible axial inertia assumption is examined for the problem at hand.
Directory of Open Access Journals (Sweden)
anjali devi
2015-01-01
Full Text Available The effects of nonlinear radiation on hydromagnetic boundary layer flow and heat transfer over a shrinking surface is investigated in the present work. Using suitable similarity transformations, the governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations. The resultant equations which are highly nonlinear are solved numerically using Nachtsheim Swigert shooting iteration scheme together with Fourth Order Runge Kutta method. Numerical solutions for velocity, skin friction coefficient and temperature are obtained for various values of physical parameters involved in the study namely Suction parameter, Magnetic parameter, Prandtl number, Radiation parameter and Temperature ratio parameter. Numerical values for dimensionless rate of heat transfer are also obtained for various physical parameters and are shown through tables. The analytical solution of the energy equation when the radiation term is taken in linear form is obtained using Confluent hypergeometric function.
Ottander, John A.; Hall, Robert A., Jr.; Powers, Joseph F.
2017-01-01
One of the challenges of developing flight control systems for liquid-propelled space vehicles is ensuring stability and performance in the presence of parasitic minimally damped slosh dynamics in the liquid propellants. This can be especially difficult when the fundamental frequencies of the slosh motions are in proximity to the frequency used for vehicle control. The challenge is partially alleviated since the energy dissipation and effective damping in the slosh modes increases with amplitude. However, traditional launch vehicle control design methodology is performed with linearized systems using a fixed slosh damping corresponding to a slosh motion amplitude based on heritage values. This papers presents a method for performing the control design and analysis using damping at slosh amplitudes chosen based on the resulting limit cycle amplitude of the vehicle thrust vector system due to a control-slosh interaction under degraded phase and gain margin conditions.
Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow
Choudhari, Meelan; Duck, Peter W.
1996-01-01
We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.
The nonlinear evolution of inviscid Goertler vortices in three-dimensional boundary layers
Blackaby, Nicholas; Dando, Andrew; Hall, Philip
1995-09-01
The nonlinear development of inviscid Gortler vortices in a three-dimensional boundary layer is considered. We do not follow the classical approach of weakly nonlinear stability problems and consider a mode which has just become unstable. Instead we extend the method of Blackaby, Dando, and Hall (1992), which considered the closely related nonlinear development of disturbances in stratified shear flows. The Gortler modes we consider are initially fast growing and we assume, following others, that boundary-layer spreading results in them evolving in a linear fashion until they reach a stage where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. From the work of Blackaby, Dando and Hall (1993) is apparent, given the range of parameters for the Gortler problem, that there are three possible nonlinear integro-differential evolution equations for the disturbance amplitude. These are a cubic due to viscous effects, a cubic which corresponds to the novel mechanism investigated in this previous paper, and a quintic. In this paper we shall concentrate on the two cubic integro-differential equations and in particular, on the one due to the novel mechanism as this will be the first to affect a disturbance. It is found that the consideration of a spatial evolution problem as opposed to temporal (as was considered in Blackaby, Dando, and Hall, 1992) causes a number of significant changes to the evolution equations.
Chen, Xiang-Jun; Lam, Wa Kun
2004-06-01
An inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions is derived by introducing an affine parameter to avoid constructing Riemann sheets. A one-soliton solution simpler than that in the literature is obtained, which is a breather and degenerates to a bright or dark soliton as the discrete eigenvalue becomes purely imaginary. The solution is mapped to that of the modified nonlinear Schrödinger equation by a gaugelike transformation, predicting some sub-picosecond solitons in optical fibers.
The Modified Adomian Decomposition Method for Nonlinear Fractional Boundary Value Problems
Institute of Scientific and Technical Information of China (English)
WANG Jie
2012-01-01
We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem Dα0+u(x)=f(x,u(x)), 0＜x＜1, 3＜α≤4u(0) =α0, u″(0) =α2 (1)u(1) =β0, u″(1) =β2where Dα0+u is Caputo fractional derivative and α0,α2,β0,β2 is not zero at all,and f:[0,1] x R → R is continuous.The calculated numerical results show reliability and efficiency of the algorithm given.The numerical procedure is tested on linear and nonlinear problems.
Directory of Open Access Journals (Sweden)
Ying Wang
2015-03-01
Full Text Available In this article, we study the existence of multiple positive solutions for singular semipositone boundary-value problem (BVP with integral boundary conditions on infinite intervals. By using the properties of the Green's function and the Guo-Krasnosel'skii fixed point theorem, we obtain the existence of multiple positive solutions under conditions concerning the nonlinear functions. The method in this article can be used for a large number of problems. We illustrate the validity of our results with an example in the last section.
POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
FAOUZI HADDOUCHI
2015-11-01
Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.
Verified solutions of two-point boundary value problems for nonlinear oscillators
Bünger, Florian
Using techniques introduced by Nakao [4], Oishi [5, 6] and applied by Takayasu, Oishi, Kubo [11, 12] to certain nonlinear two-point boundary value problems (see also Rump [7], Chapter 15), we provide a numerical method for verifying the existence of weak solutions of two-point boundary value problems of the form -u″ = a(x, u) + b(x, u)u‧, 0 b are functions that fulfill some regularity properties. The numerical approximation is done by cubic spline interpolation. Finally, the method is applied to the Duffing, the van der Pol and the Toda oscillator. The rigorous numerical computations were done with INTLAB [8].
Institute of Scientific and Technical Information of China (English)
张洪生; 洪广文; 丁平兴; 曹振轶
2001-01-01
In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to the mild slope equations for non-stationary linear waves and dissipative effects considered. Numerical simulation models are developed of non-linear wave propagation for waters of mildly varying topography with complicated boundary, and the effects are studied of different non-linear corrections on calculation results of extended mild slope equations. Systematical numerical simulation tests show that the present models can effectively reflect non-linear effects.
Positive Solutions to Fractional Boundary Value Problems with Nonlinear Boundary Conditions
Directory of Open Access Journals (Sweden)
Nemat Nyamoradi
2013-01-01
Full Text Available We consider a system of boundary value problems for fractional differential equation given by D0+βϕp(D0+αu(t=λ1a1(tf1(u(t,v(t, t∈(0,1, D0+βϕp(D0+αv(t=λ2a2(tf2(u(t,v(t, t∈(0,1, where 1<α, β≤2, 2<α+β≤4, λ1, λ2 are eigenvalues, subject either to the boundary conditions D0+αu(0=D0+αu(1=0, u(0=0, D0+β1u(1-Σi=1m-2a1i D0+β1u(ξ1i=0, D0+αv(0=D0+αv(1=0, v(0=0, D0+β1v(1-Σi=1m-2a2i D0+β1v(ξ2i=0 or D0+αu(0=D0+αu(1=0, u(0=0, D0+β1u(1-Σi=1m-2a1i D0+β1u(ξ1i=ψ1(u, D0+αv(0=D0+αv(1=0, v(0=0, D0+β1v(1-Σi=1m-2a2i D0+β1v(ξ2i=ψ2(v, where 0<β1<1, α-β1-1≥0 and ψ1, ψ2:C([0,1]→[0, ∞ are continuous functions. The Krasnoselskiis fixed point theorem is applied to prove the existence of at least one positive solution for both fractional boundary value problems. As an application, an example is given to demonstrate some of main results.
Eleiwi, Fadi
2015-07-01
This paper presents a nonlinear Lyapunov-based boundary control for the temperature difference of a membrane distillation boundary layers. The heat transfer mechanisms inside the process are modeled with a 2D advection-diffusion equation. The model is semi-descretized in space, and a nonlinear state-space representation is provided. The control is designed to force the temperature difference along the membrane sides to track a desired reference asymptotically, and hence a desired flux would be generated. Certain constraints are put on the control law inputs to be within an economic range of energy supplies. The effect of the controller gain is discussed. Simulations with real process parameters for the model, and the controller are provided. © 2015 American Automatic Control Council.
Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers
Gajjar, J. S. B.
1995-01-01
The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.
Blow-up in p-Laplacian heat equations with nonlinear boundary conditions
Ding, Juntang; Shen, Xuhui
2016-10-01
In this paper, we investigate the blow-up of solutions to the following p-Laplacian heat equations with nonlinear boundary conditions: {l@{quad}l}(h(u))_t =nabla\\cdot(|nabla u|pnabla u)+k(t)f(u) &{in } Ω×(0,t^{*}), |nabla u|ppartial u/partial n=g(u) &on partialΩ×(0,t^{*}), u(x,0)=u0(x) ≥ 0 & {in } overline{Ω},. where {p ≥ 0} and {Ω} is a bounded convex domain in {RN}, {N ≥ 2} with smooth boundary {partialΩ}. By constructing suitable auxiliary functions and using a first-order differential inequality technique, we establish the conditions on the nonlinearities and data to ensure that the solution u( x, t) blows up at some finite time. Moreover, the upper and lower bounds for the blow-up time, when blow-up does occur, are obtained.
Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons
Midya, Bikashkali; Konotop, Vladimir V.
2017-07-01
We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.
EXISTENCE OF SOLUTIONS OF A FAMILY OF NONLINEAR BOUNDARY VALUE PROBLEMS IN L2-SPACES
Institute of Scientific and Technical Information of China (English)
WeiLi; ZhouHaiyun
2005-01-01
By using the perturbation results of sums of ranges of accretive mappings of Calvert and Gupta (1978),the abstract results on the existence of solutions of a family of nonlinear boundary value problems in L2 (Ω) are studied. The equation discussed in this paper and the methods used here are extension and complement to the corresponding results of Wei Li and He Zhen's previous papers. Especially,some new techniques are used in this paper.
A two-phase free boundary problem for a nonlinear diffusion-convection equation
Energy Technology Data Exchange (ETDEWEB)
De Lillo, S; Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia (Italy)], E-mail: silvana.delillo@pg.infn.it
2008-04-11
A two-phase free boundary problem associated with a diffusion-convection equation is considered. The problem is reduced to a system of nonlinear integral equations, which admits a unique solution for small times. The system admits an explicit two-component solution corresponding to a two-component shock wave of the Burgers equation. The stability of such a solution is also discussed.
On the Stability of Nonlinear Viscous Vortices in Three-Dimensional Boundary Layers
1992-04-01
wave disturbances in stable and unsta- ble parallel flows , Part 2. The development of a solution for plane Poiseuille and plane Couette flow . J. Fluid...unstable parallel flows , Part 1. The basic behaviour in plane Poiseuille flow . J. Fluid Mech. 9, 353-370. Watson, J. 1960 On the nonlinear mechanics of...vortices which a particular boundary layer may support. According to a linearised theory vortices within a high G6rtler number flow can take one of
Solvability of a three-point nonlinear boundary-value problem
Directory of Open Access Journals (Sweden)
Assia Guezane-Lakoud
2010-09-01
Full Text Available Using the Leray Schauder nonlinear alternative, we prove the existence of a nontrivial solution for the three-point boundary-value problem $$displaylines{ u''+f(t,u= 0,quad 0
Positive solutions for a nonlinear periodic boundary-value problem with a parameter
Directory of Open Access Journals (Sweden)
Jingliang Qiu
2012-08-01
Full Text Available Using topological degree theory with a partially ordered structure of space, sufficient conditions for the existence and multiplicity of positive solutions for a second-order nonlinear periodic boundary-value problem are established. Inspired by ideas in Guo and Lakshmikantham [6], we study the dependence of positive periodic solutions as a parameter approaches infinity, $$ lim_{lambdao +infty}|x_{lambda}|=+infty,quadhbox{or}quad lim_{lambdao+infty}|x_{lambda}|=0. $$
Institute of Scientific and Technical Information of China (English)
张伟斌; 向新民
2002-01-01
The initial boundary value problem of nonlinear Schrodinger-Boussinesq equation with weak damping is discretized by finite difference method. The error-estimate of numerical solution is established, and the existence of the approximate attractor and its upper-semicontinuity are proved.%用差分法对非线性Schrodinger-Boussinesq方程的初边值问题构造了近似计算格式,并得到了近似解的误差估计,还进一步论证了近似吸引子的存在性和关于原问题吸引子的上半连续性.
Kounadis, A. N.
1992-05-01
An efficient and easily applicable, approximate analytic technique for the solution of nonlinear initial and boundary-value problems associated with nonlinear ordinary differential equations (O.D.E.) of any order and variable coefficients, is presented. Convergence, uniqueness and upper bound error estimates of solutions, obtained by the successive approximations scheme of the proposed technique, are thoroughly established. Important conclusions regarding the improvement of convergence for large time and large displacement solutions in case of nonlinear initial-value problems are also assessed. The proposed technique is much more efficient than the perturbations schemes for establishing the large postbuckling response of structural systems. The efficiency, simplicity and reliability of the proposed technique is demonstrated by two illustrative examples for which available numerical results exist.
Directory of Open Access Journals (Sweden)
Shaolong Chen
2016-01-01
Full Text Available Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.
A fully nonlinear iterative solution method for self-similar potential flows with a free boundary
Iafrati, Alessandro
2013-01-01
An iterative solution method for fully nonlinear boundary value problems governing self-similar flows with a free boundary is presented. Specifically, the method is developed for application to water entry problems, which can be studied under the assumptions of an ideal and incompressible fluid with negligible gravity and surface tension effects. The approach is based on a pseudo time stepping procedure, which uses a boundary integral equation method for the solution of the Laplace problem governing the velocity potential at each iteration. In order to demonstrate the flexibility and the capabilities of the approach, several applications are presented: the classical wedge entry problem, which is also used for a validation of the approach, the block sliding along an inclined sea bed, the vertical water entry of a flat plate and the ditching of an inclined plate. The solution procedure is also applied to cases in which the body surface is either porous or perforated. Comparisons with numerical or experimental d...
Modeling Charge-Sign Asymmetric Solvation Free Energies With Nonlinear Boundary Conditions
Bardhan, Jaydeep P
2014-01-01
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory but replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley "bracelet" and "rod" test problems [J. Phys. Chem. B, v. 112:2408, 2008]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.
Gómez-Estern, F.; Schaft, A.J. van der
2004-01-01
Energy shaping and passivity-based control designs have proven to be effective in solving control problems for underactuated mechanical systems. In recent works, Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) has been successfully applied to open loop conservative models, i
Mawhin, Jean; Ure??a, Antonio J.
2002-01-01
A generalization of the well-known Hartman-Nagumo inequality to the case of the vector ordinary p-Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.
Directory of Open Access Journals (Sweden)
Ureña Antonio J
2002-01-01
Full Text Available A generalization of the well-known Hartman–Nagumo inequality to the case of the vector ordinary -Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.
Institute of Scientific and Technical Information of China (English)
CHEN Xiang-Jun; HOU Li-Jie; LAM Wa Kun
2005-01-01
@@ Conservation laws for the derivative nonlinear Schr(o)dinger equation with non-vanishing boundary conditions are derived, based on the recently developed inverse scattering transform using the affine parameter technique.
Directory of Open Access Journals (Sweden)
Gilles Carbou
2015-02-01
Full Text Available We study the Landau-Lifshitz system associated with Maxwell equations in a bilayered ferromagnetic body when super-exchange and surface anisotropy interactions are present in the spacer in-between the layers. In the presence of these surface energies, the Neumann boundary condition becomes nonlinear. We prove, in three dimensions, the existence of global weak solutions to the Landau-Lifshitz-Maxwell system with nonlinear Neumann boundary conditions.
Directory of Open Access Journals (Sweden)
Bashir Ahmad
2012-06-01
Full Text Available We study boundary value problems of nonlinear fractional differential equations and inclusions of order $q in (m-1, m]$, $m ge 2$ with multi-strip boundary conditions. Multi-strip boundary conditions may be regarded as the generalization of multi-point boundary conditions. Our problem is new in the sense that we consider a nonlocal strip condition of the form: $$ x(1=sum_{i=1}^{n-2}alpha_i int^{eta_i}_{zeta_i} x(sds, $$ which can be viewed as an extension of a multi-point nonlocal boundary condition: $$ x(1=sum_{i=1}^{n-2}alpha_i x(eta_i. $$ In fact, the strip condition corresponds to a continuous distribution of the values of the unknown function on arbitrary finite segments $(zeta_i,eta_i$ of the interval $[0,1]$ and the effect of these strips is accumulated at $x=1$. Such problems occur in the applied fields such as wave propagation and geophysics. Some new existence and uniqueness results are obtained by using a variety of fixed point theorems. Some illustrative examples are also discussed.
Directory of Open Access Journals (Sweden)
Allaberen Ashyralyev
2012-01-01
Full Text Available In the present study, the nonlocal and integral boundary value problems for the system of nonlinear fractional differential equations involving the Caputo fractional derivative are investigated. Theorems on existence and uniqueness of a solution are established under some sufficient conditions on nonlinear terms. A simple example of application of the main result of this paper is presented.
Institute of Scientific and Technical Information of China (English)
Wu Xuesong; Gao Wenjie; Cao Jianwen
2011-01-01
In this paper, the authors discuss the global existence and blow-up of the solution to an evolution ρ-Laplace system with nonlinear sources and nonlinear boundary condition. The authors first establish the local existence of solutions, then give a necessary and sufficient condition on the global existence of the positive solution.
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
The iterative technique of sign-changing solution is studied for a nonlinear third-order two-point boundary value problem, where the nonlinear term has the time sin-gularity. By applying the monotonically iterative technique, an existence theorem is established and two useful iterative schemes are obtained.
Nonlinear optimal control of bypass transition in a boundary layer flow
Xiao, Dandan; Papadakis, George
2016-11-01
Bypass transition is observed in a flat-plate boundary-layer flow when high levels of free stream turbulence are present. This scenario is characterized by the formation of streamwise elongated streaks inside the boundary layer, their break down into turbulent spots and eventually fully turbulent flow. In the current work, we perform DNS simulations of control of bypass transition in a zero-pressure-gradient boundary layer. A non-linear optimal control algorithm is developed that employs the direct-adjoint approach to minimise a quadratic cost function based on the deviation from the Blasius velocity profile. Using the Lagrange variational approach, the distribution of the blowing/suction control velocity is found by solving iteratively the non-linear Navier-Stokes and its adjoint equations in a forward/backward loop. The optimisation is performed over a finite time horizon during which the Lagrange functional is to be minimised. Large values of optimisation horizon result in instability of the adjoint equations. The results show that the controller is able to reduce the turbulent kinetic energy of the flow in the region where the objective function is defined and the velocity profile is seen to approach the Blasius solution. Significant drag reduction is also achieved.
Dynamic Analysis of HSDB System and Evaluation of Boundary Non-linearity through Experiments
Directory of Open Access Journals (Sweden)
K. Chandrakar
2016-04-01
Full Text Available This paper deals with mechanical design and development of high speed digital board (HSDB system which consists of printed circuit board (PCB with all electronic components packaged inside the cavity for military application. The military environment poses a variety of extreme dynamic loading conditions, namely, quasi static, vibration, shock and acoustic loads that can seriously degrade or even cause failure of electronics. The vibrational requirement for the HSDB system is that the natural frequency should be more than 200 Hz and sustain power spectrum density of 14.8 Grms in the overall spectrum. Structural integrity of HSDB is studied in detail using finite element analysis (FEA tool against the dynamic loads and configured the system. Experimental vibration tests are conducted on HSDB with the help of vibration shaker and validated the FE results. The natural frequency and maximum acceleration response computed from vibration tests for the configured design were found. The finite element results show a good correlation with the experiment results for the same boundary conditions. In case of fitment scenario of HSDB system, it is observed that the influence of boundary non-linearity during experiments. This influence of boundary non-linearity is evaluated to obtain the closeout of random vibration simulation results.
Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet
Directory of Open Access Journals (Sweden)
Masood Khan
2015-10-01
Full Text Available This article studies the Carreau viscosity model (which is a generalized Newtonian model and then use it to obtain a formulation for the boundary layer equations of the Carreau fluid. The boundary layer flow and heat transfer to a Carreau model over a nonlinear stretching surface is discussed. The Carreau model, adequate for many non-Newtonian fluids, is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical values of the power law exponent n. The modeled boundary layer conservation equations are converted to non-linear coupled ordinary differential equations by a suitable transformation. Numerical solution of the resulting equations are obtained by using the Runge-Kutta Fehlberg method along with shooting technique. This analysis reveals many important physical aspects of flow and heat transfer. Computations are performed for different values of the stretching parameter (m, the Weissenberg number (We and the Prandtl number (Pr. The obtained results show that for shear thinning fluid the fluid velocity is depressed by the Weissenberg number while opposite behavior for the shear thickening fluid is observed. A comparison with previously published data in limiting cases is performed and they are in excellent agreement.
奇摄动非线性边值问题%THE SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE PROBLEMS
Institute of Scientific and Technical Information of China (English)
莫嘉琪
2000-01-01
The singularly perturbed nonlinear boundary value problems are considered.Using the stretched variable and the method of boundary layer correction,the formal asymptotic expansion of solution is obtained.And then the uniform validity of solution is proved by using the differential inequalities.
Homotopy deform method for reproducing kernel space for nonlinear boundary value problems
Indian Academy of Sciences (India)
MIN-QIANG XU; YING-ZHEN LIN
2016-10-01
In this paper, the combination of homotopy deform method (HDM) and simplified reproducing kernel method (SRKM) is introduced for solving the boundary value problems (BVPs) of nonlinear differential equations. The solution methodology is based on Adomian decomposition and reproducing kernel method (RKM). By the HDM, the nonlinear equations can be converted into a series of linear BVPs. After that, the simplified reproducing kernel method, which not only facilitates the reproducing kernel but also avoids the time-consuming Schmidt orthogonalization process, is proposed to solve linear equations. Some numerical test problems including ordinary differential equations and partial differential equations are analysed to illustrate the procedure and confirm the performance of the proposed method. The results faithfully reveal that our algorithm is considerably accurate and effective as expected.
Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems
Energy Technology Data Exchange (ETDEWEB)
Massoudi, M.C.; Tran, P.X.
2006-01-01
We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.
Existence of positive solutions to a Laplace equation with nonlinear boundary condition
Kim, C.-G.; Liang, Z.-P.; Shi, J.-P.
2015-12-01
The positive solutions of a Laplace equation with a superlinear nonlinear boundary condition on a bounded domain are studied. For higher-dimensional domains, it is shown that non-constant positive solutions bifurcate from a branch of trivial solutions at a sequence of bifurcation points, and under additional conditions on nonlinearity, the existence of a non-constant positive solution for any sufficiently large parameter value is proved by using variational approach. It is also proved that for one-dimensional domain, there is only one bifurcation point, all non-constant positive solutions lie on the bifurcating curve, and for large parameter values, there exist at least two non-constant positive solutions. For a special case, there are exactly two non-constant positive solutions.
Murio, Diego A.
1991-01-01
An explicit and unconditionally stable finite difference method for the solution of the transient inverse heat conduction problem in a semi-infinite or finite slab mediums subject to nonlinear radiation boundary conditions is presented. After measuring two interior temperature histories, the mollification method is used to determine the surface transient heat source if the energy radiation law is known. Alternatively, if the active surface is heated by a source at a rate proportional to a given function, the nonlinear surface radiation law is then recovered as a function of the interface temperature when the problem is feasible. Two typical examples corresponding to Newton cooling law and Stefan-Boltzmann radiation law respectively are illustrated. In all cases, the method predicts the surface conditions with an accuracy suitable for many practical purposes.
Solutions and Multiple Solutions for p(x)-Laplacian Equations with Nonlinear Boundary Condition
Institute of Scientific and Technical Information of China (English)
Zifei SHEN; Chenyin QIAN
2009-01-01
The authors study the p(x)-Laplacian equations with nonlinear boundary condition.By using the variational method,under appropriate assumptions on the perturbation terms f1(x,u),f2(x,u) and h1(x),h2(x),such that the associated functional satisfies the "mountain pass lemma" and "fountain theorem" respectively,the existence and multiplicity of solutions are obtained.The discussion is based on the theory of variable exponent Lebesgue and Sobolev spaces.
Directory of Open Access Journals (Sweden)
Nicolae Tarfulea
2009-10-01
Full Text Available We investigate the existence of weak solutions to a class of quasilinear elliptic equations with nonlinear Neumann boundary conditions in exterior domains. Problems of this kind arise in various areas of science and technology. An important model case related to the initial data problem in general relativity is presented. As an application of our main result, we deduce the existence of the conformal factor for the Hamiltonian constraint in general relativity in the presence of multiple black holes. We also give a proof for uniqueness in this case.
SOME BOUNDARY VALUE PROBLEMS FOR NONLINEAR DEGENERATE ELLIPTIC EQUATIONS OF SECOND ORDER
Institute of Scientific and Technical Information of China (English)
Wen Guochun
2007-01-01
The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.
Nonlinear systems of differential inequalities and solvability of certain boundary value problems
Directory of Open Access Journals (Sweden)
Tvrdý Milan
2001-01-01
Full Text Available In the paper we present some new existence results for nonlinear second order generalized periodic boundary value problems of the form These results are based on the method of lower and upper functions defined as solutions of the system of differential inequalities associated with the problem and their relation to the Leray–Schauder topological degree of the corresponding operator. Our main goal consists in a fairly general definition of these functions as couples from . Some conditions ensuring their existence are indicated, as well.
Possible management of near shore nonlinear surging waves through bottom boundary conditions
Mukherjee, Abhik; Janaki, M. S.; Kundu, Anjan
2017-03-01
We propose an alternative way for managing near shore surging waves, including extreme waves like tsunamis, going beyond the conventional passive measures like the warning system. We study theoretically the possibility of influencing the nonlinear surface waves through a leakage boundary effect at the bottom. It has been found through analytic result, that the controlled leakage at the bottom might regulate the amplitude of the surface solitary waves. This could lead to a possible decay of the surging waves to reduce its hazardous effects near the shore. Our theoretical results are estimated by applying it to a real coastal bathymetry of the Bay of Bengal in India.
Institute of Scientific and Technical Information of China (English)
SONG Li-mei; WENG Pei-xuan
2012-01-01
In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α ∈ (3,4],where the fractional derivative D0α+ is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.
A (k, n-k) Conjugate Boundary Value Problem with Semip ositone Nonlinearity
Institute of Scientific and Technical Information of China (English)
Yao Qing-liu; Shi Shao-yun
2015-01-01
The existence of positive solution is proved for a (k, n−k) conjugate boundary value problem in which the nonlinearity may make negative values and may be singular with respect to the time variable. The main results of Agarwal et al. (Agarwal R P, Grace S R, O’Regan D. Semipositive higher-order differential equa-tions. Appl. Math. Letters, 2004, 14: 201–207) are extended. The basic tools are the Hammerstein integral equation and the Krasnosel’skii’s cone expansion-compression technique.
Eleiwi, Fadi
2016-09-19
This paper presents a nonlinear observer-based Lyapunov control for a membrane distillation (MD) process. The control considers the inlet temperatures of the feed and the permeate solutions as inputs, transforming it to boundary control process, and seeks to maintain the temperature difference along the membrane boundaries around a sufficient level to promote water production. MD process is modeled with advection diffusion equation model in two dimensions, where the diffusion and convection heat transfer mechanisms are best described. Model analysis, effective order reduction and parameters physical interpretation, are provided. Moreover, a nonlinear observer has been designed to provide the control with estimates of the temperature evolution at each time instant. In addition, physical constraints are imposed on the control to have an acceptable range of feasible inputs, and consequently, better energy consumption. Numerical simulations for the complete process with real membrane parameter values are provided, in addition to detailed explanations for the role of the controller and the observer. (C) 2016 Elsevier Ltd. All rights reserved.
Nonlinear effects on western boundary current structure and separation: a laboratory study
Pierini, S.; Falco, P.; Zambardino, G.; McClimans, T. A.; Ellingsen, I.
2009-04-01
The role played by nonlinear effects in shaping the structure of barotropic western boundary currents (WBCs) and in determining WBC separation from the coast has been investigated through laboratory simulations by means of the 5-m-diameter Coriolis rotating basin at SINTEF (Trondheim, Norway) in the framework of the HYDRALAB-III project. The laboratory setup consists of two parallel rectangular channels separated by an island and linked by two curved connections: in the first channel, a piston is forced at a constant speed U ranging from 0.05 to 3 cm/s over a distance of 2.5 m, producing a virtually unsheared current at the entrance of the second channel. In the latter, a linear reduction of the water depth provides the topographic beta-effect that produces the westward intensification. Nearly steady currents are obtained and measured photogrammetrically over a region of about 1 m2. The broad range of piston speeds permitted by the mechanical apparatus has allowed us to achieve an unprecedented coverage of the range of nonlinearity for WBCs in terms of experimental data, so that the cross-stream WBC profile could be analyzed from the nearly linear Munk-type case (e.g., for U=0.1 cm/s with T=30 s, where T is the rotation period of the basin) up to the more realistic highly nonlinear limit (particularly significant is the case U=1 cm/s and T=30 s, which is close to be dynamically similar to the Gulf Stream). Thanks to the large size of the rotating basin, cross-stream widths of the simulated WBC as large as 80 cm could be obtained. Moreover, in order to analyze the process of WBC separation, coastal variations have been introduced along the western boundary in the form of wedge-shaped continents with different coastline orientations, whose northern limit corresponds to an idealized Cape Hatteras. While weak WBCs follow the coast also past the cape, for sufficiently strong nonlinear effects the current detaches from the coast as a consequence of flow deceleration
一类具阻尼的非线性双曲方程解的blow-up%The blow-up of solutions of a class of nonlinear damped hyperbolic equation
Institute of Scientific and Technical Information of China (English)
呼青英; 陆军
2003-01-01
The blow-up property of a nonlinear damped hyperbolic equation,which describes the motion of the neo-Hookean elastomer rod,is proven.%本文讨论了一类描述新胡克弹性杆运动的具阻尼的非线性双曲方程解的blow up性质.
On the wave equation with semilinear porous acoustic boundary conditions
Graber, Philip Jameson
2012-05-01
The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function. © 2012 Elsevier Inc.
Directory of Open Access Journals (Sweden)
Hassan A. Agwa
2016-01-01
Full Text Available We are concerned with the interval oscillation of general type of forced second-order nonlinear dynamic equation with oscillatory potential of the form rtg1xt,xΔtΔ+p(tg2(x(t,xΔ(txΔ(t+q(tf(x(τ(t=e(t, on a time scale T. We will use a unified approach on time scales and employ the Riccati technique to establish some oscillation criteria for this type of equations. Our results are more general and extend the oscillation criteria of Erbe et al. (2010. Also our results unify the oscillation of the forced second-order nonlinear delay differential equation and the forced second-order nonlinear delay difference equation. Finally, we give some examples to illustrate our results.
Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing
2017-02-01
In this work, we employ a focused beam theory to modify the phase reversal at the stress-free boundary, and consequently enhance the second harmonic generation during its back-propagation toward the initial source position. We first confirmed this concept through experiment by using a spherically focused beam at the water-air interface, and measuring the reflected second harmonic and comparing with a planar wave reflected from the same stress-free or a rigid boundary. In order to test the feasibility of this idea for measuring the nonlinearity parameter of solids in a reflection mode, a focused nonlinear ultrasonic beam is modeled for focusing at and reflection from a stress-free boundary. A nonlinearity parameter expression is then defined together with diffraction and attenuation corrections.
Energy Technology Data Exchange (ETDEWEB)
Macias-Diaz, J.E. [Departamento de Matematicas y Fisica, Universidad Autonoma de Aguascalientes, Aguascalientes, Ags. 20100 (Mexico) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: jemacias@correo.uaa.mx; Puri, A. [Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: apuri@uno.edu
2007-07-02
In the present Letter, we simulate the propagation of binary signals in semi-infinite, mechanical chains of coupled oscillators harmonically driven at the end, by making use of the recently discovered process of nonlinear supratransmission. Our numerical results-which are based on a brand-new computational technique with energy-invariant properties-show an efficient and reliable transmission of information.
The Duffing oscillator with damping
DEFF Research Database (Denmark)
Johannessen, Kim
2015-01-01
An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....
Directory of Open Access Journals (Sweden)
Liaqat Ali
2016-09-01
Full Text Available In this research work a new version of Optimal Homotopy Asymptotic Method is applied to solve nonlinear boundary value problems (BVPs in finite and infinite intervals. It comprises of initial guess, auxiliary functions (containing unknown convergence controlling parameters and a homotopy. The said method is applied to solve nonlinear Riccati equations and nonlinear BVP of order two for thin film flow of a third grade fluid on a moving belt. It is also used to solve nonlinear BVP of order three achieved by Mostafa et al. for Hydro-magnetic boundary layer and micro-polar fluid flow over a stretching surface embedded in a non-Darcian porous medium with radiation. The obtained results are compared with the existing results of Runge-Kutta (RK-4 and Optimal Homotopy Asymptotic Method (OHAM-1. The outcomes achieved by this method are in excellent concurrence with the exact solution and hence it is proved that this method is easy and effective.
Renormalization-group symmetries for solutions of nonlinear boundary value problems
Kovalev, V F
2008-01-01
Approximately 10 years ago, the method of renormalization-group symmetries entered the field of boundary value problems of classical mathematical physics, stemming from the concepts of functional self-similarity and of the Bogoliubov renormalization group treated as a Lie group of continuous transformations. Overwhelmingly dominating practical quantum field theory calculations, the renormalization-group method formed the basis for the discovery of the asymptotic freedom of strong nuclear interactions and underlies the Grand Unification scenario. This paper describes the logical framework of a new algorithm based on the modern theory of transformation groups and presents the most interesting results of application of the method to differential and/or integral equation problems and to problems that involve linear functionals of solutions. Examples from nonlinear optics, kinetic theory, and plasma dynamics are given, where new analytical solutions obtained with this algorithm have allowed describing the singular...
An efficient numerical technique for the solution of nonlinear singular boundary value problems
Singh, Randhir; Kumar, Jitendra
2014-04-01
In this work, a new technique based on Green's function and the Adomian decomposition method (ADM) for solving nonlinear singular boundary value problems (SBVPs) is proposed. The technique relies on constructing Green's function before establishing the recursive scheme for the solution components. In contrast to the existing recursive schemes based on the ADM, the proposed technique avoids solving a sequence of transcendental equations for the undetermined coefficients. It approximates the solution in the form of a series with easily computable components. Additionally, the convergence analysis and the error estimate of the proposed method are supplemented. The reliability and efficiency of the proposed method are demonstrated by several numerical examples. The numerical results reveal that the proposed method is very efficient and accurate.
Institute of Scientific and Technical Information of China (English)
李仁贵; 刘立山
2001-01-01
New existence results are presented for the singular second-order nonlinear boundary value problems u" + g(t)f(u) = 0, 0 ＜ t ＜ 1, au(0) - βu′(0) = 0,γu(1) +δu'(l) = 0 under the conditions 0 ≤ fn+ ＜ M1, m1 ＜ f∞-≤∞ or 0 ≤ f∞+＜M1, m1 ＜ f 0-≤ ∞, where f +0＝ limu→of(u)/u, f∞-＝ limu-→∞(u)/u, f0-＝limu-→of(u)/u, f+∞＝ limu→=f(u)/u, g may be singular att ＝ 0 and/ort ＝ 1 . Theproof uses a fixed point theorem in cone theory.
Modelling of hydrogen thermal desorption spectrum in nonlinear dynamical boundary-value problem
Kostikova, E. K.; Zaika, Yu V.
2016-11-01
One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a distributed boundary-value problem of thermal desorption and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order (compared with, e.g., the method of lines) ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).
SOLUTION WITH SHOCK-BOUNDARY LAYER AND SHOCK-INTERIOR LAYER TO A CLASS OF NONLINEAR PROBLEMS
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
In this paper,the shock behaviors of solution to a class of nonlinear singularly perturbed problems are considered.Under some appropriate conditions,the outer and interior solutions to the original problem are constructed.Using the special limit and matching theory,the expressions of solutions with the shock behavior near the boundary and some interior points are given and the domain for boundary values is obtained.
Directory of Open Access Journals (Sweden)
Alsaedi Ahmed
2009-01-01
Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.
Liang Fei; Gao Hongjun
2011-01-01
Abstract In this paper, we consider the system of nonlinear viscoelastic equations u t t - Δ u + ∫ 0 t g 1 ( t - τ ) Δ u ( τ ) d τ - Δ u t = f 1 ( u , v ) , ( x , t ) ∈ Ω × ( 0 , T ) , v t t - Δ v + ∫ 0 t g 2 ( t - τ ) Δ v ( τ ) d τ - Δ v t = f 2 ( u , v ) , ( x , t ) ∈ Ω...
Munir, Asif; Shahzad, Azeem; Khan, Masood
2014-01-01
The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.
Munir, Asif; Shahzad, Azeem; Khan, Masood
2014-01-01
The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden’s method in the domain. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature. PMID:24949738
Nonlinear optimal control of bypass transition in a boundary layer flow
Xiao, Dandan; Papadakis, George
2017-05-01
The central aim of the paper is to apply and assess a nonlinear optimal control strategy to suppress bypass transition, due to bimodal interactions [T. A. Zaki and P. A. Durbin, "Mode interaction and the bypass route to transition," J. Fluid Mech. 531, 85 (2005)] in a zero-pressure-gradient boundary layer. To this end, a Lagrange variational formulation is employed that results in a set of adjoint equations. The optimal wall actuation (blowing and suction from a control slot) is found by solving iteratively the nonlinear Navier-Stokes and the adjoint equations in a forward/backward loop using direct numerical simulation. The optimization is performed in a finite time horizon. Large values of optimization horizon result in the instability of the adjoint equations. The control slot is located exactly in the region of transition. The results show that the control is able to significantly reduce the objective function, which is defined as the spatial and temporal integral of the quadratic deviation from the Blasius profile plus a term that quantifies the control cost. The physical mechanism with which the actuation interacts with the flow field is investigated and analysed in relation to the objective function employed. Examination of the joint probability density function shows that the control velocity is correlated with the streamwise velocity in the near wall region but this correlation is reduced as time elapses. The spanwise averaged velocity is distorted by the control action, resulting in a significant reduction of the skin friction coefficient. Results are presented with and without zero-net mass flow constraint of the actuation velocity. The skin friction coefficient drops below the laminar value if there is no mass constraint; it remains however larger than laminar when this constraint is imposed. Results are also compared with uniform blowing using the same time-average velocity obtained from the nonlinear optimal algorithm.
Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations
Kanoglu, U.; Aydin, B.
2014-12-01
The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV
Andrieux, Stéphane; Baranger, Thouraya N.
2016-12-01
The paper is devoted to the derivation of a numerical method for expanding available mechanical fields (stress vector and displacements) on a part of the boundary of a solid into its interior and up to unreachable parts of its boundary (with possibly internal surfaces). This expansion enables various identification or inverse problems to be solved in mechanics. The method is based on the solution of a nonlinear elliptic Cauchy problem because the mechanical behavior of the solid is considered as nonlinear (hyperelastic or elastoplastic medium). Advantage is taken of the assumption of convexity of the potentials used for modeling the constitutive equation, encompassing previous work by the authors for linear elastic solids, in order to derive an appropriate error functional. Two illustrations are given in order to evaluate the overall efficiency of the proposed method within the framework of small strains and isothermal transformation.
Institute of Scientific and Technical Information of China (English)
Sun Fuqin; Wang Mingxin
2004-01-01
In this paper, we study the non-negative solutions to a degenerate parabolic system with nonlinear boundary conditions in the multi-dimensional case.By the upper and lower solutions method, we give the conditions on the existence and non-existence of global solutions.
Directory of Open Access Journals (Sweden)
Peiguo Zhang
2013-01-01
Full Text Available By using the cone theory and the Banach contraction mapping principle, the existence and uniqueness results are established for nonlinear higher-order differential equation boundary value problems with sign-changing Green’s function. The theorems obtained are very general and complement previous known results.
Peter E. Zhidkov
2001-01-01
We find sufficient conditions for systems of functions to be Riesz bases in $L_2(0,1)$. Then we improve a theorem presented in [13] by showing that a ``standard'' system of solutions of a nonlinear boundary-value problem, normalized to 1, is a Riesz basis in $L_2(0,1)$. The proofs in this article use Bari's theorem.
Zhang, Jiwei; Xu, Zhenli; Wu, Xiaonan
2009-04-01
This paper aims to design local absorbing boundary conditions (LABCs) for the two-dimensional nonlinear Schrödinger equations on a rectangle by extending the unified approach. Based on the time-splitting idea, the main process of the unified approach is to approximate the kinetic energy part by a one-way equation, unite it with the potential energy equation, and then obtain the well-posed and accurate LABCs on the artificial boundaries. In the corners, we use the (1,1)-Padé approximation to the kinetic term and also unite it with the nonlinear term to give some local corner boundary conditions. Numerical tests are given to verify the stable and tractable advantages of the method.
Directory of Open Access Journals (Sweden)
A. Belmiloudi
2014-01-01
Full Text Available The paper investigates boundary optimal controls and parameter estimates to the well-posedness nonlinear model of dehydration of thermic problems. We summarize the general formulations for the boundary control for initial-boundary value problem for nonlinear partial differential equations modeling the heat transfer and derive necessary optimality conditions, including the adjoint equation, for the optimal set of parameters minimizing objective functions J. Numerical simulations illustrate several numerical optimization methods, examples, and realistic cases, in which several interesting phenomena are observed. A large amount of computational effort is required to solve the coupled state equation and the adjoint equation (which is backwards in time, and the algebraic gradient equation (which implements the coupling between the adjoint and control variables. The state and adjoint equations are solved using the finite element method.
Directory of Open Access Journals (Sweden)
A. Malvandi
2014-01-01
Full Text Available Steady two-dimensional boundary layer flow of a nanofluid past a nonlinear stretching sheet is investigated analytically using the Homotopy Analysis Method (HAM. The employed model for nanofluid includes twocomponent four-equation non-homogeneous equilibrium model that incorporates the effects of Brownian motion ( Nb , thermophoresis ( Nt and Lewis number ( Le simultaneously. The basic partial boundary layer equations have been reduced to a two-point boundary value problem via the similarity variables. Analytical results are in best agreements with those existing in the literatures. The outcomes signify the decreasing trend of heat transfer rate with thermophoresis, Brownian motion and Lewis number. However, concentration rate has a sensitive behavior with parameters, especially the Brownian motion and thermophoresis parameters. Also, the weak points of numerical methods in such problems have been mentioned and the efficiency of HAM, as an alternative approach, in solving these kinds of nonlinear coupled problems has been shown.
Caplan, R M
2011-01-01
An easy to implement modulus-squared Dirichlet (MSD) boundary condition is formulated for numerical simulations of time-dependent complex partial differential equations in multidimensional settings. The MSD boundary condition approximates a constant modulus-square value of the solution at the boundaries. Application of the MSD boundary condition to the nonlinear Schr\\"odinger equation is shown, and numerical simulations are performed to demonstrate its usefulness and advantages over other simple boundary conditions.
Institute of Scientific and Technical Information of China (English)
Chang Jiang ZHU; Zhi Yong ZHANG; Hui YIN
2006-01-01
In this paper, we consider the global existence and the asymptotic behavior of solutions to the Cauchy problem for the following nonlinear evolution equations with ellipticity and dissipative effects:{ψt = -(1 - α)ψ - θx + αψxx, (E)θt = -(1 - α)θ + vψx + (χθ)x + αθxx,with initial data(ψ,θ)(x, 0) = (ψ0(x),θ0(x)) → (χ±,θ±) as x →±∞, (Ⅰ)where α and v are positive constants such that α＜ 1, v ＜ 4α(1 - α). Under the assumption that|ψ+ - ψ-| + |θ+ - θ-| is sufficiently small, we show the global existence of the solutions to Cauchy problem (E) and (I) if the initial data is a small perturbation. And the decay rates of the solutions with exponential rates also are obtained. The analysis is based on the energy method.
Blow up and quenching for a problem with nonlinear boundary conditions
Directory of Open Access Journals (Sweden)
Nuri Ozalp
2015-07-01
Full Text Available In this article, we study the blow up behavior of the heat equation $ u_t=u_{xx}$ with $u_x(0,t=u^{p}(0,t$, $u_x(a,t=u^q(a,t$. We also study the quenching behavior of the nonlinear parabolic equation $v_t=v_{xx}+2v_x^{2}/(1-v$ with $v_x(0,t=(1-v(0,t^{-p+2}$, $ v_x(a,t=(1-v(a,t^{-q+2}$. In the blow up problem, if $u_0$ is a lower solution then we get the blow up occurs in a finite time at the boundary $x=a$ and using positive steady state we give criteria for blow up and non-blow up. In the quenching problem, we show that the only quenching point is $x=a$ and $v_t$ blows up at the quenching time, under certain conditions and using positive steady state we give criteria for quenching and non-quenching. These analysis is based on the equivalence between the blow up and the quenching for these two equations.
Nonlinear Dynamics of Two Western Boundary Currents Colliding at a Gap
Wang, Z.; Yuan, D.
2012-04-01
Dynamics and hysteresis of two western boundary currents of Munk thickness LM encounter near a gap is studied using a 1.5 layer reduced-gravity quasi-geostrophic ocean model. When the gap (of width 2a) is narrow, γ≤7.3 (where γ= (a/LM), neither of the flow can penetrate into the western basin due to the viscous force. When 7.39.6, there is no choke state, and multiple states and hysteresis exist between penetrating states and periodic eddy-shedding states. A Hopf bifurcation emerges when the two flows transit from steady penetrating or choke state to periodic eddy-shedding state, and is found to be sensitive to the magnitude of γ and the baroclinic deformation radius. It occurs at lower Reynolds numbers for larger γ or deformation radius. Multiple steady states and hysteresis exist between some certain range parameters. Through vorticity term analysis, we found the time-dependent relative vorticity term varies remarkably and triggers the WBCs to alternately shed eddy into the western basin. The hysteresis is derived from the difference magnitude of the nonlinear inertial between the two different initial states.
Energy Technology Data Exchange (ETDEWEB)
Mabood, F., E-mail: mabood1971@yahoo.com [School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia); Khan, W.A., E-mail: wkhan_2000@yahoo.com [Department of Mechanical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Ismail, A.I.M., E-mail: izani@cs.usm.my [School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia)
2015-01-15
The MHD laminar boundary layer flow with heat and mass transfer of an electrically conducting water-based nanofluid over a nonlinear stretching sheet with viscous dissipation effect is investigated numerically. This is the extension of the previous study on flow and heat transfer of a nanofluid over nonlinear stretching sheet (Rana and Bhargava, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 212–226). The governing equations are reduced to nonlinear ordinary differential equations using suitable similarity transformation. The effects of the governing parameters on dimensionless quantities like velocity, temperature, nanoparticle concentration, friction factor, local Nusselt, and Sherwood numbers are explored. It is found that the dimensionless velocity decreases and temperature increases with magnetic parameter, and the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters. - Highlights: • MHD flow of nanofluid and heat transfer over a nonlinear stretching sheet has not been studied yet. • Numerical solutions are computed with Runge–Kutta Fehlberg fourth–fifth order method. • Previous published results can be obtained from present study. • Reduced Nusselt and Sherwood numbers decrease with magnetic parameter.
Institute of Scientific and Technical Information of China (English)
WEI Li; ZHOU Haiyun
2005-01-01
By using the perturbation theories on sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we study the abstract results on the existence of a solution u ∈ Ls (Ω) of nonlinear boundary value problems involving the p-Laplacian operator, where2 ≤ s ＜ +∞, and 2N/N+1 ＜ p ≤ 2 for N(≥ 1) which denotes the dimension of RN. To obtain the result, some new techniques are used in this paper. The equation discussed in this paper and our methods here are extension and complement to the corresponding results of L. Wei and Z. He.
Institute of Scientific and Technical Information of China (English)
Xiu Hui YANG; Fu Cai LI; Chun Hong XIE
2005-01-01
In this paper, we investigate the positive solutions of strongly coupled nonlinear parabolic systems with nonlinear boundary conditions:({ut-α(u,v)△u=g(u,v),vt-b(u,v)△v=h(u,v),(e)u/(e)(g)=d(u,v),(e)u/(e)(g)=f(u,v),)Under appropriate hypotheses on the functions a, b, g, h, d and f, we obtain that the solutions may exist globally or blow up in finite time by utilizing upper and lower solution techniques.
Institute of Scientific and Technical Information of China (English)
LI Huiling; WANG Mingxin
2005-01-01
This paper deals with the blow-up properties of the solution to a semilinear parabolic system with localized nonlinear reaction terms, subject to the null Dirichlet boundary condition. We first give sufficient conditions for that the classical solution blows up in the finite time, secondly give necessary conditions and a sufficient condition for that two components blow up simultaneously, and then obtain the uniform blow-up profiles in the interior. Finally we describe the asymptotic behavior of the blow-up solution in the boundary layer.
Directory of Open Access Journals (Sweden)
A. Sakabekov
2016-01-01
Full Text Available We prove existence and uniqueness of the solution of the problem with initial and Maxwell-Auzhan boundary conditions for nonstationary nonlinear one-dimensional Boltzmann’s six-moment system equations in space of functions continuous in time and summable in square by a spatial variable. In order to obtain a priori estimation of the initial and boundary value problem for nonstationary nonlinear one-dimensional Boltzmann’s six-moment system equations we get the integral equality and then use the spherical representation of vector. Then we obtain the initial value problem for Riccati equation. We have managed to obtain a particular solution of this equation in an explicit form.
Directory of Open Access Journals (Sweden)
Peter E. Zhidkov
2001-12-01
Full Text Available We find sufficient conditions for systems of functions to be Riesz bases in $L_2(0,1$. Then we improve a theorem presented in [13] by showing that a ``standard'' system of solutions of a nonlinear boundary-value problem, normalized to 1, is a Riesz basis in $L_2(0,1$. The proofs in this article use Bari's theorem.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, we consider a singular nth order three-point boundary value problem with sign changing nonlinearity. By the method of lower solution and topology degree theorem, we investigate the existence of positive solutions to the above problem. Moreover, the associated Green’s function for the above problem is also given. The results of this paper are new and extend the previous known results.
Institute of Scientific and Technical Information of China (English)
Guogang LIU; Yi ZHAO
2004-01-01
The one-dimensional linear wave equation with a van der Pol nonlinear boundary condition is one of the simplest models that may cause isotropic or nonisotropic chaotic vibrations.It characterizes the nonisotropic chaotic vibration by means of the total variation theory.Some results are derived on the exponential growth of total variation of the snapshots on the spatial interval in the long-time horizon when the map and the initial condition satisfy some conditions.
Liang Yue; Yang He
2011-01-01
Abstract The paper deals with the existence of positive solutions for Neumann boundary value problems of nonlinear second-order integro-differential equations - u ″ ( t ) + M u ( t ) = f ( t , u ( t ) , ( S u ) ( t ) ) , 0 < t < 1 , u ′ ( 0 ) = u ′ ( 1 ) = θ and u ″ ( t ) + M u ( t ) = f ( t , u ( t ) , ( S u ) ( t ) ) , 0 < t < 1 , u ′ ( 0 ) ...
Solvability of Third-order Three-point Boundary Value Problems with Carathéodory Nonlinearity
Institute of Scientific and Technical Information of China (English)
YAO QING-LIU; Shi Shao-yun
2012-01-01
A class of third-order three-point boundary value problems is considered,where the nonlinear term is a Carathéodory function.By introducing a height function and considering the integration of this height function,an existence theorem of solution is proved when the limit growth function exists.The main tools are the Lebesgue dominated convergence theorem and the Schauder fixed point theorem.
RamReddy, Ch.; Pradeepa, T.
2016-09-01
The significance of nonlinear temperaturedependent density relation and convective boundary condition on natural convection flow of an incompressible micropolar fluid with homogeneous-heterogeneous reactions is analyzed. In spite of the complicated nonlinear structure of the present setup and to allow all the essential features, the representation of similarity transformations for the system of non-dimensional fluid flow equations is attained through Lie group transformations and hence the governing similarity equations are worked out by a numerical approach known as spectral quasi-linearization method. It is noticed that in the presence of the nonlinear convection parameter enhance the velocity, species concentration, heat transfer rate, skin friction, but decreases the temperature and wall couple stress.
Blackman, Karin; Perret, Laurent
2016-09-01
In the present work, a boundary layer developing over a rough-wall consisting of staggered cubes with a plan area packing density, λp = 25%, is studied within a wind tunnel using combined particle image velocimetry and hot-wire anemometry to investigate the non-linear interactions between large-scale momentum regions and small-scale structures induced by the presence of the roughness. Due to the highly turbulent nature of the roughness sub-layer and measurement equipment limitations, temporally resolved flow measurements are not feasible, making the conventional filtering methods used for triple decomposition unsuitable for the present work. Thus, multi-time delay linear stochastic estimation is used to decompose the flow into large-scales and small-scales. Analysis of the scale-decomposed skewness of the turbulent velocity (u') shows a significant contribution of the non-linear term uL ' uS ' 2 ¯ , which represents the influence of the large-scales ( uL ' ) onto the small-scales ( uS ' ). It is shown that this non-linear influence of the large-scale momentum regions occurs with all three components of velocity in a similar manner. Finally, through two-point spatio-temporal correlation analysis, it is shown quantitatively that large-scale momentum regions influence small-scale structures throughout the boundary layer through a non-linear top-down mechanism.
Mouhot, Clément
2011-09-01
Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.
Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin
2017-02-01
The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized "n-diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K 0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.
Payette, G. S.; Reddy, J. N.
2011-05-01
In this paper we examine the roles of minimization and linearization in the least-squares finite element formulations of nonlinear boundary-values problems. The least-squares principle is based upon the minimization of the least-squares functional constructed via the sum of the squares of appropriate norms of the residuals of the partial differential equations (in the present case we consider L2 norms). Since the least-squares method is independent of the discretization procedure and the solution scheme, the least-squares principle suggests that minimization should be performed prior to linearization, where linearization is employed in the context of either the Picard or Newton iterative solution procedures. However, in the least-squares finite element analysis of nonlinear boundary-value problems, it has become common practice in the literature to exchange the sequence of application of the minimization and linearization operations. The main purpose of this study is to provide a detailed assessment on how the finite element solution is affected when the order of application of these operators is interchanged. The assessment is performed mathematically, through an examination of the variational setting for the least-squares formulation of an abstract nonlinear boundary-value problem, and also computationally, through the numerical simulation of the least-squares finite element solutions of both a nonlinear form of the Poisson equation and also the incompressible Navier-Stokes equations. The assessment suggests that although the least-squares principle indicates that minimization should be performed prior to linearization, such an approach is often impractical and not necessary.
Damping Undulators vs Damping Wigglers
Muchnoi, Nickolai
2016-01-01
Use of damping wigglers is a common technique for beam emittance reduction in the electron storage rings. The general approach to estimate damping effect is based on evaluation of several radiation integrals for a storage ring itself as well as for insertion devices. In this letter we show that a wiggler radiation integrals should be tweaked to account for the impact of lower harmonics of undulator radiation, which is an equivalent of Thomson scattering. Under certain conditions, these amendments play a decisive role in a formation of equilibrium emittance.
Modelling of Dampers and Damping in Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Riess
2006-01-01
The present thesis consists of an extended summary and four papers concerning damping of structures and algorithmic damping in numerical analysis. The first part of the thesis deals with the efficiency and the tuning of external collocated dampers acting on flexible structures. The dynamics...... and the maximum attainable damping are found by maximizing the expression for the damping ratio. The theory is formulated for linear damper models, but may also be applied for non-linear dampers in terms of equivalent linear parameters for stiffness and damping, respectively. The format of the expressions...... only realizable by means of active control. The present thesis demonstrates how stiffness affects both the performance and the tuning of the damper. The final part of the thesis considers algorithmic damping in connection with Newmark time integration. The damping characteristics of the Newmark method...
Lorenz, HW; Nusse, HE
Goodwin's nonlinear accelerator model with periodic investment outlays is reconsidered and used as an economic example of the emergence of complex motion in nonlinear dynamical systems. In addition to chaotic attractors, the model can possess coexisting attracting periodic orbits or simple
Energy Technology Data Exchange (ETDEWEB)
Kong Dexing [Department of Mathematics, Zhejiang University, Hangzhou 310027 (China); Sun Qingyou, E-mail: qysun@cms.zju.edu.cn [Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)
2011-04-01
All articles must In this paper we introduce some new concepts for second-order hyperbolic equations: two-point boundary value problem, global exact controllability and exact controllability. For several kinds of important linear and nonlinear wave equations arising from physics and geometry, we prove the existence of smooth solutions of the two-point boundary value problems and show the global exact controllability of these wave equations. In particular, we investigate the two-point boundary value problem for one-dimensional wave equation defined on a closed curve and prove the existence of smooth solution which implies the exact controllability of this kind of wave equation. Furthermore, based on this, we study the two-point boundary value problems for the wave equation defined on a strip with Dirichlet or Neumann boundary conditions and show that the equation still possesses the exact controllability in these cases. Finally, as an application, we introduce the hyperbolic curvature flow and obtain a result analogous to the well-known theorem of Gage and Hamilton for the curvature flow of plane curves.
Kuehl, Joseph
2016-11-01
The parabolized stability equations (PSE) have been developed as an efficient and powerful tool for studying the stability of advection-dominated laminar flows. In this work, a new "wavepacket" formulation of the PSE is presented. This method accounts for the influence of finite-bandwidth-frequency distributions on nonlinear stability calculations. The methodology is motivated by convolution integrals and is found to appropriately represent nonlinear energy transfer between primary modes and harmonics, in particular nonlinear feedback, via a "nonlinear coupling coefficient." It is found that traditional discrete mode formulations overestimate nonlinear feedback by approximately 70%. This results in smaller maximum disturbance amplitudes than those observed experimentally. The new formulation corrects this overestimation, accounts for the generation of side lobes responsible for spectral broadening and results in disturbance saturation amplitudes consistent with experiment. A Mach 6 flared-cone example is presented. Support from the AFOSR Young Investigator Program via Grant FA9550-15-1-0129 is gratefully acknowledges.
Simulation of Fully Nonlinear 3-D Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
张晓兔; 滕斌; 宁德志
2004-01-01
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.
Directory of Open Access Journals (Sweden)
S.K. Parida
2015-12-01
Full Text Available This work considers the two-dimensional steady MHD boundary layer flow of heat and mass transfer over a flat plate with partial slip at the surface subjected to the convective heat flux. The particular attraction lies in searching the effects of variable viscosity and variable thermal diffusivity on the behavior of the flow. In addition, non-linear thermal radiation effects and thermophoresis are taken into account. The governing nonlinear partial differential equations for the flow, heat and mass transfer are transformed into a set of coupled nonlinear ordinary differential equations by using similarity variable, which are solved numerically by applying Runge–Kutta fourth–fifth order integration scheme in association with quasilinear shooting technique. The novel results for the dimensionless velocity, temperature, concentration and ambient Prandtl number within the boundary layer are displayed graphically for various parameters that characterize the flow. The local skin friction, Nusselt number and Sherwood number are shown graphically. The numerical results obtained for the particular case are fairly in good agreement with the result of Rahman [6].
A free boundary problem of a diffusive SIRS model with nonlinear incidence
Cao, Jia-Feng; Li, Wan-Tong; Wang, Jie; Yang, Fei-Ying
2017-04-01
This paper is concerned with the spreading (persistence) and vanishing (extinction) of a disease which is characterized by a diffusive SIRS model with a bilinear incidence rate and free boundary. Through discussing the dynamics of a free boundary problem of an SIRS model, the spreading of a disease is described. We get the sufficient conditions which ensure the disease spreading or vanishing. In addition, the estimate of the expanding speed is also given when the free boundaries extend to the whole R.
Burns, J. A.; Sharma, I.
2000-10-01
Motivated by the recent detection of complex rotational states for several asteroids and comets, as well as by the ongoing and planned spacecraft missions to such bodies, which should allow their rotational states to be accurately determined, we revisit the problem of the nutational damping of small solar system bodies. The nutational damping of asteroids has been approximately analyzed by Prendergast (1958), Burns and Safronov (1973), and Efroimsky and Lazarian (2000). Many other similar dynamical studies concern planetary wobble decay (e.g., Peale 1973; Yoder and Ward 1979), interstellar dust grain alignment (e.g., Purcell 1979; Lazarian and Efroimsky 1999) and damping of Earth's Chandler wobble (Lambeck 1980). Recall that rotational energy loss for an isolated body aligns the body's angular momentum vector with its axis of maximum inertia. Assuming anelastic dissipation, simple dimensional analysis determines a functional form of the damping timescale, on which all the above authors agree. However, the numerical coefficients of published results are claimed to differ by orders of magnitude. Differences have been ascribed to absent physics, to solutions that fail to satisfy boundary conditions perfectly, and to unphysical choices for the Q parameter. The true reasons for the discrepancy are unclear since, despite contrary claims, the full 3D problem (nutational damping of an anelastic ellipsoid) is analytically intractable so far. To move the debate forward, we compare the solution of a related 2D problem to the expressions found previously, and we present results from a finite element model. On this basis, we feel that previous rates for the decay of asteroidal tumbling (Harris 1994), derived from Burns and Safronov (1973), are likely to be accurate, at least to a factor of a few. Funded by NASA.
A free boundary problem for a reaction-diffusion system with nonlinear memory
DEFF Research Database (Denmark)
Lin, Zhigui; Ling, Zhi; Pedersen, Michael
2013-01-01
We consider a integro-partial differential equation with a free boundary which appears in the theory of the nuclear dynamics. First, local existence and uniqueness are obtained by using the contraction mapping theorem. Then, the behavior of the free boundary and the blow-up criteria are obtained...
Directory of Open Access Journals (Sweden)
Le Xuan Truong
2016-07-01
Full Text Available This work concerns the multi-point nonlinear Neumann boundary-value problem involving a p-Laplacian-like operator $$\\displaylines{ (\\phi( u'' = f(t, u, u',\\quad t\\in (0,1, \\cr u'(0 = u'(\\eta, \\quad \\phi(u'(1 = \\sum_{i=1}^m{\\alpha_i \\phi(u'(\\xi_i}, }$$ where $\\phi:\\mathbb{R} \\to \\mathbb{R}$ is an odd increasing homeomorphism with $\\phi(\\pm \\infty = \\pm \\infty$ such that $$ 00. $$ By using an extension of Mawhin's continuation theorem, we establish sufficient conditions for the existence of at least one solution.
Timergaliev, S. N.
2009-06-01
This paper deals with the proof of the existence of solutions of a geometrically and physically nonlinear boundary value problem for shallow Timoshenko shells with the transverse shear strains taken into account. The shell edge is assumed to be partly fixed. It is proposed to study the problem by a variational method based on searching the points of minimum of the total energy functional for the shell-load system in the space of generalized displacements. We show that there exists a generalized solution of the problemon which the total energy functional attains its minimum on a weakly closed subset of the space of generalized displacements.
Directory of Open Access Journals (Sweden)
Cristian Enache
2006-06-01
Full Text Available For a class of nonlinear elliptic boundary value problems in divergence form, we construct some general elliptic inequalities for appropriate combinations of u(x and |Ã¢ÂˆÂ‡u|2, where u(x are the solutions of our problems. From these inequalities, we derive, using Hopf's maximum principles, some maximum principles for the appropriate combinations of u(x and |Ã¢ÂˆÂ‡u|2, and we list a few examples of problems to which these maximum principles may be applied.
Institute of Scientific and Technical Information of China (English)
Cheng Xiaoliang; Ying Weiting
2005-01-01
In this paper, we discuss the existence of solution of a nonlinear two-point boundary value problem with a positive parameter Q arising in the study of surfacetension-induced flows of a liquid metal or semiconductor. By applying the Schauder's fixed-point theorem, we prove that the problem admits a solution for 0 ≤ Q ≤ 14.306.It improves the result of 0 ≤ Q ＜ 1 in [2] and 0 ≤ Q ≤ 13.213 in [3].
The next linear collider damping ring lattices
Energy Technology Data Exchange (ETDEWEB)
Wolski, Andrzej; Corlett, John N.
2001-06-20
We report on the lattice design of the Next Linear Collider (NLC) damping rings. The damping rings are required to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. We present an optical design, based on a theoretical minimum emittance (TME) lattice, to produce the required normalized extracted beam emittances gex = 3 mm-mrad and gey = 0.02 mm mrad. An assessment of dynamic aperture and non-linear effects is given. The positron pre-damping ring, required to reduce the emittance of the positron beam such that it may be accepted by a main damping ring, is also described.
Institute of Scientific and Technical Information of China (English)
WANG Rouhuai
2006-01-01
The main aim of this paper is to discuss the problem concerning the analyticity of the solutions of analytic non-linear elliptic boundary value problems.It is proved that if the corresponding first variation is regular in Lopatinski(i) sense,then the solution is analytic up to the boundary.The method of proof really covers the case that the corresponding first variation is regularly elliptic in the sense of Douglis-Nirenberg-Volevich,and hence completely generalize the previous result of C.B.Morrey.The author also discusses linear elliptic boundary value problems for systems of ellip tic partial differential equations where the boundary operators are allowed to have singular integral operators as their coefficients.Combining the standard Fourier transform technique with analytic continuation argument,the author constructs the Poisson and Green's kernel matrices related to the problems discussed and hence obtain some representation formulae to the solutions.Some a priori estimates of Schauder type and Lp type are obtained.
Lin, Zhi; Zhang, Qinghai
2017-09-01
We propose high-order finite-volume schemes for numerically solving the steady-state advection-diffusion equation with nonlinear Robin boundary conditions. Although the original motivation comes from a mathematical model of blood clotting, the nonlinear boundary conditions may also apply to other scientific problems. The main contribution of this work is a generic algorithm for generating third-order, fourth-order, and even higher-order explicit ghost-filling formulas to enforce nonlinear Robin boundary conditions in multiple dimensions. Under the framework of finite volume methods, this appears to be the first algorithm of its kind. Numerical experiments on boundary value problems show that the proposed fourth-order formula can be much more accurate and efficient than a simple second-order formula. Furthermore, the proposed ghost-filling formulas may also be useful for solving other partial differential equations.
Identification of Light Damping in Structures
DEFF Research Database (Denmark)
Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders
Different methods to identification of linear and nonlinear damping in lightly damped structures are discussed in this paper. The discussion is based on experiments with a 4 meter high monopile. Two alternative methods have been used for experimental cases of linear and nonlinear damping. Method 1...... is identification by ARMA models assuming a white noise input. Method 2 is identification by simulation of a free decay response. Experimental data on the free decay response has been obtained directly by measurement as well as by the random decrement technique. Two experimental cases has been considered. The first...
Institute of Scientific and Technical Information of China (English)
Jia-qi Mo; Wan-tao Lin
2006-01-01
In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Using the iteration method and the comparison theorem, the existence and its asymptotic behavior of the solution for the problem are studied.
Directory of Open Access Journals (Sweden)
Chen Yi
2011-01-01
Full Text Available We study a boundary value problem to Langevin equation involving two fractional orders. The Banach fixed point theorem and Krasnoselskii's fixed point theorem are applied to establish the existence results.
Institute of Scientific and Technical Information of China (English)
Liu YANG; Zongmin QIAO
2012-01-01
In this paper,the existence and multiplicity of positive solutions for Robin type boundary value problem of differential equation involving the Riemann-Liouville fractional order derivative are established.
An iterative HAM approach for nonlinear boundary value problems in a semi-infinite domain
Zhao, Yinlong; Lin, Zhiliang; Liao, Shijun
2013-09-01
In this paper, we propose an iterative approach to increase the computation efficiency of the homotopy analysis method (HAM), a analytic technique for highly nonlinear problems. By means of the Schmidt-Gram process (Arfken et al., 1985) [15], we approximate the right-hand side terms of high-order linear sub-equations by a finite set of orthonormal bases. Based on this truncation technique, we introduce the Mth-order iterative HAM by using each Mth-order approximation as a new initial guess. It is found that the iterative HAM is much more efficient than the standard HAM without truncation, as illustrated by three nonlinear differential equations defined in an infinite domain as examples. This work might greatly improve the computational efficiency of the HAM and also the Mathematica package BVPh for nonlinear BVPs.
The effects of oppositely sloping boundaries with Ekman dissipation in a nonlinear baroclinic system
Weng, H.-Y.
1990-01-01
The present analytical and numerical examination of the effect of the slope Delta with dissipation delta on baroclinic flows in linear and nonlinear systems uses a modified Eady channel model with oppositely sloping top and bottom Ekman layers, and truncates the spectral wave solution up to six components. Comparisons are made wherever possible with results from beta-plane dissipative systems. In the linear system, the combined effect of Delta and delta strongly stabilizes long waves. In a nonlinear system without wave-wave interaction, Delta stabilizes the flow even for small delta and reduces the domain of vacillation while enlarging the domain of single-wave steady state.
Hofmann, A
2006-01-01
Abstract Landau damping is the suppression of an instability by a spread of frequencies in the beam. It is treated here from an experimental point of view. To introduce the concept we consider a set of oscillators having a spread in resonant frequencies !r and calculate the response of their there center-of-mass to an external driving force. A pulse excitation gives each oscillator the same initial velocity but, due to their different frequencies, the center-of-mass motion will decay with time. A harmonic excitation with a frequency ! being inside the distribution in !r results in oscillators responding with different phases and only a few of them having !r ! will grow to large amplitudes and absorb energy. The oscillator response to a pulse excitation, called Green function, and the one to a harmonic excitation, called transfer function, serve as a basis to calculate Landau damping which suppresses an instability at infinitesimal level before any large amplitudes are reached. This is illustrated by a negativ...
Gajjar, J. S. B.
1995-01-01
We consider the nonlinear stability of a fully three-dimensional boundary layer flow in an incompressible fluid and derive an equation governing the nonlinear development of a stationary cross-flow vortex. The amplitude equation is a novel integro-differential equation which has spatial derivatives of the amplitude occurring in the kernal function. It is shown that the evolution of the cross-flow vortex is strongly coupled to the properties of an unsteady wall layer which is in fact driven by an unknown slip velocity, proportional to the amplitude of the cross-flow vortex. The work is extended to obtain the corresponding equation for rotating disk flow. A number of special cases are examined and the numerical solution for one of cases, and further analysis, demonstrates the existence of finite-distance as well as focussing type singularities. The numerical solutions also indicate the presence of a new type of nonlinear wave solution for a certain set of parameter values.
Experimental study of nonlinear processes in a swept-wing boundary layer at the mach number M=2
Yermolaev, Yu. G.; Kosinov, A. D.; Semionov, N. V.
2014-09-01
Results of experiments aimed at studying the linear and nonlinear stages of the development of natural disturbances in the boundary layer on a swept wing at supersonic velocities are presented. The experiments are performed on a swept wing model with a lens-shaped airfoil, leading-edge sweep angle of 45°, and relative thickness of 3%. The disturbances in the flow are recorded by a constant-temperature hot-wire anemometer. For determining the nonlinear interaction of disturbances, the kurtosis and skewness are estimated for experimentally obtained distributions of the oscillating signal over the streamwise coordinate or along the normal to the surface. The disturbances are found to increase in the frequency range from 8 to 35 kHz in the region of their linear development, whereas enhancement of high-frequency disturbances is observed in the region of their nonlinear evolution. It is demonstrated that the growth of disturbances in the high-frequency spectral range ( f > 35 kHz) is caused by the secondary instability.
Van Dijk, N.P.
2012-01-01
This thesis aims at understanding and improving topology optimization techniques focusing on density-based level-set methods and geometrical nonlinearities. Central in this work are the numerical modeling of the mechanical response of a design and the consistency of the optimization process itself.
Multipoint Singular Boundary-Value Problem for Systems of Nonlinear Differential Equations
Directory of Open Access Journals (Sweden)
Zdeněk Šmarda
2009-01-01
Full Text Available A singular Cauchy-Nicoletti problem for a system of nonlinear ordinary differential equations is considered. With the aid of combination of Ważewski's topological method and Schauder's principle, the theorem concerning the existence of a solution of this problem (having the graph in a prescribed domain is proved.
NONLINEAR DYNAMICAL ANALYSIS OF BIFURCATION AND CONFLUENCE OF THE PACIFIC WESTERN BOUNDARY CURRENTS
Institute of Scientific and Technical Information of China (English)
NI Guo-xi; JIANG Song; JU Qiang-chang; KONG Ling-hai
2012-01-01
In this paper,we analyze the bifurcation and the confluence of the Pacific western boundary currents by an analytical approach.Applying the conservation law,the geostrophie balance relation and the Bernoulli integral to a reduced gravity model,we get a quantitative relation for the outflow and the inflow,and establish the related formulae for the width and the veering angle of offshore currents under the inflow condition.Furthermore,a comparison between the volume transport based on the observation data and the analytical value for the Pacific western boundary currents is presented,which validates the theoretical analysis.
Biondini, Gino; Fagerstrom, Emily; Prinari, Barbara
2016-10-01
We formulate the inverse scattering transform (IST) for the defocusing nonlinear Schrödinger (NLS) equation with fully asymmetric non-zero boundary conditions (i.e., when the limiting values of the solution at space infinities have different non-zero moduli). The theory is formulated without making use of Riemann surfaces, and instead by dealing explicitly with the branched nature of the eigenvalues of the associated scattering problem. For the direct problem, we give explicit single-valued definitions of the Jost eigenfunctions and scattering coefficients over the whole complex plane, and we characterize their discontinuous behavior across the branch cut arising from the square root behavior of the corresponding eigenvalues. We pose the inverse problem as a Riemann-Hilbert Problem on an open contour, and we reduce the problem to a standard set of linear integral equations. Finally, for comparison purposes, we present the single-sheet, branch cut formulation of the inverse scattering transform for the initial value problem with symmetric (equimodular) non-zero boundary conditions, as well as for the initial value problem with one-sided non-zero boundary conditions, and we also briefly describe the formulation of the inverse scattering transform when a different choice is made for the location of the branch cuts.
Damped transverse oscillations of interacting coronal loops
Soler, Roberto
2015-01-01
Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations compared to those of an isolated loop. Here we theoretically investigate resonantly damped transverse oscillations of interacting non-uniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. ...
PIV measurements of the bottom boundary layer under nonlinear surface waves
Henriquez, M.; Reniers, A. J H M; Ruessink, B. G.; Stive, M. J F
2014-01-01
Sediment in the nearshore is largely mobilized in the wave bottom boundary layer (wbbl) hereby emphasizing the importance of this relatively thin layer to nearshore morphology. This paper presents a laboratory experiment where hydrodynamic properties of the wbbl were quantified by measuring flow vel
He, Cong
2011-01-01
In this paper, we are concerned with the Cauchy problem on the one-dimensional Landau equation with $\\gamma\\geq -2$\\ with specular boundary condition and the time asymptotic behavior toward to a given local Maxwellian under some initial conditions. A time decay rate is also obtained. The method include energy method, micro-macro decomposition and the properties of Burnett functions.
EXISTENCE OF SOLUTIONS TO A CLASS OF NONLINEAR n-DIMENSIONAL DISCRETE BOUNDARY VALUE PROBLEMS
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
In this paper,using the critical point theory,we obtain a new result on the existence of the solutions to a class of n-dimensional discrete boundary value problems.Results obtained extend or improve the existing ones.
Institute of Scientific and Technical Information of China (English)
Shanying Zhu
2009-01-01
This paper deals with the existence of positive solutions to the singular second-order periodic boundary value problem, We obtain the existence results of positive solutions by the fixed point index theory. The results obtained extend and complement some known results.
Institute of Scientific and Technical Information of China (English)
刘松山; 王庆年; 王伟华
2014-01-01
A nonlinear damping characteristic for regenerative suspension based on the torque-speed char-acteristic of regenerative motor and traditional linear damping characteristic is proposed and the influences of opening speed and the initial speed of inadequate damping interval on vibration attenuation performance are analyzed. By an-alyzing the sprung mass acceleration response of single DOF linear suspension model, the effect of initial opening speed on vibration attenuation performance is obtained. For suppressing the peak acceleration response caused by entering constant damping interval, the relative speed transfer characteristic of linear suspension model is investiga-ted, with the adjustment coefficient for initial opening speed obtained. The results of simulation show that reasonable opening speed can greatly improve the transfer characteristic of regenerative damper, while the initial speed of inad-equate damping interval has no much effect on peak response for harmonic excitation.%提出了一种基于馈能电机转矩转速特性和传统线性阻尼特性的馈能悬架非线性阻尼特性，分析开启速度和阻尼不足区初始速度对减振性能的影响。通过对传统的单自由度线性悬架模型的簧载质量加速度响应分析，得出初始开启速度对其减振性能的影响。为了抑制进入恒阻尼区后导致的加速度响应峰值，对线性模型中的相对速度传递特性的研究，得出初始开启速度的调整系数。仿真结果表明，合理的开启速度能极大地改善馈能减振器的传递特性，阻尼不足区初始速度对谐波激励时的响应峰值影响并不大。
Zarepour, Misagh; Amirhosein Hosseini, Seyed
2016-08-01
This study presents an examination of nonlinear free vibration of a nanobeam under electro-thermo-mechanical loading with elastic medium and various boundary conditions, especially the elastic boundary condition. The nanobeam is modeled as an Euler-Bernoulli beam. The von Kármán strain-displacement relationship together with Hamilton’s principle and Eringen’s theory are employed to derive equations of motion. The nonlinear free vibration frequency is obtained for simply supported (S-S) and elastic supported (E-E) boundary conditions. E-E boundary condition is a general and actual form of boundary conditions and it is chosen because of more realistic behavior. By applying the differential transform method (DTM), the nanobeam’s natural frequencies can be easily obtained for the two different boundary conditions mentioned above. Performing a precise study led to investigation of the influences of nonlocal parameter, temperature change, spring constants (either for elastic medium or boundary condition) and imposed electric potential on the nonlinear free vibration characteristics of nanobeam. The results for S-S and E-E nanobeams are compared with each other. In order to validate the results, some comparisons are presented between DTM results and open literature to show the accuracy of this new approach. It has been discovered that DTM solves the equations with minimum calculation cost.
Directory of Open Access Journals (Sweden)
M. G. Crandall
1999-07-01
Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.
On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation
Directory of Open Access Journals (Sweden)
Said Mesloub
2008-03-01
Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.
On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation
Directory of Open Access Journals (Sweden)
Mesloub Said
2008-01-01
Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.
Institute of Scientific and Technical Information of China (English)
徐云滨; 郑连存
2008-01-01
A class of singular nonlinear boundary value problems arising in the boundary layer behind expansion wave are studied. Sufficient conditions for the existence and uniqueness of positive solutions to the problems are established by utilizing the monotonic approaching technique. And a theoretical estimate formula for skin friction coefficient is presented. The numerical solution is presented by using the shoot method. The reliability and efficiency of the theoretical prediction are verified by numerical results.
Computation of Nonlinear Gravity Waves by a Desingularized Boundary Integral Method
1991-10-01
and Whitham 1974). The I perturbation method has also been used in numerical calculations by researchers, for 3 example, Nakos & Sclavounos (1990) in...pulsating sources using fundamental solutions I satisfying a linear free surface boundary condition. Nakos and Sclavounos (1990) calculated the time...231-254. [561 Nakos , D.E. and Sclavounos, P.D. 1990 Ship motions by a three- dimensional Rankine panel method. Proc. 18th symp. on Naval Hydro
Denison, Marie F. C.
The reduction of drag and aerodynamic heating caused by boundary layer transition is of central interest for the development of hypersonic vehicles. Receptivity to flow perturbation in the form of Tollmien-Schlichting (TS) wave growth often determines the first stage of the transition process, which can be delayed by depositing specific excitations into the boundary layer. Weakly ionized Dielectric Barrier Discharge (DBD) actuators are being investigated as possible sources of such excitations, but little is known today about their interaction with high-speed flows. In this framework, the first part of the thesis is dedicated to a receptivity study of laminar compressible boundary layers over a flat plate by linear stability analysis following an adjoint operator formulation, under DBD representative excitations assumed independent of flow conditions. The second part of the work concentrates on the development of a coupled plasma-Navier and Stokes solver targeted at the study of supersonic flow and compressibility effects on DBD forcing and non-parallel receptivity. The linear receptivity study of quasi-parallel compressible flows reveals several interesting features such as a significant shift of the region of maximum receptivity deeper into the flow at high Mach number and strong wave amplitude reduction compared to incompressible flows. The response to DBD relevant excitation distributions and to variations of the base flow conditions and system length scales follows these trends. Observed absolute amplitude changes and relative sensitivity modifications between source types are related to the evolution of the offset between forcing peak profile and relevant adjoint mode maximum. The analysis highlights the crucial importance of designing and placing the actuator in a way that matches its force field to the position of maximum boundary layer receptivity for the specific flow conditions of interest. In order to address the broad time and length scale spectrum
Vaibhav, V.
2011-04-01
The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.
Directory of Open Access Journals (Sweden)
I. J. Cabrera
2012-01-01
Full Text Available We are concerned with the existence and uniqueness of a positive and nondecreasing solution for the following nonlinear fractional m-point boundary value problem: D0+αu(t+f(t,u(t=0, 0
Directory of Open Access Journals (Sweden)
R. Garra
2015-01-01
Full Text Available The evolution of strong transients of temperature and pressure in two adjacent fluid-saturated porous rocks is described by a Burgers equation in an early model of Natale and Salusti (1996. We here consider the effect of a realistic intermediate region between the two media and infer how transient processes can also happen, such as chemical reactions, diffusion of fine particles, and filter cake formations. This suggests enlarging our analysis and taking into account not only punctual quantities but also “time averaged” quantities. These boundary effects are here analyzed by using a “memory formalism”; that is, we replace the ordinary punctual time-derivatives with Caputo fractional time-derivatives. We therefore obtain a nonlinear fractional model, whose explicit solution is shown, and finally discuss its geological importance.
Caixia Guo; Jianmin Guo; Ying Gao; Shugui Kang
2016-01-01
This paper is concerned with the two-point boundary value problems of nonlinear finite discrete fractional differential equations. On one hand, we discuss some new properties of the Green function. On the other hand, by using the main properties of Green function and the Krasnoselskii fixed point theorem on cones, some sufficient conditions for the existence of at least one or two positive solutions for the boundary value problem are established.
Mittal, R. C.; Jain, R. K.
2012-12-01
In this paper, a numerical method is proposed to approximate the solution of the nonlinear parabolic partial differential equation with Neumann's boundary conditions. The method is based on collocation of cubic B-splines over finite elements so that we have continuity of the dependent variable and its first two derivatives throughout the solution range. We apply cubic B-splines for spatial variable and its derivatives, which produce a system of first order ordinary differential equations. We solve this system by using SSP-RK3 scheme. The numerical approximate solutions to the nonlinear parabolic partial differential equations have been computed without transforming the equation and without using the linearization. Four illustrative examples are included to demonstrate the validity and applicability of the technique. In numerical test problems, the performance of this method is shown by computing L∞andL2error norms for different time levels. Results shown by this method are found to be in good agreement with the known exact solutions.
Fixed set theorems for discrete dynamics and nonlinear boundary-value problems
Directory of Open Access Journals (Sweden)
Robert Brooks
2011-05-01
Full Text Available We consider self-mappings of Hausdorff topological spaces which map compact sets to compact sets and establish the existence of invariant (fixed sets. The fixed set results are used to provide fixed set analogues of well-known fixed point theorems. An algorithm is employed to compute the existence of fixed sets which are self-similar in a generalized sense. Some numerical examples are given. The utility of the abstract result is further illustrated via the study of a boundary value problem for a system of differential equations
Yanggang Feng; Jinying Zhu; Qining Wang
2016-08-01
Recent advances in robotic technology are facilitating the development of robotic prostheses. Our previous studies proposed a lightweight robotic transtibial prosthesis with a damping control strategy. To improve the performance of power assistance, in this paper, we redesign the prosthesis and improve the control strategy by supplying extra push-off power. A male transtibial amputee subject volunteered to participate in the study. Preliminary experimental results show that the proposed prosthesis with push-off control improves energy expenditure by a percentage ranged from 9.72 % to 14.99 % for level-ground walking compared with the one using non-push-off control.
Zhai, Chengbo; Hao, Mengru
2014-01-01
By using Krasnoselskii's fixed point theorem, we study the existence of at least one or two positive solutions to a system of fractional boundary value problems given by -D(0+)(ν1)y1(t) = λ1a1(t)f(y1(t), y2(t)), - D(0+)(ν2)y2(t) = λ2a2(t)g(y1(t), y2(t)), where D(0+)(ν) is the standard Riemann-Liouville fractional derivative, ν1, ν2 ∈ (n - 1, n] for n > 3 and n ∈ N, subject to the boundary conditions y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = 0 = [D(0+ (α)y2(t)] t=1, for 1 ≤ α ≤ n - 2, or y1((i))(0) = 0 = y ((i))(0), for 0 ≤ i ≤ n - 2, and [D(0+)(α)y1(t)] t=1 = ϕ1(y1), [D(0+)(α)y2(t)] t=1 = ϕ2(y2), for 1 ≤ α ≤ n - 2, ϕ1, ϕ2 ∈ C([0,1], R). Our results are new and complement previously known results. As an application, we also give an example to demonstrate our result.
Clarelli, Fabrizio; Inglese, Gabriele
2016-11-01
Heat exchange between a conducting plate and the environment is described here by means of an unknown nonlinear function F of the temperature u. In this paper we construct a method for recovering F by means of polynomial expansion, perturbation theory and the toolbox of thermal inverse problems. We test our method on two examples: In the first one, we heat the plate (initially at 20 ^\\circ {{C}}) from one side, read the temperature on the same side and identify the heat exchange law on the opposite side (active thermography); in the second example we measure the temperature of one side of the plate (initially at 1500 ^\\circ {{C}}) and study the heat exchange while cooling (passive thermography).
Effect of Stress Amplitude on the Damping of Recycled Aggregate Concrete
Directory of Open Access Journals (Sweden)
Chaofeng Liang
2015-08-01
Full Text Available Damping characterizes the energy dissipation capacity of materials and structures, and it is affected by several external factors such as vibrating frequency, stress history, temperature, and stress amplitude. This study investigates the relationship between the damping and the stress amplitude of environment-friendly recycled aggregate concrete (RAC. First, a function model of a member’s loss factor and stress amplitude was derived based on Lazan’s damping-stress function. Then, the influence of stress amplitude on the loss tangent of RAC was experimentally investigated. Finally, parameters used to determine the newly derived function were obtained by numerical fitting. It is shown that the member’s loss factor is affected not only by the stress amplitude but also by factors such as the cross section shapes, boundary conditions, load types, and loading positions. The loss tangent of RAC increases with the stress amplitude, even at low stress amplitude. The damping energy exponent of RAC is not identically equal to 2.0, indicating that the damping is nonlinear. It is also found that the energy dissipation capacity of RAC is superior to that of natural aggregate concrete (NAC, and the energy dissipation capacity can be further improved by adding modified admixtures.
Optimal constrained layer damping with partial coverage
Marcelin, J.-L.; Trompette, Ph.; Smati, A.
1992-12-01
This paper deals with the optimal damping of beams constrained by viscoelastic layers when only one or several portions of the beam are covered. An efficient finite element model for dynamic analysis of such beams is used. The design variables are the dimensions and prescribed locations of the viscoelastic layers and the objective is the maximum viscoelastic damping factor. The method for nonlinear programming in structural optimization is the so-called method of moving asymptotes.
Non-linear aspects of Görtler instability in boundary layers with pressure gradient
Rogenski, J. K.; de Souza, L. F.; Floryan, J. M.
2016-12-01
The laminar flow over a concave surface may undergo transition to a turbulent state driven by secondary instabilities initiated by the longitudinal vortices known as Görtler vortices. These vortices distort the boundary layer structure by modifying the streamwise velocity component in both spanwise and wall-normal directions. Numerical simulations have been conducted to identify the role of the external pressure gradients in the development and saturation of the vortices. The results show that flows with adverse pressure gradients reach saturation upstream from the saturation location for neutral and favorable pressure gradients. In the transition region, the mean spanwise shear stress is about three times larger than in the flow without the vortices.
Directory of Open Access Journals (Sweden)
Bashir Ahmad
2010-01-01
Full Text Available We study a Dirichlet boundary value problem for Langevin equation involving two fractional orders. Langevin equation has been widely used to describe the evolution of physical phenomena in fluctuating environments. However, ordinary Langevin equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractal medium, numerous generalizations of Langevin equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Langevin equation. This gives rise to the fractional Langevin equation with a single index. Recently, a new type of Langevin equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskii's fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space.
Zhidkov, P E
2001-01-01
We establish examples of systems of functions being Riesz bases in L_{2}(0,1). We then apply this result to improve a theorem presented in [9] showing that an arbitrary "standard" system of solutions of a nonlinear boundary value problem, normalized to 1 in the same space, is a Riesz basis in this space. The proofs in this work are quite elementary.
Kawai, Yusuke; Yamada, Yoshio
2016-07-01
This paper deals with a free boundary problem for diffusion equation with a certain class of bistable nonlinearity which allows two positive stable equilibrium states as an ODE model. This problem models the invasion of a biological species and the free boundary represents the spreading front of its habitat. Our main interest is to study large-time behaviors of solutions for the free boundary problem. We will completely classify asymptotic behaviors of solutions and, in particular, observe two different types of spreading phenomena corresponding to two positive stable equilibrium states. Moreover, it will be proved that, if the free boundary expands to infinity, an asymptotic speed of the moving free boundary for large time can be uniquely determined from the related semi-wave problem.
Directory of Open Access Journals (Sweden)
Nguyen Thanh Long
2005-12-01
Full Text Available In this paper we consider the nonlinear wave equation problem $$displaylines{ u_{tt}-Big(|u|_0^2,|u_{r}|_0^2ig(u_{rr}+frac{1}{r}u_{r} =f(r,t,u,u_{r},quad 0less than r less than 1,; 0 less than t less than T, ig|lim_{ro 0^+}sqrt{r}u_{r}(r,tig| less than infty, u_{r}(1,t+hu(1,t=0, u(r,0=widetilde{u}_0(r, u_{t}(r,0=widetilde{u}_1(r. }$$ To this problem, we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved, in weighted Sobolev using standard compactness arguments. In the latter part, we give sufficient conditions for quadratic convergence to the solution of the original problem, for an autonomous right-hand side independent on $u_{r}$ and a coefficient function $B$ of the form $B=B(|u|_0^2=b_0+|u|_0^2$ with $b_0$ greater than 0.
Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.
2015-01-01
SUMMARY Wound healing is a process driven by biochemical and mechanical variables in which new tissue is synthesised to recover original tissue functionality. Wound morphology plays a crucial role in this process, as the skin behaviour is not uniform along different directions. In this work we simulate the contraction of surgical wounds, which can be characterised as elongated and deep wounds. Due to the regularity of this morphology, we approximate the evolution of the wound through its cross-section, adopting a plane strain hypothesis. This simplification reduces the complexity of the computational problem while maintaining allows for a thorough analysis of the role of wound depth in the healing process, an aspect of medical and computational relevance that has not yet been addressed. To reproduce wound contraction we consider the role of fibroblasts, myofibroblasts, collagen and a generic growth factor. The contraction phenomenon is driven by cell-generated forces. We postulate that these forces are adjusted to the mechanical environment of the tissue where cells are embedded through a mechanosensing and mechanotransduction mechanism. To solve the non-linear problem we use the Finite Element Method and an updated Lagrangian approach to represent the change in the geometry. To elucidate the role of wound depth and width on the contraction pattern and evolution of the involved species, we analyse different wound geometries with the same wound area. We find that deeper wounds contract less and reach a maximum contraction rate earlier than superficial wounds. PMID:24443355
Valero, C; Javierre, E; García-Aznar, J M; Gómez-Benito, M J
2014-06-01
Wound healing is a process driven by biochemical and mechanical variables in which a new tissue is synthesised to recover original tissue functionality. Wound morphology plays a crucial role in this process, as the skin behaviour is not uniform along different directions. In this work, we simulate the contraction of surgical wounds, which can be characterised as elongated and deep wounds. Because of the regularity of this morphology, we approximate the evolution of the wound through its cross section, adopting a plane strain hypothesis. This simplification reduces the complexity of the computational problem; while allows for a thorough analysis of the role of wound depth in the healing process, an aspect of medical and computational relevance that has not yet been addressed. To reproduce wound contraction, we consider the role of fibroblasts, myofibroblasts, collagen and a generic growth factor. The contraction phenomenon is driven by cell-generated forces. We postulate that these forces are adjusted to the mechanical environment of the tissue where cells are embedded through a mechanosensing and mechanotransduction mechanism. To solve the nonlinear problem, we use the finite element method (FEM) and an updated Lagrangian approach to represent the change in the geometry. To elucidate the role of wound depth and width on the contraction pattern and evolution of the involved species, we analyse different wound geometries with the same wound area. We find that deeper wounds contract less and reach a maximum contraction rate earlier than superficial wounds. Copyright © 2014 John Wiley & Sons, Ltd.
The Damped String Problem Revisited
Gesztesy, Fritz
2010-01-01
We revisit the damped string equation on a compact interval with a variety of boundary conditions and derive an infinite sequence of trace formulas associated with it, employing methods familiar from supersymmetric quantum mechanics. We also derive completeness and Riesz basis results (with parentheses) for the associated root functions under less smoothness assumptions on the coefficients than usual, using operator theoretic methods (rather than detailed eigenvalue and root function asymptotics) only.
Salusti, E; Garra, R
2016-01-01
We here analyze the propagation of transients of fluid-rock temperature and pressure through a thin boundary layer, where a steady trend is present, between two adjacent homogeneous rocks. We focus on the effect of convection on transients crossing such thin layer. In comparison with early models where this boundary was assumed a sharp mathematical plane separating the two rocks, here we show a realistic analysis of such boundary layer that implies a novel nonlinear model. Its solutions describe large amplitude, quick and sharp transients characterized by a novel drift and variations of the signal amplitude, leading to a nonlinear wave propagation. Possible applications are in volcanic, hydrologic, hydrothermal systems as well as for deep oil drilling. In addition, this formalism could easily be generalized for the case of a signal arriving in a rock characterized by a steady trend of pressure and/or temperature. These effects, being proportional to the initial conditions, can also give velocity variations no...
Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng
2003-01-01
Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.
Positive Solutions for Nonlinear nth-Order Singular Nonlocal Boundary Value Problems
Directory of Open Access Journals (Sweden)
Xin'an Hao
2007-04-01
Full Text Available We study the existence and multiplicity of positive solutions for a class of nth-order singular nonlocal boundary value problemsu(n(t+a(tf(t,u=0, tÃ¢ÂˆÂˆ(0,1, u(0=0, u'(0=0, Ã¢Â€Â¦,u(nÃ¢ÂˆÂ’2(0=0, ÃŽÂ±u(ÃŽÂ·=u(1, where 0<ÃŽÂ·<1,Ã¢Â€Â‰Ã¢Â€Â‰0<ÃŽÂ±ÃŽÂ·nÃ¢ÂˆÂ’1Ã¢Â€Â‰<1. The singularity may appear at t=0 and/or t=1. The Krasnosel'skii-Guo theorem on cone expansion and compression is used in this study. The main results improve and generalize the existing results.
Uniqueness of positive solutions of a class of ODE with nonlinear boundary conditions
Directory of Open Access Journals (Sweden)
Yulian An
2005-11-01
Full Text Available We study the uniqueness of positive solutions of the boundary value problem uÃ¢Â€Â³+a(tuÃ¢Â€Â²+f(u=0, tÃ¢ÂˆÂˆ(0,b, B1(u(0Ã¢ÂˆÂ’uÃ¢Â€Â²(0=0, B2(u(b+uÃ¢Â€Â²(b=0, where 0
Instantaneous Frequency and Damping from Transient Ring-Down Data
Energy Technology Data Exchange (ETDEWEB)
Kuether, Robert J.; Brake, Matthew Robert
2015-10-01
Broadband impact excitation in structural dynamics is a common technique used to detect and characterize nonlinearities in mechanical systems since it excites many frequencies of a structure at once and can be applied with a variety of boundary conditions. Non-stationary time signals from transient ring-down measurements require time-frequency analysis tools to observe variations in frequency and energy dissipation as the response evolves. This work uses the short-time Fourier transform to estimate the instantaneous frequency and damping ratio from either measured or simulated transient ring-down data. By combining the discrete Fourier transform with an expanding or contracting window function that moves along the time axis, the resulting spectrum is used to estimate the instantaneous frequencies, damping and complex Fourier coefficients. This method is demonstrated on a multi-degree-of-freedom beam with a cubic spring attachment, and investigates the amplitudefrequency dependence in connection to the undamped nonlinear normal modes. A second example shows the results from experiment ring-down response on a beam with a lap joint, and reveals how the system behaves as energy dissipates.
Wedin, Håkan; Cherubini, Stefania
2016-12-01
The asymptotic suction boundary layer (ASBL) is used for studying two permeability models, namely the Darcy and the Forchheimer model, the latter being more physically correct according to the literature. The term that defines the two apart is a function of the non-Darcian wall permeability {\\hat{K}}2 and of the wall suction {\\hat{V}}0, whereas the Darcian wall permeability {\\hat{K}}1 is common to the two models. The underlying interest of the study lies in the field of transition to turbulence where focus is put on two-dimensional nonlinear traveling waves (TWs) and their three-dimensional linear stability. Following a previous study by Wedin et al (2015 Phys. Rev. E 92 013022), where only the Darcy model was considered, the present work aims at comparing the two models, assessing where in the parameter space they cease to produce the same results. For low values of {\\hat{K}}1 both models produce almost identical TW solutions. However, when both increasing the suction {\\hat{V}}0 to sufficiently high amplitudes (i.e. lowering the Reynolds number Re, based on the displacement thickness) and using large values of the wall porosity, differences are observed. In terms of the non-dimensional Darcian wall permeability parameter, a, strong differences in the overall shape of the bifurcation curves are observed for a≳ 0.70, with the emergence of a new family of solutions at Re lower than 100. For these large values of a, a Forchheimer number {{Fo}}\\max ≳ 0.5 is found, where Fo expresses the ratio between the kinetic and viscous forces acting on the porous wall. Moreover, the minimum Reynolds number, {{Re}}g, for which the Navier-Stokes equations allow for nonlinear solutions, decreases for increasing values of a. Fixing the streamwise wavenumber to α = 0.154, as used in the study by Wedin et al referenced above, we find that {{Re}}g is lowered from Re ≈ 3000 for zero permeability, to below 50 for a = 0.80 for both permeability models. Finally, the stability of
Directory of Open Access Journals (Sweden)
Hammad Khalil
2016-06-01
Full Text Available In this paper, we have proposed a new formulation for the solution of a general class of fractional differential equations (linear and nonlinear under $\\hat{m}$-point boundary conditions. We derive some new operational matrices and based on these operational matrices we develop scheme to approximate solution of the problem. The scheme convert the boundary value problem to a system of easily solvable algebraic equations. We show the applicability of the scheme by solving some test problems. The scheme is computer oriented.
Power oscillation damping controller
DEFF Research Database (Denmark)
2012-01-01
A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...
The effect of resonant driving and damping on dynamic suction pumping
Battista, Nicholas; Miller, Laura
2016-11-01
Impedance pumping (or dynamic suction pumping) drives flow through a a flexible valveless tube with a single region of actuation. It is a profoundly complex pumping mechanism given that the flow velocities and directions generated depend nonlinearly upon the driving frequency, material properties, duty factor, and location of the actuation point. Given the simplicity of its actuation, it is used in biomedical devices and is thought to generate flow in a number of biological systems. In this study, we numerically simulate an elastic tube with mass using the immersed boundary method and explore the performance when it is driven over a range of frequencies and damping factors. Flow is maximized during resonance, and bulk transport is minimal when the tube is over-damped.
Simple model with damping of the mode-coupling instability
Energy Technology Data Exchange (ETDEWEB)
Pestrikov, D.V. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki
1996-08-01
In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)
Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir
2014-01-01
The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.
Directory of Open Access Journals (Sweden)
Meraj Mustafa
Full Text Available The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.
Damping by branching: a bioinspiration from trees
Theckes, Benoit; Boutillon, Xavier
2011-01-01
Man-made slender structures are known to be sensitive to high levels of vibration, due to their flexibility, which often cause irreversible damage. In nature, trees repeatedly endure large amplitudes of motion, mostly caused by strong climatic events, yet with minor or no damage in most cases. A new damping mechanism inspired by the architecture of trees is here identified and characterized in the simplest tree-like structure, a Y-shape branched structure. Through analytical and numerical analyses of a simple two-degree-of-freedom model, branching is shown to be the key ingredient in this protective mechanism that we call damping-by-branching. It originates in the geometrical nonlinearities so that it is specifically efficient to damp out large amplitudes of motion. A more realistic model, using flexible beam approximation, shows that the mechanism is robust. Finally, two bioinspired architectures are analyzed, showing significant levels of damping achieved via branching with typically 30% of the energy being...
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper,Fucik spectrum,ordinary differential equation theory of Banach spaces and Morse theory are used to study semilinear elliptic boundary value problems with jumping nonlinearities at zero or infinity,and some new results on the existence of nontrivial solutions,multiple solutions and sign-changing solutions are obtained.In one case seven nontrivial solutions are got.The techniques have independent interest.
Tan, Heping; Yu, Qizheng; Zhang, Jizhou
In this paper, the transient combined heat transfer in the silicon glass porthole of Space Shuttle is studied by control volume method, ray tracing method and spectral band model. The temperature field in the silicon glass and heat flux entering the space cabin are given under the 3rd kind nonlinear boundary condition. The computational results show, if the radiation in the silicon glass is omitted, the errors for temperature fields are not too evident, but for heat flux are quite large.
Introduction to Landau Damping
Herr, W
2014-01-01
The mechanism of Landau damping is observed in various systems from plasma oscillations to accelerators. Despite its widespread use, some confusion has been created, partly because of the different mechanisms producing the damping but also due to the mathematical subtleties treating the effects. In this article the origin of Landau damping is demonstrated for the damping of plasma oscillations. In the second part it is applied to the damping of coherent oscillations in particle accelerators. The physical origin, the mathematical treatment leading to the concept of stability diagrams and the applications are discussed.
Damping of Torsional Beam Vibrations by Control of Warping Displacement
DEFF Research Database (Denmark)
Høgsberg, Jan Becker; Hoffmeyer, David; Ejlersen, Christian
2016-01-01
Supplemental damping of torsional beam vibrations is considered by viscous bimoments acting on the axial warping displacement at the beam supports. The concept is illustrated by solving the governing eigenvalue problem for various support configurations with the applied bimoments represented...... as viscous boundary conditions. It is demonstrated that properly calibrated viscous bimoments introduce a significant level of supplemental damping to the targeted vibration mode and that the attainable damping can be accurately estimated from the two undamped problems associated with vanishing and infinite...
Feng, Zhaosheng
Many physical phenomena can be described by nonlinear models. The last few decades have seen an enormous growth of the applicability of nonlinear models and of the development of related nonlinear concepts. This has been driven by modern computer power as well as by the discovery of new mathematical techniques, which include two contrasting themes: (i) the theory of dynamical systems, most popularly associated with the study of chaos, and (ii) the theory of integrable systems associated, among other things, with the study of solitons. In this dissertation, we study two nonlinear models. One is the 1-dimensional vibrating string satisfying wtt - wxx = 0 with van der Pol boundary conditions. We formulate the problem into an equivalent first order Hyperbolic system, and use the method of characteristics to derive a nonlinear reflection relation caused by the nonlinear boundary conditions. Thus, the problem is reduced to the discrete iteration problem of the type un+1 = F( un). Periodic solutions are investigated, an invariant interval for the Abel equation is studied, and numerical simulations and visualizations with different coefficients are illustrated. The other model is the Korteweg-de Vries-Burgers (KdVB) equation. In this dissertation, we proposed two new approaches: One is what we currently call First Integral Method, which is based on the ring theory of commutative algebra. Applying the Hilbert-Nullstellensatz, we reduce the KdVB equation to a first-order integrable ordinary differential equation. The other approach is called the Coordinate Transformation Method, which involves a series of variable transformations. Some new results on the traveling wave solution are established by using these two methods, which not only are more general than the existing ones in the previous literature, but also indicate that some corresponding solutions presented in the literature contain errors. We clarify the errors and instead give a refined result.
The Evaluation of the Damping Characteristics of a Hard Coating on Titanium
Directory of Open Access Journals (Sweden)
Christopher Blackwell
2007-01-01
Full Text Available Engine failures due to fatigue have cost the Air Force an estimated $400 million dollars per year over the past two decades. Damping treatments capable of reducing the internal stresses of fan and turbine blades to levels where fatigue is less likely to occur have the potential for reducing cost while enhancing reliability. This research evaluates the damping characteristics of magnesium aluminate spinel, MgO+Al2O3, (mag spinel on titanium plates from an experimental point of view. The material and aspect ratio were chosen to approximate the low aspect ratio blades found in military gas turbine fans. In the past, work has generally been performed on cantilever supported beams, and thus the two-dimensional features of damping were lost. In this study plates were tested with a cantilevered boundary condition, using electrodynamic shaker excitation. The effective test area of each specimen was 4.5 in × 4.5 in. The nominal plate thickness was 0.125 in. Mag spinel was applied to both sides of the plate, at a thickness of 0.01 in, and damping tests were run at room temperature. The effect of the coating was evaluated at the 2nd bending mode (mode 3 and the chord wise bending mode (mode 4. A scanning laser vibrometer revealed the frequency and shape of each mode for the plates. Sine sweeps were used to characterize the damping of the coated and uncoated specimens for the modes tested. The coating increased damping nonlinearly for both modes tested in which the general outcome was similar to that found in beams.
Dynamics of wave equations with moving boundary
Ma, To Fu; Marín-Rubio, Pedro; Surco Chuño, Christian Manuel
2017-03-01
This paper is concerned with long-time dynamics of weakly damped semilinear wave equations defined on domains with moving boundary. Since the boundary is a function of the time variable the problem is intrinsically non-autonomous. Under the hypothesis that the lateral boundary is time-like, the solution operator of the problem generates an evolution process U (t , τ) :Xτ →Xt, where Xt are time-dependent Sobolev spaces. Then, by assuming the domains are expanding, we establish the existence of minimal pullback attractors with respect to a universe of tempered sets defined by the forcing terms. Our assumptions allow nonlinear perturbations with critical growth and unbounded time-dependent external forces.
Institute of Scientific and Technical Information of China (English)
LU Chang-gen; CAO Wei-dong; QIAN Jian-hua
2006-01-01
A new method for direct numerical simulation of incompressible Navier-Stokes equations is studied in the paper. The compact finite difference and the non-linear terms upwind compact finite difference schemes on non-uniform meshes in x and y directions are developed respectively. With the Fourier spectral expansion in the spanwise direction, three-dimensional N-S equation are converted to a system of two-dimensional equations. The third-order mixed explicit-implicit scheme is employed for time integration. The treatment of the three-dimensional non-reflecting outflow boundary conditions is presented, which is important for the numerical simulations of the problem of transition in boundary layers, jets, and mixing layer. The numerical results indicate that high accuracy, stabilization and efficiency are achieved by the proposed numerical method. In addition, a theory model for the coherent structure in a laminar boundary layer is also proposed, based on which the numerical method is implemented to the non-linear evolution of coherent structure. It is found that the numerical results of the distribution of Reynolds stress, the formation of high shear layer, and the event of ejection and sweeping, match well with the observed characteristics of the coherent structures in a turbulence boundary layer.
Fluid damping of cylindrical liquid storage tanks.
Habenberger, Joerg
2015-01-01
A method is proposed in order to calculate the damping effects of viscous fluids in liquid storage tanks subjected to earthquakes. The potential equation of an ideal fluid can satisfy only the boundary conditions normal to the surface of the liquid. To satisfy also the tangential interaction conditions between liquid and tank wall and tank bottom, the potential flow is superimposed by a one-dimensional shear flow. The shear flow in this boundary layer yields to a decrease of the mechanical energy of the shell-liquid-system. A damping factor is derived from the mean value of the energy dissipation in time. Depending on shell geometry and fluid viscosity, modal damping ratios are calculated for the convective component.
Passive damping technology demonstration
Holman, Robert E.; Spencer, Susan M.; Austin, Eric M.; Johnson, Conor D.
1995-05-01
A Hughes Space Company study was undertaken to (1) acquire the analytical capability to design effective passive damping treatments and to predict the damped dynamic performance with reasonable accuracy; (2) demonstrate reasonable test and analysis agreement for both baseline and damped baseline hardware; and (3) achieve a 75% reduction in peak transmissibility and 50% reduction in rms random vibration response. Hughes Space Company teamed with CSA Engineering to learn how to apply passive damping technology to their products successfully in a cost-effective manner. Existing hardware was selected for the demonstration because (1) previous designs were lightly damped and had difficulty in vibration test; (2) multiple damping concepts could be investigated; (3) the finite element model, hardware, and test fixture would be available; and (4) damping devices could be easily implemented. Bracket, strut, and sandwich panel damping treatments that met the performance goals were developed by analysis. The baseline, baseline with damped bracket, and baseline with damped strut designs were built and tested. The test results were in reasonable agreement with the analytical predictions and demonstrated that the desired reduction in dynamic response could be achieved. Having successfully demonstrated this approach, it can now be used with confidence for future designs as a means for reducing weight and enhancing reliability.
Institute of Scientific and Technical Information of China (English)
李志龙
2008-01-01
In this paper, we study the nonlinear second-order boundary value problem of delay differential equation. Without the assumption of the nonnegativity of f, we still obtain the existence of the positive solution.
Institute of Scientific and Technical Information of China (English)
杨茂; 陈建军
1999-01-01
In this paper,combining Riemann's method with the fixed point theory effectively,we proved that the migration equation of the moisture in soil with nonlinear initial boundary value problem has unique classical solution.
Computational aspects of helicopter trim analysis and damping levels from Floquet theory
Gaonkar, Gopal H.; Achar, N. S.
1992-01-01
Helicopter trim settings of periodic initial state and control inputs are investigated for convergence of Newton iteration in computing the settings sequentially and in parallel. The trim analysis uses a shooting method and a weak version of two temporal finite element methods with displacement formulation and with mixed formulation of displacements and momenta. These three methods broadly represent two main approaches of trim analysis: adaptation of initial-value and finite element boundary-value codes to periodic boundary conditions, particularly for unstable and marginally stable systems. In each method, both the sequential and in-parallel schemes are used and the resulting nonlinear algebraic equations are solved by damped Newton iteration with an optimally selected damping parameter. The impact of damped Newton iteration, including earlier-observed divergence problems in trim analysis, is demonstrated by the maximum condition number of the Jacobian matrices of the iterative scheme and by virtual elimination of divergence. The advantages of the in-parallel scheme over the conventional sequential scheme are also demonstrated.
Improving the Validity of Squeeze Film Air-Damping Model of MEMS Devices with Border Effect
Directory of Open Access Journals (Sweden)
Cheng Bai
2014-01-01
Full Text Available Evaluation of squeezed film air damping is critical in the design and control of dynamic MEMS devices. The published squeezed film air damping models are generally derived from the analytical solutions of Reynolds equation or its other modified forms under the supposition of trivial pressure boundary conditions on the peripheral borders. These treatments ignoring the border effect can not give faithful result for structure with smaller air venting gap or the double-gimbaled structure in which the inner frame and outer one affect the air venting. In this paper, we use Green’s function to solve the nonlinear Reynolds equation with inhomogeneous boundary conditions. For two typical normal motion cases of parallel plate, the analytical models of squeeze film damping force with border effect are established. The viscous and inertial losses with real values and image values acoustic impedance are all included in the model. These models reduced the time consumption while giving satisfactory result. Without multifield coupling analysis, the estimation of the dynamic behavior of MEMS device is also allowed, and the simulation of the system performance is more convenient.
The next linear collider damping ring complex
Energy Technology Data Exchange (ETDEWEB)
Corlett,J.; Atkinson,D.; De Santis,S.; Hartman, N.; Kennedy, K.; Li, D.; Marks, S.; Minamihara, Y.; Nishimura, H.; Pivi, M.; Reavill, D.; Rimmer, R.; Schlueter, R.; Wolski, A.; Anderson,S.; McKee,B.; Raubenheimer, T.; Ross, M.; Sheppard, J.C.
2001-06-12
We report progress on the design of the Next Linear Collider (NLC) Damping Rings complexes. The purpose of the damping rings is to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. As an option to operate at the higher rate of 180 Hz, two 1.98 GeV main damping rings per beam are proposed, and one positron pre-damping ring. The main damping rings store up to 0.8 amp in 3 trains of 190 bunches each and have normalized extracted beam emittances {gamma}{var_epsilon}x = 3 mm-mrad and {gamma}{var_epsilon}y = 0.02 mm-mrad. The optical designs, based on a theoretical minimum emittance lattice (TME), are described, with an analysis of dynamic aperture and non-linear effects. Key subsystems and components are described, including the wiggler, the vacuum systems and photon stop design, and the higher-order-mode damped RF cavities. Impedance and instabilities are discussed.
Temperature dependent elasticity and damping in dehydrated sandstone
Darling, T. W.; Struble, W.
2013-12-01
Work reported previously at this conference, outlining our observation of anomalously large elastic softening and damping in dehydrated Berea sandstone at elevated temperatures, has been analysed to study shear and compressional effects separately. Modeling of the sample using COMSOL software was necessary to identify modes, as the vibration spectrum of the sample is poorly approximated by a uniform isotropic solid. The first torsional mode of our evacuated, dry, core softens at nearly twice the rate of Young's modulus modes (bending and compressional) and is also damped nearly twice as strongly as temperature increases. We consider two possible models for explaining this behavior, based on the assumption that the mechanical properties of the sandstone are dominated by the framework of quartz grains and polycrystalline cementation, neglecting initially the effects of clay and feldspar inclusions. The 20cm x 2.54cm diameter core is dry such that the pressure of water vapor in the experiment chamber is below 1e-6 Torr at 70C, suggesting that surface water beyond a small number of monolayers is negligible. Our models consider (1) enhanced sliding of grain boundaries in the cementation at elevated temperature and reduced internal water content, and (2) strain microcracking of the cementatioin at low water content due to anisotropic expansion in the quartz grains. In model (1) interfaces parallel to polyhedral grain surfaces were placed in the cement bonds and assigned frictional properties. Model (2) has not yet been implemented. The overall elasticity of a 3-D several-grain model network was determined by modeling quasistatic loading and measuring displacements. Initial results with a small number of grains/bonds suggests that only the first model provides softening and damping for all the modes, however the details of the effects of defect motioin at individual interfaces as the source for the frictional properties is still being evaluated. Nonlinear effects are
Critically damped quantum search.
Mizel, Ari
2009-04-17
Although measurement and unitary processes can accomplish any quantum evolution in principle, thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover's algorithm in which the idea of damping plays a natural role. Remarkably, we find that there is a critical damping value that divides between the quantum O(sqrt[N]) and classical O(N) search regimes. In addition, by allowing the damping to vary in a fashion we describe, one obtains a fixed-point quantum search algorithm in which ignorance of the number of targets increases the number of oracle queries only by a factor of 1.5.
Critically damped quantum search
Mizel, Ari
2008-01-01
Although measurement and unitary processes can accomplish any quantum evolution in principle, thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover's algorithm in which the idea of damping plays a natural role. Remarkably, we have found that there is a critical damping value that divides between the quantum $O(\\sqrt{N})$ and classical O(N) search regimes. In addition, by allowing the damping to vary in a fashion we describe, one obtains a fixed-poin...
Whistler damping at oblique propagation - Laminar shock precursors
Gary, S. P.; Mellott, M. M.
1985-01-01
This paper addresses the collisionless damping of whistlers observed as precursors standing upstream of oblique, low-Mach number terrestrial bow shocks. The linear theory of electromagnetic waves in a homogeneous Vlasov plasma with Maxwellian distribution functions and a magnetic field is considered. Numerical solutions of the full dispersion equation are presented for whistlers propagating at an arbitrary angle with respect to the magnetic field. It is demonstrated that electron Landau damping attenuates oblique whistlers and that the parameter which determines this damping is beta-e. In a well-defined range of parameters, this theory provides damping lengths which are the same order of magnitude as those observed. Thus electron Landau damping is a plausible process in the dissipation of upstream whistlers. Nonlinear plasma processes which may contribute to precursor damping are also discussed, and criteria for distinguishing among these are described.
Dynamic analyses of viscoelastic dielectric elastomers incorporating viscous damping effect
Zhang, Junshi; Zhao, Jianwen; Chen, Hualing; Li, Dichen
2017-01-01
In this paper, based on the standard linear solid rheological model, a dynamics model of viscoelastic dielectric elastomers (DEs) is developed with incorporation of viscous damping effect. Numerical calculations are employed to predict the damping effect on the dynamic performance of DEs. With increase of damping force, the DEs show weak nonlinearity and vibration strength. Phase diagrams and Poincaré maps are utilized to detect the dynamic stability of DEs, and the results indicate that a transition from aperiodic vibration to quasi-periodic vibration occurs with enlargement of damping force. The resonance properties of DEs including damping effect are subsequently analyzed, demonstrating a reduction of resonant frequency and resonance peak with increase of damping force.
Nonlinear vibration and rippling instability for embedded carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Soltani, Payam; Mehdipour, I. [Islamic Azad University, Semnan (Iran, Islamic Republic of); Farshidianfar, A. [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Ganji, D. D. [Babol University of Technology, Babol (Iran, Islamic Republic of)
2012-04-15
Based on the rippling deformations, a nonlinear continuum elastic model is developed to analyze the transverse vibration of single walled carbon nanotubes (SWCNTs) embedded on a Winkler elastic foundation. The nonlinear natural frequency has been derived analytically for typical boundary conditions using the perturbation method of multi-scales. The results indicate that the nonlinear resonant frequency due to the rippling is related to the stiffness of the foundation, the boundary conditions, the excitation load-to-damping ratio, and the diameter-to-length ratio. Moreover, the rippling instability of carbon nanotubes, as a structural instability, is introduced and the influences of several effective parameters on this kind of instability are widely discussed.
Damp heat stable doped zinc oxide films
Energy Technology Data Exchange (ETDEWEB)
Hüpkes, J., E-mail: j.huepkes@fz-juelich.de [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Owen, J.I. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Wimmer, M.; Ruske, F. [Institute of Silicon Photovoltaics, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin (Germany); Greiner, D.; Klenk, R. [Institute for Heterogeneous Materials Systems, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Zastrow, U. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Hotovy, J. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)
2014-03-31
Zinc oxide is widely used as transparent contact in thin film solar cells. We investigate the damp heat stability of aluminum doped ZnO (ZnO:Al) films sputter deposited at different conditions. Increase in resistivity upon damp heat exposure was observed for as-deposited ZnO:Al films and the water penetration was directly linked to this degradation. Deuterium was used as isotopic marker to identify the amount of water taken up by the films. Finally, we applied a special annealing step to prepare highly stable ZnO:Al films with charge carrier mobility of 70 cm{sup 2}/Vs after 1000 h of damp heat treatment. A grain boundary reconstruction model is proposed to explain the high stability of ZnO:Al films after annealing. - Highlights: • Study of damp heat degradation on electrical properties of ZnO:Al • Demonstration of fast water penetration and replacement mechanism • Damp heat stable ZnO:Al films with high mobility after damp heat treatment.
Institute of Scientific and Technical Information of China (English)
LI; Shujie
2001-01-01
［1］Martin Schecher,The Fucik spectrum,Indiana University Mathematics Journal,1994,43(4):1139-1157.［2］Dancer,E.N.,Remarks on jumping nonlinearities,in Topics in Nonlinear Analysis (eds.Escher,Simonett),Basel:Birkhauser,1999,101-116.［3］Dancer,E.N.,Du Yihong,Existence of changing sign solutions for semilinear problems with jumping nonlinearities at zero,Proceedings of the Royal Society of Edinburgh,1994,124A:1165-1176.［4］Dancer,E.N.,Du Yihong,Multiple solutions of some semilinear elliptic equations via generalized conley index,Journal of Mathematical Analysis and Applications,1995,189:848-871.［5］Li Shujie,Zhang Zhitao,Sign-changing solutions and multiple solutions theorems for semilinear elliptic boundary value problems with jumping nonlinearities,Acta Mathematica Sinica,2000,16(1):113-122.［6］Chang Kung-ching,Li Shujie,Liu Jiaquan,Remarks on multiple solutions for asymptotically linear elliptic boundary value problems.Topological methods for Nonlinear Analysis,Journal of the Juliusz Schauder Center,1994,3:179-187.［7］Alfonso Castro,Jorge Cossio,Multiple solutions for a nonlinear Dirichlet problem,SIAM J.Math.Anal.,1994,25(6):1554-1561.［8］Alfonso Castro,Jorge Cossio,John M.Neuberger,A sign-changing solution for a superlinear Dirichlet problem,Rocky Mountain J.M.,1997,27:1041-1053.［9］Alfonso Castro,Jorge Cossio,John M.Neuberger,A minimax principle,index of the critical point,and existence of sign-changing solutions to Elliptic boundary value problems,E.J.Diff.Eqn.,1998 (2):1-18.［10］Thomas Bartsch,Wang Zhiqiang,On the existence of sign-changing solutions for semilinear Dirichlet problems,Topological Methods in Nonlinear Analysis,Journal of the Juliusz Schauder Center,1996,(7):115-131.［11］Li Shujie,Zhang Zhitao,Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity,Discrete and Continuous Dynamical System,1999,5(3):489-493.［12］Mawhin,J.,Willem,M.,Critical Point Theory and
Institute of Scientific and Technical Information of China (English)
刘晓骅; 叶里; 温振川; 邓芊芊; 高英俊
2015-01-01
【目的】研究一维纳米晶材料演化过程中的小角度晶界湮没过程，探究向错强度与阻尼系数对位错湮没的影响。【方法】建立位错运动方程，计算模拟小角度晶界的晶格位错在外应力作用下发生的变化。【结果】随着切应力增加，晶界由过阻尼运动变为无穷远的单向运动，向错强度越大晶界越难以湮没，并且晶界位错由同时湮没转变为两端先湮没，中心后湮没；阻尼系数越大，湮没临界切应力越大，但到达一定值时，阻尼系数不再影响临界值。【结论】晶界湮没存在临界切应力，向错强度主要影响临界切应力，阻尼系数主要影响位错初始速度和运动停止时间。%[Objective]The evolution process of the annihilation of small angle grain boundaries in an one-dimensional crystal material was researched,and the effects of disclination strength and damping coefficient on the annihilation of dislocations were explored.[Methods]The movement equations of dislocations were established,and the dislocation motions in low angle grain boundaries were calculated and simulated under external shear stress.[Results]With shear stress progressing,the movement of grain boundary turns to directional motion in which dislo-cations can go to infinity.The bigger the value of disclination strength is,the more difficult the grain boundary annihilation is.Furthermore,grain boundary annihilation changes from simulta-neously running away to central dislocation releasing after escaping of dislocations in both ends.The bigger the damping coefficient is,the bigger the critical shear stress of annihilation. But when it reaches a certain point,damping coefficient doesn’t have an impact on critical stress anymore.[Conclusion]There is a critical value for grain boundary annihilation.Disclina-tion strength mainly affects critical value,while damping coefficient plays an indispensable role in original velocity and motion
Krishnamurthy, M. R.; Gireesha, B. J.; Prasannakumara, B. C.; Gorla, Rama Subba Reddy
2016-09-01
A theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.
Directory of Open Access Journals (Sweden)
Chi-Chang Wang
2013-09-01
Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.
Occurrence of stable periodic modes in a pendulum with cubic damping
Indian Academy of Sciences (India)
K I Thomas; G Ambika
2002-09-01
Dynamical systems with nonlinear damping show interesting behavior in the periodic and chaotic phases. The Froude pendulum with cubical and linear damping is a paradigm for such a system. In this work the driven Froude pendulum is studied by the harmonic balancing method; the resulting nonlinear response curves are studied further for resonance and stability of symmetric oscillations with relatively low damping. The stability analysis is carried out by transforming the system of equations to the linear Mathieu equation.
Energy Technology Data Exchange (ETDEWEB)
Palmer, R.B.
1988-07-01
Structures with slots to strongly damp higher order longitudinal and transverse modes should allow the use, in linear colliders, of multiple bunches, and thus attain luminosities of over 10/sup 34/cm/sup /minus/2/sec/sup /minus/1/. Preliminary measurements on model structures suggest that such damping can be achieved. 10 refs., 9 figs.
Institute of Scientific and Technical Information of China (English)
Muhaimin; R. Kandasamy; Azme B. Khamis
2008-01-01
This work is concerned with Magnetohydrodynamic viscous flow due to a shrinking sheet in the presence of suction. The cases of two dimensional and axisymmetric shrinking are discussed. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are numerically solved by using an advanced numeric technique. Favorability comparisons with previously published work are presented. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.
Mahabaleshwar, U. S.; Nagaraju, K. R.; Vinay Kumar, P. N.; Baleanu, Dumitru; Lorenzini, Giulio
2017-03-01
In this paper, we investigate the theoretical analysis for the unsteady magnetohydrodynamic laminar boundary layer flow due to impulsively stretching sheet. The third-order highly nonlinear partial differential equation modeling the unsteady boundary layer flow brought on by an impulsively stretching flat sheet was solved by applying Adomian decomposition method and Pade approximants. The exact analytical solution so obtained is in terms of rapidly converging power series and each of the variants are easily computable. Variations in parameters such as mass transfer (suction/injection) and Chandrasekhar number on the velocity are observed by plotting the graphs. This particular problem is technically sound and has got applications in expulsion process and related process in fluid dynamics problems.
Gordon, Peter V
2012-01-01
This paper deals with the long-time behavior of solutions of nonlinear reaction-diffusion equations describing formation of morphogen gradients, the concentration fields of molecules acting as spatial regulators of cell differentiation in developing tissues. For the considered class of models, we establish existence of a new type of ultra-singular self-similar solutions. These solutions arise as limits of the solutions of the initial value problem with zero initial data and infinitely strong source at the boundary. We prove existence and uniqueness of such solutions in the suitable weighted energy spaces. Moreover, we prove that the obtained self-similar solutions are the long-time limits of the solutions of the initial value problem with zero initial data and a time-independent boundary source.
Mahabaleshwar, U. S.; Nagaraju, K. R.; Vinay Kumar, P. N.; Baleanu, Dumitru; Lorenzini, Giulio
2016-12-01
In this paper, we investigate the theoretical analysis for the unsteady magnetohydrodynamic laminar boundary layer flow due to impulsively stretching sheet. The third-order highly nonlinear partial differential equation modeling the unsteady boundary layer flow brought on by an impulsively stretching flat sheet was solved by applying Adomian decomposition method and Pade approximants. The exact analytical solution so obtained is in terms of rapidly converging power series and each of the variants are easily computable. Variations in parameters such as mass transfer (suction/injection) and Chandrasekhar number on the velocity are observed by plotting the graphs. This particular problem is technically sound and has got applications in expulsion process and related process in fluid dynamics problems.
Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions
Energy Technology Data Exchange (ETDEWEB)
Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)
2014-12-15
The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.
Chortis, Dimitris I.; Chrysochoidis, Nikos A.; Varelis, Dimitris S.; Saravanos, Dimitris A.
2011-11-01
A theoretical framework is presented for predicting the nonlinear damping and damped vibration of laminated composite strips due to large in-plane forces. Nonlinear Green-Lagrange axial strains are introduced in the governing equations of a viscoelastic composite and new nonlinear damping and stiffness matrices are formulated including initial stress effects. Building upon the nonlinear laminate mechanics, a damped beam finite element is developed. Finite element stiffness and damping matrices are synthesized and the static equilibrium is predicted using a Newton-Raphson solver. The corresponding linearized damped free-vibration response is predicted and modal frequencies and damping of the in-plane deflected strip are calculated. Numerical results quantify the nonlinear effect of in-plane loads on structural modal damping of various laminated composite strips. The modal loss-factors and natural frequencies of cross-ply Glass/Epoxy beams subject to in-plane loading are measured and correlated with numerical results.
Tabrizi, Amirhossein Molavi; Bardhan, Jaydeep P
2016-01-01
In this paper we extend the familiar continuum electrostatic model with a perturbation to the usual macroscopic boundary condition. The perturbation is based on the mean spherical approximation (MSA), to derive a multiscale hydration-shell boundary condition (HSBC). We show that the HSBC/MSA model reproduces MSA predictions for Born ions in a variety of polar solvents, including both protic and aprotic solvents. Importantly, the HSBC/MSA model predicts not only solvation free energies accurately but also solvation entropies, which standard continuum electrostatic models fail to predict. The HSBC/MSA model depends only on the normal electric field at the dielectric boundary, similar to our recent development of an HSBC model for charge-sign hydration asymmetry, and the reformulation of the MSA as a boundary condition enables its straightforward application to complex molecules such as proteins.
Lenci, Stefano; Rega, Giuseppe
2016-06-01
The nonlinear free oscillations of a straight planar Timoshenko beam are investigated analytically by means of the asymptotic development method. Attention is focused for the first time, to the best of our knowledge, on the nonlinear coupling between the axial and the transversal oscillations of the beam, which are decoupled in the linear regime. The existence of coupled and uncoupled motion is discussed. Furthermore, the softening versus hardening nature of the backbone curves is investigated in depth. The results are summarized by means of behaviour charts that illustrate the different possible classes of motion in the parameter space. New, and partially unexpected, phenomena, such as the changing of the nonlinear behaviour from softening to hardening by adding/removing the axial vibrations, are highlighted.
Bifurcation and nonlinear analysis of a time-delayed thermoacoustic system
Yang, Xiaochuan; Turan, Ali; Lei, Shenghui
2017-03-01
In this paper, of primary concern is a time-delayed thermoacoustic system, viz. a horizontal Rijke tube. A continuation approach is employed to capture the nonlinear behaviour inherent to the system. Unlike the conventional approach by the Galerkin method, a dynamic system is naturally built up by discretizing the acoustic momentum and energy equations incorporating appropriate boundary conditions using a finite difference method. In addition, the interaction of Rijke tube velocity with oscillatory heat release is modeled using a modified form of King's law. A comparison of the numerical results with experimental data and the calculations reported reveals that the current approach can yield very good predictions. Moreover, subcritical Hopf bifurcations and fold bifurcations are captured with the evolution of dimensionless heat release coefficient, generic damping coefficient and time delay. Linear stability boundary, nonlinear stability boundary, bistable region and limit cycles are thus determined to gain an understanding of the intrinsic nonlinear behaviours.
Energy Technology Data Exchange (ETDEWEB)
Rees, John; Chao, Alexander; /SLAC
2008-12-01
Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread.
Unwrapped phase inversion with an exponential damping
Choi, Yun Seok
2015-07-28
Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.
Barotropic FRW cosmologies with Chiellini damping
Energy Technology Data Exchange (ETDEWEB)
Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico); Mancas, Stefan C., E-mail: stefan.mancas@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)
2015-05-08
It is known that barotropic FRW equations written in the conformal time variable can be reduced to simple linear equations for an exponential function involving the conformal Hubble rate. Here, we show that an interesting class of barotropic universes can be obtained in the linear limit of a special type of nonlinear dissipative Ermakov–Pinney equations with the nonlinear dissipation built from Chiellini's integrability condition. These cosmologies, which evolutionary are similar to the standard ones, correspond to barotropic fluids with adiabatic indices rescaled by a particular factor and have amplitudes of the scale factors inverse proportional to the adiabatic index. - Highlights: • Chiellini-damped Ermakov–Pinney equations are used in barotropic FRW cosmological context. • Chiellini-damped scale factors of the barotropic FRW universes are introduced. • These scale factors are similar to the undamped ones.
Control System Damps Vibrations
Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.
1983-01-01
New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.
DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.
Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin
2015-11-01
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Anisotropic Internal Friction Damping
Peters, R D
2003-01-01
The mechanical damping properties of sheet polaroid material have been studied with a physical pendulum. The polaroid samples were placed under the knife-edges of the pendulum, which was operated in free-decay at a period in the vicinity of 10 s. With the edges oriented parallel to the direction of the long molecular chains in the polaroid, it was found that the damping was more than 10% smaller than when oriented perpendicular to the chains.
Cost damping and functional form in transport models
DEFF Research Database (Denmark)
Rich, Jeppe; Mabit, Stefan Lindhard
2015-01-01
take different forms and be represented as a non-linear-in-parameter form such as the well-known Box–Cox function. However, it could also be specified as non-linear-in-cost but linear-in-parameter forms, which are easier to estimate and improve model fit without increasing the number of parameters....... The specific contributions of the paper are as follows. Firstly, we discuss the phenomenon of cost damping in details and specifically why it occurs. Secondly, we provide a test of damping and an easy assessment of the (linear) damping rate for any variable by estimating two auxiliary linear models. This turns......Transport models allowing for cost damping are characterised by marginally decreasing cost sensitivities in demand. As a result, cost damping is a model extension of the simple linear-in-cost model requiring an appropriate non-linear link function between utility and cost. The link function may...
Cost damping and functional form in transport models
DEFF Research Database (Denmark)
Rich, Jeppe; Mabit, Stefan Lindhard
2016-01-01
Transport models allowing for cost damping are characterised by marginally decreasing cost sensitivities in demand. As a result, cost damping is a model extension of the simple linear-in-cost model requiring an appropriate non-linear link function between utility and cost. The link function may...... take different forms and be represented as a non-linear-in-parameter form such as the well-known Box–Cox function. However, it could also be specified as non-linear-in-cost but linear-in-parameter forms, which are easier to estimate and improve model fit without increasing the number of parameters....... The specific contributions of the paper are as follows. Firstly, we discuss the phenomenon of cost damping in details and specifically why it occurs. Secondly, we provide a test of damping and an easy assessment of the (linear) damping rate for any variable by estimating two auxiliary linear models. This turns...
Damping MEMS Devices in Harsh Environments Using Active Thin Films
2008-06-17
natural motion of domain walls and twin boundaries to absorb the energy. Therefore, the focus of this research is to develop new microscale damping...film is placed in tension the twin boundaries move and when the tension is released the residual stresses in the film produce a restoring force to move
Directory of Open Access Journals (Sweden)
Nguyen Anh Dao
2016-11-01
Full Text Available We prove the existence and uniqueness of singular solutions (fundamental solution, very singular solution, and large solution of quasilinear parabolic equations with absorption for Dirichlet boundary condition. We also show the short time behavior of singular solutions as t tends to 0.
Directory of Open Access Journals (Sweden)
Lv Xuezhe
2010-01-01
Full Text Available Abstract The existence and uniqueness of positive solution is obtained for the singular second-order -point boundary value problem for , , , where , , are constants, and can have singularities for and/or and for . The main tool is the perturbation technique and Schauder fixed point theorem.
Institute of Scientific and Technical Information of China (English)
洪峰
2002-01-01
In this paper, existing damping theories are briefly reviewed. On the basis of the existing damping theories, a new kind of damping theory, i.e., the time-delay damping theory, is developed. In the time-delay damping theory, the damping force is considered to be directly proportional to the increment of displacement. The response analysis of an SDOF time-delay damping system is carried out, and the methods for obtaining the solution for a time-delay damping system in the time domain as well as the frequency domain are given. The comparison between results from different damping theories shows that the time-delay damping theory is both reasonable and convenient.
Directory of Open Access Journals (Sweden)
Mehmet Camurdan
1998-01-01
are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.
Damping modeling in Timoshenko beams
Banks, H. T.; Wang, Y.
1992-01-01
Theoretical and numerical results of damping model studies for composite material beams using the Timoshenko theory is presented. Based on the damping models developed for Euler-Bernoulli beams, the authors develop damping methods for both bending and shear in investigation of Timoshenko beams. A computational method for the estimation of the damping parameters is given. Experimental data with high-frequency excitation were used to test Timoshenko beam equations with different types of damping models for bending and shear in various combinations.
Damping capacity in shape memory alloy honeycomb structures
Boucher, M.-A.; Smith, C. W.; Scarpa, F.; Miller, W.; Hassan, M. R.
2010-04-01
SMA honeycombs have been recently developed by several Authors [1, 2] as innovative cellular structures with selfhealing capability following mechanical indentation, unusual deformation (negative Poisson's ratio [3]), and possible enhanced damping capacity due to the natural vibration dissipation characteristics of SMAs under pseudoelastic and superelastic regime. In this work we describe the nonlinear damping effects of novel shape memory alloy honeycomb assemblies subjected to combine mechanical sinusoidal and thermal loading. The SMA honeycomb structures made with Ni48Ti46Cu6 are designed with single and two-phase polymeric components (epoxy), to enhance the damping characteristics of the base SMA for broadband frequency vibration.
Damping and Frequency Shift of Large Amplitude Electron Plasma Waves
DEFF Research Database (Denmark)
Thomsen, Kenneth; Juul Rasmussen, Jens
1983-01-01
The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...... damping rate γ(t) shows that it increases with time within the initial phase of propagation, t≲π/ωB (ωB is the bounce frequency), whereafter it decreases and changes sign implying a regrowth of the wave. The shift in the wave frequency δω is observed to be positive for t≲π/ωB; then δω changes sign...
The Influence on Modal Parameters of Thin Cylindrical Shell under Bolt Looseness Boundary
Directory of Open Access Journals (Sweden)
Hui Li
2016-01-01
Full Text Available The influence on modal parameters of thin cylindrical shell (TCS under bolt looseness boundary is investigated. Firstly, bolt looseness boundary of the shell is divided into two types, that is, different bolt looseness numbers and different bolt looseness levels, and natural frequencies and mode shapes are calculated by finite element method to roughly master vibration characteristics of TCS under these conditions. Then, the following measurements and identification techniques are used to get precise frequency, damping, and shape results; for example, noncontact laser Doppler vibrometer and vibration shaker with excitation level being precisely controlled are used in the test system; “preexperiment” is adopted to determine the required tightening torque and verify fixed constraint boundary; the small-segment FFT processing technique is employed to accurately measure nature frequency and laser rotating scanning technique is used to get shape results with high efficiency. Finally, based on the measured results obtained by the above techniques, the influence on modal parameters of TCS under two types of bolt looseness boundaries is analyzed and discussed. It can be found that bolt looseness boundary can significantly affect frequency and damping results which might be caused by changes of nonlinear stiffness and damping and in bolt looseness positions.
On circular flows: linear stability and damping
Zillinger, Christian
2016-01-01
In this article we establish linear inviscid damping with optimal decay rates around 2D Taylor-Couette flow and similar monotone flows in an annular domain $B_{r_{2}}(0) \\setminus B_{r_{1}}(0) \\subset \\mathbb{R}^{2}$. Following recent results by Wei, Zhang and Zhao, we establish stability in weighted norms, which allow for a singularity formation at the boundary, and additional provide a description of the blow-up behavior.
Coulomb collision effects on linear Landau damping
Energy Technology Data Exchange (ETDEWEB)
Callen, J. D., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison, Wisconsin 53706-1609 (United States)
2014-05-15
Coulomb collisions at rate ν produce slightly probabilistic rather than fully deterministic charged particle trajectories in weakly collisional plasmas. Their diffusive velocity scattering effects on the response to a wave yield an effective collision rate ν{sub eff} ≫ ν and a narrow dissipative boundary layer for particles with velocities near the wave phase velocity. These dissipative effects produce temporal irreversibility for times t ≳ 1/ν{sub eff} during Landau damping of a small amplitude Langmuir wave.
Role of the basin boundary conditions in gravity wave turbulence
Deike, Luc; Gutiérrez-Matus, Pablo; Jamin, Timothée; Semin, Benoit; Aumaitre, Sébastien; Berhanu, Michael; Falcon, Eric; BONNEFOY, Félicien
2014-01-01
Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely...
Energy Technology Data Exchange (ETDEWEB)
Asai, M.; Aiba, K. [Tokyo Metropolitan Institute of Technology, Tokyo (Japan)
1995-09-01
Low-frequency Tollmien-Schlichting (T-S) waves may be thought generated as a result of high-frequency disturbance between two proximity frequency modes grown unstably in a separation shear layer causing secondary nonlinear interference to occur. This fact has been verified by a numerical simulation. A non-compression Navier-Stokes equation was used for the fundamental equation, a tertiary windward difference for the convection term, and a secondary central difference for other differential calculus. The Reynolds number was 200, and the disturbance was introduced by applying `v` variation continuously on the wall face. Non-introduction of the disturbance results in a steady flow. Disturbance frequencies of 0.15 and 0.20 were selected as disturbance frequencies from the relationship between the spatial amplification and the frequency dependency. The structure of the excited disturbance agreed with the intrinsic mode. The difference mode due to nonlinear interference grows as the basic mode was amplified. The basic mode decays sharply in the boundary layer after reattachment, while the difference mode decays slowly. Distribution of the difference mode is a distribution of viscous T-S waves, which may be converted into the intrinsic mode. 8 refs., 7 figs.
Do, K. D.
2017-02-01
Equations of motion of extensible and shearable slender beams with large translational and rotational motions under external loads in three-dimensional space are first derived in a vector form. Boundary feedback controllers are then designed to ensure that the beams are practically K∞-exponentially stable at the equilibrium. The control design, well-posedness, and stability analysis are based on two Lyapunov-type theorems developed for a class of evolution systems in Hilbert space. Numerical simulations on a slender beam immersed in sea water are included to illustrate the effectiveness of the proposed control design.
Directory of Open Access Journals (Sweden)
Baoqiang Yan
2008-10-01
Full Text Available Using the fixed point theorem in cones, this paper shows the existence of multiple positive solutions for the singular $m$-point boundary-value problem $$displaylines{ x''(t+a(tf(t,x(t,x'(t=0,quad 0
A single-ion nonlinear mechanical oscillator
Akerman, Nitzan; Glickamn, Yinnon; Dallal, Yehonatan; Keselman, Anna; Ozeri, Roee
2010-01-01
We study the steady state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser-cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate a unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the cooling laser parameters. Our observations open a way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.
Generalized Supersymetric Boundary State
1999-01-01
Following our previous paper (hep-th/9909027), we generalize a supersymmetric boundary state so that arbitrary configuration of the gauge field coupled to the boundary of the worldsheet is incorpolated. This generalized boundary state is BRST invariant and satisfy the non-linear boundary conditions with non-constant gauge field strength. This boundary state contains divergence which is identical with the loop divergence in a superstring sigma model. Hence vanishing of the beta function in the...
Climate variability and vadose zone controls on damping of transient recharge
Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.
2017-01-01
Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.
Predictive Dynamic Stimulation of Structures with Non-Smooth Nonlinearities
2005-06-30
bang- bang, dead band, and Duffing type nonlinearity. Nonlinear damping has been considered in the form of Coulomb damping, velocity-squared damping...or 2,000 DOF reduced to 5 or 10 DOF) of simple oscillator systems capture the free oscillation decay and the steady state response to harmonic...smooth or non-smooth), the linear based reduced model tends to overestimate the change in oscillation frequency due to the nonlinearity. Specifically
Institute of Scientific and Technical Information of China (English)
莫嘉琪
2006-01-01
A class of nonlinear nonlocal singularly perturbed Robin initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained; secondly, by using the stretched variable, the composing expansion method and the expanding theory of power series, the initial layer is constructed; and finally,by using the theory of differential inequalities the asymptotic behavior of solutions for initial boundary value problems is studied, and including some relational inequalities the existence and uniqueness of solutions for the original problem and the uniformly valid asymptotic estimation are discussed.
Perturbation and harmonic balance methods for nonlinear panel flutter.
Kuo, C.-C.; Morino, L.; Dugundji, J.
1972-01-01
A systematic way of applying both perturbation methods and harmonic balance methods to nonlinear panel flutter problems is developed here. Results obtained by both these methods for two-dimensional simply supported and three-dimensional clamped-clamped plates with six modes agree well with those obtained by the straightforward direct integration method, yet require less computer time and provide better insight into the solutions. Effects of viscoelastic structural damping on the flutter stability boundary are generally found to be destabilizing and the postflutter behavior becomes more explosive. The methods developed here may be of interest in related vibration problems.
Active Damping Using Distributed Anisotropic Actuators
Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.
2010-01-01
A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of
Institute of Scientific and Technical Information of China (English)
徐龙封
2004-01-01
In this paper the nonnegative classical solutions of a parabolic system with nonlinear boundary conditions are discussed. The existence and uniqueness of a nonnegative classical solution are proved. And some sufficient conditions to ensure the global existence and nonexistence of nonnegative classical solution to this problem are given.
2n阶非线性微分方程的第二边值问题%Second Boundary Value Problems for 2n-th Order Nonlinear Differential Equations
Institute of Scientific and Technical Information of China (English)
吕显瑞; 徐庆; 高广学
2002-01-01
Sufficient conditions for the existence and uniqueness of second boundary value problems of two kinds of even order nonlinear differential equations are obtained. The proofs are based on the lemma on bilinear form, developed by A.C.Lazer, Schauder fixed point theorem and the Leray-Schauder degree theory, respectively.
Institute of Scientific and Technical Information of China (English)
彭丽
2002-01-01
The finite element solution of two points boundary value problem for nonlinear ordinary differential equation is studied by using the collocation-Galerkin method.The Jacobi points are introduced to establish high orders of accuracy for the approximate solution.Numerical results are presented for a sample problem.
Radiation damping on cryoprobes.
Shishmarev, Dmitry; Otting, Gottfried
2011-12-01
Radiation damping on 600 and 800 MHz cryoprobes was investigated. The phase angle β between a vector 90° phase shifted to the precessing magnetization and the rf field induced in the coil was found to depend markedly on whether an FID was being acquired or not. The magnitude of the radiation damping field was sufficiently strong to restore 95% of the equilibrium water magnetization of a 90% H2O sample in a 5 mm sample tube within about 5 ms following a 165° pulse. This can be exploited in water flip-back versions of NOESY and TOCSY experiments of proteins, but care must be taken to limit the effect of the radiation damping field from the water on the Ha protons. Long water-selective pulses can be applied only following corrections. We developed a program for correcting pulse shapes if β is non-zero. The WATERGATE scheme is shown to be insensitive to imperfections introduced by radiation damping.
Study on damping properties of magnetorheological damper
Institute of Scientific and Technical Information of China (English)
ZHOU Yu-feng; CHEN Hua-ling
2006-01-01
To research the properties of a new kind of smart controllable MR (magnetorheological) fluid,in this paper,the rheological models are discussed.On the basis of analyzing the structural forms of MR dampers,an improved structure of the MR damper is introduced;the properties of the novel MR damper are then tested.The experimental resuits reveal that the Herschel-Bulkley model predicts the force-velocity well;the damping properties of the ameliorated structure of the MR damper have improved;when the excitation is a trigonal signal,the MR damper reveals a thinning effect at high velocity;and when the excitation is a sinusoidal signal,the MR damper reveals a nonlinear hysteretic property between the damping force and relative velocity.Finally,the main unsolved problems have been put forward.
Directory of Open Access Journals (Sweden)
E. Amata
2006-01-01
Full Text Available We study plasma transport at a thin magnetopause (MP, described hereafter as a thin current sheet (TCS, observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF model in the magnetosheath (MSH up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a ~90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the "incident" MSH plasma, the second one mostly parallel to B. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to B, with MA=3 and β>10 (peak value 23. The magnetic field clock angle rotates by 70° across the MP. Ex is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a ~300 V electric potential jump across the TCS. The E×B velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (<350 eV, being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006.
Proceedings of Damping , Held in San Diego, California on 13 - 15 February 1991. Volume 3
1991-08-01
and Fluids The Vibration Damping Effect of an Electrorheological Fluid GAB Stephen A. Austin Modelling of Nonlinear Dilatation Response of Fluids...Control of a Flexible Planar Truss Using A Reaction Mass GBC Actuator Capt. Steven G. Webb and LL David R. Lee SESSION GC - Damping Indentification A
Numerical modeling of damping capacity of Zn-Al alloys with fully lamellar microstructures
Institute of Scientific and Technical Information of China (English)
WANG Jin-cheng; ZHANG Zhong-ming; YANG Gen-cang
2005-01-01
The damping behaviors of Zn-Al alloys with fully lamellar microstructures were simulated with the cell method. The influences of the grain boundary condition, the strain amplitude, the number of the lamellae in the grain (N) and the content ratio of Zn and Al in Zn-Al alloys on the damping capacity were investigated. The results indicate that the grain boundary condition has great influence on the damping capacity of Zn-Al alloys, and also affects the relationship between the damping capacity and the number of lamellae (N). The variation of damping capacity with the strain amplitude is increasing exponentially with the strain amplitude and the damping capacity increases with the increasing of content of Zn.
Nonlinear dynamics by mode superposition
Energy Technology Data Exchange (ETDEWEB)
Nickell, R.E.
1976-01-01
A mode superposition technique for approximately solving nonlinear initial-boundary-value problems of structural dynamics is discussed, and results for examples involving large deformation are compared to those obtained with implicit direct integration methods such as the Newmark generalized acceleration and Houbolt backward-difference operators. The initial natural frequencies and mode shapes are found by inverse power iteration with the trial vectors for successively higher modes being swept by Gram-Schmidt orthonormalization at each iteration. The subsequent modal spectrum for nonlinear states is based upon the tangent stiffness of the structure and is calculated by a subspace iteration procedure that involves matrix multiplication only, using the most recently computed spectrum as an initial estimate. Then, a precise time integration algorithm that has no artificial damping or phase velocity error for linear problems is applied to the uncoupled modal equations of motion. Squared-frequency extrapolation is examined for nonlinear problems as a means by which these qualities of accuracy and precision can be maintained when the state of the system (and, thus, the modal spectrum) is changing rapidly. The results indicate that a number of important advantages accrue to nonlinear mode superposition: (a) there is no significant difference in total solution time between mode superposition and implicit direct integration analyses for problems having narrow matric half-bandwidth (in fact, as bandwidth increases, mode superposition becomes more economical), (b) solution accuracy is under better control since the analyst has ready access to modal participation factors and the ratios of time step size to modal period, and (c) physical understanding of nonlinear dynamic response is improved since the analyst is able to observe the changes in the modal spectrum as deformation proceeds.
Landau damping dynamic aperture and octupole in LHC
Gareyte, Jacques; Ruggiero, F
1997-01-01
Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...
Linear Inviscid Damping for Monotone Shear Flows
Zillinger, Christian
2014-01-01
In this article we prove linear stability, inviscid damping and scattering of the 2D Euler equations around regular, strictly monotone shear flows $(U(y),0)$ in a periodic channel under Sobolev perturbations. We treat the settings of an infinite channel, $\\mathbb{T} \\times \\mathbb{R}$, as well as a finite channel, $\\mathbb{T} \\times [0,1]$, with impermeable boundary. We first prove inviscid damping with optimal algebraic rates for strictly monotone shear flows under the assumption of controlling the regularity of the scattered vorticity. Subsequently, we establish linear stability of the scattering equation in Sobolev spaces under perturbations which are of not too large wave-length with respect to $x$, depending on $U''$.
Damping behavior of synthetic graphite beams
Directory of Open Access Journals (Sweden)
Luiz Cláudio Pardini
2006-06-01
Full Text Available The main objective of this work was to obtain the damping factor (xi as well as the elasticity modulus (E of two kinds of synthetic graphite (HLM and ATJ, using the modal analysis technique. Prismatic beams of square section (~ 11 x 11 mm and length over thickness ratio (L/t of about 22.7 were tested in the free - free boundary condition. The first four modes of vibration were taken into account in the non-destructive evaluation of the materials. In addition, numerical simulations were also carried out in this investigation. The agreement between the theoretical and the experimental results was quite good. The average values of E and xi for the HLM graphite were 20% and 90% higher, respectively, than those presented by the ATJ graphite, indicating that the HLM graphite has, proportionally, more damping mechanisms than the ATJ graphite.
Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere
Wang, Chengrui; Rankin, Robert; Zong, Qiugang
2015-04-01
Analysis of Cluster spacecraft data shows that intense ultralow frequency (ULF) waves in the inner magnetosphere can be excited by the impact of interplanetary shocks and solar wind dynamic pressure variations. The observations reveal that such waves can be damped away rapidly in a few tens of minutes. Here we examine mechanisms of ULF wave damping for two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001. The mechanisms considered are ionospheric joule heating, Landau damping, and waveguide energy propagation. It is shown that Landau damping provides the dominant ULF wave damping for the shock events of interest. It is further demonstrated that damping is caused by drift-bounce resonance with ions in the energy range of a few keV. Landau damping is shown to be more effective in the plasmasphere boundary layer due to the higher proportion of Landau resonant ions that exist in that region.
Damping of MHD turbulence in partially ionized plasma: implications for cosmic ray propagation
Xu, Siyao; Lazarian, A
2015-01-01
We study the damping from neutral-ion collisions of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in partially ionized medium. We start from the linear analysis of MHD waves applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and cutoff boundary of linear MHD waves is investigated. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and solar chromosphere. As a significant astrophysical utility, we introduce damping effects to propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
Lian, Yeda; Zhang, Xunan; Sheldon, Cherry
2007-06-01
Based on energy dissipation and structural control principle, a new structural configuration, called the mega-sub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
Institute of Scientific and Technical Information of China (English)
Lian Yeda; Zhang Xunan; Sheldon Cherry
2007-01-01
Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
Measurement of Resonance driving terms in the ATF Damping Ring
Tomás, R; Kuroda, S; Naito, T; Okugi, T; Urakawa, J; Zimmermann, F
2008-01-01
The measurement of resonance driving terms in the Damping Ring of the Accelerator Test Facility in KEK could help finding possible machine imperfections and even to optimize single particle stability through the minimization of non-linearities. The first experimental attempts of this enterprise are reported in this note.
Institute of Scientific and Technical Information of China (English)
林洪文; 马强; 唐文彦; 王军; 张晓琳
2014-01-01
为减小传统扭摆振动数学模型在大尺寸板状物体转动惯量测量中的误差，建立扭摆振动一般形式的非线性数学模型，利用弱非线性条件下平均值方法将其线性化获得扭摆振动线性化方程。导出转动惯量新的数学表达式并计算转动惯量，其结果的重复性误差减小、精度提高，实现转动惯量的精确测量。%Here,a general nonlinear mathematical model of torsional pendulum vibration was built to reduce the error of the traditional torsional pendulum vibration model in measuring moment of inertia for large scaled plate-like objects.The average value method under a weak nonlinear damping condition was adopted to linearize the nonlinear model to get a linear equation of torsional pendulum vibration.The new mathematical expression for the moment of inertia to be measured was deduced and calculated.The results obtained with the new model showed higher repeatability and accuracy in measurement of moment of inertia of large scaled plate-liked objects.
Steady State Solution for the Weakly Damped Forced Korteweg—de Vries Equation
Institute of Scientific and Technical Information of China (English)
BolingGUO; GuoguangLIN
1998-01-01
The existence and uniqueness of steady state solution for the weakly damped forced KdV equation with a periodic boundary value problems are proved.It is obtained that the every solution of the weakly damped forced KdV equations converges to the steady state soluton as time t→∞。
Magnetically Damped Furnace (MDF)
1998-01-01
The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.
Failure Mechanism of Laminated Damping Steel Sheet during Tensile-Shearing
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The tensile-shear failure zone of the laminated damping steel sheet was investigated by scanning electron microscopyand X-ray photoelectron spectroscopy. It is found that there exists cohesive failure in polymer sandwich and sub-boundary failure between the steel sheet and the polymer. The sub-boundary layer is dominantly polymer material.The tensile-shear failure of the laminated damping steel sheet is a process during which the crazes form, grow upand merge into cracks.
Stabilizing and destabilizing perturbations of PT-symmetric indefinitely damped systems.
Kirillov, O N
2013-04-28
Eigenvalues of a potential dynamical system with damping forces that are described by an indefinite real symmetric matrix can behave as those of a Hamiltonian system when gain and loss are in a perfect balance. This happens when the indefinitely damped system obeys parity-time ( ) symmetry. How do pure imaginary eigenvalues of a stable -symmetric indefinitely damped system behave when variation in the damping and potential forces destroys the symmetry? We establish that it is essentially the tangent cone to the stability domain at the exceptional point corresponding to the Whitney umbrella singularity on the stability boundary that manages transfer of instability between modes.
Quantifying acoustic damping using flame chemiluminescence
Boujo, E.; Denisov, A.; Schuermans, B.; Noiray, N.
2016-12-01
Thermoacoustic instabilities in gas turbines and aeroengine combustors falls within the category of complex systems. They can be described phenomenologically using nonlinear stochastic differential equations, which constitute the grounds for output-only model-based system identification. It has been shown recently that one can extract the governing parameters of the instabilities, namely the linear growth rate and the nonlinear component of the thermoacoustic feedback, using dynamic pressure time series only. This is highly relevant for practical systems, which cannot be actively controlled due to a lack of cost-effective actuators. The thermoacoustic stability is given by the linear growth rate, which results from the combination of the acoustic damping and the coherent feedback from the flame. In this paper, it is shown that it is possible to quantify the acoustic damping of the system, and thus to separate its contribution to the linear growth rate from the one of the flame. This is achieved by post-processing in a simple way simultaneously acquired chemiluminescence and acoustic pressure data. It provides an additional approach to further unravel from observed time series the key mechanisms governing the system dynamics. This straightforward method is illustrated here using experimental data from a combustion chamber operated at several linearly stable and unstable operating conditions.
Exact linearization of the radiation-damped spin system
Rourke; Augustine
2000-02-21
Nonlinear evolution of the Landau-Lifshitz type can be exactly linearized. Special cases include the radiation-damped spin system and the superradiant system in the semiclassical regime, in the presence of time-varying driving fields. For these, the resultant linear system is simply that of a spin 1 / 2 particle, with the radiation damping rate, or superradiant characteristic time, manifested as an imaginary addition to the spin's resonance frequency. Consequently, methods from inverse scattering theory can be used to design driving fields. The behavior of these systems under stochastic excitation can be determined exactly.
Study on damping effect of damping ditch by using LS-DYNA%基于LS-DYNA的减震沟减震效应研究
Institute of Scientific and Technical Information of China (English)
张袁娟; 王公忠
2015-01-01
为了研究减震沟的减震作用，运用大型动力分析软件LS-DYNA，基于具体工况分别对有减震沟和无减震沟的露天矿台阶爆破进行数值模拟。结果表明，减震沟距离爆源越近，减震效果越好，减震率最高可达77%，为减震沟的减震效应研究和类似工况提供了理论支持。%In order to study the damping effect of damping ditch,the explicit nonlinear dynamic analysis finite element program LS-DYNA is used based on the specific conditions. The two different numerical models with damping ditch and without damping ditch are made respectively to study the damping effect of open-pit blasting. Numerical simulation results show that the nearer the damping ditch from the explosion source is,the better the damping effect will be,and the biggest decreasing amplitude ratio can reach to about 77%,it provides the theoretical support for the research of damping effect of damping ditch and similar conditions.
Bullock, Jack C.; Kelly, Benjamin E.
1980-01-01
A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.
Gilbert Damping in Noncollinear Ferromagnets
Yuan, Zhe; Hals, Kjetil M.D.; Liu, Yi; Starikov, Anton A.; Brataas, Arne; Kelly, Paul J.
2014-01-01
The precession and damping of a collinear magnetization displaced from its equilibrium are well described by the Landau-Lifshitz-Gilbert equation. The theoretical and experimental complexity of noncollinear magnetizations is such that it is not known how the damping is modified by the noncollinearit
Oscillations with three damping effects
Energy Technology Data Exchange (ETDEWEB)
Wang Xiaojun [Department of Physics, Georgia Southern University, Statesboro, GA (United States)]. E-mail: xwang@gasou.edu; Schmitt, Chris; Payne, Marvin [Department of Physics, Georgia Southern University, Statesboro, GA (United States)
2002-03-01
Experiments on oscillatory motion are described with three different damping effects. The first experiment is a physical pendulum whose damping mechanism is due to sliding friction; the second is magnetic resistance due to eddy currents; and the third experiment involves a pendulum setup where air resistance is the dominant factor. These three damping mechanisms yield constant ({nu}-bar/ vertical bar {nu}-bar vertical bar), linear, and quadratic resistances in velocity respectively. Approximation methods are described for treating the three damping effects and a general solution is derived for the damping with a very general velocity dependence. A sonic rangefinder is used to record the oscillatory motions of the pendulums. The experimental measurements and theoretical calculations are in a good agreement. (author)
Magnetization damping in noncollinear spin valves with antiferromagnetic interlayer couplings
Chiba, Takahiro; Bauer, Gerrit E. W.; Takahashi, Saburo
2015-08-01
We study the magnetic damping in the simplest of synthetic antiferromagnets, i.e., antiferromagnetically exchange-coupled spin valves, in the presence of applied magnetic fields that enforce noncolliear magnetic configurations. We formulate the dynamic exchange of spin currents in a noncollinear texture based on the spin-diffusion theory with quantum mechanical boundary conditions at the ferrromagnet/normal-metal interfaces and derive the Landau-Lifshitz-Gilbert equations coupled by the interlayer static and dynamic exchange interactions. We predict noncollinearity-induced additional damping that is modulated by an applied magnetic field. We compare theoretical results with published experiments.
Damping Bearings In High-Speed Turbomachines
Von Pragenau, George L.
1994-01-01
Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).
Liu, Yi; Sanchez, Alberto; Zogg, Markus; Ermanni, Paolo
2010-04-01
Dynamic loadings in automotive structures may lead to reduction of driving comfort and even to failure of the components. Damping treatments are applied in order to attenuate the vibrations and improve the long term fatigue behavior of the structures. This experimental study is targeting applications in floor panels that are mounted to the loadcarrying primary structure of the vehicle. The objective is to reach outstanding damping performance considering the stringent weight and cost requirement in the automotive industry. An experimental setup has been developed and validated for the determination of the damping properties of structural specimens also considering interface damping effects. This contribution is structured in three main parts: test rig design, experimental results and discussion. Reliable and easy-to-use devices for the characterization of the damping properties of specimens between 200×40 mm2 and 400×400 mm2 are not available "on the shelf". In this context, we present a flexible experimental set-up which has been realized to (1) support the development of novel damping solutions for multi-functional composite structures; (2) characterize the loss-factor of the different damping concepts, including boundary effects. A variety of novel passive and active damping treatments have been investigated including viscoelastic, coulomb, magnetorheological (MR), particle, magnetic and eddy current damping. The particle, interface as well as active damping systems show promising performance in comparison to the classical viscoelastic treatments.
Institute of Scientific and Technical Information of China (English)
杜宁
2001-01-01
Mixed finite element method is used to treat a kind of second-order nonlinear hyperbolic equations with absorbing boundary conditions. explicit-intime procedures are formulated and analyzed. Optimal L2-in-space error estimates are derived.
Directory of Open Access Journals (Sweden)
Ningning Duan
2015-01-01
Full Text Available Dimensionless nonlinear dynamical equations of a tilted support spring nonlinear packaging system with critical components were obtained under a rectangular pulse. To evaluate the damage characteristics of shocks to packaged products with critical components, a concept of the damage boundary surface was presented and applied to a titled support spring system, with the dimensionless critical acceleration of the system, the dimensionless critical velocity, and the frequency parameter ratio of the system taken as the three basic parameters. Based on the numerical results, the effects of the frequency parameter ratio, the mass ratio, the dimensionless peak pulse acceleration, the angle of the system, and the damping ratio on the damage boundary surface of critical components were discussed. It was demonstrated that with the increase of the frequency parameter ratio, the decrease of the angle, and/or the increase of the mass ratio, the safety zone of critical components can be broadened, and increasing the dimensionless peak pulse acceleration or the damping ratio may lead to a decrease of the damage zone for critical components. The results may lead to a thorough understanding of the design principles for the tilted support spring nonlinear system.
Institute of Scientific and Technical Information of China (English)
Hua CHEN; Gongwei LIU
2013-01-01
In this paper,we consider the nonlinearly damped semi-linear wave equation associated with initial and Dirichlet boundary conditions.We prove the existence of a local weak solution and introduce a family of potential wells and discuss the invariants and vacuum isolating behavior of solutions.Furthermore,we prove the global existence of solutions in both cases which are polynomial and exponential decay in the energy space respectively,and the asymptotic behavior of solutions for the cases of potential well family with 0 ＜ E(0) ＜ d.At last we show that the energy will grow up as an exponential function as time goes to infinity,provided the initial data is large enough or E(0) ＜ 0.
How to include the nonlinear Cox-Voinov law into sloshing dynamics? A weakly non linear approach
Viola, Francesco; Brun, Pierre-Thomas; Gallaire, Francois
2015-11-01
Fluid sloshing in a glass is a common example of damped oscillator, with the frequency derived in the potential flow limit. The damping rate is then evaluated considering the viscous dissipation at the wall, in the bulk and at the free surface, respectively. This classical theoretical result however differs from what is often seen in the laboratory when the attenuation of gravity waves happens in a small basin. In particular, the damping rate is found to increase as the sloshing amplitude decreases. Here we show that this enhanced damping is due to capillary forces at the contact line between the liquid and the container. The angle θd made by the liquid interface with the container walls (contact angle) is modeled as a non-linear function of the interface speed U, (Cox-Voinov law θd3 α U). We propose a multiple scale expansion scheme to consistently derive an amplitude equation using the Cox-Voinov law as boundary condition at the moving interface. The zero order problem reduces to the classical static meniscus problem, while the first order problem yields an eigenvalue problem defining the viscous sloshing modes. At an higher order, a compatibility condition has to be enforced, yielding an amplitude equation. Solving the later, we recover the expected increase of the damping rate as the sloshing amplitude decreases, an effect thus attributed to capillary effects.