SU-E-J-31: Biodynamic Imaging of Cancer Tissue and Response to Chemotherapy
Energy Technology Data Exchange (ETDEWEB)
Nolte, D; Turek, J; Childress, M; An, R; Merrill, D [Purdue University, West Lafayette, IN (United States); Matei, D [Indiana University School of Medicine, Indianapolis, IN (United States)
2014-06-01
Purpose: To measure intracellular motions inside three-dimensional living cancer tissue samples to establish a novel set of biodynamic biomarkers that assess tissue proliferative activity and sensitivity or resistance to chemotherapy. Methods: Biodynamic imaging (BDI) uses digital holography with low-coherence low-intensity light illumination to construct 3D holograms from depths up to a millimeter deep inside cancer tissue models that include multicellular tumor spheroids and ex vivo cancer biopsies from canine non-Hodgkins lymphoma and epithelial ovarian cancer (EOC) mouse explants. Intracellular motions modulate the holographic intensity with frequencies related to the Doppler effect caused by the motions of a wide variety of intracellular components. These motions are affected by applied therapeutic agents, and BDI produces unique fingerprints of the action of specific drugs on the motions in specific cell types. In this study, chemotherapeutic agents (doxorubicin for canine lymphoma and oxoplatin for ovarian) are applied to the living tissue models and monitored over 10 hours by BDI. Results: Multicellular spheroids and patient biopsies are categorized as either sensitive or insensitive to applied therapeutics depending on the intracellular Doppler signatures of chemotherapy response. For both lymphoma and EOC there is strong specificity to the two types of sensitivities, with sensitive cell lines and biopsies exhibiting a global cessation of proliferation and strong suppression of metabolic activity, while insensitive cell lines and biopsies show moderate activation of Doppler frequencies associated with membrane processes and possible membrane trafficking. Conclusion: This work supports the hypothesis that biodynamic biomarkers from three-dimensional living tumor tissue, that includes tissue heterogeneity and measured within 24 hours of surgery, is predictive of near-term patient response to therapy. Future work will correlate biodynamic biomarkers with
Directory of Open Access Journals (Sweden)
Z. Zong
2000-01-01
Full Text Available Biodynamic response of shipboard crew to underwater shock is of a major concern to navies. An underwater shock can produce very high accelerations, resulting in severe human injuries aboard a battleship. Protection of human bodies from underwater shock is implemented by installing onboard isolators. In this paper, the optimal underwater shock isolation to protect human bodies is studied. A simple shock-structure-isolator-human interaction model is first constructed. The model incorporates the effect of fluid-structure interaction, biodynamic response of human body, isolator influence. Based on this model, the optimum shock isolation is then formulated. The performance index and restriction are defined. Thirdly, GA (genetic algorithm is employed to solve the formulated optimization problem. GA is a powerful evolutionary optimization scheme suitable for large-scale and multi-variable optimization problems that are otherwise hard to be solved by conventional methods. A brief introduction to GA is given in the paper. Finally, the method is applied to an example problem and the limiting performance characteristic is obtained.
Comparison of Biodynamic Responses in Standing and Seated Human Bodies
MATSUMOTO, Y.; GRIFFIN, M. J.
2000-12-01
The dynamic responses of the human body in a standing position and in a sitting position have been compared. The apparent mass and transmissibilities to the head, six locations along the spine, and the pelvis were measured with eight male subjects exposed to vertical whole-body vibration. In both postures, the principal resonance in the apparent mass occurred in the range 5-6 Hz, with slightly higher frequencies and lower apparent mass in the standing posture. There was greater transmission of vertical vibration to the pelvis and the lower spine and greater relative motion within the lower spine in the standing posture than in the sitting posture at the principal resonance and at higher frequencies. Transmissibilities from the supporting surface (floor or seat) to the thoracic region had similar magnitudes for both standing and sitting subjects. The lumbar spine has less lordosis and may be more compressed and less flexible in the sitting posture than in the standing posture. This may have reduced the relative motions between lumbar vertebrae and both the supporting vibrating surface and the other vertebrae in the sitting posture. The characteristics of the vibration transmitted to the pelvis may have differed in the two postures due to different transmission paths. Increased forward rotation of the pelvis in the standing posture may have caused the differences in responses of the pelvis and the lower spine that were observed between the two postures.
Soil response to biodynamic farming practices in estevia -Stevia Rebaudiana- (Extremadura, Spain)
Labrador, Juana; Colmenares, Ricardo; Sánchez, Eduardo; Creus, Juan; García, Nieves; Blázquez, Jaime; Moreno, Marta M.
2014-05-01
The first results of the evolution of an organic-biodynamic cultivation of stevia (Stevia rebaudiana) in Extremadura (Spain) are shown here. The organic-biodynamic approach permits experimentally for a more holistic view of the crop development process what means the understanding and quantification of its evolution at different scales. The research methodology applied includes not only quantitative individual parameters of the crop development but also global parameters which make a contribution of very relevant information concerning unbalances between growth and differentiation processes, as well as other aspects linked to the product intrinsic quality. The crop cultivation has been done over a plot of 2.5 has, on acid soils (pH 5.18) and very poor organic matter content (0.5 %). On this first year of cultivation two cuts were given to the plant with an average total yield of 4,500 kg/ha without any supply of solid organic matter, only with the application of the biodynamic preparations. So far results regarding soil improvement and crop productivity, taking into consideration the practices used, let us introduce this pioneer crop in Extremadura, not only as an alternative crop to the current tobacco crop in this area, but also as a development resource for the rural environment of this region. Key words: Agroecology, Organic Biodynamic Agriculture, Stevia Rebaudiana
Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers
2017-01-01
Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition
Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers.
Liu, Yun; Lehn, Jean-Marie; Hirsch, Anna K H
2017-02-21
Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular
Mandapuram, Santosh; Rakheja, Subhash; Marcotte, Pierre; Boileau, Paul-Émile
2011-08-01
The apparent mass and seat-to-head-transmissibility response functions of the seated human body were investigated under exposures to fore-aft ( x), vertical ( z), and combined fore-aft and vertical ( x and z) axis whole-body vibration. The coupling effects of dual-axis vibration were investigated using two different frequency response function estimators based upon the cross- and auto-spectral densities of the response and excitation signals, denoted as H1 and Hv estimators, respectively. The experiments were performed to measure the biodynamic responses to single and uncorrelated dual-axis vibration, and to study the effects of hands support, back support and vibration magnitude on the body interactions with the seatpan and the backrest, characterized in terms of apparent masses and the vibration transmitted to the head. The data were acquired with 9 subjects exposed to two different magnitudes of vibration applied along the individual x- and z-axis (0.25 and 0.4 m/s 2 rms), and along both the axis (0.28 and 0.4 m/s 2 rms along each axis) in the 0.5-20 Hz frequency range. The two methods resulted in identical single-axis responses but considerably different dual-axis responses. The dual-axis responses derived from the Hv estimator revealed notable effects of dual-axis vibration, as they comprised both the direct and cross-axis responses observed under single axis vibration. Such effect, termed as the coupling effect, was not evident in the dual-axis responses derived using the commonly used H1 estimator. The results also revealed significant effects of hands and back support conditions on the coupling effects and the measured responses. The back support constrained the upper body movements and thus showed relatively weaker coupling compared to that observed in the responses without the back support. The effect of hand support was also pronounced under the fore-aft vibration. The results suggest that a better understanding of the seated human body responses to
Biodynamic Response to Windblast.
1975-07-01
interiour. Liamplitude do ce wouvement do Ia jambe vors Il’xtnieiur a At& rondu possible par Is dislocation lombu- sacro -iliaque ot Ia jambe gaucho qui...applied to the diver’s body art distributed to iji ne citenilt, and atter 40 ft./sec. (0 ft. immession) they appear more all, a suction dittribulion
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...
Biodynamics of deformable human body motion
Strauss, A. M.; Huston, R. L.
1976-01-01
The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.
Nolte, David D.
2016-03-01
Biodynamic imaging is an emerging 3D optical imaging technology that probes up to 1 mm deep inside three-dimensional living tissue using short-coherence dynamic light scattering to measure the intracellular motions of cells inside their natural microenvironments. Biodynamic imaging is label-free and non-invasive. The information content of biodynamic imaging is captured through tissue dynamics spectroscopy that displays the changes in the Doppler signatures from intracellular constituents in response to applied compounds. The affected dynamic intracellular mechanisms include organelle transport, membrane undulations, cytoskeletal restructuring, strain at cellular adhesions, cytokinesis, mitosis, exo- and endo-cytosis among others. The development of 3D high-content assays such as biodynamic profiling can become a critical new tool for assessing efficacy of drugs and the suitability of specific types of tissue growth for drug discovery and development. The use of biodynamic profiling to predict clinical outcome of living biopsies to cancer therapeutics can be developed into a phenotypic companion diagnostic, as well as a new tool for therapy selection in personalized medicine. This invited talk will present an overview of the optical, physical and physiological processes involved in biodynamic imaging. Several different biodynamic imaging modalities include motility contrast imaging (MCI), tissue-dynamics spectroscopy (TDS) and tissue-dynamics imaging (TDI). A wide range of potential applications will be described that include process monitoring for 3D tissue culture, drug discovery and development, cancer therapy selection, embryo assessment for in-vitro fertilization and artificial reproductive technologies, among others.
Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management.
Döring, Johanna; Frisch, Matthias; Tittmann, Susanne; Stoll, Manfred; Kauer, Randolf
2015-01-01
The main objective of this study was to determine growth, yield and fruit quality of grapevines under organic and biodynamic management in relation to integrated viticultural practices. Furthermore, the mechanisms for the observed changes in growth, yield and fruit quality were investigated by determining nutrient status, physiological performance of the plants and disease incidence on bunches in three consecutive growing seasons. A field trial (Vitis vinifera L. cv. Riesling) was set up at Hochschule Geisenheim University, Germany. The integrated treatment was managed according to the code of good practice. Organic and biodynamic plots were managed according to Regulation (EC) No 834/2007 and Regulation (EC) No 889/2008 and according to ECOVIN- and Demeter-Standards, respectively. The growth and yield of the grapevines differed strongly among the different management systems, whereas fruit quality was not affected by the management system. The organic and the biodynamic treatments showed significantly lower growth and yield in comparison to the integrated treatment. The physiological performance was significantly lower in the organic and the biodynamic systems, which may account for differences in growth and cluster weight and might therefore induce lower yields of the respective treatments. Soil management and fertilization strategy could be responsible factors for these changes. Yields of the organic and the biodynamic treatments partially decreased due to higher disease incidence of downy mildew. The organic and the biodynamic plant protection strategies that exclude the use of synthetic fungicides are likely to induce higher disease incidence and might partially account for differences in the nutrient status of vines under organic and biodynamic management. Use of the biodynamic preparations had little influence on vine growth and yield. Due to the investigation of important parameters that induce changes especially in growth and yield of grapevines under
Intrinsic nonlinear response of surface plasmon polaritons
Im, Song-Jin; Kim, Gum-Hyok
2015-01-01
We offer a model to describe the intrinsic nonlinear response of surface plasmon polaritons (SPPs). Relation of the complex nonlinear coefficient of SPPs to the third-order nonlinear susceptibility of the metal is provided. As reported in a recent study, gold is highly lossy and simultaneously highly nonlinear due to interband absorption and interband thermo-modulation at a wavelength shorter than 700 nm. The effect of the high loss of the metal on the SPP nonlinear propagation is taken into account in our model. With the model we show difference in sign of real and imaginary parts between the nonlinear propagation coefficient and the nonlinear susceptibility of component material for the first time to our knowledge. Our model could have practical importance in studying plasmonic devices utilizing the nonlinear phase modulation and the nonlinear absorption of SPPs. For example, it allows one to extract the complex nonlinear susceptibility of gold through a measurement of SPP nonlinear propagation at the visib...
An overview of the biodynamic wine sector
Directory of Open Access Journals (Sweden)
Castellini A
2017-02-01
Full Text Available Alessandra Castellini,1 Christine Mauracher,2 Stefania Troiano3 1Department of Agricultural Sciences, Alma Mater Studiorum, University of Bologna, Bologna, 2Department of Management, University Ca’ Foscari of Venice, Venice, 3Department of Economics and Statistics, University of Udine, Udine, Italy Abstract: The wine industry is currently shifting toward more sustainable production practices. Due to the growing globalized wine market and the increasing environmental impacts, producers have begun to pay more attention to organic and biodynamic products. Using a systematic literature review, this review aims to investigate the biodynamic production system in the viticulture and winemaking process. In particular, the review examines, 1 the biodynamic practice and its main characteristics including the certification system; 2 the biodynamic market characteristics and the recent trends, the production costs and the marketing strategies adopted by wineries; 3 the demand attributes and wine consumers’ perception on sustainable practices and “green products” such as biodynamic products; and 4 the association between the biodynamic wine chain and the environment. The review highlights the research progress in this field and reflects on the potentiality and needs of the biodynamic viticulture and wine sector. The literature clearly indicates the lack of knowledge regarding, mainly, the biodynamic farming concept and the label. Moreover, while it is clear that consumers are willing to spend more for an organic wine than for a conventional one, there are no data about the willingness to pay for biodynamic wines. Finally, the review concludes with implications and suggestions for further research. Keywords: biodynamic, viticulture, wine, environment, market analysis, consumer
Metamaterials with tailored nonlinear optical response.
Husu, Hannu; Siikanen, Roope; Mäkitalo, Jouni; Lehtolahti, Joonas; Laukkanen, Janne; Kuittinen, Markku; Kauranen, Martti
2012-02-08
We demonstrate that the second-order nonlinear optical response of noncentrosymmetric metal nanoparticles (metamolecules) can be efficiently controlled by their mutual ordering in an array. Two samples with minor change in ordering have nonlinear responses differing by a factor of up to 50. The results arise from polarization-dependent plasmonic resonances modified by long-range coupling associated with metamolecular ordering. The approach opens new ways for tailoring the nonlinear responses of metamaterials and their tensorial properties.
The Effective AC Response of Nonlinear Composites
Institute of Scientific and Technical Information of China (English)
WEI En-Bo; GU Guo-Qing
2001-01-01
A perturbative approach is used to study the AC response of nonlinear composite media, which obey a current-field relation of the form J = σ E + χ|E|2 E with components having nonlinear response at finite frequencies. For a sinusoidal applied field, we extend the local potential in terms of sinusoidal components at fundamental frequency and high-order harmonic frequencies to treat the nonlinear composites. For nonlinear composite media vith a low concentrations of spherical inclusions, we give the formulae of the nonlinear effective AC susceptibility χ*3ω at the third harmonic frequency.
Structural optimization for nonlinear dynamic response.
Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S
2015-09-28
Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.
Directory of Open Access Journals (Sweden)
Vladimir Ivancevic
2005-01-01
oscillatory, neurodynamical system, resembling the associative interaction of excitatory granule cells and inhibitory Purkinje cells. On the cortical level, a topological “hyper-joystick” command space is formulated with a fuzzy-logic feedback-control map defined on it, resembling the regulation of locomotor conditioned reflexes. Finally, both the cerebellar and the cortical control systems are extended to provide translational force control for moving 6-degree-of-freedom chains of inverse kinematics.
Structural optimization for nonlinear dynamic response
DEFF Research Database (Denmark)
Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.
2015-01-01
condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped–clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...... by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance...
Effective ac response in weakly nonlinear composites
Energy Technology Data Exchange (ETDEWEB)
Wei Enbo [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Yang Zidong [College of Power Engineering, University of Shanghai Science and Technology, Shanghai 200093 (China); Gu Guoqing [Information College of Science and Technology, East China Normal University, Shanghai 200062 (China)
2004-01-07
The perturbation method is developed to deal with the problem of determining the effective nonlinear conductivity of Kerr-like nonlinear media under an external ac electric field. As an example, we have considered the cylindrical inclusion embedded in a host under the sinusoidal external field E{sub 1} sin (<{omega}t) + E{sub 3} sin (3<{omega}t) with frequencies{omega} and 3{omega}. The potentials of composites at higher harmonics are derived in both local inclusion particle and host regions. The effective responses of bulk nonlinear composites at basic frequency and harmonics are given for cylindrical composites in the dilute limit. Moreover, the relationships between the nonlinear effective responses at the basic frequency and the third harmonics are derived.
Optimal design for nonlinear response models
Fedorov, Valerii V
2013-01-01
Optimal Design for Nonlinear Response Models discusses the theory and applications of model-based experimental design with a strong emphasis on biopharmaceutical studies. The book draws on the authors' many years of experience in academia and the pharmaceutical industry. While the focus is on nonlinear models, the book begins with an explanation of the key ideas, using linear models as examples. Applying the linearization in the parameter space, it then covers nonlinear models and locally optimal designs as well as minimax, optimal on average, and Bayesian designs. The authors also discuss ada
Chemical Biodynamics Division. Annual report 1979
Energy Technology Data Exchange (ETDEWEB)
1980-08-01
The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.
Biodynamic profiling of three-dimensional tissue growth techniques
Sun, Hao; Merrill, Dan; Turek, John; Nolte, David
2016-03-01
Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.
Nonlinear frequency response analysis of structural vibrations
Weeger, Oliver; Wever, Utz; Simeon, Bernd
2014-12-01
In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.
Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response
Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C
2011-01-01
We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.
Optomechanical response of a nonlinear mechanical resonator
Shevchuk, Olga; Singh, Vibhor; Steele, Gary A.; Blanter, Ya. M.
2015-11-01
We investigate theoretically in detail the nonlinear effects in the response of an optical/microwave cavity coupled to a Duffing mechanical resonator. The cavity is driven by a laser at a red or blue mechanical subband, and a probe laser measures the reflection close to the cavity resonance. Under these conditions, we find that the cavity exhibits optomechanically induced reflection (OMIR) or absorption (OMIA) and investigate the optomechanical response in the limit of nonlinear driving of the mechanics. Similar to linear mechanical drive, in an overcoupled cavity the red sideband drive may lead to both OMIA and OMIR depending on the strength of the drive, whereas the blue sideband drive only leads to OMIR. The dynamics of the phase of the mechanical resonator leads to the difference between the shapes of the response of the cavity and the amplitude response of the driven Duffing oscillator, for example, at weak red sideband drive the OMIA dip has no inflection point. We also verify that mechanical nonlinearities beyond Duffing model have little effect on the size of the OMIA dip though they affect the width of the dip.
An Experimental Test of a Biodynamic Method of Weed Suppression: The Biodynamic Seed Peppers
Directory of Open Access Journals (Sweden)
Bruce Kenneth Kirchoff
2016-04-01
Full Text Available An experimental test of a biodynamic agriculture method of weed suppression was carried out in growth chambers to establish the feasibility of the method as a preliminary to field trials. Four generations of Brassica rapa plants were used in a randomized block design. Treated flats received ashed seeds prepared according to biodynamic indications. Seed weight and counts were measured at the end of each generation, and germination of the control and experimental seed was investigated at the end of generation four. The biodynamic seed peppers, created and applied as described here, had no effect on seed production or viability, and did not effectively inhibit reproduction of the targeted species over the course of four consecutive treatments.
BIODYNAMIC AGRICULTURE - ECO-FRIENDLY AGRICULTURAL PRACTICE
Directory of Open Access Journals (Sweden)
Veselka Vlahova
2015-06-01
Full Text Available Biodynamic agriculture is undoubtedly the oldest organized agricultural movement in the world. It is considered as an organic agricultural farming approach and determined as the oldest organized alternative agricultural movement in the world. In 1924 Rudolf Steiner – an Austrian natural scientist and philosopher, carried out a series of eight lectures in Koberwitz, currently Kobierzyce- Poland, where he formulated his visions on changes in agriculture and revealed his spiritual and scientific concepts about the connection between nature and agriculture by determining the important role of agriculture for the future of humanity and thus he became known as “the father of anthroposophy”. The great ecological effect of the application of the biodynamic agriculture is expressed in soil preservation and preservation of the living organisms in the soil, as well as maintenance of the natural balance in the vegetable and animal kingdom.
Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion
Directory of Open Access Journals (Sweden)
Jun Wang
2013-01-01
Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.
Materials dispersion and biodynamics project research
Lewis, Marian L.
1992-01-01
The Materials Dispersion and Biodynamics Project (MDBP) focuses on dispersion and mixing of various biological materials and the dynamics of cell-to-cell communication and intracellular molecular trafficking in microgravity. Research activities encompass biomedical applications, basic cell biology, biotechnology (products from cells), protein crystal development, ecological life support systems (involving algae and bacteria), drug delivery (microencapsulation), biofilm deposition by living organisms, and hardware development to support living cells on Space Station Freedom (SSF). Project goals are to expand the existing microgravity science database through experiments on sounding rockets, the Shuttle, and COMET program orbiters and to evolve,through current database acquisition and feasibility testing, to more mature and larger-scale commercial operations on SSF. Maximized utilization of SSF for these science applications will mean that service companies will have a role in providing equipment for use by a number of different customers. An example of a potential forerunner of such a service for SSF is the Materials Dispersion Apparatus (MDA) 'mini lab' of Instrumentation Technology Associates, Inc. (ITA) in use on the Shuttle for the Commercial MDAITA Experiments (CMIX) Project. The MDA wells provide the capability for a number of investigators to perform mixing and bioprocessing experiments in space. In the area of human adaptation to microgravity, a significant database has been obtained over the past three decades. Some low-g effects are similar to Earth-based disorders (anemia, osteoporosis, neuromuscular diseases, and immune system disorders). As new information targets potential profit-making processes, services and products from microgravity, commercial space ventures are expected to expand accordingly. Cooperative CCDS research in the above mentioned areas is essential for maturing SSF biotechnology and to ensure U.S. leadership in space technology
Analysis of nonlinear transient responses of piezoelectric resonators.
Hagiwara, Manabu; Takahashi, Seita; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki
2011-09-01
The electric transient response method is an effective technique to evaluate material constants of piezoelectric ceramics under high-power driving. In this study, we tried to incorporate nonlinear piezoelectric behaviors in the analysis of transient responses. As a base for handling the nonlinear piezoelectric responses, we proposed an assumption that the electric displacement is proportional to the strain without phase lag, which could be described by a real and constant piezoelectric e-coefficient. Piezoelectric constitutive equations including nonlinear responses were proposed to calculate transient responses of a piezoelectric resonator. The envelopes and waveforms of current and vibration velocity in transient responses observed in some piezoelectric ceramics could be fitted with the calculation including nonlinear responses. The procedure for calculation of mechanical quality factor Q(m) for piezoelectric resonators with nonlinear behaviors was also proposed.
Non-linear stochastic response of a shallow cable
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2004-01-01
The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom...
Delocalization of nonlinear optical responses in plasmonic nanoantennas
Viarbitskaya, Sviatlana; Cluzel, Benoit; Francs, Gérard Colas des; Bouhelier, Alexandre
2015-01-01
Remote excitation and emission of two-photon luminescence and second-harmonic generation are observed in micrometer long gold rod optical antennas upon local illumination with a tightly focused near-infrared femtosecond laser beam. We show that the nonlinear radiations can be emitted from the entire antenna and the measured far-field angular patterns bear the information regarding the nature and origins of the respective nonlinear processes. We demonstrate that the nonlinear responses are transported by the propagating surface plasmon at excitation frequency, enabling thereby polariton-mediated tailoring and design of nonlinear responses.
Mäkelä, J T A; Korhonen, R K
2016-06-14
Modern fibril-reinforced computational models of articular cartilage can include inhomogeneous tissue composition and structure, and nonlinear mechanical behavior of collagen, proteoglycans and fluid. These models can capture well experimental single step creep and stress-relaxation tests or measurements under small strains in unconfined and confined compression. Yet, it is known that in indentation, especially at high strain velocities, cartilage can express highly nonlinear response. Different fibril reinforced poroelastic and poroviscoelastic models were used to assess measured highly nonlinear stress-relaxation response of rabbit articular cartilage in indentation. Experimentally measured depth-dependent volume fractions of different tissue constituents and their mechanical nonlinearities were taken into account in the models. In particular, the collagen fibril network was modeled using eight separate models that implemented five different constitutive equations to describe the nonlinearity. These consisted of linear elastic, nonlinear viscoelastic and multiple nonlinear elastic representations. The model incorporating the most nonlinearly increasing Young׳s modulus of collagen fibrils as a function of strain captured best the experimental data. Relative difference between the model and experiment was ~3%. Surprisingly, the difference in the peak forces between the experiment and the model with viscoelastic collagen fibrils was almost 20%. Implementation of the measured volume fractions did not improve the ability of the model to capture the measured mechanical data. These results suggest that a highly nonlinear formulation for collagen fibrils is needed to replicate multi-step stress-relaxation response of rabbit articular cartilage in indentation with high strain rates.
NONLINEAR RESPONSES OF A FLUID-CONVEYING PIPE EMBEDDED IN NONLINEAR ELASTIC FOUNDATIONS
Institute of Scientific and Technical Information of China (English)
Qin Qian; Lin Wang; Qiao Ni
2008-01-01
The nonlinear responses of planar motions of a fluid-conveying pipe embedded in nonlinear elastic foundations are investigated via the differential quadrature method diseretization (DQMD) of the governing partial differential equation. For the analytical model, the effect of the nonlinear elastic foundation is modeled by a nonlinear restraining force. By using an iterative algorithm, a set of ordinary differential dynamical equations derived from the equation of motion of the system are solved numerically and then the bifurcations are analyzed. The numerical results, in which the existence of chaos is demonstrated, are presented in the form of phase portraits of the oscillations. The intermittency transition to chaos has been found to arise.
Harmonic Phase Response of Nonlinear Radar Targets
2015-10-01
to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT...of an improvised explosive device (IED). Previous nonlinear radar systems detect targets via transmission of a single frequency ω, stepping...electronically nonlinear components, such as transistors, diodes , and semiconductors. While many circuit devices, such as amplifiers, mixers, and
Energy Technology Data Exchange (ETDEWEB)
Lidorikis, E. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Busch, K. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Instituet fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, D-76128, Karlsruhe (Germany); Li, Q. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Chan, C.T. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Soukoulis, C.M. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)
1997-12-01
We consider the general problem of electromagnetic wave propagation through a one-dimensional system consisting of a nonlinear medium sandwiched between two linear structures. Special emphasis is given to systems where the latter comprise Bragg reflectors. We obtain an exact expression for the nonlinear response of such dielectric superlattices when the nonlinear impurity is very thin, or in the {delta}-function limit. We find that both the switching-up and switching-down intensities of the bistable response can be made very low, when the frequency of the incident wave matches that of the impurity mode of the structure. Numerical results for a nonlinear layer of finite width display qualitatively similar behavior, thus confirming the usefulness of the simpler {delta}-function model. In addition, an analytical solution for the resonance states of an infinitely extended finite-width superlattice with a finite-width nonlinear impurity is presented. {copyright} {ital 1997} {ital The American Physical Society}
Semiclassical mode-coupling factorizations of coherent nonlinear optical response
Jansen, TL; Mukamel, S
2003-01-01
The identification of relevant collective coordinates is crucial for the interpretation of coherent nonlinear spectroscopies of complex molecules and liquids. Using an h expansion of Liouville space generating functions, we show how to factorize multitime nonlinear response functions into products o
A Photonic Basis for Deriving Nonlinear Optical Response
Andrews, David L.; Bradshaw, David S.
2009-01-01
Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…
Common-path biodynamic imaging for dynamic fluctuation spectroscopy of 3D living tissue
Li, Zhe; Turek, John; Nolte, David D.
2017-03-01
Biodynamic imaging is a novel 3D optical imaging technology based on short-coherence digital holography that measures intracellular motions of cells inside their natural microenvironments. Here both common-path and Mach-Zehnder designs are presented. Biological tissues such as tumor spheroids and ex vivo biopsies are used as targets, and backscattered light is collected as signal. Drugs are applied to samples, and their effects are evaluated by identifying biomarkers that capture intracellular dynamics from the reconstructed holograms. Through digital holography and coherence gating, information from different depths of the samples can be extracted, enabling the deep-tissue measurement of the responses to drugs.
Impact of pilots' biodynamic feedthrough on rotorcraft by robust stability
Quaranta, Giuseppe; Masarati, Pierangelo; Venrooij, Joost
2013-09-01
The coupling of rotorcraft dynamics with the dynamics of one of the main systems devoted to its control, the pilot, may lead to several peculiar phenomena, known as Rotorcraft-Pilot Couplings (RPCs), all characterized by an abnormal behavior that may jeopardize flight safety. Among these phenomena, there is a special class of couplings which is dominated by the biodynamic behavior of the pilot's limbs that close the loop between the vibrations and the control inceptors in the cockpit. Leveraging robust stability analysis, the inherently uncertain pilot biodynamics can be treated as the uncertain portion of a feedback system, making analytical, numerical or graphical determination of proneness to RPC possible by comparing robust stability margins of helicopter models with experimental Biodynamic Feedthrough (BDFT) data. The application of the proposed approach to collective bounce is exemplified using simple analytical helicopter and pilot models. The approach is also applied to detailed helicopter models and experimental BDFT measurement data.
Effective nonlinear AC response to composite with spherical particles
Institute of Scientific and Technical Information of China (English)
Chen Xiao-Gang; Liang Fang-Chu; Wei En-Bo
2005-01-01
An effective nonlinear alternative-current (AC) response to granular nonlinear-composite with spherical inclusions embedded in a host medium under the action of an external AC field is investigated by using a perturbation approach.The local potentials of composite at higher harmonics are derived both in a region of local inclusion particles and in a local host region under the action of a sinusoidal field E1 sinωt + E3sin3ωt. An effective nonlinear-response to composite and the relationship between the effective nonlinear-responses at the fundamental frequency and the third harmonics are also studied for the spherical inclusions in a dilute limit.
Relationships between nonlinear normal modes and response to random inputs
Schoneman, Joseph D.; Allen, Matthew S.; Kuether, Robert J.
2017-02-01
The ability to model nonlinear structures subject to random excitation is of key importance in designing hypersonic aircraft and other advanced aerospace vehicles. When a structure is linear, superposition can be used to construct its response to a known spectrum in terms of its linear modes. Superposition does not hold for a nonlinear system, but several works have shown that a system's dynamics can still be understood qualitatively in terms of its nonlinear normal modes (NNMs). This work investigates the connection between a structure's undamped nonlinear normal modes and the spectrum of its response to high amplitude random forcing. Two examples are investigated: a spring-mass system and a clamped-clamped beam modeled within a geometrically nonlinear finite element package. In both cases, an intimate connection is observed between the smeared peaks in the response spectrum and the frequency-energy dependence of the nonlinear normal modes. In order to understand the role of coupling between the underlying linear modes, reduced order models with and without modal coupling terms are used to separate the effect of each NNM's backbone from the nonlinear couplings that give rise to internal resonances. In the cases shown here, uncoupled, single-degree-of-freedom nonlinear models are found to predict major features in the response with reasonable accuracy; a highly inexpensive approximation such as this could be useful in design and optimization studies. More importantly, the results show that a reduced order model can be expected to give accurate results only if it is also capable of accurately predicting the frequency-energy dependence of the nonlinear modes that are excited.
Application of biodynamic imaging for personalized chemotherapy in canine lymphoma
Custead, Michelle R.
Biodynamic imaging (BDI) is a novel phenotypic cancer profiling technology which characterizes changes in cellular and subcellular motion in living tumor tissue samples following in vitro or ex vivo treatment with chemotherapeutics. The ability of BDI to predict clinical response to single-agent doxorubicin chemotherapy was tested in ten dogs with naturally-occurring non-Hodgkin's lymphomas (NHL). Pre-treatment tumor biopsy samples were obtained from all dogs and treated with doxorubicin (10 muM) ex vivo. BDI captured cellular and subcellular motility measures on all biopsy samples at baseline and at regular intervals for 9 hours following drug application. All dogs subsequently received treatment with a standard single-agent doxorubicin protocol. Objective response (OR) to doxorubicin and progression-free survival time (PFST) following chemotherapy were recorded for all dogs. The dynamic biomarkers measured by BDI were entered into a multivariate logistic model to determine the extent to which BDI predicted OR and PFST following doxorubicin therapy. The model showed that the sensitivity, specificity, and accuracy of BDI for predicting treatment outcome were 95%, 91%, and 93%, respectively. To account for possible over-fitting of data to the predictive model, cross-validation with a one-left-out analysis was performed, and the adjusted sensitivity, specificity, and accuracy following this analysis were 93%, 87%, and 91%, respectively. These findings suggest that BDI can predict, with high accuracy, treatment outcome following single-agent doxorubicin chemotherapy in a relevant spontaneous canine cancer model, and is a promising novel technology for advancing personalized cancer medicine.
On the dimension of complex responses in nonlinear structural vibrations
Wiebe, R.; Spottswood, S. M.
2016-07-01
The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to
On 4-degree-of-freedom biodynamic models of seated occupants: Lumped-parameter modeling
Bai, Xian-Xu; Xu, Shi-Xu; Cheng, Wei; Qian, Li-Jun
2017-08-01
It is useful to develop an effective biodynamic model of seated human occupants to help understand the human vibration exposure to transportation vehicle vibrations and to help design and improve the anti-vibration devices and/or test dummies. This study proposed and demonstrated a methodology for systematically identifying the best configuration or structure of a 4-degree-of-freedom (4DOF) human vibration model and for its parameter identification. First, an equivalent simplification expression for the models was made. Second, all of the possible 23 structural configurations of the models were identified. Third, each of them was calibrated using the frequency response functions recommended in a biodynamic standard. An improved version of non-dominated sorting genetic algorithm (NSGA-II) based on Pareto optimization principle was used to determine the model parameters. Finally, a model evaluation criterion proposed in this study was used to assess the models and to identify the best one, which was based on both the goodness of curve fits and comprehensive goodness of the fits. The identified top configurations were better than those reported in the literature. This methodology may also be extended and used to develop the models with other DOFs.
ElNady, Khaled; Goda, Ibrahim; Ganghoffer, Jean-François
2016-09-01
The asymptotic homogenization technique is presently developed in the framework of geometrical nonlinearities to derive the large strains effective elastic response of network materials viewed as repetitive beam networks. This works extends the small strains homogenization method developed with special emphasis on textile structures in Goda et al. (J Mech Phys Solids 61(12):2537-2565, 2013). A systematic methodology is established, allowing the prediction of the overall mechanical properties of these structures in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the chosen equivalent continuum. Internal scale effects of the initially discrete structure are captured by the consideration of a micropolar effective continuum model. Applications to the large strain response of 3D hexagonal lattices and dry textiles exemplify the powerfulness of the proposed method. The effective mechanical responses obtained for different loadings are validated by FE simulations performed over a representative unit cell.
Computation simulation of the nonlinear response of suspension bridges
Energy Technology Data Exchange (ETDEWEB)
McCallen, D.B.; Astaneh-Asl, A.
1997-10-01
Accurate computational simulation of the dynamic response of long- span bridges presents one of the greatest challenges facing the earthquake engineering community The size of these structures, in terms of physical dimensions and number of main load bearing members, makes computational simulation of transient response an arduous task. Discretization of a large bridge with general purpose finite element software often results in a computational model of such size that excessive computational effort is required for three dimensional nonlinear analyses. The aim of the current study was the development of efficient, computationally based methodologies for the nonlinear analysis of cable supported bridge systems which would allow accurate characterization of a bridge with a relatively small number of degrees of freedom. This work has lead to the development of a special purpose software program for the nonlinear analysis of cable supported bridges and the methodologies and software are described and illustrated in this paper.
Nonlinear Response of Cantilever Beams to Combination and Subcombination Resonances
Directory of Open Access Journals (Sweden)
Ali H. Nayfeh
1998-01-01
Full Text Available The nonlinear planar response of cantilever metallic beams to combination parametric and external subcombination resonances is investigated, taking into account the effects of cubic geometric and inertia nonlinearities. The beams considered here are assumed to have large length-to-width aspect ratios and thin rectangular cross sections. Hence, the effects of shear deformations and rotatory inertia are neglected. For the case of combination parametric resonance, a two-mode Galerkin discretization along with Hamilton’s extended principle is used to obtain two second-order nonlinear ordinary-differential equations of motion and associated boundary conditions. Then, the method of multiple scales is applied to obtain a set of four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two excited modes. For the case of subcombination resonance, the method of multiple scales is applied directly to the Lagrangian and virtual-work term. Then using Hamilton’s extended principle, we obtain a set of four first-order nonlinear ordinary-differential equations governing the amplitudes and phases of the two excited modes. In both cases, the modulation equations are used to generate frequency- and force-response curves. We found that the trivial solution exhibits a jump as it undergoes a subcritical pitchfork bifurcation. Similarly, the nontrivial solutions also exhibit jumps as they undergo saddle-node bifurcations.
Modeling and non-linear responses of MEMS capacitive accelerometer
Directory of Open Access Journals (Sweden)
Sri Harsha C.
2014-01-01
Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.
Measurement of Localized Nonlinear Microwave Response of Superconductors
Lee, Sheng-Chiang; Palmer, Benjamin; Maiorov, B.
2005-03-01
We measure the local harmonic generation from superconducting thin films at microwave frequencies to investigate the intrinsic nonlinear Meissner effect near T/c in zero magnetic field. Both second and third harmonic generation are measured to identify time-reversal symmetry breaking (TRSB) and time-reversal symmetric (TRS) nonlinearities. The microscope can measure the local nonlinear response of a bicrystal grain boundary [Sheng-Chiang Lee and Steven M. Anlage, Physica C 408-410, 324 (2004); cond-mat/0408170]. We also performed a systematic doping-dependent study of the nonlinear response and find that the TRS characteristic nonlinearity current density scale follows the doping dependence of the de-pairing critical current density [cond-mat/0405595]. We extract a spontaneous TRSB characteristic current density scale that onsets at T/c, grows with decreasing temperature, and systematically decreases in magnitude (at fixed T/T/c) with under-doping. The origin of this current scale could be Josephson circulating currents or the spontaneous magnetization associated with a TRSB order parameter.
Stochastic Nonlinear Response of Woven CMCs
Kuang, C. Liu; Arnold, Steven M.
2013-01-01
It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural scale (idealized using multiple RUCs). The recently developed MultiScale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions and associated probability distribution functions. Prior results showed that the most critical architectural parameter to account for is weave void shape and content with other parameters being less in severity. Current results show that statistically only the post-elastic limit region (secondary hardening modulus and ultimate tensile strength) is impacted by local uncertainties both at the macro and structural level.
Nonlinear analysis of the forced response of structural elements
Nayfeh, A. H.; Mook, D. T.; Sridhar, S.
1974-01-01
A general procedure is presented for the nonlinear analysis of the forced response of structural elements to harmonic excitations. Internal resonances (i.e., modal interactions) are taken into account. All excitations are considered, with special consideration given to resonant excitations. The general procedure is applied to clamped-hinged beams. The results reveal that exciting a higher mode may lead to a larger response in a lower interacting mode, contrary to the results of linear analyses.
Nonlinear microwave switching response of BSCCO single crystals
Energy Technology Data Exchange (ETDEWEB)
Jacobs, T.; Sridhar, S. [Northeastern Univ., Boston, MA (United States). Dept. of Physics; Willemsen, B.A. [Northeastern Univ., Boston, MA (United States). Dept. of Physics]|[Rome Lab., Hanscom AFB, MA (United States); Li, Qiang [Brookhaven National Lab., Upton, NY (United States); Gu, G.D.; Koshizuka, N. [Superconductivity Research Lab., Tokyo (Japan)
1996-06-01
Measurements of the surface impedance in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystal with microwave currents flowing along the {cflx c} axis show clear evidence of a step-like nonlinearity. The surface resistance switches between apparently quantized levels for microwave field strength changes < 1 mG. This nonlinear response can arise from the presence of intrinsic Josephson junctions along the {cflx c} axis of these samples driven by the microwave current.
Nonlinear THz response of metallic armchair graphene nanoribbon superlattices
Wang, Yichao; Andersen, David R.
2016-11-01
We study the third order THz nonlinear response of metallic armchair graphene nanoribbon superlattices in the presence of an elliptically-polarized excitation field using the time dependent perturbation theory. For a one-dimensional Kronig-Penney potential of infinite length, the nonlinear response can be described perturbatively by a low energy \\mathbf{k}\\centerdot \\mathbf{p} N-photon coupling model. Remarkably, as shown by Burset et al the energy dispersion of the metallic band in the direction parallel to the superlattice wavevector is independent of the applied superlattice potential while the energy dispersion in the direction perpendicular to the superlattice wavevector depends strongly on the superlattice parameters. As a result, we predict novel behavior for the nonlinear response of single layer metallic acGNR superlattices to an applied elliptically-polarized electric field. Our work shows that the superlattice potential, periodicity, Fermi level, excitation field polarization state, and temperature all play a significant role in the resulting THz nonlinear conductances.
Experimentally fitted biodynamic models for pedestrian-structure interaction in walking situations
Toso, Marcelo André; Gomes, Herbert Martins; da Silva, Felipe Tavares; Pimentel, Roberto Leal
2016-05-01
The interaction between moving humans and structures usually occurs in slender structures in which the level of vibration is potentially high. Furthermore, there is the addition of mass to the structural system due to the presence of people and an increase in damping due to the human body´s ability to absorb vibrational energy. In this paper, a test campaign is presented to obtain parameters for a single degree of freedom (SDOF) biodynamic model that represents the action of a walking pedestrian in the vertical direction. The parameters of this model are the mass (m), damping (c) and stiffness (k). The measurements were performed on a force platform, and the inputs were the spectral acceleration amplitudes of the first three harmonics at the waist level of the test subjects and the corresponding amplitudes of the first three harmonics of the vertical ground reaction force. This leads to a system of nonlinear equations that is solved using a gradient-based optimization algorithm. A set of individuals took part in the tests to ensure inter-subject variability, and, regression expressions and an artificial neural network (ANN) were used to relate the biodynamic parameters to the pacing rate and the body mass of the pedestrians. The results showed some scatter in damping and stiffness that could not be precisely correlated with the masses and pacing rates of the subjects. The use of the ANN resulted in significant improvements in the parameter expressions with a low uncertainty. Finally, the measured vertical accelerations on a prototype footbridge show the adequacy of the numerical model for the representation of the effects of walking pedestrians on a structure. The results are consistent for many crowd densities.
Structure property relationships for the nonlinear optical response of fullerenes
Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.
1994-11-01
We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.
Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials
Fang, Ming; Sha, Wei E I; Xiong, Xiaoyan Y Z; Wu, Xianliang
2016-01-01
Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities f...
Biodynamic Agriculture: Self-Maintenance on Rural Properties
Pfitscher, Elisete Dahmer; Universidade Federal de Santa Catarina; Pfitscher, Paulo Cesar; Caixa Econômica Federal - CEF; Soares, Sandro Vieira; Universidade Federal de Santa Catarina
2010-01-01
Maintainable development privileges life quality coupled to the environment. A new trend has developed through the implementation of self-maintenance of the small rural properties, or rather, working participatively in productive chains inserted into the performance of agro-poles. Current research, which analyzes the perspectives of bio-dynamic rice culture as an alternative for survival within the context of small farms, has three different phases: first, semi-structured interviews with prof...
Naval Biodynamics Laboratory: 1989 and 1990 Command History
1991-07-01
Washington, DC Dr. Charles McLeod Maryland Medical Laboratory Baltimore, MD CDR Kenneth Meyer Naval Medical Center Corpus Christi , TX 62 1989 and 1990...Padro, Madrid , Spain, 24-26 April 1990. Call, D. W., "Mission and Capabilities of the Naval Biodynamics Laboratory." Three separate presentations and...Seminar, Baton Rouge, LA, 15 February 1990. Call, D. W., attended the NATO IEG/6 Ship Design SG/5 Seakeeping Conference, Madrid , Spain, 22-28 April
Effective Dielectric Response of Nonlinear Composites of Coated Metal Inclusions
Institute of Scientific and Technical Information of China (English)
CHEN Guo-Qing; WU Ya-Min
2007-01-01
The effective dielectric response of the composites in which nondilute coated metal particles are randomly embedded in a linear host is investigated. Two types of coated particles are considered, one is that the core is nonlinear, the other is that the shell is nonlinear. We derive general expressions for the effective linear dielectric function and the effective third-order nonlinear susceptibility, and take one step forward to perform numerical calculations on the coated metal/dielectric composites. Numerical results show that the effective linear and nonlinear dielectric responses can be greatly enhanced near the surface plasmon resonant frequency. Moreover, the resonant peaks are found within a range from 0.46ωp to 0.57ωp for spherical particles and from 0.59ωp to 0.7ωp for cylindrical inclusions. In the frequency region, the resonant peak can achieve the maximum, according to an optimal structural parameter and volume fraction. The resonant frequency exhibits a redshift with the increasing structural parameter k or volume fraction f or dimensionality factor D.
Frequency Response and Gap Tuning for Nonlinear Electrical Oscillator Networks
Bhat, Harish S.; Vaz, Garnet J.
2013-01-01
We study nonlinear electrical oscillator networks, the smallest example of which consists of a voltage-dependent capacitor, an inductor, and a resistor driven by a pure tone source. By allowing the network topology to be that of any connected graph, such circuits generalize spatially discrete nonlinear transmission lines/lattices that have proven useful in high-frequency analog devices. For such networks, we develop two algorithms to compute the steady-state response when a subset of nodes are driven at the same fixed frequency. The algorithms we devise are orders of magnitude more accurate and efficient than stepping towards the steady-state using a standard numerical integrator. We seek to enhance a given network's nonlinear behavior by altering the eigenvalues of the graph Laplacian, i.e., the resonances of the linearized system. We develop a Newton-type method that solves for the network inductances such that the graph Laplacian achieves a desired set of eigenvalues; this method enables one to move the eigenvalues while keeping the network topology fixed. Running numerical experiments using three different random graph models, we show that shrinking the gap between the graph Laplacian's first two eigenvalues dramatically improves a network's ability to (i) transfer energy to higher harmonics, and (ii) generate large-amplitude signals. Our results shed light on the relationship between a network's structure, encoded by the graph Laplacian, and its function, defined in this case by the presence of strongly nonlinear effects in the frequency response. PMID:24223751
Nonlinear response from the perspective of energy landscapes and beyond
Heuer, Andreas; Schroer, Carsten F. E.; Diddens, Diddo; Rehwald, Christian; Blank-Burian, Markus
2017-08-01
The paper discusses the nonlinear response of disordered systems. In particular we show how the nonlinear response can be interpreted in terms of properties of the potential energy landscape. It is shown why the use of relatively small systems is very helpful for this approach. For a standard model system we check which system sizes are particular suited. In case of the driving of a single particle via an external force the concept of an effective temperature helps to scale the force dependence for different temperature on a single master curve. In all cases the mobility increases with increasing external force. These results are compared with a stochastic process described by a 1d Langevin equation where a similar scaling is observed. Furthermore it is shown that for different classes of disordered systems the mobility can also decrease with increasing force. The results can be related to the properties of the chosen potential energy landscape. Finally, results for the crossover from the linear to the nonlinear conductivity of ionic liquids are presented, inspired by recent experimental results in the Roling group. Apart from a standard imidazolium-based ionic liquid we study a system which is characterized by a low conductivity as compared to other ionic liquids and very small nonlinear effects. We show via a real space structural analysis that for this system a particularly strong pair formation is observed and that the strength of the pair formation is insensitive to the application of strong electric fields. Consequences of this observation are discussed.
Nonlinear Dielectric Response of Water Treed XLPE Cable Insulation
Energy Technology Data Exchange (ETDEWEB)
Hvidsten, Sverre
1999-07-01
Condition assessment of XLPE power cables is becoming increasingly important for the utilities, due to a large number of old cables in service with high probability of failure caused by water tree degradation. The commercial available techniques are generally based upon measurements of the dielectric response, either by time (polarisation/depolarisation current or return voltage) or frequency domain measurements. Recently it has been found that a high number of water trees in XLPE insulated cables causes the dielectric response to increase more than linearly with increasing test voltage. This nonlinear feature of water tree degraded XLPE insulation has been suggested to be of a great importance, both for diagnostic purposes, and for fundamental understanding of the water tree phenomenon itself. The main purpose of this thesis have been to study the nonlinear feature of the dielectric response measured on watertreed XLPE insulation. This has been performed by dielectric response measurements in both time and frequency domain, numerical calculations of losses of simplified water tree models, and fmally water content and water permeation measurements on single water trees. The dielectric response measurements were performed on service aged cable samples and laboratory aged Rogowski type objects. The main reason for performing laboratory ageing was to facilitate diagnostic testing as a function of ageing time of samples containing mainly vented water trees. A new method, based upon inserting NaC1 particles at the interface between the upper semiconductive screen and the insulation, was found to successfully enhance initiation and growth of vented water trees. AC breakdown strength testing show that it is the vented water trees that reduce the breakdown level of both the laboratory aged test objects and service aged cable samples. Vented water treeing was found to cause the dielectric response to become nonlinear at a relatively low voltage level. However, the measured
A FORTRAN program for calculating nonlinear seismic ground response
Joyner, William B.
1977-01-01
The program described here was designed for calculating the nonlinear seismic response of a system of horizontal soil layers underlain by a semi-infinite elastic medium representing bedrock. Excitation is a vertically incident shear wave in the underlying medium. The nonlinear hysteretic behavior of the soil is represented by a model consisting of simple linear springs and Coulomb friction elements arranged as shown. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. A brief program description is provided here with instructions for preparing the input and a source listing. A more detailed discussion of the method is presented elsewhere as is the description of a different program employing implicit integration.
Effects of Particle Shape and Microstructure on Effective Nonlinear Response
Institute of Scientific and Technical Information of China (English)
HUANG Ji-Ping; LI Zhen-Ya
2001-01-01
We consider a binary granular composite medium, in which two materials have high-order nonlinearities.The effect of particle shape on effective nonlinear response (ENR) is investigated by assuming all the particles to be shaped as uniaxial ellipsoid. We discuss two types of arrangements of particles: 1) parallel axes (Case I); 2) random axes (Case II). During the process of numerical calculation, one component material is assumed to be linear, and two kinds of conductors are assumed to be at high conducting contrast. We find that: 1) the shape effect on ENR is possibly strong; 2) the enhanced ENR can even be obtained by choosing particles of appropriate ellipsoidal shapes; 3) the ENR enhancement predicted by Case I is much stronger than that by Case II.``
Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites
Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.
2010-01-01
A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.
Nonlinear dynamic response of stay cables under axial harmonic excitation
Institute of Scientific and Technical Information of China (English)
Xu XIE; He ZHAN; Zhi-cheng ZHANG
2008-01-01
This paper proposes a new numerical simulation method for analyzing the parametric vibration of stay cables based on the theory of nonlinear dynamic response of structures under the asynchronous support excitation.The effects of important parameters related to parametric vibration of cables,I.e., characteristics of structure,excitation frequency,excitation amplitude,damping effect of the air and the viscous damping coefficient of the cables,were investigated by using the proposed method for the cables with significant length difference as examples.The analysis results show that nonlinear finite element method is a powerful technique in analyzing the parametric vibration of cables,the behavior of parametric vibration of the two cables with different Irvine parameters has similar properties,the amplitudes of parametric vibration of cables are related to the frequency and amplitude of harmonic support excitations and the effect of distributed viscous damping on parametric vibration of the cables is very small.
Models of the delayed nonlinear Raman response in diatomic gases
Palastro, J. P.; Antonsen, T. M., Jr.; Pearson, A.
2011-07-01
We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for broadband pulses, heavy molecules such as O2 and N2, and typical atmospheric temperatures, the initial delayed response requires only classical physics. The linear kinetic Green's function is derived from the Boltzmann equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic theory a reduced fluid model of the diatomic gas’ orientation is derived. Transport coefficients are introduced to model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.
Zhou, Zhen; Griffin, Michael J
2014-01-01
Frequency weightings for predicting vibration discomfort assume the same frequency-dependence at all magnitudes of vibration, whereas biodynamic studies show that the frequency-dependence of the human body depends on the magnitude of vibration. This study investigated how the frequency-dependence of vibration discomfort depends on the acceleration and the force at the subject-seat interface. Using magnitude estimation, 20 males and 20 females judged their discomfort caused by sinusoidal vertical acceleration at 13 frequencies (1-16 Hz) at magnitudes from 0.1 to 4.0 ms(-2) r.m.s. The frequency-dependence of their equivalent comfort contours depended on the magnitude of vibration, but was less dependent on the magnitude of dynamic force than the magnitude of acceleration, consistent with the biodynamic non-linearity of the body causing some of the magnitude-dependence of equivalent comfort contours. There were significant associations between the biodynamic responses and subjective responses at all frequencies in the range 1-16 Hz. Practitioner Summary: Vertical seat vibration causes discomfort in many forms of transport. This study provides the frequency-dependence of vibration discomfort over a range of vibration magnitudes and shows how the frequency weightings in the current standards can be improved.
Comparative Biodynamics; The Form and Function of Two Living Stromatolite Assemblages.
Paterson, D. M.; Gleeson, D.; Burns, B.; Collins, L.
2014-12-01
Life arose very rapidly on the surface of the Earth after the conditions on the early planet stabilized. The first visible record of life is now represented by the fossilized signature of microbial communities on the surface of ancient sediments. Even at this early stage, at the onset of ecology, it is clear that the development of biofilms at the sediment-water interface would have affected the response of the surface to erosive force. The close interaction between biology and physical dynamics started early. The stabilization of the sediment will have been important in promoting the development of biogeochemical gradients, and promoting the niche segregation that drives evolution. As these microbial mat systems evolved is likely that their binding capacity changed as form and function developed. The onset of photosynthesis was a step change in this process. Studies on the biodynamics of modern Bahamian stromatolites demonstrated the importance of photosynthesis in promoting the biogenic stabilization of the carbonate (ooid) sediments by microbial assemblages derived from living stromatolites. The present study presents a comparative assessment of this work using new material from living stromatolitic assemblages from Shark Bay, Australia. Samples of stromatolites were taken and the natural microbial assemblages extracted and characterized. Microbial assemblages were incubated on the surface of clean sediment and the relative stabilization of the surface measured using the cohesive strength meter system to determine surface stability against time. Magnetic particle induction was also used to determine the relative adhesive capacity of the surfaces as assemblages developed. The results are presented and examined in contrast to the previous work on the biodynamics of modern Bahamian stromatolitic systems showing significant variation in form and function between the two different stromatolitic assemblages. The reasons for this variation are discussed.
Transient response of an active nonlinear sandwich piezolaminated plate
Oveisi, Atta; Nestorović, Tamara
2017-04-01
In this paper, the dynamic modelling and active vibration control of a piezolaminated plate with geometrical nonlinearities are investigated using a semi-analytical approach. For active vibration control purposes, the core orthotropic elastic layer is assumed to be perfectly bonded with two piezo-layers on its top and bottom surfaces which act as sensor and actuator, respectively. In the modelling procedure, the piezo-layers are assumed to be connected via a proportional derivative (PD) feedback control law. Hamilton's principle is employed to acquire the strong form of the dynamic equation in terms of additional higher order strain expressions by means of von Karman strain-displacement correlation. The obtained nonlinear partial differential equation (NPDE) is converted to a system of nonlinear ordinary differential equations (NODEs) by engaging Galerkin method and using the orthogonality of shape functions for the simply supported boundary conditions. Then, the resulting system of NODEs is solved numerically by employing the built-in Mathematica function, "NDSolve". Next, the vibration attenuation performance is evaluated and sensitivity of the closed-loop system is investigated for several control parameters and the external disturbance parameters. The proposed solution in open loop configuration is validated by finite element (FE) package ABAQUS both in the spatial domain and for the time-/frequency-dependent response.
Nonlinear electromechanical response of the ferroelectret ultrasonic transducers
Döring, Joachim; Bovtun, Viktor; Bartusch, Jürgen; Erhard, Anton; Kreutzbruck, Marc; Yakymenko, Yuriy
2010-08-01
The ultrasonic transmission between two air-coupled polypropylene (PP) ferroelectret (FE) transducers in dependence on the amplitude of the high-voltage exciting pulse revealed a strongly nonlinear electromechanical response of the FE transmitter. This phenomenon is described by a linear increase of the inverse electromechanical transducer constant t_{33}^{(1)} of the PP FE film with an increase of the exciting electrical pulse amplitude. Enlargement of t_{33}^{(1)} by a factor of 4 was achieved by application of 3500 V exciting pulses. The electrostriction contribution to t_{33}^{(1)} can be attributed to the electrostatic force between electrodes and the Maxwell stress effect. The nonlinear electromechanical properties of the PP FE result in a strong increase of its air-coupled ultrasonic (ACUS) figure of merit ( FOM) under the high-voltage excitation, which exceeds results of the PP FE technological optimization. The FOM increase can be related to the increase of PP FE coupling factor and/or to the decrease of its acoustic impedance. A significant enhancement of the ACUS system transmission (12 dB) and signal-to-noise ratio (32 dB) was demonstrated by the increase of excitation voltage up to 3500 V. The nonlinear electromechanical properties of the PP FEs seem to be very important for their future applications.
Plant growth promoting bacteria from cow dung based biodynamic preparations.
Radha, T K; Rao, D L N
2014-12-01
Indigenous formulations based on cow dung fermentation are commonly used in organic farming. Three biodynamic preparations viz., Panchagavya (PG), BD500 and 'Cow pat pit' (CPP) showed high counts of lactobacilli (10(9) ml(-1)) and yeasts (10(4) ml(-1)). Actinomycetes were present only in CPP (10(4) ml(-1)) and absent in the other two. Seven bacterial isolates from these ferments were identified by a polyphasic approach: Bacillus safensis (PG1), Bacillus cereus (PG2, PG4 PG5), Bacillus subtilis (BD2) Lysinibacillus xylanilyticus (BD3) and Bacillus licheniformis (CPP1). This is the first report of L. xylanilyticus and B. licheniformis in biodynamic preparations. Only three carbon sources-dextrose, sucrose and trehalose out of 21 tested were utilized by all the bacteria. None could utilize arabinose, dulcitol, galactose, inositol, inulin, melibiose, raffinose, rhamnose and sorbitol. All the strains produced indole acetic acid (1.8-3.7 μg ml(-1) culture filtrate) and ammonia. None could fix nitrogen; but all except B. safensis and B. licheniformis could solubilize phosphorous from insoluble tri-calcium phosphate. All the strains except L. xylaniliticus exhibited antagonism to the plant pathogen Rhizoctonia bataticola whereas none could inhibit Sclerotium rolfsi. In green house experiment in soil microcosms, bacterial inoculation significantly promoted growth of maize; plant dry weight increased by ~21 % due to inoculation with B. cereus (PG2). Results provide a basis for understanding the beneficial effects of biodynamic preparations and industrial deployment of the strains.
Linear and nonlinear optical response of spherical anisotropic semiconductor microcrystallites
Ramaniah, Lavanya M.; Nair, Selvakumar V.; Rustagi, Kailash C.
1989-12-01
We present a phenomenological theory of the linear and nonlinear optical properties associated with the Fröhlich resonances of an optically anisotropic, spherical semiconductor crystallite. Using the Maxwell-Garnett approach, we calculate the effective dielectric function of a composite medium containing such crystallites. To study the effect of anisotropy, we take CdS and CdSe quantum dots as examples for the inclusions, and use a two-resonance model for the dielectric function. Even for randomly oriented inclusions, the Fröhlich resonances split as a result of anisotropic local-field corrections. At higher laser intensities, absorption saturation leads to bistability or tristability in the optical response of individual crystallites, while the response of the composite medium with randomly oriented inclusions shows multistability, with many intermediate branches. The nonlinear response of such a composite medium also exhibits a new kind of orientation-induced broadening of resonances. We also find that tristability is possible in another kind of inhomogeneous material, viz., a composite medium containing two types of isotropic spherical crystallites.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
Energy Technology Data Exchange (ETDEWEB)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn [Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027 (China)
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Simulations of coherent nonlinear optical response of molecular vibronic dimers
Perlík, Václav
2016-01-01
We have implemented vibronic dynamics for simulations of the third order coherent response of electronic dimers. In the present communication we provide the full and detailed description of the dynamical model, recently used for simulations of chlorophyll-carotenoid dyads, terylene dimers, or hypericin. We allow for explicit vibronic level structure, by including selected vibrational modes into a "system". Bath dynamics include the Landau-Teller vibrational relaxation, electronic dephasing, and nonlinear vibronic (to bath) coupling. Simulations combine effects of transport and dephasing between vibronic levels. Transport is described by master equation within secular approximation, phase is accumulated in cumulants and its calculation follows the transport pathways during waiting time period.
Plant Growth Promoting Bacteria from Cow Dung Based Biodynamic Preparations
Radha, T. K.; RAO, D. L. N.
2014-01-01
Indigenous formulations based on cow dung fermentation are commonly used in organic farming. Three biodynamic preparations viz., Panchagavya (PG), BD500 and ‘Cow pat pit’ (CPP) showed high counts of lactobacilli (109 ml−1) and yeasts (104 ml−1). Actinomycetes were present only in CPP (104 ml−1) and absent in the other two. Seven bacterial isolates from these ferments were identified by a polyphasic approach: Bacillus safensis (PG1), Bacillus cereus (PG2, PG4 PG5), Bacillus subtilis (BD2) Lysi...
Confidence bounds for nonlinear dose-response relationships.
Baayen, C; Hougaard, P
2015-11-30
An important aim of drug trials is to characterize the dose-response relationship of a new compound. Such a relationship can often be described by a parametric (nonlinear) function that is monotone in dose. If such a model is fitted, it is useful to know the uncertainty of the fitted curve. It is well known that Wald confidence intervals are based on linear approximations and are often unsatisfactory in nonlinear models. Apart from incorrect coverage rates, they can be unreasonable in the sense that the lower confidence limit of the difference to placebo can be negative, even when an overall test shows a significant positive effect. Bootstrap confidence intervals solve many of the problems of the Wald confidence intervals but are computationally intensive and prone to undercoverage for small sample sizes. In this work, we propose a profile likelihood approach to compute confidence intervals for the dose-response curve. These confidence bounds have better coverage than Wald intervals and are more precise and generally faster than bootstrap methods. Moreover, if monotonicity is assumed, the profile likelihood approach takes this automatically into account. The approach is illustrated using a public dataset and simulations based on the Emax and sigmoid Emax models. Copyright © 2015 John Wiley & Sons, Ltd.
Stochastic response of nonlinear system in probability domain
Indian Academy of Sciences (India)
Deepak Kumar; T K Datta
2006-08-01
A stochastic averaging procedure for obtaining the probability density function (PDF) of the response for a strongly nonlinear single-degree-of-freedom system, subjected to both multiplicative and additive random excitations is presented. The procedure uses random Van Der Pol transformation, Ito’s equation of limiting diffusion process and stochastic averaging technique as outlined by Zhu and others. However, the equations are rederived in generalized form and arranged in such a way that the procedure lends itself to a numerical computational scheme using FFT. The main objective of the modiﬁcation is to consider highly irregular nonlinear functions which cannot be integrated in closed form and also to solve problems where analytical expressions for probability density function cannot be obtained. The procedure is applied to obtain the PDF of the response of Dufﬁng oscillator subjected to additive and multiplicative random excitations represented by rational power spectral density functions (PSDFs). The results are veriﬁed by digital simulation. It is shown that the procedure provides results which compare very well with those obtained from simulation analysis not only for wide-band excitations but also for very narrow-band excitations, which are weak (when normalized with respect to mass of the system).
Predicting nonlinear properties of metamaterials from the linear response.
O'Brien, Kevin; Suchowski, Haim; Rho, Junsuk; Salandrino, Alessandro; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang
2015-04-01
The discovery of optical second harmonic generation in 1961 started modern nonlinear optics. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller's Rule, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation, new quasi-phase matching capabilities and large nonlinear susceptibilities. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.
Nonlinear dynamic response of an electrically actuated imperfect microbeam resonator
Ruzziconi, Laura
2013-08-04
We present a study of the dynamic behavior of a MEMS device constituted of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. The nonlinear behavior is highlighted, which includes ranges of multistability, where the non-resonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is capable also to capture the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. Copyright © 2013 by ASME.
Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives
Liaros, Nikolaos; Orfanos, Ioannis; Papadakis, Ioannis; Couris, Stelios
2016-12-01
The nonlinear optical properties of two graphene derivatives, graphene oxide and graphene fluoride, are investigated by means of the Z-scan technique employing 35 ps and 4 ns, visible (532 nm) laser excitation. Both derivatives were found to exhibit significant third-order nonlinear optical response at both excitation regimes, with the nonlinear absorption being relatively stronger and concealing the presence of nonlinear refraction under ns excitation, while ps excitation reveals the presence of both nonlinear absorption and refraction. Both nonlinear properties are of great interest for several photonics, opto-fluidics, opto-electronics and nanotechnology applications.
Understanding nonlinear responses of the climate system to orbital forcing
Rial, J. A.; Anaclerio, C. A.
2000-12-01
We have recently introduced the working hypothesis that frequency modulation (FM) of the orbital eccentricity forcing may be one important source of the nonlinearities observed in δ 18O time series from deep-sea sediment cores (J.H. Rial (1999a) Pacemaking the lce Ages by frequency modulation of Earth's orbital eccentricity. Science 285, 564-568). In this paper we shall discuss further evidence of frequency modulation found in data from the Vostok ice core. Analyses of the 430,000-year long, orbitally untuned, time series of CO 2, deuterium, aerosol and methane, suggest frequency modulation of the 41 kyr (0.0244 kyr -1) obliquity forcing by the 413 kyr-eccentricity signal and its harmonics. Conventional and higher-order spectral analyses show that two distinct spectral peaks at ˜29 kyr (0.034 kyr -1) and ˜69 kyr (0.014 kyr -1) and other, smaller peaks surrounding the 41 kyr obliquity peak are harmonically (nonlinearly) related and likely to be FM-generated sidebands of the obliquity signal. All peaks can be closely matched by the spectrum of an appropriately built theoretical FM signal. A preliminary model, based on the classic logistic growth delay differential equation, reproduces the longer period FM effect and the familiar multiply peaked spectra of the eccentricity band. Since the FM effect appears to be a common feature in climate response, finding out its cause may help understand climate dynamics and global climate change.
Biodynamic Assessment of Pilot Knee-Board Configurations During Simulated T-38 Catapult Acceleration
2015-04-01
0041 Biodynamic Assessment of Pilot Knee -Board Configurations During Simulated T-38 Catapult Acceleration Mr. Chris Perry Mr. Chris...to April 2015 4. TITLE AND SUBTITLE Biodynamic Assessment of Pilot Knee -Board Configurations During Simulated T-38 Catapult Acceleration 5a...and converted to AVI format, and stored in the RH Collaborative Biomechanics Data Bank. Photographs were taken of the test set-up prior to each test
Optical and Nonlinear Optical Response of Light Sensor Thin Films
Directory of Open Access Journals (Sweden)
S. Z. Weisz
2005-04-01
Full Text Available For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD and RF co-sputteringtechniques. In photoluminescence (PL measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration.
Nonlinear Stochastic Analysis of Subharmonic Response of a Shallow Cable
DEFF Research Database (Denmark)
Zhou, Q.; Stærdahl, Jesper Winther; Nielsen, Søren R.K.
2007-01-01
The paper deals with the subharmonic response of a shallow cable due to time variations of the chord length of the equilibrium suspension, caused by time varying support point motions. Initially, the capability of a simple nonlinear two-degree-of-freedom model for the prediction of chaotic...... time-consuming for the finite difference model, most of the results are next based on the reduced model. Under harmonical varying support point motions the stable subharmonic motion consists of a harmonically varying component in the equilibrium plane and a large subharmonic out-of-plane component......, producing a trajectory at the mid-point of shape as an infinity sign. However, when the harmonical variation of the chordwise elongation is replaced by a narrow-banded Gaussian excitation with the same standard deviation and a centre frequency equal to the circular frequency of the harmonic excitation...
Confidence bounds for nonlinear dose-response relationships
DEFF Research Database (Denmark)
Baayen, C; Hougaard, P
2015-01-01
. It is well known that Wald confidence intervals are based on linear approximations and are often unsatisfactory in nonlinear models. Apart from incorrect coverage rates, they can be unreasonable in the sense that the lower confidence limit of the difference to placebo can be negative, even when an overall...... test shows a significant positive effect. Bootstrap confidence intervals solve many of the problems of the Wald confidence intervals but are computationally intensive and prone to undercoverage for small sample sizes. In this work, we propose a profile likelihood approach to compute confidence...... intervals for the dose-response curve. These confidence bounds have better coverage than Wald intervals and are more precise and generally faster than bootstrap methods. Moreover, if monotonicity is assumed, the profile likelihood approach takes this automatically into account. The approach is illustrated...
Crystal growth in fluid flow: Nonlinear response effects
Peng, H. L.; Herlach, D. M.; Voigtmann, Th.
2017-08-01
We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.
Large nonlocal nonlinear optical response of castor oil
Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.
2009-09-01
The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.
Nonlinear Allometric Equation for Crop Response to Soil Salinity
Directory of Open Access Journals (Sweden)
E. Misle
2015-06-01
Full Text Available Crop response to soil salinity has been extensively studied, from empirical works to modelling approach, being described by different equations, first as a piecewise linear model. The equation employed can differ with actual response, causing miscalculation in practical situations, particularly at the higher extremes of the curve. The aim of this work is to propose a new equation, which allows determining the full response to salinity of plant species and to provide a verification using different experimental data sets. A new nonlinear equation is exposed supported by the allometric approach, in which the allometric exponent is salinity-dependent and decreases with the increase in relative salinity. A conversion procedure of parameters of the threshold-slope model is presented; also, a simple procedure for estimating the maximum salinity (zero-yield point when data sets are incomplete is exposed. The equation was tested in a wide range of experimental situations, using data sets from published works, as well as new measurements on seed germination. The statistical indicators of quality (R2, absolute sum of squares and standard deviation of residuals showed that the equation accurately fits the tested empirical results. The new equation for determining crop response to soil salinity is able to follow the response curve of any crop with remarkable accuracy and flexibility. Remarkable characteristics are: a maximum at minimum salinity, a maximum salinity point can be found (zero-yield depending on the data sets, and a meaningful inflection point, as well as the two points at which the slope of the curve equals unity, can be found.
Modeling of the nonlinear resonant response in sedimentary rocks
Energy Technology Data Exchange (ETDEWEB)
Ten Cate, James A [Los Alamos National Laboratory; Shankland, Thomas J [Los Alamos National Laboratory; Vakhnenko, Vyacheslav O [NON LANL; Vakhnenko, Oleksiy [NON LANL
2009-04-03
We suggest a model for describing a wide class of nonlinear and hysteretic effects in sedimentary rocks at longitudinal bar resonance. In particular, we explain: hysteretic behaviour of a resonance curve on both its upward and downward slopes; linear softening of resonant frequency with increase of driving level; gradual (almost logarithmic) recovery of resonant frequency after large dynamical strains; and temporal relaxation of response amplitude at fixed frequency. Starting with a suggested model, we predict the dynamical realization of end-point memory in resonating bar experiments with a cyclic frequency protocol. These theoretical findings were confirmed experimentally at Los Alamos National Laboratory. Sedimentary rocks, particularly sandstones, are distinguished by their grain structure in which each grain is much harder than the intergrain cementation material. The peculiarities of grain and pore structures give rise to a variety of remarkable nonlinear mechanical properties demonstrated by rocks, both at quasistatic and alternating dynamic loading. Thus, the hysteresis earlier established for the stress-strain relation in samples subjected to quasistatic loading-unloading cycles has also been discovered for the relation between acceleration amplitude and driving frequency in bar-shaped samples subjected to an alternating external drive that is frequency-swept through resonance. At strong drive levels there is an unusual, almost linear decrease of resonant frequency with strain amplitude, and there are long-term relaxation phenomena such as nearly logarithmic recovery (increase) of resonant frequency after the large conditioning drive has been removed. In this report we present a short sketch of a model for explaining numerous experimental observations seen in forced longitudinal oscillations of sandstone bars. According to our theory a broad set of experimental data can be understood as various aspects of the same internally consistent pattern. Furthermore
Biodynamic imaging for phenotypic profiling of three-dimensional tissue culture
Sun, Hao; Merrill, Daniel; An, Ran; Turek, John; Matei, Daniela; Nolte, David D.
2017-01-01
Three-dimensional (3-D) tissue culture represents a more biologically relevant environment for testing new drugs compared to conventional two-dimensional cancer cell culture models. Biodynamic imaging is a high-content 3-D optical imaging technology based on low-coherence interferometry and digital holography that uses dynamic speckle as high-content image contrast to probe deep inside 3-D tissue. Speckle contrast is shown to be a scaling function of the acquisition time relative to the persistence time of intracellular transport and hence provides a measure of cellular activity. Cellular responses of 3-D multicellular spheroids to paclitaxel are compared among three different growth techniques: rotating bioreactor (BR), hanging-drop (HD), and nonadherent (U-bottom, UB) plate spheroids, compared with ex vivo living tissues. HD spheroids have the most homogeneous tissue, whereas BR spheroids display large sample-to-sample variability as well as spatial heterogeneity. The responses of BR-grown tumor spheroids to paclitaxel are more similar to those of ex vivo biopsies than the responses of spheroids grown using HD or plate methods. The rate of mitosis inhibition by application of taxol is measured through tissue dynamics spectroscopic imaging, demonstrating the ability to monitor antimitotic chemotherapy. These results illustrate the potential use of low-coherence digital holography for 3-D pharmaceutical screening applications.
Simulations of the Ocean Response to a Hurricane: Nonlinear Processes
Zedler, Sarah E.
2009-10-01
Superinertial internal waves generated by a tropical cyclone can propagate vertically and laterally away from their local generation site and break, contributing to turbulent vertical mixing in the deep ocean and maintenance of the stratification of the main thermocline. In this paper, the results of a modeling study are reported to investigate the mechanism by which superinertial fluctuations are generated in the deep ocean. The general properties of the superinertial wave wake were also characterized as a function of storm speed and central latitude. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model (OGCM) was used to simulate the open ocean response to realistic westward-tracking hurricane-type surface wind stress and heat and net freshwater buoyancy forcing for regions representative of midlatitudes in the Atlantic, the Caribbean, and low latitudes in the eastern Pacific. The model had high horizontal [Δ(x, y) = 1/6°] and vertical (Δz = 5 m in top 100 m) resolution and employed a parameterization for vertical mixing induced by shear instability. In the horizontal momentum equation, the relative size of the nonlinear advection terms, which had a dominant frequency near twice the inertial, was large only in the upper 200 m of water. Below 200 m, the linear momentum equations obeyed a linear balance to 2%. Fluctuations at nearly twice the inertial frequency (2f) were prevalent throughout the depth of the water column, indicating that these nonlinear advection terms in the upper 200 m forced a linear mode below at nearly twice the inertial frequency via vorticity conservation. Maximum variance at 2f in horizontal velocity occurred on the south side of the track. This was in response to vertical advection of northward momentum, which in the north momentum equation is an oscillatory positive definite term that constituted a net force to the south at a frequency near 2f. The ratio of this term to the Coriolis force was larger on the
Tailoring the nonlinear response of MEMS resonators using shape optimization
DEFF Research Database (Denmark)
Li, Lily L.; Polunin, Pavel M.; Dou, Suguang
2017-01-01
We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical (MEMS) resonators using shape optimization methods. This approach generates beams with non-uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set of bridge-type mic......We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical (MEMS) resonators using shape optimization methods. This approach generates beams with non-uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set of bridge...
Nonlinear response of superconductors to alternating fields and currents
Energy Technology Data Exchange (ETDEWEB)
McDonald, Jason [Iowa State Univ., Ames, IA (United States)
1997-10-08
This report discusses the following topics on superconductivity: nonlinearities in hard superconductors such as surface impedance of a type II superconductimg half space and harmonic generation and intermodulation due to alternating transport currents; and nonlinearities in superconducting weak links such as harmonic generation by a long Josephson Junction in a superconducting slab.
Nonlinear dynamic response of beam and its application in nanomechanical resonator
Institute of Scientific and Technical Information of China (English)
Yin Zhang; Yun Liu; Kevin D. Murphy
2012-01-01
Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application.Two categories of the tension-dominant and curvaturedominant nonlinearities are analyzed.The dynamic nonlinearity of four beam structures of nanomechanical resonator is quantitatively studied via a dimensional analysis approach.The dimensional analysis shows that for the nanomechanical resonator of tension-dominant nonlinearity,its dynamic nonlinearity decreases monotonically with increasing axial loading and increases monotonically with the increasing aspect ratio of length to thickness; the dynamic nonlinearity can only result in the hardening effects.However,for the nanomechanical resonator of the curvature-dominant nonlinearity,its dynamic nonlinearity is only dependent on axial loading.Compared with the tension-dominant nonlinearity,the curvature-dominant nonlinearity increases monotonically with increasing axial loading; its dynamic nonlinearity can result in both hardening and softening effects.The analysis on the dynamic nonlinearity can be very helpful to the tuning application of the nanomechanical resonator.
Nonlinear Simulation of Plasma Response to the NSTX Error Field
Breslau, J. A.; Park, J. K.; Boozer, A. H.; Park, W.
2008-11-01
In order to better understand the effects of the time-varying error field in NSTX on rotation braking, which impedes RWM stabilization, we model the plasma response to an applied low-n external field perturbation using the resistive MHD model in the M3D code. As an initial benchmark, we apply an m=2, n=1 perturbation to the flux at the boundary of a non-rotating model equilibrium and compare the resulting steady-state island sizes with those predicted by the ideal linear code IPEC. For sufficiently small perturbations, the codes agree; for larger perturbations, the nonlinear correction yields an upper limit on the island width beyond which stochasticity sets in. We also present results of scaling studies showing the effects of finite resistivity on island size in NSTX, and of time-dependent studies of the interaction between these islands and plasma rotation. The M3D-C1 code is also being evaluated as a tool for this analysis; first results will be shown. J.E. Menard, et al., Nucl. Fus. 47, S645 (2007). W. Park, et al., Phys. Plasmas 6, 1796 (1999). J.K. Park, et al., Phys. Plasmas 14, 052110 (2007). S.C. Jardin, et al., J. Comp. Phys. 226, 2146 (2007).
Third-order nonlinear optical response of push-pull azobenzene polymers
Papagiannouli, I.; Iliopoulos, K.; Gindre, D.; Sahraoui, B.; Krupka, O.; Smokal, V.; Kolendo, A.; Couris, S.
2012-12-01
The nonlinear optical response of a series of azo-containing side-chain polymers is investigated using Z-scan technique, employing 35 ps and 4 ns laser pulses, at 532 nm. The systems were found to exhibit strong nonlinear optical response, dominated by nonlinear refraction. In all cases, the nonlinear absorption and refraction have been determined and are compared with those of disperse red 1 considered as reference. The corresponding third-order susceptibilities χ(3) were determined to be as large as 10-7 and 10-5 esu under ps and ns laser excitation, respectively. Finally, the results are discussed and compared with other reported data.
Zhu, F. H.; Fu, Y. M.
2008-12-01
By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.
Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals.
Lepeshkin, Nick N; Schweinsberg, Aaron; Piredda, Giovanni; Bennink, Ryan S; Boyd, Robert W
2004-09-17
We describe a new type of artificial nonlinear optical material composed of a one-dimensional metal-dielectric photonic crystal. Because of the resonant nature of multiple Bragg reflections, the transmission within the transmission band can be quite large, even though the transmission through the same total thickness of bulk metal would be very small. This procedure allows light to penetrate into the highly nonlinear metallic layers, leading to a large nonlinear optical response. We present experimental results for a Cu/SiO(2) crystal which displays a strongly enhanced nonlinear optical response (up to 12X) in transmission.
Harmonic response of a class of finite extensibility nonlinear oscillators
Febbo, M.
2011-06-01
Finite extensibility oscillators are widely used to simulate those systems that cannot be extended to infinity. For example, they are used when modelling the bonds between molecules in a polymer or DNA molecule or when simulating filaments of non-Newtonian liquids. In this paper, the dynamic behavior of a harmonically driven finite extensibility oscillator is presented and studied. To this end, the harmonic balance method is applied to determine the amplitude-frequency and amplitude-phase equations. The distinguishable feature in this case is the bending of the amplitude-frequency curve to the frequency axis, making it asymptotically approach the limit of maximum elongation of the oscillator, which physically represents the impossibility of the system reaching this limit. Also, the stability condition that defines stable and unstable steady-state solutions is derived. The study of the effect of the system parameters on the response reveals that a decreasing value of the damping coefficient or an increasing value of the excitation amplitude leads to the appearance of a multi-valued response and to the existence of a jump phenomenon. In this sense, the critical amplitude of the excitation, which means here a certain value of external excitation that results in the occurrence of jump phenomena, is also derived. Numerical experiments to observe the effects of system parameters on the frequency-amplitude response are performed and compared with analytical calculations. At a low value of the damping coefficient or at a high value of excitation amplitude, the agreement is poor for low frequencies but good for high frequencies. It is demonstrated that the disagreement is caused by the neglect of higher-order harmonics in the analytical formulation. These higher-order harmonics, which appear as distinguishable peaks at certain values in the frequency response curves, are possible to calculate considering not the linearized frequency of the oscillator but its actual
Differences in the Financial Management of Conventional, Organic, and Biodynamic Farms
Directory of Open Access Journals (Sweden)
Vlašicová Eliška
2015-09-01
Full Text Available The financial management of conventional, organic, and biodynamic farms was evaluated and compared. It is a highly specific issue filling in the gap namely in the area of economic research of biodynamic agriculture. Biodynamic agriculture is a less widespread concept of agriculture, the management of which meets the requirements of organic agriculture. Organic agriculture has still been gaining in importance in the Czech Republic, the number of organic farms has been growing, and availability of organic products has increased, too. Of the Czech farms receiving subsidies from the EU or state subsidies in 2007-2012, a total of 389 were selected for analysis (273 of which were conventional farms, 112 organic farms, and 4 farms were engaged in biodynamic agriculture. Subsidies, Total Costs, Operating Revenue, Profit and Gross Value Added indicators were selected for evaluation. The individual indicators within groups of companies were compared by means of a t-test. The analysis revealed significant differences in the economic indicators of individual types of farms. It was observed that organic enterprises have better economic results than conventional and biodynamic businesses. Subsidies help all types of farms achieve better results. We may hence assume dependence of these farms on subsidies.
Identification of organic and biodynamic grape and wine producers in southern Brazil
Directory of Open Access Journals (Sweden)
Medeiros Narjara
2014-01-01
Full Text Available The concern about health and environmental aspects are increasingly present in our society. In 1976 José Lutzemberger publishes the first Brazilian ecological manifesto. In 2003 the Law 10.831 is approved, which conceptualizes and defines organic agriculture. In 1982, the first Biodynamic Agriculture meeting in Brazil happens, where the construction of the basis for the implementation of biodynamic in Brazilian agriculture started. In 1995 the Brazilian Association of Biodynamic Agriculture is created. The search for organic products – that doesn't use artificial mineral and chemical fertilizers and exploits fertility as a way of fighting diseases and pests – and biodynamic products in the agricultural production unit is understood as a kind of organism also take place in the wine industry. But knowing which producers are involved in this type of activity is still a difficult task for the community, especially due to the informality of some agents. Thus, this paper proposes to identify organic and biodynamic wine producers in southern Brazil; as well as the tools and policies which have encouraged farmers to adopt these practices. Finally, understanding the main obstacles producers find dealing with certifications mechanisms. This region was chosen for being the largest grape and wine producing in the country.
Nonlinear optical response in Kronig-Penney type graphene superlattice in terahertz regime
Jiang, Lijuan; Yuan, Rui-Yang; Zhao, Xin; Lv, Jing; Yan, Hui
2015-05-01
The terahertz nonlinear optical response in Kronig-Penney (KP) type graphene superlattice is demonstrated. The single-, triple- and quintuple-frequencies of the fifth-order nonlinear responses are investigated for different frequencies and temperatures with the angle φ along the periodicity of the superlattice toward the external field tuning from 0 to π/2. The results show that the fifth-order nonlinear optical conductance of graphene superlattice is enhanced in the terahertz regime when φ = 0, i.e. an external field is applied along the periodicity of the superlattice. The fifth-order nonlinear optical conductances at φ = 0 for different frequencies and temperatures are calculated. The results show that the nonlinear optical conductance is enhanced in low frequency and low temperature. Our results suggest that KP type graphene superlattices are preferred structures for developing graphene-based nonlinear photonics and optoelectronics devices.
Nonlinear response of the quantum Hall system to a strong electromagnetic radiation
Avetissian, H. K.; Mkrtchian, G. F.
2016-12-01
We study nonlinear response of a quantum Hall system in semiconductor-hetero-structures via third harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects remain robust against the significant broadening of Landau levels. We predict realization of an experiment through the observation of the third harmonic signal and Faraday rotation angle, which are within the experimental feasibility.
Modeling of nonlinear responses for reciprocal transducers involving polarization switching
DEFF Research Database (Denmark)
Willatzen, Morten; Wang, Linxiang
2007-01-01
Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled....... We present numerical results for the reciprocal-transducer system and identify the influence of nonlinearities on the system dynamics at high and low frequency as well as electrical impedance effects due to tuning by a series inductance. It is found that nonlinear effects are not important at high...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...
Parametric characteristic of the random vibration response of nonlinear systems
Institute of Scientific and Technical Information of China (English)
Xing-Jian Dong; Zhi-Ke Peng; Wen-Ming Zhang; Guang Meng; Fu-Lei Chu
2013-01-01
Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of non-linear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density (PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.
Effective Response of Nonlinear Composite under External AC and DC Electric Field
Institute of Scientific and Technical Information of China (English)
LIU Ye; LIANG Fang-Chu; SHEN Hong-Liang
2005-01-01
A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα = εαE + xα|E|2E. Under the external AC and DC electric field Eapp = Eα(1 + sinwt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute limit.
Nonlinear response to a click in a time-domain model of the mammalian ear.
Meaud, Julien; Lemons, Charlsie
2015-07-01
In this paper, a state-space implementation of a previously developed frequency-domain model of the cochlea is coupled to a lumped parameter model of the middle ear. After validation of the time-domain model by comparison of its steady-state response to results obtained with a frequency-domain formulation, the nonlinear response of the cochlea to clicks is investigated. As observed experimentally, a compressive nonlinearity progressively develops within the first few cycles of the response of the basilar membrane (BM). Furthermore, a time-frequency analysis shows that the instantaneous frequency of the BM response to a click progressively approaches the characteristic frequency. This phenomenon, called glide, is predicted at all stimulus intensities, as in experiments. In typical experiments with sensitive animals, the click response is characterized by a long ringing and the response envelope includes several lobes. In order to achieve similar results, inhomogeneities are introduced in the cochlear model. Simulations demonstrate the strong link between characteristics of the frequency response, such as dispersion and frequency-dependent nonlinearity, and characteristics of the time-domain response, such as the glide and a time-dependent nonlinearity. The progressive buildup of cochlear nonlinearity in response to a click is shown to be a consequence of the glide and of frequency-dependent nonlinearity.
Z-scan for thin media with more than one nonlocal nonlinear response.
Irivas, B A Martinez; Carrasco, M L Arroyo; Otero, M M Mendez; García, R Ramos; Castillo, M D Iturbe
2016-06-13
A model to characterize the response of a thin media that can exhibit more than one nonlocal nonlinear response when it is illuminated with a Gaussian beam in a z-scan experiment is proposed. The model considers that these nonlocal contributions can be treated as independent contributions in the refractive or absorptive nonlinear response. Numerical results for two nonlocal nonlinear contributions with different magnitudes between them are presented. Experimental results obtained from a hydrogenated amorphous silicon sample are used to corroborate this model.
INVESTIGATION OF RANDOM RESPONSE OF ROTATIONAL SHELL WHEN CONSIDERING GEOMETRIC NONLINEAR BEHAVIOUR
Institute of Scientific and Technical Information of China (English)
GAO Shi-qiao(高世桥); JIN Lei(金磊); H.J.Niemann; LIU Hai-peng(刘海鹏)
2001-01-01
An iteration method of statistic linearization (IMSL) is presented. By this method, an equivalent linear term was formed in geometric relation and then an equivalent stiffness matrix for nonlinear term in vibration equation was established. Using the method to solve the statistic linear vibration equations, the effect of geometric nonlinearity on the random response of rotational shell is obtained.
Measurements of dynamical response of non-linear systems. How hard can it be?
DEFF Research Database (Denmark)
Darula, Radoslav
2015-01-01
Measurements of a dynamical response of linear system are widely used in praxis, they are standardized and well known. On the other hand, for the non-linear systems the principle of superposition can’t be applied and also the non-linear systems can excite the harmonics or undergo jump phenomena...
Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole
2011-01-01
It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is able...
Ren, Shijin
2003-01-01
Response surface models based on multiple linear regression had previously been developed for the toxicity of aromatic chemicals to Tetrahymena pyriformis. However, a nonlinear relationship between toxicity and one of the molecular descriptors in the response surface model was observed. In this study, response surface models were established using six nonlinear modeling methods to handle the nonlinearity exhibited in the aromatic chemicals data set. All models were validated using the method of cross-validation, and prediction accuracy was tested on an external data set. Results showed that response surface models based on locally weighted regression scatter plot smoothing (LOESS), multivariate adaptive regression splines (MARS), neural networks (NN), and projection pursuit regression (PPR) provided satisfactory power of model fitting and prediction and had similar applicabilities. The response surface models based on nonlinear methods were difficult to interpret and conservative in discriminating toxicity mechanisms.
Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads
Directory of Open Access Journals (Sweden)
M. Kotzev
2017-09-01
Full Text Available In this paper the equivalent circuit modeling of a nonlinearly loaded loop antenna and its transient responses to HPEM field excitations are investigated. For the circuit modeling the general strategy to characterize the nonlinearly loaded antenna by a linear and a nonlinear circuit part is pursued. The linear circuit part can be determined by standard methods of antenna theory and numerical field computation. The modeling of the nonlinear circuit part requires realistic circuit models of the nonlinear loads that are given by Schottky diodes. Combining both parts, appropriate circuit models are obtained and analyzed by means of a standard SPICE circuit simulator. It is the main result that in this way full-wave simulation results can be reproduced. Furthermore it is clearly seen that the equivalent circuit modeling offers considerable advantages with respect to computation speed and also leads to improved physical insights regarding the coupling between HPEM field excitation and nonlinearly loaded loop antenna.
Non-linear dynamic response of a wind turbine blade
Chopra, I.; Dugundji, J.
1979-01-01
The paper outlines the nonlinear dynamic analysis of an isolated three-degree flap-lag-feather wind turbine blade under a gravity field and with shear flow. Lagrangian equations are used to derive the nonlinear equations of motion of blade for arbitrarily large angular deflections. The limit cycle analysis for forced oscillations and the determination of the principal parametric resonance of the blade due to periodic forces from the gravity field and wind shear are performed using the harmonic balance method. Results are obtained first for a two-degree flap-lag blade, then the effect of the third degree of freedom (feather) is studied. The self-excited flutter solutions are obtained for a uniform wind and with gravity forces neglected. The effects of several parameters on the blade stability are examined, including coning angle, structural damping, Lock number, and feather frequency. The limit cycle flutter solution of a typical configuration shows a substantial nonlinear softening spring behavior.
Ernst Haeckel's biodynamics 1866 and the occult basis of organic farming.
Kutschera, Ulrich
2016-07-02
One hundred and 50 years ago (Sept. 1866), Ernst Haeckel published a monograph entitled General Morphology of Organisms, wherein key terms, such as Protista, Monera, ontogeny, phylogeny, ecology and the 'biogenetic law' where introduced. In addition, Haeckel coined the word "biodynamics" as a synonym for "general physiology." In contrast, Rudolf Steiner's "biodynamic agriculture," which originated in 1924, and was promoted via Ehrenfried Pfeiffer's book of 1938 with the same title, is an occult pseudoscience still popular today. The misuse of Haeckel's term to legitimize disproven homeopathic principles and esoteric rules within the context of applied plant research is unacceptable.
BIODYNAMIC PREPARATIONS – AN ALTERNATIVE IN THE SUSTAINABLE AGRICULTURAL SYSTEM
Directory of Open Access Journals (Sweden)
Veselka Vlahova
2015-09-01
Full Text Available Biodynamics can be understood as a combination of “biological dynamic” agriculture practices. Sheiner (1924 recommended eight preparations; two of them are stirred in water in a specific way and sprayed on fields and crops, the other six preparations were added to farmyard manure, slurry, liquid manure, plant litter compost and other type of organic materials in order to improve their fertilizing properties. The preparation 500 consist of high quality FYM (farmyard manure, fresh or aged, put in bovine horn, then buried at the end of September and dug up in April; after that it can be stored under controlled conditions for some months and finally sprayed to the soil. The Podolinsky’s method is actually based on frequent polyphytic green manuring, crop rotation and conservative soil tillage plus the use of the new “Prepared 500” preparation. The new Podolinsky’s preparation derives in fact from the combination, via a specific procedure, of the original Preparation 500 + all the compost preparations, as provided by Steiner.
Nonlinear Optical Response of Conjugated Polymer to Electric Field
Institute of Scientific and Technical Information of China (English)
ZHOU Yu-fang; ZHUANG De-xin; CUI Bin
2005-01-01
The organic π-conjugated polymers are of major interest materials for the use in electro-optical and nonlinear optical devices. In this work, for a selected polyacetylene chain, the optical absorption spectra in UV/Vis regime as well as the linear polarizabilitiy and nonlinear hyperpolarizability are calculated by using quantum chemical ab initio and semiempirical methods. The relationship of its optical property to electric field is obtained. Some physical mechanism of electric field effect on molecular optical property is discussed by means of electron distribution and intramolecular charge transfer.
Cardiovascular Response Identification Based on Nonlinear Support Vector Regression
Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.
This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.
Nonlinear dynamical model and response of avian cranial kinesis.
Meekangvan, Preeda; A Barhorst, Alan; Burton, Thomas D; Chatterjee, Sankar; Schovanec, Lawrence
2006-05-01
All modern birds have kinetic skulls in which the upper bill can move relative to the braincase, but the biomechanics and motion dynamics of cranial kinesis in birds are poorly understood. In this paper, we model the dynamics of avian cranial kinesis, such as prokinesis and proximal rhynchokinesis in which the upper jaw pivots around the nasal-frontal (N-F) hinge. The purpose of this paper is to present to the biological community an approach that demonstrates the application of sophisticated predictive mathematical modeling tools to avian kinesis. The generality of the method, however, is applicable to the advanced study of the biomechanics of other skeletal systems. The paper begins with a review of the relevant biological literature as well as the essential morphology of avian kinesis, especially the mechanical coupling of the upper and lower jaw by the postorbital ligament. A planar model of the described bird jaw morphology is then developed that maintains the closed kinematic topology of the avian jaw mechanism. We then develop the full nonlinear equations of motion with the assumption that the M. protractor pterygoideus and M. depressor mandibulae act on the quadrate as a pure torque, and the nasal frontal hinge is elastic with damping. The mechanism is shown to be a single degree of freedom device due to the holonomic constraints present in the quadrate-jugal bar-upper jaw-braincase-quadrate kinematic chain as well as the quadrate-lower jaw-postorbital ligament-braincase-quadrate kinematic chain. The full equations are verified via simulation and animation using the parameters of a Grey Heron (Ardea cinerea). Next we develop a simplified analytical model of the equations by power series expansion. We demonstrate that this model reproduces the dynamics of the full model to a high degree of fidelity. We proceed to use the harmonic balance technique to develop the frequency response characteristics of the jaw mechanism. It is shown that this avian cranial
Tuning the nonlinear response of (6,5)-enriched single-wall carbon nanotubes dispersions
Aréstegui, O. S.; Silva, E. C. O.; Baggio, A. L.; Gontijo, R. N.; Hickmann, J. M.; Fantini, C.; Alencar, M. A. R. C.; Fonseca, E. J. S.
2017-04-01
Ultrafast nonlinear optical properties of (6,5)-enriched single-wall carbon nanotubes (SWCNTs) dispersions are investigated using the thermally managed Z-scan technique. As the (6,5) SWCNTs presented a strong resonance in the range of 895-1048 nm, the nonlinear refractive index (n2) and the absorption coefficients (β) measurements were performed tuning the laser exactly around absorption peak of the (6,5) SWCNTs. It is observed that the nonlinear response is very sensitive to the wavelength and the spectral behavior of n2 is strongly correlated to the tubes one-photon absorption band, presenting also a peak when the laser photon energy is near the tube resonance energy. This result suggests that a suitable selection of nanotubes types may provide optimized nonlinear optical responses in distinct regions of the electromagnetic spectrum. Analysis of the figures of merit indicated that this material is promising for ultrafast nonlinear optical applications under near infrared excitation.
Nonlinear response of metallic acGNR to an elliptically-polarized terahertz excitation field
Wang, Yichao
2016-01-01
We present a theoretical description of the nonlinear response induced by an elliptically-polarized terahertz beam normally-incident on intrinsic and extrinsic metallic armchair graphene nanorib- bons. Our results show that using a straightforward experimental setup, it should be possible to observe novel polarization-dependent nonlinearities at low excitation field strengths of the or- der of 10 4 V/m. At low temperatures the Kerr nonlinearities in extrinsic nanoribbons persist to significantly higher excitation frequencies than they do for linear polarizations, and at room tem- peratures, the third-harmonic nonlinearities are enhanced by 2-3 orders of magnitude. Finally, the Fermi-level and temperature dependence of the nonlinear response is characterized.
On the effects of nonlinearities in room impulse response measurements with exponential sweeps
DEFF Research Database (Denmark)
Ciric, Dejan; Markovic, Milos; Mijic, Miomir
2013-01-01
In room impulse response measurements, there are some common disturbances that affect the measured results. These disturbances include nonlinearity, noise and time variance. In this paper, the effects of nonlinearities in the measurements with exponential sweep-sine signals are analyzed from...... different perspectives. The analysis combines theoretical approach, simulations and measurements. The focus is on distortion artifacts in the causal part of the impulse response and their effects on room acoustical parameters. The results show that the sweep-sine method is vulnerable to a certain extent...... to nonlinearities from a theoretical standpoint, but the consequences of this vulnerability are reduced in the responses measured in practice. However, due to irretrievable contamination of the impulse responses, the nonlinearities (especially strong ones) should be avoided....
A Novel Method for Prediction of Nonlinear Aeroelastic Responses
2010-01-01
Brian A. Freno Graduate Student, Texas A&M University Publications Journal articles: 1. Gargoloff, J. I. and Cizmas, P. G. A., “Mesh Generation and...papers: 1. Cizmas, P. G. A., Freno , B. A., Brenner, T. A., Worley, G. D., “A High-Fidelity Nonlinear Aeroelastic Model for Aircraft with Large Wing
Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren
2005-01-01
Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.
Synthesis, characterization and non-linear optical response of organophilic carbon dots
Bourlinos, Athanasios B.
2013-09-01
For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.
Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin
2016-08-01
This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.
Nonlinear optical response of a two-dimensional atomic crystal.
Merano, Michele
2016-01-01
The theory of Bloembergen and Pershan for the light waves at the boundary of nonlinear media is extended to a nonlinear two-dimensional (2D) atomic crystal, i.e., a single planar atomic lattice, placed between linear bulk media. The crystal is treated as a zero-thickness interface, a real 2D system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. As a particular case that contains all the essential physical features, second-order harmonic generation is considered. The theory, due to its simplicity that stems from the special character of a single planar atomic lattice, is able to elucidate and explain the rich experimental details of harmonic generation from a 2D atomic crystal.
Terahertz-Driven Nonlinear Spin Response of Antiferromagnetic Nickel Oxide
Baierl, S.; Mentink, J. H.; Hohenleutner, M.; Braun, L.; Do, T.-M.; Lange, C.; Sell, A.; Fiebig, M.; Woltersdorf, G.; Kampfrath, T.; Huber, R.
2016-11-01
Terahertz magnetic fields with amplitudes of up to 0.4 Tesla drive magnon resonances in nickel oxide while the induced dynamics is recorded by femtosecond magneto-optical probing. We observe distinct spin-mediated optical nonlinearities, including oscillations at the second harmonic of the 1 THz magnon mode. The latter originate from coherent dynamics of the longitudinal component of the antiferromagnetic order parameter, which are probed by magneto-optical effects of second order in the spin deflection. These observations allow us to dynamically disentangle electronic from lattice-related contributions to magnetic linear birefringence and dichroism—information so far only accessible by ultrafast THz spin control. The nonlinearities discussed here foreshadow physics that will become essential in future subcycle spin switching.
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2014-01-01
Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874
Heirloom biodynamic seeds network rescue, conservation and multiplication of local seeds in Brazil
Jovchelevich, Pedro
2014-01-01
Structuring a network organic and biodynamic seed involving farmers in the central- southern Brazil. Training, participatory breeding, edition of publications, fairs of exchange seeds, a processing unit and assessment of seed quality, commercial seed multiplication with emphasis on vegetables. This network has garanteed the autonomy of farmers in seed production and enriched agrobiodiversity through exchanges of seed.
Parr, Wendy V; Valentin, Dominique; Reedman, Phil; Grose, Claire; Green, James A
2017-01-01
The study's aim was to investigate a central tenet of biodynamic philosophy as applied to wine tasting, namely that wines taste different in systematic ways on days determined by the lunar cycle. Nineteen New Zealand wine professionals tasted blind 12 Pinot noir wines at times determined within the biodynamic calendar for wine drinkers as being favourable (Fruit day) and unfavourable (Root day) for wine tasting. Tasters rated each wine four times, twice on a Fruit day and twice on a Root day, using 20 experimenter-provided descriptors. Wine descriptors spanned a range of varietal-relevant aroma, taste, and mouthfeel characteristics, and were selected with the aim of elucidating both qualitative and quantitative aspects of each wine's perceived aromatic, taste, and structural aspects including overall wine quality and liking. A post-experimental questionnaire was completed by each participant to determine their degree of knowledge about the purpose of the study, and their awareness of the existence of the biodynamic wine drinkers' calendar. Basic wine physico-chemical parameters were determined for the wines tasted on each of a Fruit day and a Root day. Results demonstrated that the wines were judged differentially on all attributes measured although type of day as determined by the biodynamic calendar for wine drinkers did not influence systematically any of the wine characteristics evaluated. The findings highlight the importance of testing experimentally practices that are based on anecdotal evidence but that lend themselves to empirical investigation.
Energy Technology Data Exchange (ETDEWEB)
Casado-Martinez, M. Carmen, E-mail: c.casado-martinez@nhm.ac.u [Department of Zoology, The Natural History Museum, Cromwell Rd, London SW7 5BD (United Kingdom); Smith, Brian D. [Department of Zoology, The Natural History Museum, Cromwell Rd, London SW7 5BD (United Kingdom); DelValls, T. Angel [Unesco UNITWIN Wicop Chair, Department of Physical-Chemistry, University of Cadiz, Poligono Industrial Rio San Pedro s/n, C.P. 11510 Puerto Real (Cadiz) (Spain); Luoma, Samuel N. [John Muir Institute of the Environment, University of California at Davis, Davis, CA 95616 (United States); Rainbow, Philip S. [Department of Zoology, The Natural History Museum, Cromwell Rd, London SW7 5BD (United Kingdom)
2009-10-15
The use of biodynamic models to understand metal uptake directly from sediments by deposit-feeding organisms still represents a special challenge. In this study, accumulated concentrations of Cd, Zn and Ag predicted by biodynamic modelling in the lugworm Arenicola marina have been compared to measured concentrations in field populations in several UK estuaries. The biodynamic model predicted accumulated field Cd concentrations remarkably accurately, and predicted bioaccumulated Ag concentrations were in the range of those measured in lugworms collected from the field. For Zn the model showed less but still good comparability, accurately predicting Zn bioaccumulation in A. marina at high sediment concentrations but underestimating accumulated Zn in the worms from sites with low and intermediate levels of Zn sediment contamination. Therefore, it appears that the physiological parameters experimentally derived for A. marina are applicable to the conditions encountered in these environments and that the assumptions made in the model are plausible. - Biodynamic modelling predicts accumulated field concentrations of Ag, Cd and Zn in the deposit-feeding polychaete Arenicola marina.
Measurement of nonlinear elastic response in rock by the resonant bar method
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A. [Los Alamos National Lab., NM (United States); Rasolofosaon, P.; Zinszner, B. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)
1993-04-01
In this work we are studying the behavior of the fundamental (Young`s) mode resonant peak as a function of drive amplitude in rock samples. Our goal from these studies is to obtain nonlinear moduli for many rock types, and to study the nonlinear moduli as a function of water saturation and other changes in physical properties. Measurements were made on seven different room dry rock samples. For one sample measurements were taken at 16 saturation levels between 1 and 98%. All samples display a ``softening`` nonlinearity, that is, the resonant frequency shifts downward with increasing drive amplitude. In extreme cases, the resonant frequency changes by as much as 25% over a strain interval of 10{sup {minus}7} to {approximately}4 {times} 10{sup {minus}5}. Measurements indicate that the nonlinear response is extremely sensitive to saturation. Estimates of a combined cubic and quartic nonlinear parameter {Gamma} range from approximately {minus}300 to {minus}10{sup 9} for the rock samples.
Manimala, James M; Sun, C T
2016-06-01
The amplitude-dependent dynamic response in acoustic metamaterials having nonlinear local oscillator microstructures is studied using numerical simulations on representative discrete mass-spring models. Both cubically nonlinear hardening and softening local oscillator cases are considered. Single frequency, bi-frequency, and wave packet excitations at low and high amplitude levels were used to interrogate the models. The propagation and attenuation characteristics of harmonic waves in a tunable frequency range is found to correspond to the amplitude and nonlinearity-dependent shifts in the local resonance bandgap for such nonlinear acoustic metamaterials. A predominant shift in the propagated wave spectrum towards lower frequencies is observed. Moreover, the feasibility of amplitude and frequency-dependent selective filtering of composite signals consisting of individual frequency components which fall within propagating or attenuating regimes is demonstrated. Further enrichment of these wave manipulation mechanisms in acoustic metamaterials using different combinations of nonlinear microstructures presents device implications for acoustic filters and waveguides.
NONLINEAR RESPONSES OF GAMMA —RAY DOSIMETERS
Institute of Scientific and Technical Information of China (English)
罗达玲; 杨健明; 等
1994-01-01
Either sublinear or supralinear responses of dosimeters to γ-ray can be described by a response function derived from statistical Poisson distribution.The characteristic parameters of the function determine linearity,sublinearity and supralinearlty in their responses.The experimental data of gamma dose-responses of alanine ESR dosimeters film dosimeters.LiF(Mg,Cu,P) and LiF(Mg,Ti) thermoluminescence dosimeters are used to test the response function.
Institute of Scientific and Technical Information of China (English)
F. H. Zhu; Y. M. Fu
2008-01-01
By considering the effect of interfacial damage and using the variation principle, three-dimensional nonli-near dynamic governing equations of the laminated plates with interfacial damage are derived based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite dif-ference method, and the results are validated by compari-son with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.
1993-01-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.
1993-06-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr. [Los Alamos National Lab., NM (United States)
1993-11-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Sudarshanam, V. S.; Claus, Richard O.
1993-03-01
A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.
Nonlinear Site Response Due to Large Ground Acceleration: Observation and Computer Simulation
Noguchi, S.; Furumura, T.; Sasatani, T.
2009-12-01
We studied nonlinear site response due to large ground acceleration during the 2003 off-Miyagi Earthquake (Mw7.0) in Japan by means of horizontal-to-vertical spectral ratio analysis of S-wave motion. The results were then confirmed by finite-difference method (FDM) simulation of nonlinear seismic wave propagation. A nonlinear site response is often observed at soft sediment sites, and even at hard bedrock sites which are covered by thin soil layers. Nonlinear site response can be induced by strong ground motion whose peak ground acceleration (PGA) exceeds about 100 cm/s/s, and seriously affects the amplification of high frequency ground motion and PGA. Noguchi and Sasatani (2008) developed an efficient technique for quantitative evaluation of nonlinear site response using the horizontal-to-vertical spectral ratio of S-wave (S-H/V) derived from strong ground motion records, based on Wen et al. (2006). We applied this technique to perform a detailed analysis of the properties of nonlinear site response based on a large amount of data recorded at 132 K-NET and KiK-net strong motion stations in Northern Japan during the off-Miyagi Earthquake. We succeeded in demonstrating a relationship between ground motion level, nonlinear site response and surface soil characteristics. For example, the seismic data recorded at KiK-net IWTH26 showed obvious characteristics of nonlinear site response when the PGA exceeded 100 cm/s/s. As the ground motion level increased, the dominant peak of S-H/V shifted to lower frequency, the high frequency level of S-H/V dropped, and PGA amplification decreased. On the other hand, the records at MYGH03 seemed not to be affected by nonlinear site response even for high ground motion levels in which PGA exceeds 800 cm/s/s. The characteristics of such nonlinear site amplification can be modeled by evaluating Murnaghan constants (e.g. McCall, 1994), which are the third-order elastic constants. In order to explain the observed characteristics of
Response bounds for complex systems with a localised and uncertain nonlinearity
Butlin, T.
2016-12-01
Predicting the vibration response of complex nonlinear structures is a significant challenge: the response may involve many modes of the structure; nonlinearity precludes the use of efficient techniques developed for linear systems; and there is often uncertainty associated with the nonlinear law, even to the extent that its functional form is not always known. This paper builds on a recently developed method for handling this class of problem in a novel way. The method exploits the fact that nonlinearities are often spatially localised, and seeks the best- and worst-case system response with respect to a chosen metric by regarding the internal nonlinear force as an independent excitation to the underlying linear system. Constraints are used to capture what is thought to be known about the nonlinearity without needing to specify a particular law. This paper focuses on the case of systems with a single point nonlinearity but with arbitrarily complex underlying linear dynamics, driven by a sinusoidal force excitation. Semi-analytic upper and lower bounds are proposed for root-mean-square response metrics subject to constraints which specify that the nonlinearity should be a combination of (A) passive, (B) displacement-limited, and / or (C) force-saturating. The concept of 'equivalent linear bounds' is also introduced for cases where the response metric is thought to be dominated by the same frequency as the input. The bounds corresponding to a passive and displacement-limited nonlinearity are compared with Monte Carlo experimental and numerical results from an impacting beam test rig. The bounds corresponding to a passive and force-saturating nonlinearity are compared with numerical results for a friction-damped beam. The global upper and lower bounds are satisfied for all input frequencies but are generally found to be rather conservative. The 'equivalent linear bounds' show remarkably good agreement for predicting the range of root-mean-square velocity responses
Nonlinearity of dose-response functions for carcinogenicity.
Hoel, D G; Portier, C J
1994-01-01
Carcinogenesis data for 315 chemicals were obtained from the National Cancer Institute-National Toxicology Program (NCI-NTP) bioassay programs and were analyzed to examine the shape of carcinogenesis dose-response curves. Tumor site data were more often consistent with a quadratic response than with a linear response, suggesting that the routine use of linear dose-response models will often overestimate risk. Information from in vivo short-term mutagenicity and genotoxicity assays was also ob...
Directory of Open Access Journals (Sweden)
Mohammad M. Kashani
2016-01-01
Full Text Available A numerical model is presented that enables simulation of the nonlinear flexural response of corroded reinforced concrete (RC components. The model employs a force-based nonlinear fibre beam-column element. A new phenomenological uniaxial material model for corroded reinforcing steel is used. This model accounts for the impact of corrosion on buckling strength, postbuckling behaviour, and low-cycle fatigue degradation of vertical reinforcement under cyclic loading. The basic material model is validated through comparison of simulated and observed responses for uncorroded RC columns. The model is used to explore the impact of corrosion on the inelastic response of corroded RC columns.
Nonlinear magneto-electric response of a giant magnetostrictive/piezoelectric composite cylinder
Institute of Scientific and Technical Information of China (English)
Yuan-Wen Gao; Juan-Juan Zhang
2012-01-01
In this study,we investigate the nonlinear coupling magneto-electric (ME) effect of a giant magnetostrictive/piezoelectric composite cylinder.The nonlinear constitutive relations of the ME material are taken into account,and the influences of the nonlinear material properties on the ME effect are investigated for the static and dynamic cases,respectively.The influences of different constraint conditions on the ME effect are discussed.In the dynamic case considering nonlinear material properties,the double frequency ME response (The response frequency is twice the applied magnetic frequency) is obtained and discussed,which can be used to explain the experiment phenomenon in which the input signal with frequency f is converted to the output signal with 2f in ME laminated structures.Some calculations on nonlinear ME effect are conducted.The obtained results indicate that the nonlinear material properties affect not only the magnitude of the ME effect in the static case but also the ME response frequency in the dynamic case.
Dimensionality of InGaAs nonlinear optical response
Energy Technology Data Exchange (ETDEWEB)
Bolton, S.R. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.
1995-07-01
In this thesis the ultrafast optical properties of a series of InGaAs samples ranging from the two to the three dimensional limit are discussed. An optical system producing 150 fs continuum centered at 1.5 microns was built. Using this system, ultrafast pump-probe and four wave mixing experiments were performed. Carrier thermalization measurements reveal that screening of the Coulomb interaction is relatively unaffected by confinement, while Pauli blocking nonlinearities at the band edge are approximately twice as strong in two dimensions as in three. Carrier cooling via phonon emission is influenced by confinement due both to the change in electron distribution function and the reduction in electron phonon coupling. Purely coherent band edge effects, as measured by the AC Stark effect and four wave mixing, are found to be dominated by the changes in excitonic structure which take place with confinement.
Ultrafast third-order nonlinear optical response of pyrene derivatives
Shi, Yufang; Li, Zhongguo; Fang, Yu; Sun, Jinyu; Zhao, Minggen; Song, Yinglin
2017-05-01
Two mono-substituted pyrene derivatives with delocalized electron system 1-(pyren-1-yl)-3-(4-Methyl thiophene-2-yl) acrylic ketone (13#) and 1-(pyren-1-yl)-3-(4-bromo thiophene-2-yl) acrylic ketone (15#) were successfully synthesized. The resultant compounds were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR), high resolution mass spectrum (HR-MS), and UV-vis spectra. The third-order nonlinear optical properties of the compounds were investigated using Z-scan technique with femtosecond laser pulses at 500 nm and 700 nm, respectively. Both of the compounds showed a decrease in transmittance about the focus, which are typical of two-photon absorption. It was found that the two-photon absorption behavior of the pyrene derivatives were modified by substituents on thiophene ring. These results indicate that both compounds can be promising candidates for future optoelectronic and bio-imaging applications.
Nonlinear laser pulse response in a crystalline lens.
Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D
2016-04-01
The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.
Energy Technology Data Exchange (ETDEWEB)
Bourgeault, Adeline, E-mail: bourgeault@ensil.unilim.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Gourlay-France, Catherine, E-mail: catherine.gourlay@cemagref.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Priadi, Cindy, E-mail: cindy.priadi@eng.ui.ac.id [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Ayrault, Sophie, E-mail: Sophie.Ayrault@lsce.ipsl.fr [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Tusseau-Vuillemin, Marie-Helene, E-mail: Marie-helene.tusseau@ifremer.fr [IFREMER Technopolis 40, 155 rue Jean-Jacques Rousseau, 92138 Issy-Les-Moulineaux (France)
2011-12-15
This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions from the biodynamic model. The exchangeable fraction of metal particles did not account for the bioavailability of particulate metals, since it did not capture the differences between sites. The assimilation efficiency (AE) parameter is necessary to take into account biotic factors influencing particulate metal bioavailability. The biodynamic model, applied with AEs from the literature, overestimated the measured concentrations in zebra mussels, the extent of overestimation being site-specific. Therefore, an original methodology was proposed for in situ AE measurements for each site and metal. - Highlights: > Exchangeable fraction of metal particles did not account for the bioavailability of particulate metals. > Need for site-specific biodynamic parameters. > Field-determined AE provide a good fit between the biodynamic model predictions and bioaccumulation measurements. - The interpretation of metal bioaccumulation in transplanted zebra mussels with biodynamic modelling highlights the need for site-specific assimilation efficiencies of particulate metals.
NONLINEAR DYNAMICS RESPONSE OF CASING PIPE UNDER COMBINED WAVE-CURRENT
Institute of Scientific and Technical Information of China (English)
TANG You-gang; GU Jia-yang; ZUO Jian-li; MIN Jian-qin
2005-01-01
The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison's nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin's method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160 m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wave-current.
Regular nonlinear response of the driven Duffing oscillator to chaotic time series
Institute of Scientific and Technical Information of China (English)
YuanYe; Li Yue; Danilo P. Mandic; Yang Bao-Jun
2009-01-01
Nonlinear response of the driven Duffing oscillator to periodic or quasi-periodic signals has been well studied. In this paper, we investigate the nonlinear response of the driven Duffing oscillator to non-periodic, more specifically, chaotic time series. Through numerical simulations, we find that the driven Duffing oscillator can also show regular nonlinear response to the chaotic time series with different degree of chaos as generated by the same chaotic series generating model, and there exists a relationship between the state of the driven Duffing oscillator and the chaoticity of the input signal of the driven Duffing oscillator. One real-world and two artificial chaotic time series are used to verify the new feature of Duffing oscillator. A potential application of the new feature of Duffing oscillator is also indicated.
RBFNN Model for Predicting Nonlinear Response of Uniformly Loaded Paddle Cantilever
Directory of Open Access Journals (Sweden)
Abdullah H. Abdullah
2009-01-01
Full Text Available The Radial basis Function neural network (RBFNN model has been developed for the prediction of nonlinear response for paddle Cantilever with built-in edges and different sizes, thickness and uniform loads. Learning data was performed by using a nonlinear finite element program, incremental stages of the nonlinear finite element analysis were generated by using 25 schemes of built paddle Cantilevers with different thickness and uniform distributed loads. The neural network model has 5 input nodes representing the uniform distributed load and paddle size, length, width and thickness, eight nodes at hidden layer and one output node representing the max. deflection response (1500×1 represent the deflection response of load. Regression analysis between finite element results and values predicted by the neural network model shows the least error.
Understanding and Ameliorating Non-Linear Phase and Amplitude Responses in AMCW Lidar
Directory of Open Access Journals (Sweden)
John P. Godbaz
2011-12-01
Full Text Available Amplitude modulated continuous wave (AMCW lidar systems commonly suffer from non-linear phase and amplitude responses due to a number of known factors such as aliasing and multipath inteference. In order to produce useful range and intensity information it is necessary to remove these perturbations from the measurements. We review the known causes of non-linearity, namely aliasing, temporal variation in correlation waveform shape and mixed pixels/multipath inteference. We also introduce other sources of non-linearity, including crosstalk, modulation waveform envelope decay and non-circularly symmetric noise statistics, that have been ignored in the literature. An experimental study is conducted to evaluate techniques for mitigation of non-linearity, and it is found that harmonic cancellation provides a significant improvement in phase and amplitude linearity.
Diagnosing nonlinearities in the local and remote responses to partial Amazon deforestation
Badger, Andrew M.; Dirmeyer, Paul A.
2016-08-01
Using a set of fully coupled climate model simulations, the response to partial deforestation over the Amazon due to agricultural expansion has been analyzed. Three variations of 50% deforestation (all of western half, all of eastern half, and half of each grid box) were compared with total deforestation to determine the degree and character of nonlinearity of the climate response to partial deforestation. A metric is developed to quantify the degree and distribution of nonlinearity in the response, applicable to any variable. The metric also quantifies whether the response is saturating or accelerating, meaning significantly either more or less than 50% of the simulated response to total deforestation is attained at 50% deforestation. The spatial structure of the atmospheric response to Amazon deforestation reveals large areas across the tropics that exhibit a significant nonlinear component, particularly for temperature and geopotential height. Over the domain between 45°S and 45°N across all longitudes, 50% deforestation generally provides less than half of the total response to deforestation over oceans, indicating the marine portion of climate system is somewhat resilient to progressive deforestation. However, over continents there are both accelerating and saturating responses to 50% Amazon deforestation, and the response is different depending on whether the eastern or western half of Amazonia is deforested or half of the forest is removed uniformly across the region.
Nonlinear Gust Response Analysis of Free Flexible Aircraft
Directory of Open Access Journals (Sweden)
Chen Shilu
2013-01-01
Full Text Available Gust response analysis plays a very important role in large aircraft design. This paper presents a methodology for calculating the flight dynamic characteristics and gust response of free flexible aircraft. A multidisciplinary coupled numerical tool is developed to simulate detailed aircraft models undergoing arbitrary free flight motion in the time domain, by Computational Fluid Dynamics (CFD, Computational Structure Dynamics (CSD and Computational Flight Mechanics (CFM coupling. To achieve this objective, a structured, time-accurate flow-solver is coupled with a computational module solving the flight mechanics equations of motion and a structural mechanics code determining the structural deformations. A novel method to determine the trim state of flexible aircraft is also stated. First, the field velocity approach is validated, after the trim state is attained, gust responses for the one-minus-cosine gust profile are analyzed for the longitudinal motion of a slender-wing aircraft configuration with and without the consideration of structural deformation.
Effects on the Floor Response Spectra by the Nonlinear Behavior of a Seismic Base Isolation System
Energy Technology Data Exchange (ETDEWEB)
Park, Hyungkui; Kim, Jung Han; Choi, Inkil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
An evaluation of safety being carried out for various risk factors of prevents for nuclear power plant accident. In general, an evaluation of the structural integrity was performed about seismic risk. In recent years, an assessment of integrity of internal equipment being carried out for earthquake loads owing to the possibility of severe accidents caused by the destruction of internal equipment or a blackout. Floor response spectra of the structure should be sought for evaluating of the integrity of internal equipment. The floor response spectra depends on the characteristics of seismic base isolation system such as the natural frequency, damping ratio, and height of the floor of the structure. An evaluation of the structural integrity using the equivalent stiffness of the seismic base isolation system was satisfactory. In this study, the effect of the non-linearity of isolated system in the floor response spectrum of the structure is analyzed. In this study, the floor response spectrum of the seismic base isolation system by the non-linear effect of the rubber isolator was analyzed. As a result, the influence of the non-linear isolated system was increased in hi-frequency domain. In addition, each floor exhibited a more different of responses compared with the equivalent linear model of the isolated structure. The non-linearity of the isolation system of the structure was considered, because of a more reliable assessment of integrity of equipment at each floor of seismic base the isolation system.
Energy Technology Data Exchange (ETDEWEB)
Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)
2013-11-14
The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.
On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics
Directory of Open Access Journals (Sweden)
Jun Wang
2011-01-01
Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.
Nonlinear optics response of semiconductor quantum wells under high magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Chemla, D.S.
1993-07-01
Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW`s as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H {yields} {infinity}. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed.
Wind energy conversion. Volume VI. Nonlinear response of wind turbine rotor
Energy Technology Data Exchange (ETDEWEB)
Chopra, I.
1978-09-01
The nonlinear equations of motor for a rigid rotor restrained by three flexible springs representing, respectively, the flapping, lagging, and feathering motions are derived using Lagrange's equations, for arbitrary angular rotations. These are reduced to a consistent set of nonlinear equations using nonlinear terms up to third order. The complete analysis is divided into three parts, A, B, and C. Part A consists of forced response of two-degree flapping-lagging rotor under the excitation of pure gravitational field (i.e., no aerodynamic forces). In Part B, the effect of aerodynamic forces on the dynamic response of two-degree flapping-lagging rotor is investigated. In Part C, the effect of third degree of motion, feathering, is considered.
Issa, Jimmy S.; Shaw, Steven W.
2015-07-01
In this work we investigate the nonlinear dynamic response of systems composed of a primary inertia to which multiple identical vibration absorbers are attached. This problem is motivated by observations of systems of centrifugal pendulum vibration absorbers that are designed to reduce engine order torsional vibrations in rotating systems, but the results are relevant to translational systems as well. In these systems the total absorber mass is split into multiple equal masses for purposes of distribution and/or balance, and it is generally expected that the absorbers will act in unison, corresponding to a synchronous response. In order to capture nonlinear effects of the responses of the absorbers, specifically, their amplitude-dependent frequency, we consider them to possess nonlinear stiffness. The equations of motion for the system are derived and it is shown how one can uncouple the equations for the absorbers from that for the primary inertia, resulting in a system of identical resonators that are globally coupled. These symmetric equations are scaled for weak nonlinear effects, near resonant forcing, and small damping. The method of averaging is applied, from which steady-state responses and their stability are investigated. The response of systems with two, three, and four absorbers are considered in detail, demonstrating a rich variety of bifurcations of the synchronous response, resulting in responses with various levels of symmetry in which sub-groups of absorbers are mutually synchronous. It is also shown that undamped models with more than two absorbers possess a degenerate response, which is made robust by the addition of damping to the model. Design guidelines are proposed based on the nature of the system response, with the aim of minimizing the acceleration of the primary system. It is shown that the desired absorber parameters are selected so that the system achieves a stable synchronous response which does not undergo jumps via saddle
Response of Saturated Porous Nonlinear Materials to Dynamic Loadings
1984-05-31
the following section a bilinear hysteretic skeleton was modeled, followed by calculations on an actual sand from Enewetak Atoll . In this section...the response of saturated sand from Enewetak Atoll . The skeleton properties are taken from laboratory data reported in the second volunie of this study...with an actual saturated sand from Enewetak Atoll . In Section 2, the theoretical background and numerical code, TPDAP, used in this study are described
Generation of High Frequency Response in a Dynamically Loaded, Nonlinear Soil Column
Energy Technology Data Exchange (ETDEWEB)
Spears, Robert Edward [Idaho National Laboratory; Coleman, Justin Leigh [Idaho National Laboratory
2015-08-01
Detailed guidance on linear seismic analysis of soil columns is provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998),” which is currently under revision. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain analysis which includes evaluation of soil columns. When performing linear analysis, a given soil column is typically evaluated with a linear, viscous damped constitutive model. When submitted to a sine wave motion, this constitutive model produces a smooth hysteresis loop. For nonlinear analysis, the soil column can be modelled with an appropriate nonlinear hysteretic soil model. For the model in this paper, the stiffness and energy absorption result from a defined post yielding shear stress versus shear strain curve. This curve is input with tabular data points. When submitted to a sine wave motion, this constitutive model produces a hysteresis loop that looks similar in shape to the input tabular data points on the sides with discontinuous, pointed ends. This paper compares linear and nonlinear soil column results. The results show that the nonlinear analysis produces additional high frequency response. The paper provides additional study to establish what portion of the high frequency response is due to numerical noise associated with the tabular input curve and what portion is accurately caused by the pointed ends of the hysteresis loop. Finally, the paper shows how the results are changed when a significant structural mass is added to the top of the soil column.
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher
1998-01-01
A non-linear time-domain strip theory for vertical wave loads and ship responses is presented. The theory is generalized from a rigorous linear time-domain strip theory representaton. The hydrodynamic memory effect due to the free surface is approximated by a higher order differential equation...
Scaling of ac susceptibility and the nonlinear response function of high-temperature superconductors
Institute of Scientific and Technical Information of China (English)
CHEN; Kaixuan; NING; Zhenhua; XU; Hengyi; QI; Zhi; LU; Guo
2005-01-01
The amplitude-dependent ac susceptibility of high-temperature superconductors is shown to obey some empirical scaling relations. We try to analyze this behavior by extending a dc nonlinear response function of mixed state to the ac cases. The derived equations for critical current and ac susceptibility x(T) agree with the scaling relations of experimental data.
Knoester, Jasper; Mukamel, Shaul
1990-01-01
A general scheme is presented for calculating the nonlinear optical response in condensed phases that provides a unified picture of excitons, polaritons, retardation, and local-field effects in crystals and in disordered systems. A fully microscopic starting point is taken by considering the evoluti
Nonlinear optical response of C60 in solvents: picosecond transient grating experiments
Khudyakov, Dmitriy V.; Rubtsov, Igor V.; Lobach, Anatolii S.; Nadtochenko, Victor A.
1996-05-01
Time-resolved resonant nonlinear optical response of C60 in a chlorobenzene solution was measured for 528 nm excitation and 1055, 528, and 351 nm probing for zzzz and zzyy configurations. The slow part of the signal (8 +/- 2 ps) was attributed to the orientational motion of C60 excited molecules.
Nonlinear Optical Response of Disordered J Aggregates in the Motional Narrowing Limit
Knoester, Jasper
1995-01-01
We discuss the theory of nonlinear optical response of molecular aggregates with frequency disorder. In contrast to the usual modeling, we allow for spatial correlations in the disorder. We show that the joint distribution of all multi-exciton frequencies can be determined analytically to first orde
RESPONSE OF NONLINEAR OSCILLATOR UNDER NARROW-BAND RANDOM EXCITATION
Institute of Scientific and Technical Information of China (English)
戎海武; 王向东; 孟光; 徐伟; 方同
2003-01-01
The principal resonance of Duffing oscillator to narrow-band random parametricexcitation was investigated. The method of multiple scales was used to determine theequations of modulation of amplitude and phase. The behavior, stability and bifurcation ofsteady state response were studied by means of qualitative analyses. The effects of damping,detuning, bandwidth and magnitudes of deterministic and random excitations wereanalyzed. The theoretical analyses were verified by numerical results. Theoretical analysesand numerical simulations show that when the intensity of the random excitation increases,the nontrivial steady state solution may change from a limit cycle to a diffused limit cycle.Under some conditions the system may have two ,steady state solutions.
Mukamel, Shaul
2003-08-01
Computing response functions by following the time evolution of superoperators in Liouville space (whose vectors are ordinary Hilbert space operators) offers an attractive alternative to the diagrammatic perturbative expansion of many-body equilibrium and nonequilibrium Green's functions. The bookkeeping of time ordering is naturally maintained in real (physical) time, allowing the formulation of Wick's theorem for superoperators, giving a factorization of higher order response functions in terms of two fundamental Green's functions. Backward propagations and analytic continuations using artificial times (Keldysh loops and Matsubara contours) are avoided. A generating functional for nonlinear response functions unifies quantum field theory and the classical mode coupling formalism of nonlinear hydrodynamics and may be used for semiclassical expansions. Classical response functions are obtained without the explicit computation of stability matrices.
Wang, X.; Zheng, G. T.
2016-02-01
A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.
Nonlinear response studies and corrections for a liquid crystal spatial light modulator
Indian Academy of Sciences (India)
Ravinder Kumar Banyal; B Raghavendra Prasad
2010-06-01
The nonlinear response of light transmission characteristics of a liquid crystal (LC) spatial light modulator (SLM) is studied. The results show that the device exhibits a wide range of variations with different control parameters and input settings. Experiments were performed to obtain intensity modulation that is best described by either power-law or sigmoidal functions. Based on the inverse transformation, an appropriate pre-processing scheme for electrically addressed input gray-scale images, particularly important in several optical processing and imaging applications, is suggested. Further, the necessity to compensate the SLM image nonlinearities in a volume holographic data storage and retrieval system is demonstrated.
Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.
2010-05-01
We present a procedure for the modeling of the dispersion of the nonlinear optical response of complex molecular structures that is based strictly on the results from experimental characterization. We show how under some general conditions, the use of the Thomas-Kuhn sum-rules leads to a successful modeling of the nonlinear response of complex molecular structures.
Nonlinear biofluvial responses to vegetation change in a semiarid environment
Neave, Mel; Rayburg, Scott
2007-09-01
The desertification of grassland communities in the Jornada del Muerto Basin, southern New Mexico, USA, has occurred in association with a series of geomorphic responses that have influenced the system of vegetation change. Rainfall simulation experiments indicate that the volume of runoff generated from basin surfaces and its ability to erode are greatly affected by the distribution of vegetation, which ultimately controls processes such as rainsplash erosion, soil infiltrability and crust development. Animal activities also influence rates of sediment movement from unvegetated surfaces by disrupting soil crusts and making loose sediment available for transportation by overland flow. Shrublands in the Jornada Basin have a patchier vegetation cover than grasslands, with vegetated areas (shrubs) being separated by unvegetated (intershrub) zones. The exposed intershrub surfaces are more vulnerable to erosion than the grass and shrub surfaces. Thus, water and sediment yields, calculated using rainfall simulation experiments, were higher for vegetated (shrub and grass) plots than they were for unvegetated (intershrub) plots. The runoff and erosion model, KINEROS2, predicts that at the base of a 100 m slope, shrubland surfaces shed seven times more runoff and 25 times more sediment than grassland surfaces. Evidence to support the prediction of higher rates of erosion in the shrubland can be found in the form of the extensive rill networks that are common in this community. The contraction of grasslands has been associated with elevated rates of erosion that have altered the morphology of the surface, lowering slopes between shrubs, and increasing the amplitude of the microtopography. Overall, the viability of the exposed soils for recolonization by grasses has been reduced, reinforcing the system of shrubland invasion and lending support to the use of state-and-transition models to describe ecologic responses to change within this environment. Combined, these results
Nonlinear response of summer temperature to Holocene insolation forcing in Alaska.
Clegg, Benjamin F; Kelly, Ryan; Clarke, Gina H; Walker, Ian R; Hu, Feng Sheng
2011-11-29
Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate "surprises" with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000-5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land-atmosphere-ocean feedbacks.
RESPONSE ANALYSIS OF RANDOMLY EXCITED NONLINEAR SYSTEMS WITH SYMMETRIC WEIGHTING PREISACH HYSTERESIS
Institute of Scientific and Technical Information of China (English)
应祖光
2003-01-01
An approximate method for analyzing the response of nonlinear systems with the Preisach hysteresis of the non-local memory under a stationary Gaussian excitation is presented based on the covariance and switching probability analysis. The covariance matrix equation of the Preisach hysteretic system response is derived. The cross correlation function of the Preisach hysteretic force and response in the covariance equation is evaluated by the switching probability analysis and the Gaussian approximation to the response process. Then an explicit expression of the correlation function is given for the case of symmetric Preisach weighting functions. The numerical result obtained is in good agreement with that from the digital simulation.
Excited-state dynamics and nonlinear optical response of Ge nanocrystals embedded in silica matrix
Razzari, Luca; Gnoli, Andrea; Righini, Marcofabio; Dâna, Aykutlu; Aydinli, Atilla
2006-05-01
We use a dedicated Z-scan setup, arranged to account for cumulative effects, to study the nonlinear optical response of Ge nanocrystals embedded in silica matrix. Samples are prepared with plasma-enchanced chemical-vapor deposition and post-thermal annealing. We measure a third-order nonlinear refraction coefficient of γ =1×10-16m2/W. The nonlinear absorption shows an intensity-independent coefficient of β =4×10-10m/W related to fast processes. In addition, we measure a second β component around 10-9m /W with a relaxation time of 300μs that rises linearly with the laser intensity. We associate its origin to the absorption of excited carriers from a surface-defect state with a long depopulation time.
Yu, Shukai; Talbayev, Diyar
2016-01-01
We present an experimental and computational study of the nonlinear optical response of conduction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption and an amplitude-dependent group refractive index) can be understood on the qualitative level as the breakdown of the effective mass approximation. However, a predictive theoretical description of the nonlinearity has been missing. We propose a model based on the semiclassical electron dynamics, a realistic band structure, and the free electron Drude parameters to accurately calculate the experimental observables in InSb. Our results open a path to predictive modeling of the conduction-electron optical nonlinearity in semiconductors, metamaterials, as well as high-field effects in THz plasmonics.
Zilletti, Michele; Marker, Arthur; Elliott, Stephen John; Holland, Keith
2017-05-01
In this study model identification of the nonlinear dynamics of a micro-speaker is carried out by purely electrical measurements, avoiding any explicit vibration measurements. It is shown that a dynamic model of the micro-speaker, which takes into account the nonlinear damping characteristic of the device, can be identified by measuring the response between the voltage input and the current flowing into the coil. An analytical formulation of the quasi-linear model of the micro-speaker is first derived and an optimisation method is then used to identify a polynomial function which describes the mechanical damping behaviour of the micro-speaker. The analytical results of the quasi-linear model are compared with numerical results. This study potentially opens up the possibility of efficiently implementing nonlinear echo cancellers.
Morimoto, Takahiro; Zhong, Shudan; Orenstein, Joseph; Moore, Joel E.
2016-12-01
We study nonlinear magneto-optical responses of metals by a semiclassical Boltzmann equation approach. We derive general formulas for linear and second-order nonlinear optical effects in the presence of magnetic fields that include both the Berry curvature and the orbital magnetic moment. Applied to Weyl fermions, the semiclassical approach (i) captures the directional anisotropy of linear conductivity under a magnetic field as a consequence of an anisotropic B2 contribution, which may explain the low-field regime of recent experiments; and (ii) predicts strong second harmonic generation proportional to B that is enhanced as the Fermi energy approaches the Weyl point, leading to large nonlinear Kerr rotation. Moreover, we show that the semiclassical formula for the circular photogalvanic effect arising from the Berry curvature dipole is reproduced by a full quantum calculation using a Floquet approach.
Nonlinear response speedup in bimodal visual-olfactory object identification
Directory of Open Access Journals (Sweden)
Richard eHöchenberger
2015-09-01
Full Text Available Multisensory processes are vital in the perception of our environment. In the evaluation of foodstuff, redundant sensory inputs not only assist the identification of edible and nutritious substances, but also help avoiding the ingestion of possibly hazardous substances. While it is known that the non-chemical senses interact already at early processing levels, it remains unclear whether the visual and olfactory senses exhibit comparable interaction effects. To address this question, we tested whether the perception of congruent bimodal visual-olfactory objects is facilitated compared to unimodal stimulation. We measured response times (RT and accuracy during speeded object identification. The onset of the visual and olfactory constituents in bimodal trials was physically aligned in the first and perceptually aligned in the second experiment. We tested whether the data favored coactivation or parallel processing consistent with race models. A redundant-signals effect was observed for perceptually aligned redundant stimuli only, i.e. bimodal stimuli were identified faster than either of the unimodal components. Analysis of the RT distributions and accuracy data revealed that these observations could be explained by a race model. More specifically, visual and olfactory channels appeared to be operating in a parallel, positively dependent manner. While these results suggest the absence of early sensory interactions, future studies are needed to substantiate this interpretation.
A study of non-linearity in rainfall-runoff response using 120 UK catchments
Mathias, Simon A.; McIntyre, Neil; Oughton, Rachel H.
2016-09-01
This study presents a catchment characteristic sensitivity analysis concerning the non-linearity of rainfall-runoff response in 120 UK catchments. Two approaches were adopted. The first approach involved, for each catchment, regression of a power-law to flow rate gradient data for recession events only. This approach was referred to as the recession analysis (RA). The second approach involved calibrating a rainfall-runoff model to the full data set (both recession and non-recession events). The rainfall-runoff model was developed by combining a power-law streamflow routing function with a one parameter probability distributed model (PDM) for soil moisture accounting. This approach was referred to as the rainfall-runoff model (RM). Step-wise linear regression was used to derive regionalization equations for the three parameters. An advantage of the RM approach is that it utilizes much more of the observed data. Results from the RM approach suggest that catchments with high base-flow and low annual precipitation tend to exhibit greater non-linearity in rainfall-runoff response. In contrast, the results from the RA approach suggest that non-linearity is linked to low evaporative demand. The difference in results is attributed to the aggregation of storm-flow and base-flow into a single system giving rise to a seemingly more non-linear response when applying the RM approach to catchments that exhibit a strongly dual storm-flow base-flow response. The study also highlights the value and limitations in a regionlization context of aggregating storm-flow and base-flow pathways into a single non-linear routing function.
Measurement of nonlinear elastic response in rock by the resonant bar method
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A. (Los Alamos National Lab., NM (United States)); Rasolofosaon, P.; Zinszner, B. (Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France))
1993-01-01
In this work we are studying the behavior of the fundamental (Young's) mode resonant peak as a function of drive amplitude in rock samples. Our goal from these studies is to obtain nonlinear moduli for many rock types, and to study the nonlinear moduli as a function of water saturation and other changes in physical properties. Measurements were made on seven different room dry rock samples. For one sample measurements were taken at 16 saturation levels between 1 and 98%. All samples display a softening'' nonlinearity, that is, the resonant frequency shifts downward with increasing drive amplitude. In extreme cases, the resonant frequency changes by as much as 25% over a strain interval of 10[sup [minus]7] to [approximately]4 [times] 10[sup [minus]5]. Measurements indicate that the nonlinear response is extremely sensitive to saturation. Estimates of a combined cubic and quartic nonlinear parameter [Gamma] range from approximately [minus]300 to [minus]10[sup 9] for the rock samples.
Energy Technology Data Exchange (ETDEWEB)
Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)
2013-12-15
Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.
A computer program for predicting nonlinear uniaxial material responses using viscoplastic models
Chang, T. Y.; Thompson, R. L.
1984-01-01
A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.
Yelve, Nitesh P; Mitra, Mira; Mujumdar, P M; Ramadas, C
2016-08-01
A new hybrid method based upon nonlinear Lamb wave response in time and frequency domains is introduced to locate a delamination in composite laminates. In Lamb wave based nonlinear method, the presence of damage is shown by the appearance of higher harmonics in the Lamb wave response. The proposed method not only uses this spectral information but also the corresponding temporal response data, for locating the delamination. Thus, the method is termed as a hybrid method. The paper includes formulation of the method and its application to locate a Barely Visible Impact Damage (BVID) induced delamination in a Carbon Fiber Reinforced Polymer (CFRP) laminate. The method gives the damage location fairly well. It is a baseline free method, as it does not need data from the pristine specimen.
Goldberg, Robert K.
2000-01-01
There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.
Dielectric Response of Glass-Forming Liquids in the Nonlinear Regime
Samanta, Subarna
Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional information can be obtained compared with linear response measurements. The first part of this thesis describes nonlinear dielectric relaxation experiments performed on various molecular glass forming-liquids, with an emphasis on the response at high frequencies (excess wing). A significant nonlinear dielectric effect (NDE) was found to persist in these modes, and the magnitude of this NDE traces the temperature dependence of the activation energy. A time resolved measurement technique monitoring the dielectric loss revealed that for the steady state NDE to develop it would take a very large number of high amplitude alternating current (ac) field cycles. High frequency modes were found to be 'slaved' to the average structural relaxation time, contrary to the standard picture of heterogeneity. Nonlinear measurements were also performed on the Johari-Goldstein beta-relaxation process. High ac fields were found to modify the amplitudes of these secondary modes. The nonlinear features of this secondary process are reminiscent of those found for the excess wing regime, suggesting that these two contributions to dynamics have common origins. The second part of this thesis describes the nonlinear effects observed from the application of high direct current (dc) bias fields superposed with a small amplitude sinusoidal ac field. For several molecular glass formers, the application of a dc field was found to slow down the system via reduction in configurational entropy (Adam-Gibbs relation). Time resolved measurements indicated that the rise of the non-linear effect is slower than its decay, as observed in the
Sato, T.; Kato, S.; Masuda, A.
2016-09-01
This paper presents a resonance-type vibration energy harvester with a Duffing-type nonlinear oscillator which is designed to perform effectively in a wide frequency band. For the conventional linear vibration energy harvester, the maximum performance of the power generation and its bandwidth are in a relation of trade-off. Introducing a Duffing-type nonlinearity can expand the resonance frequency band and enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator may have coexisting multiple steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to give global stability to the high-energy orbit by destabilizing other unexpected low-energy orbits by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. In this paper, an improved control law that switches the load resistance according to a frequency-dependent threshold is proposed to ensure the oscillator to respond in the high-energy orbit without ineffective power consumption. Numerical study shows that the steady-state responses of the harvester with the proposed control low are successfully kept on the high-energy orbit without repeating activation of the excitationmode.
Stable response of low-gravity liquid non-linear sloshing in a circle cylindrical tank
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Under pitch excitation, the sloshing of liquid in circular cylindrical tank includes planar motion, rotary motion and rotary motion inside planar motion. The boundaries between stable motion and unstable motion depend on the radius of the tank, the liquid height, the gravitational intension, the surface tensor and the sloshing damping. In this article, the differential equations of nonlinear sloshing are built first.And by variational principle, the Lagrange function of liquid pressure is constructed in volume intergration form. Then the velocity potential function is expanded in series by wave height function at the free surface. The nonlinear equations with kinematics and dynamics free surface boundary conditions through variation are derived. At last, these equations are solved by multiple-scales method. The influence of Bond number on the global stable response of nonlinear liquid sloshing in circular cylinder tank is analyzed in detail. The result indicates that variation of amplitude frequency response characteristics of the system with Bond, jump, lag and other nonlinear phenomena of liquid sloshing are investigated.
Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.
2010-02-01
Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.
Sabater, A. B.; Rhoads, J. F.
2017-02-01
The parametric system identification of macroscale resonators operating in a nonlinear response regime can be a challenging research problem, but at the micro- and nanoscales, experimental constraints add additional complexities. For example, due to the small and noisy signals micro/nanoresonators produce, a lock-in amplifier is commonly used to characterize the amplitude and phase responses of the systems. While the lock-in enables detection, it also prohibits the use of established time-domain, multi-harmonic, and frequency-domain methods, which rely upon time-domain measurements. As such, the only methods that can be used for parametric system identification are those based on fitting experimental data to an approximate solution, typically derived via perturbation methods and/or Galerkin methods, of a reduced-order model. Thus, one could view the parametric system identification of micro/nanosystems operating in a nonlinear response regime as the amalgamation of four coupled sub-problems: nonparametric system identification, or proper experimental design and data acquisition; the generation of physically consistent reduced-order models; the calculation of accurate approximate responses; and the application of nonlinear least-squares parameter estimation. This work is focused on the theoretical foundations that underpin each of these sub-problems, as the methods used to address one sub-problem can strongly influence the results of another. To provide context, an electromagnetically transduced microresonator is used as an example. This example provides a concrete reference for the presented findings and conclusions.
Nonlinear Response of Unbiased and Biased Bilayer Graphene at Terahertz Frequencies
McGouran, Riley
The main focus of this thesis is the investigation of the nonlinear response of unbiased and biased bilayer graphene to incident radiation at terahertz frequencies. We present a tight-binding model of biased and unbiased bilayer graphene that is used to calculate the nonlinear terahertz response. Dynamic equations are developed for the electron density matrix within the length gauge. These equations facilitate the calculation of interband and intraband carrier dynamics. We then obtain nonlinear transmitted and reflected terahertz fields using the calculated nonlinear interband and intraband current densities. We examine the nonlinear response of unbiased bilayer graphene as a function of the incident field amplitude. In this case the sample is taken to be undoped. In the reflected field, we find the maximum third harmonic amplitude to be approximately 30% of the fundamental frequency for an incident field of 1.5 kV cm-1, which is greater than that found in undoped monolayer graphene at the same field amplitude. To examine the nonlinear response of biased bilayer graphene, we investigate two different scenarios. In the first scenario, we consider an undoped sample at fixed temperature. We find that when the external bias has a value of 2 meV, the generated third harmonic in the reflected field is approximately 45% of the fundamental for an incident field amplitude of 2 kV cm-1 . When we increase the external bias further to 8 meV, we find the generated third harmonic field is approximately 38% of the fundamental for an incident field amplitude of 1 kV cm-1. For both of these bias values, the generated third harmonic is greater than that found in undoped monolayer graphene. In that system, the generated third harmonic field is approximately 32% of the fundamental for an incident field amplitude of 200 V cm-1. In the second scenario, we consider doped biased bilayer graphene. We fix the carrier density at 2x1012 cm-2, the incident field amplitude at 50 kV cm-1, and
Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.
2010-08-01
We introduce a self-consistent theory for the description of the optical linear and nonlinear response of molecules that is based strictly on the results of the experimental characterization. We show how the Thomas-Kuhn sum-rules can be used to eliminate the dependence of the nonlinear response on parameters that are not directly measurable. Our approach leads to the successful modeling of the dispersion of the nonlinear response of complex molecular structures with different geometries (dipolar and octupolar), and can be used as a guide towards the modeling in terms of fundamental physical parameters.
Beyond the perturbative description of the nonlinear optical response of low-index materials.
Reshef, Orad; Giese, Enno; Zahirul Alam, M; De Leon, Israel; Upham, Jeremy; Boyd, Robert W
2017-08-15
We show that standard approximations in nonlinear optics are violated for situations involving a small value of the linear refractive index. Consequently, the conventional equation for the intensity-dependent refractive index, n(I)=n0+n2I, becomes inapplicable in epsilon-near-zero and low-index media, even in the presence of only third-order effects. For the particular case of indium tin oxide, we find that the χ((3)), χ((5)), and χ((7)) contributions to refraction eclipse the linear term; thus, the nonlinear response can no longer be interpreted as a perturbation in these materials. Although the response is non-perturbative, we find no evidence that the power series expansion of the material polarization diverges.
Ranjbaran, Mina; Galiana, Henrietta L
2013-11-01
Studies of the vestibulo-ocular reflex (VOR) have revealed that this type of involuntary eye movement is influenced by viewing distance. This paper presents a bilateral model for the horizontal angular VOR in the dark based on realistic physiological mechanisms. It is shown that by assigning proper nonlinear neural computations at the premotor level, the model is capable of replicating target-distance-dependent VOR responses that are in agreement with geometrical requirements. Central premotor responses in the model are also shown to be consistent with experimental observations. Moreover, the model performance after simulated unilateral canal plugging also reproduces experimental observations, an emerging property. Such local nonlinear computations could similarly generate context-dependent behaviors in other more complex motor systems.
Dipole Solitons in Nonlinear Media with an Exponential-Decay Nonlocal Response
Institute of Scientific and Technical Information of China (English)
YANG Zhen-Jun; MA Xue-Kai; ZHENG Yi-Zhou; GAO Xing-Hui; LU Da-Quan; HU Wei
2011-01-01
By applying the variational approach,the analytical expression of dipole solitons is obtained in nonlinear media with an exponential-decay nonlocal response.The relations of the soliton power versus the propagation constant and the soliton width are given.Some numerical simulations are carried out.The results show that the analytical expression is in excellent agreement with the numerical results for the strongly nonlocal case.
Periodic response of nonlinear dynamical system with large number of degrees of freedom
Indian Academy of Sciences (India)
B P Patel; S M Ibrahim; Y Nath
2009-12-01
In this paper, a methodology based on shooting technique and Newmark's time integration scheme is proposed for predicting the periodic responses of nonlinear systems directly from solution of second order equations of motion without transforming to double ﬁrst order equations. The proposed methodology is quite suitable for systems with large number of degrees of freedom such as the banded system of equations from ﬁnite element discretization.
Nonlinear pulse propagation in a single- and a few-cycle regimes with Raman response
Indian Academy of Sciences (India)
Vimlesh Mishra; Ajit Kumar
2010-09-01
The propagation equation for a single- and a few-cycle pulses was derived in a cubic nonlinear medium including the Raman response. Using this equation, the propagation characteristics of a single- and a 4-cycle pulse, at 0.8 m wavelength, were studied numerically in one spatial dimension. It was shown that Raman term does influence the propagation characteristics of a single- as well as a few-cycle pulses by counteracting the self-steepening effect.
Institute of Scientific and Technical Information of China (English)
ZHANG JIA-SHU; XIAO XIAN-CI
2001-01-01
A multistage adaptive higher-order nonlinear finite impulse response (MAHONFIR) filter is proposed to predict chaotic time series. Using this approach, we may readily derive the decoupled parallel algorithm for the adaptation of the coefficients of the MAHONFIR filter, to guarantee a more rapid convergence of the adaptive weights to their optimal values. Numerical simulation results show that the MAHONFIR filters proposed here illustrate a very good performance for making an adaptive prediction of chaotic time series.
Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics
Energy Technology Data Exchange (ETDEWEB)
Ochoa, D A; Garcia, J E; Perez, R; Gomis, V; Albareda, A [Department of Applied Physics, Universitat Politecnica de Catalunya, 08034 Barcelona (Spain); Rubio-Marcos, F; Fernandez, J F, E-mail: jose@fa.upc.ed [Department of Electroceramics, Instituto de Ceramica y Vidrio, CSIC, 28049 Madrid (Spain)
2009-01-21
Finding lead-free ceramics with good piezoelectric properties is nowadays one of the most important challenges in materials science. The (K, Na, Li)(Nb, Ta, Sb)O{sub 3} system is one of the most promising candidates as a lead-free ceramic for transducer applications and is currently the object of important research work. In this paper, (K{sub 0.44}Na{sub 0.52}Li{sub 0.04})(Nb{sub 0.86}Ta{sub 0.10}Sb{sub 0.04})O{sub 3} was prepared by a conventional ceramic processing route. For this composition, orthorhombic-to-tetragonal phase transition was observed at temperatures very close to room temperature. As a consequence, good room temperature electromechanical properties were observed, displaying good thermal stability. We show that the most important contribution to dielectric, piezoelectric and elastic response comes from extrinsic effects, as was observed in other perovskite based materials. Nonlinearities in electromechanical properties induced by high electric field or mechanical stress were studied. Non-linear dielectric response was found to be less important than for soft PZT ceramics and was analysed within the Rayleigh framework. The results reveal that the non-linear response at room temperature in this material is mainly due to the irreversible wall domain movement.
Ponte Castañeda, Pedro
2016-11-01
This paper presents a variational method for estimating the effective constitutive response of composite materials with nonlinear constitutive behavior. The method is based on a stationary variational principle for the macroscopic potential in terms of the corresponding potential of a linear comparison composite (LCC) whose properties are the trial fields in the variational principle. When used in combination with estimates for the LCC that are exact to second order in the heterogeneity contrast, the resulting estimates for the nonlinear composite are also guaranteed to be exact to second-order in the contrast. In addition, the new method allows full optimization with respect to the properties of the LCC, leading to estimates that are fully stationary and exhibit no duality gaps. As a result, the effective response and field statistics of the nonlinear composite can be estimated directly from the appropriately optimized linear comparison composite. By way of illustration, the method is applied to a porous, isotropic, power-law material, and the results are found to compare favorably with earlier bounds and estimates. However, the basic ideas of the method are expected to work for broad classes of composites materials, whose effective response can be given appropriate variational representations, including more general elasto-plastic and soft hyperelastic composites and polycrystals.
Inverse solution technique of steady-state responses for local nonlinear structures
Wang, Xing; Guan, Xin; Zheng, Gangtie
2016-03-01
An inverse solution technique with the ability of obtaining complete steady-state primary harmonic responses of local nonlinear structures in the frequency domain is proposed in the present paper. In this method, the nonlinear dynamic equations of motion is first condensed from many to only one algebraic amplitude-frequency equation of relative motion. Then this equation is transformed into a polynomial form, and with its frequency as the unknown variable, the polynomial equation is solved by tracing all the solutions of frequency with the increase of amplitude. With this solution technique, some complicated dynamic behaviors such as sharp tuning, anomalous jumps, breaks in responses and detached resonance curves could be obtained. The proposed method is demonstrated and validated through a finite element beam under force excitations and a lumped parameter model with a local nonlinear element under base excitations. The phenomenon of detached resonance curves in the frequency response and its coupling effects with multiple linear modes in the latter example are observed.
Energy Technology Data Exchange (ETDEWEB)
Lim, C.W. [Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)], E-mail: bccwlim@cityu.edu.hk; Lai, S.K. [Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)
2007-08-20
This Letter deals with a research subject in nonlinear mechanics and applied mathematics. It develops (i) accurate higher-order approximate analytical nonlinear oscillator system with negative dissipation, and (ii) analogy to long Josephson junction. Particular emphasis has been placed on the weakly damped nonlinear oscillating system with negative dissipation with respect to a transformed temporal variable derived from the weak link of the simplified Josephson junction model. Nevertheless, the system response is shown to be stable with positive dissipation with respect to the physical time at a specific location. The analysis forms an innovative extension of the harmonic balancing method commonly used in nonlinear oscillation and vibration systems such as the Duffing oscillator and van der Pol oscillator. Besides introducing coupling of linearized governing equation and harmonic balancing method, the method of averaging is also employed to obtain accurate higher-order analytical approximate solutions. Unlike the classical harmonic balance method without analytical solution, the approach not only considers energy dissipation but also presents simple linear algebraic approximate solutions. In addition, general approximate analytical expressions for the dispersion relations are also established. The presence of a small perturbed parameter is not required.
NONLINEAR TRANSIENT RESPONSE OF STAY CABLE WITH VISCOELASTICITY DAMPER IN CABLE-STAYED BRIDGE
Institute of Scientific and Technical Information of China (English)
陈水生; 孙炳楠; 冯义卿
2004-01-01
Taking the bending stiffness,static sag,and geometric non-linearity into consideration,the space nonlinear vibration partial differential equations were derived.The partical differential equations were discretized in space by finite center difference approximation,then the nonlinear ordinal differential equations were obtained.A hybrid method involving the combination of the Newmark method and the pseudo-force strategy was proposed to analyze the nonlinear transient response of the inclined cable-dampers system subjected to arbitrary dynamic loading.As an example,two typical stay cables were calculated by the present method.The results reveal both the validity and the deficiency of the viscoelasticity damper for vibration control of stay cables.The efficiency and accuracy of the proposed method is also verified by comparing the results with those obtained by using Runge-Kutta direct integration technique.A new time history analysis method is provided for the research on the stay cable vibration control.
Guevara, V R
2004-02-01
A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.
UNBALANCE RESPONSE AND TOUCH-RUBBING THRESHOLD SPEED OF ROTOR SUBJECTED TO NONLINEAR MAGNETIC FORCES
Institute of Scientific and Technical Information of China (English)
JING Minqing; LI Zixin; LUO Min; YU Lie
2008-01-01
Because of the effect of unbalance excitation and nonlinear magnetic force, the large vibration of the rotor supported by active magnetic bearing(AMB) will go beyond the radial gap of the bearing, even causing mechanical touch-rubbing when the system works at an operational speed closer to the critical speed. In order to investigate this problem, the linear model and nonlinear model of the single mass symmetric rigid rotor system supported by AMB are established respectively and the corresponding transfer functions of close-loop system are given. To pass through the numerical calculation by using MATLAB/Simulink, the effect of both the unbalance response and threshold speed of touch-rubbing of the system subjected to nonlinear magnetic forces and nonlinear output current of power amplifier are studied. Furthermore, threshold speed of touch-rubbing of the rotor-bearing system is defined and the results of numerical simulation are presented. Finally, based on above studies, two methods of increasing the touch-rubbing threshold speed are discussed.
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-08-01
In this paper, a novel fractional equivalent linearization (EL) approach is developed by incorporating a fractional derivative term into the classical linearization equation. Due to the introduction of the fractional derivative term, the accuracy of the new linearization is improved, illustrated by a Duffing oscillator that is subjected to a harmonic excitation. Furthermore, a new method for solving stochastic response of nonlinear SDOF system is developed by combining Karhunen-Loève (K-L) expansion and fractional EL. The method firstly decomposes the stochastic excitation in terms of a set of random variables and deterministic sub-excitations using K-L expansion, and then construct sub-fractional equivalent linear system according to each sub-excitation by fractional EL, the response of the original nonlinear system is finally approximated as the weighed summation of the deterministic response of each sub-system multiplied by the corresponding random variable. The random nature of the final response comes from the set of random variables that is obtained in K-L expansion. In this way, the stochastic response computation is converted to a set of deterministic response analysis problems. The effectiveness of the developed method is demonstrated by a Duffing oscillator that is subjected to stochastic excitation modeled by Winner process. The results are compared with the numerical method and Monte Carlo simulation (MCS).
Energy Technology Data Exchange (ETDEWEB)
Golde, Daniel
2010-06-22
In the major part of this Thesis, we discuss the linear THz response of semiconductor nanostructures based on a microscopic theory. Here, two different problems are investigated: intersubband transitions in optically excited quantum wells and the THz plasma response of two-dimensional systems. In the latter case, we analyze the response of correlated electron and electron-hole plasmas. Extracting the plasma frequency from the linear response, we find significant deviations from the commonly accepted two-dimensional plasma frequency. Besides analyzing the pure plasma response, we also consider an intermediate regime where the response of the electron-hole plasma consists of a mixture of plasma contributions and excitonic transitions. A quantitative experiment-theory comparison provides novel insights into the behavior of the system at the transition from one regime to the other. The discussion of the intersubband transitions mainly focuses on the coherent superposition of the responses from true THz transitions and the ponderomotively accelerated carriers. We present a simple method to directly identify ponderomotive effects in the linear THz response. Apart from that, the excitonic contributions to intersubband transitions are investigated. The last part of the present Thesis deals with a completely different regime. Here, the extreme nonlinear optical response of low-dimensional semiconductor structures is discussed. Formally, extreme nonlinear optics describes the regime of light-matter interaction where the exciting field is strong enough such that the Rabi frequency is comparable to or larger than the characteristic transition frequency of the investigated system. Here, the Rabi frequency is given by the product of the electrical field strength and the dipole-matrix element of the respective transition. Theoretical investigations have predicted a large number of novel nonlinear effects arising for such strong excitations. Some of them have been observed in
Scaling Laws for the Response of Nonlinear Elastic Media with Implications for Cell Mechanics
Shokef, Yair; Safran, Samuel A.
2012-04-01
We show how strain stiffening affects the elastic response to internal forces, caused either by material defects and inhomogeneities or by active forces that molecular motors generate in living cells. For a spherical force dipole in a material with a strongly nonlinear strain energy density, strains change sign with distance, indicating that, even around a contractile inclusion or molecular motor, there is radial compression; it is only at a long distance that one recovers the linear response in which the medium is radially stretched. Scaling laws with irrational exponents relate the far-field renormalized strain to the near-field strain applied by the inclusion or active force.
Self-Organized Biological Dynamics and Nonlinear Control
Walleczek, Jan
2006-04-01
The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological
Mercury accumulation in marine bivalves: Influences of biodynamics and feeding niche
Energy Technology Data Exchange (ETDEWEB)
Pan Ke [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)
2011-10-15
Differences in the accumulation of mercury (Hg) in five species of marine bivalves, including scallops Chlamys nobilis, clams Ruditapes philippinarum, oysters Saccostrea cucullata, green mussels Perna viridis, and black mussels Septifer virgatus, were investigated. The bivalves displayed different patterns of Hg accumulation in terms of the body concentrations of methylmercury (MeHg) and total Hg (THg), as well as the ratio of MeHg to THg. Parameters of the biodynamics of the accumulation of Hg(II) and MeHg could reflect the species-dependent Hg concentrations in the bivalves. With the exception of black mussels, we found a significant relationship between the efflux rates of Hg(II) and the THg concentrations in the bivalves. The interspecific variations in the MeHg to THg ratio were largely controlled by the relative difference between the elimination rates of Hg(II) and MeHg. Stable isotope ({delta}{sup 13}C) analysis indicated that the five bivalve species had contrasting feeding niches, which may also affect the Hg accumulation. - Highlights: > Significant difference in Hg accumulation and MeHg:THg ratio in different bivalves. > THg concentrations in the bivalves were generally related to the efflux rates of Hg(II). > Elimination of Hg(II) and MeHg controlled the interspecific variation in MeHg:THg ratio. > MeHg and THg concentrations reflect the interaction of Hg biodynamics and food. - The species-specific body concentrations of MeHg and THg in bivalves reflect the complicated interaction between the biodynamics of Hg(II) and MeHg and the different food sources.
Directory of Open Access Journals (Sweden)
Anatoly V. Klyuchevskii
2013-11-01
Full Text Available The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation. The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS. The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes, proximal in time but distant in space, may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors. The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity, with the largest events occurring in pairs, one shortly after another, on two ends of the rift system and with couples of smaller events in the central part of the rift. The event couples appear as peaks of earthquake ‘migration’ rate with an approximately decadal periodicity. Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation. The new knowledge, with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis, may be of theoretical and practical value for earthquake prediction issues. Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region, i.e., there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.
Directory of Open Access Journals (Sweden)
Hemantkumar Chavan
2017-01-01
Full Text Available Arsenite is a known carcinogen and its exposure has been implicated in a variety of noncarcinogenic health concerns. Increased oxidative stress is thought to be the primary cause of arsenite toxicity and the toxic effect is thought to be linear with detrimental effects reported at all concentrations of arsenite. But the paradigm of linear dose response in arsenite toxicity is shifting. In the present study we demonstrate that arsenite effects on mitochondrial respiration in primary hepatocytes follow a nonlinear dose response. In vitro exposure of primary hepatocytes to an environmentally relevant, moderate level of arsenite results in increased oxidant production that appears to arise from changes in the expression and activity of respiratory Complex I of the mitochondrial proton circuit. In primary hepatocytes the excess oxidant production appears to elicit adaptive responses that promote resistance to oxidative stress and a propensity to increased proliferation. Taken together, these results suggest a nonlinear dose-response characteristic of arsenite with low-dose arsenite promoting adaptive responses in a process known as mitohormesis, with transient increase in ROS levels acting as transducers of arsenite-induced mitohormesis.
The importance of ENSO nonlinearities in tropical pacific response to external forcing
Karamperidou, Christina; Jin, Fei-Fei; Conroy, Jessica L.
2016-12-01
Tropical Pacific climate varies at interannual, decadal and centennial time scales, and exerts a significant influence on global climate. Climate model projections exhibit a large spread in the magnitude and pattern of tropical Pacific warming in response to greenhouse-gas forcing. Here, we show that part of this spread can be explained by model biases in the simulation of interannual variability, namely the El Niño/Southern Oscillation (ENSO) phenomenon. We show that models that exhibit strong ENSO nonlinearities simulate a more accurate balance of ENSO feedbacks, and their projected tropical Pacific sea surface temperature warming pattern is closely linked to their projected ENSO response. Within this group, models with ENSO nonlinearity close to observed project stronger warming of the cold tongue, whereas models with stronger than observed ENSO nonlinearity project a more uniform warming of the tropical Pacific. These differences are also manifest in the projected changes of precipitation patterns, thereby highlighting that ENSO simulation biases may lead to potentially biased projections in long-term precipitation trends, with great significance for regional climate adaptation strategies.
$v_4$, $v_5$, $v_6$, $v_7$: nonlinear hydrodynamic response versus LHC data
Yan, Li
2015-01-01
Higher harmonics of anisotropic flow ($v_n$ with $n\\ge 4$) in heavy-ion collisions can be measured either with respect to their own plane, or with respect to a plane constructed using lower-order harmonics. We explain how such measurements are related to event-plane correlations. We show that CMS data on $v_4$ and $v_6$ are compatible with ATLAS data on event-plane correlations. If one assumes that higher harmonics are the superposition of non-linear and linear responses, then the linear and non-linear parts can be isolated under fairly general assumptions. By combining analyses of higher harmonics with analyses of $v_2$ and $v_3$, one can eliminate the uncertainty from initial conditions and define quantities that only involve nonlinear hydrodynamic response coefficients. Experimental data on $v_4$, $v_5$ and $v_6$ are in good agreement with hydrodynamic calculations. We argue that $v_7$ can be measured with respect to elliptic and triangular flow. We present predictions for $v_7$ versus centrality in Pb-Pb ...
Analysis on nonlinear wind-induced dynamic response of membrane roofs with aerodynamic effects
Institute of Scientific and Technical Information of China (English)
LI Qing-xiang; SUN Bing-nan
2008-01-01
Based on the characteristics of membrane structures and the air influence factors, this paper presen-ted a method to simulate the air aerodynamic force effects including the added air mass, the acoustic radiation damping and the pneumatic stiffness. The infinite air was modeled using the acoustic fluid element of commer-cial FE software and the finite element membrane roof models were coupled with fluid models. A comparison be-tween the results obtained by IrE computation and those obtained by the vibration experiment for a cable-mem-brane verified the validity of the method. Furthermore, applying the method to a flat membrane roof structure and using its wind tunnel test results, the analysis of nonlinear wind-induced dynamic responses for such geo-metrically nonlinear roofs, including the roof-air coupled model was performed. The result shows that the air has large influence on vibrating membrane roofs according to results of comparing the nodal time-history displace-ments, accelerations and stress of the two different cases. Meantime, numerical studies show that the method developed can successfully solve the nonlinear wind-induced dynamic response of the membrane roof with aero-dynamic effects.
Can we detect a nonlinear response to temperature in European plant phenology?
Jochner, Susanne; Sparks, Tim H.; Laube, Julia; Menzel, Annette
2016-10-01
Over a large temperature range, the statistical association between spring phenology and temperature is often regarded and treated as a linear function. There are suggestions that a sigmoidal relationship with definite upper and lower limits to leaf unfolding and flowering onset dates might be more realistic. We utilised European plant phenological records provided by the European phenology database PEP725 and gridded monthly mean temperature data for 1951-2012 calculated from the ENSEMBLES data set E-OBS (version 7.0). We analysed 568,456 observations of ten spring flowering or leafing phenophases derived from 3657 stations in 22 European countries in order to detect possible nonlinear responses to temperature. Linear response rates averaged for all stations ranged between -7.7 (flowering of hazel) and -2.7 days °C-1 (leaf unfolding of beech and oak). A lower sensitivity at the cooler end of the temperature range was detected for most phenophases. However, a similar lower sensitivity at the warmer end was not that evident. For only ˜14 % of the station time series (where a comparison between linear and nonlinear model was possible), nonlinear models described the relationship significantly better than linear models. Although in most cases simple linear models might be still sufficient to predict future changes, this linear relationship between phenology and temperature might not be appropriate when incorporating phenological data of very cold (and possibly very warm) environments. For these cases, extrapolations on the basis of linear models would introduce uncertainty in expected ecosystem changes.
Order reduction and efficient implementation of nonlinear nonlocal cochlear response models.
Filo, Maurice; Karameh, Fadi; Awad, Mariette
2016-12-01
The cochlea is an indispensable preliminary processing stage in auditory perception that employs mechanical frequency-tuning and electrical transduction of incoming sound waves. Cochlear mechanical responses are shown to exhibit active nonlinear spatiotemporal response dynamics (e.g., otoacoustic emission). To model such phenomena, it is often necessary to incorporate cochlear fluid-membrane interactions. This results in both excessively high-order model formulations and computationally intensive solutions that limit their practical use in simulating the model and analyzing its response even for simple single-tone inputs. In order to address these limitations, the current work employs a control-theoretic framework to reformulate a nonlinear two-dimensional cochlear model into discrete state space models that are of considerably lower order (factor of 8) and are computationally much simpler (factor of 25). It is shown that the reformulated models enjoy sparse matrix structures which permit efficient numerical manipulations. Furthermore, the spatially discretized models are linearized and simplified using balanced transformation techniques to result in lower-order (nonlinear) realizations derived from the dominant Hankel singular values of the system dynamics. Accuracy and efficiency of the reduced-order reformulations are demonstrated under the response to two fixed tones, sweeping tones and, more generally, a brief speech signal. The corresponding responses are compared to those produced by the original model in both frequency and spatiotemporal domains. Although carried out on a specific instance of cochlear models, the introduced framework of control-theoretic model reduction could be applied to a wide class of models that address the micro- and macro-mechanical properties of the cochlea.
Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbations
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A. D.; Ferraro, N. M.; Lao, L. L.; Lanctot, M. J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Izzo, V. A. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Lazarus, E. A.; Hirshman, S. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Park, J.-K.; Lazerson, S.; Reiman, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Cooper, W. A. [Association Euratom-Confederation Suisse, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Turco, F. [Columbia University, 116th St and Broadway, New York, New York 10027 (United States)
2013-05-15
With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10{sup −3} relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.
Ernst Haeckel's biodynamics 1866 and the occult basis of organic farming
Kutschera, Ulrich
2016-01-01
One hundred and 50��years ago (Sept. 1866), Ernst Haeckel published a monograph entitled General Morphology of Organisms, wherein key terms, such as Protista, Monera, ontogeny, phylogeny, ecology and the ���biogenetic law��� where introduced. In addition, Haeckel coined the word ���biodynamics��� as a synonym for ���general physiology.��� In contrast, Rudolf Steiner's ���biodynamic agriculture,��� which originated in 1924, and was promoted via Ehrenfried Pfeiffer's book of 1938 with the same ...
Prescott, Aaron M.; Abel, Steven M.
2016-12-01
The rational design of network behavior is a central goal of synthetic biology. Here, we combine in silico evolution with nonlinear dimensionality reduction to redesign the responses of fixed-topology signaling networks and to characterize sets of kinetic parameters that underlie various input-output relations. We first consider the earliest part of the T cell receptor (TCR) signaling network and demonstrate that it can produce a variety of input-output relations (quantified as the level of TCR phosphorylation as a function of the characteristic TCR binding time). We utilize an evolutionary algorithm (EA) to identify sets of kinetic parameters that give rise to: (i) sigmoidal responses with the activation threshold varied over 6 orders of magnitude, (ii) a graded response, and (iii) an inverted response in which short TCR binding times lead to activation. We also consider a network with both positive and negative feedback and use the EA to evolve oscillatory responses with different periods in response to a change in input. For each targeted input-output relation, we conduct many independent runs of the EA and use nonlinear dimensionality reduction to embed the resulting data for each network in two dimensions. We then partition the results into groups and characterize constraints placed on the parameters by the different targeted response curves. Our approach provides a way (i) to guide the design of kinetic parameters of fixed-topology networks to generate novel input-output relations and (ii) to constrain ranges of biological parameters using experimental data. In the cases considered, the network topologies exhibit significant flexibility in generating alternative responses, with distinct patterns of kinetic rates emerging for different targeted responses.
Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam
Institute of Scientific and Technical Information of China (English)
Y. M. Fu; J. Zhang
2009-01-01
On the basis of the Euler-Bernoulli hypothesis,nonlinear static and dynamic responses of a viscoelastic microbeam under two kinds of electric forces [a purely direct current (DC) and a combined current composed of a DC and an alternating current] are studied. By using Taylor series expansion, a governing equation of nonlinear integro-differential type is derived, and numerical analyses are performed.When a purely DC is applied, there exist an instantaneous pull-in voltage and a durable pull-in voltage of which the physical meanings are also given, whereas under an applied combined current, the effect of the element relaxation coefficient on the dynamic pull-in phenomenon is observed where the largest Lyapunov exponent is taken as a criterion for the dynamic pull-in instability of viscoelastic microbeams.
Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers.
Buckland, E L; Boyd, R W
1997-05-15
The electrostrictive contribution to the nonlinear refractive index is investigated by use of frequency-dependent cross-phase modulation with a weak unpolarized cw probe wave and a harmonically modulated pump copropagating in optical fibers. Self-delayed homodyne detection is used to measure the amplitude of the sidebands imposed upon the probe wave as a function of pump intensity for pump modulation frequencies from 10 MHz to 1 GHz. The ratio of the electrostrictive nonlinear coefficient to the cross-phase-modulation Kerr coefficient for unpolarized light is measured to be 1.58:1 for a standard step-index single-mode fiber and 0.41:1 for dispersion-shifted fibers, indicating a larger electrostrictive response in silica fibers than previously expected.
STEADY-STATE RESPONSES AND THEIR STABILITY OF NONLINEAR VIBRATION OF AN AXIALLY ACCELERATING STRING
Institute of Scientific and Technical Information of China (English)
吴俊; 陈立群
2004-01-01
The steady-state transverse vibration of an axially moving string with geometric nonlinearity was investigated. The transport speed was assumed to be a constant mean speed with small harmonic variations. The nonlinear partial-differential equation that governs the transverse vibration of the string was derived by use of the Hamilton principle. The method of multiple scales was applied directly to the equation. The solvability condition of eliminating the secular terms was established. Closed form solutions for the amplitude and the existence conditions of nontrivial steady-state response of the two-to-one parametric resonance were obtained. Some numerical examples showing effects of the mean transport speed, the amplitude and the frequency of speed variation were presented. The Liapunov linearized stability theory was employed to derive the instability conditions of the trivial solution and the nontrivial solutions for the two-to-one parametric resonance. Some numerical examples highlighting influences of the related parameters on the instability conditions were presented.
Directory of Open Access Journals (Sweden)
Xuming Huang
2009-01-01
Full Text Available We study the permanence of periodic predator-prey system with general nonlinear functional responses and stage structure for both predator and prey and obtain that the predator and the prey species are permanent.
Experimental damage detection of cracked beams by using nonlinear characteristics of forced response
Andreaus, U.; Baragatti, P.
2012-08-01
Experimental evaluation of the flexural forced vibrations of a steel cantilever beam having a transverse surface crack extending uniformly along the width of the beam was performed, where an actual fatigue crack was introduced instead - as usual - of a narrow slot. The nonlinear aspects of the dynamic response of the beam under harmonic excitation were considered and the relevant quantitative parameters were evaluated, in order to relate the nonlinear resonances to the presence and size of the crack. To this end, the existence of sub- and super-harmonic components in the Fourier spectra of the acceleration signals was evidenced, and their amplitudes were quantified. In particular, the acceleration signals were measured in different positions along the beam axis and under different forcing levels at the beam tip. The remarkable relevance of the above mentioned nonlinear characteristics, and their substantial independence on force magnitude and measurement point were worthily noted in comparison with the behavior of the intact beam. Thus, a reliable method of damage detection was proposed which was based on simple tests requiring only harmonically forcing and acceleration measuring in any point non-necessarily near the crack. Then, the time-history of the acceleration recorded at the beam tip was numerically processed in order to obtain the time-histories of velocity and displacement. The nonlinear features of the forced response were described and given a physical interpretation in order to define parameters suitable for damage detection. The efficiency of such parameters was discussed with respect to the their capability of detecting damage and a procedure for damage detection was proposed which was able to detect even small cracks by using simple instruments. A finite element model of the cantilever beam was finally assembled and tuned in order to numerically simulate the results of the experimental tests.
The nonlinear North Atlantic-Arctic ocean response to CO2 forcing
van der Linden, Eveline C.; Bintanja, Richard; Hazeleger, Wilco
2017-04-01
Most climate models project an increase in oceanic energy transport towards high northern latitudes in future climate projections, but the physical mechanisms are not yet fully understood. To obtain a more fundamental understanding of the processes that cause the ocean heat transport to increase, we carried out a set of sensitivity experiments using a coupled atmosphere-ocean general circulation model. Within these experiments, atmospheric CO2 levels are instantaneously set to one-fourth to four times current values. These model integrations, each with a length of 550 years, result in five considerably different quasi-equilibrium climate states. Our simulations show that poleward ocean heat transport in the Atlantic sector of the Arctic at 70°N increases from 0.03 PW in the coldest climate state to 0.2 PW in the warmest climate state. This increase is caused primarily by changes in sea ice cover, in horizontal ocean currents owing to anomalous winds in response to sea ice changes, and in ocean advection of thermal anomalies. Surprisingly, at subpolar latitudes, the subpolar gyre is found to weaken toward both the warmer and colder climates, relative to the current climate. This nonlinear response is caused by a complex interplay between seasonal sea ice melt, the near-surface wind response to sea ice changes, and changes in the density-driven circulation. The Atlantic Meridional Overturning Circulation (AMOC) and its associated heat transport even oppose the total ocean heat transport towards the Arctic in the warmest climate. Going from warm to cold climates, or from high to low CO2 concentrations, the strength of the AMOC initially increases, but then declines towards the coldest climate, implying a nonlinear AMOC-response to CO2-induced climate change. Evidently, the North Atlantic-Arctic ocean heat transport depends on an interplay between various (remote) coupled ocean-atmosphere-sea ice mechanisms that respond in a nonlinear way to climate change.
Kelly, John V.; O'Brien, Jeff; O'Neill, Feidhlim T.; Gleeson, Michael R.; Sheridan, John T.
2004-10-01
Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is non-local as it is assumed that monomers are polymerised to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The numerical method of solution typically involves retaining either two or four harmonics of the Fourier series of monomer concentration in the calculation. In this paper a general set of equations is derived which allows inclusion of higher number of harmonics for any response function. The numerical convergence for varying number of harmonics retained is investigated with special care being taken to note the effect of the; non-local material variance s, the power law degree k, and the rates of diffusion, D, and polymerisation F0. General non-linear material responses are also included.
Gong, Jiao-Li; Liu, Jin-Song; Chu, Zheng; Yang, Zhen-Gang; Wang, Ke-Jia; Yao, Jian-Quan
2016-10-01
The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide (InSb) and indium arsenide (InAs) in an intense terahertz (THz) field are studied by using the method of ensemble Monte Carlo (EMC) at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 kV/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in InSb, and only 5 THz in InAs, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in InSb, while impact ionization and intervalley scattering work together in InAs. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105 and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Wuhan Municipal Applied Basic Research Project, China (Grant No. 20140101010009), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004 and 2014ZZGH021).
Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.
2000-01-01
Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.
Sifain, Andrew E; Tadesse, Loza F; Bjorgaard, Josiah A; Chavez, David E; Prezhdo, Oleg V; Scharff, R Jason; Tretiak, Sergei
2017-03-21
Conjugated energetic molecules (CEMs) are a class of explosives with high nitrogen content that posses both enhanced safety and energetic performance properties and are ideal for direct optical initiation. As isolated molecules, they absorb within the range of conventional lasers. Crystalline CEMs are used in practice, however, and their properties can differ due to intermolecular interaction. Herein, time-dependent density functional theory was used to investigate one-photon absorption (OPA) and two-photon absorption (TPA) of monomers and dimers obtained from experimentally determined crystal structures of CEMs. OPA scales linearly with the number of chromophore units, while TPA scales nonlinearly, where a more than 3-fold enhancement in peak intensity, per chromophore unit, is calculated. Cooperative enhancement depends on electronic delocalization spanning both chromophore units. An increase in sensitivity to nonlinear laser initiation makes these materials suitable for practical use. This is the first study predicting a cooperative enhancement of the nonlinear optical response in energetic materials composed of relatively small molecules. The proposed model quantum chemistry is validated by comparison to crystal structure geometries and the optical absorption of these materials dissolved in solution.
Mircea, Dragos I.; Anlage, Steven M.
2004-03-01
Traditionally, the Andreev Bound States (ABS) have been studied by means of tunneling experiments and global electromagnetic resonant techniques. The zero bias conductance peak and the strong upturn in the penetration depth at low temperature are considered strong evidence for the existence of ABS. The nonlinear inductance arising from the current-dependent penetration depth leads to a nonlinear electrodynamic response that can be probed with our non-resonant near-field microwave microscope [S. C. Lee and S. M. Anlage, Appl. Phys. Lett. 82, 1893 (2003)]. In the experiment, microwave currents have been applied locally along different directions on the surface of YBCO films exposing the (110) surface in order to investigate the angular dependence of the second and third order harmonics generated by the sample. The temperature and the angular dependence measured for different levels of the applied microwave power, will be presented and compared with the theoretical predictions. This low-temperature anisotropic nonlinear behavior is relevant for the study of ABS as well as for identifying the existence of local pairing states with symmetry different from that of the bulk order parameter.
Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.
2017-02-01
Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.
Institute of Scientific and Technical Information of China (English)
Li Jie; Liu Zhangjun; Chen Jianbing
2009-01-01
This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described, An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.
Parpinello, Giuseppina Paola; Rombolà, Adamo Domenico; Simoni, Marco; Versari, Andrea
2015-01-15
The effects of biodynamic production practices on composition and sensory attributes of Sangiovese wines were examined for 2 years (2009 and 2010) in a vineyard that was converted from organic (ORG) to biodynamic (BDN) viticulture. During the first year (2009), the BDN wines were characterised by low alcohol strength, colour intensity, total polyphenols, monomeric anthocyanins and catechin. Conversely, the second year BDN wines differed from the organic wines in terms of total polyphenols and phenolic compounds, including polymeric pigments, co-pigmentation, tannins and iron-reactive polyphenols. The effect of management practices, harvest and their interaction was analysed for each compound. Positive interaction was observed for total acidity, volatile acidity, cyanidin-3-glucoside, protocatechuic acid, (+)-catechin, quercetin and trans-resveratrol. ORG wine initially showed a more complex aroma profile; however, the differences were almost indistinguishable during the second year. Trained panellists highlighted differences in colour intensity between ORG and BDN wines although no preference was found by consumers. The concentrations of ochratoxin A and biogenic amines were far below the health-hazardous threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.
A framework for biodynamic feedthrough analysis--part I: theoretical foundations.
Venrooij, Joost; van Paassen, Marinus M; Mulder, Mark; Abbink, David A; Mulder, Max; van der Helm, Frans C T; Bulthoff, Heinrich H
2014-09-01
Biodynamic feedthrough (BDFT) is a complex phenomenon, which has been studied for several decades. However, there is little consensus on how to approach the BDFT problem in terms of definitions, nomenclature, and mathematical descriptions. In this paper, a framework for biodynamic feedthrough analysis is presented. The goal of this framework is two-fold. First, it provides some common ground between the seemingly large range of different approaches existing in the BDFT literature. Second, the framework itself allows for gaining new insights into BDFT phenomena. It will be shown how relevant signals can be obtained from measurement, how different BDFT dynamics can be derived from them, and how these different dynamics are related. Using the framework, BDFT can be dissected into several dynamical relationships, each relevant in understanding BDFT phenomena in more detail. The presentation of the BDFT framework is divided into two parts. This paper, Part I, addresses the theoretical foundations of the framework. Part II, which is also published in this issue, addresses the validation of the framework. The work is presented in two separate papers to allow for a detailed discussion of both the framework's theoretical background and its validation.
Han, Qun; Xu, Wei; Sun, Jian-Qiao
2016-09-01
The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.
Model of nonlinear coupled thermo-hydro-elastodyanamics response for a saturated poroelastic medium
Institute of Scientific and Technical Information of China (English)
LIU GanBin; XIE KangHe; ZHENG RongYue
2009-01-01
Based on the Blot's wave equation and theory of thermodynamic,Darcy law of fluid and the modified Fourier law of heat conduction,a nonlinear fully coupled thermo-hydro-elastodynamic response model(THMD)for saturated porous medium is derived.The compressibility of the medium,the influence of fluid flux on the heat flux,and the influence of change of temperature on the fluid flux are considered in this model.With some simplification,the coupled nonlinear thermo-hydro-elastodynamic response model can be reduced to the thermo-elastodynamic(TMD)model based on the traditional Fourier law and,further more,to the Blot's wave equation without considering the heat phase.At last,the problem of one dimensional cylindrical cavity subjected to a time-dependent thermal/mechanical shock is analyzed by using the Laplace technique,the numerical results are used to discuss the influence of Blot's modulus M and coefficient of thermo-osmosis on displacement and to compare with the results of thermo-elastodynamic response to ascertain the validity of this model.
Model of nonlinear coupled thermo-hydro-elastodynamics response for a saturated poroelastic medium
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on the Biot’s wave equation and theory of thermodynamic, Darcy law of fluid and the modified Fourier law of heat conduction, a nonlinear fully coupled thermo-hydro-elastodynamic response model (THMD) for saturated porous medium is derived. The compressibility of the medium, the influence of fluid flux on the heat flux, and the influence of change of temperature on the fluid flux are considered in this model. With some simplification, the coupled nonlinear thermo-hydro-elastodynamic response model can be reduced to the thermo-elastodynamic (TMD) model based on the traditional Fourier law and, further more, to the Biot’s wave equation without considering the heat phase. At last, the problem of one dimensional cylindrical cavity subjected to a time-dependent thermal/mechanical shock is analyzed by using the Laplace technique, the numerical results are used to discuss the influence of Biot’s modulus M and coefficient of thermoos-mosis on displacement and to compare with the results of thermo-elastodynamic response to ascertain the validity of this model.
A fast continuation scheme for accurate tracing of nonlinear oscillator frequency response functions
Chen, Guoqiang; Dunne, J. F.
2016-12-01
A new algorithm is proposed to combine the split-frequency harmonic balance method (SF-HBM) with arc-length continuation (ALC) for accurate tracing of the frequency response of oscillators with non-expansible nonlinearities. ALC is incorporated into the SF-HBM in a two-stage procedure: Stage I involves finding a reasonably accurate response frequency and solution using a relatively large number of low-frequency harmonics. This step is achieved using the SF-HBM in conjunction with ALC. Stage II uses the SF-HBM to obtain a very accurate solution at the frequency obtained in Stage I. To guarantee rapid path tracing, the frequency axis is appropriately subdivided. This gives high chance of success in finding a globally optimum set of harmonic coefficients. When approaching a turning point however, arc-lengths are adaptively reduced to obtain a very accurate solution. The combined procedure is tested on three hardening stiffness examples: a Duffing model; an oscillator with non-expansible stiffness and single harmonic forcing; and an oscillator with non-expansible stiffness and multiple-harmonic forcing. The results show that for non-expansible nonlinearities and multiple-harmonic forcing, the proposed algorithm is capable of tracing-out frequency response functions with high accuracy and efficiency.
Directory of Open Access Journals (Sweden)
A.M. Elnaggar
2016-01-01
Full Text Available An analysis of primary, superharmonic of order five, and subharmonic of order one-three resonances for non-linear s.d.o.f. system with two distinct time-delays under an external excitation is investigated. The method of multiple scales is used to determine two first order ordinary differential equations which describe the modulation of the amplitudes and the phases. Steady-state solutions and their stabilities in each resonance are studied. Numerical results are obtained by using the Software of Mathematica, which presented in a group of figures. The effect of the feedback gains and time-delays on the non-linear response of the system is discussed and it is found that: an appropriate feedback can enhance the control performance. A suitable choice of the feedback gains and time-delays can enlarge the critical force amplitude, and reduce the peak amplitude of the response (or peak amplitude of the free oscillation term for the case of primary resonance (superharmonic resonance. Furthermore, a proper feedback can eliminate saddle-node bifurcation, thereby eliminating jump and hysteresis phenomena taking place in the corresponding uncontrolled system. For subharmonic resonance, an adequate feedback can reduce the regions of subharmonic resonance response.
A Space-Time Finite Element Model for Design and Control Optimization of Nonlinear Dynamic Response
Directory of Open Access Journals (Sweden)
P.P. Moita
2008-01-01
Full Text Available A design and control sensitivity analysis and multicriteria optimization formulation is derived for flexible mechanical systems. This formulation is implemented in an optimum design code and it is applied to the nonlinear dynamic response. By extending the spatial domain to the space-time domain and treating the design variables as control variables that do not change with time, the design space is included in the control space. Thus, one can unify in one single formulation the problems of optimum design and optimal control. Structural dimensions as well as lumped damping and stiffness parameters plus control driven forces, are considered as decision variables. The dynamic response and its sensitivity with respect to the design and control variables are discretized via space-time finite elements, and are integrated at-once, as it is traditionally used for static response. The adjoint system approach is used to determine the design sensitivities. Design optimization numerical examples are performed. Nonlinear programming and optimality criteria may be used for the optimization process. A normalized weighted bound formulation is used to handle multicriteria problems.
Studying Climate Response to Forcing by the Nonlinear Dynamical Mode Decomposition
Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander
2017-04-01
An analysis of global climate response to external forcing, both anthropogenic (mainly, CO2 and aerosol) and natural (solar and volcanic), is needed for adequate predictions of global climate change. Being complex dynamical system, the climate reacts to external perturbations exciting feedbacks (both positive and negative) making the response non-trivial and poorly predictable. Thus an extraction of internal modes of climate system, investigation of their interaction with external forcings and further modeling and forecast of their dynamics, are all the problems providing the success of climate modeling. In the report the new method for principal mode extraction from climate data is presented. The method is based on the Nonlinear Dynamical Mode (NDM) expansion [1,2], but takes into account a number of external forcings applied to the system. Each NDM is represented by hidden time series governing the observed variability, which, together with external forcing time series, are mapped onto data space. While forcing time series are considered to be known, the hidden unknown signals underlying the internal climate dynamics are extracted from observed data by the suggested method. In particular, it gives us an opportunity to study the evolution of principal system's mode structure in changing external conditions and separate the internal climate variability from trends forced by external perturbations. Furthermore, the modes so obtained can be extrapolated beyond the observational time series, and long-term prognosis of modes' structure including characteristics of interconnections and responses to external perturbations, can be carried out. In this work the method is used for reconstructing and studying the principal modes of climate variability on inter-annual and decadal time scales accounting the external forcings such as anthropogenic emissions, variations of the solar activity and volcanic activity. The structure of the obtained modes as well as their response to
Institute of Scientific and Technical Information of China (English)
Wang Shaoli; Feng Xinlong; He Yinnian
2011-01-01
This article proposes a diffused hepatitis B virus (HBV) model with CTLimmune response and nonlinear incidence for the control of viral infections.By means of different Lyapunov functions,the global asymptotical properties of the viral-free equilibrium and immune-free equilibrium of the model are obtained.Global stability of the positive equilibrium of the model is also considered.The results show that the free diffusion of the virus has no effect on the global stability of such HBV infection problem with Neumann homogeneous boundary conditions.
Optimization of coherent optical OFDM transmitter using DP-IQ modulator with nonlinear response
Chang, Sun Hyok; Kang, Hun-Sik; Moon, Sang-Rok; Lee, Joon Ki
2016-07-01
In this paper, we investigate the performance of dual polarization orthogonal frequency division multiplexing (DP-OFDM) signal generation when the signal is generated by a DP-IQ optical modulator. The DP-IQ optical modulator is made of four parallel Mach-Zehnder modulators (MZMs) which have nonlinear responses and limited extinction ratios. We analyze the effects of the MZM in the DP-OFDM signal generation by numerical simulation. The operating conditions of the DP-IQ modulator are optimized to have the best performance of the DP-OFDM signal.
Zeveleanu, C.
1974-01-01
The insulation of nonlinear and random vibrations is considered for some ore preparing and sorting implements: rotary crushers, resonance screens, hammer mills, etc. The appearance of subharmonic vibrations is analyzed, and the conditions for their appearance are determined. A method is given for calculating the insulation of these vibrations by means of elastic elements made of rubber. The insulation of the random vibrations produced by Symons crushers is calculated by determining the transmissability and deformation of the insulation system for a narrow band random response.
Phase disruption as a new design paradigm for optimizing the nonlinear-optical response
Lytel, Rick; Kuzyk, Mark G
2015-01-01
The intrinsic optical nonlinearities of quasi-one dimensional structures, including conjugated chain polymers and nanowires, are shown to be dramatically enhanced by the judicious placement of a side group or wire of sufficiently short length to create a large phase disruption in the dominant eigenfunctions along the main path of probability current. Phase disruption is proposed as a new general principle for the design of molecules, nanowires and any quasi-1D quantum system with large intrinsic response and does not require charge donors-acceptors at the ends.
Modeling of nonlinear optic and ESR response of CDW MX materials
Energy Technology Data Exchange (ETDEWEB)
Saxena, A.; Gammel, J.T.; Bishop, A.R. [Los Alamos National Lab., NM (United States); Shuai, Z.; Bredas, J.L. [Center de Recherche en Electronique et Photonique Moleculaires, Universite de Mons-Hainaut (Belgium); Batistic, I. [Zagreb Univ. (Croatia). Dept. of Physics; Alouani, M. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics
1994-09-01
We report results on the nonlinear optic and ESR response of the PtX MX chain materials calculated using a discrete, 3/4-filled, two-band, tight-binding Peierls-Hubbard model. We calculated electroabsorption (EA) spectra for the three PtX (X=Cl, Br, 1) charge-density-wave (CDW) materials and find good agreement with the experimental data. We also obtain EA spectra for localized defects in PtBr. In addition, the field orientation dependence of the electron spin resonance spectra associated with the spin carrying defects is calculated for PtX materials and compared with ESR data on photoinduced defects.
POD/MAC-Based Modal Basis Selection for a Reduced Order Nonlinear Response Analysis
Rizzi, Stephen A.; Przekop, Adam
2007-01-01
A feasibility study was conducted to explore the applicability of a POD/MAC basis selection technique to a nonlinear structural response analysis. For the case studied the application of the POD/MAC technique resulted in a substantial improvement of the reduced order simulation when compared to a classic approach utilizing only low frequency modes present in the excitation bandwidth. Further studies are aimed to expand application of the presented technique to more complex structures including non-planar and two-dimensional configurations. For non-planar structures the separation of different displacement components may not be necessary or desirable.
Non-linear wave loads and ship responses by a time-domain strip theory
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher
1998-01-01
A non-linear time-domain strip theory for vertical wave loads and ship responses is presented. The theory is generalized from a rigorous linear time-domain strip theory representation. The hydrodynamic memory effect due to the free surface is approximated by a higher order differential equation. ...... and are systematically compared with the experimental results given by Watanabe et al. (1989, J. Soc. Naval Architects Japan, 166) and O’Dea et al. (1992, Proc. 19th Symp. on Naval Hydrodynamics). The agreement between the present predictions and the experiments is very encouraging....
Directory of Open Access Journals (Sweden)
Wang Changfeng
2014-10-01
Full Text Available During an earthquake, the nonlinearity of the bridge structure mainly occurs at the supports, bridge piers and restrainers. When entering nonlinear stage, members of the bridge structure affect the elasto-plastic seismic response of the whole structure to a certain extent; for multi-span continuous bridges, longitudinal restrainers can be installed on the movable piers to optimise the distribution of seismic force and enable the movable piers to bear a certain amount of seismic effect. In order to evaluate the effect of nonlinearity of restrainer and supports on the elasto-plastic seismic response of continuous girder bridge, analytical models of continuous girder bridge structure considering the nonlinearity of movable supports, restrainers and bridge piers were built and the nonlinear time history analysis was conducted to evaluate the effect of nonlinearity of restraining devices and supports on the elasto-plastic seismic response of continuous girder bridge. Relevant structural measures and recommendation were made to reduce the seismic response of the fixed piers of the continuous girder bridge.
Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow
Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.
2016-06-01
Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.
Non-linear response of soil carbon gas (CO2, CH4) flux to oxygen availability
Mcnicol, G.; Silver, W. L.
2013-12-01
Soil oxygen (O2) concentration can impact soil carbon (C) fluxes of carbon dioxide (CO2) and methane (CH4), and is an important chemical gradient across the terrestrial-aquatic interface that drives large differences in ecosystem C storage. Few studies have established quantitative relationships between gas-phase O2 concentration and soil C fluxes in controlled settings. Though standard Michaelis-Menten enzyme kinetics would predict a highly non-linear relationship between O2 concentration and microbial consumption, existing studies have imposed coarse changes in O2 concentration that necessarily prevent detection of non-linearity. We report on the results of laboratory incubations designed to explore the short-term sensitivity of soil C emissions to a wide range of gas-phase O2 concentrations. Organic-rich soil was collected from a drained peatland and subjected to seven O2 concentration treatments ranging from 0.03 % - 20 % O2. We compared the fit of the observed C flux response to O2 concentration to linear, log-linear, and Michaelis-Menten functions using MSE and residual fits as performance metrics. We found that both CO2 and CH4 emissions were highly sensitive to O2 concentration, with emission rates increasing and decreasing, respectively, at higher O2. Net CH4 emission rates were attenuated at higher O2 concentrations most likely due to stimulation of gross CH4 consumption. A log-linear or Michaelis-Menten model better fit data than a linear model by both performance metrics, demonstrating, empirically, a non-linear relationship between O2 concentration and soil CO2 and CH4 fluxes. Our results suggest high O2 sensitivity of C-rich soils at the terrestrial-aquatic interface and show that the microbial response to soil redox chemistry must be measured over a biophysically meaningful range of conditions to derive relationships that accurately predict soil C fluxes.
Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade
Orain, F; Viezzer, E; Dunne, M; Becoulet, M; Cahyna, P; Huijsmans, G T A; Morales, J; Willensdorfer, M; Suttrop, W; Kirk, A; Pamela, S; Strumberger, E; Guenter, S; Lessig, A
2016-01-01
The plasma response to Resonant Magnetic Perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which Edge Localized Modes are best mitigated in experiments is related to the largest edge kink response observed near the X-point in modeling. On the edge resonant surfaces q = m=n, the coupling between the m + 2 kink component and the m resonant component is found to induce the amplification of the resonant magnetic perturbation. The ergodicity and the 3D-displacement near the X-point induced by the resonant ampli?cation can only partly explain the density pumpout observed in experiments.
Response Regimes in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing
Farid, M
2016-01-01
We consider equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel; the model treats both the regime of linear sloshing, and strongly nonlinear sloshing regime. The latter is related to hydraulic impacts applied to the vessel walls. These hydraulic impacts are commonly simulated with the help of high-power potential and dissipation functions. For the sake of analytic exploration, we substitute this traditional approach by treatment of an idealized vibro-impact system with velocity-dependent restitution coefficient. The obtained reduced model is similar to recently explored system of linear primary oscillator with attached vibro-impact energy sink. The ratio of modal mass of the first sloshing mode to the total mass of the liquid and the tank serves as a natural small parameter for multiple-scale analysis. In the case of external ground forcing, steady-state responses and chaotic strongly modulated responses are revealed. All analytical predictions of the reduced vibro-impact mod...
Institute of Scientific and Technical Information of China (English)
Chang-shui FENG; Wei-qiu ZHU
2009-01-01
We studied the response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control using the stochastic averaging method. First, the time-delayed feedback bang-bang control force is expressed approximately in terms of the system state variables without time delay. Then the averaged Ito stochastic differential equations for the system are derived using the stochastic averaging method. Finally, the response of the system is obtained by solving the Fokker-Plank-Kolmogorov (FPK) equation associated with the averaged Ito equations. A Duffing oscillator with time-delayed feedback bang-bang control under combined harmonic and white noise excitations is taken as an example to illus-trate the proposed method. The analytical results are confirmed by digital simulation. We found that the time delay in feedback bang-bang control will deteriorate the control effectiveness and cause bifurcation of stochastic jump of Duffing oscillator.
Nonlinear response and dynamical transitions in a phase-field crystal model for adsorbed overlayers
Energy Technology Data Exchange (ETDEWEB)
Ramos, J A P [Departamento de Ciencias Exatas, Universidade Estadual do Sudoeste da Bahia, 45000-000 Vitoria da Conquista, BA (Brazil); Granato, E [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, 12245-970 Sao Jose dos Campos, SP (Brazil); Ying, S C; Ala-Nissila, T [Department of Physics, PO Box 1843, Brown University, Providence, RI 02912-1843 (United States); Achim, C V [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11000, FI-00076 Aalto, Espoo (Finland); Elder, K R, E-mail: Jorge@las.inpe.b [Department of Physics, Oakland University, Rochester, Michigan 48309-4487 (United States)
2010-09-01
The nonlinear response and sliding friction behavior of a phase-field crystal model for driven adsorbed atomic layers is determined numerically. The model describes the layer as a continuous density field coupled to the pinning potential of the substrate and under an external driving force. Dynamical equations which take into account both thermal fluctuations and inertial effects are used for numerical simulations of commensurate and incommensurate layers. At low temperatures, the velocity response of an initially commensurate layer shows hysteresis with dynamical melting and freezing transitions at different critical forces. The main features of the sliding friction behavior are similar to the results obtained previously from molecular dynamics simulations of particle models. However, the dynamical transitions correspond to nucleations of stripes rather than closed domains.
Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming
Directory of Open Access Journals (Sweden)
J. Schewe
2017-07-01
Full Text Available Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300 % over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic–thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.
Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming
Schewe, Jacob; Levermann, Anders
2017-07-01
Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300 % over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST) in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic-thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.
Nonlinear functional response parameter estimation in a stochastic predator-prey model.
Gilioli, Gianni; Pasquali, Sara; Ruggeri, Fabrizio
2012-01-01
Parameter estimation for the functional response of predator-prey systems is a critical methodological problem in population ecology. In this paper we consider a stochastic predator-prey system with non-linear Ivlev functional response and propose a method for model parameter estimation based on time series of field data. We tackle the problem of parameter estimation using a Bayesian approach relying on a Markov Chain Monte Carlo algorithm. The efficiency of the method is tested on a set of simulated data. Then, the method is applied to a predator-prey system of importance for Integrated Pest Management and biological control, the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. The model is estimated on a dataset obtained from a field survey. Finally, the estimated model is used to forecast predator-prey dynamics in similar fields, with slightly different initial conditions.
Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade
Orain, F.; Hölzl, M.; Viezzer, E.; Dunne, M.; Bécoulet, M.; Cahyna, P.; Huijsmans, G. T. A.; Morales, J.; Willensdorfer, M.; Suttrop, W.; Kirk, A.; Pamela, S.; Günter, S.; Lackner, K.; Strumberger, E.; Lessig, A.; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2017-02-01
The plasma response to resonant magnetic perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which edge localized modes are best mitigated in experiments is related to the largest edge kink response observed near the X-point in modeling. On the edge resonant surfaces q = m/n, the coupling between the kink component (m > nq) and the m resonant component is found to induce the amplification of the resonant magnetic perturbation. The ergodicity and the 3D-displacement near the X-point induced by the resonant amplification can only partly explain the density pumpout observed in experiments.
Nonlinear Response of High Arch Dams to Nonuniform Seismic Excitation Considering Joint Effects
Directory of Open Access Journals (Sweden)
Masoomeh Akbari
2013-01-01
Full Text Available Nonuniform excitation due to spatially varying ground motions on nonlinear responses of concrete arch dams is investigated. A high arch dam was selected as numerical example, reservoir was modelled as incompressible material, foundation was assumed as mass-less medium, and all contraction and peripheral joints were modelled considering the ability of opening/closing. This study used Monte-Carlo simulation approach for generating spatially nonuniform ground motion. In this approach, random seismic characteristics due to incoherence and wave passage effects were investigated and finally their effects on structural response were compared with uniform excitation at design base level earthquake. Based on the results, nonuniform input leads to some differences than uniform input. Moreover using nonuniform excitation increase, stresses on dam body.
Electrical nonlinear response of a photomixer for applications in ultrafast measurements
Constantin, Florin L.
2014-05-01
Electrical nonlinear response of a low-temperature-grown GaAs photomixer is exploited for THz-wave modulation, detection and waveform sampling. Current-voltage response at low bias field is modelled by electron drift velocity saturation. THz-wave rectification is discussed in a small-signal approximation and experimentally addressed in connection with the curvature of IV plot. The optical heterodyne signal from two lasers down-converted with the photomixer is modulated by applying an alternative bias field. Conversely, heterodyne detection of a continuous-wave THz source is demonstrated with the photomixer using the optical beat between the lasers as local oscillator. Alternatively, THz-waves with tunable carrier and pulse repetition rate are generated with a THz frequency multiplier driven by a pulsed microwave synthesizer. Asynchronous optical sampling with a pulsed optical beat is demonstrated with the heterodyne detection scheme.
Wakabayashi, Hiroki; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi
2017-06-01
PZT thin films have excellent performance in deformation precision and response speed, so it is used widely for actuators and sensors of Micro Electro Mechanical System (MEMS). Although PZT thin films outputs large piezoelectricity at morphotropic phase bounfary (MPB), it shows a complicated hysteresis behavior caused by domain switching and structural phase transition between tetragonal and rhombohedral. In general, PZT thin films have some characteristic crystal morphologies. Additionally mechanical strains occur by lattice mismatch with substrate. Therefore it is important for fabrication and performance improvement of PZT thin films to understand the relation between macroscopic hysteresis response and microstructural changes. In this study, a multiscale nonlinear finite element simulation was proposed for PZT thin films at morphotropic phase boundary (MPB) on the substrate. The homogenization theory was employed for scale-bridging between macrostructure and microstructure. Figure 1 shows the proposed multiscale nonlinear simulation [1-3] based on the homogenization theory. Macrostructure is a homogeneous structure to catch the whole behaviors of actuators and sensors. And microstructure is a periodic inhomogeneous structure consisting of domains and grains. Macrostructure and microstructure are connected perfectly by homogenization theory and are analyzed by finite element method. We utilized an incremental form of fundamental constitutive law in consideration with physical property change caused by domain switching and structural phase transition. The developed multiscale finite element method was applied to PZT thin films with lattice mismatch strain on the substrate, and the relation between the macroscopic hysteresis response and microscopic domain switching and structural phase transition were investigated. Especially, we discuss about the effect of crystal morphologies and lattice mismatch strain on hysteresis response.
Mito, Masaki; Matsui, Hideaki; Tsuruta, Kazuki; Deguchi, Hiroyuki; Kishine, Jun-ichiro; Inoue, Katsuya; Kousaka, Yusuke; Yano, Shin-ichiro; Nakao, Yuya; Akimitsu, Jun
2015-10-01
The nonlinear and linear magnetic responses to an ac magnetic field H are useful for the study of the magnetic dynamics of both magnetic domains and their constituent spins. In particular, the third-harmonic magnetic response M3ω reflects the dynamics of magnetic domains. Furthermore, by considering the ac magnetic response as a function of H, we can evaluate the degree of magnetic nonlinearity, which is closely related to M3ω. In this study, a series of approaches was used to examine the itinerant magnet MnP, in which both ferromagnetic and helical phases are present. On the basis of this investigation, we systematize the diagnostic approach to evaluating nonlinearity in magnetic responses.
DEFF Research Database (Denmark)
Dich, Nadya; Doan, Stacey N; Kivimäki, Mika
2014-01-01
Previous research suggests that high levels of negative emotions may affect health. However, it is likely that the absence of an emotional response following stressful events may also be problematic. Accordingly, we investigated whether a non-linear association exists between negative emotional...... cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological...
Evolutionary geomorphology: thresholds and nonlinearity in landform response to environmental change
Directory of Open Access Journals (Sweden)
J. D. Phillips
2006-04-01
Full Text Available Geomorphic systems are typically nonlinear, owing largely to their threshold-dominated nature (but due to other factors as well. Nonlinear geomorphic systems may exhibit complex behaviors not possible in linear systems, including dynamical instability and deterministic chaos. The latter are common in geomorphology, indicating that small, short-lived changes may produce disproportionately large and long-lived results; that evidence of geomorphic change may not reflect proportionally large external forcings; and that geomorphic systems may have multiple potential response trajectories or modes of adjustment to change. Instability and chaos do not preclude predictability, but do modify the context of predictability. The presence of chaotic dynamics inhibits or excludes some forms of predicability and prediction techniques, but does not preclude, and enables, others. These dynamics also make spatial and historical contingency inevitable: geography and history matter. Geomorphic systems are thus governed by a combination of ''global'' laws, generalizations and relationships that are largely (if not wholly independent of time and place, and ''local'' place and/or time-contingent factors. The more factors incorporated in the representation of any geomorphic system, the more singular the results or description are. Generalization is enhanced by reducing rather than increasing the number of factors considered. Prediction of geomorphic responses calls for a recursive approach whereby global laws and local contingencies are used to constrain each other. More specifically a methodology whereby local details are embedded within simple but more highly general phenomenological models is advocated. As landscapes and landforms change in response to climate and other forcings, it cannot be assumed that geomorphic systems progress along any particular pathway. Geomorphic systems are evolutionary in the sense of being path
Millard, Daniel C; Wang, Qi; Gollnick, Clare A; Stanley, Garrett B
2013-01-01
Objective Nonlinear system identification approaches were used to develop a dynamical model of the network level response to patterns of microstimulation in-vivo. Approach The thalamocortical circuit of the rodent vibrissa pathway was the model system, with voltage sensitive dye imaging capturing the cortical response to patterns of stimulation delivered from a single electrode in the ventral posteromedial thalamus. The results of simple paired stimulus experiments formed the basis for the development of a phenomenological model explicitly containing nonlinear elements observed experimentally. The phenomenological model was fit using datasets obtained with impulse train inputs, Poisson-distributed in time and uniformly varying in amplitude. Main Results The phenomenological model explained 58% of the variance in the cortical response to out of sample patterns of thalamic microstimulation. Furthermore, while fit on trial averaged data, the phenomenological model reproduced single trial response properties when simulated with noise added into the system during stimulus presentation. The simulations indicate that the single trial response properties were dependent on the relative sensitivity of the static nonlinearities in the two stages of the model, and ultimately suggest that electrical stimulation activates local circuitry through linear recruitment, but that this activity propagates in a highly nonlinear fashion to downstream targets. Significance The development of nonlinear dynamical models of neural circuitry will guide information delivery for sensory prosthesis applications, and more generally reveal properties of population coding within neural circuits. PMID:24162186
Millard, Daniel C.; Wang, Qi; Gollnick, Clare A.; Stanley, Garrett B.
2013-12-01
Objective. Nonlinear system identification approaches were used to develop a dynamical model of the network level response to patterns of microstimulation in vivo. Approach. The thalamocortical circuit of the rodent vibrissa pathway was the model system, with voltage sensitive dye imaging capturing the cortical response to patterns of stimulation delivered from a single electrode in the ventral posteromedial thalamus. The results of simple paired stimulus experiments formed the basis for the development of a phenomenological model explicitly containing nonlinear elements observed experimentally. The phenomenological model was fit using datasets obtained with impulse train inputs, Poisson-distributed in time and uniformly varying in amplitude. Main results. The phenomenological model explained 58% of the variance in the cortical response to out of sample patterns of thalamic microstimulation. Furthermore, while fit on trial-averaged data, the phenomenological model reproduced single trial response properties when simulated with noise added into the system during stimulus presentation. The simulations indicate that the single trial response properties were dependent on the relative sensitivity of the static nonlinearities in the two stages of the model, and ultimately suggest that electrical stimulation activates local circuitry through linear recruitment, but that this activity propagates in a highly nonlinear fashion to downstream targets. Significance. The development of nonlinear dynamical models of neural circuitry will guide information delivery for sensory prosthesis applications, and more generally reveal properties of population coding within neural circuits.
Terenziani, Francesca; Parthasarathy, Venkatakrishnan; Ghosh, Sampa; Pandey, Ravindra; Das, Puspendu K.; Blanchard-Desce, Mireille
2009-08-01
While structure-properties relationships are quite actively and successfully investigated at the molecular level of engineering of optical nonlinear responses, supramolecular structure-property relationships are an appealing field. The realization that interchromophoric interactions between strongly polar/polarizable NLO chromophores can significantly affect the NLO response of each chromophoric unit as well as promote associations has opened new dimensions for molecular design. Several elegant routes have been implemented to hinder or counterbalance dipole-dipole interactions between dipolar NLO chromophores for the elaboration of second-order materials (for SHG or electro-optical modulation). At opposite, we have implemented a reverse strategy by confining discrete numbers of NLO push-pull chromophores in close proximity within covalent organic nanoclusters with the aim to exploit interchromophoric interactions in order to achieve enhanced NLO responses. As a proof of concept, we present here the investigation of two-series of multichromophoric covalent assemblies built from NLO push-pull chromophores showing that cooperative enhancement can be achieved both for second-order optical responses (first hyperpolarizabilities) or third-order responses (two-photon absorption cross-sections).
Khan, Kamran
2012-11-10
We formulate a variational constitutive framework that accounts for nonlinear viscous behavior of electrically sensitive polymers, specifically Dielectric Elastomers (DEs), under large deformation. DEs are highly viscoelastic and their actuation response is greatly affected in dynamic applications. We used the generalized Maxwell model to represent the viscoelastic response of DE allowing the material to relax with multiple mechanisms. The constitutive updates at each load increment are obtained by minimizing an objective function formulated using the free energy and electrostatic energy of the elastomer, in addition to the viscous dissipation potential of the dashpots in each Maxwell branch. The model is then used to predict the electromechanical instability (EMI) of DE. The electro-elastic response of the DE is verified with available analytical solutions in the literature and then the material parameters are calibrated using experimental data. The model is integrated with finite element software to perform a variety of simulations on different types of electrically driven actuators under various electromechanical loadings. The electromechanical response of the DE and the critical conditions at which EMI occurs were found to be greatly affected by the viscoelasticity. Our model predicts that under a dead load EMI can be avoided if the DE operates at a high voltage rate. Subjected to constant, ramp and cyclic voltage, our model qualitatively predicts responses similar to the ones obtained from the analytical solutions and experimental data available in the literature. © 2012 Springer-Verlag Berlin Heidelberg.
Said, Christopher P; Baron, Sean G; Todorov, Alexander
2009-03-01
Previous neuroimaging research has shown amygdala sensitivity to the perceived trustworthiness of neutral faces, with greater responses to untrustworthy compared with trustworthy faces. This observation is consistent with the common view that the amygdala encodes fear and is preferentially responsive to negative stimuli. However, some studies have shown greater amygdala activation to positive compared with neutral stimuli. The first goal of this study was to more fully characterize the amygdala response to face trustworthiness by modeling its activation with both linear and nonlinear predictors. Using fMRI, we report a nonmonotonic response profile, such that the amygdala responds strongest to highly trustworthy and highly untrustworthy faces. This finding complicates future attempts to make inferences about mental states based on activation in the amygdala. The second goal of the study was to test for modulatory effects of image spatial frequency filtering on the amygdala response. We predicted greater amygdala sensitivity to face trustworthiness for low spatial frequency images compared with high spatial frequency images. Instead, we found that both frequency ranges provided sufficient information for the amygdala to differentiate faces on trustworthiness. This finding is consistent with behavioral results and suggests that trustworthiness information may reach the amygdala through pathways carrying both coarse and fine resolution visual signals.
Institute of Scientific and Technical Information of China (English)
LU Yanjun; LIU Heng; YU Lie; LI Qi; ZHANG Zhiyu; JIANG Ming
2007-01-01
Based on the variational constraint approach, the variational form of Reynolds equation in hydrodynamic lubrication is revised continuously to satisfy certain con- straints in the cavitation zone of oil film field. According to the physical characteristic of oil film, an eight-node isopara- metric finite element method is used to convert the revised variational form of Reynolds equation to a discrete form of finite dimensional algebraic variational equation. By this approach, a perturbance equation can be obtained directly on the finite element equation. Consequently, nonlinear oil film forces and their Jacobian matrices are calculated simul- taneously, and compatible accuracy is obtained without increasing the computational costs. A method, which is a combination ofpredictor-corrector mechanism and Newton- Raphson method, is presented to calculate equilibrium posi- tion and critical speed corresponding to Hopf bifurcation point of bearing-rotor system, as by-product dynamic coe- fficients of bearing are obtained. The timescale, i.e., the unknown whirling period of Hopf bifurcation solution of bearing-rotor system is drawn into the iterative process using Poincaré-Newton-Floquet method. The stability of the Hopf bifurcation solution can be detected when estimating Hopf bifurcation solution and its periods. The nonlinear unbalanced Tperiodic responses of the system are obtained by using PNF method and path-following technique. The local stability and bifurcation behaviors of T periodic motions are analyzed by Floquet theory. Chaotic motions are analyzed by Lyapunov exponents. The numerical results revealed the rich and complex nonlinear behavior of the system, such as periodic, quasiperiodic, jumped solution, chaos, and coexistence of multisolution, and so on.
Nawarathna, Dharmakirthi
The response of biological cells to an applied oscillating electric field contains both linear and nonlinear components (eg. induced harmonics). Such noninvasive measurements can be used to study active processes taking place inside the cells. The measurement of induced harmonics is the tool used for the study described here. A highly sensitive superconducting quantum interference device (SQUID) is used to detect the response at low frequencies, which greatly reduces electrode polarization effects. At high frequencies, a four- probe method is used. At low frequencies, harmonic generation by budding yeast cells in response to a sinusoidal electric field is reported, which is seen to be minimal when the field amplitude is less than a threshold value. Surprisingly, sodium metavanadate, an inhibitor of P-type ATPases and glucose, a substrate of P-type ATPase responsible for nonlinear response in yeast, reduces the threshold field amplitude, increasing harmonic generation at low amplitudes while reducing it at large amplitudes. We have thus proposed a model that explicitly introduces a threshold field, similar to those observed in density waves, where fields above threshold drive charge transport through an energy landscape with multiple wells, and in Coulomb blockade tunnel junctions, recently exploited to define the current standard. At high frequencies, the induced harmonics exhibit pronounced features that depend on the specific organism. Budding yeast (S. cerevisiae ) cells produce numerous harmonics. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by the respiratory inhibitor potassium cyanide. We then measured the response to oscillatory electric fields of intact bovine heart mitochondria, a reproducible second harmonic (at ˜3-4 kHz applied frequency) was detected. Further, with coupled mouse mitochondria, an ADP sensitive peak (˜ 12-15 kHz applied frequency) was
Lee, Ho-Jun; Saravanos, Dimitris A.
1997-01-01
Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.
Effects of shear keys on nonlinear seismic responses of an arch-gravity dam
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In the paper,the added tangential nonlinear springs are introduced to represent the effects of one-way and two-way shear keys. The added tangential stiffness coefficient is relative to the joint opening and the relative tangential movement and determined numerically by using a refined model of shear keys.The user subroutine of nonlinear spring elements has been implemented into ABAQUS program.The seismic responses of an arch-gravity dam are mainly examined.It is shown by the results that a significant increase of about 17%-30%in joint opening can be observed for the dam with one-way shear keys;the two-way shear keys are beneficial to restrain the sliding displacement along both the radial and vertical directions,whereas the one-way shear keys mainly restrain the displacement along the radial direction;for the dam with shear keys,the maximum arch stress is increased,the cantilever stress is reduced,and the location of the maximum cantilever stress is also moved from the dam heel to the midheight of the cantilever.
Misawa, Tetsuro; Yokoyama, Takehito; Murakami, Shuichi
2012-02-01
Recent photoelectron spectroscopy experiments have revealed the presence of the Dirac cone on the surface of the topological insulator and its spin-splitting due to the spin-orbit interaction. In general, on spin-orbit coupled systems, electric fields induce spin polarizations as linear and nonlinear responses. Here we investigate the inverse Faraday effect on the surface of the topological insulator. The inverse Faraday effect is a non-linear optical effect where a circularly polarized light induces a dc spin polarization. We employ the Keldysh Green's function method to calculate the induced spin polarization and discuss its frequency dependence. In particular, in the low frequency limit, our analytical result gives the spin polarization proportional to the frequency and the square of the lifetime. As for the finite frequency regime, we employ numerical methods to discuss the resonance due to interband transitions. We also discuss the photogalvanic effect, where an illumination of a circular polarized light generates the dc charge current. Lastly, we evaluate those quantities with realistic parameters.[4pt] [1] T. Misawa, T. Yokoyama, S. Murakami, Phys. Rev. B84, 165407 (2011).
Non-Linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparisons
PARKER, R. G.; VIJAYAKAR, S. M.; IMAJO, T.
2000-10-01
The dynamic response of a spur gear pair is investigated using a finite element/contact mechanics model that offers significant advantages for dynamic gear analyses. The gear pair is analyzed across a wide range of operating speeds and torques. Comparisons are made to other researchers' published experiments that reveal complex non-linear phenomena. The non-linearity source is contact loss of the meshing teeth, which, in contrast to the prevailing understanding, occurs even for large torques despite the use of high-precision gears. A primary feature of the modelling is that dynamic mesh forces are calculated using a detailed contact analysis at each time step as the gears roll through the mesh; there is no need to externally specify the excitation in the form of time-varying mesh stiffness, static transmission error input, or the like. A semi-analytical model near the tooth surface is matched to a finite element solution away from the tooth surface, and the computational efficiency that results permits dynamic analysis. Two-single-degree-of-freedom models are also studied. While one gives encouragingly good results, the other, which appears to have better mesh stiffness modelling, gives poor comparisons with experiments. The results indicate the sensitivity of such models to the Fourier spectrum of the changing mesh stiffness.
Ghosez, Philippe
2006-03-01
The non-linear response of infinite periodic solids to homogenous electric fields and cooperative atomic displacements will be discussed in the framework of density functional perturbation theory. The approach is based on the “2n + 1” theorem applied to an electric field dependent energy functional. We will focus on the non-linear optical susceptibilities, Raman scattering efficiencies and electrooptic coefficients. Different formulations of third-order energy derivatives will be examined and their convergence with respect to the k-point sampling will be discussed. The method will be applied to conventional semiconductors and to ferroelectric oxides. In the latter case, we will also describe how the first- principles results can be combined to an effective Hamiltonian approach in order to provide access to the temperature dependence of the optical properties. This work was done in collabration with M. Veithen and X. Gonze and was supported by the VolkwagenStiftung, FNRS-Belgium and the FAME-NoE.
Rajesh, K; Balaswamy, B; Yamamoto, K; Yamaki, H; Kawamata, J; Radhakrishnan, T P
2011-02-01
Optical and nonlinear optical properties like fluorescence and second harmonic generation (SHG) of molecular materials can be strongly influenced by the mode of assembly of the molecules. The Langmuir-Blodgett (LB) technique is an elegant route to the controlled assembly of molecules in ultrathin films, and complexation of ionic amphiphiles in the Langmuir film by polyions introduced in the aqueous subphase provides a simple and efficient access to further control, stabilization, and optimization. The monolayer LB film of the hemicyanine-based amphiphile, N-n-octadecyl-4-[2-(4-(N,N-ethyloctadecylamino)phenyl)ethenyl]pyridinium possessing a "tail-head-tail" structure, shows fluorescence as well as SHG response. The concomitant enhancement of both of these linear and nonlinear optical attributes is achieved through templating with the polyanion of carboxymethylcellulose. Brewster angle and atomic force microscopy reveal the influence of polyelectrolyte templating on the morphology of the Langmuir and LB films. Polarized absorption and fluorescence spectroscopy provide insight into the impact of complexation with the polyelectrolyte on the orientation and deaggregation of the hemicyanine headgroup leading to fluorescence and SHG enhancement in the LB film.
Non-linear resonances in the forced responses of plates. I - Symmetric responses of circular plates
Sridhar, S.; Mook, D. T.; Nayfeh, A. H.
1975-01-01
The dynamic analogue of the von Karman equations is used to study the symmetric response of a circular plate to a harmonic excitation when the frequency of the excitation is near one of the natural frequencies. It is shown that, in general, when there is no internal resonance (i.e., the natural frequencies are not commensurable), only the mode having a frequency near that of the excitation is strongly excited (i.e., is needed to represent the response in the first approximation). A clamped, circular plate is used as a numerical example to show that, when there is an internal resonance, more than one of the modes involved in this resonance can be strongly excited; moreover, when more than one mode is strongly excited, the lower modes can dominate the response, even when the frequency of the excitation is near that of the highest mode. This possibility was not revealed by any of the earlier studies which were based on the same governing equations.
Khan, Kamran
2012-11-09
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.
Ernst Haeckel's biodynamics 1866 and the occult basis of organic farming
Kutschera, Ulrich
2016-01-01
ABSTRACT One hundred and 50 years ago (Sept. 1866), Ernst Haeckel published a monograph entitled General Morphology of Organisms, wherein key terms, such as Protista, Monera, ontogeny, phylogeny, ecology and the ‘biogenetic law’ where introduced. In addition, Haeckel coined the word “biodynamics” as a synonym for “general physiology.” In contrast, Rudolf Steiner's “biodynamic agriculture,” which originated in 1924, and was promoted via Ehrenfried Pfeiffer's book of 1938 with the same title, is an occult pseudoscience still popular today. The misuse of Haeckel's term to legitimize disproven homeopathic principles and esoteric rules within the context of applied plant research is unacceptable. PMID:27322020
Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model
Energy Technology Data Exchange (ETDEWEB)
Ngai, K. L. [CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy and Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)
2015-03-21
Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ{sub 1}(f), the frequency dispersion of the third-order dielectric susceptibility, χ{sub 3}(f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ{sub 1}(f) and χ{sub 3}(f) is the characteristic of the many
Correction of complex nonlinear signal response from a pixel array detector.
van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till
2015-05-01
The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.
DEFF Research Database (Denmark)
Nielsen, Søren R. K.; Peng, Yongbo; Sichani, Mahdi Teimouri
2016-01-01
The paper deals with the response and reliability analysis of hysteretic or geometric nonlinear uncertain dynamical systems of arbitrary dimensionality driven by stochastic processes. The approach is based on the probability density evolution method proposed by Li and Chen (Stochastic dynamics...... of structures, 1st edn. Wiley, London, 2009; Probab Eng Mech 20(1):33–44, 2005), which circumvents the dimensional curse of traditional methods for the determination of non-stationary probability densities based on Markov process assumptions and the numerical solution of the related Fokker–Planck and Kolmogorov......–Feller equations. The main obstacle of the method is that a multi-dimensional convolution integral needs to be carried out over the sample space of a set of basic random variables, for which reason the number of these need to be relatively low. In order to handle this problem an approach is suggested, which...
Modelling the nonlinear response of fibre-reinforced bending fluidic actuators
Cacucciolo, Vito; Renda, Federico; Poccia, Ernesto; Laschi, Cecilia; Cianchetti, Matteo
2016-10-01
Soft actuators are receiving increasing attention from the engineering community, not only in research but even for industrial applications. Among soft actuators, fibre-reinforced bending fluidic actuators (BFAs) became very popular thanks to features such as robustness and easy design and fabrication. However, an accurate modelling of these smart structures, taking into account all the nonlinearities involved, is a challenging task. In this effort, we propose an analytical mechanical model to capture the quasi-static response of fibre-reinforced BFAs. The model is fully 3D and for the first time includes the effect of the pressure on the lateral surface of the chamber as well as the non-constant torque produced by the pressure at the tip. The presented model can be used for design and control, while providing information about the mechanics of these complex actuators.
On a PLIF quantification methodology in a nonlinear dye response regime
Baj, P.; Bruce, P. J. K.; Buxton, O. R. H.
2016-06-01
A new technique of planar laser-induced fluorescence calibration is presented in this work. It accounts for a nonlinear dye response at high concentrations, an illumination light attenuation and a secondary fluorescence's influence in particular. An analytical approximation of a generic solution of the Beer-Lambert law is provided and utilized for effective concentration evaluation. These features make the technique particularly well suited for high concentration measurements, or those with a large range of concentration values, c, present (i.e. a high dynamic range of c). The method is applied to data gathered in a water flume experiment where a stream of a fluorescent dye (rhodamine 6G) was released into a grid-generated turbulent flow. Based on these results, it is shown that the illumination attenuation and the secondary fluorescence introduce a significant error into the data quantification (up to 15 and 80 %, respectively, for the case considered in this work) unless properly accounted for.
Non-linear buffeting response analysis of long-span suspension bridges with central buckle
Wang, Hao; Li, Aiqun; Zhao, Gengwen; Li, Jian
2010-06-01
The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data, a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented, in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.
Liu, Changjiang; Zheng, Zhoulian; Yang, Xiaoyan
2016-12-01
Orthotropic membrane components and structures are widely used in building structures, instruments and meters, electronic engineering, space and aeronautics, etc., because of their light weights. However, the same lightweight combined with low stiffness make membranes prone to vibration under dynamic loads, and in some cases the vibration may lead to structural failure. Herein, the undamped nonlinear vibration response of pretension rectangular orthotropic membrane structures subjected to impact loading is studied by analytical and numerical methods. The analytical solution is obtained by solving the governing equations by the Bubnov-Galerkin method and the Lindstedt-Poincaré perturbation method. Numerical analysis has also been carried out based on the same theoretical model. The analytical and numerical results have been compared and analyzed, and the influence of various model parameters on membrane vibration discussed. The results obtained herein provide some theoretical basis for the vibration control and dynamic design of orthotropic membrane components and structures.
Sarracino, A; Puglisi, A; Vulpiani, A
2016-01-01
We study the mobility and the diffusion coefficient of an inertial tracer advected by a two-dimensional incompressible laminar flow, in the presence of thermal noise and under the action of an external force. We show, with extensive numerical simulations, that the force-velocity relation for the tracer, in the nonlinear regime, displays complex and rich behaviors, including negative differential and absolute mobility. These effects rely upon a subtle coupling between inertia and applied force which induce the tracer to persist in particular regions of phase space with a velocity opposite to the force. The relevance of this coupling is revisited in the framework of non-equilibrium response theory, applying a generalized Einstein relation to our system. The possibility of experimental observation of these results is also discussed.
Three-state interactions determine the second-order nonlinear optical response
Perez-Moreno, Javier
2016-01-01
Using the sum-rules, the sum-over-states expression for the diagonal term of first hyperpolarizability can be expressed as the sum of three-state interaction terms. We study the behavior of a generic three-state term to show that is possible to tune the contribution of resonant terms by tuning the spectrum of the molecule. When extrapolated to the off-resonance regime, the three-state interaction terms are shown to behave in a similar manner as the three-level model used to derive the fundamental limits. We finally show that most results derived using the three-level ansatz are general, and apply to molecules where more than three levels contribute to the second-order nonlinear response or/and far from optimization.
Application of HPEM to investigate the response and stability of nonlinear problems in vibration
DEFF Research Database (Denmark)
Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.;
2010-01-01
In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...... and convenient for solving these problems....
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2012-01-01
Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…
Larsen, Jon S.; Santos, Ilmar F.
2015-06-01
The demand for oil-free turbo compressors is increasing. Current trends are divided between active magnetic bearings and air foil bearings (AFB), the latter being important due to mechanical simplicity. AFB supported rotors are sensitive to unbalance due to low damping and nonlinear characteristics, hence accurate prediction of their response is important. This paper gives theoretical and experimental contributions by implementing and validating a new method to simulate the nonlinear steady-state response of a rotor supported by three pads segmented AFBs. The fluid film pressures, foil deflections and rotor movements are simultaneously solved, considering foil stiffness and damping coefficients estimated using a structural model, previously described and validated against experiments.
The effect of nonlinearities on the response of a single-machine- quasi-infinite busbar system
Energy Technology Data Exchange (ETDEWEB)
Hamdan, A.M.A.; Nayfeh, A.H.
1989-08-01
A single machine quasi-infinite busbar system is formulated taking into consideration quadratic and cubic nonlinearities. The model equation contains parametric (time-varying coefficients) and external (inhomogeneous terms) excitations. The method of multiple scales is used to determine approximations to the responses of the system to simultaneous principal parametric resonances and subharmonic resonances of order one-half. In contrast with the linear analysis, the non-linear analysis shows that the response may exhibit (a) limit cycles instead of infinite motions, (b) multivaluedness that may lead to jumps, (c) subcritical instabilities, and (d) constructive and destructive interferenced of resonances.
Excitonic effects in the nonlinear optical response of a Si(111) surface
Energy Technology Data Exchange (ETDEWEB)
Stamova, Maria; Rebentrost, Frank [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany)
2010-08-15
We discuss methods to calculate the linear and nonlinear optical spectra for cyclic cluster models of an ideal Si(111) surface. The cluster approach offers the possibility to implement the excitonic effects due to the Coulomb interaction between electron and hole in a relatively straight-forward way. In order to appproximate a situation resembling a surface we use clusters with several hundreds of Si atoms. The electronic structure is obtained from a tight-binding parametrization of the hamiltonian. A time-dependent density operator formalism is used to calculate the response functions S({tau}) and S({tau}{sub 1},{tau}{sub 2}) for the optical polarization, which also directly describe the response to ultrashort pulses. Their Fourier transforms are the frequency-dependent optical susceptibilities {chi}{sup (1)}(-{omega};{omega}) and {chi}{sup (2)} (-{omega}{sub 1}-{omega}{sub 2};{omega}{sub 1},{omega}{sub 2}) for second-harmonic ({omega}{sub 1} ={omega}{sub 2}) or sum-frequency generation from surfaces. The excitonic Coulomb interaction is treated in the time-dependent Hartree-Fock approximation, leading to large sets of differential equations that are integrated explicitly. The results on the linear susceptibility are in accord with earlier findings on the excitonic origin of the relative intensities of the E{sub 1} and E{sub 2} peaks near 3.4 and 4.3 eV. We present new results on excitonic effects in the nonlinear spectra and investigate in particular the surface-related peaks near 2{Dirac_h}{omega}= 1.3-1.5 and 2.4 eV that govern the strong enhancement observed in SHG of clean silicon surfaces. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Fault zone damage, nonlinear site response, and dynamic triggering associated with seismic waves
Wu, Chunquan
My dissertation focuses primarily on the following three aspects associated with passing seismic waves in the field of earthquake seismology: temporal changes of fault zone properties, nonlinear site response, and dynamic triggering. I systematically analyze temporal changes of fault zone (FZ) site response along the Karadere-Duzce branch of the North Anatolian fault that ruptured during the 1999 Izmit and Duzce earthquake sequences. These results provide a bridge between the large-amplitude near-instantaneous changes and the lower-amplitude longer-duration variations observed in previous studies. The temporal changes measured from this high-resolution spectral ratio analysis also provide a refinement for the beginning of the longer more gradual process typically observed by analyzing repeating earthquakes. I use the same sliding-window spectral ratio technique to analyze temporal changes in site response associated with the strong ground motion of the Mw6.6 2004 Mid-Niigata earthquake sequence recorded by the borehole stations in Japanese Digital Strong-Motion Seismograph Network (KiK-Net). The results suggest that at a given site the input ground motion plays an important role in controlling both the coseismic change and postseismic recovery in site response. In a follow-up study, I apply the same sliding-window spectral ratio technique to surface and borehole strong motion records at 6 KiK-Net sites, and stack results associated with different earthquakes that produce similar PGAs. In some cases I observe a weak coseismic drop in the peak frequency when the PGA is as small as ˜20--30 Gal, and near instantaneous recovery after the passage of the direct S waves. The percentage of drop in the peak frequency starts to increase with increasing PGA values. A coseismic drop in the peak spectral ratio is also observed at 2 sites. When the PGA is larger than ˜60 Gal to more than 100 Gal, considerably stronger coseismic drops of the peak frequencies are observed
Energy Technology Data Exchange (ETDEWEB)
Toudert, J [Instituto de Ciencia de Materiales de Sevilla, CSIC, c/Americo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla (Spain); Fernandez, H; Solis, J [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, E-28006 Madrid (Spain); Babonneau, D; Camelio, S; Girardeau, T, E-mail: johann.toudert@gmail.co [Laboratoire de Physique des Materiaux (PHYMAT), UMR CNRS 6630, Universite de Poitiers, Batiment SP2MI, Boulevard Marie et Pierre Curie, F-86962 Futuroscope Chasseneuil (France)
2009-11-25
The linear and third-order nonlinear responses of tailored Si{sub 3}N{sub 4}/Ag/Si{sub 3}N{sub 4} trilayers and (Si{sub 3}N{sub 4}/Ag){sub n}/Si{sub 3}N{sub 4} multilayers grown by alternating ion-beam sputtering have been studied by combining complementary characterization techniques such as transmission electron microscopy, spectroscopic ellipsometry and degenerate four-wave mixing. The linear optical response dominated by the surface plasmon resonance of Ag nanoparticles has been measured over the whole visible range while the third-order nonlinear susceptibility has been probed at the surface plasmon resonance wavelength. Due to the weak in-plane interaction between Ag nanoparticles, the linear and nonlinear optical responses of the Si{sub 3}N{sub 4}/Ag/Si{sub 3}N{sub 4} trilayers are mainly influenced by the size and shape of the nanoparticles. A maximum value of 1.1 x 10{sup -7} esu has been found at 635 nm for the effective third-order nonlinear susceptibility of the trilayer with the highest amount of silver. The linear optical response of the (Si{sub 3}N{sub 4}/Ag){sub n}/Si{sub 3}N{sub 4} multilayers is shown to be dominated by the surface plasmon resonance of isolated layers of weakly interacting nanoparticles at wavelengths shorter than 600 nm whereas a contribution due to vertical interactions has been shown for higher wavelengths. Below the vertical percolation threshold, their nonlinear optical response at the surface plasmon resonance wavelength is similar to the one of an isolated assembly of nanoparticles, and the effective third-order nonlinear susceptibility is slightly increased by decreasing the thickness of the Si{sub 3}N{sub 4} spacer.
Wierschem, Nicholas E.; Hubbard, Sean A.; Luo, Jie; Fahnestock, Larry A.; Spencer, Billie F.; McFarland, D. Michael; Quinn, D. Dane; Vakakis, Alexander F.; Bergman, Lawrence A.
2017-02-01
Limiting peak stresses and strains in a structure subjected to high-energy, short-duration transient loadings, such as blasts, is a challenging problem, largely due to the well-known insensitivity of the first few cycles of the structural response to damping. Linear isolation, while a potential solution, requires a very low fundamental natural frequency to be effective, resulting in large nearly-rigid body displacement of the structure, while linear vibration absorbers have little or no effect on the early-time response where relative motions, and thus stresses and strains, are at their highest levels. The problem has become increasingly important in recent years with the expectation of blast-resistance as a design requirement in new construction. In this paper, the problem is examined experimentally and computationally in the context of offset-blast loading applied to a custom-built nine story steel frame structure. A fully-passive response mitigation system consisting of six lightweight, essentially nonlinear vibration absorbers (termed nonlinear energy sinks - NESs) is optimized and deployed on the upper two floors of this structure. Two NESs have vibro-impact nonlinearities and the other four possess smooth but essentially nonlinear stiffnesses. Results of the computational and experimental study demonstrate the efficacy of the proposed passive nonlinear mitigation system to rapidly and efficiently attenuate the global structural response, even at early time (i.e., starting at the first response cycle), thus minimizing the peak demand on the structure. This is achieved by nonlinear redistribution of the blast energy within the modal space through low-to-high energy scattering due to the action of the NESs. The experimental results validate the theoretical predictions.
Nonlinear feedback drives homeostatic plasticity in H2O2 stress response
Goulev, Youlian; Morlot, Sandrine; Matifas, Audrey; Huang, Bo; Molin, Mikael; Toledano, Michel B; Charvin, Gilles
2017-01-01
Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell’s ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties. DOI: http://dx.doi.org/10.7554/eLife.23971.001 PMID:28418333
First-principles calculation of nonlinear optical responses by Wannier interpolation
Wang, Chong; Liu, Xiaoyu; Kang, Lei; Gu, Bing-Lin; Xu, Yong; Duan, Wenhui
2017-09-01
Various nonlinear optical (NLO) responses, like shift current and second harmonic generation (SHG), are revealed to be closely related to topological quantities involving the Berry connection and Berry curvature. First-principles prediction of NLO responses is of great importance to fundamental research and device design, but efficient computational methods are still lacking. The main challenge is that the calculations require a very dense k -point sampling that is computationally expensive and a proper treatment of the gauge problem for topological quantities. Here we present a Wannier interpolation method for first-principles calculation of NLO responses, which overcomes the challenge. This method interpolates physical quantities accurately for any desired k point with little computational cost and constructs a smooth gauge by the perturbation theory. To demonstrate the method, we study shift current of monolayer GeS and WS2 as well as SHG of bulk GaAs, getting good agreements with previous results. We show that the traditional sum rule method converges slowly with the number of bands, whereas the perturbation way does not. Moreover, our method is easily adapted to build tight-binding models for the following theoretical investigations. Last but not least, the method is compatible with most first-principles approaches, including density functional theory and beyond. With these advantages, Wannier interpolation is a promising method for first-principles studies of NLO phenomena.
Compressive nonlinearity in the hair bundle's active response to mechanical stimulation.
Martin, P; Hudspeth, A J
2001-12-04
The auditory system's ability to interpret sounds over a wide range of amplitudes rests on the nonlinear responsiveness of the ear. Whether measured by basilar-membrane vibration, nerve-fiber activity, or perceived loudness, the ear is most sensitive to small signals and grows progressively less responsive as stimulation becomes stronger. Seeking a correlate of this behavior at the level of mechanoelectrical transduction, we examined the responses of hair bundles to direct mechanical stimulation. As reported by the motion of an attached glass fiber, an active hair bundle from the bullfrog's sacculus oscillates spontaneously. Sinusoidal movement of the fiber's base by as little as +/-1 nm, corresponding to the application at the bundle's top of a force of +/-0.3 pN, causes detectable phase-locking of the bundle's oscillations to the stimulus. Although entrainment increases as the stimulus grows, the amplitude of the hair-bundle movement does not rise until phase-locking is nearly complete. A bundle is most sensitive to stimulation at its frequency of spontaneous oscillation. Far from that frequency, the sensitivity of an active hair bundle resembles that of a passive bundle. Over most of its range, an active hair bundle's response grows as the one-third power of the stimulus amplitude; the bundle's sensitivity declines accordingly in proportion to the negative two-thirds power of the excitation. This scaling behavior, also found in the response of the mammalian basilar membrane to sound, signals the operation of an amplificatory process at the brink of an oscillatory instability, a Hopf bifurcation.
Frequency response areas in the inferior colliculus: nonlinearity and binaural interaction
Yu, Jane J.; Young, Eric D.
2013-01-01
The tuning, binaural properties, and encoding characteristics of neurons in the central nucleus of the inferior colliculus (CNIC) were investigated to shed light on nonlinearities in the responses of these neurons. Results were analyzed for three types of neurons (I, O, and V) in the CNIC of decerebrate cats. Rate responses to binaural stimuli were characterized using a 1st- plus 2nd-order spectral integration model. Parameters of the model were derived using broadband stimuli with random spectral shapes (RSS). This method revealed four characteristics of CNIC neurons: (1) Tuning curves derived from broadband stimuli have fixed (i. e., level tolerant) bandwidths across a 50–60 dB range of sound levels; (2) 1st-order contralateral weights (particularly for type I and O neurons) were usually larger in magnitude than corresponding ipsilateral weights; (3) contralateral weights were more important than ipsilateral weights when using the model to predict responses to untrained noise stimuli; and (4) 2nd-order weight functions demonstrate frequency selectivity different from that of 1st-order weight functions. Furthermore, while the inclusion of 2nd-order terms in the model usually improved response predictions related to untrained RSS stimuli, they had limited impact on predictions related to other forms of filtered broadband noise [e. g., virtual-space stimuli (VS)]. The accuracy of the predictions varied considerably by response type. Predictions were most accurate for I neurons, and less accurate for O and V neurons, except at the lowest stimulus levels. These differences in prediction performance support the idea that type I, O, and V neurons encode different aspects of the stimulus: while type I neurons are most capable of producing linear representations of spectral shape, type O and V neurons may encode spectral features or temporal stimulus properties in a manner not easily explained with the low-order model. Supported by NIH grant DC00115. PMID:23675323
Řehoř, Martin; Pr&oring; ša, Vít; T&oring; ma, Karel
2016-10-01
Rigorous analysis of the response of nonlinear materials to step inputs requires one to simultaneously handle the discontinuity, differentiation, and nonlinearity. This task is however beyond the reach of the standard theories such as the classical theory of distributions and presents a considerable mathematical difficulty. New advanced mathematical tools are necessary to handle the challenge. An elegant and relatively easy-to-use framework capable of accomplishing the task is provided by the Colombeau algebra, which is a generalisation of the classical theory of distributions to the nonlinear setting. We use the Colombeau algebra formalism and derive explicit formulae describing the response of incompressible Maxwell viscoelastic fluid subject to step load/deformation in the lubricated squeeze flow setting.
Directory of Open Access Journals (Sweden)
Yang CaiJin
2012-01-01
nonlinear response of system at super/sub harmonic resonance. For many situations, single resonance mode is often observed to be leading as system enters into super/sub harmonic resonance. In this case, the single modal natural resonance theory can be applied to reduce the system model and a simplified model with only a single DOF is always obtained. Thus, an approximate solution and the analytical expression of frequency response relation are then derived using classical perturbation analysis. While the system is controlled by multiple modes, modal analysis for linearized system is used to decide dominant modes. The reduced model governed by these relevant modes is found and results in an approximate numerical solutions. An illustrative example of the discrete mass-spring-damper nonlinear vibration system with ten DOFs is examined. The approximation results are validated by comparing them with the calculations from direct numerical integration of the equation of motion of the original nonlinear system. Comparably good agreements are obtained.
Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra
2016-03-01
A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.
FORTRAN programs for calculating nonlinear seismic ground response in two dimensions
Joyner, W.B.
1978-01-01
The programs described here were designed for calculating the nonlinear seismic response of a two-dimensional configuration of soil underlain by a semi-infinite elastic medium representing bedrock. There are two programs. One is for plane strain motions, that is, motions in the plane perpendicular to the long axis of the structure, and the other is for antiplane strain motions, that is motions parallel to the axis. The seismic input is provided by specifying what the motion of the rock-soil boundary would be if the soil were absent and the boundary were a free surface. This may be done by supplying a magnetic tape containing the values of particle velocity for every boundary point at every instant of time. Alternatively, a punch card deck may be supplied giving acceleration values at every instant of time. In the plane strain program it is assumed that the acceleration values apply simultaneously to every point on the boundary; in the antiplane strain program it is assumed that the acceleration values characterize a plane shear wave propagating upward in the underlying elastic medium at a specified angle with the vertical. The nonlinear hysteretic behavior of the soil is represented by a three-dimensional rheological model. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. Computations are done in terms of stress departures from an unspecified initial state. Source listings are provided here along with instructions for preparing the input. A more detailed discussion of the method is presented elsewhere.
Bell, Iris R; Sarter, Barbara; Standish, Leanna J; Banerji, Prasanta; Banerji, Pratip
2015-06-01
The purpose of the present paper is to (a) summarize evidence for the nanoparticle nature and biological effects of traditional homeopathically-prepared medicines at low and ultralow doses; (b) provide details of historically-based homeopathic green manufacturing materials and methods, relating them to top-down mechanical attrition and plant-based biosynthetic processes in modern nanotechnology; (c) outline the potential roles of nonlinear dose-responses and dynamical interactions with complex adaptive systems in generating endogenous amplification processes during low dose treatment. Possible mechanisms of low dose effects, for which there is evidence involving nanoparticles and/or homeopathically-manufactured medicines, include hormesis, time-dependent sensitization, and stochastic resonance. All of the proposed mechanisms depend upon endogenous nonlinear amplification processes in the recipient organism in interaction with the salient, albeit weak signal properties of the medicine. Conventional ligand-receptor mechanisms relevant to higher doses are less likely involved. Effects, especially for homeopathically-prepared nanophytomedicines, include bidirectional host state-dependent changes in function. Homeopathic clinicians report successful treatment of serious infections and cancers. Preclinical biological evidence is consistent with such claims. Controlled biological data on homeopathically-prepared medicines indicate modulation of gene expression and biological signaling pathways regulating cell cycles, immune reactions, and central nervous system function from studies on cells, animals, and human subjects. As a 200-year old system of traditional medicine used by millions of people worldwide, homeopathy offers a pulsed low dose treatment strategy and strong safety record to facilitate progress in translational nanomedicine with plants and other natural products. In turn, modern nanotechnology methods can improve homeopathic manufacturing procedures
Directory of Open Access Journals (Sweden)
Mustapha Lahmar
2015-04-01
Full Text Available On the basis of the V. K. Stokes micro-continuum theory, the effects of couple stresses on the nonlinear dynamic response of the unbalanced Jeffcott’s flexible rotor supported by layered hydrodynamic journal bearings is presented in this paper. A nonlinear transient modified Reynolds’ equation is derived and discretized by the finite element method to obtain the fluid-film pressure field as well as the film thickness by means of the implicit Euler method. The nonlinear orbits of the rotor center are determined by solving the nonlinear differential equations of motion with the explicit Euler’s scheme taking into account the flexibility of rotor. According to the obtained results, the combined effects of couple stresses due to the presence of polymer additives in lubricant and the pressure dependent viscosity on the nonlinear dynamic response of the rotor-bearing system are significant and cannot be ignored or overlooked. As expected, these effects are more noticeable for polymers characterized by higher length molecular chains.
Directory of Open Access Journals (Sweden)
Yong Zhao
1997-01-01
Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.
DEFF Research Database (Denmark)
Denisov, S.; Flach, S.; Ovchinnikov, A. A.
2002-01-01
We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response is em...
Terry, Emmanuelle; Marvel, Jacqueline; Arpin, Christophe; Gandrillon, Olivier; Crauste, Fabien
2012-08-01
The primary CD8 T cell immune response, due to a first encounter with a pathogen, happens in two phases: an expansion phase, with a fast increase of T cell count, followed by a contraction phase. This contraction phase is followed by the generation of memory cells. These latter are specific of the antigen and will allow a faster and stronger response when encountering the antigen for the second time. We propose a nonlinear mathematical model describing the T CD8 immune response to a primary infection, based on three nonlinear ordinary differential equations and one nonlinear age-structured partial differential equation, describing the evolution of CD8 T cell count and pathogen amount. We discuss in particular the roles and relevance of feedback controls that regulate the response. First we reduce our system to a system with a nonlinear differential equation with a distributed delay. We study the existence of two steady states, and we analyze the asymptotic stability of these steady states. Second we study the system with a discrete delay, and analyze global asymptotic stability of steady states. Finally, we show some simulations that we can obtain from the model and confront them to experimental data.
Dewhirst, Oliver P; Angarita-Jaimes, Natalia; Simpson, David M; Allen, Robert; Newland, Philip L
2013-02-01
Nonlinear type system identification models coupled with white noise stimulation provide an experimentally convenient and quick way to investigate the often complex and nonlinear interactions between the mechanical and neural elements of reflex limb control systems. Previous steady state analysis has allowed the neurons in such systems to be categorised by their sensitivity to position, velocity or acceleration (dynamics) and has improved our understanding of network function. These neurons, however, are known to adapt their output amplitude or spike firing rate during repetitive stimulation and this transient response may be more important than the steady state response for reflex control. In the current study previously used system identification methods are developed and applied to investigate both steady state and transient dynamic and nonlinear changes in the neural circuit responsible for controlling reflex movements of the locust hind limbs. Through the use of a parsimonious model structure and Monte Carlo simulations we conclude that key system dynamics remain relatively unchanged during repetitive stimulation while output amplitude adaptation is occurring. Whilst some evidence of a significant change was found in parts of the systems nonlinear response, the effect was small and probably of little physiological relevance. Analysis using biologically more realistic stimulation reinforces this conclusion.
Ranjbaran, Mina; Galiana, Henrietta L
2012-01-01
A bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) is presented in this paper. It is shown that by assigning proper non-linear neural computations at the premotor level, the model is capable of replicating target-distance dependent VOR responses. Moreover, the model behavior in case of sensory plugging is also consistent with reported experimental observations.
Lischner, Johannes; Arias, T A
2010-02-11
We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response of water in the nonlinear regime, finding excellent agreement with known data.
Tarazkar, M.; Romanov, D. A.; Levis, R. J.
2016-07-01
Dynamic second-order hyperpolarizabilities of atomic noble gases and their multiply ionized ions are computed using ab initio multiconfigurational self-consistent field cubic response theory. For each species, the calculations are performed at wavelengths ranging from the static regime to those about 100 nm above the first multiphoton resonance. The second-order hyperpolarizability coefficients progressively decrease as the electrons are removed from the system, in qualitative agreement with phenomenological calculations. In higher ionization states, the resulting nonlinear refractive index becomes less dispersive as a function of wavelength. At each ionization stage, the sign of the optical response depends on the number of electrons in the system and, if multiple state symmetries are possible, on the spin of the particular quantum state. Thus, for N e3 + and N e4 + , the hyperpolarizability coefficients in the low-spin states (P2u, and S1g, respectively) are positive, while in the high-spin states (S4u, and P3g) they are negative. However, for doubly, triply, and quadruply charged Ar and Kr these coefficients do not undergo a sign change.
Mustaffa, Izadora; Trenado, Carlos; Schwerdtfeger, Karsten; Strauss, Daniel J
2008-01-01
Recent progress in mathematical image processing shows a remarkable success when applying numerical methods to ill-posed partial differential equations (PDE). In particular, nonlinear diffusion filtering (NDF)process is an approach that belongs to such family of differential equations. It has been successfully applied in many recent methods for image processing and computer vision areas, particularly in denoising, smoothing, segmentation, and restoration. In this paper we focus on a novel NDF application, namely denoising of single-trials of auditory brainstem responses (ABRs) and the analysis of transcranial magnetic stimulation (TMS) responses.We show that by applying NDF on a matrix-form image of single-trials, we were able to denoise the single-trials, resulting in a better extraction of information over the ongoing experiment; morphology, eg. the latency of the single-trials according to different stimuli paradigms at different stimulation intensity levels. It is concluded that NDF represents a novel and useful approach for the analysis of single-trials in brain imaging.
Modelling the non-linear response of Spanish electricity demand to temperature variations
Energy Technology Data Exchange (ETDEWEB)
Moral-Carcedo, J. [Universidad Autonoma de Madrid (Spain). Dpto. Analisis Economico; Vicens-Otero, J. [Universidad de Madrid (Spain). Dpto. Economia Aplicada
2005-05-01
The demand for electricity is a key variable because its links to economic activity and development; however, the electricity consumption also depends on other non-economic variables, notably the weather. The aim of this study is to analyse the effect of temperatures on the variability of the Spanish daily electricity demand, and especially to characterise the non-linearity of the response of demand to variations in temperature. In this article, we explore the ability of Smooth Transition (STR), Threshold Regression (TR), and Switching Regressions (SR) models, to handle both aspects. As we conclude, the use of LSTR approach offers two main advantages. First, it captures adequately the smooth response of electricity demand to temperature variations in intermediate ranges of temperatures. Second, it provides a method to analyse the validity of temperature thresholds used to build the ''cooling degree days'' (CDD) and ''heating degree days'' (HDD) variables traditionally employed in the literature. (author)
Nonlinear response of infinitely long circular cylindrical shells to subharmonic radial loads
Nayfeh, Ali H.; Nayfeh, Jamal F.; Raouf, Raouf A.
1991-01-01
The nonlinear response of infinitely long circular cylindrical shells (thin circular rings) in the presence of a two-to-one internal (autoparametric) resonance to a subharmonic excitation of order one-half of the higher mode is analyzed with the multiple-scale method. Four autonomous first-order ordinary differential equations are derived for the modulation of the amplitudes and phases of the interacting models. These modulation equations are used to determine the fixed points and their stability. The fixed points correspond to periodic oscillations of the shell, whereas the limit-cycle solutions of the modulation equations correspond to amplitude and phase-modulated oscillations of the shell. The force response curves exhibit saturation, jumps, and Hopf bifurcation. As excitation frequency changes, all limit cycles deform and lose stability through either pitchfork or cyclic-fold (saddle-node) bifurcations. Some of these saddle-node bifurcations cause a transition to chaos. The pitchfork bifurcations break the symmetry of the limit cycles.
Directory of Open Access Journals (Sweden)
MUHAMMAD ARIF
2017-01-01
Full Text Available Ultrasound imaging with the subharmonic component from contrast microbubbles provide improved CTR (Contrast-to-Tissue Ratio, however it is susceptible to the low amplitude of the subharmonic component. In this simulation study, NLFM (Nonlinear Frequency Modulated signals are proposed in order to enhance the subharmonic response from microbubbles. NLFM signals having fractional bandwidths of 10, 20, and 40% with up and down sweeps were used as excitation. The performance of NLFM signals were compared with the reference tone-burst and LFM (Linear Frequency Modulated signals. The results show that the ultrasound contrast microbubbles can produce subharmonic response which is dependent on the applied signal pressure and bandwidth. It is observed that the subharmonic component of the scattered NLFM signal is 3.2dB higher than the LFM signal, whereas it is 9dB higher compared to the sinusoidal tone-burst signal. The results are also presented which show that the up and down sweeps NLFM signals performed better than the LFM signals at the same acoustic pressure and bandwidth.
Ahlfeld, David P.; Schneider, James C.; Spalding, Charles P.
2016-06-01
Anomalies found when apportioning responsibility for streamflow depletion are examined. The anomalies arise when responsibility is assigned to the two states that contribute to depletion of Beaver Creek in the Republican River Basin in the United States. The apportioning procedure for this basin presumes that the sum of streamflow depletions, computed by comparing simulation model runs with and without groundwater pumping from individual states, approximates the streamflow depletion when both states are pumping. In the case study presented here, this presumed superposition fails dramatically. The stream drying and aquifer-storage depletion, as represented in the simulation model used for allocation, are examined in detail to understand the hydrologic and numerical basis for the severe nonlinear response. Users of apportioning procedures that rely on superposition should be aware of the presence and likely magnitude of nonlinear responses in modeling tools.
Ahlfeld, David P.; Schneider, James C.; Spalding, Charles P.
2016-11-01
Anomalies found when apportioning responsibility for streamflow depletion are examined. The anomalies arise when responsibility is assigned to the two states that contribute to depletion of Beaver Creek in the Republican River Basin in the United States. The apportioning procedure for this basin presumes that the sum of streamflow depletions, computed by comparing simulation model runs with and without groundwater pumping from individual states, approximates the streamflow depletion when both states are pumping. In the case study presented here, this presumed superposition fails dramatically. The stream drying and aquifer-storage depletion, as represented in the simulation model used for allocation, are examined in detail to understand the hydrologic and numerical basis for the severe nonlinear response. Users of apportioning procedures that rely on superposition should be aware of the presence and likely magnitude of nonlinear responses in modeling tools.
Fung, Y C
1984-01-01
This book is a continuation of my Biomechanics.The first volume deals with the mechanical properties of living tissues. The present volume deals with the mechanics ofcirculation. A third volume willdeal with respiration, fluid balance, locomotion, growth, and strength. This volume is called Bio dynamics in order to distinguish it from the first volume. The same style is followed. My objective is to present the mechanical aspects ofphysiology in precise terms ofmechanics so that the subject can become as lucid as physics. The motivation of writing this series of books is, as I have said in the preface to the first volume, to bring biomechanics to students ofbioengineer ing, physiology, medicine, and mechanics. I have long felt a need for a set of books that willinform the students ofthe physiological and medical applica tions ofbiomechanics,and at the same time develop their training in mechan ics. In writing these books I have assumed that the reader already has some basic training in mechanics, to a ...
Energy Technology Data Exchange (ETDEWEB)
Bolisetti, Chandrakanth, E-mail: cb76@buffalo.edu [University at Buffalo, The State University of New York, North Campus, 212 Ketter Hall, Amherst, NY 14260 (United States); Whittaker, Andrew S., E-mail: awhittak@buffalo.edu [University at Buffalo, The State University of New York, North Campus, 212 Ketter Hall, Amherst, NY 14260 (United States); Mason, H. Benjamin, E-mail: ben.mason@oregonstate.edu [Oregon State University, 101 Kearney Hall, Corvallis, OR 97331 (United States); Almufti, Ibrahim, E-mail: ibrahim.almufti@arup.com [Advanced Technology + Research, ARUP, 560 Mission Street, Suite 700, San Francisco, CA (United States); Willford, Michael, E-mail: michael.willford@arup.com [Advanced Technology + Research, ARUP, 560 Mission Street, Suite 700, San Francisco, CA (United States)
2014-08-15
Highlights: • Performed equivalent linear and nonlinear site response analyses using industry-standard numerical programs. • Considered a wide range of sites and input ground motions. • Noted the practical issues encountered while using these programs. • Examined differences between the responses calculated from different programs. • Results of biaxial and uniaxial analyses are compared. - Abstract: Site response analysis is a precursor to soil-structure interaction analysis, which is an essential component in the seismic analysis of safety-related nuclear structures. Output from site response analysis provides input to soil-structure interaction analysis. Current practice in calculating site response for safety-related nuclear applications mainly involves the equivalent linear method in the frequency-domain. Nonlinear time-domain methods are used by some for the assessment of buildings, bridges and petrochemical facilities. Several commercial programs have been developed for site response analysis but none of them have been formally validated for large strains and high frequencies, which are crucial for the performance assessment of safety-related nuclear structures. This study sheds light on the applicability of some industry-standard equivalent linear (SHAKE) and nonlinear (DEEPSOIL and LS-DYNA) programs across a broad range of frequencies, earthquake shaking intensities, and sites ranging from stiff sand to hard rock, all with a focus on application to safety-related nuclear structures. Results show that the equivalent linear method is unable to reproduce the high frequency acceleration response, resulting in almost constant spectral accelerations in the short period range. Analysis using LS-DYNA occasionally results in some unrealistic high frequency acceleration ‘noise’, which can be removed by smoothing the piece-wise linear backbone curve. Analysis using DEEPSOIL results in abrupt variations in the peak strains of consecutive soil layers
Ding, Hu; Chen, Li-Qun; Yang, Shao-Pu
2012-05-01
The present paper investigates the convergence of the Galerkin method for the dynamic response of an elastic beam resting on a nonlinear foundation with viscous damping subjected to a moving concentrated load. It also studies the effect of different boundary conditions and span length on the convergence and dynamic response. A train-track or vehicle-pavement system is modeled as a force moving along a finite length Euler-Bernoulli beam on a nonlinear foundation. Nonlinear foundation is assumed to be cubic. The Galerkin method is utilized in order to discretize the nonlinear partial differential governing equation of the forced vibration. The dynamic response of the beam is obtained via the fourth-order Runge-Kutta method. Three types of the conventional boundary conditions are investigated. The railway tracks on stiff soil foundation running the train and the asphalt pavement on soft soil foundation moving the vehicle are treated as examples. The dependence of the convergence of the Galerkin method on boundary conditions, span length and other system parameters are studied.
Note: An in situ method for measuring the non-linear response of a Fabry-Perot cavity
Bu, Wenhao; Liu, Mengke; Xie, Dizhou; Yan, Bo
2016-09-01
The transfer cavity is a very important frequency reference for laser stabilization and is widely used for applications such as precision measurements and laser cooling of ions or molecules. But the non-linear response of the piezoelectric ceramic transducer (PZT) in the Fabry-Perot cavity limits the performance of the laser stabilization. Thus, measuring and controlling such non-linearity is essential. Here we report an in situ, optical method to characterize this non-linearity by measuring the resonant signals of a dual-frequency laser. The differential measurement makes it insensitive to the laser and cavity drifts, while maintaining a very high sensitivity. It can be applied for various applications with PZTs, especially in an optical lab.
An in-situ method for measuring the non-linear response of a Fabry-Perot cavity
Bu, Wenhao; Xie, Dizhou; Yan, Bo
2016-01-01
High finesse Fabry-Perot(FP) cavity is a very important frequency reference for laser stabiliza- tion, and is widely used for applications such as precision measurement, laser cooling of ions or molecules. But the non-linear response of the piezoelectric ceramic transducer (PZT) in the FP cav- ity limits the performance of the laser stabilization. Measuring and controlling such non-linearity are important. Here we report an in-situ, optical method to characterize this non-linearity by measuring the resonance signals of a dual-frequency laser. The di?erential measurement makes it insensitive to laser and cavity drifting, and has a very high sensitivity. It can be applied for various applications with PZT, especially in an optical lab.
A Semi-Analytical Approach for the Response of Nonlinear Conservative Systems
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Barari, Amin; Fooladi, M;
2011-01-01
This work applies Parameter expanding method (PEM) as a powerful analytical technique in order to obtain the exact solution of nonlinear problems in the classical dynamics. Lagrange method is employed to derive the governing equations. The nonlinear governing equations are solved analytically by ...... that this method is an effective and convenient tool for solving these types of problems....
Shao, Xuefei; Fu, Yiming; Chen, Yang
2015-05-01
Based on the higher order shear deformation theory and the geometric nonlinear theory, the nonlinear motion equations, to which the effects of the positive and negative piezoelectric and the thermal are introduced by piezoelectric fiber metal laminated (FML) plates in an unsteady temperature, are established by Hamilton’s variational principle. Then, the control algorithm of negative-velocity feedback is applied to realize the vibration control of the piezoelectric FML plates. During the solving process, firstly, the formal functions of the displacements that fulfilled the boundary conditions are proposed. Then, heat conduction equations and nonlinear differential equations are dealt with using the differential quadrature (DQ) and Galerkin methods, respectively. On the basis of the previous processing, the time domain is dispersed by the Newmark-β method. Finally, the whole problem can be investigated by the iterative method. In the numerical examples, the influence of the applied voltage, the temperature loading and geometric parameters on the nonlinear dynamic response of the piezoelectric FML plates is analyzed. Meanwhile, the effect of feedback control gain and the position of the piezoelectric layer, the initial deflection and the external temperature on the active control effect of the piezoelectric layers has been studied. The model development and the research results can serve as a basis for nonlinear vibration analysis of the FML structures.
Kim, Kihong; Phung, D K; Rotermund, F; Lim, H
2008-01-21
We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.
Nonlinear optical response of tetra and mono substituted zinc phthalocyanine complexes
Energy Technology Data Exchange (ETDEWEB)
Fashina, Adedayo; Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za
2015-11-15
The nonlinear absorption properties of 6 mono-substituted and 3 symmetric zinc phthalocyanine complexes have been studied in dimethylsulfoxide (DMSO) using 10 ns pulses at 532 nm. The non linear absorption of the complexes has been studied using the Z-scan technique. The study showed that both the singlet and triplet excited states contribute to the non linear absorption behavior. The nonlinear third-order susceptibility and second-order hyperpolarizability values of the complexes are reported. It was observed that two of the symmetric phthalocyanine complexes (5-α substituted with aminophenoxy and 9-β substituted with carboxyphenoxy) showed better and promising optical nonlinearity when compared to the other complexes studied. - Highlights: • Nonlinear absorption properties of zinc phthalocyanine are reported • Singlet and triplet excited states contribute to the non linear absorption. • Symmetrically tetra substituted phthalocyanines showed better optical nonlinearity.
Nonlinear seismic response analysis of reinforced concrete tube in tube structure
Institute of Scientific and Technical Information of China (English)
WANG Hai-bo; SHEN Pu-sheng
2005-01-01
Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given.On the premise of pointing out the problems of present multi-spring element model, combined with present multivertical-line-element model for analyzing on shear wall, the model is expanded to spatial one, and the stiffness matrix of which is derived. Combined with hysteretic axial model and hysteretic shear model, it is suitable for columns,wall limbs and beams with all kinds of section form. Some examples are calculated and compared with test results,which shows that the models have relatively good accuracy. On the base of the experimental phenomenon and failure mechanism for tube in tube structure specimen, nonlinear seismic responses analysis program on the basis of the advantaged element model for tube in tube structure is developed. Calculation results are in good agreement with those of the pseudo-dynamic tests and the failure mechanism can be well reflected.
Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations
Energy Technology Data Exchange (ETDEWEB)
Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Huijsmans, G. [ITER Organization, Route de Vinon, F-13115 Saint-Paul-Lez-Durance (France); Pamela, S. [IIFS-PIIM. Aix Marseille Université - CNRS, 13397 Marseille Cedex20 (France); Chapman, I.; Kirk, A.; Thornton, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxon OX14 3DB (United Kingdom); Hoelzl, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Cahyna, P. [Association EURATOM/IPP.CR, Prague (Czech Republic)
2013-10-15
The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.
Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations
Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Huijsmans, G.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A.; Chapman, I.; Kirk, A.; Thornton, A.; Hoelzl, M.; Cahyna, P.
2013-10-01
The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.
Lifespan and oxidative stress show a non-linear response to atmospheric oxygen in Drosophila.
Rascón, Brenda; Harrison, Jon F
2010-10-15
Oxygen provides the substrate for most ATP production, but also serves as a source of reactive oxygen species (ROS), which can induce cumulative macromolecular oxidative damage and cause aging. Pure oxygen atmospheres (100 kPa) are known to strongly reduce invertebrate lifespan and induce aging-related physiological changes. However, the nature of the relationship between atmospheric oxygen, oxidative stress, and lifespan across a range of oxygen levels is poorly known. Developmental responses are likely to play a strong role, as prior research has shown strong effects of rearing oxygen level on growth, size and respiratory system morphology. In this study, we examined (1) the effect of oxygen on adult longevity and (2) the effect of the oxygen concentration experienced by larvae on adult lifespan by rearing Drosophila melanogaster in three oxygen atmospheres throughout larval development (10, 21 and 40 kPa), then measuring the lifespan of adults in five oxygen tensions (2, 10, 21, 40, 100 kPa). We also assessed the rate of protein carbonyl production for flies kept at 2, 10, 21, 40 and 100 kPa as adults (all larvae reared in normoxia). The rearing of juveniles in varying oxygen treatments affected lifespan in a complex manner, and the effect of different oxygen tensions on adult lifespan was non-linear, with reduced longevity and heightened oxidative stress at extreme high and low atmospheric oxygen levels. Moderate hypoxia (10 kPa) extended maximum, but not mean lifespan.
Review of Response and Damage of Linear and Nonlinear Systems under Multiaxial Vibration
Directory of Open Access Journals (Sweden)
Ed Habtour
2014-01-01
Full Text Available A review of past and recent developments in multiaxial excitation of linear and nonlinear structures is presented. The objective is to review some of the basic approaches used in the analytical and experimental methods for kinematic and dynamic analysis of flexible mechanical systems, and to identify future directions in this research area. In addition, comparison between uniaxial and multiaxial excitations and their impact on a structure’s life-cycles is provided. The importance of understanding failure mechanisms in complex structures has led to the development of a vast range of theoretical, numerical, and experimental techniques to address complex dynamical effects. Therefore, it is imperative to identify the failure mechanisms of structures through experimental and virtual failure assessment based on correctly identified dynamic loads. For that reason, techniques for mapping the dynamic loads to fatigue were provided. Future research areas in structural dynamics due to multiaxial excitation are identified as (i effect of dynamic couplings, (ii modal interaction, (iii modal identification and experimental methods for flexible structures, and (iv computational models for large deformation in response to multiaxial excitation.
Wang, Wei; Ma, Wanbiao; Lai, Xiulan
2017-01-01
From a biological perspective, a diffusive virus infection dynamic model with nonlinear functional response, absorption effect and chemotaxis is proposed. In the model, the diffusion of virus consists of two parts, the random diffusion and the chemotactic movement. The chemotaxis flux of virus depends not only on their own density, but also on the density of infected cells, and the density gradient of infected cells. The well posedness of the proposed model is deeply investigated. For the proposed model, the linear stabilities of the infection-free steady state E0 and the infection steady state E* are extensively performed. We show that the threshold dynamics can be expressed by the basic reproduction number R0 of the model without chemotaxis. That is, the infection-free steady state E0 is globally asymptotically stable if R0 virus is uniformly persistent if R0 > 1. In addition, we use the cross iteration method and the Schauder's fixed point theorem to prove the existence of travelling wave solutions connecting the infection-free steady state E0 and the infection steady state E* by constructing a pair of upper-lower solutions. At last, numerical simulations are presented to confirm theoretical findings.
Directory of Open Access Journals (Sweden)
Lars Kjellenberg
2015-09-01
Full Text Available The aim of this paper was to present results from two long term field experiments comparing potato samples from conventional farming systems with samples from biodynamic farming systems. The principal component analyses (PCA, consistently exhibited differences between potato samples from the two farming systems. According to the PCA, potato samples treated with inorganic fertilizers exhibited a variation positively related to amounts of crude protein, yield, cooking or tissue discoloration and extract decomposition. Potato samples treated according to biodynamic principles, with composted cow manure, were more positively related to traits such as Quality- and EAA-indices, dry matter content, taste quality, relative proportion of pure protein and biocrystallization value. Distinctions between years, crop rotation and cultivars used were sometimes more significant than differences between manuring systems. Grown after barley the potato crop exhibited better quality traits compared to when grown after ley in both the conventional and the biodynamic farming system.
Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe
Peng, Yunfeng; Li, Fei; Zhou, Guoying; Fang, Kai; Zhang, Dianye; Li, Changbin; Yang, Guibiao; Wang, Guanqin; Wang, Jun; Mohammat, Anwar; Yang, Yuanhe
2017-02-01
Nitrogen (N) availability is a key regulator of carbon (C) cycling in terrestrial ecosystems. Anthropogenic N input, such as N deposition and fertilization, increases N availability in soil, which has important implications for an ecosystem’s C storage and loss. Soil respiration (Rs), which is the second largest C flux from terrestrial ecosystems to the atmosphere, plays an important role in terrestrial C cycles. The direction and magnitude of the responses of Rs and its components to N addition have been widely evaluated, but it remains unclear how these processes change across multiple N addition levels. Here we conducted a two-year field experiment to examine the changes of Rs and its autotrophic respiration (Ra) and heterotrophic respiration (Rh) components along a gradient of eight N levels (0, 1 2, 4, 8, 16, 24, 32 g m‑2 yr‑1) in a Tibetan alpine steppe, and used structural equation modeling (SEM) to explore the relative contributions of biotic and abiotic variables and their direct and indirect pathways regulating the Ra and Rh. Our results indicated that both Rs and Ra exhibited first increasing and then subsequent decreasing trends at the threshold of 8 g N m‑2 yr‑1. In contrast, the Rh declined linearly with the N addition rate continuously increasing. SEM analysis revealed that, among various environmental factors, soil temperature was the most important one modulating Rs, which not only had a direct effect on the two Rs components, but also indirectly regulated the Ra and Rh via root and microbial biomass. These findings suggest that the nonlinear response patterns of Rs should be considered for better predicting terrestrial C balance, given that anthropogenic N input to the terrestrial ecosystems is increasing continuously.
Seismic response of structures: from non-stationary to non-linear effects
Carlo Ponzo, Felice; Ditommaso, Rocco; Mucciarelli, Marco; Smith, Tobias
2013-04-01
The need for an effective seismic protection of buildings, and all the problems related to their management and maintenance over time, have led to a growing interest associated to develop of new integrated techniques for structural health monitoring and for damage detection and location during both ambient vibration and seismic events. It is well known that the occurrence of damage on any kind of structure is able to modify its dynamic characteristics. Indeed, the main parameters affected by the changes in stiffness characteristics are: periods of vibration, mode shapes and all the related equivalent viscous damping factors. With the aim to evaluate structural dynamic characteristics, their variation over time and after earthquakes, several Non Destructive Evaluation (NDE) methods have been proposed in the last years. Most of these are based on simplified relationship that provide the maximum inter-story drift evaluated combining structural variations in terms of: peak ground acceleration and/or structural eigenfrequencies and/or equivalent viscous damping factors related the main modes of the monitored structure. The NDE methods can be classified into four different levels. The progress of the level increases the quality and the number of the information. The most popular are certainly Level I methods being simple in implementation and economic in management. These kinds of methods are mainly based on the fast variation (less than 1 minute) of the structural fundamental frequency and the related variation of the equivalent viscous damping factor. Generally, it is possible to distinguish two types of variations: the long term variations, which may also be linked to external factors (temperature change, water content in the foundation soils, etc.) and short period variations (for example, due to seismic events), where apparent frequencies variations could occurred due to non-stationary phenomena (particular combination of input and structural response). In these
Evolution of Channels Draining Mount St. Helens: Linking Non-Linear and Rapid, Threshold Responses
Simon, A.
2010-12-01
The catastrophic eruption of Mount St. Helens buried the valley of the North Fork Toutle River (NFT) to a depth of up to 140 m. Initial integration of a new drainage network took place episodically by the “filling and spilling” (from precipitation and seepage) of depressions formed during emplacement of the debris avalanche deposit. Channel incision to depths of 20-30 m occurred in the debris avalanche and extensive pyroclastic flow deposits, and headward migration of the channel network followed, with complete integration taking place within 2.5 years. Downstream reaches were converted from gravel-cobble streams with step-pool sequences to smoothed, infilled channels dominated by sand-sized materials. Subsequent channel evolution was dominated by channel widening with the ratio of changes in channel width to changes in channel depth ranging from about 60 to 100. Widening resulted in significant adjustment of hydraulic variables that control sediment-transport rates. For a given discharge over time, flow depths were reduced, relative roughness increased and flow velocity and boundary shear stress decreased non-linearly. These changes, in combination with coarsening of the channel bed with time resulted in systematically reduced rates of degradation (in upstream reaches), aggradation (in downstream reaches) and sediment-transport rates through much of the 1990s. Vertical adjustments were, therefore, easy to characterize with non-linear decay functions with bed-elevation attenuating with time. An empirical model of bed-level response was then created by plotting the total dimensionless change in elevation against river kilometer for both initial and secondary vertical adjustments. High magnitude events generated from the generated from upper part of the mountain, however, can cause rapid (threshold) morphologic changes. For example, a rain-on-snow event in November 2006 caused up to 9 m of incision along a 6.5 km reach of Loowit Creek and the upper NFT. The event
Zitelli, Gregory; Djouadi, Seddik M; Day, Judy D
2015-10-01
The inflammatory response aims to restore homeostasis by means of removing a biological stress, such as an invading bacterial pathogen. In cases of acute systemic inflammation, the possibility of collateral tissue damage arises, which leads to a necessary down-regulation of the response. A reduced ordinary differential equations (ODE) model of acute inflammation was presented and investigated in [10]. That system contains multiple positive and negative feedback loops and is a highly coupled and nonlinear ODE. The implementation of nonlinear model predictive control (NMPC) as a methodology for determining proper therapeutic intervention for in silico patients displaying complex inflammatory states was initially explored in [5]. Since direct measurements of the bacterial population and the magnitude of tissue damage/dysfunction are not readily available or biologically feasible, the need for robust state estimation was evident. In this present work, we present results on the nonlinear reachability of the underlying model, and then focus our attention on improving the predictability of the underlying model by coupling the NMPC with a particle filter. The results, though comparable to the initial exploratory study, show that robust state estimation of this highly nonlinear model can provide an alternative to prior updating strategies used when only partial access to the unmeasurable states of the system are available.
The nonlinear optical response of a two-dimensional atomic crystal
Merano, Michele
2015-01-01
The theory of Bloembergen and Persham for the light waves at the boundary of nonlinear media is applied to a nonlinear two-dimensional atomic crystal placed in between linear bulk media. The crystal is treated as a zero-thickness interface, a real two-dimensional system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. The nonlinear polarization of these special materials is very sensitive to the substrate on which they are deposited. Experiments on second harmonic generation of a $\\rm MoS_{2}$ monolayer are discussed to elucidate this point.
Application of HPEM to investigate the response and stability of nonlinear problems in vibration
DEFF Research Database (Denmark)
Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.
2010-01-01
In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...... analytically by He's Parameter Expanding Methods. It is shown that one term in series expansions is sufficient to obtain a highly accurate solution which is valid for the whole domain. Comparison of the obtained solutions with those obtained using numerical method shows that this method is effective...
Giannattasio, Matteo; Vendramin, Elena; Fornasier, Flavio; Alberghini, Sara; Zanardo, Marina; Stellin, Fabio; Concheri, Giuseppe; Stevanato, Piergiorgio; Ertani, Andrea; Nardi, Serenella; Rizzi, Valeria; Piffanelli, Pietro; Spaccini, Riccardo; Mazzei, Pierluigi; Piccolo, Alessandro; Squartini, Andrea
2013-05-01
The fermented manure derivative known as Preparation 500 is traditionally used as a field spray in biodynamic agriculture for maintaining and increasing soil fertility. This work aimed at characterizing the product from a microbiological standpoint and at assaying its bioactive properties. The approach involved molecular taxonomical characterization of the culturable microbial community; ARISA fingerprints of the total bacteria and fungal communities; chemical elemental macronutrient analysis via a combustion analyzer; activity assays for six key enzymes; bioassays for bacterial quorum sensing and chitolipooligosaccharide production; and plant hormonelike activity. The material was found to harbor a bacterial community of 2.38 × 10(8) CFU/g dw dominated by Grampositives with minor instances of Actinobacteria and Gammaproteobacteria. ARISA showed a coherence of bacterial assemblages in different preparation lots of the same year in spite of geographic origin. Enzymatic activities showed elevated values of beta-glucosidase, alkaline phosphatase, chitinase, and esterase. The preparation had no quorum sensing-detectable signal, and no rhizobial nod gene-inducing properties, but displayed a strong auxin-like effect on plants. Enzymatic analyses indicated a bioactive potential in the fertility and nutrient cycling contexts. The IAA activity and microbial degradation products qualify for a possible activity as soil biostimulants. Quantitative details and possible modes of action are discussed.
4-DOF biodynamic lumped-parameter models for a seated occupant
Cheng, Wei; Xu, Shi-Xu; Qian, Li-Jun; Bai, Xian-Xu
2016-04-01
In order to study how vibrations from ground vehicles/aircraft will impact on the seated occupants, it is of significance to develop an effective biodynamic model for the seated occupants. In this paper, a wide variety of 4-degree-of-freedom (4- DOF) lumped-parameter models for a seated occupant is investigated. A linear 4-DOF model with 18 parameters is deduced and employed as an example. The parameters of the 4-DOF model are identified based on the Pareto optimization principle. The goodness of fit (ɛ) is established and employed to evaluate the effectiveness of the models. Then, all possible linear 4-DOF models are analyzed and discussed with the same parameters identification and effectiveness evaluation. The most-effective two models are obtained and compared with two other existing models. The research results show that: (i) The total types of linear 4-DOF models is limited and all the parameters of models are identifiable; (ii) The number of parameters of the 4-DOF models affects little on the goodness of fit (ɛ); and (iii) The presented models are more effective than the two existing models.
Chemical Biodynamics Division: Annual report, October 1, 1985-September 30, 1986
Energy Technology Data Exchange (ETDEWEB)
1986-10-01
The research in the Laboratory of Chemical Biodynamics is almost entirely fundamental research. The biological research component is strongly dominated by a long term interest in two main themes which make up our Structural Biology Program. The first interest has to do with understanding the molecular dynamics of photosynthesis. The Laboratory's investigators are studying the various components that make up the photosynthetic reaction center complexes in many different organisms. This work not only involves understanding the kinetics of energy transfer and storage in plants, but also includes studies to work out how photosynthetic cells regulate the expression of genes encoding the photosynthetic apparatus. The second biological theme is a series of investigations into the relationship between structure and function in nucleic acids. Our basic mission in this program is to couple our chemical and biophysical expertise to understand how not only the primary structure of nucleic acids, but also higher levels of structure including interactions with proteins and other nucleic acids regulate the functional activity of genes. In the chemical sciences work in the Laboratory, our investigators are increasing our understanding of the fundamental chemistry of electronically excited molecules, a critical dimension of every photosynthetic energy storage process. We are developing approaches not only toward the utilization of sophisticated chemistry to store photon energy, but also to develop systems that can emulate the photosynthetic apparatus in the trapping and transfer of photosynthetic energy.
A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula
Ries, J. B.; Cohen, A. L.; McCorkle, D. C.
2010-09-01
Anthropogenic elevation of atmospheric pCO2 is predicted to cause the pH of surface seawater to decline by 0.3-0.4 units by 2100 AD, causing a 50% reduction in seawater [CO3 2-] and undersaturation with respect to aragonite in high-latitude surface waters. We investigated the impact of CO2-induced ocean acidification on the temperate scleractinian coral Oculina arbuscula by rearing colonies for 60 days in experimental seawaters bubbled with air-CO2 gas mixtures of 409, 606, 903, and 2,856 ppm pCO2, yielding average aragonite saturation states (ΩA) of 2.6, 2.3, 1.6, and 0.8. Measurement of calcification (via buoyant weighing) and linear extension (relative to a 137Ba/138Ba spike) revealed that skeletal accretion was only minimally impaired by reductions in ΩA from 2.6 to 1.6, although major reductions were observed at 0.8 (undersaturation). Notably, the corals continued accreting new skeletal material even in undersaturated conditions, although at reduced rates. Correlation between rates of linear extension and calcification suggests that reduced calcification under ΩA = 0.8 resulted from reduced aragonite accretion, rather than from localized dissolution. Accretion of pure aragonite under each ΩA discounts the possibility that these corals will begin producing calcite, a less soluble form of CaCO3, as the oceans acidify. The corals’ nonlinear response to reduced ΩA and their ability to accrete new skeletal material in undersaturated conditions suggest that they strongly control the biomineralization process. However, our data suggest that a threshold seawater [CO3 2-] exists, below which calcification within this species (and possibly others) becomes impaired. Indeed, the strong negative response of O. arbuscula to ΩA = 0.8 indicates that their response to future pCO2-induced ocean acidification could be both abrupt and severe once the critical ΩA is reached.
Bonabi, Farzad; Pedersen, Thomas G.
2017-04-01
The dipole moment formalism for the optical response of finite electronic structures breaks down in infinite ones, for which a momentum-based method is better suited. Focusing on simple chain structures, we compare the linear and nonlinear optical response of finite and infinite one-dimensional semiconductors. This comparison is then extended to cases including strong electro-static fields breaking translational invariance. For large electro-static fields, highly non-perturbative Franz–Keldysh (FK) features are observed in both linear and nonlinear spectra. It is demonstrated that dipole and momentum formalisms agree in the limit of large structures provided the intraband momentum contributions are carefully treated. This convergence is established even in the presence of non-perturbative electro-static fields.
Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite
Energy Technology Data Exchange (ETDEWEB)
Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)
2015-09-15
Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10{sup -5} cm{sup 2}/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)
A comparison of nonlinear mixed models and response to selection of tick-infestation on lambs
2017-01-01
Tick-borne fever (TBF) is stated as one of the main disease challenges in Norwegian sheep farming during the grazing season. TBF is caused by the bacterium Anaplasma phagocytophilum that is transmitted by the tick Ixodes ricinus. A sustainable strategy to control tick-infestation is to breed for genetically robust animals. In order to use selection to genetically improve traits we need reliable estimates of genetic parameters. The standard procedures for estimating variance components assume a Gaussian distribution of the data. However, tick-count data is a discrete variable and, thus, standard procedures using linear models may not be appropriate. Thus, the objectives of this study were twofold: 1) to compare four alternative non-linear models: Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial based on their goodness of fit for quantifying genetic variation, as well as heritability for tick-count and 2) to investigate potential response to selection against tick-count based on truncation selection given the estimated genetic parameters from the best fit model. Our results showed that zero-inflated Poisson was the most parsimonious model for the analysis of tick count data. The resulting estimates of variance components and high heritability (0.32) led us to conclude that genetic determinism is relevant on tick count. A reduction of the breeding values for tick-count by one sire-dam genetic standard deviation on the liability scale will reduce the number of tick counts below an average of 1. An appropriate breeding scheme could control tick-count and, as a consequence, probably reduce TBF in sheep. PMID:28257433
Evaluation of nonlinear structural dynamic responses using a fast-running spring-mass formulation
Energy Technology Data Exchange (ETDEWEB)
Benjamin, A.S.; Altman, B.S.; Gruda, J.D.
1995-03-01
In today`s world, accurate finite-element simulations of large nonlinear systems may require meshes composed of hundreds of thousands of degrees of freedom. Even with today`s fast computers and the promise of ever-faster ones in the future, central processing unit (CPU) expenditures for such problems could be measured in days. Many contemporary engineering problems, such as those found in risk assessment, probabilistic structural analysis, and structural design optimization, cannot tolerate the cost or turnaround time for such CPU-intensive analyses, because these applications require a large number of cases to be run with different inputs. For many risk assessment applications, analysts would prefer running times to be measurable in minutes. There is therefore a need for approximation methods which can solve such problems far more efficiently than the very detailed methods and yet maintain an acceptable degree of accuracy. For this purpose, we have been working on two methods of approximation: neural networks and spring-mass models. This paper presents our work and results to date for spring-mass modeling and analysis, since we are further along in this area than in the neural network formulation. It describes the physical and numerical models contained in a code we developed called STRESS, which stands for ``Spring-mass Transient Response Evaluation for structural Systems``. The paper also presents results for a demonstration problem, and compares these with results obtained for the same problem using PRONTO3D, a state-of-the-art finite element code which was also developed at Sandia.
Institute of Scientific and Technical Information of China (English)
吴静波; 谌勇; 李兆俊; 黄建松; 华宏星
2011-01-01
Protection of shipboard personnel from shock events induced by underwater explosion is very interesting to ship designers. In this study, the potential attenuation performance of an elastic polymer foam cushion inserted between standing-man and ship deck is investigated theoretically. An 8-DOF nonlinear lumped-parameter model is used to predict the standing-man's biodynam-ic responses and injury potential. The cushion is modeled by a chain of masses separated by nonlinear springs and dampers in parallel to simulate the micro inertia, stiffness and rate-dependent effects exhibited by common polymer cellular materials. Two variables, kickoff speed (KS) ratio and deck reaction force (DRF) ratio corresponding to two types of typical injury potential of standing-men, are defined as evaluation parameters. The influence of critical buckling force level, material rate dependent effect as well as other design factors on the attenuation performance of the foam cushion is discussed in detail. Some general design rules are also presented.%利用八自由度集总参数模型描述立姿舰员的生物动力学响应并预测其受损趋势,应用非线性质量-弹簧及阻尼模型模拟多孔结构的微惯性、刚度及粘性效应.定义最大抛离速度比及最大甲板反力比评价抗冲地砖的防护效果,讨论了抗冲地砖的无量纲临界屈曲力水平、粘性效应对其人员防护效果的影响,给出了人员抗冲用抗冲地砖应遵循的一般设计原则.
Rodríguez-Rosales, A. A.; Ortega-Martínez, R.; Morales-Saavedra, O. G.
2011-01-01
The study of the nonlinear refractive index response γ of several organic dyes and their impact on the nonlinear optical (NLO) properties of nematic liquid crystals (LC) was performed via Z-scan measurements. For his purpose, a low power CW He-Ne laser system (λ approx 633 nm) was implemented. Studies were carried out at the low absorption spectroscopic region of the implemented samples (dyes, liquid crystals and mixtures at different ratios of these materials). Samples were prepared at 1% weight of the used solvent (THF) and were sandwiched in glass cells with a gap thickness of ~100 μm. The implemented dyes have shown the largest optical nonlinearities and represent the main contributors to the cubic NLO-properties of the LC:Dye mixtures. In our particular studies, 5CB liquid crystal doped with DR1 azo-dye, resulted in the simultaneous positive and negative exhibition of nonlinear refractive indexes γ, depending on the polarization state of the excitation laser beam. Experimental conditions and results are described in detail.
Controlling of blow-up responses by nonlinear PT -symmetric coupling
Karthiga, S.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2017-03-01
We investigate the dynamics of a coupled waveguide system with competing linear and nonlinear loss-gain profiles which can facilitate power saturation. We show the usefulness of the model in achieving unidirectional beam propagation. In this regard, the considered type of coupled waveguide system has two drawbacks: (i) difficulty in achieving perfect isolation of light in a waveguide and (ii) existence of blow-up-type behavior for certain input power situations. We here show a nonlinear PT -symmetric coupling that helps to overcome these two drawbacks. Such a nonlinear coupling has close connection with the phenomenon of stimulated Raman scattering. In particular, we have elucidated the role of this nonlinear coupling using an integrable PT -symmetric situation. In particular, using the integrals of motion, we have reduced this coupled waveguide problem to the problem of dynamics of a particle in a potential. With the latter picture, we have clearly illustrated the role of the considered nonlinear coupling. The above PT -symmetric case corresponds to a limiting form of a general equation describing the phenomenon of stimulated Raman scattering. We also point out the ability to transport light unidirectionally even in this general case.
Noise Response Data Reveal Novel Controllability Gramian for Nonlinear Network Dynamics.
Kashima, Kenji
2016-06-06
Control of nonlinear large-scale dynamical networks, e.g., collective behavior of agents interacting via a scale-free connection topology, is a central problem in many scientific and engineering fields. For the linear version of this problem, the so-called controllability Gramian has played an important role to quantify how effectively the dynamical states are reachable by a suitable driving input. In this paper, we first extend the notion of the controllability Gramian to nonlinear dynamics in terms of the Gibbs distribution. Next, we show that, when the networks are open to environmental noise, the newly defined Gramian is equal to the covariance matrix associated with randomly excited, but uncontrolled, dynamical state trajectories. This fact theoretically justifies a simple Monte Carlo simulation that can extract effectively controllable subdynamics in nonlinear complex networks. In addition, the result provides a novel insight into the relationship between controllability and statistical mechanics.
2014-12-18
300.6420) Spectroscopy, nonlinear; (190.3270) Kerr effect; (320.7110) Ultrafast nonlinear optics. http://dx.doi.org/10.1364/ OPTICA .1.000436 1...10$15/0$15.00 © 2014 Optical Society of America Research Article Vol. 1, No. 6 / December 2014 / Optica 436 Report Documentation Page Form ApprovedOMB...described by rd t Cd 1 − e− t τr;d e − tτf ;dΘt ; (5) Research Article Vol. 1, No. 6 / December 2014 / Optica 437 where the subscript d
Computation of the frequency response of a nonlinearly loaded antenna within a cavity
Directory of Open Access Journals (Sweden)
F. Gronwald
2004-01-01
Full Text Available We analyze a nonlinearly loaded dipole antenna which is located within a rectangular cavity and excited by an electromagnetic signal. The signal is composed from two different frequencies. In order to calculate the spectrum of the resulting electromagnetic field within the resonator we transform the antenna problem into a network problem. This requires to precisely determine the antenna impedance within the cavity. The resulting nonlinear equivalent network is solved by means of the harmonic balance technique. As a result the occurrence of low intermodulation frequencies within the spectrum is verified.
Impact of stoichiometry on the linear and nonlinear optical response of SnOx thin films
Li, Zhong-guo; Liang, Ling-yan; Cao, Hong-tao; Song, Ying-lin
2017-06-01
SnO is a promising p-type oxide semiconductor materials for applications such as transparent electronics and solar cells. However, further improvement of its performance is hindered by its diverse stoichiometry. We investigated the nonlinear and saturable absorption characteristics of pristine SnO and O-rich SnOx films by femtosecond degenerate pump-probe measurements at 515 nm. UV-Vis absorption data indicate bandgap blueshift with increasing oxygen concentration. Pristine SnO film exhibit saturable absorption while nonlinear absorption is observed in O-rich SnOx films. Our results shed light on the utilization of SnO in future device applications.
Nonlinear response of plain concrete shear walls with elastic-damaging behavior
Energy Technology Data Exchange (ETDEWEB)
Yazdani, S.; Schreyer, H.L.
1997-02-01
This report summarizes the theoretical and computational efforts on the modeling of small scale shear walls. Small scale shear walls are used extensively in the study of shear wall behavior because the construction and testing of full size walls are rather expensive. A finite element code is developed which incorporates nonlinear constitutive relations of damage mechanics. The program is used to obtain nonlinear load-deformation curves and to address the initial loss of stiffness due to shrinkage cracking. The program can also be used to monitor the continuous degradation of the fundamental frequency due to progressive damage.
Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators.
Heebner, John E; Lepeshkin, Nick N; Schweinsberg, Aaron; Wicks, G W; Boyd, Robert W; Grover, Rohit; Ho, P T
2004-04-01
We have constructed and characterized several optical microring resonators with scale sizes of the order of 10 microm. These devices are intended to serve as building blocks for engineerable linear and nonlinear photonic media. Light is guided vertically by an epitaxially grown structure and transversely by deeply etched air-clad sidewalls. We report on the spectral phase transfer characteristics of such resonators. We also report the observation of a pi-rad Kerr nonlinear phase shift accumulated in a single compact ring resonator evidenced by all-optical switching between output ports of a resonator-enhanced Mach-Zehnder interferometer.
Non-linear response of electrode-electrolyte interface at high current density
Energy Technology Data Exchange (ETDEWEB)
Ruiz, G.A. [Departamento de Bioingenieria, FACET-INSIBIO/UNT-CONICET, CC 327 Correo Central, 4000 Tucuman (Argentina)] e-mail: gruiz@herrera.unt.edu.ar; Felice, C.J. [Departamento de Bioingenieria, FACET-INSIBIO/UNT-CONICET, CC 327 Correo Central, 4000 Tucuman (Argentina); Valentinuzzi, M.E. [Departamento de Bioingenieria, FACET-INSIBIO/UNT-CONICET, CC 327 Correo Central, 4000 Tucuman (Argentina)
2005-08-01
A distributed parameter non-linear circuit is presented as fractal model of an electrode-electrolyte interface. It includes the charge transfer resistance and the double layer capacitance at each fractal level. The circuit explains the linear behavior of its series equivalent resistance R {sub eq} with signals of amplitudes <20 mV and constant frequency; however, for amplitudes beyond that limit, non-linearity is manifested in the dc component of the R {sub eq} Fourier spectrum. As a consequence, both the equivalent resistance and reactance drop with voltage, facts reported experimentally by other authors.
Teruna, D. R.
2017-03-01
Pushover analysis or also known as nonlinear static procedures (NSP) have been recognized in recent years for practical evaluation of seismic demands and for structural design by estimating a structural building capacities and deformation demands. By comparing these demands and capacities at the performance level interest, the seismic performance of a building can be evaluated. However, the accuracy of NSP for assessment irregular building is not yet a fully satisfactory solution, since irregularities of a building influence the dynamic responses of the building. The objective of the study presented herein is to understand the nonlinear behaviour of six story RC building with mass irregularities at different floors and stiffness irregularity at first story (soft story) using NSP. For the purpose of comparison on the performance level obtained with NSP, nonlinear time history analysis (THA) were also performed under ground motion excitation with compatible to response spectra design. Finally, formation plastic hinges and their progressive development from elastic level to collapse prevention are presented and discussed.
Allis, D G; Spencer, J T
2001-07-02
A theoretical study of several new classes of polyhedral-based molecules has shown that these species display large calculated nonlinear optical responses. These new classes of molecules are based on charged aromatic subunits connected through polyhedral cluster bridges, such as closo-[1-(C(7)H(6))-12-(C(5)Me(4))C(2)B(10)H(10)]. These compounds show calculated first hyperpolarizabilities (beta) ranging from 6.5 to 8413.9 x 10(-30) cm(5) esu(-1). A basis for understanding the origin of these large responses is proposed based on the two-state model and consideration of the orbital and electronic features of the molecules. In general, the highest occupied molecular orbitals for these species are localized on the aromatic donor rings, such as the cyclopentadienyl system, while the lowest unoccupied molecular orbitals are largely on the aromatic acceptor rings, such as the tropylium system. The electronic properties of these polyhedral-based systems appear to be significantly different from the analogous organic [5.6.7]quinarene system (tropyliumcyclopentadienylbenzene). The organic quinarene appears to behave as a completely electron-delocalized system over all three rings while the polyhedral-based compounds can best be described as consisting of two relatively independent, highly polarized regions.
Liu, Chun-Guang; Guan, Wei; Song, Ping; Yan, Li-Kai; Su, Zhong-Min
2009-07-20
The redox-active tetrathiafulvalene (TTF) is a good electron donor, and porphyrin is highly delocalized in cyclic pi-conjugated systems. The direct combination of the two interesting building units into the same molecule provides an intriguing molecular system for designing nonlinear optical (NLO) molecular materials. In the present paper, the second-order NLO properties of a series of monoTTF-porphyrins and metalloporphyrins have been calculated by density functional theory (DFT) combined with the finite field (FF) method. Our calculations show that these compounds possess considerably large static first hyperpolarizabilities, approximately 400 x 10(-30) esu. Since the TTF unit is able to exist in three different stable redox states (TTF, TTF(*+), and TTF(2+)), the redox switching of the NLO response of the zinc(II) derivative of monoTTF-metalloporphyrin has been studied, and a substantial enhancement in static first hyperpolarizability has been obtained in its oxidized species according to our DFT-FF calculations. The beta values of one- and two-electron-oxidized species are 3.6 and 8.7 times as large as that of the neutral compound, especially for two-electron-oxidized species, with a value of 3384 x 10(-30) esu. This value is about 3 times that for a push-pull metalloporphyrin, which has an exceptionally large hyperpolarizability among reported organic NLO chromophores. Meanwhile, to give a more intuitive description of band assignments of the electron spectrum and trends in NLO behavior of these compounds, the time-dependent (TD)DFT method has been adopted to calculate the electron spectrum. The TDDFT calculations well-reproduce the soret band and Q-type bands of the monoTTF-porphyrin, and these absorption bands can be assigned to the pi --> pi* transition of the porphyrin core. On the other hand, the oxidized process significantly affects the geometrical structures of the TTF unit and porphyrin ring, and the two-electron-oxidized species has a planar TTF unit
Institute of Scientific and Technical Information of China (English)
Wang Xinjun; Feng Zhenzhou; Wang Fusheng; Yue Zhufeng
2007-01-01
Damage-modified nonlinear viscoelastic constitutive equation and failure criterion are introduced and the three-dimensional incremental forms are deduced based on the updated Lagrangian approach. A simple tensile test model and a split Hopkinson pressure bar model are built to verify the accuracy of the subroutine implemented within the non-linear finite element program LS-DYNA. A numerical model of bird strike on windshield is established to study the responses of windshield under three different bird velocities at three sites. The bird is represented by a cylinder with a hemisphere at each end and the contact-impact coupling algorithm is used in this study. It is found that the implemented subroutine can properly describe the mechanical behavior of polymethyl methacrylate under low and high strain rates and large deformation, and can be used validly.
Wang, Yingwei; Mu, Haoran; Li, Xiaohong; Yuan, Jian; Chen, Jiazhang; Xiao, Si; Bao, Qiaoliang; Gao, Yongli; He, Jun
2016-05-01
We report the large nonlinear response and ultrafast carrier relaxation dynamics of a graphene-Bi2Te3 heterostructure produced by two-step chemical vapour deposition. The nonlinear refractive index reaches n2 = 0.2 × 10-7 cm2/W at the telecommunication wavelength of 1550 nm, which is almost seven orders of magnitude larger than that of the bulk Si material. Additionally, a pump-probe experiment is performed to investigate the ultrafast dynamic process (intraband relaxation time τ1 = 270 ± 20 fs; interband relaxation time τ2 = 3.6 ± 0.2 ps) of the graphene-Bi2Te3 heterostructure. Then, based on the donor-acceptor structure model, we propose a theoretical model to explain the dynamic relaxation process. Our results show that the graphene-Bi2Te3 heterostructure is a promising saturable absorber for ultrafast pulse laser applications at telecommunication wavelengths.
Directory of Open Access Journals (Sweden)
Yonghwan Kim
2011-03-01
Full Text Available The present paper introduced a computer program, called WISH, which is based on a time-domain Rankine panel method. The WISH has been developed for practical use to predict the linear and nonlinear ship motion and structural loads in waves. The WISH adopts three different levels of seakeeping analysis: linear, weakly-nonlinear and weak-scatterer approaches. Later, WISH-FLEX has been developed to consider hydroelasticity effects on hull-girder structure. This program can solve the springing and whipping problems by coupling between the hydrodynamic and structural problems. More recently this development has been continued to more diverse problems, including the motion responses of multiple adjacent bodies, the effects of seakeeping in ship maneuvering, and the floating-body motion in finite-depth domain with varying bathymetry. This paper introduces a brief theoretical and numerical background of the WISH package, and some validation results. Also several applications to real ships and offshore structures are shown.
Fast response of the optical nonlinearity in a GaAs/AlGaAs asymmetric triple quantum well structure
Ahn, S H; Sawaki, N
1999-01-01
The time response of the optical nonlinear behavior in a GaAs/AlGaAs asymmetric triple quantum well structure is estimated by using a picosecond pump-probe method at 77 K. From the results of the transmission of the probe pulse as a function of the delay time at the excitation wavelengths, a rise time of 5 approx 10 ps and a fall time of 8 approx 16 ps are obtained. The nonlinear behavior is attributed to the triple resonance of the electronic states due to the build-up of the internal field induced by the separation of photo-excited electrons and holes. It is found that the rise time is determined by the tunneling transfer time of the electrons in the narrowest well to an adjacent well separated by a thin potential barrier.
Rofooei, Fayaz R.; Enshaeian, Alireza; Nikkhoo, Ali
2017-04-01
Dynamic deformations of beams and plates under moving objects have extensively been studied in the past. In this work, the dynamic response of geometrically nonlinear rectangular elastic plates subjected to moving mass loading is numerically investigated. A rectangular von Karman plate with various boundary conditions is modeled using specifically developed geometrically nonlinear plate elements. In the available finite element (FE) codes the only way to distinguish between moving masses from moving loads is to model the moving mass as a separate entity. However, these procedures still do not guarantee the inclusion of all inertial effects associated with the moving mass. In a prepared finite element code, the plate elements are developed using the conventional nonlinear methods, i.e., Total Lagrangian technique, but all inertial components associated with the travelling mass are taken into account. Since inertial components affect the mass, damping, and stiffness matrices of the system as the moving mass traverses the plate, appropriate time increments shall be selected to avoid numerical instability. The dynamic response of the plate induced by the moving mass is evaluated and compared to previous studies. Also, unlike the existing FE programs, the different inertial components of the normal contact force between the moving mass and the plate are computed separately to substantiate the no-separation assumption made for the moving mass. Also, it is observed that for large moving mass velocities, the peak plate deformation occurs somewhere away from the plate center point. Under the two extreme in-plane boundary conditions considered in this study, it is shown that if the geometrical nonlinearity of plate is accounted for, the deformations obtained would be less than the case with classical linear plate theory.
Nonlinear dynamics in ecosystem response to climatic change: case studies and policy implications.
Virginia R. Burkett; Douglas A. Wilcox; Robert Stottlemeyer; Wylie Barrow; Dan Fagre; Jill Baron; Jeff Price; Jennifer L. Nielsen; Craig D. Allen; David L. Peterson; Greg Ruggerone; Thomas. Doyle
2005-01-01
Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that...
Demetrashvili, Nino; Van den Heuvel, Edwin R.
This work is motivated by a meta-analysis case study on antipsychotic medications. The Michaelis-Menten curve is employed to model the nonlinear relationship between the dose and D2 receptor occupancy across multiple studies. An intraclass correlation coefficient (ICC) is used to quantify the
Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.
Non-parametric system identification from non-linear stochastic response
DEFF Research Database (Denmark)
Rüdinger, Finn; Krenk, Steen
2001-01-01
An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable p...
Interaction-induced effects in the nonlinear coherent response of quantum-well excitons
DEFF Research Database (Denmark)
Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner;
1999-01-01
Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...
Demetrashvili, Nino; Van den Heuvel, Edwin R.
2015-01-01
This work is motivated by a meta-analysis case study on antipsychotic medications. The Michaelis-Menten curve is employed to model the nonlinear relationship between the dose and D2 receptor occupancy across multiple studies. An intraclass correlation coefficient (ICC) is used to quantify the hetero
Response of Non-Linear Systems to Renewal Impulses by Path Integration
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Iwankiewicz, R.
The cell-to-cell mapping (path integration) technique has been devised for MDOF non-linear and non-hysteretic systems subjected to random trains of impulses driven by an ordinary renewal point process with gamma-distributed integer parameter interarrival times (an Erlang process). Since the renewal...... additional discrete-valued state variables for which the stochastic equations are also formulated....
Modeling the Biodynamical Response of the Human Thorax with Body Armor from a Bullet Impact
2001-03-01
are continuous with the osseous tissue of the rib that it belongs to. The inner extremity of the coastal cartilage for the first rib pair is... accidents , led to additional developments of the finite element model of the thorax. Chen [Ref. 61 developed a finite element model of the human thorax... accident . Their model assumed linear elastic material properties except for the internal organs that were modeled as a viscoelastic material. Their
Models and Analogues for the Evaluation of Human Biodynamic Response, Performance and Protection
1979-06-01
Phtysiolo. 209:257. 1970 31. Franklin, D.L., R -. Van Citters and R.F. Rushmer. Balance between right and left ventricular output. Circ. Res. 10:17...it nlest. pas. rare. d~obte- nir desn fractures plus ou mains graves at plus ou moins complexes diu rachis . dorso-lom- baire (AUFFRET et DELAHAYE...graves du rachis dorso-lombaire aggrav~oa par dec mouvoinenta intempestifa an nivoan do In colonno cervlcale basso "coup du lapin". Lesancci~ratloas
Fernandez, Fernando R; Malerba, Paola; White, John A
2015-04-01
The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances.
Meijer, R.; Wisgerhof, R.P.; Wismans, J.S.H.M.; Been, B.W.
2009-01-01
The head-neck biofidelity of side-impact dummies can be assessed according to the response requirements for the head-neck system based on mid-size male human subjects as published in ISO TR9790. These criteria are largely based on volunteer tests performed at the Naval Biodynamics Laboratory (NBDL)
Meijer, R.; Wisgerhof, R.P.; Wismans, J.S.H.M.; Been, B.W.
2009-01-01
The head-neck biofidelity of side-impact dummies can be assessed according to the response requirements for the head-neck system based on mid-size male human subjects as published in ISO TR9790. These criteria are largely based on volunteer tests performed at the Naval Biodynamics Laboratory (NBDL)
Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J
1994-03-01
Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the
Mahmoudi, S.; Trivaudey, F.; Bouhaddi, N.
2015-07-01
The aim of this study is the prediction of the dynamic response of damaged laminated composite structures in the context of component mode synthesis. Hence, a method of damage localization of complex structures is proposed. The dynamic behavior of transversely isotropic layers is expressed through elasticity coupled with damage based on an existing macro model for cracked structures. The damage is located only in some regions of the whole structure, which is decomposed on substructures. The incremental linear dynamic governing equations are obtained by using the classical linear Kirchhoff-Love theory of plates. Then, considering the damage-induced nonlinearity, the obtained nonlinear dynamic equations are solved in time domain. However, a detailed finite element modelling of such structure on the scale of localized damage would generate very high computational costs. To reduce this cost, Component Mode Synthesis method (CMS) is used for modelling a nonlinear fine-scale substructure damaged, connected to linear dynamic models of the remaining substructures, which can be condensed and not updated at each iteration. Numerical results show that the mechanical properties of the structure highly change when damage is taken into account. Under an impact load, damage increases and reaches its highest value with the maximum of the applied load and then remains unchanged. Besides, the eigenfrequencies of the damaged structure decrease comparing with those of an undamaged one. This methodology can be used for monitoring strategies and lifetime estimations of hybrid complex structures due to the damage state is known in space and time.
Sheng, Shiqi; Tu, Z C
2015-02-01
We present a unified perspective on nonequilibrium heat engines by generalizing nonlinear irreversible thermodynamics. For tight-coupling heat engines, a generic constitutive relation for nonlinear response accurate up to the quadratic order is derived from the stalling condition and the symmetry argument. By applying this generic nonlinear constitutive relation to finite-time thermodynamics, we obtain the necessary and sufficient condition for the universality of efficiency at maximum power, which states that a tight-coupling heat engine takes the universal efficiency at maximum power up to the quadratic order if and only if either the engine symmetrically interacts with two heat reservoirs or the elementary thermal energy flowing through the engine matches the characteristic energy of the engine. Hence we solve the following paradox: On the one hand, the quadratic term in the universal efficiency at maximum power for tight-coupling heat engines turned out to be a consequence of symmetry [Esposito, Lindenberg, and Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009); Sheng and Tu, Phys. Rev. E 89, 012129 (2014)]; On the other hand, typical heat engines such as the Curzon-Ahlborn endoreversible heat engine [Curzon and Ahlborn, Am. J. Phys. 43, 22 (1975)] and the Feynman ratchet [Tu, J. Phys. A 41, 312003 (2008)] recover the universal efficiency at maximum power regardless of any symmetry.
Rose, Cheryl A.; Young, Richard D.; Starnes, James H., Jr.
1999-01-01
Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or "bulging factors" that account for increased stresses due to curvature for longitudinal cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in graphs of the bulging factor as a function of the applied load and as a function of geometric parameters that include the shell radius, the shell thickness and the crack length. The computed bulging factors are compared with solutions based on linear shallow shell theory, and with semi-empirical solutions that approximately account for the nonlinear deformation in the vicinity of the crack. The effect of biaxial loads on the computed bulging factors is also discussed.
Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien
2012-01-01
Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.
Demetrashvili, Nino; Van den Heuvel, Edwin R
2015-06-01
This work is motivated by a meta-analysis case study on antipsychotic medications. The Michaelis-Menten curve is employed to model the nonlinear relationship between the dose and D2 receptor occupancy across multiple studies. An intraclass correlation coefficient (ICC) is used to quantify the heterogeneity across studies. To interpret the size of heterogeneity, an accurate estimate of ICC and its confidence interval is required. The goal is to apply a recently proposed generic beta-approach for construction the confidence intervals on ICCs for linear mixed effects models to nonlinear mixed effects models using four estimation methods. These estimation methods are the maximum likelihood, second-order generalized estimating equations and two two-step procedures. The beta-approach is compared with a large sample normal approximation (delta method) and bootstrapping. The confidence intervals based on the delta method and the nonparametric percentile bootstrap with various resampling strategies failed in our settings. The beta-approach demonstrates good coverages with both two-step estimation methods and consequently, it is recommended for the computation of confidence interval for ICCs in nonlinear mixed effects models for small studies.
Directory of Open Access Journals (Sweden)
Mosbeh R. Kaloop
2016-10-01
Full Text Available The present study investigates the prediction efficiency of nonlinear system-identification models, in assessing the behavior of a coupled structure-passive vibration controller. Two system-identification models, including Nonlinear AutoRegresive with eXogenous inputs (NARX and adaptive neuro-fuzzy inference system (ANFIS, are used to model the behavior of an experimentally scaled three-story building incorporated with a tuned mass damper (TMD subjected to seismic loads. The experimental study is performed to generate the input and output data sets for training and testing the designed models. The parameters of root-mean-squared error, mean absolute error and determination coefficient statistics are used to compare the performance of the aforementioned models. A TMD controller system works efficiently to mitigate the structural vibration. The results revealed that the NARX and ANFIS models could be used to identify the response of a controlled structure. The parameters of both two time-delays of the structure response and the seismic load were proven to be effective tools in identifying the performance of the models. A comparison based on the parametric evaluation of the two methods showed that the NARX model outperforms the ANFIS model in identifying structures response.
Yi, Liang; Shi, Zhengguo; Tan, Liangcheng; Deng, Chenglong
2017-06-01
We conducted a statistical study to characterize the nonlinear response of the East Asian summer monsoon (EASM) to its potential forcing factors over the last 260 ka on orbital timescales. We find that both variation in solar insolation and global ice volume were responsible for the nonlinear forcing of orbital-scale monsoonal variations, accounting for 80% of the total variance. Specifically, EASM records with dominated precession variance exhibit a more sensitive response to changes in solar insolation during intervals of enhanced monsoon strength, but are less sensitive during intervals of reduced monsoon strength. In the case of global ice volume with 100-ka variance, this difference is not one of sensitivity but rather a difference in baseline conditions, such as the relative areas of land and sea which affected the land-sea thermal gradient. We therefore suggest that EASM records with dominated precession variance recorded the signal of a shift in the location of the Inter-tropical Convergence Zone, and the associated changes in the incidence of torrential rainfall; while for proxies with dominated 100-ka variance, it recorded changes in the land-sea thermal gradient via its effects on non-torrential precipitation.
Toutounji, Mohamad
2005-03-22
While an optical linear response function of linearly and quadratically coupled mixed quantum-classical condensed-phase systems was derived by Toutounji [J. Chem. Phys. 121, 2228 (2004)], the corresponding analytical optical line shape is derived. The respective nonlinear correlation functions are also derived. Model calculations involving photon-echo, pump-probe, and hole-burning signals of model systems with both linear and quadratic coupling are provided. Hole-burning formula of Hayes-Small is compared to that of Mukamel in mixed quantum-classical systems.
Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Ågren, Hans
2014-05-21
We generalize a density functional theory/molecular mechanics approach for heterogeneous environments with an implementation of quadratic response theory. The updated methodology allows us to address a variety of non-linear optical, magnetic and mixed properties of molecular species in complex environments, such as combined metallic, solvent and confined organic environments. Illustrating calculations of para-nitroaniline on gold surfaces and in solution reveals a number of aspects that come into play when analyzing second harmonic generation of such systems--such as surface charge flow, coupled surface-solvent dynamics and induced geometric and electronic structure effects of the adsorbate. Some ramifications of the methodology for applied studies are discussed.
Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.
A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.
Kim, K. J.; Lee, J. H.; Park, D. K.; Jung, B. G.; Han, X.(Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany); Paik, J. K.
2016-01-01
Ships and offshore platforms that operate in Arctic regions at low temperatures are likely subjected to impact loads that arise from collisions with icebergs. The aim of this paper was to examine the nonlinear impact response of steel-plated structures in an Arctic environment. In addition to material tensile tests for characterisation of the mechanical properties of polar-class high-tensile steel of grade DH36, an experimental study was undertaken in a dropped-object test facility on steel-p...
Li, Wei; Tang, Yougang; Liu, Liqin; Liu, Shuxiao; Cai, Runbo
2017-04-01
Many studies have been done on the heave-pitch unstable coupling response for a spar platform by a 2-DOF model. In fact, in addition to the heave and pitch which are in one plane, the nonlinear unstable motion will also occur in roll. From the results of the experiments, the unstable roll motion plays a dominant role in the motion of a spar platform which is much stronger than that of pitch. The objective of this paper is to study 3-DOF coupling response performance of spar platform under wave and vortex-induced force. The nonlinear coupled equations in heave, roll and pitch are established by considering time-varying wet surface and coupling. The first order steady-state response is solved by multi-scales method when the incident wave frequency approaches the heave natural frequency. Numerical integration of the motion equations has been performed to verify the first-order perturbation solution. The results are confirmed by model test. There is a saturation phenomenon associated with heave mode in 3-DOF systems and all extra energy is transferred to roll and pitch. It is observed that sub-harmonic response occurs in roll and pitch when the wave force exceeds a certain value. The energy distribution in roll and pitch is determined by the initial value and damping characteristics of roll and pitch. The energy transfers from heave to pitch and then transfers from pitch to roll. Due to the influence of the low-frequency vortex-excited force, the response of roll is more complicated than that of pitch.
Nonlinear Response of One-Dimensional Magneto-Optical Photonic Crystals
Institute of Scientific and Technical Information of China (English)
WANG Wei-Zhong
2005-01-01
@@ We numerically investigate the magneto-optical Cotton-Mouton effect in an alternating multilayer structure with a nonlinear dielectric constant. The multistability and polarization of the transmission of electromagnetic field near the edges of the stop gap are studied in detail. The resonant transmission is accompanied by solitons of intensity of the field. This investigation provides a way to select the transmission property with different polarizations since both the amplitude and the phase of the output field can be adjusted by the input power and by the magneto-optical coefficient depending on the external magnetic field.
Fuzzy predictive filtering in nonlinear economic model predictive control for demand response
DEFF Research Database (Denmark)
Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.;
2016-01-01
The performance of a model predictive controller (MPC) is highly correlated with the model's accuracy. This paper introduces an economic model predictive control (EMPC) scheme based on a nonlinear model, which uses a branch-and-bound tree search for solving the inherent non-convex optimization...... problem. Moreover, to reduce the computation time and improve the controller's performance, a fuzzy predictive filter is introduced. With the purpose of testing the developed EMPC, a simulation controlling the temperature levels of an intelligent office building (PowerFlexHouse), with and without fuzzy...
Institute of Scientific and Technical Information of China (English)
FuYiming; LiPing＇en; ZhengYufang
2004-01-01
Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional fibre reinforced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are established. By applying the finite difference method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial differential governing equations are solved. Some examples are given and the results are compared with available data.
Fluctuation theorem, nonlinear response, and the regularity of time reversal symmetry
Porta, Marcello
2010-06-01
The Gallavotti-Cohen fluctuation theorem (FT) implies an infinite set of identities between correlation functions that can be seen as a generalization of Green-Kubo formula to the nonlinear regime. As an application, we discuss a perturbative check of the FT relation through these identities for a simple Anosov reversible system; we find that the lack of differentiability of the time reversal operator implies a violation of the Gallavotti-Cohen fluctuation relation. Finally, a brief comparison to Lebowitz-Spohn FT is reported.
Metzger, Bernd; Hentschel, Mario; Nesterov, Maxim; Schumacher, Thorsten; Lippitz, Markus; Giessen, Harald
2016-04-01
We investigate the polarization-resolved linear and third-order optical response of plasmonic nanostructure arrays that consist of orthogonally coupled gold nanoantennas. By rotating the incident light polarization direction, either one of the two eigenmodes of the coupled system or a superposition of the eigenmodes can be excited. We find that when an eigenmode is driven by the external light field, the generated third-harmonic signals exhibit the same polarization direction as the fundamental field. In contrast, when a superposition of the two eigenmodes is excited, third-harmonic can efficiently be radiated at the perpendicular polarization direction. Furthermore, the interference of the coherent third-harmonic signals radiated from both nanorods proves that the phase between the two plasmonic oscillators changes in the third-harmonic signal over 3π when the laser is spectrally tuned over the resonance, rather than over π as in the case of the fundamental field. Finally, almost all details of the linear and the nonlinear spectra can be described by an anharmonic coupled oscillator model, which we discuss in detail and which provides deep insight into the linear and the nonlinear optical response of coupled plasmonic nanoantennas.
Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien
2016-08-05
In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.
Directory of Open Access Journals (Sweden)
Streck Nereu Augusto
2003-01-01
Full Text Available Temperature is a major factor that affects metabolic processes in living organisms. Thermal time has been widely used to account for the effects of temperature on crop growth and development. However, the thermal time approach has been criticized because it assumes a linear relationship between the rate of crop growth or development and temperature. The response of the rate of crop growth and development to temperature is nonlinear. The objective of this study was to develop a generalized nonlinear temperature response function for some growth and developmental parameters in kiwifruit (Actinidia deliciosa (A. Chev. C. F. Liang & A. R. Ferguson. The nonlinear function has three coefficients (the cardinal temperatures, which were 0ºC, 25ºC, and 40ºC. Data of temperature response of relative growth rate, relative leaf area growth, net photosynthesis rate, and leaf appearance rate in kiwifruit (female cv. Hayward at two light levels, which are from published research, were used as independent data for evaluating the performance of the nonlinear and the thermal time functions. The results showed that the generalized nonlinear response function is better than the thermal time approach, and the temperature response of several growth and developmental parameters in kiwifruit can be described with the same response function.
Institute of Scientific and Technical Information of China (English)
Long Xiaohong; Li Li
2004-01-01
The practical design of the cable-stayed bridge of the 3rd Macao-Taipa bridge is investigated by the finite element analysis program ANSYS, and 3-D elements BEAM188 and BEAM4 are adopted to create a dynamic calculation model. In order to analyze the material nonlinear seismic response of the cable-stayed bridge, the nonlinear behaviors of the ductile plastic hinges of the bridge towers are taken into account by employing the nonlinear rotational spring element COMBIN40. To simulate a major earthquake, three earthquake records were chosen using a wave-choosing program and input into the bridge structure along longitudinal and transversal directions. Comparisons of the linear and nonlinear seismic responses of the cable-stayed bridge are performed. In addition, a study of TMD primary control is carried out using element MASS21 and element COMBIN14, and it is indicated that the effects of mitigation monitoring are evident.
Energy Technology Data Exchange (ETDEWEB)
Awrahman, Zmnako A., E-mail: zmnako.awrahman@uj.edu.pl [Institute of Environmental Science, Jagiellonian University, Krakow 30-348 (Poland); Rainbow, Philip S.; Smith, Brian D. [Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Khan, Farhan R. [Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Department of Environmental, Social and Spatial Change (ENSPAC), Roskilde University, Universitetsvej 1, PO Box 260, Roskilde DK-4000 (Denmark); Bury, Nicolas R. [Nutritional Sciences Division, King’s College London, Franklin–Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Fialkowski, Wojciech [Institute of Environmental Science, Jagiellonian University, Krakow 30-348 (Poland)
2015-04-15
Highlights: • Biodynamic models were used to predict steady state As and Ag concentrations. • Uptake and efflux rate constants for As and Ag were measured in caddisfly species. • Dietborne As was the predominant exposure route in two caddisfly species. • Diet was the only exposure route of bioaccumulated Ag in the investigated caddisflies. - Abstract: Biodynamic modeling was used to investigate the uptake and bioaccumulation of arsenic and silver from water and food by two Hydropsychid caddisfly larvae: Hydropsyche siltalai and Hydropsyche pellucidula. Radiotracer techniques determined the uptake rate constants of arsenic and silver from water, and assimilation efficiencies from food, and their subsequent loss rate constants after accumulation from either route. The uptake rate constants (±SE) of As and Ag from solution were 0.021 ± 0.005 and 0.350 ± 0.049 L g{sup −1} day{sup −1}, respectively, for H. siltalai, and 0.435 ± 0.054 and 0.277 ± 0.021 L g{sup −1} day{sup −1}, respectively, for H. pellucidula in moderately hard synthetic water at 10 °C. The assimilation efficiencies (±SE) of As and Ag from radiolabeled ingested food were 46.0 ± 7.7% and 75.7 ± 3.6%, respectively, for H. siltalai, and 61.0 ± 4.2% and 52.6 ± 8.6%, respectively, for H. pellucidula. Ag, but not As, AEs were significantly different between species. The AE of Ag differed from the AE of As in H. siltalai, but not in H. pellucidula. Mean efflux rate constants after accumulation of metals from solution or food ranged from 0.039 to 0.190 day{sup −1}. The efflux rate constants of As and Ag accumulated from solution were significantly lower than those of As and Ag assimilated from ingested food in both species. Experimentally derived k{sub u} and k{sub e} values were then used to predict As and Ag tissue concentrations in hydropsychids collected from 13 UK sites, including metal-contaminated streams in Cornwall. Arsenic and silver concentrations in environmental water
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center
Energy Technology Data Exchange (ETDEWEB)
Hoyos, Jaime H. [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Correa, J.D., E-mail: jcorrea@udem.edu.co [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2016-03-01
We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.
Physical origin of third order non-linear optical response of porphyrin nanorods
Energy Technology Data Exchange (ETDEWEB)
Mongwaketsi, N., E-mail: nanky@tlabs.ac.za [NANOAFNET, MRD- iThemba LABS, 1 Old Faure Road, Somerset West 7129 (South Africa); CSIR Biosciences, P.O. Box 395, Pretoria 0001 (South Africa); Khamlich, S. [NANOAFNET, MRD- iThemba LABS, 1 Old Faure Road, Somerset West 7129 (South Africa); Pranaitis, M. [LUNAM Universite, Universite d' Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 ANGERS cedex (France); Sahraoui, B., E-mail: bouchta.sahraoui@univ-angers.fr [LUNAM Universite, Universite d' Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 ANGERS cedex (France); Khammar, F. [Universite Cherif Messadia, BP: 1553, Souk-Ahras 41000 (Algeria); Garab, G. [Institute of Plant Biology, Biological Research Centre, P.O. Box 521, Szeged H-6701 (Hungary); Sparrow, R. [CSIR Biosciences, P.O. Box 395, Pretoria 0001 (South Africa); Maaza, M. [NANOAFNET, MRD- iThemba LABS, 1 Old Faure Road, Somerset West 7129 (South Africa)
2012-06-15
The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H{sub 4}TPPS{sub 4}]{sup 2-} and [SnTPyP]{sup 2+} mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: Black-Right-Pointing-Pointer We synthesized porphyrin nanorods by self assembly and molecular recognition method. Black-Right-Pointing-Pointer TEM images confirmed solid cylindrical shapes. Black-Right-Pointing-Pointer UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. Black-Right-Pointing-Pointer The enhanced third-order nonlinearities were observed.
Monolayer-molybdenum-disulfide-based nano-optomechanical transistor and tunable nonlinear responses
Huajun, Chen; Changzhao, Chen; Yang, Li; Xianwen, Fang
2016-11-01
Atomically thin two-dimensional semiconductor nanomaterials have attained considerable attention currently. Here, we present a nano-optomechanical system based on a suspended monolayer molybdenum disulfide (MoS2). The linear and nonlinear coherent optical properties of this system, and the phenomenon of phonon-induced transparency are demonstrated. The transmission of the probe field can be manipulated by the power of a second ‘gating’ (pump) field, which indicates a promising candidate for an optical transistor. We further study the nonlinear effect of the system, and the optical Kerr effect of the monolayer MoS2 resonator can be regulated under different parameter regimes. This scheme proposed here may indicate potential chip-scale applications of monolayer MoS2 resonator in quantum information with the currently popular pump-probe technology. Project supported by the National Natural Science Foundation of China (Nos. 11404005, 51502005, 61272153, 61572035), the Key Foundation for Young Talents in College of Anhui Province (No. 2013SQRL026ZD), and the Foundation for PhD in Anhui University of Science and Technology.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jianxin; Zhang, Zhenjun [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Tong, Peiqing, E-mail: pqtong@njnu.edu.cn [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023 (China)
2013-07-15
We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth.
Bhushan, B.; Kundu, T.; Singh, B. P.
2014-02-01
We have synthesized, characterized and studied the third-order nonlinear optical properties of polydiacetylene (PDA) nanovesicles decorated by silver nanoparticles. The second molecular hyperpolarizability γ (- ω ; ω , - ω , ω) of the sample was investigated by the antiresonant ring interferometric nonlinear spectroscopic (ARINS) technique using femtosecond modelocked Ti:sapphire laser in the spectral range of 720-820 nm. The observed dispersion of γ has been explained in the framework of three-essential states model involving the ground state, a one-photon excited state and a two-photon excited state. The energy of two-photon state, transition dipole moments and line width of the transitions have been estimated. Our investigation reveals that the spectral dispersion characteristic of γ for coated PDA nanovesicles is qualitatively similar to that observed for uncoated PDA nanovesicles but bears no resemblance to that observed in silver nanoparticles. The presence of silver nanoparticles increases the γ values of coated nanovesicles slightly as compared to that of uncoated nanovesicles, suggesting a definite but weak coupling between free electrons of metal nanoparticles and π -electrons of polymer in the composite system.
Menezes, J. W. M.; Fraga, W. B.; Lima, F. T.; Guimarães, G. F.; Ferreira, A. C.; Lyra, M. L.; Sombra, A. S. B.
2011-06-01
Recently, much attention has been given to the influence of the relaxation process of the non-linear response, because the usual assumption of instantaneous non-linear response fails for ultra-short pulses, and additional contributions coming from non-linear dispersion and delayed non-linearity have to be taken into account. This article presents a numerical analysis of the symmetric planar and asymmetric planar three-core non-linear directional fiber couplers operating with a soliton pulse, where effects of both delayed and instantaneous non-linear Kerr responses are analyzed for implementation of an all-optical half-adder. To implement this all-optical half-adder, eight configurations were analyzed for the non-linear directional fiber coupler, with two symmetric and six asymmetric configurations. The half-adder is the key building block for many digital processing functions, such as shift register, binary counter, and serial parallel data converters. The optical coupler is an important component for applications in optical-fiber telecommunication systems and all integrated optical circuit because of its very high switching speeds. In this numerical simulation, the symmetric/asymmetric planar presents a structure with three cores in a parallel equidistant arrangement, three logical inputs, and two output energy. To prove the effectiveness of the theoretical model for generation of the all-optical half-adder, the best phase to be applied to the control pulse was sought, and a study was done of the extinction ratio level as a function of the Δ > parameter, the normalized time duration, and the Sum and Carry outputs of the (symmetric planar/asymmetric planar) non-linear directional fiber coupler. In this article, the interest is in transmission characteristics, extinction ratio level, normalized time duration, and pulse evolution along the non-linear directional fiber coupler. To compare the performance of the all-optical half-adders, the figure of merit of the
Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M
2016-06-01
Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.
Bochet, Esther; García-Fayos, Patricio; José Molina, Maria; Moreno de las Heras, Mariano; Espigares, Tíscar; Nicolau, Jose Manuel; Monleon, Vicente
2017-04-01
Theoretical models predict that drylands are particularly prone to suffer critical transitions with abrupt non-linear changes in their structure and functions as a result of the existing complex interactions between climatic fluctuations and human disturbances. However, so far, few studies provide empirical data to validate these models. We aim at determining how holm oak (Quercus ilex) woodlands undergo changes in their functions in response to human disturbance along an aridity gradient (from semi-arid to sub-humid conditions), in eastern Spain. For that purpose, we used (a) remote-sensing estimations of precipitation-use-efficiency (PUE) from enhanced vegetation index (EVI) observations performed in 231x231 m plots of the Moderate Resolution Imaging Spectroradiometer (MODIS); (b) biological and chemical soil parameter determinations (extracellular soil enzyme activity, soil respiration, nutrient cycling processes) from soil sampled in the same plots; (c) vegetation parameter determinations (ratio of functional groups) from vegetation surveys performed in the same plots. We analyzed and compared the shape of the functional change (in terms of PUE and soil and vegetation parameters) in response to human disturbance intensity for our holm oak sites along the aridity gradient. Overall, our results evidenced important differences in the shape of the functional change in response to human disturbance between climatic conditions. Semi-arid areas experienced a more accelerated non-linear decrease with an increasing disturbance intensity than sub-humid ones. The proportion of functional groups (herbaceous vs. woody cover) played a relevant role in the shape of the functional response of the holm oak sites to human disturbance.
Nonlinear response of an ultracompact waveguide Fabry-Pérot resonator
Sederberg, S.; Elezzabi, A. Y.
2013-01-01
We experimentally demonstrate active tuning of an ultracompact silicon-on-insulator trapezoid Fabry-Pérot resonator having a volume of 5.31 μm3. We show that the ultrafast nonlinear dynamics arising from two-photon and free-carrier absorption can be used to achieve a signal attenuation of 66% in the device, and the changes in the steady-state resonant properties of the device resulting from the thermo-optic effect induce a large red-shift in its resonance of Δλ = 7.57 nm. It is envisaged that the insight gained from this class of device will be valuable in the integrated optics community as ultrafast modulators, and switches are designed to occupy smaller volumes.
The Nonlinear Model of the Response of Airglow to Gravity Waves
Institute of Scientific and Technical Information of China (English)
J. Y. Xu; H. Gao; A.V. Mikhalev
2005-01-01
In this paper, we develope a timodependent, nonlinear, photochemical-dynamical 2-D model which is composed of 3 models: dynamical gravity wave model, middle atmospheric photochemical model, and airglow layer photochemical model. We use the model to study the effect of the gravity wave propagation on the airglow layer. The comparison between the effects of the different wavelength gravity wave on the airglow emission distributions is made. When the vertical wavelength of the gravity wave is close to or is shorter than the thickness of the airglow layer, the gravity wave can make complex structure of the airglow layer, such as the double and multi-peak structures of the airglow layer. However, the gravity wave that has long vertical wavelength can make large scale perturbation of the airglow emission distribution.
Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications
Teng, Xu-Dong; Guo, Xia-Sheng; Tu, Juan; Zhang, Dong
2016-12-01
Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry; (ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size; (iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and (iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures. Projects supported by the National Natural Science Foundation of China (Grant Nos. 81127901, 81227004, 11374155, 11274170, 11274176, 11474001, 11474161, 11474166, and 11674173), the National High-Technology Research and Development Program, China (Grant No. 2012AA022702), and Qing Lan Project of Jiangsu Province, China.
Nonlinear response and two stable electroconducting states in transparent plasticized PVC films
Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtob, V. I.
2010-10-01
The electric conductivity of transparent plasticized poly(vinyl chloride) (PVC) films with thicknesses about 30-50 μm has been studied in electric fields with strengths significantly below the breakdown level. It is established that the PVC films exhibit spontaneous reversible transitions between two stable states—with high and relatively low conductivities, in which the bulk resistivity amounts to ˜103 and 106 Ω m, respectively. Relaxation current-voltage characteristics have been measured in a continuous regime, which allowed the Debye relaxation processes to be taken into consideration and effects related to the nonlinearity and transitions between indicated states to be separated. A regime with deterministic switching between the two conducting states has been observed. A simple qualitative model that describes the anomalous character of conductivity in polymer films is proposed.
Modeling nonlinear responses of DOC transport in boreal catchments in Sweden
Kasurinen, Ville; Alfredsen, Knut; Ojala, Anne; Pumpanen, Jukka; Weyhenmeyer, Gesa A.; Futter, Martyn N.; Laudon, Hjalmar; Berninger, Frank
2016-07-01
Stream water dissolved organic carbon (DOC) concentrations display high spatial and temporal variation in boreal catchments. Understanding and predicting these patterns is a challenge with great implications for water quality projections and carbon balance estimates. Although several biogeochemical models have been used to estimate stream water DOC dynamics, model biases common during both rain and snow melt-driven events. The parsimonious DOC-model, K-DOC, with 10 calibrated parameters, uses a nonlinear discharge and catchment water storage relationship including soil temperature dependencies of DOC release and consumption. K-DOC was used to estimate the stream water DOC concentrations over 5 years for eighteen nested boreal catchments having total area of 68 km2 (varying from 0.04 to 67.9 km2). The model successfully simulated DOC concentrations during base flow conditions, as well as, hydrological events in catchments dominated by organic and mineral soils reaching NSEs from 0.46 to 0.76. Our semimechanistic model was parsimonious enough to have all parameters estimated using statistical methods. We did not find any clear differences between forest and mire-dominated catchments that could be explained by soil type or tree species composition. However, parameters controlling slow release and consumption of DOC from soil water behaved differently for small headwater catchments (less than 2 km2) than for those that integrate larger areas of different ecosystem types (10-68 km2). Our results emphasize that it is important to account for nonlinear dependencies of both, soil temperature, and catchment water storage, when simulating DOC dynamics of boreal catchments.
Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.
2017-02-01
Metal organic complexes, diaceto bis benzimidazole cobalt(II) and diaceto bis benzimidazole copper(II), are synthesized by a simple chemical route. The synthesized powders are doped in PMMA with 1, 3, 5 wt% and deposited as free standing films of thickness ∼1 μm. For theoretical simulation, metal organic complex (MOC) embedded into the PMMA matrix is subjected to polarizability and hyperpolarizability calculations using the PM6 algorithm in MOPAC2012 package. It is found that the minimum interaction distance between PMMA and MOC is about 34 nm and does not vary with respect to the dopant. The copper complex shows higher interaction energy with the polymer matrix than the cobalt complex. Time dependent Hartree Fock approach is used to calculate the α, β and γ values for static, 0.25 and 0.5 eV energies; the cobalt complex shows higher polarizability and hyperpolarizability than the copper complex. Experimentally, the optical absorption, thermo-optic coefficient, nonlinear absorption coefficient and nonlinear refractive index of the samples are determined. The thermo-optic coefficients of the samples are seen to increase with increasing dopant concentration. From open aperture Z-scan studies the films are found to exhibit reverse saturable absorption behaviour, and from the closed aperture Z-scan all samples are found to exhibit self-focusing effects. The calculated third order susceptibility is in the order of 10‑5 esu. The optical limiting properties are studied at 650 nm using a 20 mW laser and all the samples are found to exhibit good optical limiting in the operating wavelength.
Non-linear analysis of body responses to functional electrical stimulation on hemiplegic subjects.
Yu, W W; Acharya, U R; Lim, T C; Low, H W
2009-08-01
Functional electrical stimulation (FES) is a method of applying low-level electrical currents to restore or improve body functions lost through nervous system impairment. FES is applied to peripheral nerves that control specific muscles or muscle groups. Application of advanced signal computing techniques to the medical field has helped to achieve practical solutions to the health care problems accurately. The physiological signals are essentially non-stationary and may contain indicators of current disease, or even warnings about impending diseases. These indicators may be present at all times or may occur at random on the timescale. However, to study and pinpoint these subtle changes in the voluminous data collected over several hours is tedious. These signals, e.g. walking-related accelerometer signals, are not simply linear and involve non-linear contributions. Hence, non-linear signal-processing methods may be useful to extract the hidden complexities of the signal and to aid physicians in their diagnosis. In this work, a young female subject with major neuromuscular dysfunction of the left lower limb, which resulted in an asymmetric hemiplegic gait, participated in a series of FES-assisted walking experiments. Two three-axis accelerometers were attached to her left and right ankles and their corresponding signals were recorded during FES-assisted walking. The accelerometer signals were studied in three directions using the Hurst exponent H, the fractal dimension (FD), the phase space plot, and recurrence plots (RPs). The results showed that the H and FD values increase with increasing FES, indicating more synchronized variability due to FES for the left leg (paralysed leg). However, the variation in the normal right leg is more chaotic on FES.
Simon, Nicholas W; Moghaddam, Bita
2017-01-01
Ongoing development of the dopamine system during adolescence may provide a partial mechanism for behavioral and psychiatric vulnerabilities. Despite early evidence for a hyperactive adolescent dopaminergic system, recent data suggest that adolescent dopamine may be functionally hypoactive compared to in adults. While this distinction has been established in response to dopaminergic drugs and natural rewards, little is known about age-related differences in cognitive efficacy of dopaminergic drugs. Using a recently established Cued Response Inhibition Task, we tested the effects of acute systemic methylphenidate, commonly known as Ritalin, on response inhibition and response initiation in adolescent and adults rats. First, we replicated previous data that adolescents are able to inhibit a response to a cue on par with adults, but are slower to produce a rewarded response after a stop cue. Next, we observed that methylphenidate modulated response inhibition in adult rats, with low dose (0.3mg/kg) improving inhibition, and high dose (3mg/kg) impairing performance. This dose-response pattern is commonly observed with psychostimulant cognitive modulation. In adolescents, however, methylphenidate had no effect on response inhibition at any dose. Latency of response initiation after the stop cue was not affected by methylphenidate in either adult or adolescent rats. These data establish that dose-response of a commonly prescribed psychostimulant medication is different in adolescents and adults. They further demonstrate that healthy adolescent response inhibition is not as sensitive to psychostimulants as in adults, supporting the idea that the dopamine system is hypoactive in adolescence. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Norden E.
1999-01-01
A new method for analyzing nonlinear and nonstationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum, Example of application of this method to earthquake and building response will be given. The results indicate those low frequency components, totally missed by the Fourier analysis, are clearly identified by the new method. Comparisons with Wavelet and window Fourier analysis show the new method offers much better temporal and frequency resolutions.
Sato, M; Imai, S; Fujita, N; Shi, W; Takao, Y; Sada, Y; Hubbard, B E; Ilic, B; Sievers, A J
2013-01-01
An intrinsic localized mode (ILM) represents a localized vibrational excitation in a nonlinear lattice. Such a mode will stay in resonance as the driver frequency is changed adiabatically until a bifurcation point is reached, at which point the ILM switches and disappears. The dynamics behind switching in such a many body system is examined here through experimental measurements and numerical simulations. Linear response spectra of a driven micromechanical array containing an ILM were measured in the frequency region between two fundamentally different kinds of bifurcation points that separate the large amplitude ILM state from the two low amplitude vibrational states. Just as a natural frequency can be associated with a driven harmonic oscillator, a similar natural frequency has been found for a driven ILM via the beat frequency between it and a weak, tunable probe. This finding has been confirmed using numerical simulations. The behavior of this nonlinear natural frequency plays important but different roles as the two bifurcation points are approached. At the upper transition its frequency coalesces with the driver and the resulting bifurcation is very similar to the saddle-node bifurcation of a single driven Duffing oscillator, which is treated in an Appendix. The lower transition occurs when the four-wave mixing partner of the natural frequency of the ILM intersects the topmost extended band mode of the same symmetry. The properties of linear local modes associated with the driven ILM are also identified experimentally for the first time and numerically but play no role in these transitions.
Sato, M.; Imai, S.; Fujita, N.; Shi, W.; Takao, Y.; Sada, Y.; Hubbard, B. E.; Ilic, B.; Sievers, A. J.
2013-01-01
An intrinsic localized mode (ILM) represents a localized vibrational excitation in a nonlinear lattice. Such a mode will stay in resonance as the driver frequency is changed adiabatically until a bifurcation point is reached, at which point the ILM switches and disappears. The dynamics behind switching in such a many body system is examined here through experimental measurements and numerical simulations. Linear response spectra of a driven micromechanical array containing an ILM were measured in the frequency region between two fundamentally different kinds of bifurcation points that separate the large amplitude ILM state from the two low amplitude vibrational states. Just as a natural frequency can be associated with a driven harmonic oscillator, a similar natural frequency has been found for a driven ILM via the beat frequency between it and a weak, tunable probe. This finding has been confirmed using numerical simulations. The behavior of this nonlinear natural frequency plays important but different roles as the two bifurcation points are approached. At the upper transition its frequency coalesces with the driver and the resulting bifurcation is very similar to the saddle-node bifurcation of a single driven Duffing oscillator, which is treated in an Appendix. The lower transition occurs when the four-wave mixing partner of the natural frequency of the ILM intersects the topmost extended band mode of the same symmetry. The properties of linear local modes associated with the driven ILM are also identified experimentally for the first time and numerically but play no role in these transitions.
Directory of Open Access Journals (Sweden)
Wu-Jun Ma
2012-11-01
Full Text Available A comparative proteomic analysis of drought-responsive proteins during grain development of two wheat varieties Kauz (strong resistance to drought stress and Janz (sensitive to drought stress was performed by using linear and nonlinear 2-DE and MALDI-TOF mass spectrometry technologies. Results revealed that the nonlinear 2-DE had much higher resolution than the linear 2-DE. A total of 153 differentially expressed protein spots were detected by both 2-DE maps, of which 122 protein spots were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified differential proteins were mainly involved in carbohydrate metabolism (26%, detoxification and defense (23%, and storage proteins (17%. Some key proteins demonstrated significantly different expression patterns between the two varieties. In particular, catalase isozyme 1, WD40 repeat protein, LEA and alpha-amylase inhibitors displayed an upregulated expression pattern in Kauz, whereas they were downregulated or unchanged in Janz. Small and large subunit ADP glucose pyrophosphorylase, ascorbate peroxidase and G beta-like protein were all downregulated under drought stress in Janz, but had no expression changes in Kauz. Sucrose synthase and triticin precursor showed an upregulated expression pattern under water deficits in both varieties, but their upregulation levels were much higher in Kauz than in Janz. These differentially expressed proteins could be related to the biochemical pathways for stronger drought resistance of Kauz.
Semenov, V. A.; Latif, M.
2015-05-01
The early 21st century was marked by several severe winters over Central Eurasia linked to a blocking anti-cyclone centered south of the Barents Sea. Severe winters in Central Eurasia were frequent in the 1960s when Arctic sea ice cover was anomalously large, and rare in the 1990s featuring considerably less sea ice cover; the 1960s being characterized by a low, the 1990s by a high phase of the North Atlantic Oscillation, the major driver of surface climate variability in Central Eurasia. We performed ensemble simulations with an atmospheric general circulation model using a set of multi-year Arctic sea ice climatologies corresponding to different periods during 1966-2012. The atmospheric response to the strongly reduced sea ice cover of 2005-2012 exhibits a statistically significant anti-cyclonic surface pressure anomaly which is similar to that observed. A similar response is found when the strongly positive sea ice cover anomaly of 1966-1969 drives the model. Basically no significant atmospheric circulation response was simulated when the model was forced by the sea ice cover anomaly of 1990-1995. The results suggest that sea ice cover reduction, through a changed atmospheric circulation, considerably contributed to the recent anomalously cold winters in Central Eurasia. Further, a nonlinear atmospheric circulation response to shrinking sea ice cover is suggested that depends on the background sea ice cover.
Stevanella, Marco; Votta, Emiliano; Redaelli, Alberto
2009-12-01
Finite element modeling represents an established method for the comprehension of the mitral function and for the simulation of interesting clinical scenarios. However, current models still do not include all the key aspects of the real system. We implemented a new structural finite element model that considers (i) an accurate morphological description of the valve, (ii) a description of the tissues' mechanical properties that accounts for anisotropy and nonlinearity, and (iii) dynamic boundary conditions that mimic annulus and papillary muscles' contraction. The influence of such contraction on valve biomechanics was assessed by comparing the computed results with the ones obtained through an auxiliary model with fixed annulus and papillary muscles. At the systolic peak, the leaflets' maximum principal stress contour showed peak values in the anterior leaflet at the strut chordae insertion zone (300 kPa) and near the annulus (200-250 kPa), while much lower values were detected in the posterior leaflet. Both leaflets underwent larger tensile strains in the longitudinal direction, while in the circumferential one the anterior leaflet experienced nominal tensile strains up to 18% and the posterior one experienced compressive strains up to 23% associated with the folding of commissures and paracommissures, consistently with tissue redundancy. The force exerted by papillary muscles at the systolic peak was equal to 4.11 N, mainly borne by marginal chordae (76% of the force). Local reaction forces up to 45 mN were calculated on the annulus, leading to tensions of 89 N/m and 54 N/m for its anterior and posterior tracts, respectively. The comparison with the results of the auxiliary model showed that annular contraction mainly affects the leaflets' circumferential strains. When it was suppressed, no more compressive strains could be observed and peak strain values were located in the belly of the anterior leaflet. Computational results agree to a great extent with
Institute of Scientific and Technical Information of China (English)
黄冬梅; 徐伟; 谢文贤; 韩群
2015-01-01
In this paper, the principal resonance response of a stochastically driven elastic impact (EI) system with time-delayed cubic velocity feedback is investigated. Firstly, based on the method of multiple scales, the steady-state response and its dynamic stability are analyzed in deterministic and stochastic cases, respectively. It is shown that for the case of the multi-valued response with the frequency island phenomenon, only the smallest amplitude of the steady-state response is stable under a certain time delay, which is different from the case of the traditional frequency response. Then, a design criterion is proposed to suppress the jump phenomenon, which is induced by the saddle-node bifurcation. The effects of the feedback parameters on the steady-state responses, as well as the size, shape, and location of stability regions are studied. Results show that the system responses and the stability boundaries are highly dependent on these parameters. Furthermore, with the purpose of suppressing the amplitude peak and governing the resonance stability, appropriate feedback gain and time delay are derived.
Institute of Scientific and Technical Information of China (English)
LI Jia-Hua; LIU Ji-Bing; LUO Jin-Ming; XIE Xiao-Tao
2006-01-01
We theoretically investigate the response of nonlinear absorption and population dynamics in optically dense media of four-level atoms driven by a single-mode probe laser, via taking the density-dependent near dipoledipole (NDD) interactions into consideration. The influence of the NDD effects on the absorption of the probe field and population dynamics is predicted via numerical calculations. It is shown that the NDD effects can reduce gradually to transient absorption with the increase of the strengths of the NDD interactions, and transient amplification can be achieved. In the steady-state limit, the probe field exhibits transparency for strong NDD interactions. Alternatively, the population entirely remains at the ground state due to the NDD effects.
Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.
2012-01-01
Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.
Monthus, Cécile
2004-02-01
We study the dynamics in the one-dimensional disordered trap model with a broad distribution of trapping times p(tau) approximately 1/tau(1+mu), when an external force is applied from the very beginning at t=0, or only after a waiting time t(w), in the linear as well as in the nonlinear response regime. Using a real-space renormalization procedure that becomes exact in the limit of strong disorder mu-->0, we obtain explicit results for many observables, such as the diffusion front, the mean position, the thermal width, the localization parameters and the two-particle correlation function. In particular, the scaling functions for these observables give access to the complete interpolation between the unbiased case and the directed case. Finally, we discuss in detail the various regimes that exist for the average position in terms of the two times and the external field.
Photomultiplier nonlinear response in time-domain laser-induced luminescence spectroscopy
Directory of Open Access Journals (Sweden)
Leandro José Bossy Schip
2007-02-01
Full Text Available A new procedure to find the limiting range of the photomultiplier linear response of a low-cost, digital oscilloscope-based time-resolved laser-induced luminescence spectrometer (TRLS, is presented. A systematic investigation on the instrument response function with different signal input terminations, and the relationship between the luminescence intensity reaching the photomultiplier and the measured decay time are described. These investigations establish that setting the maximum intensity of the luminescence signal below 0.3V guarantees, for signal input terminations equal or higher than 99.7 ohm, a linear photomultiplier response.
Energy Technology Data Exchange (ETDEWEB)
Martínez-Orozco, J.C. [Unidad Académica de Física. Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060. Zacatecas, Zac. (Mexico); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-11-01
The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size.
Remigius, W. Dheelibun; Sarkar, Sunetra; Gupta, Sayan
2017-03-01
Use of heavy gases in centrifugal compressors for enhanced oil extraction have made the impellers susceptible to failures through acousto-elastic instabilities. This study focusses on understanding the dynamical behavior of such systems by considering the effects of the bounded fluid housed in a casing on a rotating disc. First, a mathematical model is developed that incorporates the interaction between the rotating impeller - modelled as a flexible disc - and the bounded compressible fluid medium in which it is immersed. The nonlinear effects arising due to large deformations of the disc have been included in the formulation so as to capture the post flutter behavior. A bifurcation analysis is carried out with the disc rotational speed as the bifurcation parameter to investigate the dynamical behavior of the coupled system and estimate the stability boundaries. Parametric studies reveal that the relative strengths of the various dissipation mechanisms in the coupled system play a significant role that affect the bifurcation route and the post flutter behavior in the acousto-elastic system.
The linear and non-linear magnetic response of a tri-uranium single molecule magnet
Shivaram, B. S.; Colineau, E.; Griveau, J.; Kumar, P.; Celli, V.
2017-03-01
We report here low temperature magnetization isotherms for the single molecule magnet, (UO2-L)3. By analyzing the low temperature magnetization in terms of M = χ 1 B + χ 3 B 3 we extract the linear susceptibility χ 1 and the leading order nonlinear susceptibility χ 3. We find that χ 1 exhibits a peak at a temperature of T 1 = 10.4 K with χ 3 also exhibiting a peak but at a reduced temperature T 3 = 5 K. At the lowest temperatures the isotherms exhibit a critical field B c = 11.5 T marked by a clear point of inflection. A minimal Hamiltonian employing S = 1 (pseudo) spins with only a single energy scale (successfully used to model the behavior of bulk f-electron metamagnets) is shown to provide a good description of the observed linear scaling between T 1, T 3 and B c. We further show that a Heisenberg Hamiltonian previously employed by Carretta et al (2013 J. Phys.: Condens. Matter 25 486001) to model this single molecule magnet gives formulas for the angle averaged susceptibilities (in the Ising limit) very similar to those of the minimal model.
Directory of Open Access Journals (Sweden)
Lebedeva Galina
2012-11-01
Full Text Available Abstract Background Estrogen receptors alpha (ER are implicated in many types of female cancers, and are the common target for anti-cancer therapy using selective estrogen receptor modulators (SERMs, such as tamoxifen. However, cell-type specific and patient-to-patient variability in response to SERMs (from suppression to stimulation of cancer growth, as well as frequent emergence of drug resistance, represents a serious problem. The molecular processes behind mixed effects of SERMs remain poorly understood, and this strongly motivates application of systems approaches. In this work, we aimed to establish a mathematical model of ER-dependent gene expression to explore potential mechanisms underlying the variable actions of SERMs. Results We developed an equilibrium model of ER binding with 17β-estradiol, tamoxifen and DNA, and linked it to a simple ODE model of ER-induced gene expression. The model was parameterised on the broad range of literature available experimental data, and provided a plausible mechanistic explanation for the dual agonism/antagonism action of tamoxifen in the reference cell line used for model calibration. To extend our conclusions to other cell types we ran global sensitivity analysis and explored model behaviour in the wide range of biologically plausible parameter values, including those found in cancer cells. Our findings suggest that transcriptional response to tamoxifen is controlled in a complex non-linear way by several key parameters, including ER expression level, hormone concentration, amount of ER-responsive genes and the capacity of ER-tamoxifen complexes to stimulate transcription (e.g. by recruiting co-regulators of transcription. The model revealed non-monotonic dependence of ER-induced transcriptional response on the expression level of ER, that was confirmed experimentally in four variants of the MCF-7 breast cancer cell line. Conclusions We established a minimal mechanistic model of ER-dependent gene
Frequency response of the Loschmidt echo decay in an open driven nonlinear oscillator
Zhang, Shi-Hui; Yan, Zhan-Yuan
2015-11-01
The decay of the Loschmidt echo and its relation to the frequency response of the underlying classical dynamics are investigated in an open Duffing system by means of the Wigner function. The initial Wigner function of the system is Gaussian and centered at a phase point (x 0, p 0). For different (x 0, p 0), significant peaks are observed in the frequency response curves of the Loschmidt echo decay during the evolution of the Wigner function. Furthermore, there is good correspondence between the frequency response curves of the Loschmidt echo decay and the underlying classical dynamics. This can be attributed to the increase of the fringes of the Wigner function by the external driving force, which can be revealed by the frequency response of the underlying classical dynamics.
The impact of nonlinear functional responses on the long-term evolution of food web structure.
Drossel, Barbara; McKane, Alan J; Quince, Christopher
2004-08-21
We investigate the long-term web structure emerging in evolutionary food web models when different types of functional responses are used. We find that large and complex webs with several trophic layers arise only if the population dynamics is such that it allows predators to focus on their best prey species. This can be achieved using modified Lotka-Volterra or Holling/Beddington functional responses with effective couplings that depend on the predator's efficiency at exploiting the prey, or a ratio-dependent functional response with adaptive foraging. In contrast, if standard Lotka-Volterra or Holling/Beddington functional responses are used, long-term evolution generates webs with almost all species being basal, and with additionally many links between these species. Interestingly, in all cases studied, a large proportion of weak links result naturally from the evolution of the food webs.
Nonlinear viscoelastic response of highly filled elastomers under multiaxial finite deformation
Peng, Steven T. J.; Landel, Robert F.
1990-01-01
A biaxial tester was used to obtain precise biaxial stress responses of highly filled, high strain capability elastomers. Stress-relaxation experiments show that the time-dependent part of the relaxation response can be reasonably approximated by a function which is strain and biaxiality independent. Thus, isochronal data from the stress-relaxation curves can be used to determine the stored energy density function. The complex behavior of the elastomers under biaxial deformation may be caused by dewetting.
Directory of Open Access Journals (Sweden)
Elvyra JARIENĖ
2015-12-01
Full Text Available Biodynamic preparations 500 and 501 are plant strengthening agents of biodynamic agriculture method, prepared of manure and powdered quartz. The objective of the present study was to determine effects of biodynamic (BD preparations 500 and 501 on the quality indices and antioxidant compounds content in the tubers of coloured flesh potatoes. The experiment included two factors: potato cultivar and treatment with BD preparations as field sprays. The experiment was carried out in four replications, in a randomly design. Results showed that application of BD preparations did not influence significantly the contents of dry matter, crude fibre and crude ash in all tested cultivars. Separately used BD preparation 500 increased content of total anthocyanins in tubers of ‘Vitelotte’ and ‘Red Emmalie’ and leucoanthocyanins content in ‘Blue Congo’, but decreased the content of total phenolics in all cultivars. Treatment with BD preparation 501 had significant effect on the contents of total phenolics and total anthocyanins in all cultivars. However, treatment with BD preparation 500 in combination with BD preparation 501 substantially increased the contents of total phenolics and total anthocyanins in all cultivars. Tubers of ‘Vitelotte’ with dark-purple flesh contained significantly more antioxidant compounds than the light-purple and red.
Directory of Open Access Journals (Sweden)
Wei Zhang
2015-01-01
Full Text Available At the request of the Author, the following article Zhang, W, Hou, W, Hu, Ping and Ma, Z (2014 The Nonlinear Compressive Response and Deformation of an Auxetic Cellular Structure under In-Plane Loading Advances in Mechanical Engineering published 17 November 2014. doi: 10.1155/2014/214681has been retracted due to errors discovered by the authors. On Page 3, the definition of component force in Equation 4 is incorrect. (2 On Page 4, the definition of component force in Equation 11 is incorrect. Moreover this equation should not have parameterM(length of cell wall, because a mistake was made in the process of calculation. Because of the above reasons, the conclusion obtained from the mechanical model is incorrect and should instead state that the Elastic Buckling and Plastic Collapse are both yield modes of this structure (3 On Page 5, the FEA model used in this article is not appropriate, because the deformation of single cell is not homogeneous, which means that the geometrical non-linear effect on single cell model is greater. So in the actual whole structure we may not obtain the results that were described in Page 6 Paragraph 2. (4 The data in figures 8 (page 6 and 9 (page 7 is incorrect and the values of effective Young’s modulus and plateau stress are much larger than reasonable values. The definition of effective stress is wrong in the FEA model, which means the effective stress should be calculated by the total width of cell instead of length of horizontal cell wall. For example, in Figure 8, the plateau stress can reach 140Mpa, this is not reasonable because there are many holes in this cellular structure, and its mechanical properties should be much lower than material properties of cell wall. The reasonable plateau stress should be around 2Mpa. The authors takes responsibility for these errors and regret the publication of invalid results. The nonlinear compressive response and deformation of an auxetic cellular structure that has
Directory of Open Access Journals (Sweden)
El-Sayed A. El-Badawy
2008-02-01
Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect
Directory of Open Access Journals (Sweden)
El-Sayed A. El-Badawy
2008-02-01
Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect
Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi
2011-08-01
To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks.
Sburlan, S. E.; Farr, W. H.
2011-01-01
Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.
Sburlan, S. E.; Farr, W. H.
2011-01-01
Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.
Directory of Open Access Journals (Sweden)
E. Çelebi
2012-11-01
Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.
Nonlinear, interacting responses to climate limit grassland production under global change.
Zhu, Kai; Chiariello, Nona R; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B
2016-09-20
Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale-a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability.
Nonlinear, interacting responses to climate limit grassland production under global change
Zhu, Kai; Chiariello, Nona R.; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B.
2016-01-01
Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale—a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability. PMID:27601643
Molecular Mechanisms of Nonlinearity in Response to Low Dose Ionizing Radiation
2007-10-12
endogenous and cultured human skin. Radiat Rex 2004:161:739-45. effects on humans in radiation therapy patients. Radiat exogenous response modifiers...0.2 gtg/ml final concentration, typically a 1:1000 dilution. The secondary antibody (donkey anti-goat-hrp, sc-2020 or donkey anti- rabbit , sc-2004, SCB
Modeling human auditory evoked brainstem responses based on nonlinear cochlear processing
DEFF Research Database (Denmark)
Harte, James; Rønne, Filip Munch; Dau, Torsten
2010-01-01
(ABR) to transient sounds and frequency following responses (FFR) to tones. The model includes important cochlear processing stages (Zilany and Bruce, 2006) such as basilar-membrane (BM) tuning and compression, inner hair-cell (IHC) transduction, and IHC auditory-nerve (AN) synapse adaptation...
Directory of Open Access Journals (Sweden)
Juan Manuel Medina-Sánchez
Full Text Available The responses of heterotrophic microbial food webs (HMFW to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.
Brands, Dave W A; Bovendeerd, Peter H M; Wismans, Jac S H M
2002-11-01
In current Finite Element (FE) head models, brain tissue is commonly assumed to display linear viscoelastic material behaviour. However, brain tissue behaves like a non-linear viscoelastic solid for shear strains above 1%. The main objective of this study was to study the effect of non-linear material behaviour on the predicted brain response. We used a non-linear viscoelastic constitutive model, developed on the basis of experimental shear data presented elsewere. First we tested the numerical implementation of the constitutive model by simulating the response of a silicone gel (Sylgard 572 A&B) filled cylindrical cup, subjected to a transient rotational acceleration. The experimental results could be reproduced within 9%. Subsequently, the effect of non-linear material modelling on computed brain response was investigated in an existing three-dimensional head model subjected to an eccentric rotation. At the applied external load strains in the brain were approximately ten times larger than was expected on the basis of published data. This is probably caused by the values of the shear moduli applied in the model. These are at least a factor of ten lower than the ones used in head models in literature but comparable to material data in recent literature. Non-linear material behaviour was found to influence the levels of predicted strains (+20%) and stresses (-11%) but not their temporal and spatial distribution. The pressure response was independent of non-linear material behaviour. In fact it could be predicted by the equilibrium of momentum, and thus it is independent of the choice of the brain constitutive model.
Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.
2016-01-01
From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068
Energy Technology Data Exchange (ETDEWEB)
Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp [Kobe City College of Technology, Kobe, Hyogo 651-2194 (Japan)
2014-12-15
Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields during the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.
Karamanis, Panaghiotis; Otero, Nicolás; Pouchan, Claude
2014-05-21
In an attempt to diversify the options in designing graphene-based systems bearing large second order nonlinear optical (NLO) responses of octupolar and/or dipolar character, the subject of the quadratic NLO properties of hybrid boron nitride (BN) graphene flakes is opened up. State of the art ab initio and density functional theory methods applied on a toolbox of book-text octupolar and arbitrary dipolar planar hybrid h-BN-graphene nanosized systems reveal that by confining finite h-BN sections in the internal network of graphene, the capacity of the π-electron network of graphene species in delivering giant second order NLO responses could be fully exploited. Configuration interaction (CIS) and time-dependent density functional (TD) computations, within the sum-overstate (SOS) perturbational approach, expose that the prevailing (hyper)polarization mechanism, lying under the sizable computed octupolar hyperpolarizabilities, is fueled by alternating positive and negative atomic charges located in the internal part of the hybrid flakes, and more precisely at the BN/graphene intersections. This type of charge transfer mechanism distinguishes, in fact, the elemental graphene dipoles/octupoles we report here from other conventional NLO dipoles or octupoles. More interestingly, it is shown that by controlling the shape, size, and covering area of the h-BN domain (or domains), one can effectively regulate "à volonté" both the magnitudes and types of the second order NLO responses switching from dipolar to octupolar and vice versa. Especially in the context of the latter class of NLO properties, this communication brings into surface novel, graphene-based, octupolar planar or quasiplanar motifs. The take home message of this communication is summarized as follows: When the right BN segment is incorporated in the right section of the right graphene flake, systems of giant quadratic NLO octupolar and/or dipolar responses may emerge.
Energy Technology Data Exchange (ETDEWEB)
Huang, Jun-ben [School of Physics Science and Technology, Xinjiang University, Urumqi 830046 (China); Xinjiang Key Laboratory of Electronic Information Material and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Mamat, Mamatrishat, E-mail: mmtrxt@xju.edu.cn [School of Physics Science and Technology, Xinjiang University, Urumqi 830046 (China); Pan, Shilie [Xinjiang Key Laboratory of Electronic Information Material and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Yang, Zhihua, E-mail: zhyang@ms.xjb.ac.cn [Xinjiang Key Laboratory of Electronic Information Material and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China)
2016-07-15
In this research work, Ag-containing quaternary-chalcogenide compounds KAg{sub 2}TS{sub 4} (T=P, Sb) (I-II) and RbAg{sub 2}SbS{sub 4} (III) have been studied by means of Density Functional Theory as potential IR nonlinear optical materials. The origin of wide band gap, different optical anisotropy and large SHG response is explained via a combination of density of states, electronic density difference and bond population analysis. It is indicated that the different covalent interaction behavior of P-S and Sb-S bonds dominates the band gap and birefringence. Specifically, the Ag-containing chalcogenide compound KAg{sub 2}PS{sub 4} possesses wide band gap and SHG response comparable with that of AgGaS{sub 2}. By exploring the origin of the band gap and NLO response for compounds KAg{sub 2}TS{sub 4} (T=P, Sb), we found the determination factor to the properties is different, especially the roles of Ag-d orbitals and bonding behavior of P-S or Sb-S. Thus, the compounds KAg{sub 2}TS{sub 4} (T=P, Sb) and RbAg{sub 2}SbS{sub 4} can be used in infrared (IR) region. - Graphical abstract: Metal thiophosphates RbPbPS{sub 4} and KSbP{sub 2}S{sub 6} have a similar band gap with KAg{sub 2}PS{sub 4}. However, based on first principles calculated results it shown that KAg{sub 2}PS{sub 4} possesses wide band gap (3.02 eV) and relatively large SHG response. Display Omitted.
Park, H.; Ho, C. H.; Jeong, S. J.
2015-12-01
Understanding the changes in vegetation annual cycle is crucial for improving our knowledge about various interactions between the terrestrial ecosystem and climate. However, our understanding about the vegetation seasonality is mostly confined to some phenological timings such as spring emergence and fall senescence. This study assessed large-scale variations in the vegetation green-up rate (VGrate), which indicates the rate of canopy development from winter dormancy to summer maturity, and its relationship over Northern Hemisphere temperate and boreal forests for 1982-2011. VGrate and local temperature changes show a positive correlation over the region of interest, and it indicates that a temperature increase during green-up period leads to faster canopy development. The responses of VGrate tend to be more sensitive to positive temperature anomalies than negative anomalies despite same magnitude of the temperature changes. These nonlinear responsiveness of VGrate to local temperature change is clearly observed in deciduous broadleaf forests over Eurasia compared to woodlands over North America. These results suggest that anomalous warming in green-up period would make canopy developments faster over wide temperate and boreal forest areas.
Yamaguchi, Maiku; Nobusada, Katsuyuki; Yatsui, Takashi
2015-10-01
Electron dynamics excited by an optical near field (ONF) in a two-dimensional quantum dot model was investigated by solving a time-dependent Schrödinger equation. It was found that the ONF excitation of the electron caused two characteristic phenomena: a two-photon absorption and an induction of a magnetic dipole moment with a strong third-harmonic component. By analyzing the interaction dynamics of the ONF and the electron, we explained that the physical mechanism underlying these phenomena was the second-harmonic electric-field component concomitant with the near-field excitation originating from the nonuniformity of the ONF. Despite a y -polarized ONF source, the second-harmonic component of an x -polarized electric field was inherently generated. The effect of the second-harmonic electric-field component is not due to usual second-order nonlinear response but appears only when we explicitly consider the electron dynamics interacting with the ONF beyond the conventional optical response assuming the dipole approximation.
Directory of Open Access Journals (Sweden)
Umberto Melia
Full Text Available The level of sedation in patients undergoing medical procedures evolves continuously, affected by the interaction between the effect of the anesthetic and analgesic agents and the pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG, have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work is to improve the prediction of nociceptive responses with linear and non-linear measures calculated from EEG signal filtered in frequency bands higher than the traditional bands. Power spectral density and auto-mutual information function was applied in order to predict the presence or absence of the nociceptive responses to different stimuli during sedation in endoscopy procedure. The proposed measures exhibit better performances than the bispectral index (BIS. Values of prediction probability of Pk above 0.75 and percentages of sensitivity and specificity above 70% were achieved combining EEG measures from the traditional frequency bands and higher frequency bands.
Hmiel, A.; Winey, J. M.; Gupta, Y. M.; Desjarlais, M. P.
2016-05-01
Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elastic constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.
Directory of Open Access Journals (Sweden)
Robert W. Cohn
2016-06-01
Full Text Available Recently various nanomaterials, such as carbon nanotubes and graphene, have been added to rubbery elastomers, such as poly dimethyl siloxane (PDMS, to enable generation of stress and displacement in response to remote illumination. While the response is primarily due to heat-induced generation of stress; i.e., the thermoelastic effect in rubbers, illuminated samples have shown unexpected deviations between the transient waveforms of sample temperature and induced stress. In this report we have created a new and simple lumped element model to explain the stress behavior of these photomechanical nanocomposites. The model consists of two parameters that describe the spatially averaged steady state temperature rise due to optical absorption of the structure (typically a long strip of pre-strained elastomer and the spatially averaged convective cooling rate of the strip, together with a time-varying function that effectively represents the temperature distribution and thermal convection along the length of the strip. The model is used to compare two actuators that each have a thin embedded layer of carbon nanotubes, in which the one film consists of randomly aligned nanotubes and the other has a much more ordered alignment. The model not only fits both transient responses, but the differences between the parameters suggests that the ordered film conducts heat across the strip more rapidly than the disordered film, leading to it more rapidly reaching the steady state level of maximum stress. This model should be helpful in future experimental studies that work to observe, delineate and identify possible nanoscale and molecular contributions to photomechanical stress.
Sudheesh, P.; Siji Narendran, N. K.; Chandrasekharan, K.
2013-12-01
Here we report a study on the third-order nonlinear optical properties of a new class of phenylhydrazones and the influence of silver and gold metal nanoparticles on their nonlinear response. Metal nanoparticles were prepared by laser ablation method. Single beam Z-scan technique with a 7 ns, 10 Hz Nd: YAG laser pulses at 532 nm were employed for the measurements. The compounds exhibit well optical limiting properties. Hence, these compounds are a promising class of materials for the optical device applications.
Research on Simulation and Test of the Nonlinear Responses for the Hydraulic Shock Absorber
Institute of Scientific and Technical Information of China (English)
张建武; 刘延庆
2003-01-01
Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.
Directory of Open Access Journals (Sweden)
J. Xing
2011-05-01
Full Text Available Statistical response surface methodology (RSM is successfully applied for a Community Multi-scale Air Quality model (CMAQ analysis of ozone sensitivity studies. Prediction performance has been demonstrated through cross validation, out-of-sample validation and isopleth validation. Sample methods and key parameters, including the maximum numbers of variables involved in statistical interpolation and training samples have been tested and selected through computational experiments. Overall impacts from individual source categories which include local/regional NO_{x} and VOC emission sources and NO_{x} emissions from power plants for three megacities – Beijing, Shanghai and Guangzhou – were evaluated using an RSM analysis of a July 2005 modeling study. NO_{x} control appears to be beneficial for ozone reduction in the downwind areas which usually experience high ozone levels, and NO_{x} control is likely to be more effective than anthropogenic VOC control during periods of heavy photochemical pollution. Regional NO_{x} source categories are strong contributors to surface ozone mixing ratios in three megacities. Local NO_{x} emission control without regional involvement may raise the risk of increasing urban ozone levels due to the VOC-limited conditions. However, local NO_{x} control provides considerable reduction of ozone in upper layers (up to 1 km where the ozone chemistry is NO_{x}-limited and helps improve regional air quality in downwind areas. Stricter NO_{x} emission control has a substantial effect on ozone reduction because of the shift from VOC-limited to NO_{x}-limited chemistry. Therefore, NO_{x} emission control should be significantly enhanced to reduce ozone pollution in China.
Haiwu, Rong; Wang, Xiangdong; Xu, Wei; Fang, Tong
2009-08-01
The subharmonic response of single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to narrow-band random excitation is investigated. The narrow-band random excitation used here is a filtered Gaussian white noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, or velocity jumps, thereby permitting the applications of asymptotic averaging over the "fast" variables. The averaged stochastic equations are solved exactly by the method of moments for the mean-square response amplitude for the case of linear system with zero offset. A perturbation-based moment closure scheme is proposed and the formula of the mean-square amplitude is obtained approximately for the case of linear system with nonzero offset. The perturbation-based moment closure scheme is used once again to obtain the algebra equation of the mean-square amplitude of the response for the case of nonlinear system. The effects of damping, detuning, nonlinear intensity, bandwidth, and magnitudes of random excitations are analyzed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak amplitudes may be strongly reduced at large detunings or large nonlinear intensity.
Silva, Clodoaldo J.; Daqaq, Mohammed F.
2017-02-01
Despite the shear amount of research studies on nonlinear flexural dynamics of cantilever beams, very few efforts address the practical geometry involving a constant thickness and linearly-varying width. This stems from the nature of the associated linear eigenvalue problem which cannot be easily solved in closed form. In this paper, we present a closed-form solution to this particular linear eigenvalue problem in the form of a general Meijer-G differential equation for which a solution is readily available in the shape of the Meijer-G functions. Using this approach, the exact linear modal frequencies and shapes are obtained and used in the discretization of the nonlinear partial-differential equation describing the dynamics of the system. The discretized system of ordinary-differential equations is then solved using the method of multiple scales to obtain an approximate analytical solution describing the primary resonance behavior of a given vibration mode. An analytical expression for the modal effective nonlinearity is obtained and used to analyze the influence of the beam's tapering on the nonlinear primary resonance behavior of the response (softening/hardening). Results are then compared to a finite element (FE) solution of the linear eigenvalue problem in which the modal shapes obtained using the FE method are fit into a set of orthogonal polynomial functions and used to discretize the nonlinear problem. It is shown that, while the modal frequencies obtained using the FE method approximate those obtained analytically with negligible error (less than 1%), there is a substantial error in the resulting estimates of the modal effective nonlinearity. This indicates that, even negligible errors in the approximate solution of the linear problem, can propagate to become significant when analyzing the nonlinear problem further reinforcing the importance of the exact solution.
Energy Technology Data Exchange (ETDEWEB)
Rouzaud, C., E-mail: crouzaud@adm.estp.fr [LMT (ENS Cachan, CNRS, Université Paris Saclay) 61 avenue du Président Wilson, 94235 Cachan (France); Université Paris-Est, Institut de Recherche en Constructibilité, ESTP 28 avenue du Président Wilson, 94230 Cachan (France); AREVA, 10 rue Juliette Récamier, 69006 Lyon (France); Gatuingt, F. [LMT (ENS Cachan, CNRS, Université Paris Saclay) 61 avenue du Président Wilson, 94235 Cachan (France); Hervé, G. [Université Paris-Est, Institut de Recherche en Constructibilité, ESTP 28 avenue du Président Wilson, 94230 Cachan (France); Moussallam, N. [AREVA, 10 rue Juliette Récamier, 69006 Lyon (France); Dorival, O. [Icam, Site de Toulouse, 75 avenue de Grande-Bretagne, 31076 Toulouse Cedex 3 (France); Université de Toulouse, Institut Clément Ader (ICA), INSA, UPS, Mines Albi, ISAE 135 avenue de Rangueil, 31077 Toulouse Cedex (France)
2016-03-15
Highlights: • Structures could resist to the induced accelerations which they might undergo. • The characterization of non-linearities in the signal of an aircraft impact. • The non linear impact area are studied through a sensitivity analysis. • This analysis should allow to achieve a link between aircraft impact parameters. - Abstract: In the process of nuclear power plant design, the safety of structures is an important aspect. Civil engineering structures have to resist the accelerations induced by, for example, seismic loads or shaking loads resulting from the aircraft impact. This is even more important for the in-structures equipments that have also to be qualified against the vibrations generated by this kind of hazards. In the case of aircraft crash, as a large variety of scenarios has to be envisaged, it is necessary to use methods that are less CPU-time consuming and that consider appropriately the nonlinearities. The analysis presented in this paper deals with the problem of the characterization of nonlinearities (damaged area, transmitted force) in the response of a structure subjected to an aircraft impact. The purpose of our study is part of the development of a new decoupled nonlinear and elastic way for calculating the shaking of structures following an aircraft impact which could be very numerically costly if studied with classical finite element methods. The aim is to identify which parameters control the dimensions of the nonlinear zone and so will have a direct impact on the induced vibrations. In a design context, several load cases (and simulations) are analyzed in order to consider a wide range of impact (different loading surfaces, momentum) and data sets of the target (thickness, reinforcements). In this work, the nonlinear area generated by the impact is localized and studied through a parametric analysis associated with a sensitivity analysis to identify the boundaries between the elastic domain and this nonlinear area.
Vakhnenko, O O; Shankland, T J; Cate, J A T; Vakhnenko, Oleksiy O.; Vakhnenko, Vyacheslav O.; Shankland, Thomas J.; Cate, James A. Ten
2004-01-01
The closed description of nonlinear and slow dynamics effects exhibited by the sandstone bars in numerous resonant response experiments with the longitudinal strain configuration is proposed. Alongside with the fast subsystem of longitudinal nonlinear displacements we examine the strain dependent slow subsystem of broken intergrain and interlamina cohesive bonds and show that even the simplest but phenomenologically correct modelling of their mutual feedback elucidates the main experimental mysteries typical for the forced longitudinal oscillations of sandstone bars, namely (i) the hysteretic behaviour of resonance curve on both its slopes, (ii) the linear softening of resonant frequency with the driving level increase, and (iii) the gradual recovery (increase) of resonant frequency at low dynamical strains after the sample being conditioned by the high ones. In order to reproduce the highly nonlinear elastic features of sandstone grained structure the realistic nonperturbative form of strain potential energy...
Directory of Open Access Journals (Sweden)
Mikhail Shamonin
2012-11-01
Full Text Available The magnetoelectric response of bi- and symmetric trilayer composite structures to pulsed magnetic fields is experimentally investigated in detail. The structures comprise layers of commercially available piezoelectric (lead zirconate titanate and magnetostrictive (permendur or nickel materials. The magnetic-field pulses have the form of a half-wave sine function with duration of 450 µs and amplitudes ranging from 500 Oe to 38 kOe. The time dependence of the resulting voltage is presented and explained by theoretical estimations. Appearance of voltage oscillations with frequencies much larger than the reciprocal pulse length is observed for sufficiently large amplitudes (~1–10 kOe of the magnetic-field pulse. The origin of these oscillations is the excitation of bending and planar acoustic oscillations in the structures. Dependencies of the magnetoelectric voltage coefficient on the excitation frequency and the applied magnetic field are calculated by digital signal processing and compared with those obtained by the method of harmonic field modulation. The results are of interest for developing magnetoelectric sensors of pulsed magnetic fields as well as for rapid characterization of magnetoelectric composite structures.
Non-linear responses of glaciated prairie wetlands to climate warming
Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.
2016-01-01
The response of ecosystems to climate warming is likely to include threshold events when small changes in key environmental drivers produce large changes in an ecosystem. Wetlands of the Prairie Pothole Region (PPR) are especially sensitive to climate variability, yet the possibility that functional changes may occur more rapidly with warming than expected has not been examined or modeled. The productivity and biodiversity of these wetlands are strongly controlled by the speed and completeness of a vegetation cover cycle driven by the wet and dry extremes of climate. Two thresholds involving duration and depth of standing water must be exceeded every few decades or so to complete the cycle and to produce highly functional wetlands. Model experiments at 19 weather stations employing incremental warming scenarios determined that wetland function across most of the PPR would be diminished beyond a climate warming of about 1.5–2.0 °C, a critical temperature threshold range identified in other climate change studies.
Larwood, J D; Larwood, John D.; Papaloizou, John C.B.
1996-01-01
In this paper we present an analytical and numerical study of the response of a circumbinary disc subject to the tidal-forcing of a binary with a fixed circular orbit. We consider fluid discs with a range of thicknesses and binaries with a range of mass ratios, orbital separations and inclination angles. Our numerical simulations are implemented using a SPH code. For our unperturbed disc models, we write a scaling relation for the shear viscosity and deduce that the disc thickness cannot be varied without affecting the viscosity in these kinds of SPH disc models. It is found that maintainance of an inner cavity owing to the tidal truncation of the disc is effective for non-zero orbital inclinations. Also we show that our model discs may precess approximately like rigid bodies, provided that the disc is able to communicate on a length scale comparable to the inner boundary radius by either sonic or viscous effects, in a sufficiently small fraction of the local precession period. Furthermore, the disc precessio...
Modeling the Non-linear Viscoelastic Response of High Temperature Polyimides
Karra, Satish
2010-01-01
A constitutive model is developed to predict the viscoelastic response of polyimide resins that are used in high temperature applications. This model is based on a thermodynamic framework that uses the notion that the `natural configuration' of a body evolves as the body undergoes a process and the evolution is determined by maximizing the rate of entropy production in general and the rate of dissipation within purely mechanical considerations. We constitutively prescribe forms for the specific Helmholtz potential and the rate of dissipation (which is the product of density, temperature and the rate of entropy production), and the model is derived by maximizing the rate of dissipation with the constraint of incompressibility, and the reduced energy dissipation equation is also regarded as a constraint in that it is required to be met in every process that the body undergoes. The efficacy of the model is ascertained by comparing the predictions of the model with the experimental data for PMR-15 and HFPE-II-52 ...
Lee, Ching Hua; Zhang, Xiao; Guan, Bochen
2015-12-01
Materials exhibiting negative differential resistance have important applications in technologies involving microwave generation, which range from motion sensing to radio astronomy. Despite their usefulness, there has been few physical mechanisms giving rise to materials with such properties, i.e. GaAs employed in the Gunn diode. In this work, we show that negative differential resistance also generically arise in Dirac ring systems, an example of which has been experimentally observed in the surface states of Topological Insulators. This novel realization of negative differential resistance is based on a completely different physical mechanism from that of the Gunn effect, relying on the characteristic non-monotonicity of the response curve that remains robust in the presence of nonzero temperature, chemical potential, mass gap and impurity scattering. As such, it opens up new possibilities for engineering applications, such as frequency upconversion devices which are highly sought for terahertz signal generation. Our results may be tested with thin films of Bi2Se3 Topological Insulators, and are expected to hold qualitatively even in the absence of a strictly linear Dirac dispersion, as will be the case in more generic samples of Bi2Se3 and other materials with topologically nontrivial Fermi sea regions.
Ermolenko, M. V.; Stankevich, V. V.; Buganov, O. V.; Tikhomirov, S. A.; Ganonenko, S. V.; Kuznetsov, P. I.; Yakushcheva, G. G.
2009-04-01
The nonlinear optical properties of multilayer heterostructures based on zinc chalcogenides are studied. Rapid variations in the reflection and transmission of samples excited by ultrashort laser pulses are demonstrated. The characteristic relaxation times of the induced nonlinearity are 2-5 ps and are almost independent within the experimental error on the excitation energy and temperature of a sample.
Non-linear CO2 flux response to seven years of experimentally induced permafrost thaw.
Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo; Hutchings, Jack; Natali, Susan M; Pegoraro, Elaine; Salmon, Verity G; Schädel, Christina; Webb, Elizabeth E; Schuur, Edward A G
2017-02-16
Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from seven years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (Reco), gross primary productivity (GPP), and net summer CO2 storage (NEE). Over seven years Reco, GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, Reco , GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated micro-sites, and suppressed Reco , GPP, and NEE. However Reco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher Reco in deeply thawed areas during summer months was balanced by GPP. Summer CO2 flux across treatments fit a single quadratic relationship that captured the functional response of CO2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO2 flux: plant growth and water table dynamics. Non-summer Reco models estimated that the area was an annual CO2 source during all years of observation. Non-summer CO2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO2 source. This article is protected by copyright. All rights reserved.
Lopes, M A; Lee, K-E; Goltsev, A V; Mendes, J F F
2014-11-01
We show that sensory noise can enhance the nonlinear response of neuronal networks, and when delivered together with a weak signal, it improves the signal detection by the network. We reveal this phenomenon in neuronal networks that are in a dynamical state preceding a saddle-node bifurcation corresponding to the appearance of sustained network oscillations. In this state, even a weak subthreshold pulse can evoke a large-amplitude oscillation of neuronal activity. The signal-to-noise ratio reaches a maximum at an optimum level of sensory noise, manifesting stochastic resonance (SR) at the population level. We demonstrate SR by use of simulations and numerical integration of rate equations in a cortical model. Using this model, we mimic the experiments of Gluckman et al. [Phys. Rev. Lett. 77, 4098 (1996)PRLTAO0031-900710.1103/PhysRevLett.77.4098] that have given evidence of SR in mammalian brain. We also study neuronal networks in which neurons are grouped in modules and every module works in the regime of SR. We find that even a few modules can strongly enhance the reliability of signal detection in comparison with the case when a modular organization is absent.
Portacio, Alfonso A.; Rodríguez, Boris A.; Villamil, Pablo
2017-04-01
The linear and nonlinear optical response in a cylindrical quantum dot (CQD) of GaAs / Ga0.6Al0.4 As with a donor impurity in a uniform magnetic field applied in the axial direction of the cylinder is studied theoretically. The calculations were carried out in approximations of effective mass and two-level quantum systems. Using the variational method, the binding energies and the wave functions of the 1s-like y 2pz-like states for different positions of the impurity inside the CQD were found. It was found that the binding energy is greatest in the center of the CQD and diminishes as the impurity moves radially and/or axially. The optical rectification, the change in the refractive index, and the optical absorption were studied as functions of the energy of a photon incident on the CQD and different intensities of the magnetic field, with an impurity located at various positions. It was found that in a CDQ with an impurity inside, the effect of the variation of the intensity of the magnetic field on the optical response is much less than the effect produced by the variation of the position of the impurity. The physical reason for this behavior is that in nanostructures with impurities the Coulomb confinement is stronger than the magnetic confinement. It was also found that when the impurity is in the center of the quantum dot, the optical rectification coefficient is zero, due to the symmetry that the wave function of the impurity exhibits at this geometric point. When the impurity moves in the axial direction, the symmetry is broken and the optical rectification coefficient is different from zero, and its value increases as the impurity moves away from the center of the CQD.
Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan
2007-01-01
This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.
Xu, Jin-Long; Sun, Yi-Jian; He, Jing-Liang; Wang, Yan; Zhu, Zhao-Jie; You, Zhen-Yu; Li, Jian-Fu; Chou, Mitch M C; Lee, Chao-Kuei; Tu, Chao-Yang
2015-10-07
Dirac-like topological insulators have attracted strong interest in optoelectronic application because of their unusual and startling properties. Here we report for the first time that the pure topological insulator Bi2Te3 exhibited a naturally ultrasensitive nonlinear absorption response to photoexcitation. The Bi2Te3 sheets with lateral size up to a few micrometers showed extremely low saturation absorption intensities of only 1.1 W/cm(2) at 1.0 and 1.3 μm, respectively. Benefiting from this sensitive response, a Q-switching pulsed laser was achieved in a 1.0 μm Nd:YVO4 laser where the threshold absorbed pump power was only 31 mW. This is the lowest threshold in Q-switched solid-state bulk lasers to the best of our knowledge. A pulse duration of 97 ns was observed with an average power of 26.1 mW. A Q-switched laser at 1.3 μm was also realized with a pulse duration as short as 93 ns. Moreover, the mode locking operation was demonstrated. These results strongly exhibit that Bi2Te3 is a promising optical device for constructing broadband, miniature and integrated high-energy pulsed laser systems with low power consumption. Our work clearly points out a significantly potential avenue for the development of two-dimensional-material-based broadband ultrasensitive photodetector and other optoelectronic devices.
Plan, Elodie L; Maloney, Alan; Mentré, France; Karlsson, Mats O; Bertrand, Julie
2012-09-01
Estimation methods for nonlinear mixed-effects modelling have considerably improved over the last decades. Nowadays, several algorithms implemented in different software are used. The present study aimed at comparing their performance for dose-response models. Eight scenarios were considered using a sigmoid E(max) model, with varying sigmoidicity and residual error models. One hundred simulated datasets for each scenario were generated. One hundred individuals with observations at four doses constituted the rich design and at two doses, the sparse design. Nine parametric approaches for maximum likelihood estimation were studied: first-order conditional estimation (FOCE) in NONMEM and R, LAPLACE in NONMEM and SAS, adaptive Gaussian quadrature (AGQ) in SAS, and stochastic approximation expectation maximization (SAEM) in NONMEM and MONOLIX (both SAEM approaches with default and modified settings). All approaches started first from initial estimates set to the true values and second, using altered values. Results were examined through relative root mean squared error (RRMSE) of the estimates. With true initial conditions, full completion rate was obtained with all approaches except FOCE in R. Runtimes were shortest with FOCE and LAPLACE and longest with AGQ. Under the rich design, all approaches performed well except FOCE in R. When starting from altered initial conditions, AGQ, and then FOCE in NONMEM, LAPLACE in SAS, and SAEM in NONMEM and MONOLIX with tuned settings, consistently displayed lower RRMSE than the other approaches. For standard dose-response models analyzed through mixed-effects models, differences were identified in the performance of estimation methods available in current software, giving material to modellers to identify suitable approaches based on an accuracy-versus-runtime trade-off.
Directory of Open Access Journals (Sweden)
John Paull
2011-07-01
Full Text Available Rudolf Steiner presented his Agriculture Course to a group of 111, farmers and others, at Koberwitz (Kobierzyce, Poland in 1924. Steiner spoke of an agriculture to ‘heal the earth’ and he laid the philosophical and practical underpinnings for such a differentiated agriculture. Biodynamic agriculture is now practiced internationally as a specialist form of organic agriculture. The path from proposal to experimentation, to formalization, to implementation and promulgation played out over a decade and a half following the Course and in the absence of its progenitor. Archival material pertaining to the dissemination of the early printed editions of ‘The Agriculture Course’ reveals that within six years of the Course there was a team of more than 400 individuals of the Agricultural Experimental Circle (AEC, each signed a confidentiality agreement, and located throughout continental Europe, and also in Australia, Britain, Canada, New Zealand, South Africa, and USA. Membership expanded to over 1000 AEC members (with a lower bound estimate of 1144 members who were committed to working collectively towards an evidence based, new and alternative agriculture, ‘for all farmers’, which was to be developed into a ‘suitable for publication’ form. That publication milestone was realized in 1938 with the release of Ehrenfried Pfeiffer’s ‘Bio-Dynamic Farming and Gardening’ which was published simultaneously in at least five languages: Dutch, English, French, German and Italian
Institute of Scientific and Technical Information of China (English)
2015-01-01
As a highly nonlinear dynamic system, oceanic general circulation models (OGCMs) usually exhibit nonlinear responses to prescribed wind stress forcing. To explore mechanisms for these nonlinear responses, we designed and conducted three idealized numerical experiments with an OGCM with modifi ed wind stress forcing. In the experiments, the climatological mean wind stress was identical, and the only diff erences in external forcing were wind stress anomalies. The wind anomalies were set to zero in a control run, and the observed wind stress anomalies with and without reversed signs were superimposed on the mean climatology in two sensitivity experiments. Forced by the prescribed wind stress anomalies in sensitivity runs, the OGCM well reproduced the El Ni˜no–Southern Oscillation (ENSO) and the Pacifi c and Indian Ocean Dipole (IOD) in the Indian Ocean, as well as the asymmetry between positive and negative phases of these modes. Relative to the control run, the two sensitivity runs exhibited almost identical changes in the mean climate state, although the wind stress anomalies were reversed in these two experiments. Thus, it was concluded that the asymmetry of wind stress anomalies contributes only slightly to the mean state changes and ocean internal dynamics was the main contributor. Further heat budget analysis suggested that nonlinear temperature advection terms, including both mean advection and perturbed advection, favor the ENSO/IOD rectifi ed eff ect on the mean state.
Organic nonlinear optical materials
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Institute of Scientific and Technical Information of China (English)
Su Min-Bang; Rong Hai-Wu
2011-01-01
The resonant response of a single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to a narrow-band random parametric excitation is investigated. The narrow-band random excitation used here is a bounded random noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, thereby permitting the applications of random averaging over "fast" variables. The averaged equations are solved exactly and an algebraic equation of the amplitude of the response is obtained for the case without random disorder. The methods of linearization and moment are used to obtain the formula of the mean-square amplitude approximately for the case with random disorder. The effects of damping, detuning, restitution factor, nonlinear intensity, frequency and magnitude of random excitations are analysed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak response amplitudes will reduce at large damping or large nonlinear intensity and will increase with large amplitude or frequency of the random excitations. The phenomenon of stochastic jump is observed, that is, the steady-state response of the system will jump from a trivial solution to a large non-trivial one when the amplitude of the random excitation exceeds some threshold value,or will jump from a large non-trivial solution to a trivial one when the intensity of the random disorder of the random excitation exceeds some threshold value.
Kalman, J; Smith, B D; Bury, N R; Rainbow, P S
2014-09-01
Biodynamic modelling was used to investigate the uptake and accumulation of three trace metals (Ag, As, Zn) by the deposit feeding estuarine bivalve mollusc Scrobicularia plana. Radioactive labelling techniques were used to quantify the rates of trace metal uptake (and subsequent elimination) from water and sediment diet. The uptake rate constant from solution (±SE) was greatest for Ag (3.954±0.375 l g(-1) d(-1)) followed by As (0.807±0.129 l g(-1) d(-1)) and Zn (0.103±0.016 l g(-1) d(-1)). Assimilation efficiencies from ingested sediment were 40.2±1.3% (Ag), 31.7±1.0% (Zn) and 25.3±0.9% (As). Efflux rate constants after exposure to metals in the solution or sediment fell in the range of 0.014-0.060 d(-1). By incorporating these physiological parameters into biodynamic models, our results showed that dissolved metal is the predominant source of accumulated Ag, As and Zn in S. plana, accounting for 66-99%, 50-97% and 52-98% of total accumulation of Ag, As and Zn, respectively, under different field exposure conditions. In general, model-predicted steady state concentrations of Ag, As and Zn matched well with those observed in clams collected in SW England estuaries. Our findings highlight the potential of biodynamic modelling to predict Ag, As and Zn accumulation in S. plana, taking into account specific dissolved and sediment concentrations of the metals at a particular field site, together with local water and sediment geochemistries. Copyright © 2014 Elsevier B.V. All rights reserved.
Kecskeméti, Elizabeth; Berkelmann-Löhnertz, Beate; Reineke, Annette
2016-01-01
Using barcoded pyrosequencing fungal and bacterial communities associated with grape berry clusters (Vitis vinifera L.) obtained from conventional, organic and biodynamic vineyard plots were investigated in two subsequent years at different stages during berry ripening. The four most abundant operational taxonomic units (OTUs) based on fungal ITS data were Botrytis cinerea, Cladosporium spp., Aureobasidium pullulans and Alternaria alternata which represented 57% and 47% of the total reads in 2010 and 2011, respectively. Members of the genera Sphingomonas, Gluconobacter, Pseudomonas, Erwinia, and Massilia constituted 67% of the total number of bacterial 16S DNA reads in 2010 samples and 78% in 2011 samples. Viticultural management system had no significant effect on abundance of fungi or bacteria in both years and at all three sampling dates. Exceptions were A. alternata and Pseudomonas spp. which were more abundant in the carposphere of conventional compared to biodynamic berries, as well as Sphingomonas spp. which was significantly less abundant on conventional compared to organic berries at an early ripening stage in 2011. In general, there were no significant differences in fungal and bacterial diversity indices or richness evident between management systems. No distinct fungal or bacterial communities were associated with the different maturation stages or management systems, respectively. An exception was the last stage of berry maturation in 2011, where the Simpson diversity index was significantly higher for fungal communities on biodynamic compared to conventional grapes. Our study highlights the existence of complex and dynamic microbial communities in the grape cluster carposphere including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on grape production. Such knowledge is particularly relevant for development, selection and application of effective control measures against economically important
Namboodiri, Vinu V.; Guleria, Apurav; Singh, Ajay K.
2017-04-01
Considering the impending applications of room temperature ionic liquids (RTILs) in various areas involving high optical and radiation fields, it is pertinent to probe the structure-property correlation of these solvents exposed to such conditions. Herein, femtosecond Z-scan technique (at high pulse repetition rate, 80 MHz) was employed to investigate the non-linear optical response of imidazolium RTILs in 3 scenarios: (1) -OH functionalization, (2) C2 methylation, and (3) influence of high radiation fields. Large negative non-linear refractive values ( n 2) were observed in all the RTIL samples and have been attributed predominantly due to the thermal effects. In order to isolate and determine the contribution of electronic Kerr effect, the Z-scan experiments were also carried out at low pulse repetition rate (i.e. 500 Hz) by means of a mechanical chopper. The closed aperture transmittance profile showed the valley-peak pattern, which signifies positive non-linearity. Nonetheless, the variation in the n2 values of the RTILs follows the same trend in low pulse repetition rate as was observed in case of high pulse repetition rate. The trend in the n 2 values clearly showed the decrease in the non-linearity in the first two cases and has been attributed to the weakening of the ion-pair formation, which adversely affects the charge transfer between the ionic moieties via C2 position. However, an increase in the n 2 values was observed in case of ILs irradiated to high radiation doses. This enhancement in the non-linearity has been assigned to the formation of double bond order radiolytic products. These results clearly indicate a strong correlation between the non-linearity and the strength of cation-anion interaction amongst them. Therefore, such information about these solvents may significantly contribute to the fundamental understanding of their structure-property relationships.
National Research Council Canada - National Science Library
S Meul; S Oberländer -Hayn; J Abalichin; U Langematz
2015-01-01
...) and greenhouse gases (GHGs). The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes...
Energy Technology Data Exchange (ETDEWEB)
Kalman, J., E-mail: judit.kalman@uca.es [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Smith, B.D. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bury, N.R. [Division of Diabetes and Nutritional Science, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Rainbow, P.S. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)
2014-09-15
Highlights: • Biodynamic modelling is used to predict accumulation of Ag, As and Zn in S. plana. • Dissolved and sediment-associated metals contribute to total metal bioaccumulation. • Relative importance varies with water and sediment concentrations and geochemistries. - Abstract: Biodynamic modelling was used to investigate the uptake and accumulation of three trace metals (Ag, As, Zn) by the deposit feeding estuarine bivalve mollusc Scrobicularia plana. Radioactive labelling techniques were used to quantify the rates of trace metal uptake (and subsequent elimination) from water and sediment diet. The uptake rate constant from solution (±SE) was greatest for Ag (3.954 ± 0.375 l g{sup −1} d{sup −1}) followed by As (0.807 ± 0.129 l g{sup −1} d{sup −1}) and Zn (0.103 ± 0.016 l g{sup −1} d{sup −1}). Assimilation efficiencies from ingested sediment were 40.2 ± 1.3% (Ag), 31.7 ± 1.0% (Zn) and 25.3 ± 0.9% (As). Efflux rate constants after exposure to metals in the solution or sediment fell in the range of 0.014–0.060 d{sup −1}. By incorporating these physiological parameters into biodynamic models, our results showed that dissolved metal is the predominant source of accumulated Ag, As and Zn in S. plana, accounting for 66–99%, 50–97% and 52–98% of total accumulation of Ag, As and Zn, respectively, under different field exposure conditions. In general, model-predicted steady state concentrations of Ag, As and Zn matched well with those observed in clams collected in SW England estuaries. Our findings highlight the potential of biodynamic modelling to predict Ag, As and Zn accumulation in S. plana, taking into account specific dissolved and sediment concentrations of the metals at a particular field site, together with local water and sediment geochemistries.
Two-Level Dipolar System in a Heat Bath: High-Pump Power Effects in the Nonlinear Optical Responses
Paz, J. L.; León-Torres, J. R.; Lascano, Luis; Alvarado, Ysaias J.; Costa-Vera, Cesar
2017-06-01
Using the four-wave mixing spectroscopy, we analyze the nonlinear optical properties in a strongly driven two-level system, using a perturbative treatment where, the pump field is considered at all orders, second order in the probe, and first order for the signal field, when the stochastic effects of the solvent are considered. Significant variations in the nonlinear optical properties due mainly to changes in the probe intensity, chemical concentrations, and transversal relaxation times are observed.
Zweig, George
2016-05-01
An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.
Directory of Open Access Journals (Sweden)
Mendel Friedman
2013-08-01
Full Text Available Aflatoxin-producing fungi contaminate food and feed during pre-harvest, storage and processing periods. Once consumed, aflatoxins (AFs accumulate in tissues, causing illnesses in animals and humans. Most human exposure to AF seems to be a result of consumption of contaminated plant and animal products. The policy of blending and dilution of grain containing higher levels of aflatoxins with uncontaminated grains for use in animal feed implicitly assumes that the deleterious effects of low levels of the toxins are linearly correlated to concentration. This assumption may not be justified, since it involves extrapolation of these nontoxic levels in feed, which are not of further concern. To develop a better understanding of the significance of low dose effects, in the present study, we developed quantitative methods for the detection of biologically active aflatoxin B1 (AFB1 in Vero cells by two independent assays: the green fluorescent protein (GFP assay, as a measure of protein synthesis by the cells, and the microculture tetrazolium (MTT assay, as a measure of cell viability. The results demonstrate a non-linear dose-response relationship at the cellular level. AFB1 at low concentrations has an opposite biological effect to higher doses that inhibit protein synthesis. Additional studies showed that heat does not affect the stability of AFB1 in milk and that the Vero cell model can be used to determine the presence of bioactive AFB1 in spiked beef, lamb and turkey meat. The implication of the results for the cumulative effects of low amounts of AFB1 in numerous foods is discussed.